WO2005089943A1 - Process for producing composite oxide catalyst - Google Patents

Process for producing composite oxide catalyst Download PDF

Info

Publication number
WO2005089943A1
WO2005089943A1 PCT/JP2004/014379 JP2004014379W WO2005089943A1 WO 2005089943 A1 WO2005089943 A1 WO 2005089943A1 JP 2004014379 W JP2004014379 W JP 2004014379W WO 2005089943 A1 WO2005089943 A1 WO 2005089943A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
oxide catalyst
acid
producing
catalyst
Prior art date
Application number
PCT/JP2004/014379
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimune Abe
Isao Teshigahara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005089943A1 publication Critical patent/WO2005089943A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Definitions

  • the present invention provides a composite oxide catalyst for producing a corresponding unsaturated carboxylic acid stably over a long period of time and in a high yield by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas. And a method for producing the same.
  • the production scale for producing acrylic acid by reacting acrolein is usually carried out on a scale of 3 million tons Z years, so that even if the above conversion and selectivity are improved by 0.1%, it is obtained.
  • the amount of acrylic acid increases significantly at the level of hundreds and thousands of tons. Therefore, the improvement of the catalyst performance such as the conversion and the selectivity will contribute to the effective use of resources and the rationalization of the process, even if it is a slight improvement.
  • Patent Document 1 discloses that Mo Nb V Cu Si
  • Y represents at least one element selected from Mg, Ca, Sr, Ba and Zn
  • Z represents W, Ce, Sn, Cr, Mn, Fe, Co, Y, Nd, Sm, Ge and 1
  • a is 0 ⁇ a ⁇ 12, 0 ⁇ b ⁇ 10, 0 ⁇ c ⁇ 8, 0 ⁇ d ⁇ 1000, 0 ⁇ e ⁇ 1000, 0 ⁇ f ⁇ 2, 0 ⁇ g ⁇ 5, 0 ⁇ h ⁇ 5,
  • i is a number determined by the degree of oxidation of each of the above components excluding Si and C
  • Patent Document 2 discloses that a catalyst used in the same reaction as that applied to an applicant separate from the present applicant has a formula: Mo V Sb ABC (where A is composed of Nb and Ta Selected
  • B is Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Cr, W, Mn, Fe, Ru, Co, Ni or P
  • C is Ag , Zn, Ti, Sn, Pb, Cu, As or Se.
  • Patent Document 1 JP 2003-200055
  • Patent Document 2 JP-A-2000-317309
  • the present invention provides a method for producing an unsaturated carboxylic acid by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas to produce a high conversion of the raw material unsaturated aldehyde and a high unsaturated carboxylic acid.
  • a novel method for producing a composite oxide catalyst that provides selectivity and exhibits stable performance over a long period of time.
  • the inventor of the present invention has conducted intensive studies to achieve the above object. As a result, a group force consisting of Mo, V, X (Nb and W) which is the same as or similar to Patent Documents 1 and 2 described above was also selected.
  • the starting compound of each element is integrated in an aqueous medium in the presence of an organic acid, and the obtained integrated product is dried, molded, and calcined to obtain the catalyst performance. It has also been found that the conversion of unsaturated aldehydes is improved, and in particular, the selectivity of the target unsaturated carboxylic acid is improved.
  • Patent Documents 1 and 2 In the production of the composite oxide catalyst of the present invention, means for integrally integrating a source compound of each element in an aqueous medium in the presence of an organic acid is disclosed in Patent Documents 1 and 2. It is different from the usual method as shown.
  • the organic acid itself is not used in the production process of the catalyst of Patent Document 1.
  • Patent Document 2 uses oxalic acid, which is an organic acid used in the present invention in the catalyst manufacturing process, but has a different composition from the catalyst manufactured by the present invention, which contains Cu as an essential component.
  • oxalic acid is used to react with niobic acid to form a complex to dissolve water-insoluble niobic acid. It should not be used to integrate the source compound of each component in an aqueous medium.
  • the present invention is characterized by the following points.
  • Formula (1) Mo V X Cu Y C SiO (where Mo is molybdenum, V is vanadium, Cu is copper
  • C is carbon
  • Si is silicon
  • O oxygen
  • X is at least one element selected from Nb and W
  • Y is a group consisting of Sb, Mg, Ca, Sr, Ba and Zn
  • At least one element selected from a, b, c, d, e, f and g indicate the atomic ratio of each element, and 0 ⁇ a ⁇ 12, 0 ⁇ b ⁇ 12, 0 ⁇ c ⁇ 12, 0 ⁇ d ⁇ 8, 0 ⁇ e ⁇ 1000, 0 ⁇ f ⁇ 1000, and g is a number determined by the number of oxygen atoms necessary to satisfy the acid state of other elements except Si and c in each of the above components).
  • the source compound of each component element is integrated in the presence of an organic acid, and the resulting aqueous solution or dispersion of the integrated product is dried to form a powder.
  • a method for producing a composite oxide catalyst comprising: preparing a powder of the above, and firing a molded product obtained by molding the powder.
  • the composite oxide catalyst converts the unsaturated aldehyde into a gas phase catalytic acid with a molecular oxygen-containing gas.
  • an unsaturated aldehyde is produced by gas phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas to produce an unsaturated carboxylic acid! Accordingly, there is provided a method for producing a composite oxide catalyst which provides a high conversion rate of a raw material unsaturated aldehyde and a high selectivity of an unsaturated carboxylic acid, and shows stable performance over a long period of time.
  • the conversion rate of acrolein per catalyst unit is improved, the selectivity of acrylic acid for the catalyst is improved, and the activity of V-complex oxidation for efficiently performing the gas phase catalytic oxidation reaction of acrolein is improved.
  • Product catalyst can be manufactured.
  • the composite oxide catalyst produced by the present invention is represented by the above formula.
  • X, Y, a, b, c, d, e, f, and g are respectively as described above.
  • Such a composite oxide catalyst of the present invention is produced by integrating a source compound of each catalyst component constituting the above formula in the presence of an organic acid.
  • the term "source compound of each catalyst component” means that the source compound of each catalyst component element is mixed in an aqueous medium system, preferably an aqueous solution or an aqueous dispersion, and optionally mixed. Aging treatment.
  • the above-mentioned constant time preferably refers to a range of 1 minute to 24 hours, and the constant temperature preferably ranges from room temperature to 200 ° C.
  • the above integration not only the source compound of each element constituting the catalyst but also a carrier material such as alumina, silica, and a heat-resistant oxide may be included as a target of such an integration. it can.
  • an organic acid having a property of being easily soluble in water can be used.
  • citric acid, oxalic acid and malic acid are preferably at least one selected from the group.
  • the amount of the organic acid is preferably 0.001 to 1 mol, more preferably 0.01 to 0.5 mol, per mol of mol.
  • the amount of the organic acid is less than 0.001 mol, no improvement in the catalytic performance is observed.On the contrary, when the amount of the organic acid is more than 1 mol, the catalytic performance deteriorates, which is preferable. Absent.
  • the source compound of each component of the composite oxide catalyst of the present invention is not particularly limited as long as it is water-soluble or hardly water-soluble, as long as it is a compound that becomes an oxidized product by firing, excluding the silicon carbide compound. Absent. Specific examples of the compound include halides, sulfates, nitrates, ammonium salts, oxides, carboxylate salts, ammonium carboxylate salts, ammonium halide salts, ammonium hydroxide salts, hydrogen acids, and acetyl acetonate of each component. And alkoxides. Specific examples of the raw material compounds of silicon and carbon include green silicon carbide and black silicon carbide, and silicon carbide is preferably a fine powder. As the raw material compound, a compound containing each component alone may be used, or a raw material compound containing two or more components may be used.
  • an aqueous solution or aqueous dispersion of the above-mentioned source compound of the catalyst constituent element component is prepared.
  • these aqueous solutions or aqueous dispersions are also referred to as slurry solutions.
  • the slurry solution can be obtained by uniformly mixing the source compound of each component with water.
  • the use ratio of the raw material compound of each component in the slurry solution is determined by the above formula based on the atomic ratio of each catalyst constituent element. May be in the range shown in FIG.
  • the organic acid is preferably added at the stage after dissolving Mo and V, even if the organic acid can be added after or during the preparation of the slurry solution.
  • the amount of water in the slurry solution is not particularly limited as long as the raw material compounds of the respective components can be completely dissolved or uniformly dispersed. However, the subsequent drying method, drying temperature, and drying are performed. What is necessary is just to determine suitably considering drying conditions, such as time.
  • the amount of water is usually 100 to 2,000 parts by weight based on 100 parts by weight of the total amount of the starting material. If the amount of water is less than the above-mentioned predetermined amount, the compound may not be completely dissolved or may not be mixed uniformly. Also, if the amount of water is large, there is a risk that the energy cost during the heat treatment will increase. Through mixing and stirring in the preparation process of the slurry solution, the integration of each element constituting the catalyst proceeds.
  • the temperature is preferably room temperature to 200 ° C., particularly preferably 70 to 200 ° C.
  • the aging treatment is preferably performed at 100 ° C, preferably for 1 minute to 24 hours, particularly preferably for 30 minutes to 6 hours.
  • the aqueous solution or the aqueous dispersion is dried to form a powder.
  • the drying is not particularly limited as long as the aqueous solution or the aqueous dispersion can be sufficiently dried and a powder can be obtained, and examples thereof include drum drying, freeze drying, and spray drying.
  • Spray drying is a method that can be preferably applied to the present invention because it can be dried to a homogeneous powder state in a short time in an aqueous solution or aqueous dispersion.
  • the drying temperature varies depending on the concentration of the slurry solution and the like, and is usually 90 to 200 ° C, preferably 130 to 170 ° C.
  • the particle size of the powder obtained by vigorous drying is preferably 10-200 / zm. For this reason, the powder can optionally be dried and then powdered.
  • the powder obtained by the drying is molded as follows.
  • the molding method is not particularly limited.
  • the molding is performed using a binder.
  • Preferred binders are selected from silica, graphite and crystalline cellulose as well as group forces.
  • the solder can be used in an amount of preferably about 110 to 50 parts by weight based on 100 parts by weight of the powder.
  • inorganic fibers such as ceramics fibers and whiskers can be used as a material for improving the mechanical strength of the catalyst particles.
  • potassium titanate whiskers and basic magnesium carbonate whiskers Fibers that react with such catalyst components are not preferred. Ceramic fibers are particularly preferred for improving strength.
  • the amount of these fibers used is preferably 1 to 30 parts by weight based on 100 parts by weight of the powder.
  • the above-mentioned molding aid is usually used by being previously mixed with a powder.
  • the powder mixed with a molding aid such as a binder is molded by a method such as (A) tablet molding, (B) extrusion molding, and (C) a spherical or other shape supporting molding method.
  • the shape of the molded body is preferably selected to be an appropriate shape such as a sphere, a column, or a ring.
  • the molded product thus formed is then calcined to obtain a composite catalyst.
  • the sintering temperature can be usually 250-500 ° C, preferably 300-420 ° C, and the sintering time is 150 hours.
  • the calcination can be performed in an atmosphere in the presence of an inert gas or molecular oxygen. When the firing temperature is too low, the molybdenum element may be lost due to sublimation if the thermal diffusion of the element is too high.
  • the reaction is carried out using a fixed-bed tube reactor. In this case, the reaction can be carried out under a condition generally used for this type of reaction, whether it is a single flow method or a recycling method through a reactor.
  • the night bath used in the examples is a salt bath in which a reaction tube is placed in a heat medium which also has a nitrate power of an alkali metal and reacts.
  • the heat medium is melted at 200 ° C or higher and used up to 400 ° C. It is possible and has good heat removal efficiency, so it is a reaction bath suitable for an oxidation reaction that generates a large amount of heat.
  • the acrolein conversion, acrylic acid selectivity, and acrylic acid yield are defined by the following formulas.
  • Akurorein conversion (mol 0/0) 100 X (moles of reacted Akurorein) / (number of moles of the supplied Akurorein)
  • Acrylic acid selectivity (mol%) 100 X (number of moles of acrylic acid generated) Z (number of moles of acrolein subjected to transfer)
  • Acrylic acid yield (mol 0/0) 100 X (acrylic acid mol number generated) Z (Akurore Inmoru number of supplied)
  • a composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
  • Example 2 A composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
  • the acrolein conversion ratio was 99.0%
  • the selectivity for acrylic acid was 97.2%
  • the yield of atalylic acid was 96.2%.
  • a composite metal whose empirical formula for the components other than oxygen is Mo V Nb W Cu Sb Si C
  • An acidified product was prepared as follows.
  • the acrolein conversion rate was 99.0%
  • the selectivity for acrylic acid was 98.7%
  • the yield of atalylic acid was 97.7%.
  • a composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
  • the catalyst produced by the method of the present invention is used for producing a corresponding unsaturated carboxylic acid in a high yield by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas.
  • Manufactured unsaturated carboxylic acids such as acrylic acid are widely used as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, thickeners, etc. Used for

Abstract

A process for producing a composite oxide catalyst with which an unsaturated aldehyde is catalytically oxidized in a vapor phase with a gas containing molecular oxygen to stably produce the corresponding unsaturated carboxylic acid in high yield over long. The process, which is for producing a composite oxide catalyst represented by the formula Mo12VaXbCucYdCeSifOg (wherein X represents at least one element selected between niobium and tungsten; Y represents at least one element selected from the group consisting of antimony, magnesium, calcium, strontium, barium, and zinc; and a, b, c, d, e, f, and g, which indicate the atomic proportions of the respective elements, are as follows: 0<a≤12, 0≤b≤12, 0<c≤12, 0≤d≤8, 0≤e≤1,000, and 0≤f≤1,000 when the number of molybdenum atoms is 12, and g is the number of oxygen atoms satisfying the oxidized states of the constituent elements excluding silicon and carbon in the formula), comprises uniting source compounds for the respective elements in an aqueous medium system in the presence of an organic acid, drying the resultant aqueous solution or dispersion of the united matter to prepare a powder, molding the powder, and burning the molding.

Description

明 細 書  Specification
複合酸化物触媒の製造方法  Method for producing composite oxide catalyst
技術分野  Technical field
[0001] 本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して、長期 にわたり安定して、かつ高収率で対応する不飽和カルボン酸を製造するための複合 酸化物触媒の製造方法に関する。  The present invention provides a composite oxide catalyst for producing a corresponding unsaturated carboxylic acid stably over a long period of time and in a high yield by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas. And a method for producing the same.
背景技術  Background art
[0002] 従来、ァクロレイン、メタクロレインなどの不飽和アルデヒドを分子状酸素により気相 接触酸ィ匕してアクリル酸、メタクリル酸などの不飽和カルボン酸を製造するための触 媒が種々提案されている。これらの触媒は、ォレフインカ 製造される不飽和アルデ ヒド原料の有効利用及び反応における工程の合理化の観点から、少しでも高 ヽ不飽 和アルデヒドの転化率や目的物である不飽和カルボンの選択率が求められる。この 場合、例えば、ァクロレインを反応してアクリル酸を製造する生産規模は、通常、 300 万トン Z年の規模で行われるので、上記転化率や選択率が 0. 1%でも向上すると、 得られるアクリル酸の量は、数百一数千トンのレベルで大きく増加する。したがって、 転化率や選択率等の触媒性能の向上は、たとえ少しの向上であっても、資源の有効 活用や工程の合理ィ匕に大幅に寄与する。  [0002] Conventionally, various catalysts have been proposed for producing unsaturated carboxylic acids such as acrylic acid and methacrylic acid by subjecting unsaturated aldehydes such as acrolein and methacrolein to gas-phase catalytic oxidation with molecular oxygen. I have. From the viewpoint of effective use of unsaturated aldehyde raw materials produced by Olefinka and rationalization of the process in the reaction, these catalysts have a high conversion rate of unsaturated aldehydes and selectivity of unsaturated carboxylic acids as target products. Desired. In this case, for example, the production scale for producing acrylic acid by reacting acrolein is usually carried out on a scale of 3 million tons Z years, so that even if the above conversion and selectivity are improved by 0.1%, it is obtained. The amount of acrylic acid increases significantly at the level of hundreds and thousands of tons. Therefore, the improvement of the catalyst performance such as the conversion and the selectivity will contribute to the effective use of resources and the rationalization of the process, even if it is a slight improvement.
[0003] 従来、これらの反応の原料転化率や選択率等の触媒性能の改善を目指して種々 の提案がなされている。本出願人も、そのための優れた性能を有する複合酸化物触 媒として、例えば、特許文献 1などを提案してきた。特許文献 1は、 Mo Nb V Cu Si  [0003] Conventionally, various proposals have been made with the aim of improving the catalyst performance such as the raw material conversion and selectivity of these reactions. The present applicant has also proposed, for example, Patent Document 1 and the like as a composite oxide catalyst having excellent performance for that purpose. Patent Document 1 discloses that Mo Nb V Cu Si
12 a b o d 12 a b o d
C X Y Z O (式中、 Xは、アルカリ金属及び Tl力 選ばれた少なくとも 1種の元素を e f g h 1 C X Y Z O (where X is an alkali metal and Tl force at least one selected element is e f g h 1
示し、 Yは Mg、 Ca、 Sr、 Ba及び Znから選ばれた少なくとも 1種の元素を示し、 Zは W 、 Ce、 Sn、 Cr、 Mn、 Fe、 Co、 Y、 Nd、 Sm、 Ge及び 1から選ばれた少なくとも 1種の 元素を表す。 a、 b、 c、 d、 e、 f及び gは各元素の原子比を表し、モリブデン原子 12に対 して、 aは 0< a≤12、 0<b≤10、 0< c≤8、 0< d≤1000、 0< e≤1000、 0≤f≤2 、 0≤g< 5、 0≤h< 5, iは前記各成分のうち Siと Cを除いた酸ィ匕度によって決まる数 である)を有する組成を有する触媒である。 [0004] また、特許文献 2には、本出願人とは別個の出願人に力かる力 同じ反応に使用さ れる触媒として、式: Mo V Sb ABC (式中、 Aは Nb及び Taからなる群から選ばれ Y represents at least one element selected from Mg, Ca, Sr, Ba and Zn, and Z represents W, Ce, Sn, Cr, Mn, Fe, Co, Y, Nd, Sm, Ge and 1 Represents at least one element selected from a, b, c, d, e, f, and g represent the atomic ratio of each element.For molybdenum atom 12, a is 0 <a≤12, 0 <b≤10, 0 <c≤8, 0 <d≤1000, 0 <e≤1000, 0≤f≤2, 0≤g <5, 0≤h <5, i is a number determined by the degree of oxidation of each of the above components excluding Si and C Is a catalyst having a composition having the following formula: [0004] Further, Patent Document 2 discloses that a catalyst used in the same reaction as that applied to an applicant separate from the present applicant has a formula: Mo V Sb ABC (where A is composed of Nb and Ta Selected from the group
12 g h i i k  12 g h i i k
た一種以上の元素であり、 Bは、 Na、 K、 Rb、 Cs、 Mg、 Ca、 Sr、 Ba、 Cr、 W、 Mn、 Fe、 Ru、 Co、 Ni又は Pであり、また Cは、 Ag、 Zn、 Ti、 Sn、 Pb、 Cu、 As又は Seであ る。 g及び hは各々 0. 01—1. 5であり、力つ hZg = 0. 3—1. 0であり、 iは 0. 001— 3. 0、 Jは 0001—0. 1、 ま0—0. 05である)で表される触媒が開示されている。  B is Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Cr, W, Mn, Fe, Ru, Co, Ni or P, and C is Ag , Zn, Ti, Sn, Pb, Cu, As or Se. g and h are 0.01-1.5, respectively, and force hZg = 0.3-1.0, i is 0.001-3.0, J is 0001-0.1, and 0- 0.05) is disclosed.
[0005] しカゝしながら、これらの従来の複合酸化物触媒は、それぞれ優れた性能を示すもの の、更なる高!ヽ原料不飽和アルデヒド転化率や不飽和カルボン酸選択率の性能向 上が望まれている。 [0005] However, these conventional composite oxide catalysts exhibit excellent performances, respectively, but have higher performances. [1] Improvement in the conversion of raw material unsaturated aldehydes and unsaturated carboxylic acid selectivity. Is desired.
特許文献 1:特開 2003— 200055号公報  Patent Document 1: JP 2003-200055
特許文献 2:特開 2000-317309号公報  Patent Document 2: JP-A-2000-317309
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽 和カルボン酸を製造する際に、原料不飽和アルデヒドの高転化率及び不飽和カルボ ン酸の高選択率を与え、かつ長期にわたつて安定した性能を示す複合酸化物触媒 の新規な製造方法を提供する。 [0006] The present invention provides a method for producing an unsaturated carboxylic acid by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas to produce a high conversion of the raw material unsaturated aldehyde and a high unsaturated carboxylic acid. A novel method for producing a composite oxide catalyst that provides selectivity and exhibits stable performance over a long period of time.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、上記目的を達成すべく鋭意研究を進めたところ、上記した特許文献 1 や特許文献 2と同一乃至類似の Mo、 V、 X(Nb及び Wからなる群力も選ばれた少な くとも一種の元素)、 Y(Sb、 Mg、 Ca、 Sr、 Ba及び Zn力 なる群力 選ばれた少なく とも一種の元素)、 Cu、 Si及び Cを含有する複合酸化物触媒であるが、この触媒を製 造する場合に、各元素の原料化合物を有機酸の存在下に水性媒体中にて一体化し 、得られる一体化物を乾燥し、成形し、焼成することにより、その触媒性能、不飽和ァ ルデヒドの転化率が向上し、特に目的物である不飽和カルボン酸の選択率が向上す ることを見出した。 [0007] The inventor of the present invention has conducted intensive studies to achieve the above object. As a result, a group force consisting of Mo, V, X (Nb and W) which is the same as or similar to Patent Documents 1 and 2 described above was also selected. A composite oxide catalyst containing at least one element), Y (at least one element selected from the group consisting of Sb, Mg, Ca, Sr, Ba and Zn), Cu, Si and C However, when producing this catalyst, the starting compound of each element is integrated in an aqueous medium in the presence of an organic acid, and the obtained integrated product is dried, molded, and calcined to obtain the catalyst performance. It has also been found that the conversion of unsaturated aldehydes is improved, and in particular, the selectivity of the target unsaturated carboxylic acid is improved.
[0008] 本発明の上記複合酸化物触媒の製造において、各元素の供給源化合物を有機酸 の存在下に水性媒体中にて一体ィ匕するという手段は、特許文献 1や特許文献 2に開 示されるような通常の方法とは異なるものである。特許文献 1の触媒の製造過程では 有機酸自体が使用されていない。特許文献 2には、触媒製造過程で本発明で使用さ れる有機酸であるシユウ酸が使用されているが、そもそも、 Cuを必須の成分とする本 発明で製造される触媒とは組成が異なり、また、特許文献 2の場合には、かかるシュ ゥ酸はニオブ酸と反応させて錯体を形成して水不溶性のニオブ酸を溶解させるため に使用されるものであり、本発明のように触媒の各成分の供給源化合物を水性媒体 中にて一体ィ匕させるためには使用されては ヽな 、。 [0008] In the production of the composite oxide catalyst of the present invention, means for integrally integrating a source compound of each element in an aqueous medium in the presence of an organic acid is disclosed in Patent Documents 1 and 2. It is different from the usual method as shown. The organic acid itself is not used in the production process of the catalyst of Patent Document 1. Patent Document 2 uses oxalic acid, which is an organic acid used in the present invention in the catalyst manufacturing process, but has a different composition from the catalyst manufactured by the present invention, which contains Cu as an essential component. In Patent Document 2, such oxalic acid is used to react with niobic acid to form a complex to dissolve water-insoluble niobic acid. It should not be used to integrate the source compound of each component in an aqueous medium.
[0009] 本発明の製造方法で、触媒の各成分の供給源化合物を有機酸の存在下にて水性 媒体中にて一体化させる場合、有機酸は触媒を構成する各成分元素に配位すること により、成分元素同士の結合を抑制し、最終的に得られる複合酸化物触媒の構造、 酸化還元状態、及び触媒成分の担体上での分散状態を変化させることによりその特 性が改良されるものである。  [0009] In the production method of the present invention, when the source compound of each component of the catalyst is integrated in an aqueous medium in the presence of an organic acid, the organic acid coordinates to each component element constituting the catalyst. As a result, the bonding between the component elements is suppressed, and the characteristics are improved by changing the structure, redox state, and dispersion state of the catalyst component on the carrier of the finally obtained composite oxide catalyst. Things.
[0010] 力べして、本発明は、下記の要旨を特徴とするものである。  The present invention is characterized by the following points.
(1)式: Mo V X Cu Y C SiO (式中、 Moはモリブデン、 Vはバナジウム、 Cuは銅  Formula (1): Mo V X Cu Y C SiO (where Mo is molybdenum, V is vanadium, Cu is copper
12 a b c d e f g  12 a b c d e f g
、 Cは炭素、 Siはケィ素、 Oは酸素を示し、 Xは, Nb及び Wから選ばれた少なくとも一 種の元素を示し、 Yは Sb、 Mg、 Ca、 Sr、 Ba及び Znからなる群から選ばれた少なくと も一種の元素を示す。 a、 b、 c、 d、 e、 f及び gは各元素の原子比を示し、 0< a≤12、 0≤b≤12, 0< c≤12、 0≤d≤8, 0≤e≤1000, 0≤f≤ 1000を満足し、 gは、前記 各成分のうち Siと cを除いた他の元素の酸ィヒ状態を満足するのに必要な酸素原子 数によって決まる数である)で表される複合酸化物触媒の製造にお!、て、各成分元 素の供給源化合物を有機酸の存在下に一体化させ、得られる一体化物の水溶液又 は分散液を乾燥して粉体を調製し、該粉末を成形した成形物を焼成することを特徴 とする複合酸化物触媒の製造方法。  , C is carbon, Si is silicon, O is oxygen, X is at least one element selected from Nb and W, Y is a group consisting of Sb, Mg, Ca, Sr, Ba and Zn At least one element selected from a, b, c, d, e, f and g indicate the atomic ratio of each element, and 0 <a≤12, 0≤b≤12, 0 <c≤12, 0≤d≤8, 0≤e≤ 1000, 0≤f≤1000, and g is a number determined by the number of oxygen atoms necessary to satisfy the acid state of other elements except Si and c in each of the above components). In the manufacture of the composite oxide catalyst represented by the formula, the source compound of each component element is integrated in the presence of an organic acid, and the resulting aqueous solution or dispersion of the integrated product is dried to form a powder. A method for producing a composite oxide catalyst, comprising: preparing a powder of the above, and firing a molded product obtained by molding the powder.
(2)有機酸を、モリブデン 1モルに対して 0. 001— 1モル存在させる上記(1)に記載 の複合酸化物触媒の製造方法。  (2) The method for producing a composite oxide catalyst according to the above (1), wherein the organic acid is present in an amount of 0.001 to 1 mol per mol of molybdenum.
(3)有機酸がクェン酸、シユウ酸及びリンゴ酸カゝら選ばれた少なくとも 1種である上記( 1)又は(2)に記載の複合酸化物触媒の製造方法。  (3) The method for producing a composite oxide catalyst according to the above (1) or (2), wherein the organic acid is at least one selected from citric acid, oxalic acid, and malic acid.
(4)複合酸化物触媒が、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸 化して対応する不飽和カルボン酸を製造するための触媒である上記(1)一(3)のい ずれかに記載の複合酸化物触媒の製造方法。 (4) The composite oxide catalyst converts the unsaturated aldehyde into a gas phase catalytic acid with a molecular oxygen-containing gas. The method for producing a composite oxide catalyst according to any one of the above (1) to (3), which is a catalyst for producing a corresponding unsaturated carboxylic acid by conversion into a catalyst.
(5)上記(1)一 (4)の ヽずれかに記載の製造方法で製造された複合酸化物触媒の 存在下にァクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアタリ ル酸を製造する方法。  (5) Gas-phase catalytic oxidation of acrolein with a molecular oxygen-containing gas in the presence of the composite oxide catalyst produced by the production method according to any one of (1) to (4) above, and the corresponding atalyl A method for producing an acid.
発明の効果  The invention's effect
[0011] 本発明によれば、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して 不飽和カルボン酸を製造する場合にお!ヽて、原料不飽和アルデヒドの高転化率及び 不飽和カルボン酸の高選択率を与え、かつ長期にわたつて安定した性能を示す複 合酸化物触媒の製造方法が提供される。  According to the present invention, when an unsaturated aldehyde is produced by gas phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas to produce an unsaturated carboxylic acid! Accordingly, there is provided a method for producing a composite oxide catalyst which provides a high conversion rate of a raw material unsaturated aldehyde and a high selectivity of an unsaturated carboxylic acid, and shows stable performance over a long period of time.
[0012] 特に、触媒単位あたりのァクロレインの転ィ匕率が向上し、さらに触媒のアクリル酸の 選択率が改良され、ァクロレインの気相接触酸化反応を効率よく行なえる活性の高 V、複合酸化物触媒が製造できる。  [0012] In particular, the conversion rate of acrolein per catalyst unit is improved, the selectivity of acrylic acid for the catalyst is improved, and the activity of V-complex oxidation for efficiently performing the gas phase catalytic oxidation reaction of acrolein is improved. Product catalyst can be manufactured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明で製造される複合酸化物触媒は前記の式で表される。前記式にお!ヽて、 X 、 Y、 a、 b、 c、 d、 e、 f及び gは、それぞれ前記したとおりである。なかでも、特に好まし くは 0. l≤a≤6, 0. l≤b≤6, 0. l≤c≤6, 0. 01≤d≤6, 5≤e≤500, 5≤f≤5 00である。 [0013] The composite oxide catalyst produced by the present invention is represented by the above formula. In the above formula, X, Y, a, b, c, d, e, f, and g are respectively as described above. Especially preferred are 0.l≤a≤6, 0.l≤b≤6, 0.l≤c≤6, 0.01≤d≤6, 5≤e≤500, 5≤f≤ 500.
[0014] 本発明のかかる複合酸化物触媒は、上記の式を構成する各触媒成分の供給源化 合物を有機酸の存在下での一体化することによって製造される。ここで、各触媒成分 の供給源化合物を一体ィ匕するとは、好ましくは水溶液又は水分散液力 なる水性媒 体系にお 1、て各触媒成分元素の供給源化合物を混合し、必要に応じて熟成処理す ることをいう。すなわち、(ィ)上記の各供給源化合物を一括して混合する方法、(口) 上記の各供給源化合物を一括して混合し、さらに熟成処理する方法、(ハ)上記の各 供給源化合物を段階的に混合する方法、(二)上記の各供給源化合物を段階的に混 合 ·熟成処理を繰り返す方法及び Z又は力かる (ィ)一(二)を組み合わせた方法は、 いずれも上記各触媒成分元素の供給源化合物の水性媒体系での一体化に含まれ る。 [0015] なお、上記の「熟成」は、化学大辞典 (共立出版)にも記載があるように「工業原料ま たは半製品を、一定時間、一定温度などの特定条件の下に処理して必要とする物理 性、化学性の取得、上昇または所定反応の進行などを図る操作」のことをいう。なお、 上記の一定時間は、この発明において好ましくは 1分一 24時間の範囲をいい、また、 上記の一定温度は好ましくは室温一 200°Cの範囲である。また、上記一体化におい ては、触媒を構成する各元素の供給源化合物のみならず、アルミナ、シリカ、耐熱性 酸ィ匕物などの担体材料もそのような一体ィ匕の対象として含むことができる。 [0014] Such a composite oxide catalyst of the present invention is produced by integrating a source compound of each catalyst component constituting the above formula in the presence of an organic acid. Here, the term "source compound of each catalyst component" means that the source compound of each catalyst component element is mixed in an aqueous medium system, preferably an aqueous solution or an aqueous dispersion, and optionally mixed. Aging treatment. (A) a method of collectively mixing the above-mentioned source compounds, (mouth) a method of collectively mixing the above-mentioned source compounds and further aging treatment, (c) a method of each of the above-mentioned source compounds (2) Stepwise mixing of each of the above source compounds · Repeating the aging treatment and Z or vigorous (a) Method combining (1) It is included in the integration of the source compound of each catalyst component element in the aqueous medium system. [0015] As described in the Chemical Dictionary (Kyoritsu Shuppan), the term "aging" refers to "treatment of industrial raw materials or semi-finished products under specific conditions such as fixed time and constant temperature." Operation to obtain and increase the required physical properties and chemical properties or to advance a predetermined reaction ”. In the present invention, the above-mentioned constant time preferably refers to a range of 1 minute to 24 hours, and the constant temperature preferably ranges from room temperature to 200 ° C. In addition, in the above integration, not only the source compound of each element constituting the catalyst but also a carrier material such as alumina, silica, and a heat-resistant oxide may be included as a target of such an integration. it can.
[0016] 本発明の力かる触媒を構成する各元素の供給源化合物の一体ィ匕の際に存在させ る有機酸としては、水に易溶な性質を有する有機酸が使用できる。なかでも、クェン 酸、シユウ酸及びリンゴ酸カも選ばれた少なくとも 1種であるのが好ましい。有機酸の 存在量は、 Molモルに対し 0. 001— 1モルが好ましぐ特に好ましくは 0. 01-0. 5 モルが好適である。有機酸の存在量が、 0. 001モルより小さい場合には、触媒性能 の向上が見られなくなり、逆に、有機酸の存在量が、 1モルより大きい場合には、触媒 性能が低下し好ましくない。  As the organic acid to be present when the source compounds of the respective elements constituting the powerful catalyst of the present invention are integrated, an organic acid having a property of being easily soluble in water can be used. Among them, citric acid, oxalic acid and malic acid are preferably at least one selected from the group. The amount of the organic acid is preferably 0.001 to 1 mol, more preferably 0.01 to 0.5 mol, per mol of mol. When the amount of the organic acid is less than 0.001 mol, no improvement in the catalytic performance is observed.On the contrary, when the amount of the organic acid is more than 1 mol, the catalytic performance deteriorates, which is preferable. Absent.
[0017] 本発明の複合酸化物触媒の各成分の供給源化合物は、炭化珪素化合物を除き、 焼成によって酸ィ匕物になる化合物であれば、水溶性でも水難溶性でも特に制限され るものではない。化合物の具体例としては、各成分のハロゲン化物、硫酸塩、硝酸塩 、アンモニゥム塩、酸化物、カルボン酸塩、カルボン酸アンモニゥム塩、ハロゲン化ァ ンモ -ゥム塩、水素酸、ァセチルァセトナート、アルコキシド等が挙げられる。また、ケ ィ素および炭素の原料化合物の具体例としては、緑色炭化ケィ素、黒色炭化ケィ素 などが挙げられ、炭化珪素は微粉体のものが好ましい。原料化合物は、各成分を単 独で含有するものを用いてもよぐ 2種以上の成分を含有する原料化合物を用いても よい。  [0017] The source compound of each component of the composite oxide catalyst of the present invention is not particularly limited as long as it is water-soluble or hardly water-soluble, as long as it is a compound that becomes an oxidized product by firing, excluding the silicon carbide compound. Absent. Specific examples of the compound include halides, sulfates, nitrates, ammonium salts, oxides, carboxylate salts, ammonium carboxylate salts, ammonium halide salts, ammonium hydroxide salts, hydrogen acids, and acetyl acetonate of each component. And alkoxides. Specific examples of the raw material compounds of silicon and carbon include green silicon carbide and black silicon carbide, and silicon carbide is preferably a fine powder. As the raw material compound, a compound containing each component alone may be used, or a raw material compound containing two or more components may be used.
[0018] 本発明の製造方法における好ましい具体的態様を順に説明すると、まず上記した 触媒構成元素成分の供給源化合物の水溶液または水分散体を調製する。本発明で は、これらの水溶液または水分散液をスラリー溶液ともいう。スラリー溶液は、各構成 成分の供給源化合物を水と均一に混合して得ることができる。スラリー溶液における 各構成成分の原料化合物の使用割合は、各触媒構成元素の原子比が上記した式 に示される範囲であればよい。有機酸は、スラリー溶液を調製した後、又は調製する 途中に添加することができる力 なかでも、 Moおよび Vを溶解した後の段階で添カロ するのが好ましい。 [0018] Preferred specific embodiments of the production method of the present invention will be described in order. First, an aqueous solution or aqueous dispersion of the above-mentioned source compound of the catalyst constituent element component is prepared. In the present invention, these aqueous solutions or aqueous dispersions are also referred to as slurry solutions. The slurry solution can be obtained by uniformly mixing the source compound of each component with water. The use ratio of the raw material compound of each component in the slurry solution is determined by the above formula based on the atomic ratio of each catalyst constituent element. May be in the range shown in FIG. The organic acid is preferably added at the stage after dissolving Mo and V, even if the organic acid can be added after or during the preparation of the slurry solution.
[0019] スラリー溶液中の水の量は、各成分の原料化合物を完全に溶解又は均一に分散 できる量であれば特に限定されな 、が、続、て行われる乾燥方法や乾燥温度や乾 燥時間等の乾燥条件を勘案して適宜に決定すればよい。水の量は、通常、原料ィ匕 合物の合計 100重量部に対して 100— 2000重量部である。水の量が上記所定量 未満の少量では化合物を完全に溶解できず、又は均一に混合できな 、ことがある。 また、水の量が多量であれば、熱処理時のエネルギーコストがかさむという恐れが生 じる。スラリー溶液の調製過程における混合や攪拌を通じて、上記触媒を構成する各 元素成分の一体ィ匕は進行するが、一体化をさらに促進するために、好ましくは室温 一 200°C、特に好ましくは 70— 100°Cで、好ましくは 1分一 24時間、特に好ましくは 3 0分一 6時間熟成処理されるのが好適である。  [0019] The amount of water in the slurry solution is not particularly limited as long as the raw material compounds of the respective components can be completely dissolved or uniformly dispersed. However, the subsequent drying method, drying temperature, and drying are performed. What is necessary is just to determine suitably considering drying conditions, such as time. The amount of water is usually 100 to 2,000 parts by weight based on 100 parts by weight of the total amount of the starting material. If the amount of water is less than the above-mentioned predetermined amount, the compound may not be completely dissolved or may not be mixed uniformly. Also, if the amount of water is large, there is a risk that the energy cost during the heat treatment will increase. Through mixing and stirring in the preparation process of the slurry solution, the integration of each element constituting the catalyst proceeds. However, in order to further promote the integration, the temperature is preferably room temperature to 200 ° C., particularly preferably 70 to 200 ° C. The aging treatment is preferably performed at 100 ° C, preferably for 1 minute to 24 hours, particularly preferably for 30 minutes to 6 hours.
[0020] 次いで、上記水溶液又は水分散液は乾燥することにより粉体とされる。乾燥は、水 溶液又は水分散液を充分に乾燥でき、粉体が得られる方法であれば特に制限はなく 、例えばドラム乾燥、凍結乾燥、噴霧乾燥等が好ましい方法として挙げられる。噴霧 乾燥は、水溶液又は水分散液力 短時間に均質な粉体状態に乾燥することができる ので、本発明に好ましく適用できる方法である。  Next, the aqueous solution or the aqueous dispersion is dried to form a powder. The drying is not particularly limited as long as the aqueous solution or the aqueous dispersion can be sufficiently dried and a powder can be obtained, and examples thereof include drum drying, freeze drying, and spray drying. Spray drying is a method that can be preferably applied to the present invention because it can be dried to a homogeneous powder state in a short time in an aqueous solution or aqueous dispersion.
[0021] 上記乾燥の温度は、スラリー溶液の濃度等によっても異なる力 通常 90— 200°C、 好ましくは 130— 170°Cにて行われる。力かる乾燥により得られる粉体の粒径は、好 ましくは 10— 200 /z mとなるようにするのが好ましい。このため粉体は、場合により乾 燥後粉枠することもできる。  [0021] The drying temperature varies depending on the concentration of the slurry solution and the like, and is usually 90 to 200 ° C, preferably 130 to 170 ° C. The particle size of the powder obtained by vigorous drying is preferably 10-200 / zm. For this reason, the powder can optionally be dried and then powdered.
[0022] 上記乾燥により得られる粉体は、次 、で成形される。成形方法に特に制限はなぐ 好ましくはバインダーを使用して成形される。好ましいバインダーは、シリカ、グラファ イト及び結晶性セルロース力もなる群力も選ばれる。ノ インダ一は、粉体 100重量部 に対して好ましくは約 1一 50重量部程度使用できる。また、また、必要によりセラミック ス繊維、ウイスカ一等の無機繊維を触媒粒子の機械的強度向上材として用いることも できる。しかし、チタン酸カリウムゥイスカーや塩基性炭酸マグネシウムゥイスカーのよ うな触媒成分と反応する繊維は好ましくない。強度向上のためには、セラミックス繊維 が特に好ましい。これらの繊維の使用量は、粉体 100重量部に対して好ましくは 1一 30重量部である。上記成形助剤は、予め通常粉体と混合して用いられる。 [0022] The powder obtained by the drying is molded as follows. The molding method is not particularly limited. Preferably, the molding is performed using a binder. Preferred binders are selected from silica, graphite and crystalline cellulose as well as group forces. The solder can be used in an amount of preferably about 110 to 50 parts by weight based on 100 parts by weight of the powder. In addition, if necessary, inorganic fibers such as ceramics fibers and whiskers can be used as a material for improving the mechanical strength of the catalyst particles. However, potassium titanate whiskers and basic magnesium carbonate whiskers Fibers that react with such catalyst components are not preferred. Ceramic fibers are particularly preferred for improving strength. The amount of these fibers used is preferably 1 to 30 parts by weight based on 100 parts by weight of the powder. The above-mentioned molding aid is usually used by being previously mixed with a powder.
[0023] バインダーなどの成形助剤と混合された粉体は、(A)打錠成形、(B)押出成形、 (C) 球状その他の形状の担持成形法などの方法で成形される。成形体の形状は、好まし くは球状、円柱状、リング状などの適宜の形状が選択される。このようにして成形され た成形物は、次いで焼成して複合酸ィ匕物触媒を得ることができる。焼成温度は、通 常 250— 500°Cを採用でき、好ましくは 300— 420°Cであり、焼成時間は 1一 50時間 である。焼成は、不活性ガス又は分子状酸素の存在下の雰囲気で行うことができる。 焼成温度が低すぎる場合はモリブデン元素の熱拡散が十分でなぐ高すぎる場合は モリブデン元素が昇華により失われる恐れがある。  The powder mixed with a molding aid such as a binder is molded by a method such as (A) tablet molding, (B) extrusion molding, and (C) a spherical or other shape supporting molding method. The shape of the molded body is preferably selected to be an appropriate shape such as a sphere, a column, or a ring. The molded product thus formed is then calcined to obtain a composite catalyst. The sintering temperature can be usually 250-500 ° C, preferably 300-420 ° C, and the sintering time is 150 hours. The calcination can be performed in an atmosphere in the presence of an inert gas or molecular oxygen. When the firing temperature is too low, the molybdenum element may be lost due to sublimation if the thermal diffusion of the element is too high.
[0024] 本発明により製造された触媒を使用し、不飽和アルデヒドを分子状酸素又は分子 状酸素含有ガスを使用して気相酸化し、対応する不飽和カルボン酸を製造する手段 は、既存の方法により行うことができる。例えば、反応器としては、固定床管型反応器 を用いて行われる。この場合、反応は、反応器を通じて単流通法でもリサイクル法で あってもよぐこの種の反応に一般的に使用される条件下で実施できる。  [0024] Means for producing a corresponding unsaturated carboxylic acid by using a catalyst produced according to the present invention and subjecting an unsaturated aldehyde to gas-phase oxidation using molecular oxygen or a gas containing molecular oxygen, according to existing methods. It can be done by a method. For example, the reaction is carried out using a fixed-bed tube reactor. In this case, the reaction can be carried out under a condition generally used for this type of reaction, whether it is a single flow method or a recycling method through a reactor.
[0025] 例えば、ァクロレイン 1一 15容量%、分子状酸素 0. 5— 25容量%、水蒸気 0— 40 容量%、窒素、炭酸ガスなどの不活性ガス 20— 80容量%など力ゝらなる混合ガスを、 内径が好ましくは 15— 50mmの各反応管の各反応帯に充填した触媒層に 250— 4 50°C、 0. 1一 IMPaの加圧下、空間速度(SV) 300— 5000hr— 1で導入される。本発 明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料ガス度 、又は高い空間速度の条件下でも運転することもできる。力べして、本発明で製造さ れた触媒により、高選択率及び高収率でアクリル酸を製造することができる。 [0025] For example, mixing of acrolein with 1-15% by volume, molecular oxygen 0.5-25% by volume, water vapor 0-40% by volume, and inert gas such as nitrogen and carbon dioxide 20-80% by volume. The gas is applied to the catalyst layer filled in each reaction zone of each reaction tube having an inner diameter of preferably 15 to 50 mm at 250 to 450 ° C and under 0.1 MPa pressure and space velocity (SV) 300 to 5000 hr- 1 Introduced in. In the present invention, it is also possible to operate under a high load reaction condition, for example, a condition of a higher raw material gas degree or a high space velocity in order to increase productivity. By virtue of the catalyst produced by the present invention, acrylic acid can be produced with high selectivity and high yield.
実施例  Example
[0026] 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明 は、これらの実施例に限定されて解釈されるべきでないことはもちろんである。なお、 実施例で使用したナイター浴は、アルカリ金属の硝酸塩力もなる熱媒体に反応管を 入れて反応させる塩浴をいい、この熱媒体は 200°C以上で溶融し、 400°Cまで使用 可能で除熱効率がよ!、ので、発熱量の大きな酸化反応に適した反応浴である。 [0026] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, it is needless to say that the present invention should not be construed as being limited to these Examples. The night bath used in the examples is a salt bath in which a reaction tube is placed in a heat medium which also has a nitrate power of an alkali metal and reacts.The heat medium is melted at 200 ° C or higher and used up to 400 ° C. It is possible and has good heat removal efficiency, so it is a reaction bath suitable for an oxidation reaction that generates a large amount of heat.
[0027] また、ァクロレイン転ィ匕率、アクリル酸選択率、アクリル酸収率は、下記の式で定義 されるちのである。  The acrolein conversion, acrylic acid selectivity, and acrylic acid yield are defined by the following formulas.
[0028] ァクロレイン転化率(モル0 /0) = 100 X (反応したァクロレインのモル数) / (供給し たァクロレインのモル数) [0028] Akurorein conversion (mol 0/0) = 100 X (moles of reacted Akurorein) / (number of moles of the supplied Akurorein)
アクリル酸選択率 (モル%) = 100 X (生成したアクリル酸モル数) Z (転ィ匕したァク ロレインモル数)  Acrylic acid selectivity (mol%) = 100 X (number of moles of acrylic acid generated) Z (number of moles of acrolein subjected to transfer)
アクリル酸収率 (モル0 /0) = 100 X (生成したアクリル酸モル数) Z (供給したァクロレ インモル数) Acrylic acid yield (mol 0/0) = 100 X (acrylic acid mol number generated) Z (Akurore Inmoru number of supplied)
[0029] 実施例 1  Example 1
酸素を除く構成成分の実験式が Mo V Nb Cu Si C である複合金属酸化物  A composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
12 2.4 1 2 200 200  12 2.4 1 2 200 200
を以下のようにして調製した。  Was prepared as follows.
先ず、純水 1446mlを 80°Cに加熱し、これに対して、パラモリブデン酸アンモ-ゥム 207g、メタバナジン酸アンモ-ゥム 27. 5g及びクェン酸 12. Ogを順次攪拌しながら 溶解した.該水溶液に、硫酸銅 48. 6gを純水 204mlに溶解させた硫酸銅水溶液を 加え,さらに水酸ィ匕ニオブ 19. 3gを加えて攪拌し、スラリー溶液を得た。  First, 1446 ml of pure water was heated to 80 ° C, and 207 g of ammonium paramolybdate, 27.5 g of ammonium ammonium metavanadate, and 12.Og of citrate were dissolved therein while stirring sequentially. To this aqueous solution, an aqueous solution of copper sulfate in which 48.6 g of copper sulfate was dissolved in 204 ml of pure water was added, and 19.3 g of niobium hydroxide was further added and stirred to obtain a slurry solution.
[0030] このスラリー溶液に炭化珪素粉末 782gを加えて、充分に撹拌混合した。このスラリ 一状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラフアイトを添加混合し 、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成し たものを虫媒とした。 [0030] To this slurry solution, 782 g of silicon carbide powder was added and thoroughly stirred and mixed. The slurry was heated to 130 ° C and dried. 1.5% by weight of graphite was added thereto and mixed, and the mixture was molded by a small tableting machine. The mixture was calcined in a baking furnace at 380 ° C. for 3 hours in a nitrogen stream to obtain an insect medium.
[0031] 得られた触媒を評価するために、 20— 28メッシュに粉砕し整粒したもの 0. 3gを、 内径 4mmの U字型反応管に充填し、この反応管を加熱したナイター浴 (温度:288 °C)に入れ、該反応管中に組成ガス (ァクロレイン 5容量%、酸素 8容量%、スチ一 ム 15容量%及び窒素ガス 72容量%)を導入し、 SV (空間速度;単位時間当たり の原料ガスの流量 Z充填した触媒の見かけ容積)を 14900Zhr— 1で反応させた。 反応の結果、ァクロレイン転ィ匕率 = 99. 0%、アクリル酸選択率 = 98. 6%、アクリル 酸収率 = 97. 6%であった。 [0031] In order to evaluate the obtained catalyst, 0.3 g of a powder crushed and sized to 20-28 mesh was filled in a U-shaped reaction tube having an inner diameter of 4 mm, and the reaction tube was heated in a night game bath ( Temperature: 288 ° C), and a composition gas (acrolein 5% by volume, oxygen 8% by volume, steam 15% by volume and nitrogen gas 72% by volume) was introduced into the reaction tube, and SV (space velocity; unit) The flow rate of the raw material gas per hour (the apparent volume of the filled catalyst) was reacted at 14900 Zhr- 1 . As a result of the reaction, acrolein conversion ratio was 99.0%, acrylic acid selectivity was 98.6%, and acrylic acid yield was 97.6%.
[0032] 実施例 2 酸素を除く構成成分の実験式が Mo V Nb Cu Si C である複合金属酸化物 Example 2 A composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
12 2.4 1 2 200 200  12 2.4 1 2 200 200
を以下のようにして調製した。  Was prepared as follows.
先ず、純水 1446mlを 80°Cに加熱し、これに対して、パラモリブデン酸アンモ-ゥム 207g、メタバナジン酸アンモ-ゥム 27. 5g、及びシユウ酸 12. Og順次攪拌しながら 溶解した.これに硫酸銅 48. 6gを純水 204mlに溶解させた硫酸銅水溶液を加え,さ らに水酸ィ匕ニオブ 19. 3gを加えて攪拌し、スラリー溶液を得た。  First, 1446 ml of pure water was heated to 80 ° C, and then dissolved while stirring 207 g of ammonium paramolybdate, 27.5 g of ammonium metavanadate, and 12.Og of oxalic acid sequentially. To this, an aqueous solution of copper sulfate in which 48.6 g of copper sulfate was dissolved in 204 ml of pure water was added, and 19.3 g of niobium hydroxide was added and stirred to obtain a slurry solution.
[0033] このスラリー溶液に炭化珪素粉末 782gを加えて、充分に撹拌混合した。このスラリ 一状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラフアイトを添加混合し 、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成し たものを虫媒とした。 [0033] To this slurry solution, 782 g of silicon carbide powder was added and thoroughly stirred and mixed. The slurry was heated to 130 ° C and dried. 1.5% by weight of graphite was added thereto and mixed, and the mixture was molded by a small tableting machine. The mixture was calcined in a baking furnace at 380 ° C. for 3 hours in a nitrogen stream to obtain an insect medium.
[0034] 得られた触媒を評価するために、 20— 28メッシュに粉砕し整粒したもの 0. 3gを、 内径 4mmの U字型反応管に充填し、この反応管を加熱したナイター浴 (温度:290 °C)に入れ、該反応管中に組成ガス (ァクロレイン 5容量%、酸素 8容量%、スチ一 ム 15容量%、窒素ガス 72容量%)を導入し、 SV (空間速度;単位時間当たりの原 料ガスの流量 Z充填した触媒の見かけ容積)を 14900Zhr— 1で反応させた。 [0034] In order to evaluate the obtained catalyst, 0.3 g of a powder crushed and sized to 20-28 mesh was charged into a U-shaped reaction tube having an inner diameter of 4 mm, and the reaction tube was heated in a night game bath ( Temperature: 290 ° C), and a composition gas (acrolein 5% by volume, oxygen 8% by volume, steam 15% by volume, nitrogen gas 72% by volume) is introduced into the reaction tube, and SV (space velocity; unit) The raw material gas flow rate per hour (the apparent volume of the filled catalyst) was reacted at 14900 Zhr- 1 .
[0035] 反応の結果、ァクロレイン転ィ匕率 = 99. 0%、アクリル酸選択率 = 97. 2%、アタリ ル酸収率 = 96. 2%であった。  [0035] As a result of the reaction, the acrolein conversion ratio was 99.0%, the selectivity for acrylic acid was 97.2%, and the yield of atalylic acid was 96.2%.
[0036] 〔実施例 3〕  Example 3
酸素を除く構成成分の実験式が Mo V Nb W Cu Sb Si C である複合金属  A composite metal whose empirical formula for the components other than oxygen is Mo V Nb W Cu Sb Si C
12 2.4 1 0.5 2 1 200 200  12 2.4 1 0.5 2 1 200 200
酸ィ匕物を以下のようにして調製した。  An acidified product was prepared as follows.
先ず、純水 1446mlを 80°Cに加熱し、これに対して、パラモリブデン酸アンモ-ゥム 201g、メタバナジン酸アンモ-ゥム 26. 7g,クェン酸 12. Og、及びメタタングステン 酸アンモ-ゥム 21. 9gを順次攪拌しながら溶解した.これに三酸ィ匕アンチモン 13. 8 gを加え,さらに硫酸銅 47. 3gを純水 204mlに溶解させた硫酸銅水溶液を加え,水 酸ィ匕ニオブ 18. 7gを加えて攪拌し、スラリー溶液を得た。  First, 1446 ml of pure water was heated to 80 ° C, and on the other hand, 201 g of ammonium paramolybdate, 26.7 g of ammonium ammonium metavanadate, 12.Og of citrate, and ammonium ammonium metatungstate 11.9 g of antimony trioxide was added thereto, and an aqueous copper sulfate solution obtained by dissolving 47.3 g of copper sulfate in 204 ml of pure water was added thereto. 18.7 g of niobium was added and stirred to obtain a slurry solution.
[0037] このスラリー溶液に炭化珪素粉末 761gを加えて、充分に撹拌混合した。このスラリ 一状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラフアイトを添加混合し 、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成し たものを虫媒とした。 [0037] To this slurry solution, 761 g of silicon carbide powder was added and thoroughly stirred and mixed. The slurry was heated to 130 ° C and dried. 1.5% by weight of graphite is added to the mixture, mixed and molded by a small tableting machine, which is baked in a baking furnace at 380 ° C for 3 hours in a nitrogen stream. Was used as an insect medium.
[0038] 得られた触媒を評価するために、 20— 28メッシュに粉砕し整粒したもの 0. 3gを、 内径 4mmの U字型反応管に充填し、この反応管を加熱したナイター浴 (温度:290 °C)に入れ、該反応管中に組成ガス (ァクロレイン 5容量%、酸素 8容量%、スチ一 ム 15容量%、窒素ガス 72容量%)を導入し、 SV (空間速度;単位時間当たりの原 料ガスの流量 Z充填した触媒の見かけ容積)を 14900Zhr— 1で反応させた。 [0038] In order to evaluate the obtained catalyst, 0.3 g of pulverized and sized to 20-28 mesh was filled in a U-shaped reaction tube having an inner diameter of 4 mm, and the reaction tube was heated in a night game bath ( Temperature: 290 ° C), and a composition gas (acrolein 5% by volume, oxygen 8% by volume, steam 15% by volume, nitrogen gas 72% by volume) is introduced into the reaction tube, and SV (space velocity; unit) The raw material gas flow rate per hour (the apparent volume of the filled catalyst) was reacted at 14900 Zhr- 1 .
[0039] 反応の結果、ァクロレイン転ィ匕率 = 99. 0%、アクリル酸選択率 = 98. 7%、アタリ ル酸収率 = 97. 7%であった。  [0039] As a result of the reaction, the acrolein conversion rate was 99.0%, the selectivity for acrylic acid was 98.7%, and the yield of atalylic acid was 97.7%.
[0040] 比較例  [0040] Comparative example
酸素を除く構成成分の実験式が Mo V Nb Cu Si C である複合金属酸化物  A composite metal oxide in which the empirical formula of the constituents excluding oxygen is Mo V Nb Cu Si C
12 2.4 1 2 200 200  12 2.4 1 2 200 200
を以下のようにして調製した。  Was prepared as follows.
先ず、純水 1446mlを 80°Cに加熱し、これに対して、パラモリブデン酸アンモ-ゥム 207g、及びメタバナジン酸アンモ-ゥム 27. 5gを順次攪拌しながら溶解した。これに 硫酸銅 48. 6gを純水 204mlに溶解させた硫酸銅水溶液を加え、さらに水酸化-ォ ブ 19. 3gを加えて攪拌し、スラリー溶液を得た。  First, 1446 ml of pure water was heated to 80 ° C., and 207 g of ammonium paramolybdate and 27.5 g of ammonium metavanadate were dissolved while stirring sequentially. To this was added an aqueous solution of copper sulfate obtained by dissolving 48.6 g of copper sulfate in 204 ml of pure water, and 19.3 g of hydroxy hydroxide was further added and stirred to obtain a slurry solution.
[0041] このスラリー溶液に炭化珪素粉末 782gを加えて、充分に撹拌混合した。このスラリ 一状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラフアイトを添加混合し 、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成し たものを虫媒とした。 [0041] To this slurry solution, 782 g of silicon carbide powder was added, and thoroughly stirred and mixed. The slurry was heated to 130 ° C and dried. 1.5% by weight of graphite was added thereto and mixed, and the mixture was molded by a small tableting machine. The mixture was calcined in a baking furnace at 380 ° C. for 3 hours in a nitrogen stream to obtain an insect medium.
[0042] 得られた触媒の反応性を実施例と全く同様の条件で評価した。反応の結果、ナイタ 一浴温度が 296°Cでァクロレイン転化率 = 99. 0%、アクリル酸選択率 = 97. 0%、 アクリル酸収率 = 96. 0%であった。  [0042] The reactivity of the obtained catalyst was evaluated under exactly the same conditions as in the examples. As a result of the reaction, the conversion of acrolein was 99.0%, the selectivity for acrylic acid was 97.0%, and the yield of acrylic acid was 96.0% at a temperature of one bath of nita at 296 ° C.
[0043] このように、有機酸を添加しな力つた比較例ではアクリル酸選択率が低く、実施例 1 に比べて収率は 1. 6%低い結果であった。 [0043] As described above, in the comparative example in which the organic acid was not added, the acrylic acid selectivity was low, and the result was 1.6% lower than that in Example 1.
[0044] これに対し、有機酸を添加した実施例 1、実施例 2、実施例 3では 、ずれもァクロレ イン転化率、アクリル酸選択率およびアクリル酸収率に優れ、ァクロレインの気相接 触酸化反応を効率よく行なえた。 On the other hand, in Examples 1, 2 and 3 in which an organic acid was added, the acrolein conversion, the acrylic acid selectivity and the acrylic acid yield were all excellent, and the gas phase contact of acrolein was excellent. The oxidation reaction was performed efficiently.
産業上の利用可能性 本発明の方法により製造された触媒は、不飽和アルデヒドを分子状酸素含有ガス により気相接触酸化し、高 ヽ収率で対応する不飽和カルボン酸を製造するために使 用される。製造された、アクリル酸などの不飽和カルボン酸は、各種化学品の原料、 汎用樹脂のモノマー、吸水性榭脂などの機能性榭脂のモノマー、凝集剤、増粘剤な どとして広範な用途に使用される。 Industrial applicability The catalyst produced by the method of the present invention is used for producing a corresponding unsaturated carboxylic acid in a high yield by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas. Manufactured unsaturated carboxylic acids such as acrylic acid are widely used as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, thickeners, etc. Used for

Claims

請求の範囲 The scope of the claims
[1] 式: Mo V X Cu Y C SiO  [1] Formula: Mo V X Cu Y C SiO
12 a b c d e f g  12 a b c d e f g
(式中、 Xは, Nb及び Wから選ばれた少なくとも一種の元素を示し、 Yは Sb、 Mg、 Ca 、 Sr、 Ba及び Znからなる群から選ばれた少なくとも一種の元素を示し、 a、 b、 c、 d、 e 、 f及び gは各元素の原子比を示し、 0< a≤12, 0≤b≤12, 0< c≤12、 0≤d≤8, 0≤e≤1000, 0≤f≤1000を満足し、 gは、前記各成分元素のうち Siと Cを除いた他 の元素の酸ィ匕状態を満足するのに必要な酸素原子数である)で表される複合酸ィ匕物 触媒の製造にぉ 、て、各成分元素の供給源化合物を水性媒体系にて有機酸の存 在下に一体化させ、得られる一体化物の水溶液又は分散液を乾燥し、成形し、焼成 することを特徴とする複合酸化物触媒の製造方法。  (Wherein, X represents at least one element selected from Nb and W, Y represents at least one element selected from the group consisting of Sb, Mg, Ca, Sr, Ba and Zn, a, b, c, d, e, f and g indicate the atomic ratio of each element, 0 <a≤12, 0≤b≤12, 0 <c≤12, 0≤d≤8, 0≤e≤1000, G satisfies 0≤f≤1000, and g is the number of oxygen atoms required to satisfy the oxidized state of the other elements excluding Si and C among the above component elements) In preparing the catalyst, the source compounds of the respective component elements are integrated in the presence of an organic acid in an aqueous medium system, and the resulting aqueous solution or dispersion of the integrated product is dried and molded. And calcination.
[2] 有機酸を、モリブデン 1モルに対して 0. 001— 1モル存在させる請求項 1に記載の 複合酸化物触媒の製造方法。  [2] The method for producing a composite oxide catalyst according to claim 1, wherein the organic acid is present in an amount of 0.001 to 1 mol per mol of molybdenum.
[3] 有機酸がクェン酸、シユウ酸及びリンゴ酸力 なる群力 選ばれた少なくとも 1種で ある請求項 1又は 2に記載の複合酸化物触媒の製造方法。  3. The method for producing a composite oxide catalyst according to claim 1, wherein the organic acid is at least one selected from the group consisting of citric acid, oxalic acid, and malic acid.
[4] 複合酸化物触媒が、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸ィ匕 して対応する不飽和カルボン酸を製造するための触媒である請求項 1一 3のいずれ かに記載の複合酸化物触媒の製造方法。  [4] The composite oxide catalyst according to any one of [13] to [13], wherein the composite oxide catalyst is a catalyst for producing a corresponding unsaturated carboxylic acid by subjecting an unsaturated aldehyde to gaseous contact with a molecular oxygen-containing gas. A method for producing the composite oxide catalyst according to the above.
[5] 請求項 1一 4の 、ずれかに記載の製造方法で製造された複合酸化物触媒の存在 下にァクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸 を製造する方法。  [5] The corresponding acrylic acid is produced by subjecting acrolein to gas-phase catalytic oxidation with a molecular oxygen-containing gas in the presence of the composite oxide catalyst produced by the production method according to any one of claims 14 to 14. Method.
PCT/JP2004/014379 2004-03-23 2004-09-30 Process for producing composite oxide catalyst WO2005089943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085297 2004-03-23
JP2004-085297 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005089943A1 true WO2005089943A1 (en) 2005-09-29

Family

ID=34993493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014379 WO2005089943A1 (en) 2004-03-23 2004-09-30 Process for producing composite oxide catalyst

Country Status (2)

Country Link
CN (1) CN100430141C (en)
WO (1) WO2005089943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997554A1 (en) * 2006-03-20 2008-12-03 Asahi Kasei Chemicals Corporation Oxidation or ammoxydation catalyst and method of preparing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505917B (en) * 2017-03-31 2023-06-06 三菱化学株式会社 Catalyst for producing unsaturated carboxylic acid, process for producing unsaturated carboxylic acid, and process for producing unsaturated carboxylic acid ester
JP2021122819A (en) * 2020-01-31 2021-08-30 三菱ケミカル株式会社 Production method of catalyst and production method of acrylic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49169B1 (en) * 1970-12-28 1974-01-05
JPS5025914B1 (en) * 1970-12-28 1975-08-27
US3959182A (en) * 1969-08-19 1976-05-25 Rohm And Haas Company Catalyst compositions and process for producing acrylic acid or methacrylic acid utilizing such catalyst
JPS5295609A (en) * 1976-02-09 1977-08-11 Toyo Soda Mfg Co Ltd Preparation of methacrylic acid
JP2000317309A (en) * 1999-05-17 2000-11-21 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2003200055A (en) * 2002-01-09 2003-07-15 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811597B1 (en) * 1994-11-14 2000-08-23 Nippon Shokubai Co., Ltd. Process for production of acrylic acid
DE10046928A1 (en) * 2000-09-21 2002-04-11 Basf Ag Process for the preparation of multimetal oxide materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959182A (en) * 1969-08-19 1976-05-25 Rohm And Haas Company Catalyst compositions and process for producing acrylic acid or methacrylic acid utilizing such catalyst
JPS49169B1 (en) * 1970-12-28 1974-01-05
JPS5025914B1 (en) * 1970-12-28 1975-08-27
JPS5295609A (en) * 1976-02-09 1977-08-11 Toyo Soda Mfg Co Ltd Preparation of methacrylic acid
JP2000317309A (en) * 1999-05-17 2000-11-21 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2003200055A (en) * 2002-01-09 2003-07-15 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997554A1 (en) * 2006-03-20 2008-12-03 Asahi Kasei Chemicals Corporation Oxidation or ammoxydation catalyst and method of preparing the same
EP1997554A4 (en) * 2006-03-20 2011-02-23 Asahi Kasei Chemicals Corp Oxidation or ammoxydation catalyst and method of preparing the same
US7919430B2 (en) 2006-03-20 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for oxidation or ammoxidation, and process for producing the same
EP2913104A1 (en) * 2006-03-20 2015-09-02 Asahi Kasei Chemicals Corporation Catalyst for oxidation or ammoxidation, and process for producing the same

Also Published As

Publication number Publication date
CN1697702A (en) 2005-11-16
CN100430141C (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP3892244B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
TWI267402B (en) Catalyst for partial oxidation and preparation method thereof
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
JP2000325795A (en) Composite oxide catalyst and manufacture of methacrolein and methacrylic acid
JP2001162173A (en) Multiple oxide catalyst and method of producing acrylic acid
KR20170125827A (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2007520328A (en) Catalyst for propylene gas phase partial oxidation reaction and production method thereof
CS200497B2 (en) Catalyst for making the acrylic acid or methacrylic acid
JP4442317B2 (en) Method for producing composite oxide catalyst
JP2005305421A (en) Method of producing compound oxide catalyst
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4858266B2 (en) Method for producing composite oxide catalyst
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP2005169311A (en) Production method for complex oxide catalyst
WO2005089943A1 (en) Process for producing composite oxide catalyst
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP6136436B2 (en) Catalyst production method
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
WO2005113139A1 (en) Composite oxide catalyst and method for production thereof
JP2005205263A (en) Manufacturing method of composite oxide catalyst
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein
JP2005186064A (en) Production method for catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004800370X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase