WO2005095872A1 - Generateur thermique a materiau magneto-calorique et procede de generation de thermies - Google Patents

Generateur thermique a materiau magneto-calorique et procede de generation de thermies Download PDF

Info

Publication number
WO2005095872A1
WO2005095872A1 PCT/FR2005/000741 FR2005000741W WO2005095872A1 WO 2005095872 A1 WO2005095872 A1 WO 2005095872A1 FR 2005000741 W FR2005000741 W FR 2005000741W WO 2005095872 A1 WO2005095872 A1 WO 2005095872A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
thermal
elements
generator
magnetic field
Prior art date
Application number
PCT/FR2005/000741
Other languages
English (en)
Inventor
Christian Muller
Jean-Louis Dupin
Jean-Claude Heitzler
Original Assignee
Cooltech Applications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL05744635T priority Critical patent/PL1730454T3/pl
Priority to CA2556333A priority patent/CA2556333C/fr
Priority to BRPI0508110-6A priority patent/BRPI0508110A/pt
Priority to DK05744635T priority patent/DK1730454T3/da
Application filed by Cooltech Applications filed Critical Cooltech Applications
Priority to SI200530123T priority patent/SI1730454T1/sl
Priority to EP05744635A priority patent/EP1730454B8/fr
Priority to EA200601577A priority patent/EA011496B1/ru
Priority to DE602005002832T priority patent/DE602005002832T2/de
Priority to US10/593,845 priority patent/US7897898B2/en
Priority to AU2005229224A priority patent/AU2005229224B2/en
Priority to JP2007505585A priority patent/JP4819794B2/ja
Publication of WO2005095872A1 publication Critical patent/WO2005095872A1/fr
Priority to KR1020067019564A priority patent/KR101215796B1/ko
Priority to HK07107059.6A priority patent/HK1099801A1/xx
Priority to HR20080010T priority patent/HRP20080010T3/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0023Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a thermal generator with magnetocaloric material comprising at least one thermal element, at least one magnetic element intended to generate a magnetic field, the thermal element being arranged facing the magnetic element so as to be able to be subjected to at least a portion of the magnetic field, the thermal generator also comprising magnetic modulation means arranged to vary the magnetic field received by the thermal element and means for recovering at least a portion of the thermals generated by the element thermal subject to this variable magnetic field.
  • the invention also relates to a method for generating thermals in which at least one thermal element is subjected to at least one part of a magnetic field generated by at least one magnetic element, and the magnetic field is modulated with magnetic modulation means. by the thermal element and recovering at least a portion of the thermals generated by the thermal element subjected to this variable magnetic field.
  • Thermal generators of known magnetocaloric material use the magneto-caloric properties of certain materials such as gadolinium or certain alloys which have the particularity of being heated by the effect of a magnetic field and, of cooling, to a temperature lower than their initial temperature, after disappearance of the magnetic field or following a decrease of this magnetic field. Indeed, passing in front of the magnetic field, the magnetic moments of the magneto-caloric material are aligned, causing a rearrangement of the atoms generating warming magneto-caloric material. Outside the magnetic field or in the event of a decrease in the magnetic field, the The process reverses and the magneto-caloric material cools to a temperature below its initial temperature.
  • a team of American researchers has developed and developed a prototype thermal generator with magnetocaloric material comprising a disc formed of thermal sectors containing a magneto-caloric material in the form of a gadolinium alloy.
  • This disk is guided in continuous rotation about its axis so as to scroll its thermal sectors in and out of a magnetic field created by a fixed permanent magnet overlapping part of the disk.
  • the disk passes into a heat transfer block comprising two heat transfer fluid circuits intended for transporting the calories, the other the frigories generated by the thermal sectors subjected alternately to the presence and absence of the magnetic field.
  • the heat transfer block has orifices, opening on the rotating disk, and allowing the contact between the heat transfer fluid and the rotating thermal sectors.
  • the publication WO-A-03/050456 describes a thermal generator substantially similar to the previous one and using two permanent magnets.
  • This thermal generator comprises a monobloc annular enclosure delimiting twelve thermal compartments separated by seals and each receiving gadolinium in porous form.
  • Each thermal compartment is provided with at least four orifices including an inlet port and an outlet port connected to a hot circuit and an inlet port and an outlet port connected to a cold circuit.
  • the two permanent magnets are rotated continuously so that they scan the different thermal compartments by successively subjecting them to a magnetic field.
  • the calories and / or frigories emitted by the thermal compartments are guided to heat exchangers by hot and cold heat transfer fluid circuits to which they are successively connected via a plurality of rotary joints whose rotation is coupled, by one or more belts, to the drive shaft in continuous rotation of the two magnets.
  • This thermal generator simulates the operation of a liquid ring.
  • this heat generator requires continuous, synchronous and precise rotations of the various rotary joints and permanent magnets.
  • the switching and sealing requirements associated with these rotations make this heat generator technically difficult and expensive to produce.
  • the principle of continuous operation makes the technical evolution of this thermal generator very limited.
  • the present invention proposes to overcome these disadvantages by providing a thermal generator material magnetocaloric efficient, reliable, simple design, inexpensive, low power consumption, having a good performance, not requiring synchronization means between displacements of the magneto-caloric elements, not requiring alternative switching means to the hot and cold circuits as described in the prototype of the American researchers cited above, to significantly limit the inert masses to move to achieve the necessary magnetic field variation to obtain the magneto-caloric effect and can be used both in large-scale industrial installations and for domestic applications.
  • the invention relates to a thermal generator with magnetocaloric material of the kind indicated in the preamble, characterized in that the means for magnetic modulation comprise at least one magnetic modulation element, magnetically conductive, coupled to displacement means arranged to move it alternately with respect to the magnetic element and the thermal element, between an active position in which it is brought closer to the magnetic element and the thermal element and arranged to channel at least the portion of the magnetic field to be received by the thermal element and an inactive position in which it is remote from the magnetic element and / or the element thermal and arranged to be without effect on this part of the magnetic field.
  • the means for magnetic modulation comprise at least one magnetic modulation element, magnetically conductive, coupled to displacement means arranged to move it alternately with respect to the magnetic element and the thermal element, between an active position in which it is brought closer to the magnetic element and the thermal element and arranged to channel at least the portion of the magnetic field to be received by the thermal element and an inactive position in which it is remote from the magnetic element and / or the element thermal and arranged to be
  • the magnetic modulation element may be a magnetic convergence element made of a material having a magnetic conductivity greater than that existing in the ambient medium separating the magnetic element and the thermal element, this magnetic convergence element being arranged for, in active position, promote the passage of the magnetic field towards the thermal element having the effect of increasing the magnetic field therethrough.
  • the magnetic modulation element may also be a magnetic divergence element made of a material having a magnetic conductivity greater than that of the thermal element, this magnetic divergence element having at least one shape capable of bypassing the thermal element and arranged for, in the active position, deflect at least a portion of the magnetic field of the thermal element having the effect of reducing the magnetic field therethrough.
  • the magnetic modulation element is advantageously made of at least one of the materials selected from the group consisting of soft iron, ferrites, iron, chromium, vanadium alloys, composites, nano-components, permalloys .
  • the thermal generator comprises at least one magnetic convergence element also called magnetic magnifier and at least one magnetic divergence element also called divergent or thermal shunt arranged to alternately allow to promote the passage of the magnetic field in the direction of the thermal element and to deflect the magnetic field of the thermal element.
  • the magnetic modulation element is advantageously interposed between the magnetic element and the thermal element.
  • the magnetic element preferably comprises at least one positive magnetic terminal and at least one negative magnetic terminal, the thermal element being disposed between the magnetic terminals, and the magnetic modulation element being, at least in the active position, interposed between minus the magnetic terminals.
  • the magnetic convergence element may comprise two convergence pads placed, in the active position, on either side of the thermal element between the thermal element and the magnetic terminals, and / or the element of magnetic divergence may have a U-shaped or C-shaped to overlap, at least in the active position, the thermal element, between the thermal element and the magnetic terminals.
  • the magnetic divergence element mj comprises at least one stud intended to be arranged, in active position, tangentially to the thermal elements Ti and to the magnetic terminals, the gap separating the thermal element Ti from the terminals magnetic 40, 41 remaining free.
  • This gap may be between 0 mm and 50 mm and preferably less than 1 mm.
  • the magnetic element may have a U-shape or C-shape, without shape limitation, for overlapping said magnetic modulation element.
  • the displacement means may be arranged to drive the magnetic modulation element according to at least one of the displacements chosen from the group comprising continuous rotation, stepwise rotation, reciprocating rotation, continuous translation, translation not to not, the alternative translation, a combination of these displacements.
  • the displacement means are preferably coupled to actuating means chosen from the group comprising a motor, a jack, a spring mechanism, an aerogenerator, an electromagnet, a hydrogenerator, a muscular force mechanism.
  • the magnetic modulation element is advantageously carried by a support coupled to the displacement means and made of a magnetically insulating material selected from the group comprising in particular synthetic materials, brass, bronze, aluminum, ceramics.
  • the thermal generator preferably comprises at least one set of magnetic elements, a set of thermal elements each intended to be subjected to the magnetic field of at least one of the magnetic elements, a set of magnetic modulation elements carried by a support coupled to the displacement means and arranged to simultaneously move the magnetic modulation elements so that each is, relative to a given thermal element and a magnetic element, alternately in the active position and in the inactive position.
  • the support comprises at least one substantially circular plate, rotatable about its axis, the thermal elements being arranged in a ring and the magnetic elements forming at least one pair of rings defining the positive and negative magnetic terminals.
  • the plate is preferably provided with a groove defining the gap separating the convergence pellets of the magnetic convergence elements from one another and / or the opening of the U-shape or C-shape of the magnetic divergence elements.
  • This groove may be disposed axially and substantially parallel to the axis of the plate or radially and substantially perpendicular to the axis of the plate.
  • the support comprises at least one substantially rectilinear bar, movable in translation, the thermal elements being arranged in at least one line carried by a cross member and the magnetic elements forming at least one pair of rows defining the magnetic terminals. positive and negative.
  • the thermal elements may be arranged along two substantially parallel lines carried by connected ties and defining a frame.
  • the magnetic elements may be formed of a single piece.
  • the magnetic element is preferably selected from the group consisting of a magnetic assembly, a permanent magnet, an electromagnet, a superconducting magnet, a superconducting electromagnet, a superconductor.
  • the magnetic element and the thermal element are fixed and only the magnetic modulation element is movable.
  • the recovery means comprise at least one of the elements selected from the group comprising a transport circuit containing a heat transfer fluid, means for circulating this heat transfer fluid, a heat exchanger.
  • the invention also relates to a method for generating thermals of the type indicated in the preamble, characterized in that for varying the magnetic field received by the thermal element, at least one magnetic modulating element, magnetically conductive, is used. one moves between at least one active position in which it is brought closer to the magnetic element and the thermal element and arranged to channel at least the part of the magnetic field intended to be received by the thermal element and an inactive position in which it is remote from the magnetic element and / or the thermal element and arranged to have no effect on this part of the magnetic field.
  • At least one magnetic element defining at least one positive terminal and one negative terminal between which the thermal element is arranged and in that in the active position, the magnetic modulation element is interposed between at least the magnetic terminals of the magnetic element.
  • FIG. 1 is a perspective view of a partially assembled thermal generator according to a first embodiment of the invention
  • FIGS. 2A-2C are perspective views substantially similar to the previous one in which the thermal generator is represented at different stages of assembly
  • FIG. 3A is a top view of the heat generator of FIG. 2A
  • FIGS. 3B and 3C are views along the sectional plane AA of FIG. 3A
  • FIGS. 4A and 4B are respectively bottom and perspective views of the magnetic modulation element of FIG. 3A and FIG. 4C is a sectional view along the sectional plane BB of FIG. 4A,
  • FIG. 5A is a view similar to FIG. 3A of the thermal generator of the invention according to a second embodiment, FIGS. 5B and 5C being views along the section plane CC of FIG. 5A,
  • FIGS. 6A and 6B are respectively bottom and perspective views of the magnetic modulation element of FIG. 5A, FIG. 6C being a sectional view along the sectional plane DD of FIG. 6A,
  • FIGS. 7A-7D are respectively views in perspective, from above and in section of the thermal generator of the invention according to an alternative embodiment, FIG. 7D being a perspective view of the magnetic modulation element of FIG. 7C,
  • FIGS. 8A and 8B are sectional and perspective views, respectively, of another variant embodiment of the magnetic modulation element
  • FIGS. 9A and 9B are respectively views from above and in perspective of a third embodiment of a thermal generator according to the invention.
  • FIGS. 9C and 9D are sectional views of the device of the figures respectively along the section planes EE and FF of the generator of FIG. 9A, and FIG. 10 represents in section a fourth embodiment of a thermal generator according to the invention.
  • a thermal generator with magnetocaloric material comprises thermal elements Ti, subjected to the magnetic field generated by magnetic elements Gi.
  • the thermal elements Ti contain a magneto-caloric material such as for example gadolinium (Gd), a gadolinium alloy containing for example silicon (Si), germanium (Ge), iron (Fe), magnesium (Mg) , phosphorus (P), arsenic (As) or any other equivalent magneto-caloric material or alloy.
  • the magnetocaloric material may be in the form of a block, a pellet, a powder, an agglomerate of pieces or any other suitable form and may be based on a single material. or a combination of several magneto-caloric materials.
  • the magnetic elements Gi may comprise one or more solid permanent magnets, sintered or laminated, associated with one or more magnetizable materials concentrating and directing the magnetic field lines of the permanent magnet.
  • the magnetizable materials may contain iron (Fe), cobalt (Co), vanadium (N), soft iron, an assembly of these materials or any equivalent material. Any other type of equivalent magnet such as a magnetic assembly, an electromagnet, a superconducting magnet, a superconductive electromagnet, a superconductor can of course be used.
  • generator the thermal generator magneto-caloric material according to the invention.
  • This generator 10-14 comprises magnetic modulation elements Mj, mj made of magnetically conductive material, such as, for example, soft iron, ferrites, iron, chromium, vanadium alloys, composites, nanocomponents, permalloys or any other material with similar characteristics.
  • Each magnetic modulation element Mj, mj is coupled to displacement means (not shown) to be reciprocally movable between an active position and an inactive position with respect to the thermal elements Ti and the magnetic elements Gi in order to create a variation of the magnetic field received by the thermal elements Ti.
  • each magnetic modulation element Mj, mj is brought closer to a magnetic element Gi and a thermal element Ti to promote the passage of the magnetic field emitted by the magnetic element Gi through the element magnetic modulation Mj, mj towards the thermal element Ti, generating an increase in the magnetic field received by the thermal element Ti.
  • the magnetic modulation element Mj, mj is remote from the magnetic element Gi and / or the thermal element Ti to have no significant impact on the magnetic field emitted by the magnetic element Gi generating a de nition or variation of the magnetic field received by the thermal element Ti.
  • the active position of the magnetic modulation element Mj, mj with respect to a pair of magnetic elements Gi and thermal Ti may correspond to the inactive position of the same magnetic modulation element Mj, mj with respect to a pair of magnetic elements Gi + 1 and thermal Ti + 1, the latter being for example adjacent to the previous ones.
  • the magnetic modulation elements may be magnetic convergence elements Mj made of a material having a magnetic conductivity greater than that existing between the magnetic elements Gi and the thermal elements Ti, for example that of the air. In the active position, these magnetic convergence elements Mj promote the passage of the magnetic field, through them and through the thermal elements Ti disposed opposite. Thus, when the magnetic convergence element Mj is approaching a pair of magnetic elements Gi and thermal Ti, in the active position, the thermal element Ti is subjected to a magnetic field greater than that experienced when the convergence element magnetic Mj is away from the pair of magnetic elements Gi and thermal Ti, in the inactive position.
  • the magnetic modulation elements may also be magnetic divergence elements mj, made of a material having a magnetic conductivity greater than that of the thermal elements Ti and each having a shape able to bypass the thermal element Ti.
  • these magnetic divergence elements mj promote the passage of the magnetic field through them, the magnetic field bypassing the thermal element Ti arranged opposite.
  • the thermal element Ti is subjected to a magnetic field zero or at least lower than that suffered when the magnetic divergence element mj is remote from the pair of magnetic elements Gi and thermal Ti, in the inactive position.
  • the generator 10-11 comprises a set of twelve thermal elements Ti arranged in a center circle A on an interface plate 20, annular, to form a thermal ring .
  • Each thermal element Ti comprises a block of magneto-caloric material 30 and is crossed by two ducts (not shown), opening through hot and cold inlet ports and hot and cold outlet orifices. These ducts are intended to receive respectively the heat transfer fluid to be heated and the heat transfer fluid to be cooled.
  • the interface plate 20 is made of a mechanically rigid and thermally insulating material, for example a composite material, a synthetic material or any other equivalent material. Sealing is provided by a sealing plate 22 made of a mechanically rigid and thermally insulating material, for example a composite material, a synthetic material or any other equivalent material. It comprises four orifices 21 including a cold circuit inlet orifice, a cold circuit discharge orifice, a hot circuit inlet orifice and a hot circuit discharge orifice. These orifices 21 are intended to be connected by traditional connection and distribution means (not shown) to a hot external circuit and a cold external circuit (not shown). The thermal elements Ti being fixed, the connection of the cold and hot external circuits to the orifices 21 of arrival and discharge is achieved by simple hydraulic connections fast or not.
  • the external hot and cold circuits are for example formed of rigid, semi-rigid or flexible conduits in which the heat transfer fluids circulate and each connected to one or more heat exchangers (not shown) or any other equivalent means for the recovery of calories and heat. kilocalories. As described below, this heat exchanger 10-11 thus makes it possible to simultaneously recover the calories and frigories emitted by the thermal elements Ti of the thermal ring.
  • the flow of heat transfer fluids is for example provided by means of forced or free circulation (not shown) such as for example a pump or any other equivalent means.
  • the heat transfer fluids used are chosen in particular according to the desired temperature range. For example, pure water is used for positive temperatures and water with antifreeze for negative temperatures. For very low temperatures, a gas such as helium can be used as heat transfer fluid.
  • the inlet and outlet orifices 21 of each of the hot and cold circuits are connected to each other by hot and cold pipes (not shown) internal to the interface plate 20 and provided with openings facing respectively the orifices. input and output of thermal elements Ti.
  • the hot pipe connects the inlets and outlets of the hot circuit to the hot inlet and outlet ports.
  • the cold line connects the inlet and outlet ports of the cold circuit to the cold inlet and outlet ports.
  • the generator 10-11 comprises twelve magnetic elements Gi each having a U-shaped or C-shaped shape defining a positive magnetic terminal 40 and a negative magnetic terminal 41. These magnetic elements Gi are arranged at a concentric circle distance to the center A so as to overlap the thermal elements Ti of the thermal ring.
  • the magnetic elements Gi can of course have any other suitable form.
  • the openings of the U-shaped or C-shaped shapes of the magnetic elements Gi are oriented axially, substantially parallel to the axis of the circle passing through A and defined by the magnetic elements Gi, so as to define, by relative to the thermal ring, an outer magnetic ring, for example negative, and an inner magnetic ring, for example positive, or vice versa, or a combination of positive or negative terminal pairs in no particular order.
  • each thermal element Ti is disposed between a positive magnetic terminal 40 and a negative magnetic terminal 41.
  • the magnetic modulation means comprise six magnetic convergence elements Mj and six magnetic divergence elements mj arranged in a circle of center A, alternately and carried by a support 52a.
  • the magnetic convergence elements Mj comprise two convergence pads 50 arranged facing one another and separated by a gap sufficient to receive a thermal element Ti without contact between these thermal elements Ti and the magnetic terminals 40, 41 which frame.
  • the magnetic divergence elements mj each define a shape
  • the magnetic convergence elements Mj and magnetic divergence mj are alternately arranged on the support 52a.
  • the magnetic convergence elements Mj are in the immediate environment of a thermal element Ti, Ti + 2 in two and the magnetic divergence elements mj are in the immediate environment of an element thermal Ti + 1, Ti + 3 out of two.
  • the support comprises a substantially circular plate 52a, coaxial with the magnetic rings and the thermal ring. Convergence pads 50 and U-shaped or C-shaped divergence shapes 51 are integrated in the tray
  • This plate 52a is made of a magnetically insulating material such as for example synthetic materials, brass, bronze, aluminum, ceramics, etc. It is coupled to displacement means (not shown) to be movable in rotation about its axis passing through A.
  • the displacement means are for example coupled to actuating means such as a motor, a jack, a spring mechanism, an aerogenerator, an electromagnet, a hydrogenerator or any other suitable actuator. They drive the plate 52a in displacement, for example in continuous rotation, stepwise rotation, reciprocating rotation or any combination of these displacements.
  • actuating means such as a motor, a jack, a spring mechanism, an aerogenerator, an electromagnet, a hydrogenerator or any other suitable actuator.
  • the operation of the generator 10 can be decomposed in two steps performed continuously, stepwise or alternatively depending on the displacement means used.
  • the two steps are, by way of example, described hereinafter sequentially. It is understood that the transition from one stage to another may be progressive. It is considered arbitrarily that the magnetic elements Gi continuously emit their magnetic field.
  • the magnetic convergence elements Mj arranged between each thermal element Ti, Ti + 2 and the corresponding magnetic elements Gi concentrate the lines of the magnetic fields generated by these magnetic elements Gi to promote their passage through them and the thermal elements Ti , Ti + 2.
  • the magnetic convergence elements Mj are in the active position with respect to the thermal elements Ti, Ti + 2 which receive a greater amount of magnetic field than they would have received in the absence of these magnetic convergence elements Mj.
  • these same magnetic convergence elements Mj are in the inactive position relative to the adjacent thermal elements T1 + 1 and T1 + 3 for which they have no influence with respect to the magnetic fields to which they are subjected.
  • the magnetic divergence elements mj arranged between each thermal element Ti + 1, Ti + 3 and the corresponding magnetic elements Gi diverge and deviate along their U-shaped or C-shaped lines the magnetic fields generated by these magnetic elements Gi which bypass the thermal elements Ti + 1, Ti + 3.
  • the magnetic divergence elements mj are in the active position relative to the thermal elements Ti + 1 and Ti + 3 which receive a magnetic field quantity that is practically non-existent and, in any case, much lower than they would have received in the absence of magnetic convergence elements mj.
  • these same magnetic divergence elements mj are inactive position with respect to the adjacent thermal elements Ti, Ti + 2 for which they have no influence with respect to the magnetic fields to which they are subjected.
  • the thermal elements Ti, Ti + 2 subjected to the magnetic field reduction cool and transmit their frigories to cold coolant of the cold circuit to the heat exchangers.
  • the displacement means drive the plate 52a by a step corresponding to the distance between two thermal elements Ti, Ti + 1 adjacent to bring; the magnetic convergence elements Mj between the thermal elements Ti + 1, Ti + 3 and the corresponding magnetic elements Gi, and the magnetic divergence elements mj between the thermal elements Ti, Ti + 2 and the corresponding magnetic elements Gi.
  • the thermal elements Ti + 1, Ti + 3 subjected to an increase of magnetic field heat up and transmit their calories and the thermal elements Ti, Ti + 2 subjected to a reduction of magnetic field cool and transmit their frigories.
  • the second stage is then passed to a new stage by rotation of the plate 52a and so on, each thermal element ti, Ti + 1, Ti + 2, Ti + 3 being thus alternately subjected to the increase and decrease of magnetic field causing a favorable magnetic field variation to produce frigories and / or calories.
  • the generator 11 differs from the previous one in that the magnetic modulation means comprise six magnetic convergence elements Mj but no magnetic divergence elements.
  • the magnetic convergence elements Mj are arranged substantially identically to the previous example, the plate 52b being full between the magnetic convergence elements Mj.
  • this generator 11 is substantially similar to that of the previous generator 10.
  • One thermal element Ti, Ti + 2 over two is subjected via a magnetic convergence element Mj, to an increase in magnetic field.
  • Other thermal elements are subject to a decrease in magnetic field, the latter being diffuse and obstructed by the U-shape of the plate 52b whose branches 55 (see FIGS. 6A, 6B and 6C) made of magnetically insulating or neutral material interpose between the magnetic elements Gi and thermal elements Ti.
  • the generators 12 are substantially identical to the preceding ones. They are distinguished in particular by the fact that they have eight magnetic elements Gi and eight thermal elements Ti.
  • the openings of the U-shaped or C-shaped magnetic elements Gi are oriented radially and substantially perpendicular to the axis passing through A and define two magnetic rings of substantially equal diameter and center A.
  • the grooves 54c-d 52c-d trays are provided radial. The operation of these generators 12 is substantially similar to that of previous generators.
  • the magnetic modulation means comprise four magnetic convergence elements Mj and four magnetic divergence elements mj alternately arranged and carried by the plate 52c.
  • the magnetic modulation means comprise four magnetic convergence elements Mj but no magnetic divergence elements.
  • the magnetic convergence elements Mj comprise U-shaped or C-shaped shapes whose branches define convergence pads 51 arranged substantially identically to the previous example, the plate 52d being full between these magnetic convergence elements Mj to interpose to the magnetic field.
  • FIGS 9A-9D illustrate another embodiment of the generator 14 according to the invention.
  • This generator 14 has ten thermal elements Ti arranged along two lines carried by cross members 70 connected and forming a frame 72.
  • This frame 72 has orifices 71 for the inlet and outlet of the cold and hot circuits connected as previously described by pipes not shown.
  • This generator 14 comprises three magnetic modulation elements Mj carried by a support comprising a substantially rectilinear bar 52e provided between the lines of thermal elements Ti.
  • This bar 52 is made of a mechanically rigid and thermally insulating material, for example a composite material, a synthetic material, a composite material or any other equivalent material.
  • the magnetic modulation elements Mj are arranged, on either side of the bar 52e, so as to overlap a pair of thermal elements Ti, Ti + 2 or Ti + 1, Ti + 3 out of two.
  • the magnetic modulation elements are magnetic convergence elements Mj. It is of course possible to provide a substantially similar generator and also comprising magnetic divergence elements.
  • the bar 52e is coupled to the displacement means to be movable in translation and thus move the magnetic convergence elements Mj with respect to the thermal elements Ti.
  • This translation can be continuous, step by step, alternative.
  • This generator 14 comprises ten U-shaped, C-shaped magnetic elements, or the like, aligned in rows, each row defining positive and negative magnetic terminals 40 (see FIGS. 9C and 9D), overlapping the thermal elements Ti over or not the magnetic convergence elements Mj.
  • this generator 14 is substantially similar to that of the generator 11, FIGS. 6 and 8. However, it differs in that between two magnetic convergence elements Mj, the magnetic field is not stopped or limited. by the bar 52e as it was by the plate 52b, 52d, but simply by the air and / or the ambient medium between the magnetic elements Gi and the thermal elements Ti. The magnetic field variation is thus obtained by the difference in magnetic conduction between the air and / or the ambient medium and the magnetically conductive material of the magnetic convergence elements Mj.
  • the magnetic elements Gi and the thermal elements Ti are fixed. It is understood that, if necessary for the general operation of an installation, one and / or the other can be provided mobile.
  • the magnetic elements may be formed of a single piece.
  • it can be solid outer and inner rings and / or an inner hub.
  • the magnetic modulation elements are arranged tangentially to the magnetic elements and to the thermal elements and not arranged between them.
  • the generator 13 comprises magnetic divergence elements mj carried by a plate 52f of axis A, rotatable and alternating with solid areas of the plate 52f.
  • Each magnetic divergence element mj comprises at least one stud 500 provided with shapes complementary to those of the thermal element Ti and magnetic terminals 40, 41 so as to be able, in the active position, to interpose between the magnetic terminals 40, 41 without interposing itself between the magnetic terminals 40, 41 and the thermal element Ti.
  • the thermal element Ti is arranged tangentially to the thermal elements Ti and to the magnetic terminals 40, 41.
  • the thermal elements are separated from the magnetic terminals 40, 41 by an air gap E of between 0 mm and 50 mm, and preferably less than 1 mm.
  • This air gap E is left free in the active position and in the inactive position and allows the passage of the magnetic field between the magnetic terminals 40, 41 and the thermal element Ti.
  • the operation of this generator 13 is substantially similar to that of the generator 11 previously described, with the difference that we are dealing here with magnetic divergence elements mj and not with magnetic convergence.
  • the magnetic divergence element mj In the inactive position, the magnetic divergence element mj is remote from the thermal element Ti and the magnetic terminals 40, 41. As a result, the magnetic field passes freely through the thermal element Ti which heats up.
  • the magnetic divergence element mj In the active position, the magnetic divergence element mj is tangent to the thermal elements Ti and to the magnetic terminals 40, 41.
  • the magnetic divergence element mj is magnetically more conductive than the air or the ambient medium of the gap E, the magnetic field is deflected and avoids the thermal element Ti which cools.
  • This thermal generator 10-14 can be coupled to other similar or non-similar generators with which it can be connected in series and / or in parallel and / or a series / parallel combination to increase the thermal capacities of an installation without complicating it. neither the operation nor the architecture, the displacement of the magnetic modulation elements being easy to achieve.
  • Each generator 10-14 may comprise a number of thermal element, magnetic elements and / or magnetic modulation elements different from those described, this number is not limited.
  • This generator 10-14 thus makes it possible in a simple manner to produce frigories and / or calories since only the magnetic modulation elements must be moved. These frigories and calories can be used to heat, cool, temper, cool a room, a device, a place and be used in both industrial and domestic applications.
  • the particular construction of this generator 10-14 makes it possible to overcome any problem of sealing in the thermal circuits and to considerably limit the inert masses to be displaced in order to achieve the magnetic field variation necessary to obtain the magneto-caloric effect.
  • the ambient environment is air. It is understood that the generator 10-14 can be used in any other type of suitable environment.
  • a generator 10-14 comprising a specific internal ambient medium such as a gas, this generator 10-14 being disposed in a different external ambient medium, for example another gas or any other fluid.
  • the two ambient media may be isolated from each other for example by a housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hard Magnetic Materials (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Heat Treatment Of Articles (AREA)
  • Glass Compositions (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Control Of Combustion (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Magnetic Treatment Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne un générateur thermique à matériau magnéto­calorique et un procédé de génération de thermies efficaces, fiables, permettant de limiter considérablement les masses inertes à déplacer pour réaliser la variation de champ magnétique nécessaire à l'obtention de l'effet magnéto-calorique et utilisables par des particuliers et/ou des industriels. Le générateur (10) comporte des éléments thermiques (Ti) magnéto-calorique disposés en anneau et traversés par des conduits dans lesquels circule un fluide caloporteur ainsi que des éléments magnétiques (Gi) soumettant ces éléments thermiques (Ti) à un champ magnétique. Le générateur (10) comporte également des éléments de convergence magnétique (Mj) et de divergence magnétique (mj) disposés entre les éléments thermiques (Ti) et les éléments magnétiques (Gi) et couplés à des moyens de déplacement (non représentés) pour être mobile d'un élément thermique (Ti) à un autre (Ti+l) et provoquer une variation de flux magnétique au sein desdits éléments thermiques (Ti) favorisant la génération de calories et/ou de frigories. Application : tempérage, refroidissement, chauffage, conservation, séchage, climatisation

Description

GENERATEUR THERMIQUE A MATERIAU MAGNETO-CALORIQUE ET PROCEDE DE GENERATION DE THERMIES
La présente invention concerne un générateur thermique à matériau magnéto- calorique comportant au moins un élément thermique, au moins un élément magnétique destiné à générer un champ magnétique, l'élément thermique étant disposé en regard de l'élément magnétique de manière à pouvoir être soumis à au moins une partie du champ magnétique, le générateur thermique comportant également des moyens de modulation magnétique agencés pour faire varier le champ magnétique reçu par l'élément thermique et des moyens de récupération d'au moins une partie des thermies générées par l'élément thermique soumis à ce champ magnétique variable.
L'invention concerne également un procédé de génération de thermies au cours duquel on soumet au moins un élément thermique à au moins une partie d'un champ magnétique généré par au moins un élément magnétique, on module avec des moyens modulation magnétique le champ magnétique reçu par l'élément thermique et on récupère au moins une partie des thermies générées par l'élément thermique soumis à ce champ magnétique variable.
Les générateurs thermiques à matériau magnéto-calorique connus utilisent les propriétés magnéto-caloriques de certains matériaux tels que le Gadolinium ou certains alliages qui présentent la particularité de s'échauffer sous l'effet d'un champ magnétique et, de se refroidir, à une température inférieure à leur température initiale, après disparition du champ magnétique ou suite à une diminution de ce champ magnétique. En effet, en passant devant le champ magnétique, les moments magnétiques du matériau magnéto-calorique s'alignent, ce qui provoque un réarrangement des atomes générant réchauffement du matériau magnéto-calorique. Hors du champ magnétique ou en cas de diminution du champ magnétique, le processus s'inverse et le matériau magnéto-calorique se refroidit jusqu'à atteindre une température inférieure à sa température initiale.
Une équipe de chercheurs américains a développé et mis au point un prototype de générateur thermique à matériau magnéto-calorique comportant un disque formé de secteurs thermiques contenant un matériau magnéto-calorique sous forme d'alliage de gadolinium. Ce disque est guidé en rotation continue autour de son axe de manière à faire défiler ses secteurs thermiques dans et en dehors d'un champ magnétique créé par un aimant permanent fixe chevauchant une partie du disque. En regard de l'aimant permanent, le disque passe dans un bloc de transfert thermique comportant deux circuits de fluide caloporteur destinés l'un à transporter les calories, l'autre les frigories générées par les secteurs thermiques soumis alternativement à la présence et à l'absence du champ magnétique. Le bloc de transfert thermique comporte des orifices, débouchant sur le disque en rotation, et permettant le contact entre le fluide caloporteur et les secteurs thermiques en rotation. Malgré la présence de joints tournants, il est très difficile, d'assurer l'étanchéité entre les secteurs thermiques et le bloc de transfert thermique sans pénaliser le rendement global du générateur thermique. De plus, chaque fois qu'un secteur thermique est ou non soumis au champ magnétique et donc s'échauffe ou se refroidit, il faut commuter les entrées et sorties correspondantes au circuit chaud ou au circuit froid. Ce dispositif est donc complexe, peu fiable, d'un rendement limité et n'est pas satisfaisant.
La publication WO-A-03/050456 décrit un générateur thermique sensiblement similaire au précédent et utilisant deux aimants permanents. Ce générateur thermique comporte une enceinte annulaire monobloc délimitant douze compartiments thermiques séparés par des joints et recevant chacun du gadolinium sous forme poreuse. Chaque compartiment thermique est pourvu au minimiim de quatre orifices dont un orifice d'entrée et un orifice de sortie reliés à un circuit chaud et un orifice d'entrée et un orifice de sortie reliés à un circuit froid. Les deux aimants permanents sont animés d'un mouvement de rotation continue de sorte qu'ils balayent les différents compartiments thermiques en les soumettant successivement à un champ magnétique. Les calories et/ou frigories émises par les compartiments thermiques sont guidées vers des échangeurs de chaleur par des circuits chaud et froid de fluide caloporteur auxquels ils sont successivement raccordés par l'intermédiaire de plusieurs joints tournants dont la rotation est couplée, par une ou plusieurs courroies, à l'axe d'entraînement en rotation continue des deux aimants. Ce générateur thermique simule ainsi le fonctionnement d'un anneau liquide.
Pour fonctionner, ce générateur thermique nécessite des rotations continues, synchrones et précises des différents joints rotatifs et des aimants permanents. Les impératifs de commutation et d'étanchéité liés à ces rotations rendent ce générateur thermique techniquement difficile et coûteux à réaliser. De plus, le principe de fonctionnement en continu rend les perspectives d'évolution technique de ce générateur thermique très limitées.
La présente invention se propose de pallier ces inconvénients en offrant un générateur thermique à matériau magnéto-calorique efficace, fiable, de conception simple, peu onéreux, faible consommateur d'énergie électrique, ayant un bon rendement, ne nécessitant pas de moyens de synchronisation entre les déplacements des éléments magnéto-caloriques, ne nécessitant pas de moyens de commutation alternatifs aux circuits chaud et froid tels que décrits dans le prototype des chercheurs américains préalablement cité, permettant de limiter considérablement les masses inertes à déplacer pour réaliser la variation de champ magnétique nécessaire à l'obtention de l'effet magnéto-calorique et pouvant être utilisé aussi bien dans des installations industrielles de grande échelle que pour dans applications domestiques.
Dans ce but, l'invention concerne un générateur thermique à matériau magnéto- calorique du genre indiqué en préambule, caractérisé en ce que les moyens de modulation magnétique comportent au moins un élément de modulation magnétique, magnétiquement conducteur, couplé à des moyens de déplacement agencés pour le déplacer alternativement par rapport à l'élément magnétique et à l'élément thermique, entre une position active dans laquelle il est rapproché de l'élément magnétique et de l'élément thermique et agencé pour canaliser au moins la partie du champ magnétique destinée à être reçue par l'élément thermique et une position inactive dans laquelle il est éloigné de l'élément magnétique et/ou de l'élément thermique et agencé pour être sans effet sur cette partie de champ magnétique.
L'élément de modulation magnétique peut être un élément de convergence magnétique réalisé dans un matériau présentant une conductivité magnétique supérieure à celle existant dans le milieu ambiant séparant l'élément magnétique et l'élément thermique, cet élément de convergence magnétique étant agencé pour, en position active, favoriser le passage du champ magnétique en direction de l'élément thermique ayant pour effet d'augmenter le champ magnétique le traversant.
L'élément de modulation magnétique peut également être un élément de divergence magnétique réalisé dans un matériau présentant une conductivité magnétique supérieure à celle de l'élément thermique, cet élément de divergence magnétique ayant au moins une forme apte à contourner l'élément thermique et agencée pour, en position active, dévier au moins une partie du champ magnétique de l'élément thermique ayant pour effet de diminuer le champ magnétique le traversant.
L'élément de modulation magnétique est avantageusement réalisé au moins dans l'un des matériaux choisi dans le groupe comprenant le fer doux, les ferrites, les alliages de fer, de chrome, de vanadium, les composites, les nano-composants, les permalloys.
Selon un mode de réalisation préférentiel, le générateur thermique comporte au moins un élément de convergence magnétique appelé aussi loupe magnétique et au moins un élément de divergence magnétique appelé aussi divergent ou shunt thermique agencés pour permettre alternativement de favoriser le passage du champ magnétique en direction de l'élément thermique et de dévier le champ magnétique de l'élément thermique.
En position active, l'élément de modulation magnétique est avantageusement interposé entre l'élément magnétique et l'élément thermique.
L'élément magnétique comporte de préférence au moins une borne magnétique positive et au moins une borne magnétique négative, l'élément thermique étant disposé entre les bornes magnétiques, et l'élément de modulation magnétique étant, au moins en position active, interposé entre au moins les bornes magnétiques.
De manière avantageuse : l'élément de convergence magnétique peut comporter deux pastilles de convergence placées, en position active, de part et d'autre de l'élément thermique entre l'élément thermique et les bornes magnétiques, et/ou l'élément de divergence magnétique peut présenter une forme en U ou en C destinée à chevaucher, au moins en position active, l'élément de thermique, entre l'élément thermique et les bornes magnétiques.
Selon une autre manière avantageuse, l'élément de divergence magnétique mj comporte au moins un plot destiné à être disposé, en position active, de manière tangente aux éléments thermique Ti et aux bornes magnétiques, l'entrefer séparant l'élément thermique Ti des bornes magnétiques 40, 41 restant libre. Cet entrefer peut être compris entre 0 mm et 50 mm et de préférence inférieur à 1 mm.
L'élément magnétique peut présenter une forme en U ou en C, sans limitation de forme, destinée à chevaucher ledit élément de modulation magnétique. Les moyens de déplacement peuvent être agencés pour entraîner l'élément de modulation magnétique selon au moins l'un des déplacements choisi dans le groupe comprenant la rotation continue, la rotation pas à pas, le pivotement alternatif, la translation continue, la translation pas à pas, la translation alternative, une combinaison de ces déplacements.
Les moyens de déplacement sont de préférence couplés à des moyens d'actionnement choisis dans le groupe comprenant un moteur, un vérin, un mécanisme à ressort, un aérogénérateur, un électroaimant, un hydrogénérateur, un mécanisme à force musculaire.
L'élément de modulation magnétique est avantageusement porté par un support couplé aux moyens de déplacement et réalisé dans un matériau magnétiquement isolant choisi dans le groupe comprenant notamment les matériaux synthétiques, le laiton, le bronze, les aluminiums, les céramiques.
Le générateur thermique comporte de préférence au moins un ensemble d'éléments magnétiques, un ensemble d'éléments thermiques chacun destiné à être soumis au champ magnétique d'au moins un des éléments magnétiques, un ensemble d'éléments de modulation magnétique portés par un support couplé aux moyens de déplacement et agencé pour déplacer simultanément les éléments de modulation magnétique pour que chacun soit, par rapport à un élément thermique et à un élément magnétique donnés, alternativement en position active et en position inactive.
Selon un premier mode de réalisation, le support comporte au moins un plateau sensiblement circulaire, mobile en rotation autour de son axe, les éléments thermiques étant disposés en anneau et les éléments magnétiques formant au moins une paire de couronnes définissant les bornes magnétiques positive et négative. Dans cette configuration, le plateau est de préférence pourvu d'une gorge définissant l'intervalle séparant les pastilles de convergence des éléments de convergence magnétique entre-elles et/ou l'ouverture de la forme en U ou en C des éléments de divergence magnétique. Cette gorge peut être disposée axialement et sensiblement parallèlement à l'axe du plateau ou radialement et sensiblement perpendiculairement à l'axe du plateau.
Selon un second mode de réalisation, le support comporte au moins une barre sensiblement rectiligne, mobile en translation, les éléments thermiques étant disposés selon au moins une ligne portée par une traverse et les éléments magnétiques formant au moins une paire de rangées définissant les bornes magnétiques positive et négative.
Dans cette configuration, les éléments thermiques peuvent être disposés selon deux lignes sensiblement parallèles portées par des traverses reliées et définissant un cadre.
De manière avantageuse, les éléments magnétiques peuvent être formés d'une pièce unique.
L'élément magnétique est de préférence choisi dans le groupe comprenant un assemblage magnétique, un aimant permanent, un électro-aimant, un aimant supraconducteur, un électro-aimant supra-conducteur, un supra-conducteur.
Selon un mode de réalisation particulier, l'élément magnétique et l'élément thermique sont fixes et seul l'élément de modulation magnétique est mobile.
De manière avantageuse, les moyens de récupération comportent au moins l'un des éléments choisis dans le groupe comprenant un circuit de transport contenant un fluide caloporteur, des moyens de circulation de ce fluide caloporteur, un échangeur thermique.
L'invention concerne également un procédé de génération de thermies du genre indiqué en préambule, caractérisé en ce que pour faire varier le champ magnétique reçu par l'élément thermique, on utilise au moins un élément de modulation magnétique, magnétiquement conducteur, que l'on déplace entre au moins une position active dans laquelle il est rapproché de l'élément magnétique et de l'élément thermique et agencé pour canaliser au moins la partie du champ magnétique destinée à être reçue par l'élément thermique et une position inactive dans laquelle il est éloigné de l'élément magnétique et/ou de l'élément thermique et agencé pour être sans effet sur cette partie de champ magnétique.
De manière préférentielle, on utilise au moins un élément magnétique définissant au moins une borne positive et une borne négative entre lesquelles on dispose l'élément thermique et en ce qu'en position active, on interpose l'élément de modulation magnétique entre au moins les bornes magnétiques de l'élément magnétique.
La présente invention et ses avantages apparaîtront mieux dans la description suivante de plusieurs modes de réalisation, donnée à titre d'exemples non limitatifs en référence aux dessins annexés, dans lesquels : la figure 1 est une vue en perspective d'un générateur thermique partiellement assemblé selon un premier mode de réalisation de l'invention, les figures 2A— 2C sont des vues en perspective sensiblement similaires à la précédente dans lesquelles le générateur thermique est représenté à différents stades d'assemblage, la figure 3 A est une vue de dessus du générateur thermique de la figure 2A et les figures 3B et 3C des vues selon le plan de coupe AA de la figure 3A,
les figures 4A et 4B sont respectivement des vues de dessous et en perspective de l'élément de modulation magnétique de la figure 3A et la figure 4C une vue en coupe selon le plan de coupe BB de la figure 4A,
la figure 5A est une vue similaire à la figure 3A du générateur thermique de l'invention selon un second mode de réalisation, les figures 5B et 5C étant des vues selon le plan de coupe CC de la figure 5 A,
les figures 6A et 6B sont respectivement des vues de dessous et en perspective de l'élément de modulation magnétique de la figure 5A, la figure 6C étant une vue en coupe selon le plan de coupe DD de la figure 6A,
les figures 7A-7D sont respectivement des vues en perspective, de dessus et en coupe du générateur thermique de l'invention selon une variante de réalisation, la figure 7D étant une vue en perspective de l'élément de modulation magnétique de la figure 7C,
les figures 8A et 8B sont respectivement des vues en coupe et en perspective d'une autre variante de réalisation de l'élément de modulation magnétique,
les figures 9A et 9B sont respectivement des vues de dessus et en perspective d'un troisième mode de réalisation d'un générateur thermique selon l'invention, et
les figures 9C et 9D sont des vues en coupe du dispositif des figures respectivement selon les plans de coupe EE et FF du générateur de la figure 9A, et, la figure 10 représente en section un quatrième mode de réalisation d'un générateur thermique selon l'invention.
De manière connue, un générateur thermique à matériau magnéto-calorique, comporte des éléments thermiques Ti, soumis au champ magnétique généré par des éléments magnétiques Gi. Les éléments thermiques Ti contiennent un matériau magnéto-calorique tel que par exemple du gadolinium (Gd), un alliage de gadolinium contenant par exemple du silicium (Si), du germanium (Ge), du fer (Fe), du magnésium (Mg), du phosphore (P), de l'arsenic (As) ou tout autre matériau ou alliage magnéto-calorique équivalent. De manière générale, le matériau magnéto- calorique peut se présenter sous la forme d'un bloc, d'une pastille, de poudre, d'un agglomérat de morceaux ou de toute autre forme adaptée et peut être à base d'un matériau seul ou d'une combinaison de plusieurs matériaux magnéto-caloriques.
Les éléments magnétiques Gi peuvent comporter un ou plusieurs aimants permanents pleins, frittes ou feuilletés, associés à un ou plusieurs matériaux magnétisables concentrant et dirigeant les lignes de champ magnétique de l'aimant permanent. Les matériaux magnétisables peuvent contenir du fer (Fe), du cobalt (Co), du Vanadium (N), du fer doux, un assemblage de ces matériaux ou tout matériau équivalent. Tout autre type d'aimant équivalent tel qu'un assemblage magnétique, un électro-aimant, un aimant supraconducteur, un électro-aimant supra-conducteur, un supraconducteur peut bien entendu être utilisé.
Par souci de simplification, dans la suite de la description on appellera "générateur", le générateur thermique à matériau magnéto-calorique selon l'invention. Avant d'entrer dans les détails constructifs de différents modes de réalisation du générateur selon l'invention, son principe général de fonctionnement est expliqué ci- après en référence à l'ensemble des figures.
Ce générateur 10-14 comporte des éléments de modulation magnétique Mj, mj réalisés en matériau magnétiquement conducteurs tel que par exemple du fer doux, des ferrites, des alliages de fer, de chrome, de vanadium, des composites, des nano- composants, des permalloys ou en tout autre matériau présentant des caractéristiques similaires. Chaque élément de modulation magnétique Mj, mj est couplé à des moyens de déplacement (non représentés) pour être mobile de manière alternative entre une position active et une position inactive par rapport aux éléments thermiques Ti et aux éléments magnétiques Gi dans le but de créer une variation du champ magnétique reçu par les éléments thermiques Ti.
En position active, chaque élément de modulation magnétique Mj, mj est rapproché d'un élément magnétique Gi et d'un l'élément thermique Ti pour favoriser le passage du champ magnétique émis par l'élément magnétique Gi au travers de l'élément de modulation magnétique Mj, mj en direction de l'élément thermique Ti, générant une augmentation du champ magnétique reçu par l'élément thermique Ti.
En position inactive, l'élément de modulation magnétique Mj, mj est éloigné de l'élément magnétique Gi et/ou de l'élément thermique Ti pour ne plus avoir d'impact notable sur le champ magnétique émis par l'élément magnétique Gi générant une d πinution ou variation du champ magnétique reçu par l'élément thermique Ti.
Il est bien entendu que la position active de l'élément de modulation magnétique Mj, mj par rapport à un couple d'éléments magnétique Gi et thermique Ti peut correspondre à la position inactive du même élément de modulation magnétique Mj, mj par rapport à un couple d'éléments magnétique Gi+1 et thermique Ti+1, ces derniers étant par exemple adjacents aux précédents.
Les éléments de modulation magnétique peuvent être des éléments de convergence magnétique Mj réalisés dans un matériau présentant une conductivité magnétique supérieure à celle existant entre les éléments magnétiques Gi et les éléments thermiques Ti, par exemple à celle de l'air. En position active, ces éléments de convergence magnétique Mj favorisent le passage du champ magnétique, au travers d'eux puis au travers des éléments thermiques Ti disposés en regard. Ainsi, lorsque l'élément de convergence magnétique Mj est approché d'un couple d'éléments magnétique Gi et thermique Ti, en position active, l'élément thermique Ti est soumis à un champ magnétique supérieur à celui subit lorsque l'élément de convergence magnétique Mj est éloigné du couple d'éléments magnétique Gi et thermique Ti, en position inactive.
Les éléments de modulation magnétique peuvent également être des éléments de divergence magnétique mj, réalisés dans un matériau présentant une conductivité magnétique supérieure à celle des éléments thermiques Ti et présentant chacun une forme apte à contourner l'élément thermique Ti. En position active, ces éléments de divergence magnétique mj, favorisent le passage du champ magnétique au travers d'eux, le champ magnétique contournant l'élément thermique Ti disposé en regard. Ainsi, lorsque l'élément de divergence magnétique mj est rapproché d'un couple d'éléments magnétique Gi et thermique Ti, en position active, l'élément thermique Ti est soumis à un champ magnétique nul ou au moins inférieur à celui subit lorsque l'élément de divergence magnétique mj est éloigné du couple d'éléments magnétique Gi et thermique Ti, en position inactive.
Comme détaillé plus loin, il est bien entendu possible de cumuler l'efficacité des deux types d'éléments de modulation magnétique Mj, mj en utilisant de manière alternative, pour chaque paire d'éléments magnétique Gi et thermique Ti, un élément de divergence magnétique mj et un élément de convergence magnétique Mj.
En référence aux figures 1 à 6, et selon un premier mode de réalisation, le générateur 10-11 comporte un ensemble de douze éléments thermiques Ti disposés en cercle de centre A sur une plaque d'interface 20, annulaire, pour former un anneau thermique. Chaque élément thermique Ti comporte un bloc de matériau magnéto-calorique 30 et est traversé par deux conduits (non représentés), débouchants par des orifices d'entrée chaud et froid et des orifices de sortie chaud et froid. Ces conduits sont destinés à recevoir respectivement le fluide caloporteur à réchauffer et le fluide caloporteur à refroidir.
La plaque d'interface 20 est réalisée en un matériau mécaniquement rigide et thermiquement isolant par exemple un matériau composite, un matériau synthétique ou tout autre matériau équivalent. L'étanchéité est assurée par une plaque d'étanchéité 22 réalisée dans un matériau mécaniquement rigide et thermiquement isolant, par exemple un matériau composite, un matériau synthétique ou tout autre matériau équivalent. Elle comporte quatre orifices 21 dont un orifice d'arrivée circuit froid, un orifice d'évacuation circuit froid, un orifice d'arrivée circuit chaud et un orifice d'évacuation circuit chaud. Ces orifices 21 sont destinés à être reliés par des moyens de raccordement et de distribution traditionnels (non représentés) à un circuit externe chaud et à un circuit externe froid (non représentés). Les éléments thermiques Ti étant fixes, le raccordement des circuits externes froid et chauds aux orifices 21 d'arrivée et d'évacuation est réalisé par de simples raccords hydrauliques rapides ou non.
Les circuits externes chaud et froid sont par exemple formés de conduits rigides, semi-rigides ou souples dans lesquels les fluides caloporteurs circulent et raccordés chacun à un ou plusieurs échangeurs thermiques (non représentés) ou tout autre moyen équivalent permettant la récupération des calories et des frigories. Comme décrit plus loin, cet échangeur thermique 10-11 permet ainsi, de récupérer simultanément les calories et les frigories émises par les éléments thermiques Ti de l'anneau thermique.
La circulation des fluides caloporteurs est par exemple assurée par des moyens de circulation forcée ou libre (non représentés) tels que par exemple une pompe ou tout autre moyen équivalent. Les fluides caloporteurs utilisés sont choisis notamment en fonction de la plage de température voulue. On utilise par exemple de l'eau pure pour des températures positives et de l'eau additionnée d'antigel pour des températures négatives. Pour des températures très basses, un gaz tel que l'hélium peut être utilisé comme fluide caloporteur.
Les orifices 21 d'arrivée et d'évacuation de chacun des circuits chaud et froid sont reliés entre eux par des canalisations (non représentées) chaudes et froides, internes à la plaque d'interface 20 et prévues débouchantes en regard respectivement des orifices d'entrée et de sortie des éléments thermiques Ti. Ainsi, la canalisation chaude relie les orifices d'arrivée et d'évacuation du circuit chaud aux orifices d'entrée et de sortie chauds. De même, la canalisation froide relie les orifices d'arrivée et d'évacuation du circuit froid aux orifices d'entrée et de sortie froids. Ces canalisations peuvent être prévues pour relier les éléments thermiques Ti en parallèle ou en série. Elles peuvent être réalisées par exemple par usinage ou par moulage.
Le générateur 10-11 comporte douze éléments magnétiques Gi ayant chacun une forme en U ou en C définissant une borne magnétique positive 40 et une borne magnétique négative 41. Ces éléments magnétiques Gi sont disposés à distance en cercle concentrique au centre A de manière à chevaucher les éléments thermiques Ti de l'anneau thermique. Les éléments magnétiques Gi peuvent bien entendu avoir toute autre forme adaptée. En référence aux figures 1 à 4C, les ouvertures des formes en U ou en C des éléments magnétiques Gi sont orientées axialement, sensiblement parallèlement à l'axe du cercle passant par A et défini par les éléments magnétiques Gi, de manière à définir, par rapport à l'anneau thermique, une couronne magnétique extérieure, par exemple négative, et une couronne magnétique intérieure, par exemple positive, ou inversement, ou une combinaison de paires de bornes positives ou négatives sans ordre particulier. Ainsi, chaque élément thermique Ti est disposé entre une borne magnétique positive 40 et une borne magnétique négative 41.
Les moyens de modulation magnétique comportent six éléments de convergence magnétique Mj et six éléments de divergence magnétique mj disposés en cercle de centre A, en alternance et portés par un support 52a. Les éléments de convergence magnétique Mj comportent deux pastilles de convergence 50 disposées en regard l'une de l'autre et séparées par un intervalle suffisant pour recevoir un élément thermique Ti sans contact entre ces éléments thermiques Ti et les bornes magnétiques 40, 41 qui les encadrent. Les éléments de divergence magnétique mj définissent chacun une forme
51 en U ou en C chevauchant certains éléments thermiques Ti, entre ces éléments thermiques Ti et les bornes magnétiques 4O, 41 qui les encadrent.
Dans cet exemple, les éléments de convergence magnétique Mj et de divergence magnétique mj sont disposés de manière alternative sur le support 52a. Ainsi, dans une position donnée, les éléments de convergence magnétique Mj se trouvent dans l'environnement immédiat d'un élément thermique Ti, Ti+2 sur deux et les éléments de divergence magnétique mj se trouvent dans l'environnement immédiat d'un élément thermique Ti+1, Ti+3 sur deux. Le support comporte un plateau 52a sensiblement circulaire, coaxial aux couronnes magnétiques et à l'anneau thermique. Les pastilles de convergence 50 et les formes de divergence 51 en U ou en C sont intégrées au plateau
52 qui comporte à cet effet des logements 53 a (Cf. figure 4B, 4C) les recevant et une rainure 54a (Cf. figures 4A, 4B) définissant les intervalles dans lesquels les éléments thermiques Ti circulent librement et sans contact. Ce plateau 52a est réalisé dans un matériau magnétiquement isolant tel que par exemple les matériaux synthétiques, le laiton, le bronze, les aluminiums, les céramiques, etc. Il est couplé à des moyens de déplacement (non représentés) pour être mobile en rotation autour de son axe passant par A.
Les moyens de déplacement sont par exemple couplés à des moyens d'actionnement tel qu'un moteur, un vérin, un mécanisme à ressort, un aérogénérateur, un électroaimant, un hydrogénérateur ou tout autre actionneur adapté. Us entraînent le plateau 52a en déplacement, par exemple en rotation continue, en rotation pas à pas, en pivotement alternatif ou en toute combinaison de ces déplacements.
Le fonctionnement du générateur 10 peut être décomposé en deux étapes réalisées de manière continue, pas à pas ou alternativement en fonction des moyens de déplacement utilisés. Les deux étapes sont, à titre d'exemple, décrites ci-après de manière séquentielle. Il est bien entendu que le passage d'une étape à l'autre peut être progressif. On considère de manière arbitraire que les éléments magnétiques Gi émettent en permanence leur champ magnétique.
Lors de la première étape et de manière simultanée :
1) Les éléments de convergence magnétique Mj disposés entre chaque élément thermique Ti, Ti+2 et les éléments magnétiques Gi correspondants concentrent les lignes des champs magnétiques générés par ces éléments magnétiques Gi pour favoriser leur passage au travers d'eux et des éléments thermiques Ti, Ti+2. Ainsi, les éléments de convergence magnétique Mj sont en position active par rapport aux éléments thermiques Ti, Ti+2 qui reçoivent une quantité de champ magnétique supérieure à celle qu'ils auraient reçue en l'absence de ces éléments de convergence magnétique Mj. Par ailleurs, ces mêmes éléments de convergence magnétique Mj sont en position inactive par rapport aux éléments thermiques Tl+1 et Tl+3 adjacents pour lesquels ils n'ont pas d'influence par rapport aux champs magnétiques auxquels ils sont soumis. Les éléments thermiques Ti, Ti+2 soumis à l'augmentation de champ magnétique s'échauffent. Ils transmettent leurs calories au fluide caloporteur chaud du circuit chaud vers les échangeurs de calories.
2) Les éléments de divergence magnétique mj disposés entre chaque élément thermique Ti+1, Ti+3 et les éléments magnétiques Gi correspondants divergent et dévient le long de leur forme en U ou en C les lignes les champs magnétiques générés par ces éléments magnétiques Gi qui contournent les éléments thermiques Ti+1, Ti+3. Ainsi, les éléments de divergence magnétique mj sont en position active par rapport aux éléments thermiques Ti+1 et Ti+3 qui reçoivent une quantité de champ magnétique quasiment inexistante et, en tout état de cause nettement inférieure à celle qu'ils auraient reçue en l'absence des éléments de convergence magnétique mj. Par ailleurs, ces mêmes éléments de divergence magnétique mj sont en position inactive par rapport aux éléments thermiques Ti, Ti+2 adjacents pour lesquels ils n'ont pas d'influence par rapport aux champs magnétiques auxquels ils sont soumis. Les éléments thermiques Ti, Ti+2 soumis à la réduction de champ magnétique se refroidissent et transmettent leurs frigories au fluide caloporteur froid du circuit froid vers les échangeurs de thermies.
Ainsi, de manière simultanée on obtient : une convergence magnétique vers les éléments thermiques Ti, Ti+2 qui s'échauffent par l'intermédiaire des éléments de convergence magnétique Mj, et une divergence magnétique par rapport aux éléments thermiques Ti+1, Ti+3 qui se refroidissent. Pour passer de la première à la seconde étape, les moyens de déplacement entraînent le plateau 52a d'un pas correspondant à l'entraxe séparant deux éléments thermiques Ti, Ti+1 adjacents de manière à amener ; les éléments de convergence magnétique Mj entre les éléments thermiques Ti+1, Ti+3 et les éléments magnétiques Gi correspondants, et les éléments de divergence magnétique mj entre les éléments thermiques Ti, Ti+2 et les éléments magnétiques Gi correspondants. Les éléments thermiques Ti+1, Ti+3 soumis à une augmentation de champ magnétique s'échauffent et transmettent leurs calories et les éléments thermiques Ti, Ti+2 soumis à une réduction de champ magnétique se refroidissent et transmettent leurs frigories.
On passe ensuite de la seconde étape à une nouvelle étape par rotation du plateau 52a et ainsi de suite, chaque élément thermique ti, Ti+1, Ti+2, Ti+3 étant ainsi alternativement soumis à l'augmentation et à la diminution de champ magnétique provoquant une variation de champ magnétique favorable pour produire des frigories et/ou des calories.
En référence aux figures 5 et à 6, le générateur 11 se différencie du précédent par le fait que les moyens de modulation magnétique comportent six éléments de convergence magnétique Mj mais pas d'éléments de divergence magnétique. Les éléments de convergence magnétique Mj sont disposés de manière sensiblement identique à l'exemple précédent, le plateau 52b étant plein entre les éléments de convergence magnétique Mj.
Le fonctionnement de ce générateur 11 est sensiblement similaire à celui du générateur 10 précédent. Un élément thermique Ti, Ti+2 sur deux est soumis par l'intermédiaire d'un élément de convergence magnétique Mj, à une augmentation de champ magnétique. Les autres éléments thermiques (non représentés) sont soumis à une diminution de champ magnétique, ce dernier étant diffus et gêné par la forme en U du plateau 52b dont les branches 55 (Cf. figures 6A, 6B et 6C) en matériau magnétiquement isolant ou neutre s'interposent entre les éléments magnétiques Gi et les éléments thermiques Ti.
En référence aux figures 7 et 8, les générateurs 12 sont sensiblement identiques aux précédents. Ils s'en différencient notamment par le fait qu'ils comportent huit éléments magnétiques Gi et huit éléments thermiques Ti. De plus, les ouvertures des formes en U ou en C des éléments magnétiques Gi sont orientées radialement et sensiblement perpendiculairement à l'axe passant par A et définissent deux couronnes magnétiques de diamètre sensiblement égal et de centre A. Aussi, les rainures 54c-d des plateaux 52c-d sont prévues radiales. Le fonctionnement de ces générateurs 12 est sensiblement similaire à celui des générateurs précédents.
Dans l'exemple des figures 7A-7D, les moyens de modulation magnétique comportent quatre éléments de convergence magnétique Mj et quatre éléments de divergence magnétique mj disposés de manière alternative et portés par le plateau 52c.
Dans l'exemple des figures 8A et 8B, les moyens de modulation magnétique comportent quatre éléments de convergence magnétique Mj mais pas d'éléments de divergence magnétique. Les éléments de convergence magnétique Mj comportent des formes en U ou en C dont les branches définissent des pastilles de convergence 51 disposées de manière sensiblement identique à l'exemple précédent, le plateau 52d étant plein entre ces éléments de convergence magnétique Mj pour s'interposer au champ magnétique.
Les figures 9A-9D illustrent un autre mode de réalisation du générateur 14 selon l'invention. Ce générateur 14 comporte dix éléments thermiques Ti disposés selon deux lignes portées par des traverses 70 reliées et formant un cadre 72. Ce cadre 72 comporte des orifices 71 d'arrivée et d'évacuation des circuits froid et chaud reliés comme précédemment décrit par des canalisations non représentées.
Ce générateur 14 comporte trois éléments de modulation magnétique Mj portés par un support comportant une barre 52e sensiblement rectiligne prévue entre les lignes d'éléments thermiques Ti. Cette barre 52e est réalisée en un matériau mécaniquement rigide et thermiquement isolant par exemple un matériau composite, un matériau synthétique, un matériau composite ou tout autre matériau équivalent. Les éléments de modulation magnétique Mj sont disposés, de part et d'autre sur la barre 52e, de manière à chevaucher une paire d'éléments thermiques Ti, Ti+2 ou Ti+1, Ti+3 sur deux.
Dans cet exemple, les éléments de modulation magnétique sont des éléments de convergence magnétique Mj. Il est bien entendu possible de prévoir un générateur sensiblement similaire et comportant également des éléments de divergence magnétique.
La barre 52e est couplée aux moyens de déplacement pour être mobile en translation et ainsi déplacer les éléments de convergence magnétique Mj par rapport aux éléments thermiques Ti. Cette translation peut être continue, pas à pas, alternative. Ce générateur 14 comporte dix éléments magnétiques Gi en forme de U, de C ou similaire, alignés en rangées, chaque rangée définissant des bornes magnétiques positives 40 et négatives 41 (Cf. figure 9C et 9D), chevauchant les éléments thermiques Ti par-dessus ou non les éléments de convergence magnétique Mj.
Le fonctionnement de ce générateur 14 est sensiblement similaire à celui du générateur 11, des figures 6 et 8. Il s'en différencie néanmoins par le fait qu'entre deux éléments de convergence magnétique Mj, le champ magnétique n'est pas stoppé ou limité par la barre 52e tel qu'il l'était par le plateau 52b, 52d, mais simplement par l'air et/ou le milieu ambiant compris entre les éléments magnétiques Gi et les éléments thermiques Ti. La variation de champ magnétique est ainsi obtenue par la différence de conduction magnétique entre l'air et/ou le milieu ambiant et le matériau magnétiquement conducteur des éléments de convergence magnétique Mj.
Dans les exemples décrits, les éléments magnétiques Gi et les éléments thermiques Ti sont fixes. Il est bien entendu que, si nécessaire pour le fonctionnement général d'une installation, les uns et/ou les autres peuvent être prévus mobiles.
Selon une variante de réalisation non représentée, les éléments magnétiques peuvent être formés d'une pièce unique. Dans le cas des générateurs circulaires, il peut s'agir de couronnes extérieure et intérieure pleines et/ou d'un moyeu intérieur.
Selon un autre mode de réalisation représenté par la figure 10, les éléments de modulation magnétique sont disposés de manière tangente aux éléments magnétiques et aux éléments thermiques et non disposés entre-eux. Dans cet exemple, le générateur 13 comporte des éléments de divergence magnétique mj portés par un plateau 52f d'axe A, mobile en rotation et alternant avec des zones pleines du plateau 52f. Chaque élément de divergence magnétique mj comporte au moins un plot 500 pourvu de formes complémentaires à celles de l'élément thermique Ti et des bornes magnétiques 40, 41 de manière à pouvoir, en position active, s'interposer entre les bornes magnétiques 40, 41 sans pour autant s'interposer entre les bornes magnétiques 40, 41 et l'élément thermique Ti. En position active, l'élément thermique Ti est disposé de manière tangente aux éléments thermique Ti et aux bornes magnétiques 40, 41. Les éléments thermiques sont séparés des bornes magnétiques 40, 41 par un entrefer E compris entre 0 mm et 50 mm et de préférence inférieur à 1 mm. Cet entrefer E est laissé libre en position active et en position inactive et autorise le passage du champs magnétique entre les bornes magnétiques 40, 41 et l'élément thermique Ti. Le fonctionnement de ce générateur 13 est sensiblement similaire à celui du générateur 11 précédemment décrit, à la différence près qu'il s'agit ici d'éléments de divergence magnétique mj et non de convergence magnétique. En position inactive, l'élément de divergence magnétique mj est éloigné de l'élément thermique Ti et des bornes magnétiques 40, 41. De ce fait, le champ magnétique passe librement au travers de l'élément thermique Ti qui s'échauffe. En position active, l'élément de divergence magnétique mj est tangent aux élément thermique Ti et aux bornes magnétiques 40, 41. L'élément de divergence magnétique mj étant magnétiquement plus conducteur que l'air ou le milieu ambiant de l'entrefer E, le champ magnétique est dévié et évite l'élément thermique Ti qui se refroidit.
Ce générateur thermique 10-14 peut être couplé à d'autres générateurs similaires ou non avec lesquels il peut être relié en série et/ou en parallèle et/ou une combinaison série/parallèle pour augmenter les capacités thermiques d'une installation sans en compliquer ni le fonctionnement ni l'architecture, le déplacement des éléments de modulation magnétique étant aisé à réaliser. Chaque générateur 10-14 peut comporter un nombre d'élément thermique, d'éléments magnétiques et/ou d'éléments de modulation magnétique différents de ceux décrits, ce nombre n'étant pas limité.
Ce générateur 10-14 permet ainsi, de manière simple de produire des frigories et/ou des calories puisque seuls les éléments de modulation magnétique doivent être déplacés. Ces frigories et calories peuvent être utilisées pour chauffer, refroidir, tempérer, climatiser un local, un appareil, un lieu et être utilisées tant dans des applications industrielles que domestiques. La construction particulière de ce générateur 10-14 permet de s'affranchir de tout problème d'étanchéité dans les circuits thermiques et de limiter considérablement les masses inertes à déplacer pour réaliser la variation de champ magnétique nécessaire pour obtenir l'effet magnéto-calorique. Dans les exemples décrits, le milieu ambiant est de l'air. Il est bien entendu que le générateur 10-14 peut être utilisé dans tout autre type de milieu ambiant adapté. Il est également possible d'utiliser un générateur 10-14 comportant un milieu ambiant interne spécifique tel qu'un gaz, ce générateur 10-14 étant disposé dans un milieu ambiant externe différent, par exemple un autre gaz ou tout autre fluide. Dans ce cas, les deux milieux ambiants pourront être isolés l'un de l'autre par exemple par un carter.
Cette description met bien en évidence que le générateur 10-14 selon l'invention permet de répondre aux buts fixés en proposant un générateur 10-14 efficace, de conception, de fonctionnement et d'asservissement simples et donc moins cher à réaliser et à utiliser que les générateurs traditionnels. Il permet de plus de limiter considérablement les masses inertes à déplacer pour réaliser la variation de champ magnétique nécessaire à l'obtention de l'effet magnéto-calorique.
La présente invention n'est pas limitée aux exemples de réalisation décrits mais s'étend à toute modification et variante évidentes pour un homme du métier tout en restant dans l'étendue de la protection définie dans les revendications annexées.

Claims

Revendications
1. Générateur thermique (10-14) à matériau magnéto-calorique comportant au moins un élément thermique (Ti), au moins un élément magnétique (Gi) destiné à générer un champ magnétique, ledit élément thermique (Ti) étant disposé en regard dudit élément magnétique (Gi) de manière à pouvoir être soumis à au moins une partie dudit champ magnétique, ledit générateur thermique (10-14) comportant également des moyens de modulation magnétique (Mj, mj) agencés pour faire varier le champ magnétique reçu par ledit élément thermique (Ti) et des moyens de récupération d'au moins une partie des thermies générées par ledit élément thermique (Ti) soumis à ce champ magnétique variable, caractérisé en ce que lesdits moyens de modulation magnétique comportent au moins un élément de modulation magnétique (Mj, mj), magnétiquement conducteur, couplé à des moyens de déplacement agencés pour le déplacer alternativement par rapport audit élément magnétique (Gi) et audit élément thermique (Ti), entre une position active dans laquelle il est rapproché dudit élément magnétique (Gi) et dudit élément thermique (Ti) et agencé pour canaliser au moins ladite partie dudit champ magnétique destinée à être reçue par ledit élément thermique (Ti) et une position inactive dans laquelle il est éloigné dudit élément magnétique (Gi) et/ou dudit élément thermique (Ti) et agencé pour être sans effet sur cette partie de champ magnétique.
2. Générateur thermique (10, 11, 12, 14) selon la revendication 1, caractérisé en ce que ledit élément de modulation magnétique est un élément de convergence magnétique (Mj) réalisé dans un matériau présentant une conductivité magnétique supérieure à celle existant dans le milieu ambiant séparant ledit élément magnétique (Gi) et ledit élément thermique (Ti) et en ce que ledit élément de convergence magnétique (Mj) est agencé pour, en position active, favoriser le passage dudit champ magnétique en direction dudit élément thermique (Ti) ayant pour effet d'augmenter le champ magnétique le traversant.
3. Générateur thermique (10, 12, 13) selon la revendication 1, caractérisé en ce que ledit élément de modulation magnétique est un élément de divergence magnétique (mj) réalisé dans un matériau présentant une conductivité magnétique supérieure à celle dudit élément thermique (Ti), en ce que ledit élément de divergence magnétique (mj) ayant au moins une forme apte à contourner ledit élément thermique (Ti) et agencée pour, en position active, dévier au moins une partie dudit champ magnétique dudit élément thermique (Ti) ayant pour effet de diminuer le champ magnétique le traversant.
4. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que ledit élément de modulation magnétique (Mj, mj) est avantageusement réalisé au moins dans l'un des matériaux choisis dans le groupe comprenant le fer doux, les ferrites, les alliages de fer, de chrome, de vanadium, les composites, les nano-composants, les permalloys.
5. Générateur thermique (10, 12) selon les revendications 2 et 3, caractérisé en ce qu'il comporte au moins un élément de convergence magnétique (Mj) et au moins un élément de divergence magnétique (mj), agencés pour permettre alternativement de favoriser le passage du champ magnétique en direction dudit élément thermique (Ti) et de dévier ledit champ magnétique dudit élément thermique (Ti).
6. Générateur thermique (10, 11, 12, 14) selon la revendication 1, caractérisé en ce qu'au moins en position active, ledit élément de modulation magnétique (Mj, mj) est interposé entre ledit élément magnétique (Gi) et ledit élément thermique (Ti).
7. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que ledit élément magnétique (Gi) comporte au moins une borne magnétique positive (40) et au moins une borne magnétique négative (41), en ce que ledit élément thermique (Ti) est disposé entre lesdites bornes magnétiques (40, 41) et en ce qu'au moins en position active, ledit élément de modulation magnétique (Mj, mj) est interposé entre au moins desdites bornes magnétiques (40, 41).
8. Générateur thermique (10, 11, 12, 14) selon les revendications 2, 6 et 7, caractérisé en ce que ledit élément de convergence magnétique (Mj) comporte deux pastilles de convergence (50) placées, en position active, de part et d'autre dudit élément thermique (Ti) entre ledit élément thermique (Ti) et lesdites bornes magnétiques (40, 41).
9. Générateur thermique (10, 12, 14) selon les revendications 3, 6 et 7, caractérisé en ce que ledit élément de divergence magnétique (mj) présente une forme (51) en U ou en C sans limitation de forme destinée à chevaucher, au moins en position active, ledit élément de thermique (Ti) entre ledit élément thermique (Ti) et lesdites bornes magnétiques (40, 41).
10. Générateur thermique (13) selon les revendications 3 et 7, caractérisé en ce que ledit élément de divergence magnétique (mj) comporte au moins un plot (500) destiné à être disposé, en position active, de manière tangente aux-dits éléments thermique (Ti) et aux-dites bornes magnétiques (40, 41), l'entrefer (E) séparant ledit élément thermique (Ti) desdites bornes magnétiques (40, 41) restant libre.
11. Générateur thermique (13) selon la revendication 10, caractérisé en ce que ledit entrefer (E) est compris entre 0 mm et 50 mm et de préférence inférieur à 1 mm.
12. Générateur thermique (10-14) selon la revendication 8 ou 9, caractérisé en ce que ledit élément magnétique (Gi) présente une forme en U ou en C sans limitation de forme destinée à chevaucher ledit élément de modulation magnétique (Mj, mj).
13. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que lesdits moyens de déplacement sont agencés pour entraîner ledit élément de modulation magnétique (Mj, mj) selon au moins l'un des déplacements choisi dans le groupe comprenant la rotation continue, la rotation pas à pas, le pivotement alternatif, la translation continue, la translation pas à pas, la translation alternative, une combinaison de ces déplacements.
14. Générateur thermique (10-14) selon la revendication 11, caractérisé en ce que lesdits moyens de déplacement sont couplés à des moyens d'actionnement choisis dans le groupe comprenant un moteur, un vérin, un mécanisme à ressort, un aérogénérateur, un électroaimant, un hydrogénérateur, un mécanisme à force musculaire.
15. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que ledit élément de modulation magnétique (Mj, mj) est porté par un support (52a-f) couplé aux-dits moyens de déplacement et réalisé dans un matériau magnétiquement isolant choisi dans le groupe comprenant les matériaux synthétiques, le laiton, le bronze, les aluminiums, les céramiques.
16. Générateur thermique (10-14) selon la revendication 14, caractérisé en ce qu'il comporte au moins un ensemble d'éléments magnétiques (Gi), un ensemble d'éléments thermiques (Ti) chacun destiné à être soumis au champ magnétique d'au moins un desdits éléments magnétiques (Gi), un ensemble d'éléments de modulation magnétique (Mj, mj) portés par un support (52a-f) couplé aux-dits moyens de déplacement et agencé pour déplacer simultanément lesdits éléments de modulation magnétique (Mj, mj) pour que chacun soit, par rapport à un élément thermique (Ti) et à un élément magnétique (Gi) donnés, alternativement en position active et en position inactive.
17. Générateur thermique (10-13) selon les revendications 7 et 15, caractérisé en ce que ledit support comporte au moins un plateau (52a-d, 52f) sensiblement circulaire, mobile en rotation autour de son axe, en ce que lesdits éléments thermiques (Ti) sont disposés en anneau et en ce que lesdits éléments magnétiques (Gi) forment au moins une paire de couronnes définissant lesdites bornes magnétiques positive (40) et négative (41).
18. Générateur thermique (10-12) selon la revendication 17, caractérisé en ce que ledit plateau (52a-d) est pourvu d'une gorge (54a-d) définissant l'intervalle séparant lesdites pastilles de convergence (51) desdits éléments de convergence magnétique (Mj) entre-elles et/ou l'ouverture de ladite forme en U ou en C (51) desdits éléments de divergence magnétique (mj).
19. Générateur thermique (10, 11) selon la revendication 18, caractérisé en ce que ladite gorge (54a, 54b) est disposée axialement et sensiblement parallèlement à l'axe dudit plateau (52a, 52b).
20. Générateur thermique (12) selon la revendication 16, caractérisé en ce ladite gorge (54c, 54d) est disposée radialement et sensiblement perpendiculairement à l'axe dudit plateau (52c, 52d).
21. Générateur thermique (14) selon les revendications 7 et 15, caractérisé en ce que ledit support comporte au moins une barre (52e) sensiblement rectiligne, mobile en translation, en ce que lesdits éléments thermiques (Ti) sont disposés selon au moins une ligne portée par une traverse (70) et en ce que lesdits éléments magnétiques (Gi) forment au moins une paire de rangées définissant lesdites bornes magnétiques positive (40) et négative (41).
22. Générateur thermique (14) selon la revendication 21, caractérisé en ce que lesdits éléments thermiques (Ti) sont disposés selon deux lignes sensiblement parallèles portées par deux traverses (70) reliées et définissant un cadre (72).
23. Générateur thermique selon la revendication 16, caractérisé en ce que lesdits éléments magnétiques sont formés d'une pièce unique.
24. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que ledit élément magnétique est choisi dans le groupe comprenant un assemblage magnétique, un aimant permanent, un électro-aimant, un aimant supraconducteur, un électroaimant supra-conducteur, un supra-conducteur.
25. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que ledit élément magnétique (Gi) et ledit élément thermique (Ti) sont fixes et seul l'élément de modulation magnétique (Mj, mj) est mobile.
26. Générateur thermique (10-14) selon la revendication 1, caractérisé en ce que lesdits moyens de récupération comportent au moins l'un des éléments choisi dans le groupe comprenant un circuit de transport contenant un fluide caloporteur, des moyens de circulation de ce fluide caloporteur, un échangeur thermique.
27. Procédé de génération de thermies au cours duquel on crée un champs magnétique avec au moins un élément magnétique (Gi), on soumet au moins un élément thermique (Ti) réalisé en matériau magnéto-calorique à au moins une partie dudit champ magnétique, on module avec des moyens de modulation magnétique (Mj, mj) ledit champ magnétique reçu par ledit élément thermique (Ti) et on récupère au moins une partie des thermies générées par ledit élément thermique (Ti) soumis à ce magnétique variable, caractérisé en ce que pour faire varier ledit champ magnétique reçu par ledit élément thermique (Ti), on utilise au moins un élément de modulation magnétique (Mj, mj), magnétiquement conducteur, que l'on déplace entre au moins une position active dans laquelle il est rapproché dudit élément magnétique (Gi) et dudit élément thermique (Ti) et agencé pour canaliser au moins ladite partie dudit champ magnétique destinée à être reçue par ledit élément thermique (Ti) et une position inactive dans laquelle il est éloigné dudit élément magnétique (Gi) et/ou dudit élément thermique (Ti) et agencé pour ne pas canaliser cette partie de champ magnétique.
28. Procédé selon la revendication 27, caractérisé en ce que l'on utilise au moins un élément magnétique (Gi) définissant au moins une borne positive (40) et une borne négative (41) entre lesquelles on dispose ledit élément thermique (Ti) et en ce qu'en position active, on interpose ledit élément de modulation magnétique (Mj, mj) entre au moins lesdites bornes magnétiques (40, 41) dudit élément magnétique (Gi).
PCT/FR2005/000741 2004-03-30 2005-03-29 Generateur thermique a materiau magneto-calorique et procede de generation de thermies WO2005095872A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP05744635A EP1730454B8 (fr) 2004-03-30 2005-03-29 Generateur thermique a materiau magneto-calorique et procede de generation de thermies
BRPI0508110-6A BRPI0508110A (pt) 2004-03-30 2005-03-29 gerador térmico de material magneto-calórico e método de geração de termias
DK05744635T DK1730454T3 (da) 2004-03-30 2005-03-29 Termogenerator med magnetokalorisk materiale og fremgangsmåde til generering af megakalorier
DE602005002832T DE602005002832T2 (de) 2004-03-30 2005-03-29 Magneto-kalorisches material umfassender wärmegenerator und thermerzeugungsverfahren
SI200530123T SI1730454T1 (sl) 2004-03-30 2005-03-29 Toplotni generator, obsegajoc magnetno-kaloricen material, in postopek generiranja toplote
CA2556333A CA2556333C (fr) 2004-03-30 2005-03-29 Generateur thermique a materiau magneto-calorique et procede de generation de thermies
EA200601577A EA011496B1 (ru) 2004-03-30 2005-03-29 Генератор тепла, содержащий магнитно-тепловой материал, и способ получения тепла
PL05744635T PL1730454T3 (pl) 2004-03-30 2005-03-29 Generator ciepła z zastosowaniem materiału magnetokalorycznego i sposób wytwarzania termii
US10/593,845 US7897898B2 (en) 2004-03-30 2005-03-29 Heat generator comprising a magneto-caloric material and thermie generating method
AU2005229224A AU2005229224B2 (en) 2004-03-30 2005-03-29 Heat generator comprising a magneto-caloric material and thermie generating method
JP2007505585A JP4819794B2 (ja) 2004-03-30 2005-03-29 電磁熱材料による熱発電機および熱発電方法
KR1020067019564A KR101215796B1 (ko) 2004-03-30 2006-09-22 자기열 물질을 포함하는 열발생기와 열 발생방법
HK07107059.6A HK1099801A1 (en) 2004-03-30 2007-07-03 Heat generator comprising a magneto-caloric material and thermie generating method
HR20080010T HRP20080010T3 (en) 2004-03-30 2008-01-10 Heat generator comprising a magneto-caloric material and thermie generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403300 2004-03-30
FR0403300A FR2868519B1 (fr) 2004-03-30 2004-03-30 Generateur thermique a materiau magneto-calorique et procede de generation de thermies

Publications (1)

Publication Number Publication Date
WO2005095872A1 true WO2005095872A1 (fr) 2005-10-13

Family

ID=34944337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000741 WO2005095872A1 (fr) 2004-03-30 2005-03-29 Generateur thermique a materiau magneto-calorique et procede de generation de thermies

Country Status (20)

Country Link
US (1) US7897898B2 (fr)
EP (1) EP1730454B8 (fr)
JP (1) JP4819794B2 (fr)
KR (1) KR101215796B1 (fr)
CN (1) CN100436966C (fr)
AT (1) ATE375486T1 (fr)
AU (1) AU2005229224B2 (fr)
BR (1) BRPI0508110A (fr)
CA (1) CA2556333C (fr)
DE (1) DE602005002832T2 (fr)
DK (1) DK1730454T3 (fr)
EA (1) EA011496B1 (fr)
ES (1) ES2296175T3 (fr)
FR (1) FR2868519B1 (fr)
HK (1) HK1099801A1 (fr)
HR (1) HRP20080010T3 (fr)
PL (1) PL1730454T3 (fr)
PT (1) PT1730454E (fr)
WO (1) WO2005095872A1 (fr)
ZA (1) ZA200606300B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507168A (ja) * 2005-09-01 2009-02-19 クールテック アプリケーションズ エス.エー.エス. 磁気熱変換材料による熱発電機
FR2922999A1 (fr) * 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
EP2108904A1 (fr) 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance
FR2935469A1 (fr) * 2008-08-26 2010-03-05 Cooltech Applications Generateur thermique a materiau magnetocalorique
US20110192834A1 (en) * 2008-10-24 2011-08-11 Cooltech Applications Magnetocaloric thermal generator
US8448453B2 (en) 2007-08-17 2013-05-28 The Technical University Of Denmark Refrigeration device and a method of refrigerating

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684521B1 (ko) * 2005-12-21 2007-02-20 주식회사 대우일렉트로닉스 자기냉동기
CN102149379A (zh) * 2008-07-10 2011-08-10 安吉翁生物医药有限公司 调节肝细胞生长因子(分散因子)活性的方法和肝细胞生长因子(分散因子)活性的小分子调节剂组合物
FR2936363B1 (fr) * 2008-09-25 2011-08-19 Cooltech Applications Generateur thermique a materiau magnetocalorique
FR2942304B1 (fr) * 2009-02-17 2011-08-12 Cooltech Applications Generateur thermique magnetocalorique
FR2947093B1 (fr) * 2009-06-18 2012-05-04 Cooltech Applications Generateur de champ magnetique et appareil thermique magnetocalorique comportant ledit generateur
US8789378B2 (en) * 2009-08-31 2014-07-29 Delta Electronics, Inc. Magnetic flux detection apparatus
US8769966B2 (en) * 2010-08-09 2014-07-08 Cooltech Applications Societe Par Actions Simplifiee Thermal generator using magnetocaloric material
US9435570B2 (en) * 2010-08-16 2016-09-06 Cooltech Applications S.A.S. Magnetocaloric thermal appliance
JP5278486B2 (ja) * 2011-04-25 2013-09-04 株式会社デンソー 熱磁気エンジン装置、および可逆熱磁気サイクル装置
JP5267613B2 (ja) * 2011-04-25 2013-08-21 株式会社デンソー 磁気熱量効果型ヒートポンプ装置
JP5267689B2 (ja) * 2011-04-26 2013-08-21 株式会社デンソー 磁気ヒートポンプ装置
EP2706309B1 (fr) * 2011-05-02 2019-12-04 Nissan Motor Co., Ltd Réfrigérateur magnétique
CN102305491B (zh) * 2011-08-30 2014-05-07 华南理工大学 摆动式室温磁制冷机
FR2987433B1 (fr) * 2012-02-28 2014-03-28 Cooltech Applications Generateur de champ magnetique pour appareil thermique magnetocalorique
FR2994018B1 (fr) * 2012-07-27 2015-01-16 Cooltech Applications Generateur de champ magnetique pour appareil thermique magnetocalorique et appareil thermique magnetocalorique equipe d'un tel generateur
US10465951B2 (en) 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
US9534817B2 (en) 2013-03-29 2017-01-03 General Electric Company Conduction based magneto caloric heat pump
US9625185B2 (en) 2013-04-16 2017-04-18 Haier Us Appliance Solutions, Inc. Heat pump with magneto caloric materials and variable magnetic field strength
BR112015027842A2 (pt) 2013-05-08 2017-07-25 Basf Se uso de um sistema de blindagem magnética rotativo para um dispositivo de refrigeração magnético
US9377221B2 (en) 2013-07-24 2016-06-28 General Electric Company Variable heat pump using magneto caloric materials
WO2015017230A1 (fr) 2013-08-02 2015-02-05 General Electric Company Ensembles magnéto-caloriques
JP5884806B2 (ja) * 2013-10-09 2016-03-15 株式会社デンソー 磁気熱量素子およびそれを備える熱磁気サイクル装置
US9698660B2 (en) * 2013-10-25 2017-07-04 General Electric Company System and method for heating ferrite magnet motors for low temperatures
KR102149733B1 (ko) 2013-12-27 2020-08-31 삼성전자주식회사 자기냉각장치 및 이를 갖춘 자기냉각시스템
CN103925732B (zh) * 2014-04-11 2016-05-04 佛山市川东磁电股份有限公司 一种旋转式串极磁制冷系统
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9797630B2 (en) 2014-06-17 2017-10-24 Haier Us Appliance Solutions, Inc. Heat pump with restorative operation for magneto caloric material
FR3028927A1 (fr) * 2014-11-26 2016-05-27 Cooltech Applications Appareil thermique magnetocalorique
US10254020B2 (en) 2015-01-22 2019-04-09 Haier Us Appliance Solutions, Inc. Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9631843B2 (en) 2015-02-13 2017-04-25 Haier Us Appliance Solutions, Inc. Magnetic device for magneto caloric heat pump regenerator
DE102015105346A1 (de) * 2015-04-09 2016-10-13 Eberspächer Climate Control Systems GmbH & Co. KG Temperiergerät, insbesondere Fahrzeugtemperiergerät
DE102015111661B4 (de) * 2015-07-17 2020-07-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Magnetokalorische Vorrichtung
DE102015112407A1 (de) * 2015-07-29 2017-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Einrichtung zur Klimatisierung, insbesondere Kühlung, eines Mediums mittels elektro- oder magnetokalorischen Materials
CN105307456B (zh) * 2015-09-14 2019-01-15 联想(北京)有限公司 一种热磁冷却系统及电子设备
US10272510B2 (en) * 2016-01-14 2019-04-30 United Technologies Corporation Electrical discharge machining apparatus
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
FR3053448B1 (fr) * 2016-06-30 2019-07-26 Cooltech Applications Appareil thermique magnetocalorique
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
FR3054808B1 (fr) * 2016-08-04 2019-08-02 Valeo Systemes Thermiques Systeme de nebulation pour vehicule automobile
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10175026B2 (en) * 2016-12-06 2019-01-08 Mark J. Noonan Device, method and energy product-by-process for launching magnetic projectiles and motivating linear and rotational motion, using permanent magnets or magnetized bodies
JP6624107B2 (ja) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10823464B2 (en) * 2017-12-12 2020-11-03 Haier Us Appliance Solutions, Inc. Elasto-caloric heat pump system
US11022348B2 (en) * 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648704B2 (en) * 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN110425643B (zh) * 2019-08-23 2021-02-23 谢庆 惯量空调、空调室内机、空调室外机和空调系统
CN110864471B (zh) * 2019-11-27 2021-06-08 横店集团东磁股份有限公司 一种自带传动动力的磁制冷装置及方法和用途
CN111174458A (zh) * 2020-01-13 2020-05-19 华南理工大学 一种用于室温磁制冷的径向微元回热系统及制冷方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195683A (ja) * 2000-12-20 2002-07-10 Denso Corp 磁気温調装置
US6595004B1 (en) * 2002-04-19 2003-07-22 International Business Machines Corporation Apparatus and methods for performing switching in magnetic refrigeration systems using thermoelectric switches

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934078A (en) * 1998-02-03 1999-08-10 Astronautics Corporation Of America Reciprocating active magnetic regenerator refrigeration apparatus
CN1099009C (zh) * 1999-06-04 2003-01-15 中山大学 电场诱导相变制冷的方法
ES2284683T3 (es) * 2000-08-09 2007-11-16 Astronautics Corporation Of America Aparato de refrigeracion magnetica de sustrato rotativo.
US6446441B1 (en) * 2001-08-28 2002-09-10 William G. Dean Magnetic refrigerator
KR101016125B1 (ko) * 2001-12-12 2011-02-17 애스트로노틱스 코포레이션 오브 아메리카 회전하는 자석 자기냉각장치
FR2861454B1 (fr) * 2003-10-23 2006-09-01 Christian Muller Dispositif de generation de flux thermique a materiau magneto-calorique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195683A (ja) * 2000-12-20 2002-07-10 Denso Corp 磁気温調装置
US6595004B1 (en) * 2002-04-19 2003-07-22 International Business Machines Corporation Apparatus and methods for performing switching in magnetic refrigeration systems using thermoelectric switches

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 11 6 November 2002 (2002-11-06) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942751B2 (ja) * 2005-09-01 2012-05-30 クールテック アプリケーションズ エス.エー.エス. 磁気熱変換材料による熱発生器
EP1938023B1 (fr) * 2005-09-01 2009-03-18 Cooltech Applications S.A.S Generateur thermique a materiau magnetocalorique
JP2009507168A (ja) * 2005-09-01 2009-02-19 クールテック アプリケーションズ エス.エー.エス. 磁気熱変換材料による熱発電機
US8448453B2 (en) 2007-08-17 2013-05-28 The Technical University Of Denmark Refrigeration device and a method of refrigerating
FR2922999A1 (fr) * 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
WO2009087310A2 (fr) * 2007-10-30 2009-07-16 Cooltech Applications Generateur thermique a materiau magnetocalorique
WO2009087310A3 (fr) * 2007-10-30 2009-09-17 Cooltech Applications Generateur thermique a materiau magnetocalorique
US8869541B2 (en) 2007-10-30 2014-10-28 Cooltech Applications Societe Par Actions Simplifiee Thermal generator with magnetocaloric material and incorporated heat transfer fluid circulation means
JP2011501100A (ja) * 2007-10-30 2011-01-06 クールテック アプリケーションズ エス.エイ.エス. 磁気熱効果材料による熱発生装置
EP2108904A1 (fr) 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance
FR2935469A1 (fr) * 2008-08-26 2010-03-05 Cooltech Applications Generateur thermique a materiau magnetocalorique
WO2010023381A3 (fr) * 2008-08-26 2010-04-22 Cooltech Applications S.A.S. Generateur thermique a materiau magnetocalorique
US20110192834A1 (en) * 2008-10-24 2011-08-11 Cooltech Applications Magnetocaloric thermal generator
US8881537B2 (en) * 2008-10-24 2014-11-11 Cooltech Applications Societe Par Actions Simplifiee Magnetocaloric thermal generator

Also Published As

Publication number Publication date
EP1730454B8 (fr) 2007-11-21
CN100436966C (zh) 2008-11-26
AU2005229224A1 (en) 2005-10-13
DE602005002832T2 (de) 2008-07-10
KR20070003967A (ko) 2007-01-05
AU2005229224B2 (en) 2010-04-29
FR2868519B1 (fr) 2006-06-16
ATE375486T1 (de) 2007-10-15
ES2296175T3 (es) 2008-04-16
CA2556333C (fr) 2013-05-28
CN1930426A (zh) 2007-03-14
EP1730454B1 (fr) 2007-10-10
JP4819794B2 (ja) 2011-11-24
US20080223853A1 (en) 2008-09-18
DE602005002832D1 (de) 2007-11-22
EA200601577A1 (ru) 2007-04-27
HRP20080010T3 (en) 2008-01-31
CA2556333A1 (fr) 2005-10-13
EA011496B1 (ru) 2009-04-28
EP1730454A1 (fr) 2006-12-13
BRPI0508110A (pt) 2007-07-17
ZA200606300B (en) 2007-11-28
FR2868519A1 (fr) 2005-10-07
PL1730454T3 (pl) 2008-04-30
HK1099801A1 (en) 2007-08-24
PT1730454E (pt) 2008-02-18
KR101215796B1 (ko) 2012-12-26
DK1730454T3 (da) 2008-02-11
US7897898B2 (en) 2011-03-01
JP2007531487A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
EP1730454B8 (fr) Generateur thermique a materiau magneto-calorique et procede de generation de thermies
CA2543123C (fr) Dispositif de generation de flux thermique a materiau magneto-calorique
EP2044373B1 (fr) Generateur thermique magnetocalorioue
EP2215410B1 (fr) Generateur thermique a materiau magnetocalorique
EP2129976B1 (fr) Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique
EP2399087B1 (fr) Generateur thermique magnetocalorique
US7273981B2 (en) Thermoelectric power generation systems
CA2551299C (fr) Echangeur thermique
EP4169155B1 (fr) Machine de conversion d'energie thermique en energie electrique ou inversement
FR2875895A1 (fr) Dispositif de production d'energie thermique a materiau magneto-calorifique a moyens internes de commutation et synchronisation automatique des circuits de fluides caloporteurs
EP2368279A1 (fr) Procede d'etablissement accelere d'un gradient de temperature dans un element magnetocalorioue et generateur thermique magnetocalorioue mettant en uvre ledit procede
EP2318785A2 (fr) Generateur thermique magnetocalorique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006/06300

Country of ref document: ZA

Ref document number: 2007505585

Country of ref document: JP

Ref document number: 200606300

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2556333

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005744635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/009649

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2005229224

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580008092.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10593845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067019564

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200601577

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005229224

Country of ref document: AU

Date of ref document: 20050329

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005229224

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005744635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019564

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0508110

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2005744635

Country of ref document: EP