WO2005095144A1 - 電気自動車 - Google Patents

電気自動車 Download PDF

Info

Publication number
WO2005095144A1
WO2005095144A1 PCT/JP2005/006711 JP2005006711W WO2005095144A1 WO 2005095144 A1 WO2005095144 A1 WO 2005095144A1 JP 2005006711 W JP2005006711 W JP 2005006711W WO 2005095144 A1 WO2005095144 A1 WO 2005095144A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel
electrode
hydrogen production
electric vehicle
Prior art date
Application number
PCT/JP2005/006711
Other languages
English (en)
French (fr)
Inventor
Ryoichi Okuyama
Yoshihiro Yamamoto
Masashi Motoi
Katsuji Ashida
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to EP05728897A priority Critical patent/EP1733914A1/en
Priority to US10/594,702 priority patent/US7939210B2/en
Publication of WO2005095144A1 publication Critical patent/WO2005095144A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an electric vehicle equipped with a hydrogen production device for supplying hydrogen to a fuel cell.
  • hydrogen is loaded by a method such as filling hydrogen into a cylinder as compressed gas or storing hydrogen in a hydrogen storage alloy (for example, see Patent Documents 1 to 3).
  • the fuel gas supplied to the electrodes of the fuel cell is hydrogen gas of extremely high purity, so that high power generation efficiency can be obtained when operating the fuel cell. Therefore, the size of the fuel cell can be reduced.
  • hydrogen gas with extremely high purity is used, harmful substances are not generated in the course of various reactions in the electric vehicle, and the environment is polluted by running the electric vehicle. There is an advantage that there is no such thing.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2000-37070
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2003-182,379
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2000-224203
  • an electric vehicle loaded with a raw fuel for producing hydrogen is loaded with methanol or the like as the raw fuel, and further reformed to produce a gas containing hydrogen by reforming the raw fuel.
  • an electric vehicle equipped with a raw fuel and a reformer particularly when a liquid fuel such as methanol is used as the raw fuel, requires only one refueling to be able to run the electric vehicle over a gaseous fuel. It has the advantage that it is longer than when loading Furthermore, raw fuels such as methanol and hydrocarbons have the advantage that they are easier and safer to handle during transportation than hydrogen gas.
  • Patent Document 4 JP-A-2000-149974
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-113960
  • Patent Document 6 JP 2001-202980 A
  • Patent Document 7 JP 2001-298807 A
  • Non-Patent Document 1 “Development and Practical Use of Polymer Electrolyte Fuel Cells”, pp. 141-16 Page 6, May 28, 1999, Published by Technical Information Association of Japan
  • Patent Documents 8 and 10 inventions of a method of generating hydrogen by an electrochemical reaction
  • Patent Documents 9 to 11 inventions of a fuel cell using hydrogen generated by an electrochemical method
  • Patent Document 8 Patent No. 3328993
  • Patent Document 9 Patent No. 3360349
  • Patent Document 10 U.S. Patent No. 6,299,744, U.S. Patent No. 6,368,492, U.S. Patent No. 6,432,284, U.S. Patent No. 6,533,919 Specification, U.S. Patent Publication 2003/0226763 Patent Document 11: JP 2001-297779 A
  • Patent Document 8 discloses that ⁇ a pair of electrodes is provided on both opposing surfaces of a cation exchange membrane, and a fuel including at least methanol and water is brought into contact with an electrode including a catalyst provided on one side, By applying a voltage to the electrode and extracting electrons from the electrode, a reaction for generating hydrogen ions from the methanol and water proceeds on the electrode, and the generated hydrogen ions are transferred to the cation exchange membrane.
  • a method for generating hydrogen comprising converting electrons into hydrogen molecules by supplying electrons at an electrode provided on the other side of the pair of opposing surfaces.
  • the invention described in Patent Literature 10 is also a counter electrode in which protons generated at the anode 112, which is the fuel electrode, penetrate the diaphragm 110. Hydrogen is generated at the cathode 114, and a voltage is applied from the DC power supply 120 using the fuel electrode as the anode and the counter electrode as the force sword to electrolyze organic fuel such as methanol. Further, hydrogen is generated on the counter electrode side of the fuel electrode and does not supply an oxidizing agent to the counter electrode, and thus is clearly different from the hydrogen production apparatus mounted on the electric vehicle of the present invention.
  • Patent Literature 11 discloses that a fuel cell system is provided with a hydrogen generating electrode for generating hydrogen (claim 1).
  • a porous electrode (fuel electrode) 1 contains alcohol and water.
  • air is supplied to the gas diffusion electrode (oxidant electrode) 2 on the opposite side, and a load is connected between the terminal of the porous electrode 1 and the terminal of the gas diffusion electrode 2.
  • An electrical connection can be made such that a positive potential is applied to the porous electrode 1 via a load from the gas diffusion electrode 2, which is the positive electrode of the MEA 2 having a battery function, and as a result, alcohol reacts with water.
  • Patent Document 12 Japanese Patent Application Laid-Open No. 6-73582 (Claims 1 to 3, paragraph [050])
  • Patent Document 13 Japanese Patent Application Laid-Open No. 6-73583 (Claim 1, 8, paragraphs [0000], [001]]) Disclosure of the Invention
  • the present invention is intended to solve the above-described problems, and provides a hydrogen production apparatus capable of easily supplying hydrogen to a fuel cell and producing a gas containing hydrogen at a low temperature. It is an object to provide an on-board electric vehicle. Means for solving the problem
  • the present invention employs the following solutions.
  • a fuel cell that supplies electricity by supplying hydrogen and an oxidant, a hydrogen production device that produces gas containing hydrogen to be supplied to the fuel cell, and a motor that is driven by electricity generated by the fuel cell
  • An electric vehicle comprising: a hydrogen production device that decomposes a fuel containing an organic substance to produce a gas containing hydrogen; and a diaphragm, a fuel electrode provided on one surface of the diaphragm, Means for supplying a fuel containing an organic substance and water to the fuel electrode; an oxidizing electrode provided on the other surface of the diaphragm; a means for supplying an oxidizing agent to the oxidizing electrode; and generating a gas containing hydrogen from the fuel electrode side.
  • An electric vehicle comprising: means for removing the electric vehicle.
  • the hydrogen production apparatus is an open circuit having no means for extracting electric energy from the hydrogen production cell constituting the hydrogen production apparatus to the outside and means for externally applying electric energy to the hydrogen production cell.
  • the electric vehicle according to the above (1) which is characterized in that:
  • the hydrogen production device includes a unit for extracting electric energy to outside with the fuel electrode as a negative electrode and the oxidizing electrode as a positive electrode.
  • the hydrogen production apparatus uses the fuel electrode as a force source and the oxidation electrode as an anode.
  • the electric vehicle according to (1) further comprising means for externally applying electric energy.
  • a hydrogen production apparatus which is an open circuit having no means for extracting electric energy from the hydrogen production cell to the outside and a means for externally applying electric energy to the hydrogen production cell, wherein the fuel electrode is a negative electrode and the oxidation electrode is Two or more hydrogen production apparatuses selected from the group consisting of a hydrogen production apparatus having means for extracting electric energy to the outside as a positive electrode and a hydrogen production apparatus having means for externally applying electric energy using the fuel electrode as a force source and the oxidation electrode as an anode.
  • the electric vehicle according to (1) wherein the electric vehicle is used in combination with a hydrogen production device.
  • the hydrogen production apparatus adjusts the extracted electric energy to adjust the voltage between the fuel electrode and the oxidation electrode and the amount of generated gas containing Z or the hydrogen.
  • the electric vehicle according to (3) or (8) above.
  • the electric vehicle according to any one of (1) to (11).
  • the organic substance to be supplied to the fuel electrode of the hydrogen production apparatus is one or more organic substances selected from the group consisting of alcohol, aldehyde, carboxylic acid, and ether.
  • the electric vehicle according to any one of (18) to (18).
  • the hydrogen production apparatus mounted on the electric vehicle according to the above (2) to (4) has means for supplying fuel and an oxidant to a hydrogen production cell constituting the hydrogen production apparatus.
  • a pump, a blower or the like can be used.
  • there is a discharge control means for extracting electric energy from the hydrogen production cell and in the case of the above (4), the electric energy is imprinted on the hydrogen production cell.
  • an electrolysis means for adding is an open circuit having no discharge control means for extracting electric energy from the hydrogen production cell and no electrolytic means for applying electric energy to the hydrogen production cell.
  • the hydrogen production apparatus mounted on the electric vehicle of (1) includes the hydrogen production apparatus mounted on the electric vehicles of (2) to (4).
  • the basic configuration of the hydrogen production cell constituting the hydrogen production apparatus is as follows: a structure in which a fuel electrode is provided on one surface of a diaphragm, and fuel is supplied to the fuel electrode; and an oxidation electrode is formed on the other surface of the diaphragm. And a structure for supplying an oxidizing agent to the oxidizing electrode.
  • the electric vehicle is not limited to a vehicle that obtains the driving force of the vehicle using only the fuel cell, but includes a hybrid car that uses another power source in combination.
  • the invention's effect is not limited to a vehicle that obtains the driving force of the vehicle using only the fuel cell, but includes a hybrid car that uses another power source in combination.
  • the electric vehicle of the present invention is equipped with a hydrogen production apparatus capable of reforming fuel at a temperature significantly lower than the conventional reforming temperature of room temperature to 100 ° C. or less.
  • the energy required to raise the temperature of the porcelain can be reduced, and the size of the startup battery can be reduced.
  • the gas containing hydrogen generated from the hydrogen production device does not contain CO, a CO removal device is not required.
  • the hydrogen production apparatus used in the electric vehicle of the present invention can generate hydrogen without supplying electric energy to the hydrogen production cell from the outside, but has a means for taking out electric energy. However, hydrogen can be generated even when a means for externally applying electric energy is provided.
  • the electrical energy can be used to move auxiliary equipment such as pumps and blowers, and so the effect is significant from the viewpoint of effective use of energy.
  • the voltage of the hydrogen production cell and / or hydrogen By monitoring the amount of generated gas, the process can be controlled, and the hydrogen production apparatus can be made more compact. This has the effect of reducing the production cost of electric vehicles.
  • FIG. 1A is a diagram showing an example of a system flow of a fuel cell system in an electric vehicle according to the present invention.
  • FIG. 1 (b) is a schematic diagram showing an example of the configuration of a packaged fuel cell power generator mounted on an electric vehicle according to the present invention.
  • FIG. 1 (c) is a schematic diagram showing a relationship between a hydrogen production apparatus mounted on an electric vehicle of the present invention and a fuel cell.
  • FIG. 2 is a schematic diagram of the hydrogen production cell (without supplying external electric energy) in the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the air flow rate, the hydrogen generation rate, and the open voltage at different temperatures (30 to 70 ° C.) (Hydrogen Production Example 11).
  • FIG. 4 is a diagram showing the relationship between the open voltage and the hydrogen generation rate at different temperatures (30 to 70 ° C.) (hydrogen production example 11).
  • FIG. 5 is a diagram showing the relationship (temperature 70 ° C.) between the air flow rate, the hydrogen generation rate, and the open voltage at different fuel flow rates (Hydrogen production example 1-2).
  • FIG. 6 is a diagram showing the relationship (temperature 7 O) between the open voltage and the hydrogen generation rate at different fuel flow rates (hydrogen production example 1-2).
  • FIG. 7 is a diagram showing the relationship (temperature 70 ° C.) between the air flow rate, the hydrogen generation rate, and the open voltage at different fuel concentrations (Hydrogen Production Example 1-3).
  • FIG. 8 is a diagram showing the relationship (at a temperature of 70) between the open voltage and the hydrogen generation rate at different fuel concentrations (hydrogen production examples 1-3).
  • FIG. 9 is a diagram showing the relationship between the air flow rate, the hydrogen generation rate, and the open voltage in the electrolyte membranes having different thicknesses (hydrogen production examples 114).
  • FIG. 10 is a diagram showing the relationship between the open voltage and the rate of hydrogen generation in electrolyte membranes having different thicknesses (hydrogen production examples 114).
  • Fig. 11 is a diagram showing the relationship between the air flow rate, the hydrogen generation rate, and the open voltage at different temperatures (30 to 90) (Hydrogen production examples 15).
  • Figure 12 shows the relationship between the open voltage and the rate of hydrogen generation (oxidant: air) at different temperatures (30 to 90 ° C) (hydrogen production example 1-5).
  • Figure 13 is a diagram showing the relationship (air temperature: 50 ° C) between the air flow rate, the hydrogen generation rate, and the open voltage at different fuel flow rates (Hydrogen Production Example 16).
  • Fig. 14 is a diagram showing the relationship between the open voltage and the hydrogen generation rate (temperature 50 ° C) at different fuel flow rates (Hydrogen production example 16).
  • FIG. 15 is a diagram showing the relationship (temperature of 50 ° C.) between the air flow rate, the hydrogen generation rate, and the open voltage at different fuel concentrations (Hydrogen Production Example 17).
  • Figure 16 is a diagram showing the relationship between the open voltage and the rate of hydrogen generation (temperature 50 ° C) at different fuel concentrations (Hydrogen Production Examples 17 to 17). .
  • FIG. 17 is a diagram showing the relationship (temperature of 50 ° C.) between the oxidizing gas flow rate, the hydrogen generation rate, and the open voltage at different oxygen concentrations (Hydrogen Production Example 18).
  • Figure 18 is a diagram showing the relationship between the open voltage and the rate of hydrogen generation (temperature 50 ° C) at different oxygen concentrations (Examples of hydrogen production 18).
  • Figure 19 is a diagram showing the relationship between H 2 0 2 flow rate and the hydrogen production rate ⁇ beauty open voltage at different temperatures (30 to 90 ° C) (Hydrogen Production Example 1 one 10).
  • Figure 20 is a different temperatures (30 to 90 ° C) the relationship between the open voltage and the rate of hydrogen production in the (oxidizing agent: H 2 0 2) is a diagram showing a (hydrogen production Example 1 one 10).
  • FIG. 21 is a schematic diagram of a hydrogen production cell (provided with a means for extracting electric energy) in Example 2.
  • Figure 22 is a diagram showing the relationship between the extracted current density and the operating voltage (discharge: temperature 50 ° C) at different air flow rates (hydrogen production example 2-1).
  • Figure 23 shows the relationship between operating voltage and hydrogen generation rate (discharge: temperature 50 ° C) at different air flow rates (hydrogen production example 2-1).
  • Fig. 24 is a diagram showing the relationship between the extracted current density and the operating voltage (discharge: temperature 30 ° C) at different air flow rates (hydrogen production example 2-2).
  • Figure 25 shows the relationship between operating voltage and hydrogen generation rate at different air flow rates (discharge: It is a figure which shows the temperature (30 ° C) (hydrogen production example 2-2).
  • Figure 26 is a diagram showing the relationship between the extracted current density and the operating voltage at different air flow rates (discharge: at a temperature of 70) (Hydrogen Production Example 2-3).
  • Figure 27 is a diagram showing the relationship between the operating voltage and the hydrogen generation rate (discharge: temperature 70 ° C) at different air flow rates (hydrogen production example 2-3).
  • Figure 28 shows the relationship between the extracted current density and operating voltage (discharge: temperature 90 ° C) at different air flow rates (hydrogen production example 2-4).
  • Figure 29 shows the relationship between operating voltage and hydrogen generation rate (discharge: temperature 90 ° C) at different air flow rates (hydrogen production example 2-4).
  • Fig. 30 is a diagram showing the relationship between the extracted current density and the operating voltage at different temperatures (discharge: air flow rate 50ml Z minutes).
  • Figure 31 is a diagram showing the relationship between operating voltage and hydrogen formation rate at different temperatures (discharge: air flow rate 50 ml / min).
  • Figure 32 is a diagram showing the relationship between the extracted current density and the operating voltage at different temperatures (discharge: air flow rate 100 m1 / min). '
  • Fig. 33 is a diagram showing the relationship between the operating voltage and the hydrogen generation rate at different temperatures (discharge: air flow rate 10 Oml / min).
  • Figure 34 is a diagram showing the relationship between the extracted current density and operating voltage (discharge: temperature 50 ° C) at different fuel flow rates (hydrogen production example 2-5).
  • ' Figure 35 shows the relationship between operating voltage and hydrogen generation rate (discharge: temperature 50 ° C) at different fuel flow rates (hydrogen production example 2-5).
  • Fig. 36 is a diagram showing the relationship between the extracted current density and the operating voltage (discharge: temperature 50 ° C) at different fuel concentrations (hydrogen production example 2-6).
  • Figure 37 shows the relationship between operating voltage and hydrogen generation rate (discharge: temperature 50 ° C) at different fuel concentrations (Hydrogen Production Example 2-6).
  • Figure 38 shows the relationship between the extracted current density and the operating voltage (discharge: temperature 50 C) at different oxygen concentrations (hydrogen production example 2-7).
  • Figure 39 is a graph showing the relationship between the operating voltage and the rate of hydrogen generation (discharge: temperature 50) at different oxygen concentrations (Hydrogen production example 2-7). 4 0, the relationship between the current density and operating voltage taken out at different temperatures: a diagram showing a (discharge oxidant H 2 0 2) (hydrogen Production Example 2-8).
  • FIG. 42 is a schematic diagram of a hydrogen production cell (provided with means for externally applying electric energy) in Example 3.
  • Figure 43 is a diagram showing the relationship between the applied current density and the hydrogen generation rate at different air flow rates (charging: temperature 50 ° C) (Hydrogen Production Example 3-1).
  • Fig. 44 is a diagram showing the relationship between operating voltage and hydrogen generation rate at different air flow rates (charging: temperature 50 ° C) (Hydrogen Production Example 3-1).
  • Figure 45 is a diagram showing the relationship between the applied current density and the operating voltage at different air flow rates (charging: temperature 50 ° C) (Hydrogen Production Example 3-1).
  • Figure 46 shows the relationship between operating voltage and energy efficiency (charging: temperature 50) at different air flow rates (Hydrogen Production Example 3-1).
  • FIG. 47 is a diagram showing the relationship between the applied current density and the hydrogen generation rate at different air flow rates (charging: temperature 30 ° C.) (hydrogen production example 3-2).
  • Figure 48 shows the relationship between the operating voltage and the rate of hydrogen generation at different air flow rates (charging: temperature 30 ° C) (Hydrogen Production Example 3-2).
  • Figure 49 shows the relationship between operating voltage and energy efficiency (charging: temperature 30 ° C) at different air flow rates (hydrogen production example 3-2).
  • FIG. 50 is a diagram showing the relationship between the applied current density and the hydrogen generation rate at different air flow rates (charging: temperature: 70 ° C.) (hydrogen production example 3-3).
  • Fig. 51 is a diagram showing the relationship between operating voltage and hydrogen generation rate at different air flow rates (charging: temperature 70 ° C) (hydrogen production example 3-3).
  • Figure 52 shows the relationship between operating voltage and energy efficiency (charging: temperature 70 ° C) at different air flow rates (hydrogen production example 3-3).
  • Figure 53 shows the relationship between the applied current density and the rate of hydrogen generation (charging: temperature 90 ° C) at different air flow rates. (Hydrogen production example 3-4).
  • Figure 54 shows the relationship between the operating voltage and the rate of hydrogen generation at different air flows (charging: (Hydrogen production example 3-4).
  • Figure 55 shows the relationship between operating voltage and energy efficiency at different air flows (charging: at a temperature of 90) (Hydrogen production example 3-4).
  • FIG. 56 is a diagram showing the relationship between the applied current density and the hydrogen generation rate at different temperatures (charging: air flow rate 50 m 1 / min).
  • FIG. 57 is a diagram showing the relationship between the operating voltage and the hydrogen generation rate at different temperatures (charging: air flow rate 50 ml Z minutes).
  • Fig. 58 shows the relationship between operating voltage and energy efficiency at different temperatures (charging: air flow rate 50ml Z minutes).
  • Figure 59 shows the relationship between the applied current density and the rate of hydrogen generation at different fuel flow rates (charging: temperature 50 ° C) (Hydrogen Production Example 3-5).
  • Figure 60 shows the relationship between operating voltage and hydrogen generation rate (charging: temperature 50 C) at different fuel flow rates (Hydrogen production example 3-5).
  • Figure 61 shows the relationship between operating voltage and energy efficiency (charging: temperature 50 ° C) at different fuel flow rates (hydrogen production example 3-5).
  • - Figure 62 shows the relationship between the applied current density and the rate of hydrogen generation at different fuel concentrations (charging: temperature 50 ° C) (Hydrogen Production Example 3-6).
  • Figure 63 shows the relationship between operating voltage and hydrogen generation rate at different fuel concentrations (charging: temperature 50 ° C) (hydrogen production example 3-6).
  • Figure 64 shows the relationship between operating voltage and energy efficiency (charging: temperature 50 ° C) at different fuel concentrations (Hydrogen Production Example 3-6).
  • Fig. 65 is a diagram showing the relationship between the applied current density and the rate of hydrogen generation at different oxygen concentrations (charging: temperature 50 ° C) (hydrogen production example 3-7).
  • Figure 66 shows the relationship between the operating voltage and the rate of hydrogen generation at different oxygen concentrations (charging: temperature 50 ° C) (Hydrogen production example 3-7).
  • Figure 67 shows the relationship between operating voltage and energy efficiency at different oxygen concentrations (charging: temperature 50 ° C) (Hydrogen production example 3-7).
  • Figure 68 is a diagram showing the relationship between the applied current density and the hydrogen generation rate at different temperatures (charging: oxidant H 2 ⁇ 2 ) (Hydrogen Production Example 3-8). 6 9, the relationship between the driving voltage and the hydrogen production rate at different temperatures: a diagram showing the (charging oxidant H 2 0 2) (hydrogen Preparation 3-8).
  • FIG. 71 is a diagram showing the relationship between the air flow rate and the hydrogen generation rate (open circuit: at a temperature of 50) (Example 8).
  • FIG. 72 is a diagram showing the relationship between the open-circuit voltage and the hydrogen generation rate (open circuit: temperature of 50 ° C.) (Example 8). Explanation of symbols
  • Oxidation electrode air electrode
  • the hydrogen production apparatus mounted on the electric vehicle of the present invention is basically novel, and the following is merely an example, and the present invention is not limited thereto.
  • the basic configuration of the electric vehicle according to the present invention includes: a fuel cell that supplies hydrogen and an oxidant to generate power; a hydrogen production device that produces a gas containing hydrogen to be supplied to the fuel cell; And a motor driven by electricity generated by the fuel cell.
  • FIG. 1 (a) shows an example of a system flow of a fuel cell system in an electric vehicle according to the present invention.
  • the electric vehicle of the present invention produces a fuel cell (30) that supplies hydrogen and an oxidant to generate power, and produces a gas containing hydrogen to be supplied to the fuel cell (30).
  • the control device (37) is replaced with the hydrogen production cell. It is possible to place it near (10).
  • a heat insulator for protecting the control device (37) from the heat generated by the hydrogen production cell (10) can be eliminated.
  • the fuel tank (20) and the fuel regulating tank (21) are mounted on the electric vehicle, but the fuel (methanol aqueous solution) may be supplied from outside without mounting them. Alternatively, only the fuel adjustment tank (21) may be mounted on the electric vehicle.
  • Gas containing hydrogen generated from the hydrogen production cell (10) can be supplied directly to the fuel cell (30).
  • a hydrogen tank (24) for storing gas containing hydrogen is provided, and a hydrogen tank (24) is provided. It is preferable to supply from 24) to the fuel cell (30).
  • a gas-liquid separator (27) may be provided.
  • a backup battery may be provided in addition to the above.
  • the hydrogen production apparatus mounted on the electric vehicle of the present invention has a hydrogen production cell (10) and auxiliary equipment for operating the hydrogen production apparatus.
  • the structure of the hydrogen production cell (10) is such that a fuel electrode (12) is provided on one surface of the diaphragm (11), and a flow path for supplying a fuel (aqueous methanol solution) containing organic matter and water to the fuel electrode (12).
  • an oxidizing electrode (14) is provided on the other surface of the diaphragm (11), and a flow path (15) for supplying an oxidizing agent (air) to the oxidizing electrode (14) is provided. Things.
  • a fuel pump (16) for supplying an aqueous methanol solution to the fuel electrode (12) is provided as an auxiliary device for operating the hydrogen production system.
  • the flow path (13) at the anode is connected to the fuel pump (16) via a flow control valve (18) by a conduit.
  • the fuel (100% methanol) is stored in a fuel tank (20) and is transferred to a fuel adjustment tank (21), where it is mixed with water in the fuel adjustment tank (21). It is adjusted to an aqueous solution and supplied to the fuel electrode (12).
  • an air blower (17) can be provided as an auxiliary device to supply air directly to the oxidation electrode (14).
  • air is supplied to the fuel cell (30) by the air blower (17). And uses unreacted air (exhaust air) discharged from the fuel cell (30).
  • the air blower for the hydrogen production cell (10) becomes unnecessary.
  • the channel (15) at the oxidation electrode is connected to the air blower (17) via a flow control valve (19) and a fuel cell (30).
  • this exhaust air has a temperature (about 80 ° C.) substantially equal to the operating temperature of the fuel cell (30), this protects the control device (37) from the heat of the fuel cell (30). At the same time, the heat of the exhaust air can be used as a heat source for heating the hydrogen production cell (10).
  • Exhaust air discharged from the other hydrogen production cell (10) can be used as air supplied to the oxidation electrode (14) of the production cell (10).
  • the amount of generated gas containing hydrogen can be controlled by providing a voltage regulator (22) that monitors the voltage (open circuit voltage or operating voltage) of the hydrogen production cell (10), It can be adjusted by controlling the electrical energy to be extracted or applied.
  • the generated gas containing hydrogen is passed through a gas-liquid separator (23) to be separated into a gas containing hydrogen and an aqueous solution of unreacted methanol, and the gas containing hydrogen is stored in a hydrogen tank (24).
  • Part or all of the separated unreacted aqueous methanol solution is returned to the fuel conditioning tank (21) by the conduit (25) and circulated.
  • water may be supplied from outside the system.
  • Part or all of the separated product water and unreacted methanol aqueous solution is returned to the fuel conditioning tank (21) by the conduit (29) and circulated.
  • the hydrogen stored in the hydrogen tank (24) is supplied to the hydrogen electrode (32) of the fuel cell (30) via the flow control valve (26), and the air electrode (34) is supplied to the air electrode (34).
  • Air is supplied from the fuel cell (17) through the flow control valve (19), and the reaction of the formula [1] occurs on the hydrogen electrode side, and the reaction of the formula [2] occurs on the air electrode side.
  • the reaction of equation [3] occurs, and water (steam) is generated, and electricity (DC power) is generated.
  • any fuel can be used as long as the fuel is hydrogen, but a polymer electrolyte fuel cell (PEFC) capable of operating at a low temperature of 100 or less is preferable.
  • PEFC polymer electrolyte fuel cell
  • a fuel cell stack in which a plurality of well-known single cells are stacked can be employed.
  • One single cell consists of a solid polymer electrolyte membrane (31) such as Naphion (trademark of DuPont), a hydrogen electrode (32) and an air electrode (34), which are diffusion electrodes sandwiching it from both sides, and It is equipped with two separate evenings sandwiched between the two.
  • Irregularities are formed on both sides of the separator, forming gas channels (33) and (35) in the single cell between the sandwiched hydrogen electrode and air electrode. Among these, the supplied hydrogen gas flows into the gas flow path (33) formed between the hydrogen electrode ⁇ and the single cell gas flow ( In 3), air is flowing.
  • water vapor (H 2 ⁇ ) is generated according to equation [2], so the exhaust air discharged from the fuel cell contains a large amount of water vapor. ing. If the exhaust air discharged from the cathode (34) of the fuel cell (30) is not sent to the hydrogen production cell (10), the water vapor contained in the exhaust air is condensed by the condenser, Preferably, it is recovered as water.
  • Power generation by the fuel cell (30) is accompanied by heat generation.
  • the polymer electrolyte membrane shows proton conductivity in a state of containing water, so the polymer electrolyte membrane dries as the fuel cell generates heat, and the water content becomes lower. If it decreases, the internal resistance of the fuel cell increases and the power generation capacity decreases. Therefore, it is necessary to cool the fuel cell to prevent the polymer electrolyte membrane from drying and maintain it at an appropriate operating temperature (about 80 ° C).
  • the higher the temperature the higher the hydrogen generation efficiency. Preferably, it is used for heating.
  • the hydrogen production apparatus since the hydrogen production apparatus operates at a low temperature, it is not necessary to provide a heater for raising the temperature as shown in FIGS. 1 (b) and (c), but it may be provided if necessary.
  • the reformed gas and Z or reaction air are humidified before being supplied to the fuel cell main body.
  • a fuel containing organic matter and water (such as an aqueous methanol solution) is supplied.
  • a gas containing hydrogen is extracted from the fuel electrode side. Since the hydrogen is humidified, a humidifier is not required.
  • the gas containing hydrogen generated from the hydrogen production cell (10) is not as hot as the reformed gas produced by the conventional reformer, it must be supplied to the fuel cell (30) without cooling. Can be.
  • the DC power generated by the fuel cell (30) is introduced into the power converter (36) and boosted by the DCZDC converter, or converted to AC power by the DCZAC inverter and output.
  • the DC power stabilized by the accessory converter is used as a drive power source for accessories such as a fuel pump (16) and an air blower (17), and AC power is used as a drive power source for electric vehicles.
  • control device (37) is equipped with a voltage regulator (22) 'for the hydrogen production cell (10), a fuel cell (30), a power conversion device (36), a fuel pump (16), Controls the operation of auxiliary equipment such as a blower (17).
  • the DC power generated by the fuel cell is converted into AC power by the DCAC inverter as described above, supplied to the motor, which is the power source of the electric vehicle, and driven by the motor.
  • the power is transmitted to the axle to drive the wheels and drive the car.
  • an electric energy storage device for storing electricity generated in the fuel cell. Electricity generated by the fuel cell is controlled by the control device, and the power is supplied to the motor and the electric energy storage device according to the amount of power stored in the electric energy storage device. Supplied to the air energy storage device. Specifically, for example, when the load on the motor is large, such as during acceleration, the electricity from the fuel cell and the electric energy storage device is supplied to the motor. Also, during deceleration, braking, etc., regenerative power obtained from the motor is supplied to the electric energy storage device.
  • the electric energy storage device for example, a secondary battery, an electric double layer capacity, or the like can be used.
  • the hydrogen production cell (10) in the hydrogen production apparatus mounted on the electric vehicle according to the present invention includes the diaphragm (1 1) and the fuel electrode (1 2) provided on one surface of the diaphragm (1 1). ) And an oxidized electrode (14) provided on the other surface of the diaphragm (11).
  • MEA electroactive metal electrode assembly
  • the method of manufacturing the MEA is not limited, but it can be manufactured by a method similar to the conventional method in which the fuel electrode and the oxidation electrode (air electrode) are joined to both surfaces of the diaphragm by hot pressing.
  • a proton conductive solid electrolyte membrane used as a polymer electrolyte membrane in a fuel cell can be used.
  • a perfluorocarbon sulfonic acid-based membrane having a sulfonic acid group such as a Naphion membrane manufactured by DuPont, is preferred.
  • the fuel electrode and the oxidizing electrode are preferably electrodes having conductivity and catalytic activity.
  • a catalyst in which a gas diffusion layer supports a noble metal on a carrier made of carbon powder or the like is used. It can be prepared by applying and drying a catalyst paste containing a binder such as PTFE resin and a substance for imparting ionic conductivity such as a naphth ion solution.
  • a layer made of a water-repellent treated pom-pom is preferable.
  • any catalyst can be used as the fuel electrode catalyst, a catalyst in which a platinum-ruthenium alloy is supported on carbon powder is preferable.
  • any catalyst can be used as the air electrode catalyst, a catalyst in which platinum is supported on carbon powder is preferable.
  • the fuel electrode has an aqueous methanol solution or the like.
  • oxidizing agents such as air, oxygen, and hydrogen peroxide are supplied to the oxidizing electrode (air electrode)
  • hydrogen gas is generated at the fuel electrode under specific conditions.
  • the hydrogen generation method of the hydrogen production device mounted on the electric vehicle of the present invention is completely different from the hydrogen generation method of the conventional hydrogen production device, and it is difficult to explain the mechanism at present. is there. The following is an estimate at the moment, but the possibility that a completely new reaction has occurred cannot be denied.
  • a gas containing hydrogen is generated at a low temperature of 30 to 90 ° C. and from the fuel electrode side supplying methanol and water.
  • a gas with a hydrogen concentration of about 70 to 80% is generated, and when electric energy is applied to the hydrogen production cell from the outside, 80% or more hydrogen is generated. Concentration gas is generated.
  • the generation of the gas depends on the open circuit voltage or operating voltage of both electrodes. From these results, the mechanism of hydrogen generation is estimated as follows. Hereinafter, in order to simplify the explanation of the mechanism, the explanation will be made under the open circuit condition. For example, when methanol is used as a fuel in a hydrogen production device, it is considered that protons are first generated by the catalyst at the fuel electrode, as in the case of the direct methanol fuel cell.
  • H + (proton) generated by the reaction of the formula (3) moves through the proton conductive solid electrolyte membrane, and the following reaction occurs at the fuel electrode to generate hydrogen.
  • Equation (1) becomes the positive electrode and Equation (4) becomes the negative electrode.
  • equation (1) functions as the negative electrode and equation (4) functions as the positive electrode.
  • equation (4) functions as the positive electrode.
  • the entire area of the fuel electrode is equipotential, it is necessary to shift the methanol oxidation potential to the lower potential side or the hydrogen generation potential to the higher potential side.
  • discharge condition In the case of the hydrogen production device (hereinafter referred to as “discharge condition”) mounted on the electric vehicle according to the invention of claim 3 of the present application, hydrogen is generated by a mechanism similar to the hydrogen generation mechanism under open circuit conditions. It is thought that it is. However, unlike the open circuit condition, it is necessary to maintain the electrical neutral condition of the whole cell by moving the H + equivalent to the discharge current from the fuel electrode to the oxidation electrode. Equation (1) is considered to advance from the equation, and equation (2) proceeds from the equation (3) at the oxide electrode.
  • the energy efficiency increases when the supply amount of oxygen (air) is small and the applied voltage (operating voltage) is as low as 400 to 60 OmV. This is because, in this range, as described above, even under an open circuit condition or a discharge condition in which electric energy is not supplied from the outside, the oxidation of methanol permeating to the air electrode side by equation (6) is suppressed. It is presumed that the H + generation reaction in equation (3) becomes dominant and hydrogen is generated by the H + generation reaction in equation (4). However, in the case of charging conditions, external electric energy is applied. In addition to the above, it is estimated that hydrogen is generated as in the case of the open circuit condition or the discharge condition.
  • the meaning of the potential of the cell will be described. In general, the voltage of a cell in which a gas electrode is formed on both electrodes with an electrolyte membrane interposed therebetween is generated due to the difference in chemical potential between the two electrodes of the ion conducting in the electrolyte.
  • the proton (hydrogen ion) conductive solid electrolyte membrane is used as the electrolyte, and the observed voltage is the chemical potential of hydrogen at both electrodes of the cell, in other words, the hydrogen partial pressure.
  • the electric energy is not supplied from the outside to the hydrogen production cell, the electric energy is taken out to the outside, or the electric energy is applied from the outside.
  • the voltage open circuit voltage or operating voltage
  • the amount of gas containing hydrogen can be adjusted.
  • the open circuit voltage becomes 3 Hydrogen is generated at 0 to 80 OmV, and under discharge conditions, hydrogen is generated at a discharge voltage (operating voltage) of 200 to 60 OmV. Since hydrogen is generated when the applied voltage (operating voltage) is 300 to 100 mV (400 to 60 OmV and the energy efficiency is high), the open circuit voltage is within this range. Alternatively, by adjusting the operating voltage, the amount of gas containing hydrogen can be adjusted.
  • the open circuit voltage or operating voltage and the amount of generated gas containing Z or hydrogen depends on the oxidant (gas containing oxygen or liquid containing oxygen and hydrogen peroxide) as shown in the following examples. Adjusting the supply amount, adjusting the concentration of the oxidant (oxygen concentration in the gas containing oxygen), adjusting the supply amount of the fuel containing organic matter, adjusting the concentration of the fuel containing organic matter can do.
  • the operating temperature of the hydrogen production apparatus can be 100 ot: or less.
  • the operating temperature is preferably between 30 and 90 ° C.
  • the present invention is advantageous in this point because it is necessary to separately use a means for separating hydrogen.
  • the present invention provides a hydrogen production apparatus mounted on the electric vehicle of the present invention. It does not deny operating at temperatures slightly above 10 o ° c.
  • the fuel containing organic matter may be any liquid or gaseous fuel that permeates through a proton-conductive membrane and is oxidized electrochemically to generate protons, such as methanol, ethanol, Liquid fuels containing alcohols such as ethylene glycol and 2-propanol, aldehydes such as formaldehyde, carboxylic acids such as formic acid, and ethers such as getyl ether are preferred.
  • the fuel containing organic matter is supplied together with water, a solution containing alcohol and water, among which an aqueous solution containing methanol is preferable.
  • the aqueous solution containing methanol as an example of the fuel described above is a solution containing at least methanol and water, and its concentration can be arbitrarily selected in a region where a gas containing hydrogen is generated.
  • a gaseous or liquid oxidizing agent can be used as the oxidizing agent.
  • a gas containing oxygen or oxygen is preferable.
  • the oxygen concentration of the gas containing oxygen is particularly preferably 10% or more.
  • a liquid oxidizing agent a liquid containing hydrogen peroxide is preferred.
  • the rate at which fuel supplied to the hydrogen production apparatus is consumed at one time in the apparatus and decomposed into hydrogen is low, it is possible to increase the conversion rate to hydrogen by providing a fuel circulation means. preferable.
  • the hydrogen production apparatus mounted on the electric vehicle of the present invention is provided with a means for extracting gas containing hydrogen from the fuel electrode side, and recovers hydrogen. Preferably, it also recovers carbon dioxide. Since the operation is performed at a low temperature of 10 ° C. or less, a carbon dioxide absorbing section that absorbs carbon dioxide contained in the gas containing hydrogen can be provided by a simple means.
  • Example 1 The hydrogen production cell in Example 1 (Production Examples 111 to 110) had the same structure as a typical direct methanol fuel cell.
  • Fig. 2 shows an outline of the hydrogen production cell.
  • a proton conductive electrolyte membrane (Naphion 115) manufactured by DuPont was used as the electrolyte, and carbon paper (manufactured by Toray) was immersed in a 5% concentration polytetrafluoroethylene ethylene dispersion for the air electrode, and then baked at 360 ° C. Water-repellent treatment, and apply an air electrode catalyst paste prepared by mixing an air electrode catalyst (platinum-supported carbon: Tanaka Kikinzoku), PTFE fine powder and a 5% Nafion solution (Aldrich) on one surface. A gas diffusion layer with an air electrode catalyst was formed.
  • the weight ratio of the air electrode catalyst, PTFE, and Nafion was 65%: 15%: 20%.
  • the catalyst amount of the air electrode thus produced was lmgZcm 2 in terms of platinum.
  • the carbon paper is treated for water repellency using the same method, and a fuel electrode catalyst (platinum-ruthenium carrying capacity: Tanaka Kikinzoku), fine PTFE powder and a 5% naphion solution are mixed on one side.
  • a fuel electrode catalyst platinum-ruthenium carrying capacity: Tanaka Kikinzoku
  • fine PTFE powder and a 5% naphion solution are mixed on one side.
  • the prepared anode catalyst paste was applied to form a gas diffusion layer with an anode catalyst.
  • the weight ratio of the fuel electrode catalyst, PTFE, and naphion was set to 55%: 15%: 30%.
  • the catalyst amount of the fuel electrode prepared in this manner was lmgZ cm 2 in terms of platinum-ruthenium.
  • the above-mentioned electrolyte membrane, the gas diffusion layer with the air electrode catalyst, and the gas diffusion layer with the fuel electrode catalyst were joined by hot pressing at 140 and 100 kg / cm 2 to produce MEA.
  • the MEA thus manufactured had an effective electrode area of 60.8 cm 2 .
  • the thicknesses of the catalyst layers of the cathode and anode and the gas diffusion layers of the cathode and anode after fabrication were approximately 30 / xm and 170 m, respectively, which were almost the same.
  • Each of the above MEAs is provided with a flow path for flowing air and a flow path for fuel, and a graphite electrode air separator plate and fuel electrode separator impregnated with phenolic resin to prevent gas leakage. It was sandwiched between evening plates to form a single cell. In addition, silicone rubber packing was installed around the MEA to prevent fuel and air leaks.
  • the hydrogen production cell produced in this way was placed in a hot-air circulation type electric furnace, Temperature (operating temperature) At 30 to 70, air is supplied to the air electrode side at a flow rate of 0 to 400 m1 / min, and 0.5 M to 2 M methanol aqueous solution (fuel) is supplied to the fuel electrode side. At a flow rate of ⁇ 15 m1 / min, the voltage difference between the anode and cathode (open voltage), the amount of gas generated at the anode, and gas composition were examined.
  • the flow rate of the aqueous methanol solution (fuel) to the cell was kept constant at 8 m1Z, and the air flow rate was changed at each temperature of 30 ° C, 50 ° C, and 70 ° C.
  • the amount of generated gas was measured.
  • the underwater displacement method was used to measure the amount of gas generated.
  • the hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • Figure 3 shows the results.
  • Fig. 4 summarizes the results of Fig. 3 as the relationship between open circuit voltage and hydrogen generation rate.
  • the hydrogen generation rate (hydrogen generation amount) tended to depend on the open circuit voltage, and that hydrogen was generated at an open circuit voltage of 400 to 60 OmV. At all temperatures, a peak in the rate of hydrogen generation was observed at around 45 OmV.
  • gas was generated under the conditions of a temperature of 70 ° C, a fuel flow rate of 8 m1Z, and an air flow rate of 120 mlZ, and the hydrogen concentration in the gas was measured using gas chromatography. As a result, it was confirmed that the generated gas contained about 70% hydrogen and about 15% carbon dioxide. Note that CO was not detected.
  • the maximum hydrogen generation rate of 14.48 ml in this production example was obtained at an open circuit voltage of 442 mV (operating temperature of 70 ° (: fuel concentration of 1 M, fuel flow of 2 ml z minute,
  • the hydrogen concentration in the evolved gas at an air flow rate of 10 OmIZ was determined by gas chromatography in the same manner as in Hydrogen Production Example 11 and found to be about 70%.
  • Fig. 8 summarizes the results of Fig. 7 as the relationship between open circuit voltage and hydrogen generation rate.
  • Naphion 1 15 (thickness 130 ⁇ m) manufactured by DuPont was used for the electrolyte membrane, but Nafion 1 1 2 (thickness 50 ⁇ ) to construct a similar hydrogen production cell, at a temperature of 70 ° C, a fuel concentration of 1M, and a fuel flow rate of 8 ml / min.
  • the fuel flow rate and air flow rate when the air flow rate was changed, respectively The relationship between the hydrogen generation rate and the open circuit voltage of the cell was examined.
  • Nafion 1 1 5 and 1 1 2 are made of the same material. In other words, the effect of the thickness of the sheet was considered.
  • Figure 9 shows the results of the study.
  • Figure 10 summarizes the results of Figure 9 as the relationship between open circuit voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate was almost the same for all the electrolyte membranes. As is clear from the figure, the hydrogen generation rate under each condition depends on the open circuit voltage, and a peak of the hydrogen generation rate was also observed around 45 OmV.
  • Hydrogen production example 11 Using the same hydrogen production cell as in 1), install the hydrogen production cell in a hot-air circulation type electric furnace, and at a cell temperature of 30 ° C, 50 ° C, 70 ° C, 90 ° C, air A flow rate of air of 0 to 250 m1 / min is flown to the electrode side, and a 1 M aqueous methanol solution (fuel) is flown to the fuel electrode side at a flow rate of 5 ni 1 Z. At that time, the open circuit voltage of the cell and the fuel electrode side The generation rate of generated hydrogen was examined.
  • Figure 11 shows the relationship between the air flow rate and the hydrogen generation rate.
  • Figure 12 summarizes the results of Figure 11 as the relationship between open circuit voltage and hydrogen generation rate. This indicates that the hydrogen generation rate tends to depend on the open-circuit voltage, and that hydrogen is generated at an open-circuit voltage of 300 to 70 OmV. At 30 to 70, the peak of hydrogen generation rate was observed around 470 to 48 OmV, and at 90 ° C, it was observed at around 44 OmV.
  • Hydrogen production example 11 Using the same hydrogen production cell as in 1-1, at a cell temperature of 50 ° C, the fuel was supplied at a flow rate of 1.5, 2.5, 5.0, 7.5, 10. Oml / min.
  • Fig. 13 shows the relationship between the fuel flow rate, air flow rate, and hydrogen generation rate when the air flow rate was changed, respectively. From this, unlike the result of 70 ° C in the hydrogen production examples 1-2 above, there was a tendency that the higher the fuel flow rate, the higher the hydrogen generation rate. ⁇
  • Fig. 14 summarizes the results of Fig. 13 as the relationship between open circuit voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate under each condition depends on the open circuit voltage, and hydrogen is generated at 300 to 70 OmV. In addition, a peak of the hydrogen generation rate was observed around 450 to 50 OmV.
  • Fig. 16 summarizes the results of Fig. 15 as the relationship between open circuit voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate under each condition depends on the open circuit voltage, and hydrogen is generated at 300 to 70 OmV. At all fuel concentrations, a peak in the hydrogen generation rate was observed at around 47 OmV.
  • Hydrogen production example 1 Using the same hydrogen production cell as in 1 (where the air electrode was an oxidation electrode through which oxidizing gas flows), at a cell temperature of 5 Ot, a fuel concentration of 1 M and a fuel flow rate of 5 ml
  • Figure 17 shows the relationship between the oxidizing gas flow rate and the hydrogen generation rate when the oxidizing gas flow rate was changed under the conditions where the oxygen concentration was changed to 10, 21, 40, and 100% in the Z minutes.
  • air was used for a gas with an oxygen concentration of 21%, and air was prepared by mixing nitrogen with air for a gas with an oxygen concentration of 10%, and oxygen (oxygen concentration) was used for a gas with an oxygen concentration of 40%. 100%) was used.
  • the peak of the hydrogen generation rate was observed where the oxidizing gas flow rate was smaller as the oxygen concentration was higher.
  • Figure 18 summarizes the results of Figure 17 as the relationship between open circuit voltage and hydrogen generation rate. From these results, it was found that the hydrogen generation rate under each condition depends on the open circuit voltage, and hydrogen is generated at 400 to 80 OmV. Also, a peak of the hydrogen generation rate was observed around 490 to 530 mV.
  • Hydrogen production example 11 The hydrogen production cell was installed in a hot-air circulation type electric furnace using the same hydrogen production cell as in 1-1 (however, the air electrode was an oxidation electrode through which liquid hydrogen peroxide flows). , at a cell temperature 30 ° C, 50 ° C, 70 ° C, 90 ° C, a 1M of H 2 ⁇ 2 to oxidizing electrode side (hydrogen peroxide) l ⁇ 8ml / min flow rate, the fuel electrode side of 1M An aqueous methanol solution (fuel) was flowed at a flow rate of 5 ml / min, and the open circuit voltage of the cell and the generation rate of hydrogen generated on the fuel electrode side were examined.
  • FIG. 20 summarizes the results of FIG. 19 as a relationship between the open circuit voltage and the hydrogen generation rate.
  • the hydrogen generation rate tends to depend on the open-circuit voltage, and it was found that hydrogen was generated at an open-circuit voltage of 300 to 60 OmV.
  • the peak of the hydrogen generation rate was observed at around 50 OmV, and at 70 to 90 ° C, it was observed at around 45 OmV.
  • Example 1 no current or voltage was applied to the hydrogen production cell from the outside at all, and only the internal impedance and the electromechanical signal of 1 GQ or more were applied. If the open-circuit voltage is measured at, only the fuel and oxidizer are supplied.
  • FIG. 21 schematically shows a hydrogen production cell having a means for extracting electric energy in Example 2 (Production Examples 2-1 to 2-8).
  • the structure is the same as that of the hydrogen production cell of Hydrogen Production Example 1-1, except that a means for extracting electric energy using the fuel electrode as the anode and the air electrode as the cathode is provided.
  • This hydrogen production cell was installed in a hot-air circulation type electric furnace, and the cell temperature (operating temperature) 5 At 0 ° C, flow 10 to 100 ml / min of air to the air electrode side and 5 ml / min of a 1 M aqueous methanol solution (fuel) to the fuel electrode side, and then flow between the air electrode and the fuel electrode.
  • the operating voltage of the anode and cathode, the amount of gas generated at the anode, and the gas composition were examined while changing the current.
  • the hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • Figure 22 shows the relationship between the extracted current density and operating voltage in this test. As the air flow rate decreased, the operating voltage decreased, and a decrease in the critical current density at which discharge was possible was observed.
  • Figure 23 summarizes the results of Figure 22 as the relationship between operating voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate (hydrogen generation amount) tends to depend on the operating voltage, and that gas is generated at an operating voltage of 300 to 60 OmV. In addition, it was found that hydrogen was most easily generated when the air flow rate was 50 to 6 Om 1 / min. Furthermore, when the air flow rate was higher than this, hydrogen was hardly generated, and at 10 Oml / min, almost no hydrogen was generated.
  • Hydrogen production example Using the same hydrogen production cell as 2-1 at a cell temperature of 30 and a flow rate of 30 to 100 m 1 minute on the air electrode side and 1 M aqueous methanol solution on the fuel electrode side (fuel ) was flowed at a flow rate of 5 ml Z, and while changing the current flowing between the air electrode and the fuel electrode at that time, the operating voltage of the fuel electrode and the air electrode and the generation rate of hydrogen generated on the fuel electrode were examined.
  • Figure 24 shows the relationship between the extracted current density and operating voltage in this test. As the air flow rate decreased, the operating voltage decreased, and a decrease in the critical current density at which discharge was possible was observed.
  • Figure 25 summarizes the results of Figure 24 as the relationship between operating voltage and hydrogen generation rate. This indicates that the hydrogen generation rate tends to depend on the operating voltage, and that hydrogen is generated at an operating voltage of 200 to 540 mV. It was also found that hydrogen was generated when the air flow rate was 30 to 70 m1. At an air flow rate of 100 ml / min, almost no hydrogen was generated.
  • Hydrogen production example Using the same hydrogen production cell as in 2-1 at a cell temperature of 70 ° C, air is supplied to the air electrode side at a flow rate of 50 to 200 m 1 Z, and a 1M methanol aqueous solution (fuel) is supplied to the fuel electrode side. At a flow rate of 5 ml Z, the current flowing between the air electrode and the fuel electrode was changed, and the operating voltage of the fuel electrode and the air electrode, and the generation rate of hydrogen generated on the fuel electrode side were examined.
  • Figure 26 shows the relationship between the extracted current density and operating voltage in this test. As the air flow rate decreased, the operating voltage decreased, and a decrease in the critical current density at which discharge was possible was observed.
  • Figure 27 summarizes the results of Figure 26 as the relationship between operating voltage and hydrogen generation rate. This indicates that the hydrogen generation rate tends to depend on the operating voltage, and that hydrogen is generated at an operating voltage of 200 to 50 OmV. Also, it was found that hydrogen was easily generated when the air flow rate was 50 to 10 Om 1 Z. When the air flow increased to 150 or 200 m 1 Z, almost no hydrogen was generated.
  • Example of hydrogen production Using the same hydrogen production cell as in 2-1 at a cell temperature of 90 ° C, a flow rate of 50-250 ml of air is supplied to the air electrode side, and a 1 M aqueous methanol solution (fuel) is supplied to the fuel electrode side. At a flow rate of 5 ml / min, and while changing the current flowing between the air electrode and fuel electrode at that time, the operating voltage of the fuel electrode and air electrode and the generation rate of hydrogen generated on the fuel electrode side were examined.
  • a flow rate of 50-250 ml of air is supplied to the air electrode side
  • a 1 M aqueous methanol solution (fuel) is supplied to the fuel electrode side.
  • a flow rate of 5 ml / min At a flow rate of 5 ml / min, and while changing the current flowing between the air electrode and fuel electrode at that time, the operating voltage of the fuel electrode and air electrode and the generation rate of hydrogen generated on the fuel electrode side were examined.
  • Figure 28 shows the relationship between the extracted current density and operating voltage in this test. As the air flow rate decreases, the operating voltage decreases and the critical current density at which discharge can occur Was observed.
  • Figure 29 summarizes the results of Figure 28 as the relationship between operating voltage and hydrogen generation rate. This indicates that the hydrogen generation rate tends to depend on the operating voltage, and that hydrogen is generated at an operating voltage of 200 to 50 OmV. In addition, it was found that hydrogen was easily generated when the air flow rate was 50 to 10 Om1. At 250 ml / min, almost no hydrogen was generated.
  • Fig. 30 shows the relationship between the extracted current density and the operating voltage when the air flow rate was 5 OmlZ at each temperature in the hydrogen production examples 2-1 to 2-4, and Fig. 30 shows the relationship between the operating voltage and the hydrogen generation rate. Is shown in FIG.
  • Fig. 32 shows the relationship between the extracted current density and the operating voltage when the air flow rate was 10 Oml / min at each temperature in the hydrogen production examples 2-1 to 2-4, and Fig. 32 shows the relationship between the operating voltage and the hydrogen generation rate. Is shown in FIG.
  • Figure 34 shows the relationship between the extracted current density and operating voltage in this test. It was observed that the critical current density at which discharge was possible did not change significantly even when the fuel flow rate changed.
  • Fig. 35 summarizes the results of Fig. 34 as the relationship between operating voltage and hydrogen generation rate. From this, it was found that the rate of hydrogen generation in each cow depends on the operating voltage, and hydrogen is generated at 300 to 50 OmV. Also, it was observed that the hydrogen generation rate was high around 450-50 OmV.
  • Hydrogen production example Using the same hydrogen production cell as 2-1 at a cell temperature of 50 ° C, fuel was supplied at a constant flow rate of 50 ml Z at the air electrode side and 5 m 1 at the fuel electrode side at a constant flow rate. With the concentration changed to 0.5, 1, 2, and 3M, the current flowing between the air electrode and the fuel electrode is changed at that time, and the operating voltage of the fuel electrode and the air electrode is generated on the fuel electrode side. The generation rate of hydrogen was studied.
  • FIG. 36 shows the relationship between the extracted current density and the operating pressure in this test. As the fuel concentration increased, the operating voltage decreased, and a decrease in the critical current density at which discharge was possible was observed.
  • Figure 37 summarizes the results of Figure 36 as a relationship between operating voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate under each condition depends on the operating voltage, and hydrogen is generated at 300 to 60 OmV.
  • Fig. 39 summarizes the results of Fig. 38 as the relationship between operating voltage and hydrogen generation rate. From this, it was found that the hydrogen generation rate under each condition depends on the operating voltage, and hydrogen is generated at 300 to 600 mV.
  • the hydrogen production cell was installed in a hot-air circulation type electric furnace.
  • a 1 M methanol aqueous solution (fuel) is flowed on the fuel electrode side at a flow rate of 5 ml Z, 1 M on the oxidation electrode side Of H 2 O 2 (hydrogen peroxide) at a flow rate of 2.6 to 5.5 ml Z, while changing the current flowing between the oxidation electrode and the fuel electrode,
  • the generation rate of hydrogen generated on the fuel electrode side was studied.
  • the flow rate of hydrogen peroxide was adjusted so that the open circuit voltage was approximately 50 OmV at each temperature.
  • Figure 40 shows the relationship between the extracted current density and operating voltage in this test.
  • the relationship between the decrease in operating voltage and the increase in current density was almost the same.However, when the temperature dropped to 30 ° C, the operating voltage dropped sharply and discharge was possible. A decrease in the limiting current density was observed.
  • FIG. 41 summarizes the results of FIG. 40 as the relationship between operating voltage and hydrogen generation rate. This indicates that the hydrogen generation rate tends to depend on the operating voltage, and that hydrogen is generated at an operating voltage of 300 to 50 OmV. Also, it was observed that hydrogen was most likely to be generated when the temperature was 90, and that when the temperature was low, no hydrogen was generated unless the operating voltage was increased.
  • FIG. 42 schematically shows a hydrogen production cell including a means for applying electric energy from the outside in Example 3 (Production Example 3— :! to 3-8).
  • the hydrogen production example has the same structure as the hydrogen production example 111, except that a means for externally applying electric energy is provided using the fuel electrode as a force source and the oxidation electrode as a cathode.
  • This hydrogen production cell was installed in a hot-air circulation type electric furnace. At a cell temperature (operating temperature) of 50 ° C, air was supplied to the air electrode side at a flow rate of 10 to 80 m1Z, and the air was supplied to the fuel electrode side. A 1 M aqueous methanol solution (fuel) is flowed at a flow rate of 5 ml Z. At that time, the current flowing between the air electrode and the fuel electrode is changed using an external DC power supply to operate the fuel electrode and the air electrode. The voltage, the amount of gas generated on the fuel electrode side, and the gas composition were studied. The ratio of the chemical energy of the generated hydrogen to the input electric energy was defined as the energy efficiency under the charging conditions. In addition, the hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • energy efficiency The energy efficiency of the charging conditions (hereinafter referred to as “energy efficiency”) was calculated by the following formula.
  • Electric energy applied in one minute [Voltage mV / 1000 * Current A * 60sec] Wsec / 1000
  • the purpose of the present invention is to use chemical energy other than the applied electric energy.
  • To get energetic hydrogen gas never thermodynamic It does not ignore the energy conservation laws taught by.
  • the electric energy input includes the chemical energy consumed by the oxidation of the organic fuel, it will be less than 100%.
  • the ratio of the chemical energy of generated hydrogen to the input electric energy is described as energy efficiency.
  • Figure 43 shows the relationship between the applied current density and the hydrogen generation rate in this test. Hydrogen generation efficiency (electricity efficiency of hydrogen generation) of 100% or more under conditions of current density of 4 O mAZ cm 2 or less (The line with a hydrogen generation efficiency of 100% in Fig. 43 is indicated by a broken line. It was found that operating in this area would yield more hydrogen than the input electrical energy.
  • Figure 44 summarizes the results of Figure 43 as a relationship between operating voltage and hydrogen generation rate.
  • the hydrogen generation rate (hydrogen generation amount) tends to depend on the operating voltage, and hydrogen is generated at an operating voltage of 40 O mV or more, and the hydrogen generation rate becomes almost constant at 60 O mV or more.
  • Figure 45 shows the relationship between the applied current density and the operating voltage.
  • the operating voltage was 600 mV or less in FIG. 45.
  • Figure 46 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency is 100% or more.
  • the energy Efficiency was found to be high.
  • Hydrogen production example Using the same hydrogen production cell as 3-1 at a cell temperature of 30 ° C, air was supplied to the air electrode side at a flow rate of 10 to 70 m1Z, and 1 M of air was supplied to the fuel electrode side. An aqueous solution of fuel (fuel) flows at a flow rate of 5 m 1 / min. At this time, the operating voltage of the fuel electrode and the air electrode, the fuel electrode The generation rate of hydrogen generated on the side and the energy efficiency were examined.
  • Figure 47 shows the relationship between the applied current density and the rate of hydrogen generation in this test
  • Figure 48 shows the relationship between the operating voltage and the rate of hydrogen generation.
  • the hydrogen generation rate tends to depend on the operating voltage.Hydrogen is generated at an operating voltage of 400 mV or more.Hydrogen is generated more easily when the air flow rate is smaller, and the air flow rate is 10 m 1 In the case of Z, the hydrogen generation rate becomes almost constant at 60 O mV or more, but in the case of the air flow of 3 O ml Z, it tends to increase at 80 O mV or more. It was also found that when the air flow rate was high, hydrogen was not generated unless the operating voltage was high.
  • Figure 49 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency is 100% or more.
  • the operating voltage is 60,0mV or less and the air flow rate is 3Om1Z, the energy efficiency is improved. The rate was found to be high.
  • the test was conducted under the same conditions as in Hydrogen Production Example 3-2, except that the cell temperature was 70 ° C.
  • the operating voltages of the anode and cathode, the rate of hydrogen generation at the anode, and the energy efficiency was examined.
  • Figure 52 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency was 100% or more even when the lotus voltage was around 100 OmV, and the energy efficiency was high especially when the operating voltage was 60 OmV or less and the air flow rate was 10 to 3 Om1Z. .
  • Hydrogen production example Using the same hydrogen production cell as in 3-1 at a cell temperature of 90 ° C, flow 10 to 200 m1 / min of air to the air electrode side and 1 M medium to the fuel electrode side. An aqueous solution (fuel) is flowed at a flow rate of 5 ml / Z. At that time, the operating voltage of the fuel electrode and the air electrode, and the fuel electrode are changed using an external DC power supply while changing the current flowing between the air electrode and the fuel electrode. We examined the generation rate of hydrogen generated on the side and energy efficiency.
  • Figure 53 shows the relationship between the applied current density and the rate of hydrogen generation in this test
  • Figure 54 shows the relationship between the operating voltage and the rate of hydrogen generation.
  • the rate of hydrogen generation tends to depend on the operating voltage.Hydrogen is generated at an operating voltage of 300 mV or more.Hydrogen is more likely to be generated when the air flow rate is smaller, and when the air flow rate is 1 Om1 / min.
  • the hydrogen generation rate becomes almost constant at 50 OmV or more, but when the air flow rate is 50 to 10 OmlZ, it tends to increase at 800 mV or more, and when the air flow rate is 20 Oml / min, It was found that hydrogen was not generated unless it was 80 OmV or more.
  • Figure 55 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency was 100% or more even when the operating voltage was around 100 OmV. It was found that the energy efficiency was high especially when the operating voltage was 50 OmV or less and the air flow rate was 5 Om1Z.
  • Fig. 56 shows the relationship between the applied current density and the hydrogen generation rate when the air flow rate is 5 OmlZ at each temperature in the hydrogen production examples 3-1 to 3-4.
  • Fig. 56 shows the relationship between the operating voltage and the hydrogen generation rate. Is shown in FIG.
  • Figure 58 shows the relationship between operating voltage and energy efficiency.
  • Hydrogen production example Using the same hydrogen production cell as 3_1, at a cell temperature of 50 ° C, air was supplied to the air electrode side at a flow rate of 5 Om1Z, and the fuel flow rate at the fuel electrode side was 1.5, 2. .5, 5.0, 7.5, and 10.Om 1 / min were changed, and at that time, the current flowing between the air electrode and the fuel electrode was changed using a DC power supply from the outside.
  • the operating voltage of the cathode, the generation rate of hydrogen generated on the anode side, and energy efficiency were studied. .
  • Figure 59 shows the relationship between the applied current density and the rate of hydrogen generation in this test
  • Figure 60 shows the relationship between the operating voltage and the rate of hydrogen generation.
  • the hydrogen generation rate tends to depend on the operating voltage.Hydrogen is generated at an operating voltage of 40 OmV or higher.Hydrogen is generated more easily when the fuel flow rate is higher. A tendency to increase above OmV was observed.
  • Figure 61 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency was 100% or more even when the operating voltage was around 100 OmV, and it was found that the energy efficiency was particularly high when the operating voltage was 60 OmV or less.
  • Example of hydrogen production Using the same hydrogen production cell as 3-1 at a cell temperature of 50, fuel was supplied at a flow rate of 50 ml / min to the air electrode side and fuel at a constant flow rate of 5 m1 / min to the fuel electrode side.
  • the operating voltage of the fuel electrode and the air electrode was changed while the concentration was changed to 0.5, 1, 2, and 3M, and the current flowing between the air electrode and the fuel electrode was changed using an external DC power supply at that time. Then, the generation rate of hydrogen generated on the fuel electrode side and energy efficiency were examined.
  • Fig. 62 shows the relationship between the applied current density and the hydrogen generation rate in this test
  • Fig. 63 shows the relationship between the operating voltage and the hydrogen generation rate.
  • the rate of hydrogen generation tends to depend on the operating voltage.Hydrogen is generated at an operating voltage of 400 mV or higher, and hydrogen is easily generated at a higher fuel concentration even at a lower operating voltage. In the case of, the hydrogen generation rate increases rapidly at 400 to 500 mV, and when the fuel concentration is 1M, the hydrogen generation rate is almost constant at 400 to 80 OmV, but increases at 80 OmV or more. It was found that when the fuel concentration was lower than this, hydrogen was not generated unless the operating voltage was high.
  • Figure 64 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency is 100% or more even when the operating voltage is around 100 OmV, especially when the operating voltage is 60 OmV or less and the fuel concentration is 1, 2, or 3 M. In addition, it was found that the energy efficiency was high. When the fuel concentration was 0.5 M, there was no hydrogen generation in the low voltage range, and the behavior of the energy efficiency was completely different from that under other conditions.
  • Hydrogen production example Using the same hydrogen production cell as in 3-1 (however, the air electrode was an oxidation electrode through which oxidizing gas flows), at a cell temperature of 50, the fuel electrode side was used to determine the concentration of 5 ml of 1M fuel on the fuel electrode side. The flow rate was 14.0 ml of oxidizing gas on the oxidizing electrode side and the oxygen concentration was changed to 10, 21, 40, and 100% .At that time, the oxidizing electrode and fuel electrode were externally connected using a DC power supply. The operating voltage of the anode and cathode, the generation rate of hydrogen generated on the anode, and energy efficiency were examined while changing the current flowing between the anode and cathode.
  • air is used for a gas with an oxygen concentration of 21%, and air is prepared by mixing nitrogen with air for a gas with an oxygen concentration of 10%. (Concentration 100%) was used.
  • Figure 65 shows the relationship between the applied current density and the rate of hydrogen generation in this test
  • Figure 66 shows the relationship between the operating voltage and the rate of hydrogen generation. From this, it was found that the applied current density and the hydrogen generation rate were almost proportional in the region of 0.03 AZ cm 2 or more at any oxygen concentration.
  • the hydrogen generation rate tends to depend on the operating voltage.Hydrogen is generated at an operating voltage of 400 mV or higher.Hydrogen is easily generated even at a low operating voltage when the oxygen concentration is high.
  • the hydrogen generation rate is 400 to 80 OmV. Is almost constant, but shows an increasing tendency above 80 OmV.
  • Figure 67 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency was higher than 100% even when the applied voltage was around 100 OmV. It was found that the energy efficiency was particularly high when the applied voltage was lower than 60 OmV and the oxygen concentration was high.
  • the hydrogen production cell was installed in a hot-air circulation type electric furnace.
  • cell temperature 30 ° C, 50 ° C, 70 ° C, 90 ° in C, and methanol solution (fuel) 5 m 1 / min flow rate of 1 M to the fuel electrode side, oxidizing electrode of 1M to side H 2 ⁇ 2 (Hydrogen peroxide) at a flow rate of 2.6 to 5.5 m 1Z, and at that time, using a DC power supply from the outside to change the current flowing between the oxidation electrode and the fuel electrode, while operating the fuel electrode and the oxidation electrode The voltage, the rate of hydrogen generation on the fuel electrode side, and the energy efficiency were studied.
  • the flow rate of hydrogen peroxide was adjusted so that the open circuit voltage was approximately 50 OmV at each temperature.
  • Fig. 68 shows the relationship between the applied current density and the hydrogen generation rate in this test
  • Fig. 69 shows the relationship between the operating voltage and the hydrogen generation rate.
  • Figure 70 shows the relationship between operating voltage and energy efficiency.
  • the energy efficiency is 100% or more, especially when the operating voltage is 80 OmV or less and the temperature is 90. I understood.
  • Example 3 it is important to note that in Example 3 above, more hydrogen was extracted than the current applied to the hydrogen production cell from outside.
  • the hydrogen production cell of Example 3 produces hydrogen with energy equal to or higher than the input electric energy.
  • reforming at a dangerously low temperature of 30 to 90 ° C is considered to be an unprecedented and completely new type of hydrogen production equipment, so this hydrogen production equipment is installed in electric vehicles. The effect of doing so is great.
  • an example is shown in which hydrogen is produced by a hydrogen production apparatus mounted on an electric vehicle of the present invention using a fuel other than fuel.
  • Hydrogen production example 11 Using the same hydrogen production cell as in 1, at a cell temperature of 8 Ot, a 1 M ethanol aqueous solution was flowed at a flow rate of 5 m1 / min to the fuel electrode side, and to the air electrode side. Air was flowed at a flow rate of 65 ml, and the open circuit voltage of the cell and the rate of gas generation from the fuel electrode side were measured. The hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • Hydrogen was produced using ethylene glycol as a fuel by a hydrogen production apparatus (open circuit condition) mounted on the electric vehicle according to the invention of claim 2 of the present application.
  • Hydrogen production example 1 Using the same hydrogen production cell as in 1, at a cell temperature of 80 ° C, a 1 M aqueous ethylene glycol solution was flowed at a flow rate of 5 ml Z to the fuel electrode side, and air was flown to the air electrode side. Was flowed at a flow rate of 105 ml Z, and the open circuit voltage of the cell and the rate of gas generation from the fuel electrode side were measured. The hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • Example 1-1 Using the same hydrogen production cell as in Example 1-1, at a cell temperature of 80 ° C, a 2-propanol aqueous solution with a concentration of 1M was flowed to the fuel electrode side at a flow rate of 5 ml / Z, and then to the air electrode side. Air was flowed at a flow rate of 35 ml, and the open circuit voltage of the cell and the rate of gas generation from the fuel electrode side were measured. The hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • Hydrogen was produced by using a hydrogen generator (open circuit condition) mounted on an electric vehicle according to the second aspect of the present invention, using jet fuel as a fuel.
  • Hydrogen production example 11 Using the same hydrogen production cell as in 1, at a cell temperature of 80, a 1 M concentration of getyl ether aqueous solution was flowed to the fuel electrode side at a flow rate of 5 ml // minute to the fuel electrode side, and the air electrode side Then, air was flowed at a flow rate of 20 ml Z, and the open circuit voltage of the cell and the generation rate of gas generated from the fuel electrode side were measured. The hydrogen concentration in the generated gas was analyzed by gas chromatography to determine the hydrogen generation rate.
  • the hydrogen production apparatus mounted on the electric vehicle of the present invention can produce a gas containing hydrogen by decomposing a fuel containing an organic substance at a temperature of 10 ot: or less. Therefore, the present invention can be applied to any vehicle equipped with a motor driven by electricity generated by a fuel cell, and is not limited to an on-road electric vehicle. And off-road electric vehicles such as pleasure cars and wheelchairs.They are not limited to those that obtain the driving power of the vehicle only with the fuel cell, but include hybrid vehicles and other power sources. Including.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

明細書 電気自動車 技術分野
本発明は、 燃料電池に水素を供給するための水素製造装置を搭載した電気自動 車に関するものである。 背景技術
近年、 環境問題や資源問題への対策が重要になっており、 その対策のひとつと して電気自動車の開発が活発に行われている。 その中でも、 駆動力を得るための 電源として燃料電池を備えた電気自動車に関して、 この燃料電池を用いて発電を 行なうための燃料である水素または水素を生成するための原燃料を積載するもの が種々開発されている。
水素を積載する電気自動車では、 水素を圧縮気体としてボンベに充填したり、 あるいは水素吸蔵合金に吸蔵させるなどの方法によって水素を積載している (例 えば、 特許文献 1〜 3参照)。 このように水素を積載する電気自動車は、 燃料電 池の電極に供給される燃料ガスが純度の非常に高い水素ガスであるため、 燃料電 池を運転する際に高い発電効率を得ることができ、 燃料電池の小型化を図ること ができる。 また、 純度の非常に高い水素ガスを用いるため、 電気自動車内で種々 の反応が進行する過程において有害物質を生成してしまうことがなく、 電気自動 車を走行させることによって環境を汚染してしまうことがないというメリッ卜が ある。
特許文献 1 :特開 2 0 0 2— 3 7 0 5 4 4号公報
特許文献 2 :特開 2 0 0 3— 1 8 2 3 7 9号公報
特許文献 3 :特開 2 0 0 4— 2 2 3 6 4号公報
一方、 水素を生成するための原燃料を積載する電気自動車としては、 原燃料と してメタノール等を積載し、 さらに、 この原燃料を改質して水素を含むガスを生 成する改質反応を行う改質器を搭載するものが知られている (例えば、 特許文献 4:〜 7参照)。 このように原燃料と改質器とを搭載する電気自動車は、 特に原燃 料としてメタノールなどの液体燃料を用いる場合には、 一回の燃料補給で電気自 動車が走行可能な距離が気体燃料を積載する場合に比べて長くなるという長所を 有する。 さらに、 メタノール、 炭化水素などの原燃料は、 水素ガスに比べて輸送 などの際の取り扱いが容易で安全であるという利点を有する。
特許文献 4 :特開 2000— 149974号公報
特許文献 5 :特開 2001— 1 13960号公報
特許文献 6 :特開 2001— 202980号公報
特許文献 7 :特開 2001— 298807号公報
しかしながら、 水素を燃料として積載する電気自動車に関しては、 ボンベに充 填したり水素吸蔵合金に吸蔵させるための水素を広く流通させて容易に入手可能 とすることが困難であることが、電気自動車普及上の問題として指摘されている。 特に水素ガスは取り扱いが容易でなく、 大量の水素ガスを手軽に輸送し貯蔵する ためには解決すべき課題は多い。 水素の輸送や貯蔵に水素吸蔵合金を用いれば取 り扱いは容易となるが、 現在知られている水素吸蔵合金はいずれも希少な金属で あるため非常に高価であり、 水素の輸送や貯蔵のための手段をすベて水素吸蔵合 金を用いて構成するという方法も実現が困難である。 いずれの方法で水素の輸送 や貯蔵を行なうにしても、水素を燃料として直接電気自動車に供給するためには、 安定した水素の流通体制を新たに確立しなければならないという問題がある。 また、 原燃料としてメタノール、 ジメチルエーテル (DME)、 エタノール、 天然ガス、 プロパンやガソリン等を電気自動車に積載する場合の改質器について は、 これらの中では改質温度の最も低いメタノール改質器の開発が最も進んでお り、 現在、 その改質方法としては、 水蒸気改質、 部分酸化改質、 両者を併用した 併用改質の 3つが採用されている (非特許文献 1参照) が、 いずれの改質方法を 採用しても、 水素を含むガスを製造するためには、 200で以上という高温度で 改質を行わなければならず、改質触媒の被毒、改質されたガス(水素を含むガス) に含まれる COの除去、 部分酸化改質ゃ併用改質における改質されたガス中への 空気中の窒素の混入等の問題があった。
非特許文献 1 : 「固体高分子型燃料電池の開発と実用化」 第 141頁〜第 16 6頁、 1999年 5月 28日、 (株) 技術情報協会発行
さらに、 電気化学的反応により水素を発生させる方法の発明 (特許文献 8、 1 0参照)、 電気化学的方法により発生した水素を利用した燃料電池の発明 (特許 文献 9〜11参照) も知られている。
特許文献 8 :特許第 3328993号公報
特許文献 9 :特許第 3360349号公報
特許文献 10 :米国特許第 6, 299, 744号明細書、 米国特許第 6, 36 8, 492号明細書、 米国特許第 6, 432, 284号明細書、 米国特許第 6, 533, 919号明細書、 米国特許公開 2003/0226763号公報 特許文献 1 1 :特開 200 1— 297779号公報
特許文献 8には、 「陽イオン交換膜の対向する両面に 1対の電極を設け、 一方 に設けられた触媒を含む電極に、 メタノールと水を少なくとも含む燃料を接触さ せ、 前記 1対の電極に電圧を印加して前記電極から電子を取出すことによって前 記電極上で前記メタノールおよび水から水素イオンを発生させる反応を進行さ せ、 発生させた前記水素イオンを、 前記陽イオン交換膜の対向する 1対の面の他 方に設けられた電極において、 電子の供給により水素分子に変換することを特徴 とする、 水素発生方法。」 (請求項 1) の発明が記載され、 また、 燃料用電極に 燃料であるメタノールとともに水または水蒸気を供給し、 外部回路を通じて、 燃 料用電極から電子を引き抜くように電圧を印加することにより、 燃料用電極で、 CH3OH+ 2 H2〇— C〇2+ 6 e— + 6 H +の反応を進行させ、 このようにして 発生した水素イオンを、 陽イオン交換膜を通過させ、 対向電極側で、 6H + +6 e一→3H2により、 水素を選択的に生成させることが示されており (段落 [00 33] 〜 [0038])、 さらに、 特許文献 9には、 このような方法で発生させ た水素を利用する燃料電池の発明が記載されている (段落 [0052] 〜 [00 56])。
特許文献 8及び 9に記載された発明によれば、 低温度で水素を発生させること ができる (特許文献 8の段落 [0042]、 特許文献 9の段落 [0080]) が、 水素を発生させるためには、 電圧を印加する必要があり、 また、 水素が発生する のは燃料用電極 (燃料極) の対向電極側であり、 対向電極に酸化剤を供給するも のではないから、 本発明の電気自動車に搭載する水素製造装置とは明らかに異な る。
特許文献 1 0に記載された発明も、 特許文献 8及び 9に記載された発明と同様 に、 燃料極であるアノード 1 1 2で生成したプロトンが隔膜 1 1 0を透過して、 対極であるカゾード 1 1 4で水素が発生するものであるが、 燃料極をアノードと し対極を力ソードとして直流電源 1 2 0から電圧を印加し、 メタノール等の有機 物燃料を電気分解するものであり、 また、 水素が発生するのは燃料極の対極側で あり、 対極に酸化剤を供給するものではないから、 本発明の電気自動車に搭載す る水素製造装置とは明らかに異なる。
特許文献 1 1には、 燃料電池システムにおいて、 水素を発生する水素発生極を 設けること (請求項 1 ) が記載されているが、 「多孔質電極 (燃料極) 1にアル コールと水を含む液体燃料を供給し、 反対側のガス拡散電極 (酸化剤極) 2に空 気を供給し、 多孔質電極 1の端子とガス拡散電極 2の端子との間に負荷をつなぐ と、 通常の燃料電池の機能を有する M E A 2の正極であるガス拡散電極 2から負 荷を介して多孔質電極 1に正の電位が印加されるような電気的つながりができ る。 その結果、 アルコールは水と反応して炭酸ガスと水素イオンが生成し、 生成 した水素イオンは電解質層 5を経由して、 中央のガス拡散電極 6で水素ガスとし て発生する。 ガス拡散電極 6では、 もう一つの電解質層 7との界面で電極反応が 起こり、 再び水素イオンとなって電解質層 7中を移動し、 ガス拡散電極 2に到達 する。 ガス拡散電極 2では、 空気中の酸素と反応して水が生成する。」 (段落 [ 0 0 0 7 ] ) と記載されているから、 燃料電池によって発生させた電気エネルギー を用いて水素発生極 (ガス拡散電極 6 ) で水素を発生させ、 これを燃料電池に供 給するものであり、 また、 水素が発生するのは燃料極の対極側であるという点で は、 特許文献 8〜1 0と同じである。
また、 プロトン伝導膜 (イオン伝導体) を介してアノード (電極 A) とカソー ド (電極 B ) とが形成された隔膜を備えた反応装置を用いて、 電圧を印加し、 若 しくは印加しないで、 又は電気エネルギーを取り出しながら、 アルコール (メタ ノール)を酸化する方法の発明(特許文献 1 2及び 1 3参照)も知られているが、 いずれも、 アルコールを電気化学セルを用いて酸化させるプロセス (生成物は、 炭酸ジエステル、 ホルマリン、 蟻酸メチル、 ジメトキシメタン等) に関するもの であり、 アルコールからみて還元物である水素を発生させるプロセスではない。 特許文献 1 2 :特開平 6— 7 3 5 8 2号公報(請求項 1〜3、段落 [ 0 0 5 0 ] ) 特許文献 1 3 :特開平 6— 7 3 5 8 3号公報(請求項 1、 8、段落 [ 0 0 0 6 ]、 [ 0 0 1 9 ] ) 発明の開示
発明が解決しょうとする課題
本発明は、 上記のような問題を解決しょうとするものであり、 燃料電池に容易 に水素を供給することができ、 また、 低温で水素を含むガスを製造することがで きる水素製造装置を搭載した電気自動車を提供することを課題とする。 課題を解決するための手段
上記課題を解決するために、 本発明においては、 以下の手段を採用する。
( 1 ) 水素と酸化剤を供給して発電を行う燃料電池と、 前記燃料電池に供給する ための水素を含むガスを製造する水素製造装置と、 前記燃料電池で発生した電気 により駆動されるモータと、 を備えてなる電気自動車において、 前記水素製造装 置が、有機物を含む燃料を分解して水素を含むガスを製造するものであり、隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む燃料を供給 する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤を供給する 手段、 燃料極側から水素を含むガスを発生させて取り出す手段を備えてなること を特徴とする電気自動車。
( 2 ) 前記水素製造装置が、 水素製造装置を構成する水素製造セルから外部に電 気エネルギーを取り出す手段及び前記水素製造セルに外部から電気エネルギーを 印加する手段を有しない開回路であることを特徴とする前記( 1 )の電気自動車。
( 3 ) 前記水素製造装置が、 前記燃料極を負極とし前記酸化極を正極として外部 に電気エネルギーを取り出す手段を有することを特徴とする前記 (1 ) の電気自 動車。
( 4 ) 前記水素製造装置が、 前記燃料極を力ソードとし前記酸化極をアノードと して外部から電気エネルギーを印加する手段を有することを特徴とする前記( 1 ) の電気自動車。
( 5 ) 前記水素製造セルから外部に電気エネルギーを取り出す手段及び前記水素 製造セルに外部から電気エネルギーを印加する手段を有しない開回路である水素 製造装置、 前記燃料極を負極とし前記酸化極を正極として外部に電気エネルギー を取り出す手段を有する水素製造装置並びに前記燃料極を力ソードとし前記酸化 極をアノードとして外部から電気エネルギーを印加する手段を有する水素製造装 置の群から選ばれる 2以上の水素製造装置を組み合わせて使用することを特徴と する前記 (1) の電気自動車。
(6) 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 200 〜100 OmVであることを特徴とする前記 (1) の電気自動車。
(7) 前記水素製造装置において前記燃料極と前言己酸化極との間の電圧が 300 〜80 OmVであることを特徴とする前記 (2) の電気自動車。
(8) 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 200 〜60 OmVであることを特徴とする前記 (3) の電気自動車。
( 9 ) 前記水素製造装置において前記取り出す電気エネルギーを調整することに より、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発 生量を調整することを特徴とする前記 (3) 又は (8) の電気自動車。
(10) 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 30 0〜100 OmVであることを特徴とする前記 (4) の電気自動車。
(11) 前記水素製造装置において前記印加する電気エネルギーを調整すること により、 前記燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガスの 発生量を調整することを特徴とする前記 (4) 又は (10) の電気自動車。
(12) 前記水素製造装置において前記燃料極と前記酸化極との間の電圧を調整 することにより、 前記水素を含むガスの発生量を調整することを特徴とする前記
(1) 〜 (11) のいずれか一の電気自動車。
(13) 前記水素製造装置において前記酸化剤の供給量を調整することにより、 前記燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガスの発生量を 調整することを特徴とする前記 (1) 〜 (12) のいずれか一の電気自動車。 (14) 前記水素製造装置において前記酸化剤の濃度を調整することにより、 前 記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発生量を調 整することを特徴とする前記 (1) 〜 (13) のいずれか一の電気自動車。
(15) 前記水素製造装置において前記有機物と水を含む燃料の供給量を調整す ることにより、 前記燃料極と前記酸化極との間の電圧及び/又は前記水素を含む ガスの発生量を調整することを特徴とする前記 (1) 〜 (14) のいずれか一の 電気自動車。 .
(16) 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整する ことにより、 前記燃料極と前記酸化極との間の電圧及び/又は前記水素を含むガ スの発生量を調整することを特徴とする前記 (1) 〜 (15) のいずれか一の電 気自動車。
(17) 前記水素製造装置の運転温度が 100°C以下であることを特徴とする前 記 (1) 〜 (16) のいずれか一の電気自動車。
(18) 前記運転温度が 30〜90°Cであることを特徴とする前記 (17) の電 気自動車。
(19) 前記水素製造装置の燃料極に供給する前記有機物がアルコール、 アルデ ヒド、 カルボン酸、 及びエーテルよりなる群から選択される一種又は二種以上の 有機物であることを特徴とする前記(1)〜(18)のいずれか一の電気自動車。
(20) 前記アルコールがメタノールであることを特徴とする前記 (19) の電 気自動車。
(21) 前記水素製造装置の酸化極に供給する前記酸化剤が酸素を含む気体又は 酸素であることを特徴とする前記 (1) 〜 (20) のいずれか一の電気自動車。
(22) 前記水素製造装置の酸化極に供給する前記酸化剤が前記燃料電池又は他 の前記水素製造装置から排出される排空気であることを特徴とする前記 (21) の電気自動車。
(23) 前記水素製造装置の酸化極に供給する前記酸化剤が過酸化水素を含む液 体であることを特徴とする前記 (1) 〜 (20) のいずれか一の電気自動車。
(24) 前記水素製造装置の隔膜がプロトン導電性固体電解質膜であることを特 徴とする前記 (1) 〜 (23) のいずれか一の電気自動車。 (25) 前記プロトン導電性固体電解質膜がパーフルォロカーポンスルホン酸系 固体電解質膜であることを特徴とする前記 (24) の電気自動車。
(26) 前記水素製造装置の燃料極の触媒が白金一ルテニウム合金を炭素粉末に 担持したものであることを特徴とする前記 (1) 〜 (25) のいずれか一の電気 自動車。
(27) 前記水素製造装置の酸化極の触媒が白金を炭素粉末に担持したものであ ることを特徴とする前記 (1) 〜 (26) のいずれか一の電気自動車。
(28) 前記水素製造装置に前記有機物と水を含む燃料の循環手段を設けたこと を特徴とする前記 (1) 〜 (27) のいずれか一の電気自動車。
(29) 前記水素製造装置に生成した前記水素を含むガスに含まれる二酸化炭素 を吸収する二酸化炭素吸収部を設けたことを特徴とする前記 (1) 〜 (28) の いずれか一の電気自動車。
(30) 前記水素製造装置から発生した前記水素を含むガスを冷却せずに前記燃 料電池に供給することを特徴とする前記 (1) 〜 (29) のいずれか一の電気自 動車。
(31) 前記水素製造装置の発生する熱を遮断するための断熱材が設けられてい ないことを特徴とする前記 (1) 〜 (30) のいずれか一の電気自動車。
ここで、 前記 (2) 〜 (4) の電気自動車に搭載する水素製造装置は、 水素製 造装置を構成する水素製造セルに燃料及び酸化剤を供給する手段を有しており、 この手段としては、 ポンプ、 ブロア等を用いることができる。 また、 この外に、 前記 (3) の場合は、 水素製造セルから電気エネルギーを取り出すための放電制 御手段を有しており、 前記 (4) の場合は、 水素製造セルに電気エネルギーを印 加するための電解手段を有している。 前記 (2) の場合は、 水素製造セルから電 気エネルギーを取り出すための放電制御手段及び水素製造セルに電気エネルギー を印加するための電解手段を有しない開回路のものである。 そして、 前記 (1) の電気自動車に搭載する水素製造装置は、 前記 (2) 〜 (4) の電気自動車に搭 載する水素製造装置を包含するものである。 さらに、 これらの水素製造装置は、 水素製造セルの電圧及び Z又は水素を含むガスの発生量をモニターして、 燃料及 び酸化剤の供給量若しくは濃度、 並びに取り出す電気エネルギー (前記 (3) の 場合) 又は印加する電気エネルギー (前記 (4 ) の場合) をコントロールする機 能を有している。 なお、 水素製造装置を構成する水素製造セルの基本構成は、 隔 膜の一方の面に燃料極を設け、 前記燃料極に燃料を供給するための構造、 前記隔 膜の他方の面に酸化極を設け、 前記酸化極に酸化剤を供給するための構造を有し たものである。
また、電気自動車とは、燃料電池のみで車両の駆動力を得るものに限定されず、 他の動力源を併用するハイプリッドカーを含むものである。 発明の効果
本発明の電気自動車は、 室温から 1 0 0 °C以下という従来の改質温度と比較し て格段に低い温度で燃料を改質することができる水素製造装置を搭載しているの で、 起動に要する時間が短くできるだけでなく、 質器の温度を上昇させるため のエネルギーが少なくできて、 起動用バッテリの小型化が可能である。 また、 改 質装置の発生する熱を遮断するための断熱材を不要とすることもでき、 水素製造 装置から発生した水素を含むガスを冷却せずに燃料電池に容易に供給することが できるという効果を奏する。
さらに、 水素製造装置から発生した水素を含むガスに C Oが含まれないので、 c o除去装置が不要である。
本発明の電気自動車で使用する水素製造装置は、 水素製造セルに外部から電気 エネルギーを供給することなく、 水素を発生させることができるが、 電気工ネル ギ一を取り出す手段を有する場合であっても、 外部から電気エネルギーを印加す る手段を備えている場合であっても、 水素を発生させることができる。
電気エネルギーを取り出す手段を有する場合には、 その電気エネルギーをボン プ、 ブロア等の補機その他を動かすために利用できるため、 エネルギーの有効利 用の観点から効果は大きい。
外部から電気エネルギーを印加する手段を備えている場合でも、 水素製造セル に外部から少量の電気エネルギーを供給することにより、 投入した電気工ネルギ 一以上の水素を発生することができるという効果を奏する。
さらに、 いずれの場合であっても、 水素製造セルの電圧及び 又は水素を含む ガスの発生量をモニタ一することによってプロセスコントロールが可能となり、 水素製造装置のコンパクト化を図ることができるので、 電気自動車の製造コスト が低減できるという効果を奏する。 図面の簡単な説明
図 1 ( a)は、 本発明の電気自動車における燃料電池システムのシステムフロ一 の一例を示す図である。
図 1 (b )は、 本発明の電気自動車に搭載するパッケージ型燃料電池発電装置の 構成の一例を示す概略図である。
図 1 ( c )は、 本発明の電気自動車に搭載する水素製造装置と燃料電池の関係を 示す概略図である。
図 2は、 実施例 1における水素製造セル (外部から電気エネルギーを供給しな いもの) の概略図である。
図 3は、 異なる温度 (3 0〜7 0 °C) における空気流量と水素生成速度及びォ ープン電圧との関係を示す図である (水素製造例 1一 1 )。
図 4は、 異なる温度 (3 0〜7 0 °C) におけるオープン電圧と水素生成速度と の関係を示す図である (水素製造例 1一 1 )。
図 5は、 異なる燃料流量における空気流量と水素生成速度及びオープン電圧と の関係 (温度 7 0 °C) を示す図である (水素製造例 1 _ 2 )。
図 6は、 異なる燃料流量におけるオープン電圧と水素生成速度との関係 (温度 7 O ) を示す図である (水素製造例 1— 2 )。
図 7は、 異なる燃料濃度における空気流量と水素生成速度及びオープン電圧と の関係 (温度 7 0 °C) を示す図である (水素製造例 1— 3 )。
図 8は、 異なる燃料濃度におけるオープン電圧と水素生成速度との関係 (温度 7 0で) を示す図である (水素製造例 1— 3 )。
図 9は、 厚さの異なる電解質膜における空気流量と水素生成速度及びオープン 電圧との関係を示す図である (水素製造例 1一 4 )。
図 1 0は、 厚さの異なる電解質膜におけるオープン電圧と水素生成速度との関 係を示す図である (水素製造例 1一 4 )。 図 1 1は、 異なる温度 (30〜90で) における空気流量と水素生成速度及び オープン電圧との関係を示す図である (水素製造例 1一 5)。
図 12は、 異なる温度 (30〜90°C) におけるオープン電圧と水素生成速度 との関係 (酸化剤:空気) を示す図である (水素製造例 1— 5)。
図 13は、 異なる燃料流量における空気流量と水素生成速度及びオープン電圧 との関係 (温度 50°C) を示す図である (水素製造例 1一 6)。
図 14は、 異なる燃料流量におけるオープン電圧と水素生成速度との関係 (温 度 50°C) を示す図である (水素製造例 1一 6)。
図 15は、 異なる燃料濃度における空気流量と水素生成速度及びオープン電圧 との関係 (温度 50°C) を示す図である (水素製造例 1一 7)。
図 16は、 異なる燃料濃度におけるオープン電圧と水素生成速度との関係 (温 度 50°C) を示す図である (水素製造例 1一 7)。 .
図 17は、 異なる酸素濃度における酸化ガス流量と水素生成速度及びオープン 電圧との関係 (温度 50°C) を示す図である (水素製造例 1一 8)。
図 18は、 異なる酸素濃度におけるオープン電圧と水素生成速度との関係 (温 度 50°C) を示す図である (水素製造例 1一 8)。
図 19は、 異なる温度 (30〜90°C) における H202流量と水素生成速度及 びオープン電圧との関係を示す図である (水素製造例 1一 10)。
図 20は、 異なる温度 (30〜90°C) におけるオープン電圧と水素生成速度 との関係 (酸化剤: H202) を示す図である (水素製造例 1一 10)。
図 21は、 実施例 2における水素製造セル (電気エネルギーを取り出す手段を 備えたもの) の概略図である。
図 22は、異なる空気流量における取り出した電流密度と運転電圧との関係(放 電:温度 50°C) を示す図である (水素製造例 2— 1)。
図 23は、 異なる空気流量における運転電圧と水素生成速度との関係 (放電: 温度 50°C) を示す図である (水素製造例 2— 1)。
図 24は、異なる空気流量における取り出した電流密度と運転電圧との関係(放 電:温度 30°C) を示す図である (水素製造例 2— 2)。
図 25は、 異なる空気流量における運転電圧と水素生成速度との関係 (放電: 温度 30°C) を示す図である (水素製造例 2— 2)。
図 26は、異なる空気流量における取り出した電流密度と運転電圧との関係(放 電:温度 70で) を示す図である (水素製造例 2— 3)。
図 27は、 異なる空気流量における運転電圧と水素生成速度との関係 (放電 : 温度 70°C) を示す図である (水素製造例 2— 3)。
図 28は、異なる空気流量における取り出した電流密度と運転電圧との関係(放 電:温度 90°C) を示す図である (水素製造例 2— 4)。
図 29は、 異なる空気流量における運転電圧と水素生成速度との関係 (放電: 温度 90°C) を示す図である (水素製造例 2— 4)。
図 30は、 異なる温度における取り出した電流密度と運転電圧との関係 (放電 :空気流量 50ml Z分) を示す図である。
図 31は、 異なる温度における運転電圧と水素 成速度との関係 (放電:空気 流量 50m l//分) を示す図である。
図 32は、 異なる温度における取り出した電流密度と運転電圧との関係 (放電 :空気流量 100m 1 /分) を示す図である。 '
図 33は、 異なる温度における運転電圧と水素生成速度との関係 (放電:空気 流量 10 Om l/分) を示す図である。
図 34は、異なる燃料流量における取り出した電流密度と運転電圧との関係(放 電:温度 50°C) を示す図である (水素製造例 2— 5)。
' 図 35は、 異なる燃料流量における運転電圧と水素生成速度との関係 (放電: 温度 50°C) を示す図である (水素製造例 2— 5)。
図 36は、異なる燃料濃度における取り出した電流密度と運転電圧との関係(放 電:温度 50°C) を示す図である (水素製造例 2— 6)。
図 37は、 異なる燃料濃度における運転電圧と水素生成速度との関係 (放電: 温度 50°C) を示す図である (水素製造例 2— 6)。
図 38は、異なる酸素濃度における取り出した電流密度と運転電圧との関係 (放 電:温度 50 C) を示す図である (水素製造例 2— 7)。
図 39は、 異なる酸素濃度における運転電圧と水素生成速度との関係 (放電: 温度 50 ) を示す図である (水素製造例 2— 7)。 図 4 0は、 異なる温度における取り出した電流密度と運転電圧との関係 (放電 :酸化剤 H 202) を示す図である (水素製造例 2— 8 )。
図 4 1は、 異なる温度における運転電圧と水素生成速度との関係 (放電:酸化 剤 H 22) を示す図である (水素製造例 2— 8 )。
図 4 2は、 実施例 3における水素製造セル (外部から電気エネルギーを印加す る手段を備えたもの) の概略図である。
図 4 3は、 異なる空気流量における印加した電流密度と水素生成速度との関係 (充電:温度 5 0 °C) を示す図である (水素製造例 3— 1 )。
図 4 4は、 異なる空気流量における運転電圧と水素生成速度との関係 (充電: 温度 5 0 °C) を示す図である (水素製造例 3— 1 )。
図 4 5は、 異なる空気流量における印加した電流密度と運転電圧との関係 (充 電:温度 5 0 °C) を示す図である (水素製造例 3— 1 )。
図 4 6は、 異なる空気流量における運転電圧とエネルギー効率の関係 (充電: 温度 5 0 ) を示す図である (水素製造例 3— 1 )。
図 4 7は、 異なる空気流量における印加した電流密度と水素生成速度との関係 (充電:温度 3 0 °C) を示す図である (水素製造例 3— 2 )。
図 4 8は、 異なる空気流量における運転電圧と水素生成速度との関係 (充電: 温度 3 0 °C) を示す図である (水素製造例 3— 2 )。
図 4 9は、 異なる空気流量における運転電圧とエネルギー効率の関係 (充電: 温度 3 0 °C) を示す図である (水素製造例 3— 2 )。
図 5 0は、 異なる空気流量における印加した電流密度と水素生成速度との関係 (充電:温度 7 0 °C) を示す図である (水素製造例 3— 3 )。
図 5 1は、 異なる空気流量における運転電圧と水素生成速度との関係 (充電: 温度 7 0 °C) を示す図である (水素製造例 3— 3 )。
図 5 2は、 異なる空気流量における運転電圧とエネルギー効率の関係 (充電: 温度 7 0 °C) を示す図である (水素製造例 3— 3 )。
図 5 3は、 異なる空気流量における印加した電流密度と水素生成速度との関係 (充電:温度 9 0 °C) を示す図である. (水素製造例 3— 4 )。
図 5 4は、 異なる空気流量における運転電圧と水素生成速度との関係 (充電: 温度 90°C) を示す図である (水素製造例 3— 4)。
図 55は、 異なる空気流量における運転電圧とエネルギー効率の関係 (充電: 温度 90で) を示す図である (水素製造例 3— 4)。
図 56は、 異なる温度における印加した電流密度と水素生成速度との関係 (充 電:空気流量 50m 1 /分) を示す図である。
図 57は、 異なる温度における運転電圧と水素生成速度との関係 (充電:空気 流量 50ml Z分) を示す図である。
図 58は、 異なる温度における運転電圧とエネルギー効率の関係 (充電:空気 流量 50ml Z分) を示す図である。
図 59は、 異なる燃料流量における印加した電流密度と水素生成速度との関係 (充電:温度 50 °C) を示す図である (水素製造例 3— 5)。
図 60は、 異なる燃料流量における運転電圧と水素生成速度との関係 (充電: 温度 50 C) を示す図である (水素製造例 3— 5)。
図 61は、 異なる燃料流量における運転電圧とエネルギー効率の関係 (充電: 温度 50°C) を示す図である (水素製造例 3— 5)。 - 図 62は、 異なる燃料濃度における印加した電流密度と水素生成速度との関係 (充電:温度 50 °C) を示す図である (水素製造例 3— 6)。
図 63は、 異なる燃料濃度における運転電圧と水素生成速度との関係 (充電: 温度 50°C) を示す図である (水素製造例 3— 6)。
図 64は、 異なる燃料濃度における運転電圧とエネルギー効率の関係 (充電: 温度 50°C) を示す図である (水素製造例 3— 6)。
図 65は、 異なる酸素濃度における印加した電流密度と水素生成速度との関係 (充電:温度 50 °C) を示す図である (水素製造例 3— 7)。
図 66は、 異なる酸素濃度における運転電圧と水素生成速度との関係 (充電: 温度 50°C) を示す図である (水素製造例 3— 7)。
図 67は、 異なる酸素濃度における運転電圧とエネルギー効率の関係 (充電: 温度 50°C) を示す図である (水素製造例 3— 7)。
図 68は、 異なる温度における印加した電流密度と水素生成速度との関係 (充 電:酸化剤 H 22) を示す図である (水素製造例 3— 8)。 図 6 9は、 異なる温度における運転電圧と水素生成速度との関係 (充電:酸化 剤 H 202) を示す図である (水素製造例 3— 8 )。
図 7 0は、 異なる温度における運転電圧とエネルギー効率の関係 (充電:酸化 剤 H202) を示す図である (水素製造例 3— 8 )。
図 7 1は、 空気流量と水素生成速度との関係 (開回路:温度 5 0で) を示す図 である (実施例 8 )。
図 7 2は、 ォ一プン電圧と水素生成速度との関係 (開回路:温度 5 0 °C) を示 す図である (実施例 8 )。 符号の説明
1 0 水素製造セル、 1 1 隔膜、 1 2 燃料極、 1 3 有機物と 水を含む燃料 (メタノール水溶液) を燃料極 1 2に供給するための流路、
1 4 酸化極 (空気極)、 1 5 酸化剤 (空気) を酸化極 (空気極) 1 4に 供給するための流路、 1 6 燃料ポンプ、 1 7 空気ブロア、
1 8 燃料流量調整弁、 1 9 空気流量調整弁、 2 0 燃料タンク、
2 1 燃料調整槽、 2 2 電圧調整器、 2 3 気液分離器 (水素を含む ガスと未反応メタノール水溶液を分離)、 2 4 水素タンク、
2 5 未反応メタノール水溶液を燃料調整槽 2 1に戻すための導管、
2 6 水素流量調整弁、 2 7 気液分離器 (排空気から生成水と未反応メタ ノール水溶液を分離)、 2 8 二酸化炭素除去装置、 2 9 未反応メタ ノール水溶液を燃料調整槽 2 1に戻すための導管、 3 0 燃料電池、
3 1 固体高分子電解質膜、 3 2 水素極、 3 3 水素を水素極 3 2に 供給するための流路、 3 4 空気極、 3 5 空気を空気極 3 4に供給す るための流路、 3 6 燃料電池 3 0で発電した直流電力を所定の電力に変換 する電力変換装置、 3 7 発電装置全体の制御を行う制御装置、
3 8 パッケージ 発明を実施するための最良の形態
以下に、 本発明を実施するための最良の形態を例示する。 特に、 本発明の電気自動車に搭載する水素製造装置は、 基本的に新規なもので あり、 以下に述べるのは、 あくまでも一形態にすぎず、 これにより本発明が限定 されるものではない。
本発明の電気自動車の基本的な構成は、 水素と酸化剤を供給して発電を行う燃 料電池と、 前記燃料電池に供給するための水素を含むガスを製造する水素製造装 置と、 前記燃料電池で発生した電気により駆動されるモータと、 を備えてなるも のである。
図 1 (a)に、 本発明の電気自動車における燃料電池システムのシステムフロー の一例を示す。
本発明の電気自動車は、 図 1 (b)に示すように、 水素と酸化剤を供給して発電 を行う燃料電池 (30)、 燃料電池 (30) に供給するための水素を含むガスを 製造する水素製造セル (10)、 燃料電池 (30) で発電した直流電力を所定の 電力に変換する電力変換装置 (36)、 発電装置全体の制御を行う制御装置 (3 7) 及び燃料ポンプ (16)、 空気ブロア (1 7) 等の補機類をパッケージ型燃 料電池発電装置として搭載することが好ましい。
本発明の電気自動車において、 水素製造装置を構成する水素製造セル (10) は低温で運転するものであるから、 従来の燃料改質装置の場合と異なり、 制御装 置 (37) を水素製造セル (10) の近くに配置することが可能である。 また、 水素製造セル (10) の発生する熱から制御装置 (37) を保護するための断熱 材も不要とすることができる。
この図では、 燃料タンク (20) 及び燃料調整槽 (21) を電気自動車に搭載 しているが、 これらを搭載せずに、 外部から燃料 (メタノール水溶液) を供給す るようにしてもよいし、燃料調整槽(21)のみを電気自動車に搭載してもよい。 また、水素製造セル(10)から発生した水素を含むガスは、燃料電池(30) に直接供給することもできるが、 水素を含むガスを貯蔵する水素タンク (24) を設けて、水素タンク (24)から燃料電池(30) に供給することが好ましい。 さらに、 水素を含むガスと未反応メタノール水溶液を分離する気液分離器 (2 3) を設けて、 未反応メタノール水溶液を水素製造セル (10) に循環させるこ とが好ましい。 それ以外に、 排空気から生成水と未反応メタノール水溶液を分離 する気液分離器 (27) を設けてもよい。
なお、 図示していないが、 これら以外にバックアップ電池を設けることもでき る。
本発明の電気自動車に搭載する水素製造装置は、 図 1 (c)に示すように、 水素 製造セル(10)、 及び水素製造装置を運転するための補機を有するものである。 水素製造セル (10) の構造は、 隔膜 (11) の一方の面に燃料極 (12) を 設け、 燃料極 (12) に有機物と水を含む燃料 (メタノール水溶液) を供給する ための流路 (13) を備え、 かつ、 隔膜 (1 1) の他方の面に酸化極 (14) を 設け、 酸化極 (14) に酸化剤 (空気) を供給するための流路 (15) を備えた ものである。
水素製造装置を運転するための補機として、 燃料極 (12) にメタノール水溶 液を供給する燃料ポンプ(16)が設けられている。燃料極における流路(13) は、 燃料ポンプ (16) と流量調整弁 (18) を介して導管で接続されている。 燃料 (100%メタノール) は、 燃料タンク (20) に貯蔵されており、 そこ から燃料調整槽(21) に移され、 燃料調整槽(21) で水と混合され、 例えば、 3%程度のメタノール水溶液に調整されて燃料極 (12) に供給される。
また、 同じく補機として空気ブロア (17) を設け、 酸化極 (14) に空気を 直接供給することもできるが、 この図においては、 空気ブロア (17) によって 燃料電池 (30) に空気を供給し、 燃料電池 (30) より排出される未反応空気 (排空気) を利用している。
ここで、 燃料電池 (30) の空気極から排出される排空気を水素製造セル (1 0) に送り込むことによって、 水素製造セル (10) 用の空気ブロアが不要にな る。 酸化極における流路 (15) は、 空気ブロア (17) と流量調整弁 (19)、 燃料電池 (30) を介して接続されている。
さらに、 この排空気は燃料電池(30) の作動温度とほぼ同じ温度(約 80°C) を有しているから、 これにより、 燃料電池 (30) の熱から制御装置 (37) を 保護すると共に、 排空気の熱を水素製造セル (10) を加温する熱源として利用 することができる。
また、 2以上の水素製造装置を組み合わせて使用する場合には、 一方の水素製 造セル(10) の酸化極(14) に供給する空気として、 他方の水素製造セル(1 0) から排出される排空気を利用することができる。
上記のような構成の水素製造装置において、 電気エネルギーを燃料ポンプ (1 6) と空気ブロア (17) に供給してこれを動かし、 流量調整弁 (18) を開放 すると、 燃料ポンプ (16) によってメタノール水溶液が燃料調整槽 (21) か ら流路 (13) を通り燃料極 (12) に供給され、 また、 流量調整弁 (19) を 開放すると、 空気ブロア (17) によって空気が燃料電池 (30) を介して流路 (15) を通り酸化極 (14) に供給される。
これによつて、 燃料極と酸ィ匕極 (空気極) で後述するような反応が生じて燃料 極 (12) 側から水素を含むガスが発生する。
また、 水素を含むガスの発生量は、 水素製造セル (10) の電圧 (開回路電圧 又は運転電圧) をモニターする電圧調整器 (22) を設けて、 燃料及び空気の供 給量若しくは濃度、 並びに取り出す電気エネルギー又は印加する電気エネルギー をコントロールすることにより、 調整することができる。
発生した水素を含むガスは、 気液分離器 (23) に通して、 水素を含むガスと 未反応メタノール水溶液に分離され、 水素を含むガスは水素タンク (24) に貯 蔵される。
分離された未反応メタノール水溶液の一部又は全部は、 導管 (25) によって 燃料調整槽 (21) に戻し循環させる。 場合によっては系外から水を供給するよ うにしてもよい。
水素製造装置から排出された排空気には、 生成水とクロスオーバ一現象により 燃料極から透過してきたメ夕ノ一ル水溶液のうち未反応のものが含まれているか ら、 この排空気は、 気液分離器 (27) を通して生成水と未反応メタノール水溶 液を分離し、 二酸化炭素除去装置 (28) によって二酸化炭素を除去した後、 大 気中に排出する。
分離された生成水と未反応メタノール水溶液の一部又は全部は、 導管 (29) によって燃料調整槽 (21) に戻し循環させる。
燃料電池 (30) の水素極 (32) には、 水素タンク (24) に貯蔵されてい る水素が流量調整弁 (26) を介して供給され、 空気極 (34) には、 空気プロ ァ( 1 7 )から空気が流量調整弁(1 9)を介して供給され、水素極側では式〔 1〕 の反応が、空気極側では式〔2〕 の反応がそれぞれ起き、燃料電池全体としては、 式 〔3〕 の反応が起きて、 水(水蒸気) が生成し、 電気 (直流電力) が発生する。
H2→2H++ 2 e- · · · 〔1〕
2H++ 2 e~ + ( 1 /2) 02→H20 · · · 〔2〕
H2+ (1/2) 〇2→H20 · · · 〔3〕
燃料電池 (3 0) としては、 燃料が水素であれば、 どのようなものでも使用で きるが、 1 0 0で以下の低温で運転が可能な固体高分子型燃料電池 (PEFC) が好ましい。 固体高分子型燃料電池としては、 周知の単セルを複数積層した燃料 電池スタックを採用することができる。 1つの単セルは、 ナフイオン (デュポン 社の商標) といった固体高分子電解質膜 (3 1)、 それを両側から挟み込む拡散 電極である水素極 (3 2) 及び空気極 (34)、 さらにそれらを両側から挟み込 む 2枚のセパレー夕等を備えている。 セパレー夕の両面には、 凹凸が形成されて おり、 挟み込んだ水素極と空気極との間で、 単セル内ガス流路 (3 3)、 (3 5) を形成している。 このうち、水素極^の間で形成される単セル内ガス流路(3 3) には、 供給された水素ガスが、 一方、 空気極との間で形成される単セル内ガス流 路 (3 5) には、 空気が、 それぞれ流れている。
上記のように、 燃料電池の空気極 (3 4) 側では、 式 〔2〕 に従って水蒸気 (H2〇) が生成するため、 燃料電池から排出される排空気には、 多量の水蒸気 が含まれている。 燃料電池 (3 0) の空気極 (34) から排出される排空気を水 素製造セル (1 0) に送り込まない場合には、 排空気に含まれている水蒸気は、 凝縮器により凝縮させ、 水として回収することが好ましい。
燃料電池 (3 0) の発電は発熱を伴う。 上記の固体高分子型燃料電池 (PEF C) の場合、 高分子電解質膜は含水している状態でプロトン伝導性を示すため、 燃料電池の発熱に伴い高分子電解質膜が乾燥し、 含水率が低下すると燃料電池の 内部抵抗が増大し発電能力が低下する。 したがって、 高分子電解質膜の乾燥を防 ぐために燃料電池を冷却し、 適正運転温度 (約 8 0°C) に保持する必要がある。 一方、 水素製造装置は、 後述する実施例に示すように、 温度が高い方が水素発生 効率が高くなるから、 この燃料電池の発熱を熱交換手段を設けて水素製造装置の 加熱に利用することが好ましい。
また、 水素製造装置は低温で作動するので、 昇温のためのヒータを設けること は図 1 (b)及び(c)に示すように不要であるが、 必要に応じて設けてもよい。 従来は、 高分子電解質膜を湿潤状態に保持するため、 改質ガス及び Z又は反応 空気を加湿してから燃料電池本体に供給していたが、 本発明の電気自動車に搭載 する水素製造装置は、 有機物と水を含む燃料 (メタノール水溶液等) を供給する 燃料極側から水素を含むガスを取り出すものであり、水素は加湿されているから、 加湿器は不要とすることができる。 さらに、 水素製造セル (10) から発生した 水素を含むガスは、 従来の改質装置で製造した改質ガスのように高温ではないか ら、 冷却せずに燃料電池 (30) に供給することができる。
また、 燃料電池に供給する燃料としては、 水素製造セル (10) から発生した 水素のみを供給する場合と水素を含むメタノール水溶液を供給する場合が考えら れる。 水素を含むメタノール水溶液を供給する場合には、 気液分離器 (23) は 不要である。
燃料電池 (30) で発電した直流電力は、 電力変換装置 (36) に導入され、 その DCZDCコンバー夕で昇圧され、 又は DCZACィンバー夕により交流電 力に変換されて出力される。 また、 補機用コンバータで安定化した直流電力は、 燃料ポンプ (16)、 空気ブロア (1 7) 等の補機類の駆動電源などとして使用 され、 交流電力は電気自動車の駆動電源として利用される。
これら一連の発電運転において、 制御装置 (37) は、 水素製造セル (10) の電圧調整器 (22)'、 燃料電池 (30)、 電力変換装置 (36)、 燃料ポンプ (1 6)、 空気ブロア (17) 等の補機類の動作を制御する。
燃料電池で発生した直流電力は、 上記のように D C A Cインバー夕により交 流電力に変換され、 電気自動車の動力源であるモー夕に供給され、 該モータを駆 動し、 その発生トルクをギアにより車軸に伝達して、 車輪を駆動し、 自動車を走 行させる。
また、 燃料電池で発生した電気を蓄電するために、 電気エネルギー貯蔵装置を 設けることが好ましい。 燃料電池で発生した電気は、 制御装置を用いることによ り、 モー夕の負荷及び電気エネルギー貯蔵装置の蓄電量に応じて、 モー夕及び電 気エネルギー貯蔵装置に供給される。 具体的には、 例えば、 加速時等において、 モー夕の負荷が大きい時には、 燃料電池と電気エネルギー貯蔵装置からの電気を モータへ供給する。 又減速時、 制動時等においては、 モー夕から得られる回生電 力を電気エネルギー貯蔵装置に供給する。 電気エネルギー貯蔵装置としては、 例 えば、 二次電池、 電気二重層キャパシ夕等を使用することができる。
本発明の電気自動車に搭載する水素製造装置における水素製造セル(1 0 )は、 上記のように、 隔膜 (1 1 ) と、 隔膜(1 1 ) の一方の面に設けた燃料極(1 2 ) と、 隔膜 (1 1 ) の他方の面に設けた酸化極 (1 4 ) とを基本的な構成としてい る。 例えば、 このような構成のものとして、 直接メタノール型燃料電池で採用さ れているような M E A (電解質 電極接合体) を採用することができる。
M E Aの作製方法は限定されるものではないが、 燃料極と酸化極 (空気極) を ホットプレスによって隔膜の両面に接合する従来と同様の方法で作製することが できる。
隔膜としては、 燃料電池において高分子電解質膜として使用されているプロト ン導電性固体電解質膜を用いることができる。 プロトン導電性固体電解質膜とし ては、 デュポン社のナフイオン膜等のスルホン酸基を持つパーフルォロカーボン スルホン酸系膜が好ましい。
燃料極及び酸化極 (空気極) は、 導電性を有し、 触媒活性を有する電極である ことが好ましく、 例えば、 ガス拡散層に、 炭素粉末等からなる担体上に貴金属を 担持させた触媒と P T F E樹脂等の結着剤とナフイオン溶液等のイオン導電性を 付与するための物質とを含有する触媒ペーストを塗布し乾燥して作製することが できる。
ガス拡散層としては、 撥水処理を行った力一ポンぺ一パー等からなるものが好 ましい。
燃料極触媒としては、 任意のものを使用できるが、 白金一ルテニウム合金を炭 素粉末に担持したものが好ましい。
空気極触媒としては、 任意のものを使用できるが、 白金を炭素粉末に担持した ものが好ましい。
上記のような構成の水素製造装置において、 燃料極にメタノール水溶液等の有 機物を含む燃料を供給し、 酸化極 (空気極) に空気、 酸素、 過酸化水素等の酸化 剤を供給すると、 特定の条件下で、 燃料極に水素を含むガスが発生する。
本発明の電気自動車に搭載する水素製造装置の水素発生方法は、 従来の水素製 造装置の水素発生方法とは全く異なるものであり、 また、 現時点ではそのメカ二 ズムを説明することは困難である。 以下に現時点での推定を示すが、 全く新規な 反応が生じている可能性も否定はできない。
本発明の電気自動車に搭載する水素製造装置では後述のごとく、 30〜90°C といった低温で、 しかもメタノールと水を供給している燃料極側から、 水素を含 むガスが発生している。 水素製造セルに外部から電気エネルギーを供給しない場 合には、 70〜80%程度の水素濃度のガスが発生し、 水素製造セルに外部から 電気エネルギーを印加した場合には、 80%以上の水素濃度のガスが発生してい る。 しかも、 そのガスの発生は両極の開回路電圧又は運転電圧に依存しているこ とが分かっている。 このような結果から水素発生のメカニズムを以下のように推 定する。 以下、 メカニズムの説明を簡単にするため、 開回路条件にて説明する。 例えば、水素製造装置に、燃料としてメタノールを使用した場合、燃料極では、 直接メタノール型燃料電池の場合と同様に、 触媒により、 先ずプロトンが生成す ると考えられる。
CH3OH + H20→C02+ 6H + + 6 e— (1)
上記 (1) の反応は、 触媒として P t— Ruを使用した場合には、 メタノール が P t表面に吸着し電気化学的酸化反応が以下のように逐次的に起こり表面に強 く吸着した吸着化学種を生成することにより進行するといわれている (「電池便 覧第 3版」 平成 13年 2月 20日、 丸善 (株)発行、 第 406頁)。
CHsOH+P t→P t - (CHsOH) ads
→P t - (CH2OH) ads+H + +e—
P t一 (CH2OH) ads→P t - (CHOH) ads +H++ e一
P t - (CHOH) ads →P t— (COH) ads+H + +e一
P t - (COH) ads →P t— (CO) ads +H++ e一
上記の P t— (CO) ads をさらに酸化するためには水から生成した吸着 OH が必要とされる。 Ru+H20→Ru- (H20) ads
→Ru— (OH) ads +H++e一
Ru— (OH) ads + P t - (CO) ads→Ru + P t +C〇2 + H + + e— 直接メタノール型燃料電池の場合には、 (1) 式の反応により燃料極において 生成した H+ (プロトン) はプロトン導電性固体電解質膜中を移動して、 酸化極 において、 酸化極に供給された酸素を含む気体又は酸素と以下の反応を生じる。
3/202+6H++6 e-→3H20 (2)
本発明の電気自動車に搭載する水素製造装置が、 開回路の場合には、 (1) 式 の反応により生成した e—が外部回路を通って酸化極に供給されないので、 ( 2 ) 式の反応が起きるためには、 酸化極で別の反応が起きて e—が供給される必要が ある。
一方、 直接メタノール型燃料電池では、 ナフイオン等のプロトン導電性固体電 解質膜を用いた場合に C H 3〇 Hが燃料極から酸化極側へ透過するクロスオーバ —現象が知られており、 酸化極において、 以下のクロスオーバ一メタノールの電 解酸化反応が起きている可能性がある。
CH3〇H + H20→C〇2 + 6H++ 6 e— (3)
この(3)式の反応が起きれば、 この反応により生成した が供給されて(2) 式の反応が起きる。
そして、 (3) 式の反応により生成した H+ (プロトン) はプロトン導電性固 体電解質膜中を移動して、燃料極において、以下の反応が起き、水素が発生する。
6H + + 6 e—→3H2 (4)
ここで、 (1) 式の反応により燃料極において生成した H+と e—の酸化極への 移動と、 (3) 式の反応により酸化極において生成した H +と e—の燃料極への移 動は見かけ上打ち消されていると考えられる。
その場合には、 酸化極においては、 (3) 式の反応により生成した H +と e一に より (2) 式の反応が起き、 燃料極においては、 上記 (1)式の反応により生成 した H+と e_により (4) 式の反応が起きると推定される。
燃料極上で (1) 式と (4) 式の反応が進行し、 酸化極上で (2) 式と (3) 式の反応が進行すると仮定すると、 卜一タルとして、 以下の (5) 式が成立する ことが考えられる。
2 CH3OH+2H20+3/202→2 C02+3H20+3H2 (5) この反応の理論効率は、 59% (水素 3モルの発熱量/メタノール 2モルの発 熱量) となる。
しかし、 上記の反応について、 (1) 式の反応の標準電極電位は E 0 = 0. 0 46V、 (4) 式の反応の標準電極電位は E 0 = 0. 0Vであり、 標準状態では、 両者を組み合わせた場合、 (1) 式の方が正極、 (4) 式の方が負極となるため、
(1) 式の反応は左辺に進行しようとし、 (4) 式の反応も左辺に進行しようと するため、 水素は発生しない。
ここで、 (1) 式の反応を右辺側、 (4) 式の反応も右辺側に進行させるため には、 (1) 式を負極、 (4) 式を正極として機能させることが不可欠であり、 燃料極の全域が等電位であると仮定すると、 メタノール酸化電位を低電位側ヘシ フ卜させるか、 水素発生電位を高電位側へシフ卜させることが必要である。
しかしながら、 燃料極が等電位でない場合には、 燃料極中でメタノールと水か ら H +を抜く (1) 式の反応と H+と e—が結合して水素を生成する (4) 式の反 応が同時に進行している可能性があると考えられる。
後述する実施例のように、 運転温度の高い方が、 水素が発生しやすいことから みて、 外部からの反応熱が供給されて、 吸熱反応である (1) 及び (3) 式の反 応が右辺に進行していること力考えられる。
メタノールに関しては、 (1) 及び (3) 式の反応以外に、 クロスオーバー現 象により、 燃料極から透過したメ夕ノ一ルが空気極触媒の表面で酸素によって酸 化される以下の副反応が起きている。
CH3〇H + 3Z202→C〇2 + 2H2〇 (6)
この (6) 式の反応は発熱反応であるから、 この発熱によって (1)及び(3) 式の反応の熱量が供給されるとして理解できる。
本願請求の範囲第 2項に係る発明の電気自動車に搭載する水素製造装置 (以下、 「開回路条件」 という。) の場合は、 後述する実施例から明らかなように、 酸素 (空気) の供給量が少なくなり、 開回路電圧が 300〜80 OmVになると、 水 素が発生しているが、 これは、 空気極側に透過してきたメタノールが (6) 式に よって酸化されるのが抑制され、 (3 ) 式の H+生成反応が支配的となり、 (4 ) 式の反応によって水素が発生したものと推定される。
本願請求の範囲第 3項に係る発明の電気自動車に搭載する水素製造装置 (以下、 「放電条件」 という。) の場合も、 開回路条件での水素発生メカニズムと類似の メカニズムで水素が発生しているものと考えられる。 但し、 開回路条件の場合と 異なり、 放電電流相当分の H+が燃料極から酸化極に移動することでセル全体の 電気的中性条件を保つ必要があるため、. 燃料極では (4 ) 式より (1 ) 式が、 酸 化極では (3 ) 式より (2 ) 式が進行するものと考えられる。
後述する実施例から明らかなように、 放電電流が大きくなり (酸化極へ e一が 多量に供給され)、 放電電圧が 2 0 O mVより低い場合には、 水素は発生しない が、 これは、 メタノール水溶液の電気分解に必要な電圧に達していないため、 水 素発生が生じないものと推定される。
また、 酸素 (空気) が多量に供給されたり、 放電電圧が 6 0 O mVより高い場 合にも、水素が発生しない力 これは、空気極側に透過してきたメタノールが(6 ) 式によって酸化されるため、 (3 ) 式の H+生成反応が生じないものと推定され る。
一方、 酸素 (空気) の供給量が少ない場合には、 放電電流が小さくなり、 放電 電圧 (運転電圧) が 2 0 0〜6 0 O mVになると、 水素が発生しているが、 これ は、 空気極側に透過してきたメタノールが (6 ) 式によって酸化されるのが抑制 され、 (3 ) 式の H+生成反応が支配的となり、 (4 ) 式の反応によって水素が発 生したものと推定される。
本願請求の範囲第 4項に係る発明の電気自動車に搭載する水素製造装置 (以下、 「充電条件」 という。) の場合も、 開回路条件での水素発生メカニズムと類似の メカニズムで水素が発生しているものと考えられる。 但し、 開回路条件の場合と 異なり、 電解電流相当分の H+が酸化極から燃料極に移動することでセル全体の 電気的中性条件を保つ必要があるため、 燃料極では (1 ) 式より (4 ) 式が、 酸 化極では (2 ) 式より (3 ) 式が進行するものと考えられる。
すなわち、 本発明の充電条件の場合は、 燃料極を力ソードとし酸化極をァノ一 ドとして外部から電気エネルギーを印加する(外部から燃料極に e—を供給する) ものであるから、 基本的には電気分解が起きており、 後述する実施例から明らか なように、 印加する電気エネルギー (印加電圧)'を大きくすれば、 水素が多く発 生しているが、 これは、 外部から燃料極に供給される e—が多くなり、 (3 ) 式 のメタノールの電解酸化反応及び (4 ) 式の反応 6 H + + 6 e—→3 H 2が促進さ れたためと考えられる。
しかしながら、 後述するように、 エネルギー効率は、 酸素 (空気) の供給量が 少ない、 印加電圧 (運転電圧) が 4 0 0〜6 0 O mVという低い範囲で高くなつ ている。 これは、 この範囲では、 前述のように、 外部から電気エネルギーを供給 しない開回路条件又は放電条件の場合でも、 空気極側に透過してきたメタノール が (6 ) 式によって酸化されるのが抑制され、 (3 ) 式の H+生成反応が支配的 となり、 (4 ) 式の H +生成反応によって水素が発生していると推定されるが、 充電条件の場合には、 外部から電気エネルギーが印加された分に加えて、 上記開 回路条件又は放電条件の場合と同様に水素が発生しているためと推定される。 ここで、 セルの電位がどのような意味を持つかについて説明する。 一般に電解 質膜を挟んで両極にガス電極を構成したセルの電圧は、 電解質内を導電するィォ ンの両極での化学ポテンシャルの差によって発生する。
つまり、 両極における分極を無視すると、 電解質にプロトン (水素イオン) 導 電性固体電解質膜を用いているため、 観測している電圧はセルの両極での水素の 化学ポテンシャル、 言いかえると水素分圧の差を示している。
本発明においては、 後述する実施例のように、 燃料極と酸化極との間の電圧が 一定範囲にある場合に、 燃料極側から水素が発生しているので、 両極での水素の 化学ポテンシャルの差が一定範囲になった場合に、 上記 ( 1 ) 〜 (6 ) 式の反応 が進み、 水素が発生すると推定される。
本発明の電気自動車に搭載する水素製造装置においては、 水素製造セルに外部 から電気エネルギーを供給しない場合でも、 外部に電気エネルギーを取り出す場 合でも、また、外部から電気工ネルギ一を印加した場合でも、燃料極と酸化極(空 気極) との間の電圧 (開回路電圧又は運転電圧) を調整することにより、 水素を 含むガスの発生量を調整することができる。
後述する実施例から明らかなように、 開回路条件の場合には、 開回路電圧が 3 0 0〜8 0 O mVで水素が発生しており、 放電条件の場合には、 放電電圧 (運転 電圧) が 2 0 0〜6 0 O mVで水素が発生しており、 充電条件の場合には、 印加 電圧 (運転電圧) が 3 0 0〜1 0 0 0 mV ( 4 0 0〜 6 0 O mVでエネルギー効 率は高い) で水素が発生しているから、 この範囲で、 開回路電圧又は運転電圧を 調整することにより、 水素を含むガスの発生量を調整することができる。
開回路電圧若しくは運転電圧及び Z又は水素を含むガスの発生量 (水素生成速 度) は、 以下の実施例に示すとおり、 酸化剤 (酸素を含む気体又は酸素、 過酸化 水素を含む液体) の供給量を調整すること、 酸化剤の濃度 (酸素を含む気体中の 酸素濃度) を調整すること、 有機物を含む燃料の供給量を調整すること、 有機物 を含む燃料の濃度を調整することにより調整することができる。
また、 上記以外に、 放電条件の場合は、 外部に取り出す電気エネルギーを調整 すること (外部に取り出す電流を調整すること、 さらには定電圧制御が可能な電 源、 いわゆるポテンシヨスタツドを用いることによって外部に取り出す電圧を調 整すること) によって、 充電条件の場合は、 印加する電気エネルギーを調整する こと (印加する電流を調整すること、 さらには定電圧制御が可能な電源、 いわゆ るポテンシヨスタツドを用いることによって印加する電圧を調整すること) によ つて、 運転電圧及び/又は水素を含むガスの発生量を調整することができる。 本発明の電気自動車に搭載する水素製造装置においては、 有機物を含む燃料を 1 0 0 °C以下で分解することができるから、 水素製造装置の作動温度を 1 0 o t: 以下にすることができる。 作動温度は、 3 0〜9 0 °Cとすることが好ましい。 運 転温度を 3 0〜9 0 の範囲で調整することにより、以下の実施例に示すとおり、 開回路電圧若しくは運転電圧及び 又は水素を含むガスの発生量を調整すること ができる。
なお、 1 0 0 °C以上での運転が必要であった従来の改質技術では、 水は水蒸気 になり、有機物を含む燃料はガス化し、このような条件下で水素を発生させても、 水素を分離する手段を別途用いる必要があるため、 本発明は、 この点において有 利である。
しかし、 有機物を含む燃料を 1 0 0で以上の温度で分解すると、 上記のような デメリットはあるが、 本発明は、 本発明の電気自動車に搭載する水素製造装置を 1 0 o °cを若干超える温度で作動させることを否定するものではない。
推定される原理から考えて、 有機物を含む燃料としては、 プロトン導電性の隔 膜を透過し、 電気化学的に酸化されてプロトンを生成する液体又は気体燃料であ ればよく、 メタノール、 エタノール、 エチレングリコール、 2—プロパノールな どのアルコール、 ホルムアルデヒドなどのアルデヒド、 蟻酸などのカルボン酸、 ジェチルエーテルなどのエーテルを含む液体燃料が好ましい。 有機物を含む燃料 は水と共に供給されるから、 アルコールと水を含む溶液、 その中でも、 メタノ一 ルを含む水溶液が好ましい。 なお、 上記した燃料の一例としてのメタノールを含 む水溶液は、 少なくともメタノールと水を含む溶液であり、 水素を含むガスを発 生する領域において、 その濃度は任意に選択することができる。
酸化剤としては、 気体又は液体の酸化剤を使用することができる。 気体の酸化 剤としては、酸素を含む気体又は酸素が好ましい。酸素を含む気体の酸素濃度は、 1 0 %以上が特に好ましい。 液体の酸化剤としては、 過酸化水素を含む液体が好 ましい。
本発明においては、水素製造装置に投入した燃料が該装置内で一回で消費され、 水素に分解される割合は低いので、 燃料の循環手段を設けて、 水素への変換率を 高めることが好ましい。
本発明の電気自動車に搭載する水素製造装置は、 燃料極側から水素を含むガス を取り出す手段を備えており、 水素を回収するものであるが、 二酸化炭素も回収 することが好ましい。 1 0 o °c以下という低い温度で運転するものであるから、 水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部を、 簡便な手 段により設けることができる。
次に、 本発明の実施例 (水素製造例) を示すが、 触媒、 P T F E、 ナフイオン の割合等、触媒層、ガス拡散層、電解質膜の厚さ等は適宜変更し得るものであり、 実施例により限定されるものではない。
(実施例 1 )
以下に、 本願請求の範囲第 2項に係る発明の電気自動車に搭載する水素製造装 置 (開回路条件) により水素を製造する場合の例を示す。 (水素製造例 1一 1 )
実施例 1 (製造例 1一 1〜 1一 10 ) における水素製造セルは代表的な直接メ 夕ノール型燃料電池と同じ構造とした。
その水素製造セルの概略を図 2に示す。
すなわち、電解質にデュポン社製プロトン導電性電解質膜(ナフイオン 1 15) を用い、 空気極にはカーボンペーパー (東レ製) を 5%濃度のポリテトラフルォ 口エチレン分散液に浸漬したのち、 360°Cで焼成して撥水処理し、 その片面に 空気極触媒 (白金担持カーボン:田中貴金属製) と PTFE微粉末と 5%ナフィ オン溶液 (アルドリッチ製) を混合して作製した空気極触媒ペーストを塗布して 空気極触媒付きガス拡散層を構成した。 ここで、 空気極触媒、 PTFE、 ナフィ オンの重量比は 65 %: 15 %: 20%とした。 このようにして作製した空気極 の触媒量は白金換算で lmgZ cm2であった。
さらに同じ方法を用いてカーボンぺ一パーを撥水処理し、 さらにその片面に燃 料極触媒 (白金ルテニウム担持力一ボン:田中貴金属製) と PTFE微粉末と 5 %ナフイオン溶液を混合して作製した燃料極触媒ペーストを塗布して燃料極触媒 付きガス拡散層を構成した。 ここで、 燃料極触媒、 PTFE、 ナフイオンの重量 比は 55%: 15% : 30%とした。 このようにして作製した燃料極の触媒量は 白金一ルテニウム換算で lmgZ cm2であった。
上記、 電解質膜、 空気極触媒付きガス拡散層、 燃料極触媒付きガス拡散層を 1 40で、 100 k g/cm2でホットプレスによって接合して ME Aを作製した。 このようにして作製した MEAの有効電極面積は 60. 8 cm2であった。 作製 後の空気極及び燃料極の触媒層、 空気極及び燃料極のガス拡散層の厚さは、 それ ぞれ、 約 30 /xm、 および 170 mでほぼ同じであった。
上記の MEAを、 それぞれ、 空気を流すため、 および燃料を流すための流路を 設け、 さらに、 ガスリークを防止するためにフエノール樹脂を含浸させたグラフ アイト製の空気極セパレー夕板、 燃料極セパレー夕板によって挟み込み、 単セル を構成した。 また、 燃料および空気のリークを防止するために ME Aの周辺部に はシリコンゴム製のパッキングを設けた。
このようにして作製した水素製造セルを熱風循環型の電気炉内に設置し、 セル 温度(運転温度) 3 0〜 7 0 で、空気極側に空気を 0〜 4 0 0 m 1 /分の流量、 燃料極側に 0 . 5 M〜 2 Mのメタノール水溶液 '(燃料) を 2〜 1 5 m 1 /分の流 量で流し、 その時の燃料極と空気極の電圧差 (オープン電圧)、 燃料極側で発生 するガス量、 ガス組成について検討を行った。
まず、 セルへのメタノール水溶液 (燃料) の流量を 8 m 1 Z分で一定とし、 3 0 °C、 5 0 °C、 7 0 °Cの各温度で空気流量を変化させ、 燃料極側から発生するガ スの発生量を測定した。 ガス発生量の測定には水中置換法を用いた。 また、 発生 ガス中の水素濃度をガスクロマトグラフィ一で分析し、 水素生成速度を求めた。 その結果を図 3に示す。
これより、 各温度において、 空気流量を少なくすることによって、 セルの燃料 極側から、 水素の発生が確認された。 また、 水素生成速度は温度が高いほど、 大 きいことが分かった。 さらに、 空気流量とセルの開回路電圧 (オープン電圧) と の関係を調べると、 空気流量を少なくするとそれに伴って、 セルの開回路電圧が 低下する傾向が認められた。
図 4に図 3の結果を開回路電圧と水素生成速度の関係として整理した。
これより、 水素生成速度 (水素発生量) は開回路電圧に依存する傾向を示し、 開回路電圧 4 0 0〜6 0 O mVで水素が発生することが分かった。 また、 いずれ の温度においても、 水素生成速度のピークは 4 5 O mV付近で観察された。 次に、 温度 7 0 °C、 燃料流量 8 m 1 Z分、 空気流量 1 2 0 m l Z分の条件でガ スを発生させ、 ガス中の水素濃度をガスクロマトグラフィーを用いて測定した。 その結果、 発生ガス中には水素が約 7 0 %、 二酸化炭素が約 1 5 %含まれてい ることが確認された。 なお、 C Oは検出されなかった。
(水素製造例 1一 2 )
水素製造例 1— 1と同じ水素製造セルを用いて、 次に、 セル温度 7 0 °Cにおい て、 濃度 1 Mのメタノール水溶液 (燃料) を、 2、 8、 1 5 m l /分の流量で、 それぞれ、 空気流量を変化させた時の燃料流量、 空気流量と水素生成速度、 セル の開回路電圧の関係を図 5に示す。
これより、 燃料流量の少ない方が、 水素生成速度は大きいことが分かった。 図 6に図 5の結果を開回路電圧と水素生成速度の関係として整理した。
これより、 それぞれの条件での水素生成速度は開回路電圧に依存していること が分かった。 また、 いずれの燃料流量においても、 水素製造例 1一 1と同様に 4 5 OmV付近に水素生成速度のピークが観察された。
さらに、 本製造例で最大の水素生成速度 1 4. 48m l 分が得られた開回路 電圧 442mVのときの条件 (運転温度 7 0° (:、 燃料濃度 1 M、 燃料流量 2m l Z分、 空気流量 1 0 Om l Z分) での発生ガス中の水素濃度を水素製造例 1一 1 と同様にガスクロマトグラフィーによって求めたところ約 7 0 %であった。
(水素製造例 1— 3)
水素製造例 1一 1と同じ水素製造セルを用いて、 次に、 セル温度 7 0 °Cにおい て、 メタノール水溶液(燃料) を 8m lノ分の定流量で、 燃料濃度を 0. 5、 1、 2 Mと変化させた条件でそれぞれ、 空気流量を変化させた時の燃料流量、 空気流 量と水素生成速度、 セルの開回路電圧の関係を図 7に示す。
これより、 燃料濃度の低いほうが、 水素生成速度は大きいことが分かった。 図 8に図 7の結果を開回路電圧と水素生成速度の関係として整理した。
これより、 それぞれの条件での水素生成速度は開回路電圧に依存し、 3 0 0〜 6 0 OmVで水素が発生することが分かった。 また、 いずれの燃料濃度において も、 水素製造例 1一 1と同様に 45 OmV付近に水素生成速度のピークが観察さ れた。
(水素製造例 1一 4)
次に、 電解質膜の厚さのガス発生量に与える影響を検討した。
水素製造例 1— 1〜1ー 3では、 電解質膜にはデュポン社製ナフイオン 1 1 5 (厚さ 1 3 0 ^m) を用いたが、 同じくデュポン社製ナフイオン 1 1 2 (厚さ 5 0 πι) を用いて同様な水素製造セルを構成し、 温度 7 0°C、 燃料濃度 1M、 燃 料流量を 8m l /分で、 それぞれ、 空気流量を変化させた時の燃料流量、 空気流 量と水素生成速度、 セルの開回路電圧の関係を検討した。
ナフイオン 1 1 5と 1 1 2はその材質は同じであり、 ここでは純粋に電解質膜 の厚さの影響を検討したことになる。 検討結果を図 9に示す。
図 10に図 9の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 水素生成速度はいずれの電解質膜でもほぼ等しいことが分かった。 図より明かなように、 それぞれの条件での水素生成速度は開回路電圧に依存して おり、 やはり 45 OmV付近に水素生成速度のピークが観察された。
(水素製造例 1一 5)
水素製造例 1一 1と同じ水素製造セルを用いて、 水素製造セルを熱風循環型の 電気炉内に設置し、 セル温度 30°C、 50°C、 70°C、 90°Cで、 空気極側に空 気を 0〜 250 m 1 /分の流量、 燃料極側に 1 Mのメタノール水溶液 (燃料) を 5ni 1 Z分の流量で流し、 その時のセルの開回路電圧、 燃料極側で発生する水素 の生成速度の検討を行った。
空気流量と水素生成速度との関係を図 1 1に示す。
水素製造例 1一 1の場合と同様に、 各温度において、 空気流量を少なくするこ とによって、 セルの燃料極側から、 水素の発生が確認された。 また、 水素生成速 度は温度が高いほど、 大きいことが分かった。 さらに、 空気流量とセルの開回路 電圧との関係を調べると、 空気流量を少なくするとそれに伴って、 セルの開回路 電圧が低下する傾向が認められた。
図 12に図 11の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は開回路電圧に依存する傾向を示し、 開回路電圧 30 0〜70 OmVで水素が発生することが分かった。 また、 30〜70 において は、 水素生成速度のピークは 470〜48 OmV付近で観察され、 90°Cにおい ては、 44 OmV付近で観察された。
(水素製造例 1一 6 )
水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 50°Cにおいて、 燃 料を、 1. 5、 2. 5、 5. 0、 7. 5、 10. Oml /分の流量で、 それぞれ、 空気流量を変化させた時の燃料流量、 空気流量と水素生成速度の関係を図 13に 示す。 これより、 先の水素製造例 1一 2の 70°Cの結果とは異なり、 燃料流量の多い 方が、 水素生成速度は大きい傾向が見られた。 ·
図 14に図 13の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 それぞれの条件での水素生成速度は開回路電圧に依存し、 300〜 70 OmVで水素が発生することが分かった。 また、 450〜50 OmV付近に 水素生成速度のピークが観察された。
燃料流量を変化させたときの燃料中のメタノール消費量と水素生成速度を求 め、 以下の式を用いて開回路条件のエネルギー効率 (なお、 このエネルギー効率 は、 段落 [0123] の計算式で算出される充電条件のエネルギー効率とは相違 する。) を計算した。 その結果、 開回路条件のエネルギー効率は、 燃料流量が 5. Om 1 /分のとき 17%、 2. 5m 1 /分のとき 22 %であった。
開回路条件のエネルギー効率 (%) = (生成した水素の標準ェンタルピー変化 Z 消費したメタノールのェンタルピー変化) X 100
(水素製造例 1一 7)
水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 50°Cにおいて、 メ 夕ノール水溶液 (燃料) を 5ml /分の定流量で、 燃料濃度を 0. 5、 1、 2、 3 Mと変化させた条件で、 それぞれ、 空気流量を変化させた時の空気流量と水素 生成速度の関係を図 1 5に示す。
水素生成速度のピークは、 燃料濃度が低くなるにしたがって、 空気流量が小さ いところに観測された。
図 16に図 15の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 それぞれの条件での水素生成速度は開回路電圧に依存し、 300〜 70 OmVで水素が発生することが分かった。 また、 いずれの燃料濃度において も、 47 OmV付近に水素生成速度のピークが観察された。
(水素製造例 1一 8)
水素製造例 1一 1と同じ水素製造セル (但し、 空気極は、 酸化ガスを流す酸化 極とした) を用いて、 セル温度 5 Otにおいて、 燃料濃度 1M、 燃料流量 5ml Z分で、酸素濃度を 10、 21、 40、 100%と変化させた条件で、それぞれ、 酸化ガス流量を変化させた時の酸化ガス流量と水素生成速度の関係を図 17に示 す。 ここで、 酸素濃度 21 %のガスには空気を用い、 酸素濃度 10%のガスには 空気に窒素を混合することによって調製したもの、 酸素濃度 40 %のガスには空 気に酸素 (酸素濃度 100%) を混合することによって調製したものを用いた。 水素生成速度のピークは、 酸素濃度が高くなるにしたがって、 酸化ガス流量が 小さいところに観測された。
図 18に図 17の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 それぞれの条件での水素生成速度は開回路電圧に依存し、 400〜 80 OmVで水素が発生することが分かった。 また、 490〜530mV付近に 水素生成速度のピークが観察された。
(水素製造例 1一 9 )
水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 50°Cで、 空気極側 に空気を 60ml Z分の流量、燃料極側に 1 Mのメタノール水溶液(燃料)を 2. 6mlZ分の流量で流し、 ガスを発生させ、 200 c cサンプリングして、 ガス 中の CO濃度をガスクロマトグラフィーを用いて測定した。 その結果、 サンプリ ングガスからは COは検出されなかった (l p pm以下)。 なお、 この条件での セルの開回路電圧は 477mV、 水素生成速度は約 10mlノ分であった。
(水素製造例 1一 10 )
水素製造例 1一 1と同じ水素製造セル (但し、 空気極は、 液体である過酸化水 素を流す酸化極とした) を用いて、 水素製造セルを熱風循環型の電気炉内に設置 し、 セル温度 30°C、 50°C、 70°C、 90°Cで、 酸化極側に 1Mの H22 (過 酸化水素)を l〜8ml/分の流量、燃料極側に 1Mのメタノール水溶液(燃料) を 5ml/分の流量で流し、 その時のセルの開回路電圧、 燃料極側で発生する水 素の生成速度の検討を行った。
H22流量と水素生成速度との関係を図 19に示す。
水素製造例 1一 1の場合と同様に、 各温度において、 H202流量を少なくする と、 セルの燃料極側から、 水素の発生が確認された。 また、 水素生成速度は温度 が高いほど、 大きいことが分かった。 さらに、 H 202流量とセルの開回路電圧と の関係を調べると、 H 20 2流量を少なくするとそれに伴って、 セルの開回路電圧 が低下する傾向が認められた。
図 2 0に図 1 9の結果を開回路電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は開回路電圧に依存する傾向を示し'、 開回路電圧 3 0 0〜6 0 O mVで水素が発生することが分かった。 また、 3 0〜5 0 °Cにおいて は、 水素生成速度のピークは 5 0 O mV付近で観察され、 7 0〜9 0 °Cにおいて は、 4 5 O mV付近で観察された。
ここで、 重要な点は、 上記実施例 1では水素製造セルには外部から一切電流も しくは電圧を印加することは行っておらず、 単に内部インピーダンス、 1 G Q以 上のエレクトロメ一夕一で開回路電圧を計測しな ら、 燃料及び酸化剤のみを供 給している点である。
言いかえると実施例 1の水素製造セルでは、 燃料及び酸化剤の供給以外に外部 からエネルギーを供給することなく、 燃料の一部を水素に変換していることにな る。
しかも、 3 0 °C〜9 0 °Cと つた脅威的な低温度での改質であり、従来にない、 全く新規な水素製造装置であると考えられるから、 この水素製造装置を電気自動 車に搭載することによる効果は大きい。
(実施例 2 )
以下に、 本願請求の範囲第 3項に係る発明の電気自動車に搭載する水素製造装 置 (放電条件) により水素を製造する場合の例を示す。
(水素製造例 2— 1 )
実施例 2 (製造例 2— 1〜2— 8 ) における電気エネルギーを取り出す手段を 備えた水素製造セルの概略を図 2 1に示す。
燃料極を負極とし空気極を正極として電気エネルギーを取り出す手段を設けた 以外は、 水素製造例 1― 1の水素製造セルと同じ構造である。
この水素製造セルを熱風循環型の電気炉内に設置し、 セル温度 (運転温度) 5 0°Cで、 空気極側に空気を 10〜100ml/分の流量、 燃料極側に 1Mのメタ ノール水溶液 (燃料) を 5ml/分の流量で流し、 その時に空気極と燃料極間を 流れる電流を変化させながら、 燃料極と空気極の運転電圧、 燃料極側で発生する ガス量、 ガス組成について検討を行った。 また、 発生ガス中の水素濃度をガスク ロマ卜グラフィ一で分析し、 水素生成速度を求めた。
この試験における、 取り出した電流密度と運転電圧の関係を図 22に示す。 空気流量が小さくなるとともに、 運転電圧が低下し、 放電できる限界電流密度 の低下が観察された。
図 23に図 22の結果を運転電圧と水素生成速度の関係として整理した。 これより、 水素生成速度 (水素発生量) は運転電圧に依存する傾向を示し、 運 転電圧 300〜60 OmVでガスが発生することが分かった。 また、 空気流量が 50〜6 Om 1 /分の場合に最も水素が発生しやすいことが分った。 さらに、 こ れより空気流量が多いと、 水素が発生しにくくなり、 10 Oml/分では、 ほと んど水素は発生しなかった。
次に、 水素生成速度の大きかった、 温度 50°C、 燃料流量 5ml Z分、 空気流 量 60ml 分、 電流密度 8. 4mAZcm2の条件でガスを発生させ、 ガス中 の中の水素濃度をガスクロマトグラフィーを用いて測定した。
その結果、 発生ガス中には水素が約 74%含まれ、 水素生成速度は 5. lml /分であることが確認された。 なお、 COは検出されなかった。
(水素製造例 2— 2、
水素製造例 2— 1と同じ水素製造セルを用いて、 セル温度 30でで、 空気極側 に空気を 30〜 100 m 1 分の流量、 燃料極側に 1 Mのメ夕ノール水溶液 (燃 料) を 5ml Z分の流量で流し、 その時に空気極と燃料極間を流れる電流を変化 させながら、 燃料極と空気極の運転電圧、 燃料極側で発生する水素の生成速度に ついて検討を行った。
この試験における、 取り出した電流密度と運転電圧の関係を図 24に示す。 空気流量が小さくなるとともに、 運転電圧が低下し、 放電できる限界電流密度 の低下が観察された。 図 25に図 24の結果を運転電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 200〜 540 mVで水素が発生することが分かった。 また、 空気流量が 30〜 70 m 1 ノ分の場合に水素が発生することが分った。 空気流量が 100ml/分では、 水 素はほとんど発生しなかった。
(水素製造例 2— 3 )
水素製造例 2— 1と同じ水素製造セルを用いて、 セル温度 70°Cで、 空気極側 に空気を 50〜200m 1 Z分の流量、 燃料極側に 1Mのメタノール水溶液 (燃 料) を 5ml Z分の流量で流し、 その時に空気極と燃料極間を流れる電流を変化 させながら、 燃料極と空気極の運転電圧、 燃料極側で発生する水素の生成速度に ついて検討を行った。
この試験における、 取り出した電流密度と運転電圧の関係を図 26に示す。 空気流量が小さくなるとともに、 運転電圧が低下し、 放電できる限界電流密度 の低下が観察された。
図 27に図 26の結果を運転電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 200〜 50 OmVで水素が発生することが分かった。 また、 空気流量が 50〜10 Om 1 Z分の場合に水素が発生しやすいことが分った。 空気流量が 150、 200m 1 Z分というように大きくなると、 水素はほとんど発生しなかった。
(水素製造例 2— 4)
水素製造例 2— 1と同じ水素製造セルを用いて、 セル温度 90°Cで、 空気極側 に空気を 50〜 250ml 分の流量、 燃料極側に 1 Mのメ夕ノール水溶液 (燃 料) を 5m l/分の流量で流し、 その時に空気極と燃料極間を流れる電流を変化 させながら、 燃料極と空気極の運転電圧、 燃料極側で発生する水素の生成速度に ついて検討を行った。
この試験における、 取り出した電流密度と運転電圧の関係を図 28に示す。 空気流量が小さくなるとともに、 運転電圧が低下し、 放電できる限界電流密度 の低下が観察された。
図 29に図 28の結果を運転電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 200〜 50 OmVで水素が発生することが分かった。 また、 空気流量が 50〜10 Om 1ノ分の場合に水素が発生しやすいことが分った。 250m l/分では、 水素は ほとんど発生しなかった。
次に、 水素製造例 2— 1〜2— 4の各温度における空気流量 5 OmlZ分の場 合の、 取り出した電流密度と運転電圧の関係を図 30に、 運転電圧と水素生成速 度の関係を図 31に示す。
これより、 水素生成速度は温度に依存する傾向を示し、 温度が高い方が、 低い 運転電圧で水素 発生し、 水素発生量が多いことが分かった。
さらに、 水素製造例 2— 1〜2— 4の各温度に ける空気流量 10 Oml/分 の場合の、 取り出した電流密度と運転電圧の関係を図 32に、 運転電圧と水素生 成速度の関係を図 33に示す。
これより、 水素生成速度は温度に依存する傾向を示し、 温度が高い方が、 低い 運転電圧で水素が発生し、 水素発生量が多いことが分かった。 また、 空気流量が 100ml 分というように大きいと、温度 30°C、 50 °Cという低い温度では、 水素はほとんど発生しないことが分かつた。
(水素製造例 2— 5 )
水素製造例 2— 1と同じ水素製造セルを用いて、 セル温度 50°Cで、 空気極側 に空気を 5 Om 1 分の流量で、 燃料極側の燃料流量を、 1. 5、 2. 5、 5. 0、 7. 5、 10. OmlZ分と変化させた条件とし、 その時に空気極と燃料極 間を流れる電流を変化させながら、 燃料極と空気極の運転電圧、 燃料極側で発生 する水素の生成速度について検討を行った。
この試験における、 取り出した電流密度と運転電圧の関係を図 34に示す。 放電できる限界電流密度は、 燃料流量が変化しても、 大きく変化しないことが 観測された。
図 35に図 34の結果を運転電圧と水素生成速度の関係として整理した。 これより、 それぞれの条 ί牛での水素生成速度は運転電圧に依存し、 300〜5 0 OmVで水素が発生することが分かった。 また、 450〜50 OmV付近で水 素生成速度が大きいことが観察された。
水素生成速度は、 燃料流量にはあまり依存しないことがわかった。
(水素製造例 2— 6 )
水素製造例 2— 1と同じ水素製造セルを用いて、 セル温度 50°Cで、 空気極側 に空気を 50ml Z分の流量、 燃料極側に燃料を 5 m 1 分の定流量で、 燃料濃 度を 0. 5、 1、 2、 3Mと変化させた条件とし、 その時に空気極と燃料極間を 流れる電流を変化させながら、 燃料極と空気極の運転電圧、 燃料極側で発生する 水素の生成速度について検討を行った。
この試験における、 取り出した電流密度と運転雩圧の関係を図 36に示す。 燃料濃度が高くなるとともに、 運転電圧が低下し、 放電できる限界電流密度の 低下が観察された。
図 37に図 36の結果を運転電圧と水素生成速度の関係として整理した。 これより、 それぞれの条件での水素生成速度は運転電圧に依存し、 300〜6 0 OmVで水素が発生することが分かった。
燃料濃度が 1Mの場合に、 水素が最もよく発生した。
(水素製造例 2— 7 )
水素製造例 2— 1と同じ水素製造セル (但し、 空気極は、 酸化ガスを流す酸化 極とした) を用いて、 セル温度 50°Cで、 燃料極側に 1Mの燃料濃度の燃料を 5 m 1 Z分の定流量で、 酸化極側に酸化ガスを 14. Oml Z分の流量、 酸素濃度 を 10、 21、 40、 100 %と変化させた条件とし、 その時に酸化極と燃料極 間を流れる電流を変化させながら、 燃料極と酸化極の運転電圧、 燃料極側で発生 する水素の生成速度について検討を行った。 ここで、 酸素濃度 21%のガスには 空気を用い、 酸素濃度 10%のガスには空気に窒素を混合することによって調製 したもの、 酸素濃度 40%のガスには空気に酸素 (酸素濃度 100%) を混合す ることによって調製したものを用いた。 この試験における、 取り出した電流密度と運転電圧の関係を図 3 8に示す。 酸素濃度が低いと、 運転電圧が低下し、 放電できる限界電流密度の低下が観察 された。
図 3 9に図 3 8の結果を運転電圧と水素生成速度の関係として整理した。 これより、 それぞれの条件での水素生成速度は運転電圧に依存し、 3 0 0〜6 0 0 mVで水素が発生することが分かった。
酸素濃度が高い方が水素生成速度が大きい傾向が観測された。
(水素製造例 2— 8 )
水素製造例 2— 1と同じ水素製造セル (但し、 空気極は、 液体である過酸化水 素を流す酸化極とした) を用いて、 水素製造セルを熱風循環型の電気炉内に設置 し、 セル温度 3 0 °C、 5 0 °C、 7 0 °C、 9 0 °Cで、 燃料極側に 1 Mのメタノール 水溶液 (燃料) を 5 m l Z分の流量、 酸化極側に 1 Mの H202 (過酸化水素) を 2 . 6〜 5 . 5 m l Z分の流量で流し、 その時に酸化極と燃料極間を流れる電流 を変化させながら、 燃料極と酸化極の運転電圧、 燃料極側で発生する水素の生成 速度について検討を行った。 ここで、 過酸化水素の流量は、 各温度において開回 路電圧がほぼ 5 0 O mVとなるように調整した。
この試験における、 取り出した電流密度と運転電圧の関係を図 4 0に示す。 温度が 7 0〜9 0 °Cでは、 運転電圧の低下と電流密度の増加の関係はほぼ同じ であったが、 温度が 3 0 °Cと低くなると、 運転電圧が急激に低下し、 放電できる 限界電流密度の低下が観察された。
図 4 1に図 4 0の結果を運転電圧と水素生成速度の関係として整理した。 これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 3 0 0〜 5 0 O mVで水素が発生することが分かった。 また、 温度が 9 0での場合に最も 水素が発生しやすく、 温度が低いと、 運転電圧を高くしないと水素は発生しない ことが観察された。
ここで、 重要な点は、 上記実施例 2では水素製造セルから外部に電流を取り出 していることである。 言いかえると実施例 2の水素製造セルでは、 外部に電気工 ネルギ一を取り出しながら、 燃料の一部を水素に変換していることになる。 しか も、 3 0〜 9 0でといった脅威的な低温度での改質であり、 従来にない、 全く新 規な水素製造装置であると考えられるから、 この水素製造装置を電気自動車に搭 載することによる効果は大きい。
(実施例 3 )
以下に、 本願請求の範囲第 4項に係る発明の電気自動車に搭載する水素製造装 置 (充電条件) により水素を製造する場合の例を示す。
(水素製造例 3— 1 )
実施例 3 (製造例 3— :!〜 3— 8 ) における外部から電気エネルギーを印加す る手段を備えてなる水素製造セルの概略を図 4 2に示す。
燃料極を力ソードとし前記酸化極をァノ一ドとして外部から電気エネルギーを 印加する手段を設けた以外は、 水素製造例 1一 1 同じ構造である。
この水素製造セルを熱風循環型の電気炉内に設置し、 セル温度 (運転温度) 5 0 °Cで、 空気極側に空気を 1 0〜 8 0 m 1 Z分の流量、 燃料極側に 1 Mのメタノ ール水溶液 (燃料) を 5 m l Z分の流量で流し、 その時に外部から直流電源を用 いて空気極と燃料極間に流れる電流を変化させながら、 燃料極と空気極の運転電 圧、 燃料極側で発生するガス量、 ガス組成について検討を行った。 なお、 投入し た電気エネルギーに対する生成した水素の化学エネルギーの比を充電条件のエネ ルギー効率とした。 また、 発生ガス中の水素濃度をガスクロマトグラフィーで分 析し、 水素生成速度を求めた。
充電条件のエネルギー効率 (以下、 「エネルギー効率」 という。) は以下の計 算式により算出した。
tr算 ϊ
エネルギー効率(%) = ( 燃焼熱/印加した電気エネルギー) *ιοο
1分間の生成した H2燃焼熱(kJ) = (H2生成速度 m l/分 /24.47/1000) * 286kJ/mol [HHV]
1分間に印加した電気エネルギー(kJ) = [電圧 mV/1000*電流 A*60sec] Wsec/1000 ここで、 念のために記載するが、 本発明の目的は、 投入した電気エネルギー以 上の化学エネルギーを有する水素ガスを得ようというものであり、 決して熱力学 の教えるところのエネルギー保存則を無視するものではない。全体として見ると、 有機物燃料の一部が酸化されるため、 投入した電気エネルギーに有機物燃料の酸 化によって消費された化学エネルギーを含めると 1 0 0 %以下になる。 本発明で は、 従来の水電解による水素製造との違いを明確にするため、 投入した電気エネ ルギ一に対する生成した水素の化学エネルギーの比をエネルギー効率として記述 する。
この試験における、 印加した電流密度と水素発生速度の関係を図 4 3に示す。 電流密度 4 O mAZ c m2以下の条件で水素発生効率(水素発生の電気量効率) 1 0 0 %以上の領域 (図 4 3において水素発生効率が 1 0 0 %の線を破線で示し てある) があり、 この領域で運転を行えば、 投入電気エネルギー以上の水素が得 られることが分った。
図 4 4に図 4 3の結果を運転電圧と水素生成速度の関係として整理した。
これより、 水素生成速度 (水素発生量) は運転電圧に依存する傾向を示し、 運 転電圧 4 0 O mV以上で水素が発生し、 6 0 O mV以上では水素生成速度はほぼ 一定となること、 空気流量が少ない方が水素生成速度が大きい (水素が発生しや すい) ことが分った。
印加した電流密度と運転電圧の関係を図 4 5に示す。
図 4 3で認められた水素発生効率 1 0 0 %以上の領域はいずれも図 4 5の 6 0 0 mV以下の運転電圧であつた。
また、 運転電圧とエネルギー効率の関係を図 4 6に示す。
運転電圧が 1 0 0 O mV付近でも、 エネルギー効率は 1 0 0 %以上であり、 特 に、 運転電圧 6 0 O mV以下で、 空気流量 3 0〜5 O m 1 /分の場合に、 ェネル ギー効率が高いことが分かった。
次に、 エネルギー効率が高かった ( 1 0 5 0 % )、 温度 5 0 °C、 燃料流量 5 m 1 /分、 空気流量 5 0 m l Z分、 電流密度 4. 8 mAZ c m2の条件でガスを発 生させ、 ガス中の水素濃度をガスクロマトグラフィーを用いて測定した。 その結 果、 発生ガス中には水素が約 8 6 %含まれ、 水素生成速度は 7 . 8 m l /分であ ることが確認された。 なお、 C Oは検出されなかった。 (水素製造例 3 — 2 )
水素製造例 3— 1と同じ水素製造セルを用いて、 セル温度 3 0 °Cで、 空気極側 に空気を 1 0〜 7 0 m 1 Z分の流量、燃料極側に 1 Mのメ夕ノール水溶液(燃料) を 5 m 1 /分の流量で流し、 その時に外部から直流電源を用いて空気極と燃料極 間に流れる電流を変化させながら、 燃料極と空気極の運転電圧、 燃料極側で発生 する水素の生成速度、 エネルギー効率について検討を行った。
この試験における、 印加した電流密度と水素生成速度の関係を図 4 7に、 運転 電圧と水素生成速度の関係を図 4 8に示す。
これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 4 0 0 m V以上で水素が発生し、 空気流量が少ない方が水素が発生しやすいこと、 空気流 量 1 0 m 1 Z分の場合には、 6 0 O mV以上で水素生成速度はほぼ一定となるが、 空気流量 3 O m l Z分の場合には、 8 0 O mV以上で増加の傾向を示し、 これよ りさらに空気流量が多い場合には、 運転電圧が高くないと水素が発生しないこと が分った。
また、 運転電圧とエネルギー効率の関係を図 4 9に示す。
運転電圧が 1 0 0 O mV付近でも、 エネルギー効率は 1 0 0 %以上であり、 特 に、 運転電圧 6 0, 0 m V以下で、 空気流量 3 O m 1 Z分の場合に、 エネルギー効 率が高いことが分かった。
(水素製造例 3— 3 )
セル温度を 7 0 °Cとした以外は、水素製造例 3— 2と同じ条件で試験を実施し、 燃料極と空気極の運転電圧、 燃料極側で発生する水素の生成速度、 エネルギー効 率について検討を行った。
この試験における、 印加した電流密度と水素生成速度の関係を図 5 0に、 運転 電圧と水素生成速度の関係を図 5 1に示す。
これより、.水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 4 0 O m V以上で水素が発生し、 空気流量が少ない方が水素が発生しやすいこと、 空気流 量 1 O m 1 /分の場合には、 6 0 O mV以上で水素生成速度はほぼ一定となるが、 空気流量 3 O m l /分の場合には、 8 0 O mV以上で増加の傾向を示し、 これよ りさらに空気流量が多い場合には、 運転電圧が高くないと水素が発生しないこと が分った。
また、 運転電圧とエネルギー効率の関係を図 52に示す。
蓮転電圧が 100 OmV付近でも、 エネルギー効率は 100%以上であり、 特 に、 運転電圧 60 OmV以下で、 空気流量 10〜3 Om 1 Z分の場合に、 ェネル ギー効率が高いことが分かった。
(水素製造例 3— 4)
水素製造例 3— 1と同じ水素製造セルを用いて、 セル温度 90°Cで、 空気極側 に空気を 10〜 200 m 1 /分の流量、 燃料極側に 1 Mのメ夕ノ一ル水溶液 (燃 料) を 5m l Z分の流量で流し、 その時に外部から直流電源を用いて空気極と燃 料極間に流れる電流を変化させながら、 燃料極と 気極の運転電圧、 燃料極側で 発生する水素の生成速度、 エネルギー効率について検討を行った。
この試験における、 印加した電流密度と水素生成速度の関係を図 53に、 運転 電圧と水素生成速度の関係を図 54に示す。
これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 300m V以上で水素が発生し、 空気流量が少ない方が水素が発生しやすいこと、 空気流 量 1 Om 1 /分の場合には、 50 OmV以上で水素生成速度はほぼ一定となるが、 空気流量 50〜10 OmlZ分の場合には、 800 mV以上で増加の傾向を示し、 空気流量 20 Oml /分の場合には、 80 OmV以上でないと水素が発生しない ことが分った。
また、 運転電圧とエネルギー効率の関係を図 55に示す。
運転電圧が 100 OmV付近でも、 エネルギー効率は 100%以上であり、 特 に、 運転電圧 50 OmV以下で、 空気流量 5 Om 1 Z分の場合に、 エネルギー効 率が高いことが分かった。
次に、 水素製造例 3— 1〜3— 4の各温度における空気流量 5 OmlZ分の場 合の、 印加した電流密度と水素生成速度の関係を図 56に、 運転電圧と水素生成 速度の関係を図 57に示す。
これより、 水素生成速度は温度に依存する傾向を示し、 運転温度が高い方が、 低い運転電圧で水素が発生し、 水素生成速度も大きいことが分かった。
また、 運転電圧とエネルギー効率の関係を図 58に示す。
運転電圧が 100 OmV付近でも、 エネルギー効率は 100%以上であり、 特 に、 60 OmV以下で、 エネルギー効率が高いことが分かった。
(水素製造例 3— 5 )
水素製造例 3 _ 1と同じ水素製造セルを用いて、 セル温度 50°Cで、 空気極側 に空気を 5 Om 1 Z分の流量で、 燃料極側の燃料流量を、 1. 5、 2. 5、 5. 0、 7. 5、 10. Om 1 /分と変化させた条件とし、 その時に外部から直流電 源を用いて空気極と燃料極間に流れる電流を変化させながら、 燃料極と空気極の 運転電圧、 燃料極側で発生する水素の生成速度、 エネルギー効率について検討を 行った。 .
この試験における、 印加した電流密度と水素生成速度の関係を図 59に、 運転 電圧と水素生成速度の関係を図 60に示す。
水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 40 OmV以上で水 素が発生し、 燃料流量が多い方が水素が発生しやすく、 いずれの燃料流量の場合 でも、 水素生成速度は 80 OmV以上で増加する傾向が観測された。
また、 運転電圧とエネルギー効率の関係を図 61に示す。
いずれの燃料流量の場合も、 運転電圧が 100 OmV付近でも、 エネルギー効 率は 100%以上であり、 特に、 運転電圧 60 OmV以下で、 エネルギー効率が 高いことが分かった。
(水素製造例 3— 6 )
水素製造例 3— 1と同じ水素製造セルを用いて、 セル温度 50でで、 空気極側 に空気を 50ml /分の流量、 燃料極側に燃料を 5 m 1 /分の定流量で、 燃料濃 度を 0. 5、 1、 2、 3Mと変化させた条件とし、 その時に外部から直流電源を 用いて空気極と燃料極間に流れる電流を変化させながら、 燃料極と空気極の運転 電圧、 燃料極側で発生する水素の生成速度、 エネルギー効率について検討を行つ た。 この試験における、 印加した電流密度と水素生成速度の関係を図 62に、 運転 電圧と水素生成速度の関係を図 63に示す。
これより、 いずれの燃料濃度においても、 0. 02 AZ cm2以上の領域では、 印加した電流密度と水素生成速度はほぼ比例することが分かった。
また、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 400mV以 上で水素が発生し、 燃料濃度が高い方が低い運転電圧でも水素が発生しやすく、 燃料濃度が 2 M、 3 Mの場合には、 400〜 500 mVで急激に水素生成速度が 大きくなること、 燃料濃度が 1Mの場合には、 400〜80 OmVで水素生成速 度はほぼ一定であるが、 80 OmV以上で増加の傾向を示し、 これよりさらに燃 料濃度が低い場合には、 運転電圧が高くないと水素が発生しないことが分つた。 また、 運転電圧とエネルギー効率の関係を図 64に示す。
燃料濃度が 0. 5Mの場合を除いて、 運転電圧が 100 OmV付近でも、 エネ ルギー効率は 100%以上であり、 特に、 運転電圧 60 OmV以下で、 燃料濃度 が 1、 2、 3 Mの場合に、 エネルギー効率が高いことが分かった。 なお、 燃料濃 度が 0. 5 Mの場合は、 低電圧の領域で水素発生がないため、 エネルギー効率の 挙動は、 他の条件の場合と全く異なるものとなった。
(水素製造例 3— 7 )
水素製造例 3— 1と同じ水素製造セル (但し、 空気極は、 酸化ガスを流す酸化 極とした) を用いて、 セル温度 50でで、 燃料極側に濃度 1Mの燃料を 5ml 分の定流量で、酸化極側に酸化ガスを 14. 0mlノ分の流量、酸素濃度を 10、 21、 40、 100%と変化させた条件とし、 その時に外部から直流電源を用い て酸化極と燃料極間に流れる電流を変化させながら、燃料極と酸化極の運転電圧、 燃料極側で発生する水素の生成速度、 エネルギー効率について検討を行った。 こ こで、 酸素濃度 21 %のガスには空気を用い、 酸素濃度 10 %のガスには空気に 窒素を混合することによって調製したもの、 酸素濃度 40 %のガスには空気に酸 素 (酸素濃度 100%) を混合することによって調製したものを用いた。
この試験における、 印加した電流密度と水素生成速度の関係を図 65に、 運転 電圧と水素生成速度の関係を図 66に示す。 これより、 いずれの酸素濃度においても、 0. 03 AZ cm2以上の領域では、 印加した電流密度と水素生成速度はほぼ比例することが分かつた。
また、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 400mV以 上で水素が発生し、 酸素濃度が高い方が低い運転電圧でも水素が発生しやすく、 400〜80 OmVで水素生成速度はほぼ一定であるが、 80 OmV以上で増加 の傾向を示した。
また、 運転電圧とエネルギー効率の関係を図 67に示す。
印加電圧が 100 OmV付近でも、 エネルギ一効率は 100%以上であり、 特 に、 印加電圧 60 OmV以下で、 酸素濃度が高い場合に、 エネルギー効率が高い ことが分かった。
(水素製造例 3— 8 )
水素製造例 3— 1と同じ水素製造セル (但し、 空気極は、 液体である過酸化水 素を流す酸化極とした) を用いて、 水素製造セルを熱風循環型の電気炉内に設置 し、 セル温度 30°C、 50°C、 70°C、 90°Cで、 燃料極側に 1 Mのメタノール 水溶液 (燃料) を 5m 1 /分の流量、 酸化極側に 1Mの H22 (過酸化水素) を 2. 6〜5. 5m 1Z分の流量で流し、 その時に外部から直流電源を用いて酸化 極と燃料極間に流れる電流を変化させながら、 燃料極と酸化極の運転電圧、 燃料 極側で発生する水素の生成速度、 エネルギー効率について検討を行った。
ここで、 過酸化水素の流量は、 各温度において開回路電圧がほぼ 50 OmVと なるように調整した。
この試験における、 印加した電流密度と水素生成速度の関係を図 68に、 運転 電圧と水素生成速度の関係を図 69に示す。
これより、 水素生成速度は運転電圧に依存する傾向を示し、 運転電圧 500m V以上で水素が発生し、 80 OmV以上で増加の傾向を示し、 運転温度が高い方 が水素が発生しやすいことが分かった。
また、 運転電圧とエネルギー効率の関係を図 70に示す。
運転電圧が 100 OmV付近でも、 エネルギー効率は 100%以上であり、 特 に、 運転電圧 80 OmV以下で、 温度 90での場合に、 エネルギー効率が高いこ とが分かった。
ここで、 重要な点は、 上記実施例 3では水素製造セルに外部から印加した電流 以上の水素を取り出していることである。 言いかえると実施例 3の水素製造セル では、 投入した電気エネルギー以上のエネルギーの水素を製造していることにな る。しかも、 3 0〜9 0 °Cといった脅威的な低温度での改質であり、従来にない、 全く新規な水素製造装置であると考えられるから、 この水素製迨装置を電気自動 車に搭載することによる効果は大きい。 以下の実施例においては、 メ夕ノ一ル以外の燃料を使用して、 本発明の電気自 動車に搭載する水素製造装置により水素を製造する例を示す。
(実施例 4 )
燃料としてエタノ一ルを使用して、 本願請求の範西第 2項に係る発明の電気自 動車に搭載する水素製造装置 (開回路条件) により水素を製造した。
水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 8 O tにおいて、 燃 料極側に、濃度 1 Mのエタノール水溶液を 5 m 1 /分の流量で流し、空気極側に、 空気を 6 5 m l 分の流量で流し、 セルの開回路電圧、 燃料極側から発生するガ スの生成速度を測定した。 発生ガス中の水素濃度をガスクロマトグラフィーで分 析し、 水素生成速度を求めた。
結果を表 1に示す。
表 1
Figure imgf000050_0001
表 1に示されるように、 開回路電圧 4 7 8 mVで、 水素の発生することが確認 されたが、 水素生成速度は小さかった。
(実施例 5 )
燃料としてエチレングリコールを使用して、 本願請求の範囲第 2項に係る発明 の電気自動車に搭載する水素製造装置 (開回路条件) により水素を製造した。 水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 80°Cにおいて、 燃 料極側に、 濃度 1Mのエチレングリコール水溶液を 5ml Z分の流量で流し、 空 気極側に、 空気を 105ml Z分の流量で流し、 セルの開回路電圧、 燃料極側か ら発生するガスの生成速度を測定した。 発生ガス中の水素濃度をガスクロマトグ ラフィ一で分析し、 水素生成速度を求めた。
結果を表 2に示す。
表 2
Figure imgf000051_0001
表 2に示されるように、 開回路電圧 474mVで、 水素の発生することが確認 された。 水素生成速度は、 燃料がエタノール水溶液の場合と比較すると大きかつ たが、 メタノール水溶液の場合と比較するとかなり小さい。
(実施例 6)
燃料として 2—プロパノールを使用して、 本願請求の範囲第 2項に係る発明の 電気自動車に搭載する水素製造装置 (開回路条件) により水素を製造した。
'水素製造例 1— 1と同じ水素製造セルを用いて、 セル温度 80°Cにおいて、 燃 料極側に、 濃度 1Mの 2—プロパノール水溶液を 5m l Z分の流量で流し、 空気 極側に、 空気を 35ml 分の流量で流し、 セルの開回路電圧、 燃料極側から発 生するガスの生成速度を測定した。 発生ガス中の水素濃度をガスクロマトグラフ ィ一で分析し、 水素生成速度を求めた。
結果を表 3に示す。
表 3
Figure imgf000051_0002
表 3に示されるように、 開回路電圧 514mVで、 水素の発生することが確認 された。 水素生成速度は、 燃料がエタノール水溶液、 エチレングリコール水溶液 の場合と比較すると大きく、 最もメタノール水溶液の場合に近かった。 特に、 発 生ガス中の水素濃度が極めて高かった。
(実施例 7 )
燃料としてジェチルェ一テルを使用して、 本願請求の範囲第 2項に係る発明の 電気自動車に搭載する水素製造装置 (開回路条件) により水素を製造した。 水素製造例 1一 1と同じ水素製造セルを用いて、 セル温度 8 0でにおいて、 燃 料極側に、 濃度 1 Mのジェチルエーテル水溶液を 5 m l //分の流量で流し、 空気 極側に、 空気を 2 0 m l Z分の流量で流し、 セルの開回路電圧、 燃料極側から発 生するガスの生成速度を測定した。 発生ガス中の水素濃度をガスクロマトグラフ ィ一で分析し、 水素生成速度を求めた。
結果を表 4に示す。
表 4
Figure imgf000052_0001
表 4に示されるように、 開回路電圧 5 6 5 mVで、 水素の発生することが確認 された。 燃料としてアルコールを用いた場合と比較して、 発生ガス中の水素濃度 が小さく、 水素生成速度も小さかった。
(実施例 8 ) .
燃料としてホルムアルデヒド、 蟻酸を使用して、 本願請求の範囲第 2項に係る 発明の電気自動車に搭載する水素製造装置(開回路条件)により水素を製造した。 水素製造例 1—1と同じ水素製造セルを用いて、 セル温度 5 0 °Cにおいて、 燃 料極側に、 それぞれ、 濃度 1 Mのホルムアルデヒド水溶液、 濃度 1 Mの蟻酸水溶 液を、 5 m 1ノ分の流量で流し、 空気極側に、 空気を 0〜1 0 0 m 1 Z分の流量 で流し、 セルの開回路電圧、 燃料極側から発生するガスの生成速度を測定した。 発生ガス中の水素濃度をガスクロマトグラフィーで分析し、 水素生成速度を求め た。 結果を、 メタノールを使用した場合とともに、 図 7 1及び図 7 2に示す。
図 7 1に示されるように、 ホルムアルデヒド、 蟻酸の場合にも、 メタノールと 同様に、 空気流量を少なくすることによって、 セルの燃料極側から、 水素の発生 が確認された。 また、 水素生成速度は、 メタノールが最も大きく、 ホルムアルデ ヒド、 蟻酸の順であり、 さらに、 この順に、 空気流量を少なくしないと、 水素が 発生しないことが分かった。
図 7 2より、 ホルムアルデヒド、 蟻酸の場合にも、 メタノールと同様に、 水素 生成速度 (水素発生量) は開回路電圧に依存する傾向を示し、 開回路電圧 2 0 0 〜8 0 O mVで水素が発生することが分かった。 また、 蟻酸の場合には、 メタノ —ル、 ホルムアルデヒドより開回路電圧が低い状態で水素が発生しており、 水素 生成速度のピークも、 メタノール、 ホルムアルデヒドが、 5 0 O mV程度である のに対し、 蟻酸の場合には、 低い開回路電圧 (3 5 O mV程度) で観察された。 産業上の利用可能性
本発明の電気自動車に搭載する水素製造装置は、 有機物を含む燃料を 1 0 o t: 以下で分解して水素を含むガスを製造することができ、 電気自動車に搭載したま まで、燃料電池に容易に水素を供給することができるものであるから、本発明は、 燃料電池で発生した電気により駆動されるモータを備えてなるあらゆる自動車に 適用でき、 オンロード電気自動車に限らず、 フォークリフト、 ゴルフカート、 遊 覧車、 ホイルチェア一等のオフロード電気自動車を含むものであり、 また、 燃料 電池のみで車両の駆動力を得るものに限定されず、 他の動力源を併用するハイブ リッドカ一その他を含むものである。

Claims

請求の範囲
1 . 水素と酸化剤を供給して発電を行う燃料電池と、 前記燃料電池に供給するた めの水素を含むガスを製造する水素製造装置と、 前記燃料電池で発生した電気に より駆動されるモー夕とを少なくとも備えてなる電気自動車において、 前記水素 製造装置が、有機物を含む燃料を分解して水素を含むガスを製造するものであり、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む燃料 を供給する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤を供 給する手段、 燃料極側から水素を含むガスを発生させて取り出す手段を備えてな ることを特徴とする電気自動車。
2 . 前記水素製造装置が、 水素製造装置を構成する水素製造セルから外部に電気 エネルギーを取り出す手段及び前記水素製造セルに外部から電気エネルギーを印 加する手段を有しない開回路であることを特徴とする請求の範囲第 1項に記載の 電気自動車。
3 . 前記水素製造装置が、 前記燃料極を負極とし前記酸化極を正極として外部に 電気エネルギーを取り出す手段を有することを特徴とする請求の範囲第 1項に記 載の電気自動車。
4. 前記水素製造装置が、 前記燃料極を力ソードとし前記酸化極をアノードとし て外部から電気エネルギーを印加する手段を有することを特徴とする請求の範囲 第 1項に記載の電気自動車。
5 . 前記水素製造セルから外部に電気エネルギーを取り出す手段及び前記水素製 造セルに外部から電気エネルギーを印加する手段を有しない開回路である水素製 造装置、 前記燃料極を負極とし前記酸化極を正極として外部に電気エネルギーを 取り出す手段を有する水素製造装置並びに前記燃料極を力ソードとし前記酸化極 をアノードとして外部から電気エネルギーを印加する手段を有する水素製造装置 の群から選ばれる 2以上の水素製造装置を組み合わせて使用することを特徴とす る請求の範囲第 1項に記載の電気自動車。
6 . 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 2 0 0〜 1 0 0 O mVであることを特徴とする請求の範囲第 1項に記載の電気自動車。
7 . 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 3 0 0〜 8 0 O mVであることを特徴とする請求の範囲第 2項に記載の電気自動車。
8 . 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 2 0 0〜 6 0 O mVであることを特徴とする請求の範囲第 3項に記載の電気自動車。
9 . 前記水素製造装置において前記取り出す電気エネルギーを調整することによ り、 前記燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガスの発生 量を調整することを特徴とする請求の範囲第 3項に記載の電気自動車。
1 0 . 前記水素製造装置において前記燃料極と前記酸化極との間の電圧が 3 0 0 〜1 0 0 O mVであることを特徴とする請求の範囲第 4項に記載の電気自動車。
1 1 . 前記水素製造装置において前記印加する電気エネルギーを調整することに より、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発 生量を調整することを特徴とする請求の範囲第 4項に記載の電気自動車。
1 2 . 前記水素製造装置において前記燃料極と前記酸化極との間の電圧を調整す ることにより、 前記水素を含むガスの発生量を調整することを特徴とする請求の 範囲 1項〜第 1 1項のいずれか一項に記載の電気自動車。
1 3 . 前記水素製造装置において前記酸化剤の供給量を調整することにより、 前 記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発生量を調 整することを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電 気自動車。
1 4. 前記水素製造装置において前記酸化剤の供給量を調整することにより、 前 記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発生量を調 整することを特徴とする請求の範囲第 1 2項に記載の電気自動車。
1 5 . 前記水素製造装置において前記酸化剤の濃度を調整することにより、 前記 燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガスの発生量を調整 することを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電気 自動車。
1 6 . 前記水素製造装置において前記酸化剤の濃度を調整することにより、 前記 燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガスの発生量を調整 することを特徴とする請求の範囲第 1 2項に記載の電気自動車。
1 7 . 前記水素製造装置において前記酸化剤の濃度を調整することにより、 前記 燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガスの発生量を調整 することを特徴とする請求の範囲第 1 3項に記載の電気自動車。
1 8 . 前記水素製造装置において前記有機物と水を含む燃料の供給量を調整する ことにより、 前記燃料極と前記酸化極との間の電圧及び/又は前記水素を含むガ スの発生量を調整することを特徴とする請求の範囲第 1項〜第 1 1項のいずれか 一項に記載の電気自動車。
1 9 . 前記水素製造装置において前記有機物と水を含む燃料の供給量を調整する ことにより、 前記燃料極と前記酸化極との間の電圧及び 又は前記水素を含むガ スの発生量を調整することを特徴とする請求の範囲第 1 2項に記載の電気自動 車。
2 0 . 前記水素製造装置において前記有機物と水を含む燃料の供給量を調整する ことにより、 前記燃料極と前記酸化極との間の電圧及び/又は前記水素を含むガ スの発生量を調整することを特徴とする請求の範囲第 1 3項に記載の電気自動 車。
2 1 . 前記水素製造装置において前記有機物と水を含む燃料の供給量を調整する ことにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガ スの発生量を調整することを特徴とする請求の範囲第 1 5項に記載の電気自動 車。
2 2 . 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整するこ とにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガス の発生量を調整することを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一 項に記載の電気自動車。
2 3 . 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整するこ とにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガス の発生量を調整することを特徴とする請求の範囲第 1 2項に記載の電気自動車。
2 4 . 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整するこ とにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガス の発生量を調整することを特徴とする請求の範囲第 1 3項に記載の電気自動車。
2 5 . 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整するこ とにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガス の発生量を調整することを特徴とする請求の範囲第 1 5項に記載の電気自動車。
2 6 . 前記水素製造装置において前記有機物と水を含む燃料の濃度を調整するこ とにより、 前記燃料極と前記酸化極との間の電圧及び Z又は前記水素を含むガス の発生量を調整することを特徴とする請求の範囲第 1 8項に記載の電気自動車。
2 7 . 前記水素製造装置の運転温度が 1 0 0 °C以下であることを特徴とする請求 の範囲第 1項〜第 1 1項のいずれか一項に記載の電気自動車。
2 8 . 前記運転温度が 3 0〜9 0 °Cであることを特徴とする請求の範囲第 2 7項 に記載の電気自動車。
2 9 . 前記水素製造装置の運転温度が 1 0 0 °C以下であることを特徴とする請求 の範囲第 1 2項に記載の電気自動車。
3 0 . 前記水素製造装置の運転温度が 1 0 0で以下であることを特徴とする請求 の範囲第 1 3項に記載の電気自動車。
3 1 . 前記水素製造装置の運転温度が 1 0 0 °C以下であることを特徴とする請求 の範囲第 1 5項に記載の電気自動車。
3 2 . 前記水素製造装置の運転温度が 1 0 0 °C以下であることを特徴とする請求 の範囲第 1 8項に記載の電気自動車。
3 3 . 前記水素製造装置の運転温度が 1 0 0 °C以下であることを特徴とする請求 の範囲第 2 2項に記載の電気自動車。
3 4 . 前記水素製造装置の燃料極に供給する前記有機物がアルコール、 アルデヒ ド、 カルボン酸、 及びエーテルよりなる群から選択される一種又は二種以上の有 機物であることを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載 の電気自動車。
3 5 . 前記アルコールがメタノールであることを特徴とする請求の範囲第 3 4項 に記載の電気自動車。
3 6 . 前記水素製造装置の酸化極に供給する前記酸化剤が酸素を含む気体又は酸 素であることを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の 電気自動車。
3 7 . 前記水素製造装置の酸化極に供給する前記酸化剤が前記燃料電池又は他の 前記水素製造装置から排出される排空気であることを特徴とする請求の範囲第 3 6項に記載の電気自動車。
3 8 . 前記水素製造装置の酸化極に供給する前記酸化剤が過酸化水素を含む液体 であることを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電 気自動車。
3 9 . 前記水素製造装置の隔膜がプロトン導電性固体電解質膜であることを特徴 とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電気自動車。
4 0 . 前記プロトン導電性固体電解質膜がパーフルォロカーボンスルホン酸系固 体電解質膜であることを特徴とする請求の範囲第 3 9項に記載の電気自動車。
4 1 . 前記水素製造装置の燃料極の触媒が白金一ルテニウム合金を炭素粉末に担 持したものであることを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項 に記載の電気自動車。
4 2 . 前記水素製造装置の酸化極の触媒が白金を炭素粉末に担持したものである ことを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電気自動 車。
4 3 . 前記水素製造装置に前記有機物と水を含む燃料の循環手段を設けたことを 特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電気自動車。
4 4. 前記水素製造装置に前記水素を含むガスに含まれる二酸化炭素を吸収する 二酸化炭素吸収部を設けたことを特徴とする請求の範囲第 1項〜第 1 1項のいず れか一項に記載の電気自動車。
4 5 . 前記水素製造装置から発生した前記水素を含むガスを冷却せずに前記燃料 電池に供給することを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に 記載の電気自動車。
4 6 . 前記水素製造装置の発生する熱を遮断するための断熱材が設けられていな いことを特徴とする請求の範囲第 1項〜第 1 1項のいずれか一項に記載の電気自 動車。
PCT/JP2005/006711 2004-03-31 2005-03-30 電気自動車 WO2005095144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05728897A EP1733914A1 (en) 2004-03-31 2005-03-30 Electric car
US10/594,702 US7939210B2 (en) 2004-03-31 2005-03-30 Electric automobile

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-107931 2004-03-31
JP2004107931 2004-03-31
JP2004-342470 2004-11-26
JP2004342470 2004-11-26

Publications (1)

Publication Number Publication Date
WO2005095144A1 true WO2005095144A1 (ja) 2005-10-13

Family

ID=35063623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006711 WO2005095144A1 (ja) 2004-03-31 2005-03-30 電気自動車

Country Status (4)

Country Link
US (1) US7939210B2 (ja)
EP (1) EP1733914A1 (ja)
KR (1) KR20070012390A (ja)
WO (1) WO2005095144A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102014019690A2 (pt) * 2014-08-08 2016-05-03 Ct Nac De Pesquisa Em En E Materiais processo e célula para produção de energia elétrica por higroeletricidade e oxidação direta de substâncias sólidas e líquidas redutoras
CN106347161B (zh) * 2016-10-10 2018-09-18 广东合即得能源科技有限公司 一种燃料电池汽车的续航控制方法及燃料电池汽车
KR102448960B1 (ko) * 2021-09-23 2022-09-29 주식회사 델타엑스 수소 연료 자동차 및 과산화수소 순환 환경

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673583A (ja) * 1992-08-28 1994-03-15 Mitsui Toatsu Chem Inc メタノールの部分酸化物の製造方法
JPH11229167A (ja) * 1998-02-16 1999-08-24 Permelec Electrode Ltd 電解水素発生装置
JP2001297779A (ja) * 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd 燃料電池システム
JP3328993B2 (ja) * 1993-05-10 2002-09-30 住友電気工業株式会社 水素発生方法
JP3360349B2 (ja) * 1993-05-10 2002-12-24 住友電気工業株式会社 燃料電池
US20030226763A1 (en) * 1997-09-10 2003-12-11 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766330B1 (en) * 1989-12-27 2002-06-05 The Standard Oil Company Components for use in electrochemical cells and their use in oxygen separation
US5948221A (en) * 1994-08-08 1999-09-07 Ztek Corporation Pressurized, integrated electrochemical converter energy system
JP2002516755A (ja) * 1998-05-29 2002-06-11 プロートン エネルギー システムズ.インク 水の電気分解の流体管理システム
US6790554B2 (en) * 1998-10-08 2004-09-14 Imperial Chemical Industries Plc Fuel cells and fuel cell plates
DE10048030A1 (de) * 2000-09-26 2002-04-11 Degussa Verfahren zur elektrochemischen Herstellung von Wasserstoffperoxid
US6685821B2 (en) * 2001-08-29 2004-02-03 Giner Electrochemical Systems, Llc Method and system for producing high-pressure hydrogen
EP1733965A1 (en) * 2004-03-31 2006-12-20 GS Yuasa Corporation Submersible vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673583A (ja) * 1992-08-28 1994-03-15 Mitsui Toatsu Chem Inc メタノールの部分酸化物の製造方法
JP3328993B2 (ja) * 1993-05-10 2002-09-30 住友電気工業株式会社 水素発生方法
JP3360349B2 (ja) * 1993-05-10 2002-12-24 住友電気工業株式会社 燃料電池
US20030226763A1 (en) * 1997-09-10 2003-12-11 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
JPH11229167A (ja) * 1998-02-16 1999-08-24 Permelec Electrode Ltd 電解水素発生装置
JP2001297779A (ja) * 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
EP1733914A1 (en) 2006-12-20
KR20070012390A (ko) 2007-01-25
US20070190372A1 (en) 2007-08-16
US7939210B2 (en) 2011-05-10

Similar Documents

Publication Publication Date Title
JP5403198B2 (ja) 水素製造装置、それを用いた燃料電池発電装置、電気自動車、潜水船及び水素供給システム
WO2006070910A1 (ja) 独立型水素製造システム
WO2006070908A1 (ja) 燃料電池発電装置
JP4958059B2 (ja) 水素製造装置
KR101147917B1 (ko) 수소제조방법 및 그 방법에 사용하는 수소제조장치
US7476456B2 (en) Submarine boat
JP3812586B2 (ja) 水素供給システム
JP3818313B2 (ja) 潜水船
JP4958058B2 (ja) 燃料電池発電装置
WO2005095144A1 (ja) 電気自動車
JP4947338B2 (ja) 独立型水素製造システム
JP3818312B2 (ja) 電気自動車
JP5403199B2 (ja) ハニカム型水素製造装置、それを用いた燃料電池発電装置、電気自動車、潜水船及び水素供給システム、並びに水素製造セル用反応管
US7910252B2 (en) Hydrogen supply system
JP4863099B2 (ja) スタック型燃料電池発電装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10594702

Country of ref document: US

Ref document number: 2007190372

Country of ref document: US

Ref document number: 3620/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580010256.X

Country of ref document: CN

Ref document number: 1020067020296

Country of ref document: KR

Ref document number: 2005728897

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005728897

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020296

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10594702

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005728897

Country of ref document: EP