WO2005089921A1 - 微小液滴の生成方法及び装置 - Google Patents

微小液滴の生成方法及び装置 Download PDF

Info

Publication number
WO2005089921A1
WO2005089921A1 PCT/JP2005/004522 JP2005004522W WO2005089921A1 WO 2005089921 A1 WO2005089921 A1 WO 2005089921A1 JP 2005004522 W JP2005004522 W JP 2005004522W WO 2005089921 A1 WO2005089921 A1 WO 2005089921A1
Authority
WO
WIPO (PCT)
Prior art keywords
microdroplets
dispersed phase
droplet
satellite
droplets
Prior art date
Application number
PCT/JP2005/004522
Other languages
English (en)
French (fr)
Inventor
Toru Torii
Toshiro Higuchi
Takashi Nishisako
Shingo Okushima
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP20050720779 priority Critical patent/EP1757357B1/en
Priority to US10/593,783 priority patent/US8741192B2/en
Priority to JP2006511190A priority patent/JP4777238B2/ja
Priority to CA 2560272 priority patent/CA2560272C/en
Publication of WO2005089921A1 publication Critical patent/WO2005089921A1/ja
Priority to US14/262,306 priority patent/US9782736B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2209Controlling the mixing process as a whole, i.e. involving a complete monitoring and controlling of the mixing process during the whole mixing cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method and an apparatus for producing microdroplets, and more particularly to a method and an apparatus for producing double emulsion 'microcapsules.
  • Patent Document 1 The inventors of the present application have already filed a patent application for the method and apparatus for producing an emulsion and a microcapsule as Patent Document 1 below.
  • Patent Document 1 W ⁇ 02/068104 A1
  • An object of the present invention is to further develop the above-described prior art, and to provide a method and an apparatus for generating various types of microdroplets with respect to generation of the microdroplets.
  • the present invention provides:
  • the first dispersed phase and the second dispersed phase are separated.
  • the method is characterized in that microdroplets are sequentially generated by acting on the first continuous phase.
  • the microdroplets from the first dispersed phase and the microdroplets from the second dispersed phase are different droplets. It is characterized by the following.
  • the first dispersed phase and the second dispersed phase are alternately acted on at regular time intervals to obtain components of uniform size. It is characterized in that different microdroplets are generated alternately at regular intervals.
  • the first dispersed phase and the second dispersed phase are alternately actuated at regular time intervals to obtain components of uniform size.
  • Different microdroplets It is characterized by being generated alternately at regular intervals.
  • the first dispersed phase and the second dispersed phase intersect at a crossing point where the first continuous phase intersects the first dispersed phase and the second dispersed phase.
  • the disperse phase is applied to the first continuous phase to sequentially generate different microdroplets, and the liquid containing the different microdroplets is supplied to the first continuous phase and the second continuous phase. Characterized in that it is supplied at the intersection of further crosses to produce double emulsion 'microcapsules
  • microdroplet generation apparatus an intersection where the first continuous phase, the first dispersed phase, and the second dispersed phase intersect, and a first section for controlling the first dispersed phase.
  • the liquid containing the microdroplets may be supplied. It is characterized in that the first continuous phase and the second continuous phase are fed to further cross intersections to be fed to produce double emulsion microcapsules.
  • the liquid feed including the main droplets and the satellite droplets is separated into the main droplets and the satellite droplets by an expansion unit, and the main liquid droplets are separated by a branch unit. And satellite droplets are collected in the main droplet collection path and the satellite droplet collection path.
  • the main droplets include first and second main droplets
  • the satellite droplets include first and second satellite liquids.
  • the first and second main droplets, the first satellite droplets, and the second satellite droplets are individually collected in the branch portion.
  • the liquid sending containing the satellite droplets is supplied to the intersection where the first continuous phase and the second continuous phase are supplied. It is characterized by producing double emulsion 'microcapsules.
  • a micro-droplet generating unit that generates a main droplet and a satellite droplet, and a micro-drop that supplies the microdroplets from the microdroplet generating unit
  • a micro-droplet generating unit that generates first and second main droplets and first and second satellite droplets, A microdroplet supply path for supplying microdroplets from the section, an extension connected to the microdroplet supply path, and the first and second main droplets connected to the tip of the extension.
  • a branch portion having the following.
  • FIG. 1 shows a first embodiment of the present invention, in which a long-period microdroplet is generated using a cross-shaped microchannel when the flow rate ratio between a dispersed phase and a continuous phase is small.
  • FIG. 2 is a view showing a state in which droplets shown in FIG. 1 are generated alternately.
  • Fig. 3 is a view of a state of generation of microdroplets having different components with uniform droplet sizes, taken by a high-speed camera.
  • FIG. 4 is a view showing a state in which minute droplets according to a second embodiment of the present invention are sequentially generated.
  • FIG. 5 is a schematic diagram of an apparatus showing a third embodiment of the present invention and showing a mode of generating short-period microdroplets using a cross-shaped microchannel when the flow ratio between the dispersed phase and the continuous phase is large. It is a figure.
  • FIG. 6 shows a fourth embodiment of the present invention, in which a double emulsion 'micro force capsule is generated by using minute droplets that differ only in components of uniform size, which are alternately generated at a regular period according to the third embodiment. It is a schematic diagram which shows a situation.
  • FIG. 7 is a view showing a state of generation of a W / OZW type emulsion containing two types of microdroplets which is useful in the present invention.
  • FIG. 8 is a schematic diagram showing a modification of the first embodiment of the present invention.
  • FIG. 9 is a schematic view showing a state of separation of satellite droplets according to a fifth embodiment of the present invention.
  • FIG. 10 is a view showing a modification of the fifth embodiment in FIG. 9.
  • FIG. 11 is a view showing a state where satellite droplets according to the present invention are separated.
  • FIG. 12 is a view showing a shape of an acrylic microchannel shown in FIG. 11.
  • FIG. 13 is a schematic view showing a state of separation of satellite droplets according to a sixth embodiment of the present invention.
  • FIG. 14 is a schematic view showing a state of double emulsion generation using satellite droplets according to a seventh embodiment of the present invention.
  • the first dispersed phase and the second dispersed phase are alternately formed at the intersection of a cross where the first continuous phase intersects the first dispersed phase and the second dispersed phase. Then, by acting on the first continuous phase, different microdroplets are alternately generated. Further, microdroplets of various embodiments, in particular, double emulsion 'microcapsules can be easily prepared and easily prepared. [0026] Further, the main droplet and the satellite droplet can be easily separated and collected. Further, a high-quality “high-precision double emulsion” microcapsule can be manufactured using the satellite droplets.
  • FIG. 1 is a schematic diagram showing a first embodiment of the present invention, in which a long-period microdroplet is generated using a cross-shaped microchannel when the flow rate ratio between a dispersed phase and a continuous phase is small. It is.
  • 1 is the first microchannel
  • 2 is the continuous phase supplied from the first microchannel
  • 3 is the second microchannel
  • 4 is the second microchannel 3.
  • the first dispersed phase supplied 5 is the third microchannel
  • 6 is the second dispersed phase supplied from its third microchannel
  • 7 is the intersection of the cross structure
  • 8 is the fourth
  • the microchannel 9 is a first microdroplet sent through the fourth microchannel 8
  • the second microdroplet 10 is generated with a regular cycle alternately with the first microdroplet 9.
  • 11 is a controller for controlling the supply of the first dispersed phase 4 and the second dispersed phase 6 of the microchannel
  • 12 is connected to the controller 11 and is the first feeder for supplying the first dispersed phase 4
  • 13 is connected to its controller 11
  • a second pump for supplying the second dispersed phase 6 as a second liquid sending device (variable flow rate liquid sending device).
  • a row of microdroplets 9, 10 of uniform size is generated at regular intervals by using the intersection 7 of the cross structure of the microchannel.
  • the first syringe pump (variable flow rate liquid sending device) 12 of the first dispersed phase 4 and the second syringe pump (variable flow rate sending device) 13 of the second dispersed phase 6 are alternately operated. Then, by sending the first dispersed phase 4 and the second dispersed phase 6 at the same flow rate, the components of uniform size at the intersection 7 of the cross structure at the appropriate continuous phase 2 flow rate Different droplets 9 and 10 are generated alternately at regular intervals
  • FIG. 2 is a diagram showing the state in which the microdroplets are generated alternately
  • FIG. FIG. 4 is a diagram of a state of generation of microdroplets having different components, taken by a high-speed camera.
  • a glass microchannel having a channel width of 80 ⁇ m and a depth of 40 ⁇ m and subjected to a hydrophobic treatment was used.
  • the disperse phase in FIG. 2 was prepared by diluting red ink a and blue ink b with water as first and second disperse phases, respectively, and supplied them at 0.1 OlmlZh.
  • Corn oil viscosity: 58.5 mPa's, surface tension: 33.2 mNZm (both measured at 20 ° C)
  • Corn oil viscosity: 58.5 mPa's, surface tension: 33.2 mNZm (both measured at 20 ° C)
  • FIG. 4 is a view showing a state in which minute droplets according to a second embodiment of the present invention are sequentially generated.
  • the first dispersed phase and the second dispersed phase are intersected at the cross point where the first continuous phase intersects the first dispersed phase and the second dispersed phase. Force to act on the first continuous phase to generate different microdroplets.
  • the control device 11 under the control of the control device 11, once the droplets 9 of the first dispersed phase have been generated, In this way, two droplets 10 of the dispersed phase are continuously formed.
  • FIG. 5 shows a third embodiment of the present invention, which is an apparatus for generating short-cycle microdroplets using a cross-shaped microchannel when the flow ratio between the dispersed phase and the continuous phase is large. It is a schematic diagram.
  • 21 is a first microchannel
  • 22 is a continuous phase supplied from the first microchannel
  • 23 is a second microchannel
  • 24 is supplied from the second microchannel 23.
  • 25 is the third microchannel
  • 26 is the second dispersed phase supplied from its third microchannel
  • 27 is the cross structure intersection
  • 28 is the fourth microchannel.
  • Channel 29 is a first microdroplet sent through its fourth microchannel 28, 30 is a second microdroplet that is alternately generated with the first microdroplet 29 in a regular cycle, 31 Is a controller for controlling the supply of the first dispersed phase 24 and the second dispersed phase 26 of the microchannel, and 32 is a first liquid feeder connected to the controller 31 and supplying the first dispersed phase 24
  • a second Shirinjipo amplifier as the second liquid supply device for supplying a second dispersed phase 26 (variable flow liquid transfer device).
  • the microdroplets 9 and 10 of the first embodiment shown in FIG. 1 are generated alternately.
  • the micro-droplets 29 and 30 are generated in a cycle shorter than the cycle formed.
  • FIG. 6 shows a fourth embodiment of the present invention.
  • a double emulsion 'microcapsule is produced by using microdroplets, which are different in only components of uniform size, generated alternately at regular intervals according to the third embodiment of the present invention. It is a schematic diagram which shows a mode that it produces
  • 40 is a discharge port for two types of microdroplets 29 and 30 which alternately generate microdroplets 29 and 30 of uniform size and generated at regular intervals, and 41 is an intersection of a cross structure , 42 is the fifth microchannel, 43 is the continuous phase supplied from the fifth microchannel 42, 44 is the sixth microchannel, 45 is the continuous phase supplied from the sixth microchannel 44, 46 is a generated microcapsule (double emulsion), 47 is a recovery path of the microcapsule, and 48 is a continuous phase for sending the microcapsule (double emulsion) 46.
  • microcapsules 29 and 30, which are alternately generated in such a manner as described above and alternately have different components, are further encapsulated, and each of the microcapsules includes the same number of two types of microdroplets.
  • FIG. 7 is a diagram showing a state of generation of a W / O / W emulsion containing two types of microdroplets according to the present invention.
  • FIG. 8 is a schematic diagram showing a modification of the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a state of separation of satellite droplets according to a fifth embodiment of the present invention.
  • 51 is a first microchannel (continuous phase supply path)
  • 52 is a continuous phase supplied from the first microchannel (continuous phase supply path) 51
  • 53 is a T-shaped structure.
  • 54 is the second microchannel (dispersed phase supply path)
  • 55 is the dispersed phase supplied from the second microchannel (dispersed phase supply path) 54
  • 56 is the third microchannel
  • 57 is The main droplet generated at the intersection 53 of the T-shaped structure and transmitted through the third microchannel 56
  • 58 is a satellite droplet generated together with the main droplet 57
  • 59 is the third microchannel 56 Outlet
  • 60 is the junction of the microchannel connected to the outlet 59
  • 61 is the expansion (taper) of the microchannel
  • 62 is the branch
  • 63 is the main liquid for collecting the main droplet 57
  • Droplet recovery path 64 is for sending main droplets
  • 65 is for collecting satellite droplets 58 Which is a satellite droplet recovery path.
  • a small satellite droplet 58 is generated at the same time.
  • the satellite droplet 58 is used to form a microcapsule (double emulsion) using the main droplet 57, it is not preferable that the satellite droplet 58 is included in the microcapsule (dub-no-emulsion) together with the main droplet 57. There are many.
  • the main liquid drop 57 is sent to the right in the microchannel expansion section 61 and the satellite liquid drop 58 is sent downward, so that the main liquid drop 5 Numeral 7 sends the liquid to the main droplet collecting channel 63, while satellite liquid 58 is sent downward, and is sent to a satellite liquid droplet collecting channel 65 for collecting the satellite liquid droplet 58.
  • an extended portion (tapered portion) 61 and branch microchannels 63 and 65 are provided downstream of a microdroplet generation portion (intersection of a T-shaped structure) 53, and the generated main droplet is formed. Satellite droplets 58 can be continuously separated from droplets 57.
  • an expansion portion 66 having a curved surface shape may be used as shown in FIG.
  • FIG. 11 is a diagram showing a state where satellite droplets according to the present invention are separated.
  • the main droplet (diameter 70 ⁇ m) 71 and the satellite droplet 72 (diameter 1, 3, 5 ⁇ m) are separated.
  • FIG. 12 is a view showing the shape of the acrylic microchannel shown in FIG. 11, and the first microchannel (continuous phase supply path) 73 has a width X depth of 200 ⁇ m ⁇ 100 ⁇ m
  • the second ma Icrochanenore (dispersed phase supply channel) 74 is width X depth 120 ⁇ m X 100 ⁇ m
  • main droplet recovery channel 75 is width X depth force 3 ⁇ 400 ⁇ m X 100 ⁇ m
  • satellite droplet recovery channel 76 is width
  • the X depth is 200 / im X 100 / im
  • the branch angle ⁇ of the satellite droplet recovery path 76 with respect to the main droplet recovery path 75 is 30 °.
  • the flow conditions in FIG. 11 are as follows: the dispersed phase flow rate is 1. Oml / h and the continuous phase flow rate is 15. Oml / h.
  • Drop 72 (diameter 1, 3, 5 xm) was confirmed to be separated. It can be seen that satellite droplets 72 of different sizes are arranged in rows and flow into the branch. As the flow rates of the dispersed phase and the continuous phase increase, both the size and the number of satellite droplets tend to increase.
  • FIG. 13 is a schematic view showing a state of satellite droplet separation according to a sixth embodiment of the present invention.
  • 81 is a first microchannel (continuous phase supply path)
  • 82 is a continuous phase supplied from the first microchannel (continuous phase supply path)
  • 83 is an intersection of a cross structure.
  • 84 is the second microchannel (first dispersed phase supply path)
  • 85 is the first dispersed phase supplied from the second microchannel (first dispersed phase supply path)
  • 86 is the third dispersed phase
  • 87 is the second dispersed phase supplied from the third microchannel (second dispersed phase supply path)
  • 88 is the fourth microchannel
  • 89 Is the first main droplet generated at the intersection 83 of the cross structure
  • 90 is the first satellite droplet that is generated simultaneously when the first main droplet 89 is generated
  • 91 is the cross
  • the second main droplet 92 which is generated at the intersection 83 of the structure, is generated simultaneously when the second main droplet 91 is generated 2 satellite droplets
  • 93 is the junction of the microchannel connected to the outlet for discharging droplets 89-92,
  • an extended portion (tapered portion) 94 and first and second satellite droplet collection paths 98 and 99 are provided downstream of a microdroplet generation portion (intersection of a cross structure) 83.
  • the first and second satellite liquids 90 and 92 can be separated from the main droplets 89 and 91, respectively.
  • the separated and collected satellite droplets are extremely small, and the droplets can be used for generating a double emulsion.
  • FIG. 14 is a schematic diagram illustrating a state of generating a double emulsion using satellite droplets according to a seventh embodiment of the present invention.
  • 101 is the first microchannel (satellite droplet supply path), 102 is a satellite droplet feed, 103 is a satellite droplet, 104 is a satellite droplet outlet, and 105 is a first droplet.
  • 2 microchannels (continuous phase supply path) 106 is the first continuous phase supplied from the second microchannel (continuous phase supply path) 105, 107 is the third microchannel (continuous phase supply path), 108 Is the second continuous phase supplied from the third microchannel (continuous phase supply path) 107, 109 is a double emulsion recovery path using satellite droplets, 110 is a double emulsion using satellite droplets
  • Numeral 111 denotes a double emulsion using satellite droplets.
  • a double emission 111 containing satellite droplets 103 can be generated.
  • microchannels that intersect with each other it is possible to easily and easily produce microdroplets of various modes, in particular, double emulsion ′ microcapsules.
  • main droplet and the satellite droplet can be easily separated and collected.
  • the method and apparatus for producing microdroplets of the present invention can be used as a tool for producing microcapsules in the fields of genes and medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 種々の態様の微小液滴の生成方法及び装置を提供する。  第1の連続相2と第1の分散相4と第2の分散相6とが交差する十字の交差部7と、前記第1の分散相4を制御する第1の送液装置12と、前記第2の分散相6を制御する第2の送液装置13と、前記第1の送液装置12と第2の送液装置13に接続される制御装置11とを備え、前記第1の送液装置12と第2の送液装置13を前記制御装置11からの信号により制御して第1の分散相4よりなる微小液滴9と第2の分散相6よりなる微小液滴10を順次生成させる。

Description

明 細 書
微小液滴の生成方法及び装置
技術分野
[0001] 本発明は、微小液滴の生成方法及び装置に係り、特に、ダブルエマルシヨン'マイ クロカプセルの生成方法及び装置に関するものである。
背景技術
[0002] 本願発明者らは、エマルシヨンならびにマイクロカプセルの製造方法およびその装置 について、既に下記特許文献 1として特許出願済みである。
特許文献 1 :W〇 02/068104 A1
発明の開示
[0003] 本発明は、上記先行技術をさらに発展させて、その微小液滴の生成に関して、種 々の態様の微小液滴の生成方法及び装置を提供することを目的とする。
[0004] 本発明は、上記目的を達成するために、
〔1〕微小液滴の生成方法において、第 1の連続相と第 1の分散相および第 2の分散 相とが交差する交差部において、前記第 1の分散相と第 2の分散相とを前記第 1の連 続相に作用させて、微小液滴を順次生成させることを特徴とする。
[0005] 〔2〕上記〔1〕記載の微小液滴の生成方法において、前記交差部が十字の交差部 であることを特徴とする。
[0006] 〔3〕上記〔1〕記載の微小液滴の生成方法において、前記交差部が位置をずらした
T字の交差部であることを特徴とする。
[0007] 〔4〕上記〔1〕記載の微小液滴の生成方法において、前記第 1の分散相からの微小 液滴と第 2の分散相からの微小液滴とが異なった液滴であることを特徴とする。
[0008] 〔5〕上記〔2〕記載の微小液滴の生成方法において、前記第 1の分散相と第 2の分 散相を一定時間間隔で交互に作用させて、サイズの揃った成分の異なる微小液滴を 規則正しい周期で交互に生成させることを特徴とする。
[0009] 〔6〕上記〔3〕記載の微小液滴の生成方法において、前記第 1の分散相と第 2の分 散相を一定時間間隔で交互に作用させて、サイズの揃った成分の異なる微小液滴を 規則正しい周期で交互に生成させることを特徴とする。
[0010] 〔7〕上記〔5〕又は〔6〕記載の微小液滴の生成方法において、前記周期を変更可能 にすることを特徴とする。
[0011] 〔8〕微小液滴の生成方法において、第 1の連続相と第 1の分散相および第 2の分散 相とが交差する十字の交差部において、前記第 1の分散相と第 2の分散相とを前記 第 1の連続相に作用させて、異なった微小液滴を順次生成させ、この異なった微小 液滴を含む送液を前記第 1の連続相および第 2の連続相が供給される更なる十字の 交差部に供給してダブルエマルシヨン'マイクロカプセルを生成することを特徴とする
[0012] 〔9〕微小液滴の生成装置において、第 1の連続相と第 1の分散相と第 2の分散相と が交差する交差部と、前記第 1の分散相を制御する第 1の送液装置と、前記第 2の分 散相を制御する第 2の送液装置と、前記第 1の送液装置と第 2の送液装置に接続さ れる制御装置とを備え、前記第 1の送液装置と第 2の送液装置を前記制御装置から の信号により制御して第 1の分散相よりなる微小液滴と第 2の分散相よりなる微小液 滴を順次生成させることを特徴とする。
[0013] 〔10〕上記〔9〕記載の微小液滴の生成装置において、前記交差部が十字の交差部 であることを特徴とする。
[0014] 〔11〕上記〔9〕記載の微小液滴の生成装置において、前記交差部が位置をずらし た T字の交差部であることを特徴とする。
[0015] 〔12〕上記〔10〕記載の微小液滴の生成装置において、前記制御装置からの信号 によりサイズの揃った成分の異なる微小液滴を規則正しい周期で交互に生成させる ことを特徴とする。
[0016] 〔13〕上記〔11〕記載の微小液滴の生成装置において、前記制御装置からの信号 によりサイズの揃った成分の異なる微小液滴を規則正しい周期で交互に生成させる ことを特徴とする。
[0017] 〔14〕上記〔12〕又は〔13〕記載の微小液滴の生成装置において、前記制御装置か らの信号により前記周期を変更可能にすることを特徴とする。
[0018] 〔15〕上記〔8〕記載の微小液滴の生成装置において、前記微小液滴を含む送液を 前記第 1の連続相および第 2の連続相が供給される更なる十字の交差部に供給して ダブルエマルシヨン.マイクロカプセルを生成することを特徴とする。
[0019] 〔16〕微小液滴の生成方法において、主液滴およびサテライト液滴が含まれる送液 を拡張部で前記主液滴およびサテライト液滴に分離し、分岐部において、前記主液 滴およびサテライト液滴を、主液滴回収路およびサテライト液滴回収路で回収するこ とを特徴とする。
[0020] 〔17〕上記〔16〕記載の微小液滴の生成方法において、前記主液滴が第 1および第 2の主液滴からなり、前記サテライト液滴が第 1および第 2のサテライト液滴からなり、 前記分岐部において前記第 1および第 2の主液滴と、前記第 1のサテライト液滴と、 前記第 2のサテライト液滴をそれぞれ個別に回収することを特徴とする。
[0021] 〔18〕上記〔16〕記載の微小液滴の生成方法において、前記サテライト液滴を含む 送液を第 1の連続相および第 2の連続相が供給される交差部に供給してダブルエマ ルシヨン'マイクロカプセルを生成することを特徴とする。
[0022] 〔19〕微小液滴の生成装置にぉレ、て、主液滴およびサテライト液滴を生成する微小 液滴生成部と、この微小液滴生成部からの微小液滴を供給する微小液滴供給路と、 この微小液滴供給路に結合される拡張部と、この拡張部の先端に結合され前記主液 滴を回収する主液滴回収路と、前記サテライト液滴を回収するサテライト液滴回収路 とを有する分岐部とを具備することを特徴とする。
[0023] 〔20〕微小液滴の生成装置において、第 1および第 2の主液滴と第 1および第 2のサ テライト液滴とを生成する微小液滴生成部と、この微小液滴生成部からの微小液滴 を供給する微小液滴供給路と、この微小液滴供給路に結合される拡張部と、この拡 張部の先端に結合され前記第 1および第 2の主液滴を回収する主液滴回収路と、前 記第 1のサテライト液滴を回収する第 1のサテライト液滴回収路と、前記第 2のサテラ イト液滴を回収する第 2のサテライト液滴回収路とを有する分岐部とを具備することを 特徴とする。
図面の簡単な説明
[0024] [図 1]本発明の第 1実施例を示す分散相と連続相との流量比が小の場合の十字状マ イクロチャネルを用いた周期の長い微小液滴を生成させる様子を示す模式図である [図 2]図 1に示す液滴が交互に生成される様子を示す図である。
[図 3]液滴サイズの揃った成分の異なる微小液滴の生成の様子を高速度カメラで撮 影した図である。
[図 4]本発明の第 2実施例を示す微小液滴が順次生成される様子を示す図である。
[図 5]本発明の第 3実施例を示す分散相と連続相との流量比が大の場合の十字状マ イクロチャネルを用いた周期の短い微小液滴を生成させる様子を示す装置の模式図 である。
[図 6]本発明の第 4実施例を示す第 3実施例により交互に規則正しい周期で生成させ たサイズの揃った成分のみ異なる微小液滴を用いて、ダブルエマルシヨン'マイクロ力 プセルを生成させる様子を示す模式図である。
[図 7]本発明に力かる 2種類の微小液滴を内包した W/OZW型エマルシヨンの生成 の状態を示す図である。
[図 8]本発明の第 1実施例の変形例を示す模式図である。
[図 9]本発明の第 5実施例を示すサテライト液滴の分離の様子を示す模式図である。
[図 10]図 9の第 5実施例の変形例を示す図である。
[図 11]本発明にかかるサテライト液滴が分離される様子を示す図である。
[図 12]図 11に示すアクリル製マイクロチャネルの形状を示す図である。
[図 13]本発明の第 6実施例を示すサテライト液滴の分離の様子を示す模式図である
[図 14]本発明の第 7実施例を示すサテライト液滴を用いたダブルエマルシヨン生成の 様子を示す模式図である。
発明を実施するための最良の形態
微小液滴の生成方法において、第 1の連続相と第 1の分散相および第 2の分散相 とが交差する十字の交差部において、前記第 1の分散相と第 2の分散相とを交互に 前記第 1の連続相に作用させて、異なった微小液滴を交互に生成させる。また、種々 の態様の微小液滴、特に、ダブルエマルシヨン'マイクロカプセルを簡便にし力も容 易に作製することができる。 [0026] また、主液滴とサテライト液滴を容易に分離してそれぞれを回収することができる。 また、当該サテライト液滴を用いて高品質'高精度のダブルエマルシヨン'マイクロ力 プセルを製造することができる。
実施例
[0027] 以下、本発明の実施の形態について詳細に説明する。
[0028] 図 1は本発明の第 1実施例を示す分散相と連続相との流量比が小の場合の十字状 マイクロチャネルを用いた周期の長い微小液滴を生成させる様子を示す模式図であ る。
[0029] ここではサイズの揃った成分の異なる微小液滴を交互に規則正しい周期で生成さ せる例について説明する。
[0030] この図において、 1は第 1のマイクロチャネル、 2はその第 1のマイクロチャネル 1から 供給される連続相、 3は第 2のマイクロチャネル、 4はその第 2のマイクロチャネル 3か ら供給される第 1の分散相、 5は第 3のマイクロチャネル、 6はその第 3のマイクロチヤ ネル 5から供給される第 2の分散相、 7は十字構造の交差部、 8は第 4のマイクロチヤ ネル、 9はその第 4のマイクロチャネル 8を送液される第 1の微小液滴、 10はその第 1 の微小液滴 9と交互に規則正しい周期で生成される第 2の微小液滴、 11はマイクロ チャネルの第 1の分散相 4および第 2の分散相 6の供給を制御する制御装置、 12は その制御装置 11に接続され、第 1の分散相 4を供給する第 1の送液装置としてのシリ ンジポンプ (流量可変送液装置)、 13はその制御装置 11に接続され、第 2の分散相 6を供給する第 2の送液装置としてのシリンジポンプ (流量可変送液装置)である。
[0031] ここでは、マイクロチャネルの十字構造の交差部 7を利用して、一定間隔でサイズの 揃った微小液滴 9, 10の列を生成する。つまり、第 1の分散相 4の第 1のシリンジボン プ (流量可変送液装置) 12と第 2の分散相 6の第 2のシリンジポンプ (流量可変送液 装置) 13とを交互に作用させて、第 1の分散相 4と第 2の分散相 6を互いに等しい流 量にて送液することにより、適当な連続相 2の流量において、十字構造の交差部 7で サイズの揃った成分の異なる微小液滴 9, 10が規則正しい周期で交互に生成される
[0032] 図 2はその微小液滴が交互に生成される様子を示す図、図 3はその液滴サイズの 揃った成分の異なる微小液滴の生成の様子を高速度カメラで撮影した図である。
[0033] ここでは、流路幅が 80 μ m、深さ 40 μ mのガラス製マイクロチャネルで疎水化処理 してあるものを用いた。図 2における分散相は赤インク aと青インク bを水で薄めたもの を第 1、第 2の分散相として用レ、、それぞれ 0. OlmlZhで供給した。連続相としての トウモロコシ油(粘度:58. 5mPa' s、表面張力: 33. 2mNZm (ともに 20°Cで測定) は 0. 10ml/hで供給した。
[0034] 図 4は本発明の第 2実施例を示す微小液滴が順次生成される様子を示す図である
[0035] この実施例では、第 1の連続相と第 1の分散相および第 2の分散相とが交差する十 字の交差部において、前記第 1の分散相と第 2の分散相とを前記第 1の連続相に作 用させて、異なった微小液滴を生成させる力 ここでは、制御装置 11の制御により、 第 1の分散相による液滴 9が生成したら、次には、第 1の分散相による液滴 10を 2個 連続して生成させるようにしてレ、る。
[0036] 図 5は本発明の第 3実施例を示す分散相と連続相との流量比が大の場合の十字状 マイクロチャネルを用いた周期の短い微小液滴を生成させる様子を示す装置の模式 図である。
[0037] この図において、 21は第 1のマイクロチャネル、 22はその第 1のマイクロチャネル 21 から供給される連続相、 23は第 2のマイクロチャネル、 24はその第 2のマイクロチヤネ ル 23から供給される第 1の分散相、 25は第 3のマイクロチャネル、 26はその第 3のマ イクロチャネル 25から供給される第 2の分散相、 27は十字構造の交差部、 28は第 4 のマイクロチャネル、 29はその第 4のマイクロチャネル 28を送液される第 1の微小液 滴、 30はその第 1の微小液滴 29と交互に規則正しい周期で生成される第 2の微小 液滴、 31はマイクロチャネルの第 1の分散相 24および第 2の分散相 26の供給を制御 する制御装置、 32はその制御装置 31に接続され、第 1の分散相 24を供給する第 1 の送液装置としての第 1のシリンジポンプ (流量可変送液装置)、 33はその制御装置 31に接続され、第 2の分散相 26を供給する第 2の送液装置としての第 2のシリンジポ ンプ (流量可変送液装置)である。
[0038] この第 3実施例においては、図 1に示す第 1実施例の微小液滴 9、 10が交互に生 成される周期よりは短い周期で微小液滴 29、 30を生成するようにしたものである。
[0039] 図 6は本発明の第 4実施例を示す第 3実施例により交互に規則正しい周期で生成 させたサイズの揃った成分のみ異なる微小液滴を用いて、ダブルエマルシヨン'マイ クロカプセルを生成させる様子を示す模式図である。
[0040] ここで、 40は交互に規則正しい周期で生成させたサイズの揃った成分の異なる微 小液滴 29, 30を排出する 2種類の微小液滴の排出口、 41は十字構造の交差部、 4 2は第 5のマイクロチャネル、 43はその第 5のマイクロチャネル 42から供給される連続 相、 44は第 6のマイクロチャネル、 45はその第 6のマイクロチャネル 44から供給され る連続相、 46は生成されたマイクロカプセル (ダブルエマルシヨン)、 47はそのマイク ノレシヨン)回収路、 48はそのマイクロカプセル (ダブルエマルシヨン) 46を送液する連 続相である。
[0041] このように一定周期で交互に生成される互いに成分の異なる微小液滴 29, 30をさ らにカプセル化して、 2種類の微小液滴をそれぞれ同数個内包するマイクロカプセル
(ダブルエマルシヨン) 46を生成することができる。
[0042] 図 7は本発明にかかる 2種類の微小液滴を内包した W/O/W型エマルシヨンの生 成の状態を示す図である。
[0043] 次に、マイクロチャネルを利用した微小液滴生成方法において、マイクロチャネル 内部で生成微小液滴からサテライト液滴を分離 ·除去し、単分散エマルシヨンを得る 方法について説明する。
[0044] 図 8は本発明の第 1実施例の変形例を示す模式図である。
[0045] この実施例では、 T字構造の交差部 27—1と、この交差部 27—1の位置からずれた 位置にある T字構造の交差部 27—2からそれぞれ異なった液を吐出して、第 4のマイ クロチャネル 28を送液される第 1の微小液滴 29と、その第 1の微小液滴 29と交互に 規則正しい周期で生成される第 2の微小液滴 30とを順次生成させるように構成する。 その他の構成は上記した第 1実施例と同様である。
[0046] 図 9は本発明の第 5実施例を示すサテライト液滴の分離の様子を示す模式図であ る。 [0047] この図において、 51は第 1のマイクロチャネル(連続相供給路)、 52はその第 1のマ イクロチャネル (連続相供給路) 51から供給される連続相、 53は T字構造の交差部、 54は第 2のマイクロチャネル (分散相供給路)、 55はその第 2のマイクロチャネル (分 散相供給路) 54から供給される分散相、 56は第 3のマイクロチャネル、 57は T字構造 の交差部 53で生成され、その第 3のマイクロチャネル 56を送液される主液滴、 58は その主液滴 57とともに生成されるサテライト液滴、 59は第 3のマイクロチャネル 56の 排出口、 60はその排出口 59に連結されるマイクロチャネルの接合部、 61はマイクロ チャネルの拡張部(テーパ部)、 62は分岐部、 63は主液滴 57を回収するための主液 滴回収路、 64は主液滴の送液、 65はサテライト液滴 58を回収するためのサテライト 液滴回収路である。
[0048] 図 9に示すように、 T字構造の交差部 53で主液滴 57が生成される際に、同時に微 小のサテライト液滴 58が生成される。このサテライト液滴 58は主液滴 57を用いてマイ クロカプセル (ダブルエマルシヨン)を生成させるような場合に、マイクロカプセル (ダブ ノレエマルシヨン)内に主液滴 57とともに、内包されると好ましくない場合が多い。
[0049] そこで、力かる事態を回避するために、マイクロチャネルの拡張部 61において主液 滴 57はそのまま右方へ、サテライト液滴 58は下方に送液されるようにして、主液滴 5 7は主液滴回収路 63に送液し、一方、サテライト液滴 58は下方へ送液し、サテライト 液滴 58を回収するためのサテライト液滴回収路 65へと送液する。
[0050] この実施例によれば、微小液滴生成箇所 (T字構造の交差部) 53の下流部に拡張 部(テーパ部) 61および分岐マイクロチャネル 63, 65を設置し、生成された主液滴 5 7からサテライト液滴 58を連続的に分離することができる。
[0051] 上記したテーパを有する拡張部 61に代えて、図 10に示すように、曲面形状を有す る拡張部 66とするようにしてもよい。
[0052] 図 11は本発明にかかるサテライト液滴が分離される様子を示す図である。
[0053] この図に示すように、主液滴(直径 70 x m) 71とサテライト液滴 72 (直径 1 , 3, 5 μ m)とは分離される。
[0054] なお、図 12は図 1 1に示すアクリル製マイクロチャネルの形状を示す図であり、第 1 のマイクロチャネル(連続相供給路) 73は幅 X深さが 200 μ m X 100 μ m、第 2のマ イクロチャネノレ(分散相供給路) 74は幅 X深さが 120 μ m X 100 μ m、主液滴回収 路 75は幅 X深さ力 ¾00 μ m X 100 μ m、サテライト液滴回収路 76は幅 X深さが 200 /i m X lOO /i m,主液滴回収路 75に対するサテライト液滴回収路 76の分岐角度 Θ は 30° である。
[0055] ここで、分散相として純水、連続相としてとうもろこし油(粘度: 58. 5mPa ' s、表面張 力: 33. 2mNZm、ともに 20°Cで測定)を使用し、ともに送液装置 (シリンジポンプ) による流量制御を行った。
[0056] 図 11の流量条件は、分散相流量が 1. Oml/h,連続相流量が 15. Oml/hであり 、主液滴 71 (直径約 70 x m)と 3種類のサイズのサテライト液滴 72 (直径 1 , 3, 5 x m )が分離されることが確認できた。大きさの異なるサテライト液滴 72がそれぞれ列をな し、分岐路に流入する様子が見受けられた。分散相、連続相の流量の増加により、サ テライト液滴の大きさ、生成個数はともに増加する傾向を示す。
[0057] 図 13は本発明の第 6実施例を示すサテライト液滴の分離の様子を示す模式図であ る。
[0058] この図において、 81は第 1のマイクロチャネル(連続相供給路)、 82はその第 1のマ イクロチャネル (連続相供給路)から供給される連続相、 83は十字構造の交差部、 84 は第 2のマイクロチャネル (第 1の分散相供給路)、 85はその第 2のマイクロチャネル( 第 1の分散相供給路) 84から供給される第 1の分散相、 86は第 3のマイクロチャネル ( 第 2の分散相供給路)、 87は第 3のマイクロチャネル (第 2の分散相供給路) 86から供 給される第 2の分散相、 88は第 4のマイクロチャネル、 89は十字構造の交差部 83に おいて生成される第 1の主液滴、 90は第 1の主液滴 89が生成されるときに同時に生 成される第 1のサテライト液滴、 91は十字構造の交差部 83において生成される第 2 の主液滴、 92は第 2の主液滴 91が生成されるときに同時に生成される第 2のサテラ イト液滴、 93は液滴 89— 92を排出する排出口に連結されるマイクロチャネルの接合 部、 94はマイクロチャネルの拡張部(テーパ部)、 95は分岐部、 96は主液滴 89, 91 を回収するための主液滴回収路、 97は主液滴 89, 91の送液、 98は第 1のサテライト 液滴 90を回収するための第 1のサテライト液滴回収路、 99は第 2のサテライト液滴 92 を回収するための第 2のサテライト液滴回収路である。 [0059] この実施例では、微小液滴生成箇所 (十字構造の交差部) 83の下流部に拡張部( テーパ部) 94および第 1、第 2のサテライト液滴回収路 98, 99を設置し、主液滴 89, 91から第 1、第 2のサテライト液 90, 92をそれぞれ分離することができる。
[0060] このような仕組みにより、マイクロチャネル内にて液滴生成、分級操作を一括して行 うことができ、装置外での分級操作を行わずに単分散液滴/微粒子が得られるとレ、う 利点がある。
[0061] 分離 ·回収したサテライト液滴は極めて微小であり、当該液滴をダブルエマルシヨン 生成のために用いることができる。
[0062] 図 14は本発明の第 7実施例を示すサテライト液滴を用いたダブルエマルシヨン生 成の様子を示す模式図である。
[0063] この図において、 101は第 1のマイクロチャネル(サテライト液滴供給路)、 102はサ テライト液滴の送液、 103はサテライト液滴、 104はサテライト液滴の排出口、 105は 第 2のマイクロチャネル (連続相供給路)、 106は第 2のマイクロチャネル (連続相供給 路) 105から供給される第 1の連続相、 107は第 3のマイクロチャネル (連続相供給路 )、 108は第 3のマイクロチャネル (連続相供給路) 107から供給される第 2の連続相、 109はサテライト液滴を用いたダブルエマルシヨン回収路、 110はサテライト液滴を用 レ、たダブルエマルシヨンの送液、 111はサテライト液滴を用いたダブルエマルシヨン である。
[0064] この実施例によれば、図 14に示すように、サテライト液滴 103を内包するダブルエマ ノレシヨン 111を生成することができる。
[0065] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0066] 本発明によれば、交差するマイクロチャネルを組み合わせることにより、種々の態様 の微小液滴、特に、ダブルエマルシヨン'マイクロカプセルを簡便にし力、も容易に作 製すること力 Sできる。
[0067] また、主液滴とサテライト液滴を容易に分離してそれぞれを回収することができる。
そして、高品質'高精度のダブルエマルシヨン'マイクロカプセルを製造することがで きる。 産業上の利用可能性
本発明の微小液滴の生成方法及び装置は、遺伝子分野や医薬分野でのマイクロ カプセルの生成のツールとして利用可能である。

Claims

請求の範囲
[1] 第 1の連続相と第 1の分散相および第 2の分散相とが交差する交差部において、前 記第 1の分散相と第 2の分散相とを前記第 1の連続相に作用させて、微小液滴を順 次生成させることを特徴とする微小液滴の生成方法。
[2] 請求項 1記載の微小液滴の生成方法において、前記交差部が十字の交差部であ ることを特徴とする微小液滴の生成方法。
[3] 請求項 1記載の微小液滴の生成方法において、前記交差部が位置をずらした丁字 の交差部であることを特徴とする微小液滴の生成方法。
[4] 請求項 1記載の微小液滴の生成方法において、前記第 1の分散相からの微小液滴 と第 2の分散相からの微小液滴とが異なった液滴であることを特徴とする微小液滴の 生成方法。
[5] 請求項 2記載の微小液滴の生成方法において、前記第 1の分散相と第 2の分散相 を一定時間間隔で交互に作用させて、サイズの揃った成分の異なる微小液滴を規則 正しい周期で交互に生成させることを特徴とする微小液滴の生成方法。
[6] 請求項 3記載の微小液滴の生成方法において、前記第 1の分散相と第 2の分散相 を一定時間間隔で交互に作用させて、サイズの揃った成分の異なる微小液滴を規則 正しい周期で交互に生成させることを特徴とする微小液滴の生成方法。
[7] 請求項 5又は 6記載の微小液滴の生成方法において、前記周期を変更可能にする ことを特徴とする微小液滴の生成方法。
[8] 第 1の連続相と第 1の分散相および第 2の分散相とが交差する十字の交差部にお いて、前記第 1の分散相と第 2の分散相とを前記第 1の連続相に作用させて、異なつ た微小液滴を順次生成させ、該異なった微小液滴を含む送液を前記第 1の連続相 および第 2の連続相が供給される更なる十字の交差部に供給してダブルエマルショ ン.マイクロカプセルを生成することを特徴とする微小液滴の生成方法。
[9] (a)第 1の連続相と第 1の分散相と第 2の分散相とが交差する交差部と、
(b)前記第 1の分散相を制御する第 1の送液装置と、
(c)前記第 2の分散相を制御する第 2の送液装置と、
(d)前記第 1の送液装置と第 2の送液装置に接続される制御装置とを備え、 (e)前記第 1の送液装置と第 2の送液装置を前記制御装置からの信号により制御して 第 1の分散相よりなる微小液滴と第 2の分散相よりなる微小液滴を順次生成させること を特徴とする微小液滴の生成装置。
[10] 請求項 9記載の微小液滴の生成装置において、前記交差部が十字の交差部であ ることを特徴とする微小液滴の生成装置。
[11] 請求項 9記載の微小液滴の生成装置において、前記交差部が位置をずらした丁字 の交差部であることを特徴とする微小液滴の生成装置。
[12] 請求項 10記載の微小液滴の生成装置において、前記制御装置からの信号により サイズの揃った成分の異なる微小液滴を規則正しい周期で交互に生成させることを 特徴とする微小液滴の生成装置。
[13] 請求項 11記載の微小液滴の生成装置において、前記制御装置からの信号により サイズの揃った成分の異なる微小液滴を規則正しい周期で交互に生成させることを 特徴とする微小液滴の生成装置。
[14] 請求項 12又は 13記載の微小液滴の生成装置において、前記制御装置からの信 号により前記周期を変更可能にすることを特徴とする微小液滴の生成装置。
[15] 請求項 8記載の微小液滴の生成装置において、前記微小液滴を含む送液を前記 第 1の連続相および第 2の連続相が供給される更なる十字の交差部に供給してダブ ルエマルシヨン.マイクロカプセルを生成することを特徴とする微小液滴の生成装置。
[16] 主液滴およびサテライト液滴が含まれる送液を拡張部で前記主液滴およびサテラ イト液滴に分離し、分岐部において、前記主液滴およびサテライト液滴を、主液滴回 収路およびサテライト液滴回収路で回収することを特徴とする微小液滴の生成方法。
[17] 請求項 16記載の微小液滴の生成方法において、前記主液滴が第 1および第 2の 主液滴からなり、前記サテライト液滴が第 1および第 2のサテライト液滴からなり、前記 分岐部において前記第 1および第 2の主液滴と、前記第 1のサテライト液滴と、前記 第 2のサテライト液滴をそれぞれ個別に回収することを特徴とする微小液滴の生成方 法。
[18] 請求項 16記載の微小液滴の生成方法において、前記サテライト液滴を含む送液 を第 1の連続相および第 2の連続相が供給される交差部に供給してダブルエマルシ ヨン'マイクロカプセルを生成することを特徴とする微小液滴の生成方法。
[19] (a)主液滴およびサテライト液滴を生成する微小液滴生成部と、
(b)該微小液滴生成部からの微小液滴を供給する微小液滴供給路と、
(c)該微小液滴供給路に結合される拡張部と、
(d)該拡張部の先端に結合され前記主液滴を回収する主液滴回収路と、前記サテラ イト液滴を回収するサテライト液滴回収路とを有する分岐部とを具備することを特徴と する微小液滴の生成装置。
[20] (a)第 1および第 2の主液滴と第 1および第 2のサテライト液滴とを生成する微小液滴 生成部と、
(b)該微小液滴生成部からの微小液滴を供給する微小液滴供給路と、
(c)該微小液滴供給路に結合される拡張部と、
(d)該拡張部の先端に結合され前記第 1および第 2の主液滴を回収する主液滴回収 路と、前記第 1のサテライト液滴を回収する第 1のサテライト液滴回収路と、前記第 2 のサテライト液滴を回収する第 2のサテライト液滴回収路とを有する分岐部とを具備 することを特徴とする微小液滴の生成装置。
PCT/JP2005/004522 2004-03-23 2005-03-15 微小液滴の生成方法及び装置 WO2005089921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20050720779 EP1757357B1 (en) 2004-03-23 2005-03-15 Method and device for producing micro-droplets
US10/593,783 US8741192B2 (en) 2004-03-23 2005-03-15 Method and device for producing micro-droplets
JP2006511190A JP4777238B2 (ja) 2004-03-23 2005-03-15 微小液滴の生成方法及び装置
CA 2560272 CA2560272C (en) 2004-03-23 2005-03-15 Method and apparatus for producing microdroplets
US14/262,306 US9782736B2 (en) 2004-03-23 2014-04-25 Method and device for producing microdroplets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004083802 2004-03-23
JP2004-083802 2004-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/593,783 A-371-Of-International US8741192B2 (en) 2004-03-23 2005-03-15 Method and device for producing micro-droplets
US14/262,306 Division US9782736B2 (en) 2004-03-23 2014-04-25 Method and device for producing microdroplets

Publications (1)

Publication Number Publication Date
WO2005089921A1 true WO2005089921A1 (ja) 2005-09-29

Family

ID=34993487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004522 WO2005089921A1 (ja) 2004-03-23 2005-03-15 微小液滴の生成方法及び装置

Country Status (6)

Country Link
US (2) US8741192B2 (ja)
EP (1) EP1757357B1 (ja)
JP (1) JP4777238B2 (ja)
CN (1) CN100431679C (ja)
CA (1) CA2560272C (ja)
WO (1) WO2005089921A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272196A (ja) * 2005-03-29 2006-10-12 Toshiba Corp 複合型微粒子の製造方法及び複合型微粒子の製造装置
JP2009061382A (ja) * 2007-09-06 2009-03-26 Hitachi Plant Technologies Ltd 乳化装置
JP2010531729A (ja) * 2007-07-03 2010-09-30 イーストマン コダック カンパニー 連続インクジェットドロップ生成デバイス
WO2012008497A1 (ja) * 2010-07-13 2012-01-19 国立大学法人東京工業大学 微小液滴の製造装置
JP2013503742A (ja) * 2009-09-02 2013-02-04 プレジデント アンド フェロウズ オブ ハーバード カレッジ ジャンクションを使用して生成された多重エマルジョン
JP2013525087A (ja) * 2010-03-17 2013-06-20 プレジデント アンド フェロウズ オブ ハーバード カレッジ 融解乳化
US9039273B2 (en) 2005-03-04 2015-05-26 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
US9233859B2 (en) 2013-09-30 2016-01-12 Uchicago Argonne, Llc. Microfluidic process monitor for industrial solvent extraction system
US9238206B2 (en) 2011-05-23 2016-01-19 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
EP3017868A1 (en) 2014-11-10 2016-05-11 Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut - Device and method for extracting individual picoliter droplets from microfluidic emulsions for further analysis and scale-up
JP2018008256A (ja) * 2016-07-15 2018-01-18 国立研究開発法人科学技術振興機構 液滴安定化装置、液滴分取装置及びそれらの方法
EP3343223A1 (en) 2016-12-30 2018-07-04 Blink AG A prefabricated microparticle for performing a digital detection of an analyte
US10195571B2 (en) 2011-07-06 2019-02-05 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
US11474109B2 (en) 2018-11-16 2022-10-18 Scintimetrics, Inc. Compositions and methods for controllably merging emulsion droplets and sample analysis

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60238955D1 (de) * 2001-02-23 2011-02-24 Japan Science & Tech Agency Vorrichtung zum Erzeugen von Emulsionen
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US9492797B2 (en) 2008-09-23 2016-11-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US9132394B2 (en) 2008-09-23 2015-09-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US8951939B2 (en) 2011-07-12 2015-02-10 Bio-Rad Laboratories, Inc. Digital assays with multiplexed detection of two or more targets in the same optical channel
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US12090480B2 (en) 2008-09-23 2024-09-17 Bio-Rad Laboratories, Inc. Partition-based method of analysis
US8663920B2 (en) 2011-07-29 2014-03-04 Bio-Rad Laboratories, Inc. Library characterization by digital assay
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
US11130128B2 (en) 2008-09-23 2021-09-28 Bio-Rad Laboratories, Inc. Detection method for a target nucleic acid
WO2011120006A1 (en) 2010-03-25 2011-09-29 Auantalife, Inc. A Delaware Corporation Detection system for droplet-based assays
US9598725B2 (en) 2010-03-02 2017-03-21 Bio-Rad Laboratories, Inc. Emulsion chemistry for encapsulated droplets
US10512910B2 (en) 2008-09-23 2019-12-24 Bio-Rad Laboratories, Inc. Droplet-based analysis method
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US8633015B2 (en) 2008-09-23 2014-01-21 Bio-Rad Laboratories, Inc. Flow-based thermocycling system with thermoelectric cooler
WO2010104604A1 (en) * 2009-03-13 2010-09-16 President And Fellows Of Harvard College Method for the controlled creation of emulsions, including multiple emulsions
GB2471522B (en) * 2009-07-03 2014-01-08 Cambridge Entpr Ltd Microfluidic devices
WO2011028539A1 (en) 2009-09-02 2011-03-10 Quantalife, Inc. System for mixing fluids by coalescence of multiple emulsions
JP2013524171A (ja) 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド 液滴ベースのアッセイのための液滴の発生
CA2767114A1 (en) 2010-03-25 2011-09-29 Bio-Rad Laboratories, Inc. Droplet transport system for detection
WO2012061444A2 (en) 2010-11-01 2012-05-10 Hiddessen Amy L System for forming emulsions
CN103328089B (zh) * 2010-12-21 2016-09-07 哈佛学院院长等 喷雾干燥技术
US12097495B2 (en) 2011-02-18 2024-09-24 Bio-Rad Laboratories, Inc. Methods and compositions for detecting genetic material
CA2830443C (en) 2011-03-18 2021-11-16 Bio-Rad Laboratories, Inc. Multiplexed digital assays with combinatorial use of signals
AU2012249759A1 (en) 2011-04-25 2013-11-07 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
CN103007793B (zh) * 2011-09-20 2014-12-24 中国科学院过程工程研究所 一种分级式控温型膜乳化器
WO2013155531A2 (en) 2012-04-13 2013-10-17 Bio-Rad Laboratories, Inc. Sample holder with a well having a wicking promoter
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
CN104769127A (zh) 2012-08-14 2015-07-08 10X基因组学有限公司 微胶囊组合物及方法
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
KR20200140929A (ko) 2013-02-08 2020-12-16 10엑스 제노믹스, 인크. 폴리뉴클레오티드 바코드 생성
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US9580736B2 (en) 2013-12-30 2017-02-28 Atreca, Inc. Analysis of nucleic acids associated with single cells using nucleic acid barcodes
JP6031711B2 (ja) * 2014-03-11 2016-11-24 凸版印刷株式会社 液滴製造デバイス、液滴の製造方法、リポソームの製造方法、固定具及び液滴製造キット
CA2953374A1 (en) 2014-06-26 2015-12-30 10X Genomics, Inc. Methods of analyzing nucleic acids from individual cells or cell populations
JP6676036B2 (ja) * 2014-08-06 2020-04-08 エタブリセマン・ジ・スフレ マイクロ流体またはミリ流体デバイス内で、反応体と試薬液滴とを融合させ、または接触させるための方法
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
AU2016348439B2 (en) 2015-11-04 2023-03-09 Atreca, Inc. Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
US10654040B2 (en) 2016-08-18 2020-05-19 Northeastern University Platform for liquid droplet formation and isolation
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
CN117512066A (zh) 2017-01-30 2024-02-06 10X基因组学有限公司 用于基于微滴的单细胞条形编码的方法和系统
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
CN117143960A (zh) 2017-05-18 2023-12-01 10X基因组学有限公司 用于分选液滴和珠的方法和系统
US10610865B2 (en) 2017-08-22 2020-04-07 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. MICROFLUIDIC CHANNEL NETWORKS FOR PARTITIONING
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS
EP3700672B1 (en) 2017-10-27 2022-12-28 10X Genomics, Inc. Methods for sample preparation and analysis
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019126789A1 (en) 2017-12-22 2019-06-27 10X Genomics, Inc. Systems and methods for processing nucleic acid molecules from one or more cells
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
WO2019169028A1 (en) 2018-02-28 2019-09-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
EP3775271A1 (en) 2018-04-06 2021-02-17 10X Genomics, Inc. Systems and methods for quality control in single cell processing
WO2019217758A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US12065688B2 (en) 2018-08-20 2024-08-20 10X Genomics, Inc. Compositions and methods for cellular processing
US11130120B2 (en) * 2018-10-01 2021-09-28 Lifeng XIAO Micro-pipette tip for forming micro-droplets
CN111068799B (zh) * 2018-10-18 2021-03-23 浙江达普生物科技有限公司 用于产生液滴的微流体通路及其应用
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
EP3924505A1 (en) 2019-02-12 2021-12-22 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
SG11202111242PA (en) 2019-03-11 2021-11-29 10X Genomics Inc Systems and methods for processing optically tagged beads
US12059679B2 (en) 2019-11-19 2024-08-13 10X Genomics, Inc. Methods and devices for sorting droplets and particles
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
US12084715B1 (en) 2020-11-05 2024-09-10 10X Genomics, Inc. Methods and systems for reducing artifactual antisense products
EP4298244A1 (en) 2021-02-23 2024-01-03 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
CN114522597B (zh) * 2022-02-10 2023-04-28 清华大学 微分散装置
CN115228317B (zh) * 2022-07-05 2024-04-26 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种烤烟种植用的肥药制备装置及方法
FR3142105A1 (fr) * 2022-11-22 2024-05-24 Ecole Centrale De Marseille Procede de fabrication de capsules polymeriques micrometriques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517545A (ja) * 1997-09-25 2001-10-09 ジーイー・バイエル・シリコーンズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト シリコーンエマルションの調製のための装置及び方法
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2004122107A (ja) * 2002-04-25 2004-04-22 Tosoh Corp 微小流路構造体、これを用いた微小粒子製造方法及び微小流路構造体による溶媒抽出方法
JP2004237177A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency ダブルエマルション・マイクロカプセル生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US6146103A (en) * 1998-10-09 2000-11-14 The Regents Of The University Of California Micromachined magnetohydrodynamic actuators and sensors
US6149787A (en) * 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
US7294503B2 (en) * 2000-09-15 2007-11-13 California Institute Of Technology Microfabricated crossflow devices and methods
US6622746B2 (en) * 2001-12-12 2003-09-23 Eastman Kodak Company Microfluidic system for controlled fluid mixing and delivery
US7718099B2 (en) * 2002-04-25 2010-05-18 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
US7595195B2 (en) * 2003-02-11 2009-09-29 The Regents Of The University Of California Microfluidic devices for controlled viscous shearing and formation of amphiphilic vesicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517545A (ja) * 1997-09-25 2001-10-09 ジーイー・バイエル・シリコーンズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト シリコーンエマルションの調製のための装置及び方法
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2004122107A (ja) * 2002-04-25 2004-04-22 Tosoh Corp 微小流路構造体、これを用いた微小粒子製造方法及び微小流路構造体による溶媒抽出方法
JP2004237177A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency ダブルエマルション・マイクロカプセル生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1757357A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316873B2 (en) 2005-03-04 2019-06-11 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
US9039273B2 (en) 2005-03-04 2015-05-26 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
JP4580801B2 (ja) * 2005-03-29 2010-11-17 株式会社東芝 複合型微粒子の製造方法及び複合型微粒子の製造装置
JP2006272196A (ja) * 2005-03-29 2006-10-12 Toshiba Corp 複合型微粒子の製造方法及び複合型微粒子の製造装置
JP2010531729A (ja) * 2007-07-03 2010-09-30 イーストマン コダック カンパニー 連続インクジェットドロップ生成デバイス
JP2009061382A (ja) * 2007-09-06 2009-03-26 Hitachi Plant Technologies Ltd 乳化装置
JP2013503742A (ja) * 2009-09-02 2013-02-04 プレジデント アンド フェロウズ オブ ハーバード カレッジ ジャンクションを使用して生成された多重エマルジョン
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
JP2013525087A (ja) * 2010-03-17 2013-06-20 プレジデント アンド フェロウズ オブ ハーバード カレッジ 融解乳化
WO2012008497A1 (ja) * 2010-07-13 2012-01-19 国立大学法人東京工業大学 微小液滴の製造装置
US9200938B2 (en) 2010-07-13 2015-12-01 Toyota Institute of Technology Microdroplet-producing apparatus
US9238206B2 (en) 2011-05-23 2016-01-19 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US9573099B2 (en) 2011-05-23 2017-02-21 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US10195571B2 (en) 2011-07-06 2019-02-05 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
US9233859B2 (en) 2013-09-30 2016-01-12 Uchicago Argonne, Llc. Microfluidic process monitor for industrial solvent extraction system
US10040067B2 (en) 2014-11-10 2018-08-07 Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie—Hans-Knöll-Institut Device and method for extracting individual picoliter droplets from microfluidic emulsions for further analysis and scale-up
EP3017868A1 (en) 2014-11-10 2016-05-11 Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut - Device and method for extracting individual picoliter droplets from microfluidic emulsions for further analysis and scale-up
JP2018008256A (ja) * 2016-07-15 2018-01-18 国立研究開発法人科学技術振興機構 液滴安定化装置、液滴分取装置及びそれらの方法
EP3343223A1 (en) 2016-12-30 2018-07-04 Blink AG A prefabricated microparticle for performing a digital detection of an analyte
WO2018122162A1 (en) 2016-12-30 2018-07-05 Blink Ag A prefabricated microparticle for performing a detection of an analyte
EP4123305A1 (en) 2016-12-30 2023-01-25 Blink AG A prefabricated microparticle for performing a detection of an analyte
US11474109B2 (en) 2018-11-16 2022-10-18 Scintimetrics, Inc. Compositions and methods for controllably merging emulsion droplets and sample analysis

Also Published As

Publication number Publication date
EP1757357B1 (en) 2013-04-24
EP1757357A1 (en) 2007-02-28
US9782736B2 (en) 2017-10-10
US8741192B2 (en) 2014-06-03
EP1757357A4 (en) 2012-01-25
CN1933898A (zh) 2007-03-21
CA2560272C (en) 2012-05-08
JP4777238B2 (ja) 2011-09-21
JPWO2005089921A1 (ja) 2008-01-31
US20070196397A1 (en) 2007-08-23
US20140230913A1 (en) 2014-08-21
CN100431679C (zh) 2008-11-12
CA2560272A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
WO2005089921A1 (ja) 微小液滴の生成方法及び装置
US8302880B2 (en) Monodisperse droplet generation
US8439487B2 (en) Continuous ink jet printing of encapsulated droplets
EP2544806B1 (en) Method and electro-fluidic device to produce emulsions and particle suspensions
Castrejón-Pita et al. A novel method to produce small droplets from large nozzles
JP2010531729A (ja) 連続インクジェットドロップ生成デバイス
JP2010256911A (ja) カプセルベースの起電ディスプレイにおける使用のための液滴を作製するための方法
CN104815709A (zh) 一种产生微液滴的方法和装置
US20120063992A1 (en) Process for the production of nanoparticles using miniemulsions
CN111701627B (zh) 一种基于声表面波微流控的核壳液滴快速生成装置及方法
JP2008104942A (ja) 流体処理装置及び方法
JP4305145B2 (ja) 微小流路による粒子製造方法
JP2009166039A (ja) 微粒子製造装置
JP4639624B2 (ja) 微小流路構造体
JP4470640B2 (ja) 微粒子製造方法及びそのための微小流路構造体
US10112389B2 (en) Inkjet head and coating apparatus using same
JP4417361B2 (ja) ダブルエマルション・マイクロカプセル生成装置
JP4547967B2 (ja) 微小流路構造体及びそれを用いた液滴生成方法
JP2007196218A (ja) 流体の混合装置、これを集積化した流体混合装置および流体混合システム
JP2007038117A (ja) 粒子製造方法
JP4352890B2 (ja) 微粒子製造装置及びこれを利用した微粒子の製造方法
Shuai et al. INFLUENCES OF KEY CONFIGURATION PARAMETERS ON FLOW-FOCUSING MICROFLUIDIC DROPLET GENERATION
JP2011131172A (ja) 微小流路送液装置
Mayer et al. THREAD FORMATION AND TIPSTREAMING IN A MICROFLUIDIC FLOW FOCUSING DEVICE
CN116922956A (zh) 一种基于脉冲气流的液滴喷射方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511190

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2560272

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580009320.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593783

Country of ref document: US

Ref document number: 2007196397

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005720779

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593783

Country of ref document: US