WO2005085934A1 - Device for producing a linear focussing area for a laser light source - Google Patents

Device for producing a linear focussing area for a laser light source Download PDF

Info

Publication number
WO2005085934A1
WO2005085934A1 PCT/EP2004/010529 EP2004010529W WO2005085934A1 WO 2005085934 A1 WO2005085934 A1 WO 2005085934A1 EP 2004010529 W EP2004010529 W EP 2004010529W WO 2005085934 A1 WO2005085934 A1 WO 2005085934A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
fast
slow
axis
axis direction
Prior art date
Application number
PCT/EP2004/010529
Other languages
German (de)
French (fr)
Inventor
Dirk Hauschild
Wieland Hill
Peter Bruns
Original Assignee
Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg filed Critical Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg
Publication of WO2005085934A1 publication Critical patent/WO2005085934A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a device for generating a line-like focus region of a laser light source, comprising at least one semiconductor laser with at least one emitting section, the divergence of the laser light emanating from this at least one emitting section being greater in the fast-axis direction than in the direction perpendicular thereto Slow-axis direction, further comprising fast-axis collimation means for collimating the laser light emerging from the at least one emitting section with respect to the fast-axis direction, homogenizer means for homogenizing the laser light collimated by the fast-axis collimation means and focusing means for focusing of the laser light emanating from the homogenizer means into a line-like focus area.
  • a device of the aforementioned type is known from German published patent application DE 198 41 040 A1.
  • the light emanating from a laser diode bar is collimated by a cylindrical fast-axis collimation lens.
  • this laser light is homogenized by two homogenizers arranged one behind the other.
  • the homogenizers are each designed as substrates with arrays of cylindrical lenses on the entry and exit surfaces, the cylinder lenses opposite one another on the entry and exit surfaces being crossed with respect to one another.
  • the laser light After passing through the two homogenizers, the laser light is superimposed by, for example, a rotationally symmetrical converging lens in such a way that a comparatively homogeneous intensity distribution of the laser light is given both in the fast-axis direction and in the slow-axis direction at a predetermined distance behind the homogenizers and the converging lens is. That on this Wise homogenized light hits a mask in which a narrow gap is formed. The light essentially emerges from this slit with a linear intensity distribution, which can be imaged, for example, by means of a lens onto an object to be processed.
  • the problem on which the present invention is based is the creation of a device of the type mentioned at the outset, which is of simpler construction and / or works more effectively.
  • the homogenizer means are designed in such a way that they homogenize the laser light only with respect to the slow axis direction.
  • the laser light can be focused into a line-like focus area by means of suitable focusing means in such a way that the focus area has a very small extent in the fast axis direction and that the focus area on the other hand is comparatively extended in the slow axis direction and is still very homogeneous.
  • the homogenizer means comprise at least one array of cylinder lenses, the cylinder axes of which extend in the fast axis direction.
  • the extension of the cylinder axes in the fast axis direction ensures that the beam quality of the laser light in the fast axis direction is not influenced by the homogenizer means.
  • the cylindrical lenses have a focal length of 0.2 mm to 10 mm, in particular of 1 mm.
  • the cylindrical lenses have a width of approximately 0.2 mm to 3 mm, in particular approximately 1 mm, in the slow axis direction.
  • the numerical aperture of the homogenizer means with regard to the slow axis direction is larger than the numerical aperture of the laser light to be homogenized in the slow axis direction.
  • the numerical aperture of the homogenizer means with respect to the slow axis direction is greater than 0.1, in particular greater than 0.2, preferably greater than 0.3.
  • the homogenizer means used should have a comparatively large numerical aperture for cylindrical lenses with a very short focal length.
  • the configuration of the invention according to claims 3 to 6 can ensure that the line-like focus region generated has a very homogeneous intensity distribution.
  • the device has slow-axis collimation means, which are arranged in particular between the fast-axis collimation means and the homogenizer means.
  • the slow-axis collimation means can be used to reduce the numerical aperture of the laser light to be homogenized by the homogenizer means, so that the numerical aperture of the homogenizer means can be chosen to be sufficiently good for homogenization.
  • the width of the line-like focus area in the slow axis direction can be reduced.
  • a particularly high homogeneity of the line-like focus area can be achieved by a comparatively high numerical aperture of the homogenizer means despite the slow-axis collimation means present.
  • the slow-axis collimation means have at least one array of cylindrical lenses, the cylinder axes of which extend in the fast-axis direction.
  • Such slow-axis collimation means only bring about collimation with regard to the slow axis direction and do not impair the beam quality with regard to the fast axis direction.
  • the slow-axis collimation means are designed as a slow-axis collimator array or a slow-axis telescope array.
  • Such slow-axis collimation means are known from the prior art and have proven themselves in practice in many different embodiments.
  • the fast-axis collimation means are designed in such a way that the laser light emanating from the at least one emitting section of the semiconductor laser is collimated by the fast-axis collimation means, essentially with diffraction limitation.
  • the distance of the fast-axis collimation means from the emitting sections of the semiconductor laser can be selected to be larger, so that the expansion of the laser light in the fast-axis direction after passing through the Fast-axis collimation means is comparatively large.
  • Such a comparatively large extent in the fast axis direction can further reduce the extent of the line-like focus area in the fast axis direction.
  • the focusing means comprise at least one essentially rotationally symmetrical lens, wherein this lens can serve in particular as a field lens for the homogenizer means in the slow axis direction.
  • the lens used as the focusing means can thus have a dual function exercise, namely on the one hand the focusing of the laser light in the fast axis direction and on the other hand the homogenization of the laser light in the slow axis direction.
  • a fast-axis beam expansion is arranged between the fast-axis collimation means and the focusing means.
  • the expansion of the laser light in the fast axis direction can be increased further by the fast axis beam expansion, so that the extension of the line-like focus area in the fast axis direction can be further reduced.
  • the homogenizer means comprise two arrays of cylindrical lenses which are arranged one behind the other in the direction of propagation of the laser light.
  • the distance between the two arrays of cylindrical lenses corresponds approximately to the focal length of the cylindrical lenses of the rear array in the direction of propagation of the laser light.
  • Such an arrangement makes it possible to homogenize divergent laser light in the slow axis direction.
  • partial beams emerging from the first array of cylindrical lenses at the same angles are combined with one another in the line-like focus region at the same points.
  • slow-axis collimation means can optionally be dispensed with. In this way it can be achieved that partial beams emanating from individual emitting sections of the semiconductor laser already overlap with one another when they strike the homogenizer means are. This further improves the homogenization of the laser light.
  • the number of cylindrical lenses of the at least one array of cylindrical lenses of the homogenizer means is greater than the number of emitting sections.
  • Figure 1 is a schematic side view of a first embodiment of a device according to the invention.
  • FIG. 2 shows a side view of the device according to FIG. 1 rotated by 90 °;
  • FIG. 3 shows a schematic side view of a second embodiment of a device according to the invention.
  • FIG. 4 shows a side view of the device according to FIG. 3 rotated by 90 °.
  • the embodiment of a device according to the invention shown in FIGS. 1 and 2 comprises a semiconductor laser 1, which in the illustrated embodiment has three emitting sections 2 arranged next to one another and spaced apart in the X direction. 2 is only a schematic illustration because, as a rule, semiconductor lasers have a significantly larger number of spaced-apart emitting sections 2. For example, there is the possibility that the semiconductor laser 1 has thirty or fifty emitting sections 2. Such semiconductor lasers 1 are referred to as laser diode bars.
  • the device further comprises fast-axis collimation means 4, which in the exemplary embodiment shown are designed as a cylindrical lens with a cylinder axis extending in the X direction.
  • the cylindrical lens serving as the fast-axis collimation means 4 has a convex curvature only on its exit side, whereas it is flat on its entry side. It is quite possible to provide the entry side with a convex curvature and to make the exit side flat, or to bend both the entry side and the exit side convexly and / or concavely.
  • the fast-axis collimation means 4 should be designed in such a way that the laser light 3 is collimated with respect to the fast-axis or the Y-direction with limited diffraction.
  • the cylindrical lens serving as a fast-axis collimation means 4 can have an aspherical surface.
  • the distance between the emitting sections 2 of the semiconductor laser 1 and the fast-axis collimation means 4 is chosen to be comparatively large, so that the laser light 3 in the Y direction after passing through the fast-axis collimation means 4 is one has a comparatively large expansion.
  • the device according to the invention comprises slow-axis collimation means 5, which in the exemplary embodiment shown are designed as an array of cylindrical lenses 6, 7 on the entry and exit sides of the slow-axis collimation means 5 ,
  • the cylinder axes of the cylindrical lenses 6, 7 of the array of cylindrical lenses extend in the Y direction.
  • the slow axis Collimation means are arranged such that one of the partial beams 3a, 3b, 3c (see FIG. 2) of the laser light 3 entering each of the emitting sections 2 enters each of the cylindrical lenses 6.
  • Each of these partial beams 3a, 3b, 3c is collimated by the corresponding cylindrical lenses 6, 7 with respect to the slow axis or with respect to the X direction.
  • the embodiment of the slow-axis collimation means 5 shown in FIGS. 1 and 2 represents a telescope arrangement.
  • the slow-axis collimation means 5 as one on only one side, for example the entry side or the exit side arranged array of cylindrical lenses to perform.
  • the embodiment of a device according to the invention depicted in FIGS. 1 and 2 further comprises homogenizer means 8 behind the slow-axis collimation means 5.
  • the homogenizer means 8 depicted in FIGS. 1 and 2 comprise an array of cylindrical lenses 9 on the Exit side of a transparent substrate, which in the illustrated embodiment is flat on its entry side.
  • the axes of the cylindrical lenses 9 extend in the Y direction, so that the laser radiation 3 is influenced by the cylindrical lenses 9 only with regard to the slow axis direction.
  • the cylindrical lenses 9 can be spherical as well as aspherical.
  • the focal length of the cylindrical lenses 9 can be 1 mm, for example.
  • the width of the cylindrical lenses 9 in the X direction can also be 1 mm, for example.
  • the homogenizer means 8 have a comparatively high numerical aperture of more than 0.1, better of more than 0.2 to 0.3.
  • the numerical aperture of the homogenizer means 8 should be larger, in particular significantly larger than the numerical aperture of the laser light 3 entering the homogenizer means 8.
  • the numerical aperture of the laser light of a semiconductor laser 1 in the slow axis direction is approximately 0.1.
  • the individual partial beams 3a, 3b, 3c of the laser light 3 are very effectively superimposed on one another in the slow axis direction or in the X direction.
  • the laser light 10 emerging from the homogenizer means 8 can be focused by focusing means 11 arranged in the direction of propagation Z behind the homogenizer means 8.
  • the focusing means 1 1 are as rotationally symmetrical plano-convex lens.
  • the focusing means 1 1 can also be formed by other designs, for example by a biconvex lens or by a plurality of interacting lenses.
  • This lens can focus the laser radiation 10 with respect to the fast axis or the Y direction and at the same time serve as a field lens for the homogenizer means 8 which only act on the slow axis or X direction.
  • the focus of the lens serving as focusing means 1 1 can practically lie with respect to the fast axis in a plane in which the field of laser light 10 is homogenized in the slow axis direction by the lens serving as field lens.
  • each of the cylindrical lenses 9 refracts the light passing through them in a variety of different directions.
  • the plano-convex spherical lens serving as the focusing means 11 or field lens deflects each partial beam striking the field lens at the same angle in the line-like focus region 12 so that the partial laser beams 3a, 3b, 3c of the original laser light 3 originating portions of the laser light 10 in the focus area 12 are evenly distributed over its width in the X direction or in the slow axis direction.
  • the focusing means 1 1 focus the laser light 10 in a line-like focus area 12 which extends in the X direction and has a very small extent in the Y direction.
  • the extent of the focus area 12 in the Y direction or in the fast axis direction is less than 1 mm or less than 0.5 mm.
  • the width of the line Focus area 12 in the X direction or in the slow axis direction is greater than 5 mm or greater than 20 mm.
  • the distance d between the exit surface of the focusing means 1 1 and the line-like focus area 12 can be comparatively large, for example greater than 50, in particular greater than 200 mm.
  • a fast axis beam expansion can be arranged between the fast axis collimation means 4 and the focusing means 11.
  • the beam waist and thus the height of the line-like focus area 12 in the fast-axis direction can be reduced.
  • Such a fast-axis beam expansion can be achieved with any means known from the prior art, such as, for example, with a telescope-like arrangement of refractive elements.
  • the refractive elements or lenses of the fast-axis beam expansion should be designed in such a way that the beam quality of the laser light 3 is retained.
  • the lenses of the fast-axis beam expansion should be aspherical.
  • FIGS. 3 and 4 differs of the device according to FIG. 1 and FIG. 2 essentially in that the homogenizer means 13 are constructed in several parts and there is no slow-axis collimation means.
  • the homogenizer means 13 there is a first array of cylindrical lenses 15 on a first substrate 14 in the direction of propagation of the laser radiation 3 and on one of the first A second array of cylindrical lenses 17 is provided in the substrate 14 spaced apart in the beam direction.
  • the first array of cylindrical lenses 15 serves as an illumination array for the second array of cylindrical lenses 17, which serves as an imaging array or as a homogenizing array.
  • FIG. 4 shows that the cylinder lenses 15, 17 have cylinder axes running in the Y direction. It can also be seen from FIG. 4 that the partial beams 3a to 3e of the laser light 3 emerging from individual emitting sections 2a to 2e are already partially overlapped with one another when they strike the first substrate 14 of the homogenizer means 13. Each of the cylindrical lenses 15 of the first substrate 14 of the homogenizer means 13 illuminates an opposing cylindrical lens 17 of the second substrate 16.
  • FIG. 4 shows that the first array of cylindrical lenses 15 is arranged on the exit side of the first substrate 14 , whereas the second array of cylindrical lenses 17 is arranged on the entry side of the substrate 16. The distance between the two arrays of cylindrical lenses 15, 17 essentially corresponds to the focal length f 7 of the cylindrical lenses 17 of the array arranged on the second substrate 16. This is illustrated in Fig. 4.
  • the lenses of the second array are optimally illuminated by the first array of cylindrical lenses 15, which serves as an illumination array, so that a very effective homogenization in the slow-axis direction can take place. Furthermore, homogenization takes place by mixing individual partial beams 3a, 3b, 3c, 3d, 3e in the slow axis direction. Furthermore, the homogenizer means 13 make it possible to homogenize the laser light 3 which diverges in the slow-axis direction when it hits the homogenizer means 13. It can be seen from FIGS. 2 and 4 that the number of cylindrical lenses 9, 15, 17 of the homogenizer means 8 or of the substrates 14, 16 is greater than the number of emitting sections 2 or 2a to 2e.

Abstract

A device for producing a linear focussing area (12) for a laser light source, comprising at least one semiconductor laser (1) having at least one emitting section (2), wherein the divergence of the laser light emitted from said at least one emitting section (2) is greater in the fast axis direction (Y) than in the slow axis direction (X) which is perpendicular thereto, fast axis collimating means (4) for collimation of the laser light (3), which is discharged from the at least one emitting section (2), in relation to the fast axis direction (Y), homogenizer means (8,13) for homogenizing laser light (3), which is collimated by fast axis collimating means (4), and focussing means (11) for focussing the laser light (10), which is emitted from the homogenizer means (8, 13), into a linear focussing area (12),wherein the homogenizer means (8,13) are configured in such a way that they only homogenize laser light (3) in relation to the slow axis direction (X).

Description

"Vorrichtung zur Erzeugung eines linearen Fokusbereichs einer Laserlichtquelle""Device for Generating a Linear Focus Area of a Laser Light Source"
Die vorliegende Erfindung betrifft eine Vorrichtung zur Erzeugung eines linienartigen Fokusbereichs einer Laserlichtquelle, umfassend mindestens einen Halbleiterlaser mit mindestens einem emittierenden Abschnitt, wobei die Divergenz des von diesem mindestens einen emittierenden Abschnitt ausgehenden Laserlichtes in der Fast-Axis- Richtung größer ist als in der dazu senkrechten Slow-Axis-Richtung, umfassend weiterhin Fast-Axis-Kollimationsmittel für die Kollimierung des aus dem mindestens einen emittierenden Abschnitt austretenden Laserlichtes hinsichtlich der Fast-Axis-Richtung, Homogenisatormittel zur Homogenisierung des von den Fast-Axis-Kollimationmitteln kollimierten Laserlichtes sowie Fokussiermittel zur Fokussierung des von den Homogenisatormitteln ausgehenden Laserlichtes in einen linienartigen Fokusbereich.The present invention relates to a device for generating a line-like focus region of a laser light source, comprising at least one semiconductor laser with at least one emitting section, the divergence of the laser light emanating from this at least one emitting section being greater in the fast-axis direction than in the direction perpendicular thereto Slow-axis direction, further comprising fast-axis collimation means for collimating the laser light emerging from the at least one emitting section with respect to the fast-axis direction, homogenizer means for homogenizing the laser light collimated by the fast-axis collimation means and focusing means for focusing of the laser light emanating from the homogenizer means into a line-like focus area.
Eine Vorrichtung der vorgenannten Art ist aus der deutschen Offenlegungsschrift DE 198 41 040 A1 bekannt. Bei der darin beschriebenen Vorrichtung wird das von einem Laserdiodenbarren ausgehende Licht von einer zylindrischen Fast-Axis-Kollimationslinse kollimiert. Daran anschließend wird dieses Laserlicht von zwei hintereinander angeordneten Homogenisatoren homogenisiert. Die Homogenisatoren sind dabei jeweils als Substrate mit Arrays von Zylinderlinsen auf der Eintritts- und der Austrittsfläche ausgebildet, wobei jeweils die auf Eintritts- und Austrittsfläche einander gegenüberliegenden Zylinderlinsen zueinander gekreuzt sind . Das Laserlicht wird nach Hindurchtritt durch die beiden Homogenisatoren von einer beispielsweise rotationssymmetrischen Sammellinse so überlagert, dass in einem vorgegebenen Abstand hinter den Homogenisatoren und der Sammellinse eine vergleichsweise homogene Intensitätsverteilung des Laserlichtes sowohl in Fast-Axis- Richtung als auch in Slow-Axis-Richtung gegeben ist. Das auf diese Weise homogenisierte Licht trifft auf eine Maske, in der ein schmaler Spalt ausgebildet ist. Aus diesem Spalt tritt das Licht im Wesentlichen mit einer linienförmigen Intensitätsverteilung aus, die beispielsweise mittels eines Objektivs auf ein zu bearbeitendes Objekt abgebildet werden kann.A device of the aforementioned type is known from German published patent application DE 198 41 040 A1. In the device described therein, the light emanating from a laser diode bar is collimated by a cylindrical fast-axis collimation lens. Then this laser light is homogenized by two homogenizers arranged one behind the other. The homogenizers are each designed as substrates with arrays of cylindrical lenses on the entry and exit surfaces, the cylinder lenses opposite one another on the entry and exit surfaces being crossed with respect to one another. After passing through the two homogenizers, the laser light is superimposed by, for example, a rotationally symmetrical converging lens in such a way that a comparatively homogeneous intensity distribution of the laser light is given both in the fast-axis direction and in the slow-axis direction at a predetermined distance behind the homogenizers and the converging lens is. That on this Wise homogenized light hits a mask in which a narrow gap is formed. The light essentially emerges from this slit with a linear intensity distribution, which can be imaged, for example, by means of a lens onto an object to be processed.
Als nachteilig hierbei erweist sich, dass zur Erzeugung der linienförmigen Intensitätsverteilung eine Maske verwendet werden muss, die große Teile des Laserlichtes ausblendet, so dass die aus dem Stand der Technik bekannte Vorrichtung mit einer vergleichsweise geringen Effektivität arbeitet. Weiterhin ist die Vorrichtung vergleichsweise kompliziert aufgebaut und besteht aus einer Vielzahl von optischen Komponenten.It has been found to be disadvantageous here that a mask must be used to generate the linear intensity distribution, which mask out large parts of the laser light, so that the device known from the prior art operates with a comparatively low effectiveness. Furthermore, the device is comparatively complicated and consists of a large number of optical components.
Das der vorliegenden Erfindung zugrundeliegende Problem ist die Schaffung einer Vorrichtung der eingangs genannten Art, die einfacher aufgebaut ist und/oder effektiver arbeitet.The problem on which the present invention is based is the creation of a device of the type mentioned at the outset, which is of simpler construction and / or works more effectively.
Dies wird erfindungsgemäß dadurch erreicht, dass die Homogenisatormittel derart gestaltet sind, dass sie das Laserlicht nur hinsichtlich der Slow-Axis-Richtung homogenisieren . Durch die vor der Homogenisierung erfolgte Kollimierung des Laserlichtes hinsichtlich der Fast-Axis-Richtung ist prinzipiell die Möglichkeit gegeben, das Laserlicht hinsichtlich der Fast-Axis-Richtung in einen sehr gering ausgedehnten Fokusbereich zu fokussieren. Bei dem Stand der Technik gemäß der vorgenannten deutschen Offenlegungsschrift wird durch die anschließende Homogenisierung in Slow-Axis-Richtung und in Fast-Axis-Richtung die Kollimierung hinsichtlich der Fast-Axis-Richtung wieder aufgehoben und die Strahlqualität verschlechtert, so dass das aus den Homogenisatoren gemäß dem Stand der Technik austretenden Laserlicht nicht mehr hinsichtlich der Fast-Axis-Richtung in einen kleinen Fokusbereich fokussiert werden kann. Dadurch kann bei dem Stand der Technik eine linienförmige Intensitätsverteilung durch simples Fokussieren nicht erzielt werden. Demgegenüber wird bei der erfindungsgemäßen Vorrichtung das bereits in Fast-Axis-Richtung kollimierte Laserlicht nur hinsichtlich der Slow-Axis-Richtung homogenisiert. Aus diesem Grund kann das Laserlicht nach Hindurchtritt durch die Homogenisatormittel mittels geeigneter Fokussiermittel derart in einen linienartigen Fokusbereich fokussiert werden , dass der Fokusbereich in Fast-Axis-Richtung eine sehr geringe Ausdehnung aufweist und dass der Fokusbereich andererseits in Slow-Axis-Richtung vergleichsweise ausgedehnt ist und trotzdem sehr homogen ist.This is achieved according to the invention in that the homogenizer means are designed in such a way that they homogenize the laser light only with respect to the slow axis direction. The collimation of the laser light with respect to the fast axis direction, which took place prior to the homogenization, in principle gives the possibility of focusing the laser light with respect to the fast axis direction into a very small extended focus area. In the prior art according to the aforementioned German published application, the subsequent homogenization in the slow-axis direction and in the fast-axis direction removes the collimation with respect to the fast-axis direction and the beam quality deteriorates, so that this results from the homogenizers according to the prior art, laser light emerging can no longer be focused in a small focus area with respect to the fast axis direction. As a result, in the prior art a linear intensity distribution cannot be achieved by simply focusing. In contrast, in the device according to the invention, the laser light already collimated in the fast axis direction is homogenized only with regard to the slow axis direction. For this reason, after passing through the homogenizer means, the laser light can be focused into a line-like focus area by means of suitable focusing means in such a way that the focus area has a very small extent in the fast axis direction and that the focus area on the other hand is comparatively extended in the slow axis direction and is still very homogeneous.
Gemäß Anspruch 2 kann vorgesehen sein , dass die Homogenisatormittel mindestens ein Array von Zylinderlinsen umfassen, deren Zylinderachsen sich in Fast-Axis-Richtung erstrecken. Durch die Erstreckung der Zylinderachsen in Fast-Axis- Richtung wird gewährleistet, dass die Strahlqualität des Laserlichtes in Fast-Axis-Richtung durch die Homogenisatormittel nicht beeinflusst wird.According to claim 2 it can be provided that the homogenizer means comprise at least one array of cylinder lenses, the cylinder axes of which extend in the fast axis direction. The extension of the cylinder axes in the fast axis direction ensures that the beam quality of the laser light in the fast axis direction is not influenced by the homogenizer means.
Gemäß Anspruch 3 kann vorgesehen sein, dass die Zylinderlinsen eine Brennweite von 0,2 mm bis 10 mm, insbesondere von 1 mm aufweisen.According to claim 3 it can be provided that the cylindrical lenses have a focal length of 0.2 mm to 10 mm, in particular of 1 mm.
Gemäß Anspruch 4 kann vorgesehen sein , dass die Zylinderlinsen in Slow-Axis-Richtung eine Breite von etwa 0,2 mm bis 3 mm, insbesondere von etwa 1 mm aufweisen.According to claim 4, it can be provided that the cylindrical lenses have a width of approximately 0.2 mm to 3 mm, in particular approximately 1 mm, in the slow axis direction.
Gemäß Anspruch 5 kann vorgesehen sein, dass die numerische Apertur der Homogenisatormittel hinsichtlich der Slow-Axis-Richtung größer ist als die numerische Apertur des zu homogenisierenden Laserlichtes in Slow-Axis-Richtung. Gemäß Anspruch 6 kann vorgesehen sein, dass die numerische Apertur der Homogenisatormittel hinsichtlich der Slow-Axis-Richtung größer ist als 0 , 1 , insbesondere größer ist als 0,2, vorzugsweise größer ist als 0,3. I nsbesondere um von einzelnen Emittern ausgehende hinsichtlich der Slow-Axis-Richtung vergleichsweise schmale und schlecht kollimierte Teilstrahlen zu homogenisieren, sollten die verwendeten Homogenisatormittel eine vergleichsweise große numerische Apertur bei Zylinderlinsen mit sehr kurzer Brennweite aufweisen. Durch die Ausgestaltung der Erfindung gemäß den Ansprüchen 3 bis 6 kann gewährleistet werden, dass der erzeugte linienartige Fokusbereich eine sehr homogene Intensitätsverteilung aufweist.According to claim 5, it can be provided that the numerical aperture of the homogenizer means with regard to the slow axis direction is larger than the numerical aperture of the laser light to be homogenized in the slow axis direction. According to claim 6, it can be provided that the numerical aperture of the homogenizer means with respect to the slow axis direction is greater than 0.1, in particular greater than 0.2, preferably greater than 0.3. In particular in order to homogenize comparatively narrow and poorly collimated partial beams emanating from individual emitters, the homogenizer means used should have a comparatively large numerical aperture for cylindrical lenses with a very short focal length. The configuration of the invention according to claims 3 to 6 can ensure that the line-like focus region generated has a very homogeneous intensity distribution.
Gemäß Anspruch 7 kann vorgesehen sein, dass die Vorrichtung Slow- Axis-Kollimationsmittel aufweist, die insbesondere zwischen den Fast- Axis-Kollimationsmitteln und den Homogenisatormitteln angeordnet sind . Durch die Slow-Axis-Kollimationsmittel kann die numerische Apertur des von den Homogenisatormitteln zu homogenisierenden Laserlichtes verkleinert werden, so dass zur Erzielung einer ausreichend guten Homogenisierung die numerische Apertur der Homogenisatormittel kleiner gewählt werden kann. Durch die Wahl einer kleineren numerischen Apertur der Homogenisatormittel kann die Breite des linienartigen Fokusbereichs in Slow-Axis-Richtung verkleinert werden. Alternativ kann durch eine vergleichsweise hohe numerische Apertur der Homogenisatormittel trotz vorhandener Slow- Axis-Kollimationsmittel eine besonders große Homogenität des linienartigen Fokusbereichs erzielt werden.According to claim 7 it can be provided that the device has slow-axis collimation means, which are arranged in particular between the fast-axis collimation means and the homogenizer means. The slow-axis collimation means can be used to reduce the numerical aperture of the laser light to be homogenized by the homogenizer means, so that the numerical aperture of the homogenizer means can be chosen to be sufficiently good for homogenization. By choosing a smaller numerical aperture of the homogenizer means, the width of the line-like focus area in the slow axis direction can be reduced. Alternatively, a particularly high homogeneity of the line-like focus area can be achieved by a comparatively high numerical aperture of the homogenizer means despite the slow-axis collimation means present.
Gemäß Anspruch 8 kann vorgesehen sein, dass die Slow-Axis- Kollimationsmittel mindestens ein Array von Zylinderlinsen aufweisen, deren Zylinderachsen sich in Fast-Axis-Richtung erstrecken. Derartige Slow-Axis-Kollimationsmittel bewirken eine Kollimierung lediglich hinsichtlich der Slow-Axis-Richtung und beeinträchtigen die Strahlqualität hinsichtlich der Fast-Axis-Richtung nicht.According to claim 8, it can be provided that the slow-axis collimation means have at least one array of cylindrical lenses, the cylinder axes of which extend in the fast-axis direction. Such slow-axis collimation means only bring about collimation with regard to the slow axis direction and do not impair the beam quality with regard to the fast axis direction.
Gemäß Anspruch 9 kann vorgesehen sein, dass die Slow-Axis- Kollimationsmittel als Slow-Axis-Kollimatorarray oder Slow-Axis- Teleskoparray ausgebildet sind. Derartige Slow-Axis- Kollimationsmittel sind aus dem Stand der Technik bekannt und haben sich in der Praxis in vielen verschiedenen Ausführungsformen bewährt.According to claim 9, it can be provided that the slow-axis collimation means are designed as a slow-axis collimator array or a slow-axis telescope array. Such slow-axis collimation means are known from the prior art and have proven themselves in practice in many different embodiments.
Gemäß Anspruch 10 kann vorgesehen sein, dass die Fast-Axis- Kollimationsmittel derart ausgebildet sind, dass das von dem mindestens einen emittierenden Abschnitt des Halbleiterlasers ausgehende Laserlicht im Wesentlichen beugungsbegrenzt von den Fast-Axis-Kollimationsmitteln kollimiert wird . Je geringer die Divergenz des Laserlichtes nach Hindurchtritt durch die Fast-Axis- Kollimationsmittel hinsichtlich der Fast-Axis ist, desto schmaler kann der linienartige Fokusbereich letztlich sein. Durch die zusätzliche Wahl einer vergleichsweise großen Brennweite für die Fast-Axis- Kollimationsmittel kann der Abstand der Fast-Axis-Kollimationsmittel von den emittierenden Abschnitten des Halbleiterlasers größer gewählt werden , so dass die Ausdehnung des Laserlichtes in Fast- Axis-Richtung nach Hindurchtritt durch die Fast-Axis- Kollimationsmittel vergleichsweise groß ist. Durch eine derartige vergleichsweise große Ausdehnung in Fast-Axis-Richtung kann die Ausdehnung des linienartigen Fokusbereichs in Fast-Axis-Richtung weiter verkleinert werden.According to claim 10, it can be provided that the fast-axis collimation means are designed in such a way that the laser light emanating from the at least one emitting section of the semiconductor laser is collimated by the fast-axis collimation means, essentially with diffraction limitation. The smaller the divergence of the laser light after passing through the fast-axis collimation means with respect to the fast-axis, the narrower the line-like focus area can ultimately be. Through the additional choice of a comparatively large focal length for the fast-axis collimation means, the distance of the fast-axis collimation means from the emitting sections of the semiconductor laser can be selected to be larger, so that the expansion of the laser light in the fast-axis direction after passing through the Fast-axis collimation means is comparatively large. Such a comparatively large extent in the fast axis direction can further reduce the extent of the line-like focus area in the fast axis direction.
Gemäß Anspruch 1 1 kann vorgesehen sein, dass die Fokussiermittel mindestens eine im Wesentlichen rotationssymmetrische Linse umfassen, wobei diese Linse insbesondere als Feldlinse für die Homogenisatormittel in Slow-Axis-Richtung dienen kann. Die als Fokussiermittel verwendete Linse kann somit eine Doppelfunktion ausüben , nämlich einerseits die Fokussierung des Laserlichtes in Fast-Axis-Richtung und andererseits d ie Homogenisierung des Laserlichtes in Slow-Axis-Richtung .According to claim 1 1, it can be provided that the focusing means comprise at least one essentially rotationally symmetrical lens, wherein this lens can serve in particular as a field lens for the homogenizer means in the slow axis direction. The lens used as the focusing means can thus have a dual function exercise, namely on the one hand the focusing of the laser light in the fast axis direction and on the other hand the homogenization of the laser light in the slow axis direction.
Gemäß Anspruch 12 kann vorgesehen sein, dass zwischen den Fast- Axis-Kollimationsmitteln und den Fokussiermitteln eine Fast-Axis- Strahlaufweitung angeordnet ist. Durch die Fast-Axis- Strahlaufweitung kann die Ausdehnung des Laserlichtes in Fast-Axis- Richtung weiter vergrößert werden, so dass die Ausdehnung des linienartigen Fokusbereichs in Fast-Axis-Richtung weiter verkleinert werden kann.According to claim 12 it can be provided that a fast-axis beam expansion is arranged between the fast-axis collimation means and the focusing means. The expansion of the laser light in the fast axis direction can be increased further by the fast axis beam expansion, so that the extension of the line-like focus area in the fast axis direction can be further reduced.
Gemäß Anspruch 1 3 kann vorgesehen sein, dass die Homogenisatormittel zwei Arrays von Zylinderlinsen umfassen, die in Ausbreitungsrichtung des Laserlichtes hintereinander angeordnet sind. Durch die Verwendung zweier in Ausbreitungsrichtung des Laserlichtes hintereinander angeordneter Arrays von Zylinderlinsen kann eine effektive Homogenisierung erreicht werden mit vergleichsweise steilen Flanken des Intensitätsprofils.According to claim 1 3 it can be provided that the homogenizer means comprise two arrays of cylindrical lenses which are arranged one behind the other in the direction of propagation of the laser light. By using two arrays of cylindrical lenses arranged one behind the other in the direction of propagation of the laser light, effective homogenization can be achieved with comparatively steep flanks of the intensity profile.
Dabei kann gemäß Anspruch 14 vorgesehen sein, dass der Abstand zwischen den beiden Arrays von Zylinderlinsen ungefähr der Brennweite der Zylinderlinsen des in Ausbreitungsrichtung des Laserlichtes hinteren Arrays entspricht. Durch eine derartige Anordnung besteht die Möglichkeit, in Slow-Axis-Richtung divergentes Laserlicht zu homogenisieren. Insbesondere werden unter gleichen Winkeln aus dem ersten Array von Zylinderlinsen austretende Teilstrahlen in dem linienartigen Fokusbereich in gleichen Punkten miteinander vereinigt. Es kann gegebenenfalls bei einer derartigen Anordnung auf Slow-Axis-Kollimationsmittel verzichtet werden . Auf diese Weise kann erreicht werden, dass von einzelnen emittierenden Abschnitten des Halbleiterlasers ausgehende Teilstrahlen bei Auftreffen auf die Homogenisatormittel bereits miteinander überlappt sind. Dadurch wird die Homogenisierung des Laserlichtes weiter verbessert.It can be provided according to claim 14 that the distance between the two arrays of cylindrical lenses corresponds approximately to the focal length of the cylindrical lenses of the rear array in the direction of propagation of the laser light. Such an arrangement makes it possible to homogenize divergent laser light in the slow axis direction. In particular, partial beams emerging from the first array of cylindrical lenses at the same angles are combined with one another in the line-like focus region at the same points. With such an arrangement, slow-axis collimation means can optionally be dispensed with. In this way it can be achieved that partial beams emanating from individual emitting sections of the semiconductor laser already overlap with one another when they strike the homogenizer means are. This further improves the homogenization of the laser light.
Gemäß Anspruch 15 kann vorgesehen sein, dass die Anzahl der Zylinderlinsen des mindestens einen Arrays von Zylinderlinsen der Homogenisatormittel größer ist als die Anzahl der emittierenden Abschnitte. According to claim 15 it can be provided that the number of cylindrical lenses of the at least one array of cylindrical lenses of the homogenizer means is greater than the number of emitting sections.
Weitere Merkmale und Vorteile der vorliegenden Erfindu ng werden deutlich anhand der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beiliegenden Abbildungen. Darin zeigenFurther features and advantages of the present invention will become clear from the following description of preferred exemplary embodiments with reference to the accompanying figures. Show in it
Fig. 1 eine schematische Seitenansicht einer ersten Ausführungsform einer erfindungsgemäßen Vorrichtung;Figure 1 is a schematic side view of a first embodiment of a device according to the invention.
Fig. 2 eine um 90° gedrehte Seitenansicht der Vorrichtung gemäß Fig. 1 ;FIG. 2 shows a side view of the device according to FIG. 1 rotated by 90 °;
Fig. 3 eine schematische Seitenansicht einer zweiten Ausführungsform einer erfindungsgemäßen Vorrichtung;3 shows a schematic side view of a second embodiment of a device according to the invention;
Fig. 4 eine um 90° gedrehte Seitenansicht der Vorrichtung gemäß Fig. 3.4 shows a side view of the device according to FIG. 3 rotated by 90 °.
I n Fig. 1 bis Fig. 4 sind zur besseren Orientierung kartesische Koordinatensysteme eingezeichnet.1 to 4, Cartesian coordinate systems are drawn in for better orientation.
Die in Fig. 1 und Fig. 2 abgebildete Ausführungsform einer erfindungsgemäßen Vorrichtung umfasst einen Halbleiterlaser 1 , der im abgebildeten Ausführungsbeispiel drei in X-Richtung nebeneinander und zueinander beabstandet angeordnete emittierende Abschnitte 2 aufweist. Bei Fig. 2 handelt es sich nur um eine schematische Abbildung, weil in der Regel Halbleiterlaser eine deutlich größere Anzahl von zueinander beabstandeten emittierenden Abschnitten 2 aufweisen. Beispielsweise besteht die Möglichkeit, dass der Halbleiterlaser 1 dreißig oder fünfzig emittierende Abschnitte 2 aufweist. Derartige Halbleiterlaser 1 werden als Laserd iodenbarren bezeichnet. Die Vorrichtung umfasst weiterhin in Ausbreitungsrichtung des von den emittierenden Abschnitten 2 ausgehenden Laserlichtes 3 Fast- Axis-Kollimationsmittel 4, die in dem abgebildeten Ausführungsbeispiel als Zylinderlinse mit sich in X-Richtung erstreckender Zylinderachse ausgebildet sind. I n dem abgebildeten Ausführungsbeispiel weist d ie als Fast-Axis-Kollimationsmittel 4 dienende Zylinderlinse lediglich auf ihrer Austrittsseite eine konvexe Krümmung auf, wohingegen sie auf ihrer Eintrittsseite plan ist. Es besteht durchaus d ie Möglichkeit, die Eintrittsseite mit einer konvexen Krümmung zu versehen und die Austrittsseite plan zu gestalten oder aber sowohl d ie Eintrittsseite als auch die Austrittsseite konvex und/oder konkav zu krümmen. Insbesondere sollen die Fast-Axis- Kollimationsmittel 4 derart gestaltet sein, dass das Laserlicht 3 hinsichtlich der Fast-Axis beziehungsweise der Y-Richtung beugungsbegrenzt kollimiert wird. Um dies zu erreichen, kann die als Fast-Axis-Kollimationsmittel 4 dienende Zylinderlinse eine asphärische Oberfläche aufweisen.The embodiment of a device according to the invention shown in FIGS. 1 and 2 comprises a semiconductor laser 1, which in the illustrated embodiment has three emitting sections 2 arranged next to one another and spaced apart in the X direction. 2 is only a schematic illustration because, as a rule, semiconductor lasers have a significantly larger number of spaced-apart emitting sections 2. For example, there is the possibility that the semiconductor laser 1 has thirty or fifty emitting sections 2. Such semiconductor lasers 1 are referred to as laser diode bars. In the direction of propagation of the laser light 3 emitting from the emitting sections 2, the device further comprises fast-axis collimation means 4, which in the exemplary embodiment shown are designed as a cylindrical lens with a cylinder axis extending in the X direction. In the exemplary embodiment shown, the cylindrical lens serving as the fast-axis collimation means 4 has a convex curvature only on its exit side, whereas it is flat on its entry side. It is quite possible to provide the entry side with a convex curvature and to make the exit side flat, or to bend both the entry side and the exit side convexly and / or concavely. In particular, the fast-axis collimation means 4 should be designed in such a way that the laser light 3 is collimated with respect to the fast-axis or the Y-direction with limited diffraction. In order to achieve this, the cylindrical lens serving as a fast-axis collimation means 4 can have an aspherical surface.
Erfindungsgemäß kann weiterhin vorgesehen sein , den Abstand zwischen den emittierenden Abschnitten 2 des Halbleiterlasers 1 und den Fast-Axis-Kollimationsmitteln 4 vergleichsweise groß zu wählen, so dass das Laserlicht 3 in Y-Richtung nach dem Hindurchtritt durch die Fast-Axis-Kollimationsmittel 4 eine vergleichsweise große Ausdehnung aufweist.According to the invention, it can further be provided that the distance between the emitting sections 2 of the semiconductor laser 1 and the fast-axis collimation means 4 is chosen to be comparatively large, so that the laser light 3 in the Y direction after passing through the fast-axis collimation means 4 is one has a comparatively large expansion.
I n Strahlrichtung hinter den Fast-Axis-Kollimationsmitteln 4 umfasst die erfindungsgemäße Vorrichtung Slow-Axis-Kollimationsmittel 5, die in dem abgebildeten Ausführungsbeispiel als Array von Zylinderlinsen 6, 7 auf der Eintritts- und der Austrittsseite der Slow-Axis- Kollimationsmittel 5 ausgebildet sind. Die Zylinderachsen der Zylinderlinsen 6, 7 des Arrays von Zylinderlinsen erstrecken sich dabei in Y-Richtu ng. I nsbesondere sind die Slow-Axis- Kollimationsmittel derart angeordnet, dass in jede der Zylinderlinsen 6 auf der Eintrittsseite einer der von jeweils einem der emittierenden Abschnitte 2 ausgehendenTeilstrahlen 3a, 3b, 3c (siehe dazu Fig. 2) des Laserlichtes 3 eintritt. Jeder dieser Teilstrahlen 3a, 3b, 3c wird von den entsprechenden Zylinderlinsen 6, 7 hinsichtlich der Slow-Axis beziehungsweise hinsichtlich der X-Richtung kollimiert.In the beam direction behind the fast-axis collimation means 4, the device according to the invention comprises slow-axis collimation means 5, which in the exemplary embodiment shown are designed as an array of cylindrical lenses 6, 7 on the entry and exit sides of the slow-axis collimation means 5 , The cylinder axes of the cylindrical lenses 6, 7 of the array of cylindrical lenses extend in the Y direction. In particular, the slow axis Collimation means are arranged such that one of the partial beams 3a, 3b, 3c (see FIG. 2) of the laser light 3 entering each of the emitting sections 2 enters each of the cylindrical lenses 6. Each of these partial beams 3a, 3b, 3c is collimated by the corresponding cylindrical lenses 6, 7 with respect to the slow axis or with respect to the X direction.
Die in Fig. 1 und Fig. 2 abgebildete Ausführungsform der Slow-Axis- Kollimationsmittel 5 stellt eine Teleskopanordnung dar. Es besteht aber auch die Möglichkeit, die Slow-Axis-Kollimationsmittel 5 als ein nur an einer Seite, beispielsweise der Eintrittsseite oder der Austrittsseite angeordnetes Array von Zylinderlinsen auszuführen . Weiterhin besteht die Möglichkeit, mehr als zwei optisch funktionale, insbesondere gekrümmte zylinderlinsenähnliche Flächen für das Slow-Axis-Kollimationsmittel 5 zu verwenden.The embodiment of the slow-axis collimation means 5 shown in FIGS. 1 and 2 represents a telescope arrangement. However, there is also the possibility of using the slow-axis collimation means 5 as one on only one side, for example the entry side or the exit side arranged array of cylindrical lenses to perform. There is also the possibility of using more than two optically functional, in particular curved, cylindrical lens-like surfaces for the slow-axis collimation means 5.
Die in Fig. 1 und Fig. 2 abgebildete Ausführungsform einer erfindungsgemäßen Vorrichtung umfasst weiterhin in Ausbreitungsrichtung hinter den Slow-Axis-Kollimationsmitteln 5 Homogenisatormittel 8. Die in Fig. 1 und Fig. 2 abgebildeten Homogenisatormittel 8 umfassen dabei ein Array von Zylinderlinsen 9 auf der Austrittsseite eines transparenten Substrates, das in dem abgebildeten Ausführungsbeispiel auf seiner Eintrittsseite plan ausgebildet ist. Die Achsen der Zylinderlinsen 9 erstrecken sich in Y- Richtung, so dass durch d ie Zylinderlinsen 9 die Laserstrahlung 3 nur hinsichtlich der Slow-Axis-Richtung beeinflusst wird .The embodiment of a device according to the invention depicted in FIGS. 1 and 2 further comprises homogenizer means 8 behind the slow-axis collimation means 5. The homogenizer means 8 depicted in FIGS. 1 and 2 comprise an array of cylindrical lenses 9 on the Exit side of a transparent substrate, which in the illustrated embodiment is flat on its entry side. The axes of the cylindrical lenses 9 extend in the Y direction, so that the laser radiation 3 is influenced by the cylindrical lenses 9 only with regard to the slow axis direction.
Es besteht durchaus die Möglichkeit, auch die Eintrittsfläche der Homogenisatormittel 8 mit einer Linsenstruktur zu versehen. Die Zylinderlinsen 9 können sowohl sphärisch als auch asphärisch ausgebildet sein. Die Brennweite der Zylinderlinsen 9 kann beispielsweise 1 mm betragen. Die Breite der Zylinderlinsen 9 in X-Richtung kann beispielsweise ebenfalls 1 mm betragen . Wesentlich für die Erfindung ist dabei, dass die Homogenisatormittel 8 eine vergleichsweise hohe numerische Apertur von mehr als 0, 1 , besser von mehr als 0,2 bis 0,3 aufweisen . Die numerische Apertur der Homogenisatormittel 8 sollte dabei größer sein, insbesondere deutlich größer sein als die numerische Apertur des in die Homogenisatormittel 8 eintretenden Laserlichtes 3. Typischerweise beträgt die numerische Apertur des Laserlichts eines Halbleiterlasers 1 in Slow-Axis-Richtung etwa 0, 1 . Durch die Verwendung von Slow-Axis-Kollimationsmitteln 5 zwischen den Fast-Axis-Kollimationsmitteln 4 und den Homogenisatormitteln 8 kann die numerische Apertur des Laserlichtes 3 in Slow-Axis-Richtung auf etwa 0,03 gesenkt werden.It is entirely possible to provide the entry surface of the homogenizer means 8 with a lens structure. The cylindrical lenses 9 can be spherical as well as aspherical. The focal length of the cylindrical lenses 9 can be 1 mm, for example. The width of the cylindrical lenses 9 in the X direction can also be 1 mm, for example. It is essential for the invention that the homogenizer means 8 have a comparatively high numerical aperture of more than 0.1, better of more than 0.2 to 0.3. The numerical aperture of the homogenizer means 8 should be larger, in particular significantly larger than the numerical aperture of the laser light 3 entering the homogenizer means 8. Typically, the numerical aperture of the laser light of a semiconductor laser 1 in the slow axis direction is approximately 0.1. By using slow-axis collimation means 5 between the fast-axis collimation means 4 and the homogenizer means 8, the numerical aperture of the laser light 3 in the slow-axis direction can be reduced to approximately 0.03.
Es besteht durchaus die Möglichkeit, bei einer erfindungsgemäßen Vorrichtung die Slow-Axis-Kollimationsmittel 5 wegzulassen, so dass das aus den Fast-Axis-Kollimationsmitteln 4 ausgetretene Laserlicht 3 direkt in d ie Homogenisatormittel 8 eintritt. Dazu muss led iglich die numerische Apertur der Homogenisatormittel 8 derart groß gewählt werden , dass sie trotz nicht vorhandener Slow-Axis-Kollimationsmittel 5 größer ist, als die numerische Apertur des aus dem Halbleiter 1 austretenden Laserlichtes 3 in Slow-Axis-Richtung.It is entirely possible to omit the slow-axis collimation means 5 in a device according to the invention, so that the laser light 3 emerging from the fast-axis collimation means 4 enters the homogenizer means 8 directly. For this purpose, only the numerical aperture of the homogenizer means 8 must be chosen such that it is larger than the numerical aperture of the laser light 3 emerging from the semiconductor 1 in the slow axis direction despite the lack of slow axis collimation means 5.
Durch den Hindurchtritt durch die Zylinderlinsen 9 der Homogenisatormittel 8 werden die einzelnen Teilstrahlen 3a, 3b, 3c des Laserlichtes 3 sehr effektiv in Slow-Axis-Richtung beziehungsweise in X-Richtung miteinander überlagert. Das aus den Homogenisatormitteln 8 austretende Laserlicht 10 kann von in Ausbreitungsrichtung Z hinter den Homogenisatormitteln 8 angeordneten Fokussiermitteln 1 1 fokussiert werden. I n dem abgebildeten Ausführungsbeispiel sind die Fokussiermittel 1 1 als rotationssymmetrische plankonvexe Linse ausgebildet. Die Fokussiermittel 1 1 können auch durch andere Gestaltungen gebildet sein, beispielsweise durch eine bikonvexe Linse oder du rch mehrere zusammenwirkende Linsen. Diese Linse kann d ie Laserstrahlung 10 hinsichtlich der Fast-Axis beziehungsweise der Y-Richtung fokussieren und gleichzeitig als Feldlinse für die nur auf die Slow-Axis beziehungsweise X-Richtung wirkenden Homogenisatormittel 8 dienen. Dabei kann praktischer Weise der Fokus der als Fokussiermittel 1 1 dienenden Linse hinsichtlich der Fast-Axis in einer Ebene liegen , in der das Feld des Laserlichtes 10 in Slow-Axis- Richtung du rch die als Feldlinse dienende Linse homogenisiert ist.By passing through the cylindrical lenses 9 of the homogenizer means 8, the individual partial beams 3a, 3b, 3c of the laser light 3 are very effectively superimposed on one another in the slow axis direction or in the X direction. The laser light 10 emerging from the homogenizer means 8 can be focused by focusing means 11 arranged in the direction of propagation Z behind the homogenizer means 8. In the illustrated embodiment, the focusing means 1 1 are as rotationally symmetrical plano-convex lens. The focusing means 1 1 can also be formed by other designs, for example by a biconvex lens or by a plurality of interacting lenses. This lens can focus the laser radiation 10 with respect to the fast axis or the Y direction and at the same time serve as a field lens for the homogenizer means 8 which only act on the slow axis or X direction. In this case, the focus of the lens serving as focusing means 1 1 can practically lie with respect to the fast axis in a plane in which the field of laser light 10 is homogenized in the slow axis direction by the lens serving as field lens.
I n Fig. 2 ist die durch die Homogenisatormittel 8 hindu rchgetretene Laserstrahlung 1 0 lediglich unstruktu riert dargestellt. Durch jede der Zylinderlinsen 9 wird jedoch das durch sie hindurchtretende Licht in eine Vielzahl unterschiedlicher Richtungen gebrochen. Durch die als Fokussiermittel 1 1 beziehungsweise Feldlinse dienende plankonvexe sphärische Linse wird ein jeder unter dem gleichen Winkel auf die Feldlinse auftreffender Teilstrahl in dem linienartigen Fokusbereich 12 an die gleiche Stelle abgelenkt, so dass die aus einzelnen Teilstrahlen 3a, 3b, 3c des ursprünglichen Laserlichtes 3 entstammenden Anteile des Laserlichtes 10 in dem Fokusbereich 12 gleichmäßig über dessen Breite in X-Richtung beziehungsweise in Slow-Axis-Richtung verteilt sind .In Fig. 2, the laser radiation 10 which has penetrated through the homogenizer means 8 is only shown in an unstructured manner. However, each of the cylindrical lenses 9 refracts the light passing through them in a variety of different directions. The plano-convex spherical lens serving as the focusing means 11 or field lens deflects each partial beam striking the field lens at the same angle in the line-like focus region 12 so that the partial laser beams 3a, 3b, 3c of the original laser light 3 originating portions of the laser light 10 in the focus area 12 are evenly distributed over its width in the X direction or in the slow axis direction.
Die Fokussiermittel 1 1 fokussieren das Laserlicht 10 in einen linienartigen Fokusbereich 12, der sich in X-Richtung erstreckt und in Y-Richtung eine sehr geringe Ausdehnung aufweist. Es besteht beispielsweise die Möglichkeit, dass die Ausdehnung des Fokusbereichs 12 in Y-Richtung beziehungsweise in Fast-Axis- Richtung kleiner ist als 1 mm oder kleiner ist als 0,5 mm. Weiterhin besteht die Möglichkeit, dass die Breite des linienartigen Fokusbereichs 12 in X-Richtung beziehungsweise in Slow-Axis- Richtung größer ist als 5 mm oder größer ist als 20 mm. Der Abstand d zwischen der Austrittsfläche der Fokussiermittel 1 1 und dem linienartigen Fokusbereich 12 kann vergleichsweise groß sein, beispielsweise größer als 50, insbesondere größer als 200 mm.The focusing means 1 1 focus the laser light 10 in a line-like focus area 12 which extends in the X direction and has a very small extent in the Y direction. For example, there is the possibility that the extent of the focus area 12 in the Y direction or in the fast axis direction is less than 1 mm or less than 0.5 mm. There is also the possibility that the width of the line Focus area 12 in the X direction or in the slow axis direction is greater than 5 mm or greater than 20 mm. The distance d between the exit surface of the focusing means 1 1 and the line-like focus area 12 can be comparatively large, for example greater than 50, in particular greater than 200 mm.
Um die Ausdehnung des linienartigen Fokusbereichs 12 in Fast-Axis- Richtung beziehungsweise in Y-Richtung sehr klein zu gestalten, kann zwischen den Fast-Axis-Kollimationsmitteln 4 u nd den Fokussiermitteln 1 1 eine Fast-Axis-Strahlaufweitung angeordnet sein. Durch die Aufweitung des Laserlichtes 3 in Fast-Axis-Richtung kann die Strahltaillie und damit die Höhe des linienartigen Fokusbereichs 12 in Fast-Axis-Richtung verkleinert werden . Eine derartige Fast-Axis- Strahlaufweitung kann mit beliebigen aus dem Stand der Technik bekannten Mitteln, wie beispielsweise mit einer teleskopähnlichen Anordnung aus refraktiven Elementen erzielt werden. Dabei sollten die refraktiven Elemente beziehungsweise Linsen der Fast-Axis- Strahlaufweitung so ausgestaltet sein, dass die Strahlqualität des Laserlichtes 3 erhalten bleibt. Insbesondere sollten die Linsen der Fast-Axis-Strahlaufweitung asphärisch ausgebildet sein .In order to make the extension of the line-like focus area 12 very small in the fast axis direction or in the y direction, a fast axis beam expansion can be arranged between the fast axis collimation means 4 and the focusing means 11. By expanding the laser light 3 in the fast-axis direction, the beam waist and thus the height of the line-like focus area 12 in the fast-axis direction can be reduced. Such a fast-axis beam expansion can be achieved with any means known from the prior art, such as, for example, with a telescope-like arrangement of refractive elements. The refractive elements or lenses of the fast-axis beam expansion should be designed in such a way that the beam quality of the laser light 3 is retained. In particular, the lenses of the fast-axis beam expansion should be aspherical.
Bei der in Fig. 3 und Fig. 4 abgebildeten Ausführungsform der erfindungsgemäßen Vorrichtung werden gleiche oder im Prinzip gleiche Teile mit gleichen Bezugszeichen versehen , wie in Fig. 1 und Fig. 2. Die Vorrichtung gemäß Fig. 3 u nd Fig. 4 unterscheidet sich von der Vorrichtung gemäß Fig. 1 und Fig. 2 im Wesentlichen dadurch, dass die Homogenisatormittel 13 mehrteilig ausgebildet sind und auf Slow-Axis-Kollimationsmittel verzichtet wird .In the embodiment of the device according to the invention shown in FIGS. 3 and 4, the same or, in principle, the same parts are provided with the same reference numerals as in FIGS. 1 and 2. The device according to FIGS. 3 and 4 differs of the device according to FIG. 1 and FIG. 2 essentially in that the homogenizer means 13 are constructed in several parts and there is no slow-axis collimation means.
Bei den Homogenisatormitteln 13 ist dabei auf einem in Ausbreitungsrichtung der Laserstrahlung 3 ersten Substrat 14 ein erstes Array von Zylinderlinsen 15 sowie auf einem von dem ersten Substrat 14 in Strahlrichtung beabstandeten zweiten Substrat 16 ein zweites Array von Zylinderlinsen 17 vorgesehen. Das erste Array von Zylinderlinsen 1 5 dient dabei als Beleuchtungsarray für das zweite Array von Zylinderlinsen 17, das als Abbildungsarray beziehungsweise als homogenisierendes Array dient.In the case of the homogenizer means 13 there is a first array of cylindrical lenses 15 on a first substrate 14 in the direction of propagation of the laser radiation 3 and on one of the first A second array of cylindrical lenses 17 is provided in the substrate 14 spaced apart in the beam direction. The first array of cylindrical lenses 15 serves as an illumination array for the second array of cylindrical lenses 17, which serves as an imaging array or as a homogenizing array.
I nsbesondere Fig. 4 ist entnehmbar, dass die Zylinderlinsen 15, 17, in Y-Richtung verlaufende Zylinderachsen aufweisen . Weiterhin ist aus Fig. 4 ersichtlich , dass die aus einzelnen emittierenden Abschnitten 2a bis 2e austretenden Teilstrahlen 3a bis 3e des Laserlichtes 3 bei Auftreffen auf das erste Substrat 14 der Homogenisatormittel 13 bereits teilweise miteinander überlappt sind . Jede der Zylinderlinsen 1 5 des ersten Substrats 14 der Homogenisatormittel 1 3 beleuchtet eine ihr gegenüberliegende Zylinderlinse 17 des zweiten Substrates 16. I nsbesondere ist Fig. 4 dabei entnehmbar, dass das erste Array von Zylinderlinsen 1 5 auf der Austrittsseite des ersten Substrates 14 angeordnet ist, wohingegen das zweite Array von Zylinderlinsen 17 auf der Eintrittsseite des Substrates 1 6 angeordnet ist. Der Abstand zwischen den beiden Arrays von Zylinderlinsen 1 5, 17 entspricht dabei im Wesentlichen der Brennweite fι7 der Zylinderlinsen 17 des auf dem zweiten Substrat 16 angeordneten Arrays. Dies ist in Fig. 4 verdeutlicht.4 that the cylinder lenses 15, 17 have cylinder axes running in the Y direction. It can also be seen from FIG. 4 that the partial beams 3a to 3e of the laser light 3 emerging from individual emitting sections 2a to 2e are already partially overlapped with one another when they strike the first substrate 14 of the homogenizer means 13. Each of the cylindrical lenses 15 of the first substrate 14 of the homogenizer means 13 illuminates an opposing cylindrical lens 17 of the second substrate 16. In particular, FIG. 4 shows that the first array of cylindrical lenses 15 is arranged on the exit side of the first substrate 14 , whereas the second array of cylindrical lenses 17 is arranged on the entry side of the substrate 16. The distance between the two arrays of cylindrical lenses 15, 17 essentially corresponds to the focal length f 7 of the cylindrical lenses 17 of the array arranged on the second substrate 16. This is illustrated in Fig. 4.
Durch das erste Array von Zylinderlinsen 15, das als Beleuchtungsarray dient, werden die Linsen des zweiten Arrays optimal ausgeleuchtet, so dass eine sehr effektive Homogenisierung in Slow-Axis-Richtung erfolgen kann . Weiterhin erfolgt eine Homogenisierung durch Mischung einzelner Teilstrahlen 3a, 3b, 3c, 3d , 3e in Slow-Axis-Richtung. Weiterhin wird durch die Homogenisatormittel 13 eine Homogenisierung des bei Auftreffen auf die Homogenisatormittel 13 in Slow-Axis-Richtu ng d ivergenten Laserlichtes 3 möglich. Aus Fig. 2 und Fig. 4 ist ersichtlich , dass die Anzahl der Zylinderlinsen 9, 1 5, 1 7 der Homogenisatormittel 8 beziehungsweise der Substrate 14, 16 größer ist als die Anzahl der emittierenden Abschnitte 2 beziehungsweise 2a bis 2e. The lenses of the second array are optimally illuminated by the first array of cylindrical lenses 15, which serves as an illumination array, so that a very effective homogenization in the slow-axis direction can take place. Furthermore, homogenization takes place by mixing individual partial beams 3a, 3b, 3c, 3d, 3e in the slow axis direction. Furthermore, the homogenizer means 13 make it possible to homogenize the laser light 3 which diverges in the slow-axis direction when it hits the homogenizer means 13. It can be seen from FIGS. 2 and 4 that the number of cylindrical lenses 9, 15, 17 of the homogenizer means 8 or of the substrates 14, 16 is greater than the number of emitting sections 2 or 2a to 2e.

Claims

Patentansprüche: claims:
1 . Vorrichtung zur Erzeugung eines linienartigen Fokusbereichs (12) einer Laserlichtquelle, umfassend: mindestens einen Halbleiterlaser (1 ) mit mindestens einem emittierenden Abschnitt (2; 2a bis 2e), wobei d ie Divergenz des von diesem mindestens einen emittierenden Abschnitt (2; 2a bis 2e) ausgehenden Laserlichtes (3) in der Fast- Axis-Richtung (Y) größer ist als in der dazu senkrechten Slow-Axis-Richtung (X);1 . Device for generating a line-like focus area (12) of a laser light source, comprising: at least one semiconductor laser (1) with at least one emitting section (2; 2a to 2e), the divergence of the at least one emitting section (2; 2a to 2e) ) outgoing laser light (3) in the fast-axis direction (Y) is larger than in the slow-axis direction (X) perpendicular thereto;
Fast-Axis-Kollimationsmittel (4) für die Kollimierung des aus dem mindestens einen emittierenden Abschnitt (2; 2a bis 2e) austretenden Laserlichtes (3) hinsichtlich der Fast-Axis- Richtung (Y);Fast-axis collimation means (4) for collimating the laser light (3) emerging from the at least one emitting section (2; 2a to 2e) with respect to the fast-axis direction (Y);
Homogenisatormittel (8, 13) zu r Homogenisierung des von den Fast-Axis-Koll imationmitteln (4) kollimierten Laserlichtes (3);Homogenizer means (8, 13) for homogenizing the laser light (3) collimated by the fast-axis collation means (4);
Fokussiermittel (1 1 ) zur Fokussierung des von den Homogenisatormitteln (8, 13) ausgehenden Laserlichtes (10) in einen linienartigen Fokusbereich (12); dadurch gekennzeichnet, dass die Homogenisatormittel (8, 13) derart gestaltet sind , dass sie das Laserlicht (3) nur hinsichtlich der Slow-Axis-Richtung (X) homogenisieren.Focusing means (11) for focusing the laser light (10) emanating from the homogenizer means (8, 13) into a line-like focus area (12); characterized in that the homogenizer means (8, 13) are designed such that they homogenize the laser light (3) only with respect to the slow-axis direction (X).
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Homogenisatormittel (8, 13) mindestens ein Array von Zylinderlinsen (9, 15, 17) umfassen, deren Zylinderachsen sich in Fast-Axis-Richtung (Y) erstrecken. 2. Device according to claim 1, characterized in that the homogenizer means (8, 13) comprise at least one array of cylindrical lenses (9, 15, 17), the cylinder axes of which extend in the fast axis direction (Y).
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Zylinderlinsen (9, 1 5, 17) eine Brennweite von 0,2 mm bis 10 mm, insbesondere von 1 mm aufweisen .3. Device according to claim 2, characterized in that the cylindrical lenses (9, 15, 17) have a focal length of 0.2 mm to 10 mm, in particular of 1 mm.
4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Zylinderlinsen (9, 15, 17) in Slow- Axis-Richtung (X) eine Breite von etwa 0,2 mm bis 3 mm, insbesondere von etwa 1 mm aufweisen.4. Device according to one of claims 2 or 3, characterized in that the cylindrical lenses (9, 15, 17) in the slow-axis direction (X) a width of about 0.2 mm to 3 mm, in particular of about 1 mm exhibit.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die numerische Apertur der Homogenisatormittel (8, 13) hinsichtlich der Slow-Axis-Richtung (X) größer ist als die numerische Apertur des zu homogenisierenden Laserlichtes (3) in Slow-Axis-Richtung (X).5. Device according to one of claims 1 to 4, characterized in that the numerical aperture of the homogenizer means (8, 13) with respect to the slow axis direction (X) is larger than the numerical aperture of the laser light (3) to be homogenized in slow - Axis direction (X).
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die numerische Apertur der Homogenisatormittel (8, 13) hinsichtlich der Slow-Axis-Richtung (X) größer ist als 0, 1 , insbesondere größer ist als 0,2, vorzugsweise größer ist als 0,3.6. Device according to one of claims 1 to 5, characterized in that the numerical aperture of the homogenizer means (8, 13) with respect to the slow axis direction (X) is greater than 0.1, in particular greater than 0.2, is preferably greater than 0.3.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Vorrichtung Slow-Axis- Kollimationsmittel (5) aufweist, die insbesondere zwischen den Fast-Axis-Kollimationsmitteln (4) und den Homogenisatormitteln (8) angeordnet sind.7. Device according to one of claims 1 to 6, characterized in that the device has slow-axis collimation means (5) which are arranged in particular between the fast-axis collimation means (4) and the homogenizer means (8).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Slow-Axis-Kollimationsmittel (5) mindestens ein Array von Zylinderlinsen (6, 7) aufweisen, deren Zylinderachsen sich in Fast-Axis-Richtung (Y) erstrecken. 8. The device according to claim 7, characterized in that the slow-axis collimation means (5) have at least one array of cylindrical lenses (6, 7), the cylinder axes of which extend in the fast-axis direction (Y).
9. Vorrichtung nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Slow-Axis-Kolimationsmittel (5) als Slow-Axis-Kollimatorarray oder Slow-Axis-Teleskoparray ausgebildet sind.9. Device according to one of claims 7 or 8, characterized in that the slow-axis collimation means (5) are designed as a slow-axis collimator array or slow-axis telescope array.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Fast-Axis-Kollimationsmittel (4) derart ausgebildet sind , dass das von dem mindestens einen emittierenden Abschnitt (2; 2a bis 2e) des Halbleiterlasers (1 ) ausgehende Laserlicht (3) im Wesentlichen beugungsbegrenzt von den Fast-Axis-Kollimationsmitteln (4) kollimiert wird.10. Device according to one of claims 1 to 9, characterized in that the fast-axis collimation means (4) are designed such that the laser light emanating from the at least one emitting section (2; 2a to 2e) of the semiconductor laser (1) (3) is collimated essentially diffraction-limited by the fast-axis collimation means (4).
1 1 . Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Fokussiermittel (1 1 ) mindestens eine im Wesentlichen rotationssymmetrische Linse umfassen, wobei diese Linse insbesondere als Feldlinse für die Homogenisatormittel (8, 13) in Slow-Axis-Richtung (X) dienen kann.1 1. Device according to one of claims 1 to 10, characterized in that the focusing means (1 1) comprise at least one substantially rotationally symmetrical lens, this lens in particular as a field lens for the homogenizer means (8, 13) in the slow axis direction (X) can serve.
12. Vorrichtung nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass zwischen den Fast-Axis- Kollimationsmitteln (4) und den Fokussiermitteln (1 1 ) eine Fast- Axis-Strahlaufweitung angeordnet ist.12. Device according to one of claims 1 to 1 1, characterized in that a fast-axis beam expansion is arranged between the fast-axis collimation means (4) and the focusing means (1 1).
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadu rch gekennzeichnet, dass die Homogenisatormittel (13) zwei Arrays von Zylinderlinsen (15, 17) umfassen, die in Ausbreitungsrichtung des Laserlichtes (3) hintereinander angeordnet sind.13. Device according to one of claims 1 to 12, characterized in that the homogenizer means (13) comprise two arrays of cylindrical lenses (15, 17) which are arranged one behind the other in the direction of propagation of the laser light (3).
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Abstand zwischen den beiden Arrays von Zylinderlinsen (15, 17) ungefähr der Brennweite (f17) der Zylinderlinsen (17) des in Ausbreitungsrichtu ng des Laserlichtes (3) hinteren Arrays entspricht.14. The apparatus according to claim 13, characterized in that the distance between the two arrays of cylindrical lenses (15, 17) approximately the focal length (f 17 ) of the cylindrical lenses (17) of the in Direction of propagation of the laser light (3) corresponds to the rear arrays.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Anzahl der Zylinderlinsen (9, 1 5, 17) des mindestens einen Arrays von Zylinderlinsen (9, 1 5, 17) der Homogenisatormittel (8, 13) größer ist als die Anzahl der emittierenden Abschnitte (2; 2a bis 2e). 15. Device according to one of claims 1 to 14, characterized in that the number of cylindrical lenses (9, 1 5, 17) of the at least one array of cylindrical lenses (9, 1 5, 17) of the homogenizer means (8, 13) is greater than the number of emitting sections (2; 2a to 2e).
PCT/EP2004/010529 2004-03-06 2004-09-20 Device for producing a linear focussing area for a laser light source WO2005085934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011074.3 2004-03-06
DE102004011074 2004-03-06

Publications (1)

Publication Number Publication Date
WO2005085934A1 true WO2005085934A1 (en) 2005-09-15

Family

ID=34917081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010529 WO2005085934A1 (en) 2004-03-06 2004-09-20 Device for producing a linear focussing area for a laser light source

Country Status (2)

Country Link
CN (1) CN100427995C (en)
WO (1) WO2005085934A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073051A2 (en) 2007-12-19 2009-06-24 LIMO Patentverwaltung GmbH & Co. KG Device for shaping laser radiation
WO2010084001A1 (en) 2009-01-23 2010-07-29 Limo Patentverwaltung Gmbh & Co. Kg Beam forming device for laser diode arrays
DE102010045620A1 (en) 2010-09-17 2012-03-22 Limo Patentverwaltung Gmbh & Co. Kg Apparatus for generating linear intensity distribution in working plane, has homogenizer unit comprising lens arrays which are arranged such that laser beams superimposed by superimposing unit are homogenized partially
WO2012138584A3 (en) * 2011-04-07 2012-11-29 Coherent, Inc. Diode-laser illuminator with interchangeable modules for changing irradiance and beam dimensions
WO2013124822A1 (en) * 2012-02-22 2013-08-29 Koninklijke Philips N.V. Lighting apparatus for infrared camera system comprising array of vertical -cavity surface - emitting lasers
US8596823B2 (en) 2010-09-07 2013-12-03 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
WO2015042331A1 (en) * 2013-09-23 2015-03-26 Microsoft Corporation Optical modules that reduce speckle contrast and diffraction artifacts
CN104763963A (en) * 2014-01-03 2015-07-08 深圳市海洋王照明工程有限公司 Emergency exit indicator light
EP3059630A1 (en) * 2015-02-19 2016-08-24 VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Lighting unit for code reading devices
US20170188016A1 (en) * 2013-10-09 2017-06-29 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
WO2018019374A1 (en) * 2016-07-27 2018-02-01 Trumpf Laser Gmbh Laser line illumination
CN109444825A (en) * 2018-11-15 2019-03-08 深圳市速腾聚创科技有限公司 Laser transmitting set
DE102017131000A1 (en) * 2017-12-21 2019-06-27 LIMO GmbH Collimation device for a nanostack
CN110554508A (en) * 2018-05-30 2019-12-10 宁波舜宇车载光学技术有限公司 Light beam shaping device and light beam shaping method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946594B2 (en) 2011-11-04 2015-02-03 Applied Materials, Inc. Optical design for line generation using microlens array
DE102013104986A1 (en) * 2013-05-15 2014-12-04 Limo Patentverwaltung Gmbh & Co. Kg Device for acting on the outside of a rotationally symmetrical component with laser radiation
CN112260044B (en) * 2020-10-23 2022-06-10 青岛镭创光电技术有限公司 Laser device with uniform energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517359A (en) * 1995-01-23 1996-05-14 Gelbart; Daniel Apparatus for imaging light from a laser diode onto a multi-channel linear light valve
US5793783A (en) * 1992-12-07 1998-08-11 Sdl, Inc. Method for producing a highpower beam from a diode laser source having one array or plural subarrays
US6084626A (en) * 1998-04-29 2000-07-04 Eastman Kodak Company Grating modulator array
EP1184706A2 (en) * 2000-08-30 2002-03-06 Dainippon Screen Mfg. Co., Ltd. Illuminating apparatus
US20020041444A1 (en) * 2000-10-06 2002-04-11 Hans-Jurgen Kahlert Device for converting the intensity distribution of a laser beam and a device and method for generating a laser beam with an intensity which falls constantly along an axis from one side of the beam to the other
US20030128543A1 (en) * 2002-01-07 2003-07-10 Rekow Mathew N. Apparatus for projecting a line of light from a diode-laser array

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733944A (en) * 1986-01-24 1988-03-29 Xmr, Inc. Optical beam integration system
JP3157873B2 (en) * 1991-11-15 2001-04-16 パイオニア株式会社 Focus control device in optical pickup device
DE19635942A1 (en) * 1996-09-05 1998-03-12 Vitaly Dr Lissotschenko Optical beam shaping system
DE19819333A1 (en) * 1998-04-30 1999-11-04 Lissotschenko Vitaly Optical emitter array with collimation optics
EP1006382B1 (en) * 1998-10-30 2002-09-18 Lissotschenko, Vitalij Apparatus and device for optically converting a light beam
CN2566291Y (en) * 2002-09-16 2003-08-13 上海光通激光光电子技术创新中心有限公司 Semiconductor laser light beam shaping device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793783A (en) * 1992-12-07 1998-08-11 Sdl, Inc. Method for producing a highpower beam from a diode laser source having one array or plural subarrays
US5517359A (en) * 1995-01-23 1996-05-14 Gelbart; Daniel Apparatus for imaging light from a laser diode onto a multi-channel linear light valve
US6084626A (en) * 1998-04-29 2000-07-04 Eastman Kodak Company Grating modulator array
EP1184706A2 (en) * 2000-08-30 2002-03-06 Dainippon Screen Mfg. Co., Ltd. Illuminating apparatus
US20020041444A1 (en) * 2000-10-06 2002-04-11 Hans-Jurgen Kahlert Device for converting the intensity distribution of a laser beam and a device and method for generating a laser beam with an intensity which falls constantly along an axis from one side of the beam to the other
US20030128543A1 (en) * 2002-01-07 2003-07-10 Rekow Mathew N. Apparatus for projecting a line of light from a diode-laser array

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986461B2 (en) 2007-12-19 2011-07-26 Limo Patentverwaltung Gmbh & Co. Device for shaping laser radiation
DE102007061358A1 (en) 2007-12-19 2009-07-02 Limo Patentverwaltung Gmbh & Co. Kg Device for shaping laser radiation
EP2073051A2 (en) 2007-12-19 2009-06-24 LIMO Patentverwaltung GmbH & Co. KG Device for shaping laser radiation
EP2073051A3 (en) * 2007-12-19 2010-12-22 LIMO Patentverwaltung GmbH & Co. KG Device for shaping laser radiation
US9001426B2 (en) 2009-01-23 2015-04-07 Limo Patentverwaltung Gmbh & Co. Kg Beam forming device for laser diode arrays
WO2010084001A1 (en) 2009-01-23 2010-07-29 Limo Patentverwaltung Gmbh & Co. Kg Beam forming device for laser diode arrays
US8596823B2 (en) 2010-09-07 2013-12-03 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
DE102010045620A1 (en) 2010-09-17 2012-03-22 Limo Patentverwaltung Gmbh & Co. Kg Apparatus for generating linear intensity distribution in working plane, has homogenizer unit comprising lens arrays which are arranged such that laser beams superimposed by superimposing unit are homogenized partially
US8602592B2 (en) 2011-04-07 2013-12-10 Coherent, Inc. Diode-laser illuminator with interchangeable modules for changing irradiance and beam dimensions
WO2012138584A3 (en) * 2011-04-07 2012-11-29 Coherent, Inc. Diode-laser illuminator with interchangeable modules for changing irradiance and beam dimensions
WO2013124822A1 (en) * 2012-02-22 2013-08-29 Koninklijke Philips N.V. Lighting apparatus for infrared camera system comprising array of vertical -cavity surface - emitting lasers
CN104136958A (en) * 2012-02-22 2014-11-05 皇家飞利浦有限公司 Lighting apparatus for infrared camera system comprising array of vertical -cavity surface - emitting lasers
US10019897B2 (en) 2012-02-22 2018-07-10 Koninklijke Philips N.C. Lighting apparatus for infrared camera system comprising array of vertical-cavity surface-emitting lasers
CN104136958B (en) * 2012-02-22 2017-07-04 皇家飞利浦有限公司 The lighting device for IR camera system of the array including vertical cavity surface emitting laser
WO2015042331A1 (en) * 2013-09-23 2015-03-26 Microsoft Corporation Optical modules that reduce speckle contrast and diffraction artifacts
US9462253B2 (en) 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US10024968B2 (en) 2013-09-23 2018-07-17 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US20170188016A1 (en) * 2013-10-09 2017-06-29 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
CN104763963A (en) * 2014-01-03 2015-07-08 深圳市海洋王照明工程有限公司 Emergency exit indicator light
EP3059630A1 (en) * 2015-02-19 2016-08-24 VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Lighting unit for code reading devices
US10174907B2 (en) 2015-02-19 2019-01-08 Vitronic Dr.-Ing. Stein Bildverarbeitungssysteme Gmbh Lighting device for a code reader
WO2018019374A1 (en) * 2016-07-27 2018-02-01 Trumpf Laser Gmbh Laser line illumination
US11407062B2 (en) 2016-07-27 2022-08-09 Trumpf Laser Gmbh Laser line illumination
US11759886B2 (en) 2016-07-27 2023-09-19 Trumpf Laser Gmbh Laser line illumination
DE102017131000A1 (en) * 2017-12-21 2019-06-27 LIMO GmbH Collimation device for a nanostack
CN110554508A (en) * 2018-05-30 2019-12-10 宁波舜宇车载光学技术有限公司 Light beam shaping device and light beam shaping method thereof
CN110554508B (en) * 2018-05-30 2022-02-11 宁波舜宇车载光学技术有限公司 Light beam shaping device and light beam shaping method thereof
CN109444825A (en) * 2018-11-15 2019-03-08 深圳市速腾聚创科技有限公司 Laser transmitting set

Also Published As

Publication number Publication date
CN1997928A (en) 2007-07-11
CN100427995C (en) 2008-10-22

Similar Documents

Publication Publication Date Title
EP1528425B1 (en) Assembly and device for optical beam transformation
DE502007012156C5 (en) DEVICE FOR BEAM SHAPING
DE102006047941B4 (en) Device for homogenizing radiation with non-regular microlens arrays
EP1839083B1 (en) Device for homogenizing light
WO2005085934A1 (en) Device for producing a linear focussing area for a laser light source
EP2288955A1 (en) Device and method for beam forming
EP1617275A1 (en) Device for illuminating a surface area comprising a semiconductor laser bar and a beam tansformation device
EP2217961A1 (en) Beam forming device
DE102009021251A1 (en) Device for shaping laser radiation and laser device with such a device
DE102010053781A1 (en) Device for converting laser radiation into laser radiation with an M profile
EP1062540B1 (en) Device and method for transforming optical rays
WO2005085935A1 (en) Device for homogenizing light and arrangement for illuminating or focussing with said device
WO2010097198A1 (en) Device for homogenizing laser radiation
DE19841040A1 (en) Marking appliance for e.g. metal surface
DE102008027229B4 (en) Apparatus for beam shaping
DE102007026730A1 (en) Laser irradiation`s homogeneous angular distribution generating apparatus, has homogenization stage with two substrates and lens array, where distance between two substrates of stage influences angular distribution
EP2976672B1 (en) Device for homogenizing a laser beam
WO2002082164A2 (en) Assembly for correcting laser illumination emitted from a laser light source and method for producing said assembly
EP1381907A2 (en) Device for collimating light emanating from a laser light source and beam transformer for said arrangement
EP3577514B1 (en) Device for the collimation of a light beam, high power laser and focussing optics and method for collimating a light beam
DE19820154A1 (en) Arrangement for transforming optical beams
DE102008056128A1 (en) Focusing- and/or coupling lens for coupling laser beam of diode laser into fiber, has short cylinder lens, where distance between cylinder and focusing lenses maximally corresponds to preset times of sum of its focal widths in slow axis
EP1176450A2 (en) Optical beam transforming device
DE102020118421B4 (en) laser device
EP1638779A1 (en) Device for projecting the light of a semiconductor laser unit comprising a plurality of emitters onto a working plane, and illuminating device comprising such a projection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase