WO2005081265A1 - Dispersion liquid for forming transparent conductive film, method for forming transparent conductive film and transparent electrode - Google Patents

Dispersion liquid for forming transparent conductive film, method for forming transparent conductive film and transparent electrode Download PDF

Info

Publication number
WO2005081265A1
WO2005081265A1 PCT/JP2005/003009 JP2005003009W WO2005081265A1 WO 2005081265 A1 WO2005081265 A1 WO 2005081265A1 JP 2005003009 W JP2005003009 W JP 2005003009W WO 2005081265 A1 WO2005081265 A1 WO 2005081265A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmosphere
fine particles
transparent conductive
conductive film
forming
Prior art date
Application number
PCT/JP2005/003009
Other languages
French (fr)
Japanese (ja)
Inventor
Sadayuki Ukishima
Hideo Takei
Satoru Ishibashi
Tsutomu Atsuki
Masaaki Oda
Hiroshi Yamaguchi
Toshiharu Hayashi
Reiko Kiyoshima
Shinya Shiraishi
Original Assignee
Ulvac, Inc.
Jemco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc., Jemco Inc. filed Critical Ulvac, Inc.
Publication of WO2005081265A1 publication Critical patent/WO2005081265A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • Dispersion for forming transparent conductive film Dispersion for forming transparent conductive film, method for forming transparent conductive film, and transparent electrode
  • the present invention relates to a dispersion for forming a transparent conductive film, a method for forming a transparent conductive film, and a transparent electrode, and particularly relates to a field such as an electric and electronic industry including metal fine particles or alloy fine particles and oxide fine particles.
  • the present invention relates to a dispersion for forming a transparent conductive film that can be used in the above, a method for forming a transparent conductive film using the dispersion, and a transparent electrode made of the transparent conductive film.
  • a transparent electrode made of an oxide such as ITO or ATO is used for an electrode of a flat panel display represented by a liquid crystal display.
  • the manufacturing method in this case includes an evaporation method, an ion plating method, a sputtering method, and the like, and a transparent electrode is formed by depositing a metal oxide film on a glass substrate by these methods.
  • an ITO film, which is an oxide film is formed by a sputtering method.
  • a dispersion of tin-doped indium oxide powder is prepared, the dispersion is applied on a substrate, and after drying, A method of obtaining a transparent conductive film by firing is known (for example, see Patent Document 1).
  • Patent Document 1 An oxide film is formed directly on a transparent substrate such as a glass substrate, and the obtained transparent conductive film is used for a flat panel display represented by a liquid crystal or a plasma display.
  • the display manufacturing on acrylic substrates which are becoming mainstream along with the increase in size, there is a problem that the substrate is damaged by the film forming technology at such a high temperature of 400 ° C due to the thermal restrictions on the substrates. There is.
  • metal ultrafine particles such as Ag ultrafine particles are used to form transparent plastic films and the like. It is also known to form a transparent conductive film on a substrate at a relatively low temperature to obtain a low-resistance film.
  • Patent Document 3 See, for example, Patent Document 3. As shown in Patent Document 3, it is possible to reduce the resistance by using Ag, but the ultrafine particles of Ag are colored by plasmon absorption, and if sufficient transmittance cannot be obtained, it is difficult. There is a problem.
  • a transparent conductive metal film and a metal oxide film for forming a transparent conductive film are alternately laminated on a substrate in a plurality of layers in this order, and the laminated film is fired for each layer or collectively.
  • Low-resistance transparent conductive films are also known (for example, see Patent Document 4). In this case, there is a problem that the manufacturing process becomes complicated.
  • an antistatic film there is a technique in which transparent oxide particles having low resistance are used, and conductivity is ensured by contacting the particles.
  • a transparent conductive film is formed on the substrate, and then a second layer of film is applied thereon, and the adhesion between the particles is improved by utilizing the heat shrinkage.
  • the method of increasing the contact resistance to lower the contact resistance and consequently the surface resistance is reduced. Also in this case, there is a problem that the manufacturing process becomes complicated.
  • Patent Document 1 JP-A-07-242842 (Claims, Examples)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-249131 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-176339 (Claims)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-249126 (Claims)
  • the transmittance is high but the resistance is high when only the oxide fine particles are used, and the resistance is low when only the metal fine particles are used. Phenomenon. Furthermore, when oxide fine particles and metal fine particles are used, there is a problem that the manufacturing process becomes complicated.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a dispersion containing metal fine particles, alloy fine particles or a mixture thereof and a metal-doped oxide,
  • An object of the present invention is to provide a method for forming a transparent conductive film having low resistance and high transmittance by low-temperature sintering and a transparent electrode comprising the transparent conductive film.
  • the dispersion for forming a transparent conductive film of the present invention comprises fine particles of at least one metal selected from indium, tin, antimony, aluminum and zinc, and two or more metals selected from the metals. At least one kind of alloy fine particles, or a mixture of the metal fine particles and alloy fine particles, with Sn-doped In O, Sb-doped Sn ⁇ , Zn-doped In O, and A1-doped Zn ⁇
  • At least one kind of oxide fine particles is mixed and dispersed in an organic solvent.
  • a transparent conductive film having low resistance and high transmittance can be formed by low-temperature baking.
  • the method for forming a transparent conductive film of the present invention is characterized in that the dispersion for forming a transparent conductive film is applied to a substrate and then fired.
  • the calcination is performed in an atmosphere selected from a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, and an oxidizing gas atmosphere.
  • the calcination is performed in an atmosphere in which a metal or alloy selected from a vacuum atmosphere, an inert gas atmosphere, and a reducing gas atmosphere is not oxidized, and then in an oxidizing gas atmosphere.
  • firing is further performed in an atmosphere selected from a vacuum atmosphere, an inert atmosphere, and a reducing gas atmosphere.
  • a transparent conductive film having low resistance and high transmittance can be formed by low-temperature firing.
  • the inert gas atmosphere is an atmosphere composed of at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen, and the reducing gas atmosphere is hydrogen, carbon monoxide, and a lower alcohol.
  • the oxidizing gas atmosphere is an atmosphere comprising at least one oxidizing gas selected from oxygen-containing gases.
  • the vacuum atmosphere includes at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen, at least one oxidizing gas selected from an oxygen element-containing gas, hydrogen, carbon monoxide, At least one reducing gas selected from lower alcohols, or a mixed gas comprising the inert gas and an oxidizing gas or a reducing gas. To do.
  • the oxidizing gas atmosphere contains oxygen, an oxygen-containing gas, water vapor or a water vapor-containing gas.
  • the metal fine particles and the alloy fine particles are characterized in that organic compounds are attached around the fine particles. By using such fine particles, the dispersibility of each fine particle is improved, and a uniform conductive film can be obtained.
  • the transparent electrode of the present invention is characterized in that the transparent electrode is formed by the transparent conductive film forming method.
  • a transparent conductive film is prepared by using a dispersion liquid for forming a transparent conductive film containing specific metal fine particles, alloy fine particles, or a mixture thereof, and specific metal-doped oxide fine particles, at a low temperature.
  • the film can be formed by firing, and the obtained film has an effect of having a low resistance and a high transmittance, and can provide a transparent electrode or the like made of this conductive film and which can be used for various applications.
  • these fine particles include alloy fine particles unless otherwise specified.
  • fine particles of at least one metal of each of the component metals (indium, tin, antimony, aluminum, and zinc) of the metal oxide for forming the transparent conductive film and a metal component of the component Dispersions containing fine particles of at least one alloy composed of at least one kind of metal, mixed fine particles of these metal fine particles and alloy fine particles, and an oxide doped with tin, antimony, aluminum or zinc are: It is a useful dispersion for forming a transparent conductive film.
  • the metal oxide used in the present invention includes, for example, IT ⁇ (In-Sn- ⁇ ) (
  • Sn range is usually 0 ⁇ 311 ⁇ 20 ⁇ %, preferably 3 ⁇ Sn ⁇ 10wt%), Sb-doped SnO
  • A1 doped Zn ⁇ as ⁇ ( ⁇ _ ⁇ 1-0) range of A1 Is usually 0 ⁇ Al ⁇ 20wt%, preferably 5 ⁇ Al ⁇ 15wt%).
  • ITO, ⁇ , ⁇ , ⁇ are useful for forming a target transparent conductive film.
  • the substrate that can be used in the method for forming a transparent conductive film of the present invention is not particularly limited as long as it is a transparent substrate.
  • a low-temperature baking such as an acrylic substrate, a polyimide substrate, or a polyethylene terephthalate (PET) film can be used.
  • PET polyethylene terephthalate
  • a glass electrode with an organic film such as an organic filter.
  • the organic resin material in addition to the above, for example, cellulose acetates, polystyrene, polystyrenes, polyethers, polyimide, epoxy resin, phenoxy resin, polycarbonate, polyvinylidene fluoride, Teflon (registered trademark), etc. It can also be used.
  • the shape of the substrate is not particularly limited, and may be, for example, a flat plate, a three-dimensional object, a film, or the like. Note that it is preferable that the substrate to be processed be cleaned using pure water, ultrasonic waves, or the like before applying the dispersion liquid.
  • the method of coating the substrate is not particularly limited, and examples thereof include a spin coating method, a spray method, an ink jet method, an immersion method, a roll coating method, a screen printing method, a non-contour printing method and the like. Can be used.
  • the coating may be performed once or repeatedly, as long as a desired film thickness can be obtained.
  • the dispersion liquid is applied on a substrate to be treated by a known application method, and then a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, and an oxidizing atmosphere are used.
  • the baking treatment is performed in at least two stages in at least two kinds of atmospheres selected from a neutral gas atmosphere.
  • firing is first performed in an oxidizing gas atmosphere, the surface resistance of the obtained film increases, which is not preferable.
  • firing is performed in an oxidizing gas atmosphere to oxidize the metal fine particles.
  • the base material to which the dispersion is applied may be dried at a predetermined temperature to remove the dispersion medium and the like. This removal of the dispersion medium may be performed by a firing process.
  • the sintering temperature in the above-described sintering process is controlled by setting the fine metal particles or fine alloy particles It is preferable that the heat-resistant allowable temperature be in a range from the melting point of the core to a temperature lower than the softening point of the substrate to be treated.
  • the firing temperature is more preferably, for example, 300 ° C. or lower. Within this temperature range, the substrate will not be damaged.
  • a dense film is formed at a lower temperature than in the conventional case, a transparent conductive film having a small electric resistance can be manufactured at a low temperature, and an oxidizing gas atmosphere can be produced.
  • the permeability of the obtained membrane can be improved.
  • irradiation with a UV lamp during sintering is more effective in reducing time and lowering the temperature.
  • a method using a known atmospheric pressure plasma is also effective.
  • the vacuum state when the coating film is baked in a vacuum atmosphere, the vacuum state may be determined by simply pulling with a pump or after drawing with an inert gas, a reducing gas, or an oxidizing gas. A neutral gas may be introduced. Firing in a vacuum atmosphere can usually line Ukoto at 10- 5 10 3 Pa about.
  • the inert gas atmosphere is, for example, an atmosphere composed of at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen.
  • the reducing gas atmosphere is an atmosphere composed of at least one reducing gas selected from hydrogen, carbon monoxide and lower alcohol
  • the oxidizing gas atmosphere is
  • an atmosphere containing at least one oxidizing gas selected from oxygen element-containing gas for example, oxygen, oxygen-containing gas, water vapor, and water vapor-containing gas. Etc. are included.
  • the vacuum atmosphere may contain an inert gas, an oxidizing gas, a reducing gas, or a mixed gas of an inert gas and an oxidizing gas or a reducing gas.
  • the lower alcohol in the reducing gas atmosphere is a lower alcohol having 16 to 16 carbon atoms, for example, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, hexyl alcohol and the like.
  • This reducing gas atmosphere is a firing atmosphere for removing only oxygen from the surface of the metal fine particles, and is not an atmosphere for reducing so-called oxides to metal.
  • the particle size of the metal fine particles and alloy fine particles used in the present invention is 0.5 nm to 50 nm. Is preferred. When the thickness is less than 0.5 nm, the substantial surface area of the particles increases, and as a result, the amount of organic substances attached around the particles increases. . If it exceeds 50 nm, sedimentation is likely to occur when dispersed in an organic solvent.
  • the primary particle diameter of the metal oxide fine particles is preferably about 20 to 30 nm.
  • the method for producing the metal fine particles and alloy fine particles used in the present invention is not particularly limited.
  • the wet reduction method or the heat treatment by spraying the organometallic compound to a high-temperature atmosphere is used.
  • a reduction method or the like may be used.
  • the surfaces of the obtained metal fine particles and alloy fine particles are preferably in a metal state, but may be in a state where at least a part thereof is oxidized.
  • a metal is evaporated in a gas atmosphere and in a gas phase in which a vapor of a solvent coexists, and the evaporated metal is condensed into uniform fine particles and separated into a solvent. And a dispersion is obtained (for example, Japanese Patent No. 2561537).
  • metal fine particles having a uniform particle size of 50 nm or less can be produced.
  • the organic solvent may be appropriately selected depending on the type of metal fine particles to be used, and examples thereof include the following. That is, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol, glycols such as ethylene glycol and propylene glycol, acetone , Methylethyl ketone, and ketones such as getyl ketone; esters such as ethyl acetate, butyl acetate, and benzyl acetate; ether alcohols such as methoxyethanol and ethoxyethanol; ethers such as dioxane and tetrahydrofuran.
  • alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol, hexanol, heptanol,
  • Acid amides such as, ⁇ -dimethylformamide; aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene and dodecylbenzene; hexane, heptane, octane, Down, decane, Undekan, Liquid at room temperature, such as long-chain alkanes such as dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, eicosane, and trimethylpentane; cycloalkanes; What is necessary is just to select and use them appropriately. It is assumed that water is also contained in this organic solvent.
  • a solvent such as the above can be used.
  • a nonpolar solvent such as toluene, xylene, benzene, or tetradecane; acetone; Ketones such as ethyl ketone, alcohols such as methanol, ethanol, propanol, and butanol can be used.
  • the ink When preparing an ink solution for ink-jet printing, the ink must be compatible with the head material (including the surface coating material) (for example, it must have the property of not corroding, dissolving, etc.), and the aggregation of metal fine particles in the head. It is necessary to select an appropriate solvent in consideration of particle clogging.
  • the organic solvent may be used alone or in the form of a mixed solvent.
  • it may be a mineral spirit that is a mixture of long-chain alkane.
  • the amount of the solvent to be used may be appropriately set according to the type and use of the metal fine particles to be used so that the solvent can be easily applied and a desired film thickness can be obtained.
  • the concentration of the metal fine particles can be adjusted as needed by heating in a vacuum or the like even after the dispersion liquid is manufactured so that the concentration of the metal fine particles is about 70% by weight.
  • the fine metal particles and fine alloy particles used in the present invention may be fine particles having an organic compound attached around the fine particles.
  • the metal fine particle dispersion prepared by the gas evaporation method is an organic metal fine particle having a particle diameter of 50 nm or less in an isolated state using at least one selected from alkynoleamine, carboxylic acid amide, and amino carboxylate as a dispersant. It is dispersed in a solvent.
  • These metal fine particles are particles having an organic compound as a dispersant adhered to the periphery thereof, and the use of these fine particles facilitates dispersion.
  • the alkylamine of the above dispersant may be a primary or tertiary amine, or may be a monoamine, a diamine, or a triamine.
  • Alkylamines having main chain carbon atoms of 412 to 20 are preferable, and alkylamines having main chain carbon atoms of 8 to 18 are more preferable in terms of stability and handling. If the carbon number of the main chain of the alkylamine is shorter, the basicity of the amine It is too strong and tends to corrode the metal fine particles, and eventually there is a problem that the metal fine particles are dissolved.
  • alkylamines include, for example, butylamine, octylamine, dodecinoleamine, hexadodecylamine, octadecylamine, cocoamine, taroamine, hydrogenated talamine, oleylamine, laurylamine, and stearylamine.
  • Secondary amines such as primary amines, dicocoamine, dihydrogenated tallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethinoleamine, octadecyldimethyl.
  • Tertiary amines such as dimethylamine, cocodimethylamine, dodecyltetradecyldimethinoleamine, and trioctylamine; and, in addition, naphthalenediamine, stearylpropylenediamine, otatamethylenediamine, and Nonandiamine There is a Jiamin like.
  • carboxylic acid amide diaminocarboxylate examples include, for example, stearic acid amide, normitic acid amide, lauric acid lauric amide, oleic acid amide, oleic acid diethanolanolamide, oleic acid laurylamide, stearanilide, Oleylaminoethyldaricin and the like.
  • the metal fine particles used in the present invention may be a dispersion obtained by a chemical reduction method such as a wet reduction (liquid phase reduction) method.
  • a reducing raw material that is a metal-containing organic compound may be used.
  • the chemical reduction method is a method for preparing a metal fine particle dispersion by a chemical reaction using a reducing agent.
  • the particle diameter can be arbitrarily adjusted to 50 nm or less.
  • This reduction method is performed, for example, as follows. In a state where the dispersant is added to the raw material, metal fine particles are generated by using a power or a reducing agent such as hydrogen or sodium borohydride which thermally decomposes the raw material at a predetermined temperature. Almost all the generated metal fine particles are recovered in an independent dispersion state. The particle size of these metal particles is about 50 nm or less. Below. By substituting the metal fine particle dispersion with the organic solvent as described above, a desired metal fine particle dispersion can be obtained. The obtained dispersion maintains a stable dispersion state even when concentrated by heating in vacuum.
  • the transparent conductive film formed by the method for forming a transparent conductive film of the present invention as described above includes, for example, a transparent electrode for a flat display, a transparent antistatic film, a transparent electromagnetic wave shielding film, a surface heating element, a transparent electrode antenna, It can be used for solar cells, electronic paper electrodes, transparent electrode gas sensors, etc.
  • the In-Sn alloy fine particles in the generation process are produced.
  • a 20: 1 (volume ratio) vapor of terpineol and dodecylamine it is cooled and collected to collect the In-Sn alloy fine particles, which are dispersed independently in a-terbineol solvent.
  • a dispersion liquid containing 20% by weight of In-Sn alloy fine particles having an average particle diameter of lOnm was prepared. Five volumes of acetone were added to one volume of this dispersion (colloidal solution) and stirred.
  • Fine particles in the dispersion liquid settled out due to the action of polar acetone. After allowing to stand for 2 hours, the supernatant was removed, and the same amount of acetone as the first was added again, followed by stirring. After allowing to stand for 2 hours, the supernatant was removed. The residual solvent was completely removed from the sediment, and In—Sn alloy fine particles having an average particle size of l Onm were produced.
  • Fine particles of each metal of In, Sn, Sb, Al, and Zn, and alloy fine particles other than In_Sn, which is a metal force of these metals, can be obtained in the same manner according to the above-described production method.
  • In-Sn alloy fine particles produced by evaporation in gas in Production Example 1 were used. These particles had an average particle size of lOnm, and were confirmed to be non-oxidized alloy fine particles by X-ray diffraction. X-ray fluorescence analysis confirmed that the Sn content in the fine particles was 6 wt%.
  • oxide fine particles to be combined with the alloy fine particles ITO fine particles having a primary particle of 20 nm were used. These alloy fine particles and ITO fine particles Are mixed and dispersed in an organic solvent (toluene) at a ratio of 5:95 (wt%) to a total solid content of 30 wt% to obtain a dispersion for forming a transparent conductive film.
  • organic solvent toluene
  • the dispersion obtained by the force was applied onto a glass substrate by spin coating to form a film.
  • the resulting coating film baked at a 1 X 10- 3 Pa 230 ° C , 30 minutes condition under a reduced pressure of (1st Aniru) was performed.
  • the atmosphere was returned to the atmosphere, and calcination (2nd anneal) at 230 ° C and 10 min was performed in air.
  • the obtained transparent conductive film (thickness: 200 nm) was sufficiently densified, and its surface resistance was as low as 60 ⁇ / mouth, and the transmittance at 550 nm was as high as 99.4%.
  • firing in a reducing gas atmosphere hydrogen gas atmosphere and carbon monoxide atmosphere
  • Example 1 The transparent conductive film obtained in Example 1 was useful as a transparent electrode of a display device.
  • Example 1 In-Sn alloy fine particles were removed from the dispersion obtained in Example 1, and a dispersion of only ITO fine particles was applied on a glass substrate in the same manner as in Example 1 to form a dispersion. The membrane was made. Next, the obtained coating film was fired at 230 ° C. for 30 minutes under the same conditions as in Example 1. The resulting transparent conductive film, the transmittance was as high as 98% power its surface resistance 7 ⁇ 10 3 ⁇ / mouth and very Kokaka ivy.
  • the metal fine particles having a small particle size fill gaps between the ITO fine particles, and the metal fine particles serve as an adhesive to densify the film. It is presumed that the contact resistance of the fine particles was reduced, resulting in a low-resistance film.
  • the concentration of the metal fine particles in all the fine particles is generally about 110 to 30 wt%, preferably about 3 to 30 wt%. It is convenient to From the viewpoint of the cost of the dispersion, the concentration of the metal fine particles is lower, and the more preferable.
  • Example 1 calcination was performed according to the method described in Example 1 by changing the types and composition ratios of the metal fine particles and oxide fine particles of each component metal of the metal oxide for forming a transparent conductive film and the calcination conditions. The surface resistance and transmittance of the obtained film were measured. The results are shown in Table 1. Table 1 also shows comparative examples.
  • In—Zn alloy fine particles Zn: 6 wt%) and IZO fine particles were used.
  • the resistance value was almost the same as that in the case of using the In—Sn alloy fine particles and the ZITO fine particles, and the value was slightly higher, and the transmittance was almost the same as in these cases.
  • the resistance value is higher than when using In fine particles or In-Sn alloy fine particles ⁇ fine particles, or when using In-Zn alloy fine particles ⁇ fine particles.
  • the transmittance was almost the same as in these cases.
  • This film was excellent in thermal stability and chemical stability. No change in resistance was observed even after baking this film at 600 ° C.
  • Zn—A1 alloy fine particles (A1: 5 wt%) and AZ ⁇ fine particles were used.
  • the resistance value is lower than when using Sn—Sb fine particles / ATO fine particles, and higher than when using In—Sn fine particles / ITO fine particles or In—Zn fine particles / IZO fine particles.
  • the force S and the transmittance were almost the same as in these cases.
  • Example 47 In fine particles and ATO fine particles were used. In the obtained film, the resistance value and the transmittance were almost the same as those when the Sn—Sb fine particles / ATO fine particles were used.
  • Example 48 In—Zn fine particles (Zn: 6 wt%) and ITO fine particles were used. In the obtained film, the resistance value and the transmittance were almost the same as those of the In—Sn fine particles and the ZITO fine particles.
  • Example 49 Sn—Sb fine particles (Sb: 5 wt%) and AZ ⁇ fine particles were used.
  • the resistance value was higher than that when the Zn-A1 fine particles and the ZAZO fine particles were used, and the transmittance was almost the same.
  • Example 50 Zn—A1 fine particles (A1: 5 wt%) and ITO fine particles were used.
  • the resistance value was slightly lower than that in the case of using the In—Sn fine particles / ITO fine particles, but the transmittance was almost the same.
  • All of the above films had excellent etching characteristics.
  • films obtained using In-Zn fine particles and oxide fine particles were composed of In fine particles, In-Sn fine particles or Sn-Sb fine particles and oxides. The etching characteristics were superior to the film obtained using the fine particles. From these facts, it can be seen that the film obtained using the system composed of the In-Zn fine particles and the oxide fine particles is a film excellent in workability.
  • a transparent conductive film having low resistance and high transmittance can be formed by firing at a low temperature using a specific dispersion liquid.
  • the film can be applied to the field of a transparent conductive film (for example, a transparent electrode) used for a display device such as a flat panel display, a charging of a display surface, and an electromagnetic wave shielding film in a field of, for example, an electric and electronic industry. .

Abstract

Disclosed is a dispersion liquid for forming a transparent conductive film wherein metal particles of In, Sn, Sb, Al or Zn, particles of an alloy of such metals or a mixture of these particles, and particles of ITO, IZO, ATO or AZO are dispersed in an organic solvent. A transparent conductive film having low resistance and high transmittance is formed by applying this dispersion liquid to a base and then firing it at a low temperature in a vacuum atmosphere, inert gas atmosphere, reducing gas atmosphere, oxidizing gas atmosphere, air atmosphere. The inert gas atmosphere is a gaseous atmosphere of a rare gas, carbon dioxide or nitrogen; the reducing gas atmosphere is a gaseous atmosphere of hydrogen, carbon monoxide or a lower alcohol; and the oxidizing gas atmosphere is an oxygen-containing gaseous atmosphere. Also disclosed is a transparent electrode composed of such a transparent conductive film.

Description

明 細 書  Specification
透明導電膜形成用分散液、透明導電膜の形成方法及び透明電極 技術分野  Dispersion for forming transparent conductive film, method for forming transparent conductive film, and transparent electrode
[0001] 本発明は、透明導電膜形成用分散液、透明導電膜の形成方法及び透明電極に関 し、特に、金属微粒子や合金微粒子と酸化物微粒子とを含んだ、電気電子工業等の 分野において用いることのできる透明導電膜形成用分散液、この分散液を用いる透 明導電膜の形成方法及びこの透明導電膜からなる透明電極に関する。  The present invention relates to a dispersion for forming a transparent conductive film, a method for forming a transparent conductive film, and a transparent electrode, and particularly relates to a field such as an electric and electronic industry including metal fine particles or alloy fine particles and oxide fine particles. The present invention relates to a dispersion for forming a transparent conductive film that can be used in the above, a method for forming a transparent conductive film using the dispersion, and a transparent electrode made of the transparent conductive film.
背景技術  Background art
[0002] 一般に、液晶ディスプレーに代表されるフラットパネルディスプレーの電極には ITO 、 ATO等の酸化物からなる透明電極が使用されている。この場合の製造法には蒸発 法、イオンプレーティング法、スパッタリング法等があり、これらの方法によりガラス基 板上に金属酸化物膜を付着させて透明電極を形成している。より一般的には、酸化 物膜である ITO膜をスパッタリング法により形成しているのが現状である。  In general, a transparent electrode made of an oxide such as ITO or ATO is used for an electrode of a flat panel display represented by a liquid crystal display. The manufacturing method in this case includes an evaporation method, an ion plating method, a sputtering method, and the like, and a transparent electrode is formed by depositing a metal oxide film on a glass substrate by these methods. More generally, at present, an ITO film, which is an oxide film, is formed by a sputtering method.
[0003] また、帯電防止膜、電極'回路形成用膜として用いる透明導電膜の形成方法として 、錫ドープ酸化インジウム粉末の分散液を調製し、この分散液を基板上に塗布し、乾 燥後に焼成して透明導電膜を得る方法が知られている (例えば、特許文献 1参照)。 この特許文献 1に示される方法では、ガラス基板等の透明基板上に直接酸化物膜を 形成しており、得られる透明導電膜を液晶やプラズマディスプレーに代表されるフラ ットパネルディスプレー用として使用するためには、この透明基板上での成膜後に、 2 00— 900°C (実施例では、 400°Cで行っている)で焼成することが必要であるとして いる。しかるに、今後、大型化とともに主流になりつつあるアクリル基板上でのデイス プレー製造においては、基板に対する熱的制限からこのような 400°Cという高温での 成膜技術では基板が損傷を受けるという問題がある。  [0003] Further, as a method of forming a transparent conductive film used as an antistatic film and an electrode 'circuit forming film, a dispersion of tin-doped indium oxide powder is prepared, the dispersion is applied on a substrate, and after drying, A method of obtaining a transparent conductive film by firing is known (for example, see Patent Document 1). In the method disclosed in Patent Document 1, an oxide film is formed directly on a transparent substrate such as a glass substrate, and the obtained transparent conductive film is used for a flat panel display represented by a liquid crystal or a plasma display. For this purpose, it is necessary to bake at 200 to 900 ° C. (in this embodiment, at 400 ° C.) after film formation on the transparent substrate. However, in the display manufacturing on acrylic substrates, which are becoming mainstream along with the increase in size, there is a problem that the substrate is damaged by the film forming technology at such a high temperature of 400 ° C due to the thermal restrictions on the substrates. There is.
[0004] これらの問題の解決方法として、ディスプレー用の透明電極の場合、例えば、金属 ナノ粒子を用い、塗布、乾燥、焼成して ITO膜、 ATO膜を製造することにより、低コス トで大面積の透明導電膜を形成することが知られている (例えば、特許文献 2参照)。  [0004] As a solution to these problems, in the case of a transparent electrode for a display, for example, by using metal nanoparticles, coating, drying, and baking to produce an ITO film and an ATO film, the cost is low and the cost is large. It is known to form a transparent conductive film having an area (for example, see Patent Document 2).
[0005] また、 Ag超微粒子等の金属超微粒子を使用して、透明なプラスチックフィルム等の 基材上に比較的低温で透明導電膜を形成して低抵抗の膜を得ることも知られている[0005] In addition, metal ultrafine particles such as Ag ultrafine particles are used to form transparent plastic films and the like. It is also known to form a transparent conductive film on a substrate at a relatively low temperature to obtain a low-resistance film.
(例えば、特許文献 3参照)。この特許文献 3に示されるように、 Agを使用することによ り低抵抗化は可能であるが、 Ag超微粒子はプラズモン吸収により着色し、十分な透 過率を得ることが出来ないとレ、う問題がある。 (See, for example, Patent Document 3). As shown in Patent Document 3, it is possible to reduce the resistance by using Ag, but the ultrafine particles of Ag are colored by plasmon absorption, and if sufficient transmittance cannot be obtained, it is difficult. There is a problem.
[0006] また、基板上に透明導電性金属膜及び透明導電膜形成用金属酸化物膜を、この 順序で、交互に複数層積層し、各層毎に又は積層膜を一括して焼成してなる低抵抗 透明導電膜も知られている(例えば、特許文献 4参照)。この場合は、製造プロセスが 複雑になるという問題がある。  [0006] Further, a transparent conductive metal film and a metal oxide film for forming a transparent conductive film are alternately laminated on a substrate in a plurality of layers in this order, and the laminated film is fired for each layer or collectively. Low-resistance transparent conductive films are also known (for example, see Patent Document 4). In this case, there is a problem that the manufacturing process becomes complicated.
[0007] さらに、帯電防止膜における他の製造方法として、低抵抗の透明酸化物粒子を用 レ、、その粒子の接触によって導電性を確保しょうとする技術もある。この場合は、より 緻密なパッキングにするため、基材上に透明導電膜を形成した後、さらにその上に 2 層目の膜を塗布し、その熱収縮を利用して粒子同士の密着性を高めて接触抵抗を 下げ、その結果として表面抵抗を下げるという方法が採用されている。この場合も、製 造プロセスが複雑になるという問題がある。  [0007] Further, as another method for producing an antistatic film, there is a technique in which transparent oxide particles having low resistance are used, and conductivity is ensured by contacting the particles. In this case, to form a more dense packing, a transparent conductive film is formed on the substrate, and then a second layer of film is applied thereon, and the adhesion between the particles is improved by utilizing the heat shrinkage. The method of increasing the contact resistance to lower the contact resistance and consequently the surface resistance is reduced. Also in this case, there is a problem that the manufacturing process becomes complicated.
特許文献 1 :特開平 07-242842公報 (特許請求の範囲、実施例)  Patent Document 1: JP-A-07-242842 (Claims, Examples)
特許文献 2:特開 2003 - 249131号公報 (特許請求の範囲)  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-249131 (Claims)
特許文献 3:特開 2001 - 176339号公報(特許請求の範囲)  Patent Document 3: Japanese Patent Application Laid-Open No. 2001-176339 (Claims)
特許文献 4 :特開 2003 - 249126号公報(特許請求の範囲)  Patent Document 4: Japanese Patent Application Laid-Open No. 2003-249126 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、上記従来の方法では、酸化物微粒子だけを使用した場合は透過率 は高いが抵抗も高くなり、また、金属微粒子だけを使用した場合には抵抗は低くなる 力 透過率も低くなるという現象がみられる。さらに、酸化物微粒子と金属微粒子とを 用いる場合には、製造プロセスが複雑になるという問題がある。  [0008] However, in the above-mentioned conventional method, the transmittance is high but the resistance is high when only the oxide fine particles are used, and the resistance is low when only the metal fine particles are used. Phenomenon. Furthermore, when oxide fine particles and metal fine particles are used, there is a problem that the manufacturing process becomes complicated.
[0009] 本発明の課題は、上述の従来技術の問題点を解決することにあり、金属微粒子、 合金微粒子又はこれらの混合物と金属がドープされた酸化物とを含む分散液、この 分散液を用いて、低温焼成で、低抵抗かつ高透過率を有する透明導電膜を形成す る方法及びこの透明導電膜からなる透明電極を提供することにある。 課題を解決するための手段 [0009] An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a dispersion containing metal fine particles, alloy fine particles or a mixture thereof and a metal-doped oxide, An object of the present invention is to provide a method for forming a transparent conductive film having low resistance and high transmittance by low-temperature sintering and a transparent electrode comprising the transparent conductive film. Means for solving the problem
[0010] 本発明の透明導電膜形成用分散液は、インジウム、錫、アンチモン、アルミニウム 及び亜鉛から選ばれた少なくとも 1種の金属の微粒子、該金属から選ばれた 2種以 上の金属からなる合金の少なくとも 1種の微粒子、又は該金属微粒子及び合金微粒 子の混合物と、 Snドープ In O、 Sbドープ Sn〇、 Znドープ In O及び A1ドープ Zn〇  [0010] The dispersion for forming a transparent conductive film of the present invention comprises fine particles of at least one metal selected from indium, tin, antimony, aluminum and zinc, and two or more metals selected from the metals. At least one kind of alloy fine particles, or a mixture of the metal fine particles and alloy fine particles, with Sn-doped In O, Sb-doped Sn〇, Zn-doped In O, and A1-doped Zn〇
2 3 2 2 3  2 3 2 2 3
力 選ばれた少なくとも 1種の酸化物の微粒子とが有機溶媒中に混合、分散されてな ることを特徴とする。この分散液を用いることにより、低温焼成で、低抵抗かつ高透過 率を有する透明導電膜を形成することが可能となる。  At least one kind of oxide fine particles is mixed and dispersed in an organic solvent. By using this dispersion, a transparent conductive film having low resistance and high transmittance can be formed by low-temperature baking.
[0011] 本発明の透明導電膜の形成方法は、上記透明導電膜形成用分散液を基材に塗 布後、焼成することを特徴とする。  [0011] The method for forming a transparent conductive film of the present invention is characterized in that the dispersion for forming a transparent conductive film is applied to a substrate and then fired.
[0012] 上記焼成を真空雰囲気、不活性ガス雰囲気、還元性ガス雰囲気及び酸化性ガス 雰囲気から選ばれた雰囲気中で行うことを特徴とする。  The calcination is performed in an atmosphere selected from a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, and an oxidizing gas atmosphere.
[0013] 上記焼成を、最初に真空雰囲気、不活性ガス雰囲気及び還元性ガス雰囲気から 選ばれた金属や合金を酸化しない雰囲気中で行い、次いで酸化性ガス雰囲気中で 行うことを特徴とする。 [0013] The calcination is performed in an atmosphere in which a metal or alloy selected from a vacuum atmosphere, an inert gas atmosphere, and a reducing gas atmosphere is not oxidized, and then in an oxidizing gas atmosphere.
[0014] 上記酸化性ガス雰囲気中での焼成後、更に真空雰囲気、不活性雰囲気及び還元 性ガス雰囲気から選ばれた雰囲気中で焼成することを特徴とする。  After firing in the oxidizing gas atmosphere, firing is further performed in an atmosphere selected from a vacuum atmosphere, an inert atmosphere, and a reducing gas atmosphere.
[0015] 上記分散液を用い、上記の焼成プロセスを採用することにより、低温焼成で、低抵 抗かつ高透過率を有する透明導電膜が形成され得る。  [0015] By employing the above-described firing process using the above-described dispersion, a transparent conductive film having low resistance and high transmittance can be formed by low-temperature firing.
[0016] 上記不活性ガス雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1 種の不活性ガスからなる雰囲気であり、前記還元性ガス雰囲気が、水素、一酸化炭 素及び低級アルコールから選ばれた少なくとも 1種の還元性ガスからなる雰囲気であ り、前記酸化性ガス雰囲気が酸素元素含有ガスから選ばれた少なくとも 1種の酸化性 ガスからなる雰囲気であることを特徴とする。  [0016] The inert gas atmosphere is an atmosphere composed of at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen, and the reducing gas atmosphere is hydrogen, carbon monoxide, and a lower alcohol. Wherein the oxidizing gas atmosphere is an atmosphere comprising at least one oxidizing gas selected from oxygen-containing gases.
[0017] 上記真空雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1種の不 活性ガス、酸素元素含有ガスから選ばれた少なくとも 1種の酸化性ガス、水素、一酸 化炭素及び低級アルコールから選ばれた少なくとも 1種の還元性ガス、又は該不活 性ガスと酸化性ガス若しくは還元性ガスとからなる混合ガスを含んでレ、ることを特徴と する。 [0017] The vacuum atmosphere includes at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen, at least one oxidizing gas selected from an oxygen element-containing gas, hydrogen, carbon monoxide, At least one reducing gas selected from lower alcohols, or a mixed gas comprising the inert gas and an oxidizing gas or a reducing gas. To do.
[0018] 上記酸化性ガス雰囲気が、酸素、酸素含有ガス、水蒸気又は水蒸気含有ガスを含 んでいることを特徴とする。  [0018] It is characterized in that the oxidizing gas atmosphere contains oxygen, an oxygen-containing gas, water vapor or a water vapor-containing gas.
[0019] 上記金属微粒子及び合金微粒子が、その微粒子の周りに有機化合物が付着して なる微粒子であることを特徴とする。このような微粒子を用いることにより、各微粒子の 分散性が良好になり、均質な導電膜を得ることができる。 [0019] The metal fine particles and the alloy fine particles are characterized in that organic compounds are attached around the fine particles. By using such fine particles, the dispersibility of each fine particle is improved, and a uniform conductive film can be obtained.
[0020] また、本発明の透明電極は、上記透明導電膜形成方法により形成した透明導電膜 力 なることを特徴とする。 [0020] Further, the transparent electrode of the present invention is characterized in that the transparent electrode is formed by the transparent conductive film forming method.
発明の効果  The invention's effect
[0021] 本発明によれば、透明導電膜を、特定の金属微粒子、合金微粒子、又はこれらの 混合物と、特定の金属ドープ酸化物微粒子とを含む透明導電膜形成用分散液を用 いて、低温焼成により形成することが可能であり、得られた膜は、低抵抗かつ高透過 率を有するという効果を奏すると共に、この導電膜からなり、各種用途に用いられ得る 透明電極等を提供できるという効果を奏する。 発明を実施するための最良の形態  According to the present invention, a transparent conductive film is prepared by using a dispersion liquid for forming a transparent conductive film containing specific metal fine particles, alloy fine particles, or a mixture thereof, and specific metal-doped oxide fine particles, at a low temperature. The film can be formed by firing, and the obtained film has an effect of having a low resistance and a high transmittance, and can provide a transparent electrode or the like made of this conductive film and which can be used for various applications. To play. BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態を説明するが、「金属微粒子」という場合、特に断らな い限り、この微粒子には合金微粒子も含まれるものする。  Hereinafter, embodiments of the present invention will be described. In the case of “metal fine particles”, these fine particles include alloy fine particles unless otherwise specified.
[0023] 上記したように、透明導電膜形成用金属酸化物の各成分金属 (インジウム、錫、ァ ンチモン、アルミニウム及び亜鉛)の少なくとも 1種の金属の微粒子や、この成分金属 力 選ばれた 2種以上の金属からなる少なくとも 1種の合金の微粒子や、これらの金 属微粒子と合金微粒子との混合微粒子と、錫、アンチモン、アルミニウム又は亜鉛が ドープされた酸化物とを含有する分散液は、透明導電膜を形成するための有用な分 散液である。  As described above, fine particles of at least one metal of each of the component metals (indium, tin, antimony, aluminum, and zinc) of the metal oxide for forming the transparent conductive film, and a metal component of the component Dispersions containing fine particles of at least one alloy composed of at least one kind of metal, mixed fine particles of these metal fine particles and alloy fine particles, and an oxide doped with tin, antimony, aluminum or zinc are: It is a useful dispersion for forming a transparent conductive film.
[0024] 本発明で用いる金属酸化物には、例えば、 Snドープ In Oとして IT〇(In— Sn—〇)(  [0024] The metal oxide used in the present invention includes, for example, IT〇 (In-Sn-〇) (
2 3  twenty three
Snの範囲は、通常0≤311≤20^^%、好ましくは 3≤Sn≤ 10wt%)、 Sbドープ SnO  Sn range is usually 0≤311≤20 ^^%, preferably 3≤Sn≤10wt%), Sb-doped SnO
2 として ATO(Sn— Sb—〇)(Sbの範囲は、通常 0≤Sb≤ 20wt%、好ましくは 5≤Sb≤l 5wt%)、 Znドープ In Oとして IZ〇(In— Zn—〇)(Znの範囲は、通常 0≤Zn≤20wt  2 as ATO (Sn-Sb-〇) (Sb range is usually 0≤Sb≤20wt%, preferably 5≤Sb≤l 5wt%), Zn-doped In O as IZ〇 (In-Zn-〇) ( The range of Zn is usually 0≤Zn≤20wt
2 3  twenty three
%、好ましくは 5≤Zn≤15wt%)、 A1ドープ Zn〇として ΑΖ〇(Ζη_Α1— 0)(A1の範囲 は、通常 0≤Al≤20wt%、好ましくは 5≤Al≤15wt%)を挙げることができる。これら の ITO、 ΑΤΟ、 ΙΖ〇、 ΑΖΟは、 目的とする透明導電膜を形成するのに有用である。 %, Preferably 5≤Zn≤15wt%), A1 doped Zn〇 as ΑΖ〇 (Ζη_Α1-0) (range of A1 Is usually 0≤Al≤20wt%, preferably 5≤Al≤15wt%). These ITO, ΑΤΟ, ΙΖ〇, ΑΖΟ are useful for forming a target transparent conductive film.
[0025] 本発明の透明導電膜形成方法で使用できる基材は、透明基材であれば特に制限 されず、例えば、アクリル基材、ポリイミド基材、ポリエチレンテレフタレート(PET)フィ ルム等の低温焼成が必要な有機樹脂材料からなる基材であってもよレ、し、有機系力 ラーフィルターのような有機系の膜がついたガラス電極等であってもよい。有機樹脂 材料としては、上記の他に、例えば、セルロースアセテート類、ポリスチレン、ポリスチ レン類、ポリエーテル類、ポリイミド、エポキシ樹脂、フヱノキシ樹月旨、ポリカーボネート 、ポリフッ化ビニリデン、テフロン (登録商標)等を用いることもできる。これらを単独で 又は貼り合わせて基材として用いることができる。この基材の形状としては、特に制限 されず、例えば、平板、立体物、フィルム等であってもよレ、。なお、この被処理基板は 、分散液を塗布する前に、純水や超音波等を用いて洗浄することが好ましい。  [0025] The substrate that can be used in the method for forming a transparent conductive film of the present invention is not particularly limited as long as it is a transparent substrate. For example, a low-temperature baking such as an acrylic substrate, a polyimide substrate, or a polyethylene terephthalate (PET) film can be used. Or a glass electrode with an organic film such as an organic filter. As the organic resin material, in addition to the above, for example, cellulose acetates, polystyrene, polystyrenes, polyethers, polyimide, epoxy resin, phenoxy resin, polycarbonate, polyvinylidene fluoride, Teflon (registered trademark), etc. It can also be used. These can be used alone or bonded together as a substrate. The shape of the substrate is not particularly limited, and may be, for example, a flat plate, a three-dimensional object, a film, or the like. Note that it is preferable that the substrate to be processed be cleaned using pure water, ultrasonic waves, or the like before applying the dispersion liquid.
[0026] 本発明においては、基材への塗布方法は、特に制限されず、例えば、スピンコート 法、スプレー法、インクジェット法、浸漬法、ロールコート法、スクリーン印刷法、コンタ 外プリント法等を使用できる。塗布は、所望の膜厚を得ることができれば、一度塗り でも、重ね塗りでもよい。  In the present invention, the method of coating the substrate is not particularly limited, and examples thereof include a spin coating method, a spray method, an ink jet method, an immersion method, a roll coating method, a screen printing method, a non-contour printing method and the like. Can be used. The coating may be performed once or repeatedly, as long as a desired film thickness can be obtained.
[0027] 本発明の透明導電膜形成方法は、上記分散液を被処理基材上に公知の塗布方 法を用いて塗布した後、真空雰囲気、不活性ガス雰囲気、還元性ガス雰囲気及び酸 化性ガス雰囲気から選ばれた少なくとも二種の雰囲気中で、少なくとも二段階で焼成 処理 (ァニール処理)を行う。この場合、最初に酸化性ガス雰囲気中で焼成すると、 得られた膜の表面抵抗が高くなり、好ましくない。しかるに、真空雰囲気での焼成に おいては、酸化性ガスを導入することが好ましぐこの場合、金属や合金は酸化せず に、粒子表面に付着している有機物質だけを燃焼させるという効果がある。本発明で は、好ましくは第二段階において、酸化性ガス雰囲気中で焼成し、金属微粒子を酸 化させる。なお、最初の焼成前に、分散液を塗布した基材を所定の温度で乾燥する ことにより、分散媒等を除去してもよい。この分散媒の除去は、焼成プロセスで行って あよい。  [0027] In the method for forming a transparent conductive film according to the present invention, the dispersion liquid is applied on a substrate to be treated by a known application method, and then a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, and an oxidizing atmosphere are used. The baking treatment (annealing) is performed in at least two stages in at least two kinds of atmospheres selected from a neutral gas atmosphere. In this case, if firing is first performed in an oxidizing gas atmosphere, the surface resistance of the obtained film increases, which is not preferable. However, in firing in a vacuum atmosphere, it is preferable to introduce an oxidizing gas.In this case, the effect is that only the organic substances adhering to the particle surface are burned without oxidizing the metal or alloy. There is. In the present invention, preferably, in the second step, firing is performed in an oxidizing gas atmosphere to oxidize the metal fine particles. Before the first baking, the base material to which the dispersion is applied may be dried at a predetermined temperature to remove the dispersion medium and the like. This removal of the dispersion medium may be performed by a firing process.
[0028] 本発明によれば、上記焼成プロセスにおける焼成温度は、金属微粒子や合金微粒 子の融点以上から被処理基材の軟化点より低い温度までの間の耐熱許容温度であ ることが好ましい。この焼成温度は、例えば 300°C以下であることがより好ましい。この 温度範囲であれば、基材がダメージを受けることがなレ、。 According to the present invention, the sintering temperature in the above-described sintering process is controlled by setting the fine metal particles or fine alloy particles It is preferable that the heat-resistant allowable temperature be in a range from the melting point of the core to a temperature lower than the softening point of the substrate to be treated. The firing temperature is more preferably, for example, 300 ° C. or lower. Within this temperature range, the substrate will not be damaged.
[0029] このように、本発明においては、従来の場合よりも低温で緻密な膜が形成されるた め、低温で電気抵抗の小さな透明導電膜を製造することができると共に、酸化性ガス 雰囲気での焼成では、得られる膜の透過性の向上が達成され得る。また、焼成プロ セスにおいて、焼成時に UVランプ照射を行うと、時間短縮 ·低温化の面でさらに効 果がある。さらに、本発明における焼成では、公知の大気圧プラズマを用いる方法も 有効である。 As described above, in the present invention, since a dense film is formed at a lower temperature than in the conventional case, a transparent conductive film having a small electric resistance can be manufactured at a low temperature, and an oxidizing gas atmosphere can be produced. In the sintering, the permeability of the obtained membrane can be improved. In the sintering process, irradiation with a UV lamp during sintering is more effective in reducing time and lowering the temperature. Furthermore, in the firing in the present invention, a method using a known atmospheric pressure plasma is also effective.
[0030] 本発明によれば、塗布膜を真空雰囲気中で焼成する場合の真空状態は、単にボン プで引いただけでもよぐまたー且ポンプ引きした後、不活性ガス、還元性ガス、酸化 性ガスを導入してもよい。真空雰囲気中での焼成は、通常、 10— 5 103Pa程度で行 うことができる。 According to the present invention, when the coating film is baked in a vacuum atmosphere, the vacuum state may be determined by simply pulling with a pump or after drawing with an inert gas, a reducing gas, or an oxidizing gas. A neutral gas may be introduced. Firing in a vacuum atmosphere can usually line Ukoto at 10- 5 10 3 Pa about.
[0031] また、上記したように、焼成雰囲気において、不活性ガス雰囲気は、例えば、希ガス 、二酸化炭素及び窒素から選ばれた少なくとも 1種の不活性ガスからなる雰囲気であ り、この希ガスには、アルゴン、ネオン等が含まれ、還元性ガス雰囲気は、水素、一酸 化炭素及び低級アルコールから選ばれた少なくとも 1種の還元性ガスからなる雰囲 気であり、酸化性ガス雰囲気は、酸素元素含有ガス、例えば、酸素、酸素含有ガス、 水蒸気又は水蒸気含有ガス等から選ばれた少なくとも 1種の酸化性ガスからなる雰 囲気であり、この酸素含有ガスには大気(すなわち、空気)等が含まれる。  As described above, in the firing atmosphere, the inert gas atmosphere is, for example, an atmosphere composed of at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen. Contains argon, neon, etc., and the reducing gas atmosphere is an atmosphere composed of at least one reducing gas selected from hydrogen, carbon monoxide and lower alcohol, and the oxidizing gas atmosphere is And an atmosphere containing at least one oxidizing gas selected from oxygen element-containing gas, for example, oxygen, oxygen-containing gas, water vapor, and water vapor-containing gas. Etc. are included.
[0032] さらに、上記真空雰囲気には、不活性ガス、酸化性ガス、還元性ガス、又は不活性 ガスと酸化性ガス若しくは還元性ガスとからなる混合ガスが含まれていてもよい。  [0032] Furthermore, the vacuum atmosphere may contain an inert gas, an oxidizing gas, a reducing gas, or a mixed gas of an inert gas and an oxidizing gas or a reducing gas.
[0033] 上記還元性ガス雰囲気における低級アルコールは、炭素数が 1一 6の低級アルコ ール、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチルァ ルコール、へキシルアルコール等である。この還元性ガス雰囲気は、金属微粒子表 面の酸素のみを取り除くための焼成雰囲気であり、いわゆる酸化物を金属へ還元す るための雰囲気ではない。  [0033] The lower alcohol in the reducing gas atmosphere is a lower alcohol having 16 to 16 carbon atoms, for example, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, hexyl alcohol and the like. This reducing gas atmosphere is a firing atmosphere for removing only oxygen from the surface of the metal fine particles, and is not an atmosphere for reducing so-called oxides to metal.
[0034] 本発明で用いる金属微粒子及び合金微粒子の粒径は、 0. 5nm— 50nmであるこ とが好ましい。 0. 5nm未満であると、実質的な粒子の表面積が増え、その結果粒子 の周りに付着している有機物質が増加し、焼成時間が長くなるだけでなぐ熱収縮で クラックが発生しやすくなる。また、 50nmを超えると、有機溶媒に分散させた場合、 沈降が生じやすくなる。また、金属酸化物微粒子の一次粒径は、 20— 30nm程度で あることが好ましい。 [0034] The particle size of the metal fine particles and alloy fine particles used in the present invention is 0.5 nm to 50 nm. Is preferred. When the thickness is less than 0.5 nm, the substantial surface area of the particles increases, and as a result, the amount of organic substances attached around the particles increases. . If it exceeds 50 nm, sedimentation is likely to occur when dispersed in an organic solvent. The primary particle diameter of the metal oxide fine particles is preferably about 20 to 30 nm.
[0035] 本発明で用いる金属微粒子及び合金微粒子の作製方法は、特に制限されず、例 えば、ガス中蒸発法であっても、湿式還元法、有機金属化合物の高温雰囲気へのス プレーによる熱還元法等であってもよい。得られた金属微粒子及び合金微粒子の表 面は、金属状態であることが好ましいが、少なくともその一部が酸化された状態であ つてもよい。  [0035] The method for producing the metal fine particles and alloy fine particles used in the present invention is not particularly limited. For example, even in the case of the gas evaporation method, the wet reduction method or the heat treatment by spraying the organometallic compound to a high-temperature atmosphere is used. A reduction method or the like may be used. The surfaces of the obtained metal fine particles and alloy fine particles are preferably in a metal state, but may be in a state where at least a part thereof is oxidized.
[0036] 上記作製法のうちのガス中蒸発法は、ガス雰囲気中でかつ溶剤の蒸気の共存する 気相中で金属を蒸発させ、蒸発した金属を均一な微粒子に凝縮させて溶剤中に分 散し、分散液を得る方法である (例えば、特許第 2561537号公報)。このガス中蒸発 法により、粒径 50nm以下の粒度の揃った金属微粒子を製造することができる。この ような金属微粒子を原料として、各種用途に適したようにするためには、最終工程で 有機溶媒での置換を行えばよぐこの微粒子の分散安定性を増すためには、所定の 工程で分散剤を添加すればよい。これにより、金属微粒子が個々に独立して均一に 分散され、かつ、流動性のある状態が保持されるようになる。  [0036] In the gas evaporation method among the above-mentioned production methods, a metal is evaporated in a gas atmosphere and in a gas phase in which a vapor of a solvent coexists, and the evaporated metal is condensed into uniform fine particles and separated into a solvent. And a dispersion is obtained (for example, Japanese Patent No. 2561537). By this gas evaporation method, metal fine particles having a uniform particle size of 50 nm or less can be produced. In order to use such metal fine particles as a raw material and make them suitable for various uses, it is necessary to perform substitution in an organic solvent in the final step. What is necessary is just to add a dispersing agent. As a result, the metal fine particles are independently and uniformly dispersed, and a fluid state is maintained.
[0037] 上記有機溶媒としては、使用する金属微粒子の種類によって適宜選択すればよく 、例えば、次のようなものがある。すなわち、メタノール、エタノール、プロパノール、ィ ソプロピルアルコール、ブタノール、へキサノール、ヘプタノール、ォクタノール、デカ ノーノレ、シクロへキサノール、及びテルピネオール等のアルコール類、エチレングリコ ール、及びプロピレングリコール等のグリコール類、アセトン、メチルェチルケトン、及 びジェチルケトン等のケトン類、酢酸ェチル、酢酸ブチル、及び酢酸べンジル等のェ ステル類、メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類、 ジォキサン、及びテトラヒドロフラン等のエーテル類、 Ν,Ν—ジメチルホルムアミド等の 酸アミド類、ベンゼン、トルエン、キシレン、トリメチルベンゼン、及びドデシルベンゼン 等の芳香族炭化水素類、へキサン、ヘプタン、オクタン、ノナン、デカン、ゥンデカン、 ドデカン、トリデカン、テトラデカン、ペンタデカン、へキサデカン、ォクタデカン、ノナ デカン、エイコサン、及びトリメチルペンタン等の長鎖アルカン、シクロへキサン、シク 口ヘプタン、及びシクロオクタン等の環状アルカン等のような常温で液体のものを適 宜選択して使用すればよい。この有機溶媒中には水も含まれるものとする。 [0037] The organic solvent may be appropriately selected depending on the type of metal fine particles to be used, and examples thereof include the following. That is, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol, glycols such as ethylene glycol and propylene glycol, acetone , Methylethyl ketone, and ketones such as getyl ketone; esters such as ethyl acetate, butyl acetate, and benzyl acetate; ether alcohols such as methoxyethanol and ethoxyethanol; ethers such as dioxane and tetrahydrofuran. Acid amides such as, Ν-dimethylformamide; aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene and dodecylbenzene; hexane, heptane, octane, Down, decane, Undekan, Liquid at room temperature, such as long-chain alkanes such as dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, eicosane, and trimethylpentane; cycloalkanes; What is necessary is just to select and use them appropriately. It is assumed that water is also contained in this organic solvent.
[0038] また、ガス中蒸発法で調製した金属微粒子を分散させる有機溶媒としては、上記の ような溶媒が使用できる力 好ましくは、トルエン、キシレン、ベンゼン、テトラデカンの ような無極性溶媒、アセトン、ェチルケトンのようなケトン類、メタノーノレ、エタノール、 プロパノール、ブタノールのようなアルコール類等を使用できる。なお、インクジェット 用のインク液を調製する場合には、ヘッド材料 (表面コート材を含む)との相性 (例え ば、腐食、溶解等しないという物性を有すること)、ヘッド内での金属微粒子の凝集、 粒子詰まりを考慮して、適切な溶媒を選定する必要がある。  [0038] As the organic solvent in which the metal fine particles prepared by the gas evaporation method are dispersed, a solvent such as the above can be used. Preferably, a nonpolar solvent such as toluene, xylene, benzene, or tetradecane; acetone; Ketones such as ethyl ketone, alcohols such as methanol, ethanol, propanol, and butanol can be used. When preparing an ink solution for ink-jet printing, the ink must be compatible with the head material (including the surface coating material) (for example, it must have the property of not corroding, dissolving, etc.), and the aggregation of metal fine particles in the head. It is necessary to select an appropriate solvent in consideration of particle clogging.
[0039] 上記有機溶媒は、単独で用いても、混合溶媒の形で用いてもよい。例えば、長鎖ァ ルカンの混合物であるミネラルスピリットであってもよい。  [0039] The organic solvent may be used alone or in the form of a mixed solvent. For example, it may be a mineral spirit that is a mixture of long-chain alkane.
[0040] 上記溶媒の使用量は、使用する金属微粒子の種類、用途に応じて、塗布しやすく 、かつ所望の膜厚を得ることができるように適宜設定すればよい。例えば、金属微粒 子 1一 70wt%の濃度になるように、溶媒を使用すればよぐこの金属微粒子濃度は、 分散液製造後でも真空中加熱等により随時調整可能である。  [0040] The amount of the solvent to be used may be appropriately set according to the type and use of the metal fine particles to be used so that the solvent can be easily applied and a desired film thickness can be obtained. For example, if a solvent is used, the concentration of the metal fine particles can be adjusted as needed by heating in a vacuum or the like even after the dispersion liquid is manufactured so that the concentration of the metal fine particles is about 70% by weight.
[0041] また、上記したように、本発明で使用する金属微粒子、合金微粒子は、その微粒子 の周りに有機化合物が付着してなる微粒子であってもよい。ガス中蒸発法により作製 された金属微粒子分散液は、粒径 50nm以下の金属微粒子力 孤立状態で、アルキ ノレアミン、カルボン酸アミド及びアミノカルボン酸塩から選ばれた少なくとも 1種を分散 剤として、有機溶媒中に分散されたものである。この金属微粒子は、その周囲に分散 剤である有機化合物が付着した状態の粒子であり、この微粒子を用いると、分散が容 易になる。  Further, as described above, the fine metal particles and fine alloy particles used in the present invention may be fine particles having an organic compound attached around the fine particles. The metal fine particle dispersion prepared by the gas evaporation method is an organic metal fine particle having a particle diameter of 50 nm or less in an isolated state using at least one selected from alkynoleamine, carboxylic acid amide, and amino carboxylate as a dispersant. It is dispersed in a solvent. These metal fine particles are particles having an organic compound as a dispersant adhered to the periphery thereof, and the use of these fine particles facilitates dispersion.
[0042] 上記分散剤のアルキルァミンとしては、第 1一 3級ァミンであっても、モノアミン、ジァ ミン、トリアミンであっても良い。主鎖の炭素数が 4一 20であるアルキルァミンが好まし く、主鎖の炭素数が 8— 18であるアルキルァミンが安定性、ハンドリング性の点からは さらに好ましレ、。アルキルァミンの主鎖の炭素数力 より短かいと、ァミンの塩基性が 強過ぎて金属微粒子を腐食する傾向があり、最終的には金属微粒子を溶力してしま うという問題がある。また、アルキルァミンの主鎖の炭素数が 20よりも長いと、金属微 粒子分散液の濃度を高くしたときに、分散液の粘度が上昇してハンドリング性がやや 劣るようになり、また、焼成後の膜中に炭素が残留しやすくなつて、比抵抗値が上昇 するという問題がある。また、全ての級数のアルキルァミンが分散剤として有効に働く 力 第 1級のアルキルァミンが安定性、ハンドリング性の点からは好適に用いられる。 [0042] The alkylamine of the above dispersant may be a primary or tertiary amine, or may be a monoamine, a diamine, or a triamine. Alkylamines having main chain carbon atoms of 412 to 20 are preferable, and alkylamines having main chain carbon atoms of 8 to 18 are more preferable in terms of stability and handling. If the carbon number of the main chain of the alkylamine is shorter, the basicity of the amine It is too strong and tends to corrode the metal fine particles, and eventually there is a problem that the metal fine particles are dissolved. Also, if the carbon number of the main chain of the alkylamine is longer than 20, when the concentration of the metal fine particle dispersion is increased, the viscosity of the dispersion increases and the handling property becomes slightly inferior. There is a problem that the carbon tends to remain in the film, and the specific resistance increases. In addition, the ability of all series of alkylamines to work effectively as a dispersant. Primary alkylamines are preferably used in terms of stability and handling.
[0043] アルキルァミンの具体例としては、例えば、ブチルァミン、ォクチルァミン、ドデシノレ ァミン、へクサドデシルァミン、ォクタデシルァミン、ココアミン、タロウァミン、水素化タ ロウァミン、ォレイルァミン、ラウリルァミン、及びステアリルァミン等のような第 1級アミ ン、ジココアミン、ジ水素化タロウァミン、及びジステアリルアミン等のような第 2級アミ ン、並びにドデシルジメチルァミン、ジドデシルモノメチルァミン、テトラデシルジメチ ノレアミン、ォクタデシルジメチルァミン、ココジメチルァミン、ドデシルテトラデシルジメ チノレアミン、及びトリオクチルァミン等のような第 3級ァミンや、その他に、ナフタレンジ ァミン、ステアリルプロピレンジァミン、オタタメチレンジァミン、及びノナンジァミン等の ようなジァミンがある。 Specific examples of alkylamines include, for example, butylamine, octylamine, dodecinoleamine, hexadodecylamine, octadecylamine, cocoamine, taroamine, hydrogenated talamine, oleylamine, laurylamine, and stearylamine. Secondary amines such as primary amines, dicocoamine, dihydrogenated tallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethinoleamine, octadecyldimethyl. Tertiary amines such as dimethylamine, cocodimethylamine, dodecyltetradecyldimethinoleamine, and trioctylamine; and, in addition, naphthalenediamine, stearylpropylenediamine, otatamethylenediamine, and Nonandiamine There is a Jiamin like.
[0044] 上記カルボン酸アミドゃァミノカルボン酸塩の具体例としては、例えば、ステアリン 酸アミド、ノルミチン酸アミド、ラウリン酸ラウリルアミド、ォレイン酸アミド、ォレイン酸ジ エタノーノレアミド、ォレイン酸ラウリルアミド、ステアラニリド、ォレイルアミノエチルダリ シン等がある。  [0044] Specific examples of the carboxylic acid amide diaminocarboxylate include, for example, stearic acid amide, normitic acid amide, lauric acid lauric amide, oleic acid amide, oleic acid diethanolanolamide, oleic acid laurylamide, stearanilide, Oleylaminoethyldaricin and the like.
[0045] なお、本発明において用いる金属微粒子は、湿式還元(液相還元)法等の化学還 元法で得られたものでもよぐ分散液を製造する場合、金属微粒子を製造するための 原料として、金属含有有機化合物である還元用原料を使用することもできる。  The metal fine particles used in the present invention may be a dispersion obtained by a chemical reduction method such as a wet reduction (liquid phase reduction) method. As such, a reducing raw material that is a metal-containing organic compound may be used.
[0046] この化学還元法は、還元剤を用いる化学反応により金属微粒子分散液を調製する 方法であって、この還元法により製造した微粒子の場合、粒径 50nm以下に任意に 調整可能である。この還元法は、例えば、次のようにして行われる。原料に分散剤を 添加した状態で、所定の温度で原料を加熱分解させるカ 又は還元剤、例えば水素 や水素化ホウ素ナトリウム等を利用して、金属微粒子を発生させる。発生した金属微 粒子のほぼ全量を独立分散状態で回収する。この金属微粒子の粒径は約 50nm以 下である。この金属微粒子分散液を上記したような有機溶媒に置換すれば、所望の 金属微粒子分散液が得られる。得られた分散液は、真空中での加熱により濃縮して も、安定な分散状態を維持している。 The chemical reduction method is a method for preparing a metal fine particle dispersion by a chemical reaction using a reducing agent. In the case of fine particles produced by this reduction method, the particle diameter can be arbitrarily adjusted to 50 nm or less. This reduction method is performed, for example, as follows. In a state where the dispersant is added to the raw material, metal fine particles are generated by using a power or a reducing agent such as hydrogen or sodium borohydride which thermally decomposes the raw material at a predetermined temperature. Almost all the generated metal fine particles are recovered in an independent dispersion state. The particle size of these metal particles is about 50 nm or less. Below. By substituting the metal fine particle dispersion with the organic solvent as described above, a desired metal fine particle dispersion can be obtained. The obtained dispersion maintains a stable dispersion state even when concentrated by heating in vacuum.
[0047] 上記したような本発明の透明導電膜形成方法によって形成される透明導電膜は、 例えば、平面ディスプレー用透明電極、透明帯電防止膜、透明電磁波シールド膜、 面発熱体、透明電極アンテナ、太陽電池、電子ペーパー用電極、透明電極ガスセン サ一等に使用することができる。  The transparent conductive film formed by the method for forming a transparent conductive film of the present invention as described above includes, for example, a transparent electrode for a flat display, a transparent antistatic film, a transparent electromagnetic wave shielding film, a surface heating element, a transparent electrode antenna, It can be used for solar cells, electronic paper electrodes, transparent electrode gas sensors, etc.
[0048] 次いで、本発明で用いる金属微粒子の製造法の一例を説明する。  Next, an example of a method for producing metal fine particles used in the present invention will be described.
(製造例 1)  (Production Example 1)
[0049] ヘリウムガス圧力 0. 5torrの条件下で高周波誘導加熱を用いるガス中蒸発法によ り Snを 6wt%含む In-Sn合金微粒子を生成する際に、生成過程の In-Sn合金微粒 子にひ一テルピネオールとドデシルァミンとの 20 : 1 (容量比)の蒸気を接触させ、冷 却捕集して In-Sn合金微粒子を回収し、 a -テルビネオール溶媒中に独立した状態 で分散している平均粒子径 lOnmの In-Sn合金微粒子を 20重量%含有する分散液 を調製した。この分散液 (コロイド液) 1容量に対してアセトンを 5容量加え、攪拌した。 極性のアセトンの作用により分散液中の微粒子は沈降した。 2時間静置後、上澄みを 除去し、再び最初と同じ量のアセトンを加えて攪拌し、 2時間静置後、上澄みを除去 した。この沈降物から、残留溶媒を完全に除去し、平均粒子径 l Onmの In— Sn合金 微粒子を作製した。  [0049] When producing In-Sn alloy fine particles containing 6wt% of Sn by a gas evaporation method using high-frequency induction heating under a helium gas pressure of 0.5 torr, the In-Sn alloy fine particles in the generation process are produced. In contact with a 20: 1 (volume ratio) vapor of terpineol and dodecylamine, it is cooled and collected to collect the In-Sn alloy fine particles, which are dispersed independently in a-terbineol solvent. A dispersion liquid containing 20% by weight of In-Sn alloy fine particles having an average particle diameter of lOnm was prepared. Five volumes of acetone were added to one volume of this dispersion (colloidal solution) and stirred. Fine particles in the dispersion liquid settled out due to the action of polar acetone. After allowing to stand for 2 hours, the supernatant was removed, and the same amount of acetone as the first was added again, followed by stirring. After allowing to stand for 2 hours, the supernatant was removed. The residual solvent was completely removed from the sediment, and In—Sn alloy fine particles having an average particle size of l Onm were produced.
[0050] また、 In、 Sn、 Sb、 Al、 Znの各金属の微粒子、これらの金属力 なる In_Sn以外の 合金微粒子も上記製造法に従って同様に得られる。  [0050] Fine particles of each metal of In, Sn, Sb, Al, and Zn, and alloy fine particles other than In_Sn, which is a metal force of these metals, can be obtained in the same manner according to the above-described production method.
[0051] 以下、本発明の実施例及び比較例について説明する。 Hereinafter, examples and comparative examples of the present invention will be described.
実施例 1  Example 1
[0052] 金属微粒子として、製造例 1にてガス中蒸発により作製した In— Snの合金微粒子を 使用した。この粒子は、その平均粒径が lOnmであり、 X線回折により、酸化されてい ない合金微粒子であることを確認した。この微粒子中の Sn含有量は、蛍光 X線分析 により、 6wt%であることを確認した。この合金微粒子と組み合わせる酸化物微粒子 として、一次粒子が 20nmである ITO微粒子を使用した。この合金微粒子と ITO微粒 子とを、 5 : 95 (wt%)の比率で、全固形分重量で 30wt%の濃度になるように有機溶 媒 (トルエン)中に混合、分散させて透明導電膜形成用分散液を得た。 [0052] As the metal fine particles, In-Sn alloy fine particles produced by evaporation in gas in Production Example 1 were used. These particles had an average particle size of lOnm, and were confirmed to be non-oxidized alloy fine particles by X-ray diffraction. X-ray fluorescence analysis confirmed that the Sn content in the fine particles was 6 wt%. As the oxide fine particles to be combined with the alloy fine particles, ITO fine particles having a primary particle of 20 nm were used. These alloy fine particles and ITO fine particles Are mixed and dispersed in an organic solvent (toluene) at a ratio of 5:95 (wt%) to a total solid content of 30 wt% to obtain a dispersion for forming a transparent conductive film. Was.
[0053] 力べして得られた分散液をスピンコート法によりガラス基材上に塗布し、成膜を行つ た。得られた塗膜を 1 X 10— 3Paの減圧下において 230°C、 30分の条件で焼成(1st ァニール)を行った。次いで、大気雰囲気に戻し、空気中で 230°C、 lOminの焼成( 2ndァニール)を行った。得られた透明電導膜 (膜厚: 200nm)は、十分緻密化して おり、その表面抵抗は 60 Ω /口と低ぐ 550nmにおける透過率は 99. 4%と高かつ た。この場合に、大気雰囲気中での焼成後に、さらに還元性ガス雰囲気 (水素ガス雰 囲気及び一酸化炭素雰囲気)中で焼成(3rdァニール)したところ、得られた透明導 電膜の表面抵抗はさらに低くなつた。 [0053] The dispersion obtained by the force was applied onto a glass substrate by spin coating to form a film. The resulting coating film baked at a 1 X 10- 3 Pa 230 ° C , 30 minutes condition under a reduced pressure of (1st Aniru) was performed. Next, the atmosphere was returned to the atmosphere, and calcination (2nd anneal) at 230 ° C and 10 min was performed in air. The obtained transparent conductive film (thickness: 200 nm) was sufficiently densified, and its surface resistance was as low as 60 Ω / mouth, and the transmittance at 550 nm was as high as 99.4%. In this case, after firing in an air atmosphere, firing in a reducing gas atmosphere (hydrogen gas atmosphere and carbon monoxide atmosphere) (3rd anneal) further resulted in a further increase in the surface resistance of the obtained transparent conductive film. Got low.
[0054] 実施例 1で得られた透明導電膜は、ディスプレー機器の透明電極として有用であつ た。  [0054] The transparent conductive film obtained in Example 1 was useful as a transparent electrode of a display device.
(比較例 1)  (Comparative Example 1)
[0055] 実施例 1で得られた分散液から In - Sn合金微粒子を除レ、た ITO微粒子のみの分 散液を実施例 1の場合と同様の方法によりガラス基材上に塗布し、成膜を行った。次 いで、得られた塗膜を実施例 1と同様の条件で、 230°C、 30分間焼成した。得られた 透明導電膜は、透過率は 98%と高かった力 その表面抵抗は 7 Χ 103 Ω /口と非常 に高カゝつた。 [0055] In-Sn alloy fine particles were removed from the dispersion obtained in Example 1, and a dispersion of only ITO fine particles was applied on a glass substrate in the same manner as in Example 1 to form a dispersion. The membrane was made. Next, the obtained coating film was fired at 230 ° C. for 30 minutes under the same conditions as in Example 1. The resulting transparent conductive film, the transmittance was as high as 98% power its surface resistance 7 Χ 10 3 Ω / mouth and very Kokaka ivy.
[0056] 以上の実施例 1及び比較例 1の結果から、以下の点が推測される。  From the results of Example 1 and Comparative Example 1, the following points are presumed.
[0057] ΙΤΟ微粒子だけを使用した場合、すでに酸化状態にある原料を用いるので、得ら れた膜は十分な透過率を示すが、表面抵抗の面では満足できるものではなかった。 これは、低温焼成の場合、 ΙΤΟ微粒子同士の焼結が進まず、 ΙΤ〇微粒子の接触抵 抗が高ぐその結果、高抵抗の膜になると考えられる。このように、 ΙΤΟ微粒子のみの 分散液を用い、低温焼成を行った場合、透明電極としては有用ではなかった。 [0057] (4) When only the fine particles are used, since the raw material already in the oxidized state is used, the obtained film shows a sufficient transmittance, but is not satisfactory in terms of surface resistance. This is thought to be because in the case of low-temperature sintering, (1) the sintering of the fine particles does not proceed, and (2) the contact resistance of the fine particles increases, resulting in a high-resistance film. As described above, when low-temperature baking was performed using a dispersion liquid containing only fine particles, it was not useful as a transparent electrode.
[0058] 一方、 ΙΤΟ微粒子と金属微粒子とを併用した場合、粒径の小さな金属微粒子が IT O微粒子間の隙間を埋めるために、この金属微粒子が接着剤的な役割を果たして膜 を緻密化して、微粒子の接触抵抗の低減化を達成し、その結果、低抵抗の膜になる ものと推定される。 [0059] 上記金属微粒子と ITO微粒子との配合比率については、金属微粒子がバインダー として作用すればよいので、全微粒子中の金属微粒子濃度を一般に 1一 30wt%程 度、好ましくは 3— 30wt%程度にすることが好都合である。分散液のコスト面からは、 金属微粒子の濃度が少なレ、方が好ましレ、。 On the other hand, when the fine particles and the metal fine particles are used in combination, the metal fine particles having a small particle size fill gaps between the ITO fine particles, and the metal fine particles serve as an adhesive to densify the film. It is presumed that the contact resistance of the fine particles was reduced, resulting in a low-resistance film. Regarding the mixing ratio of the metal fine particles and the ITO fine particles, since the metal fine particles only need to act as a binder, the concentration of the metal fine particles in all the fine particles is generally about 110 to 30 wt%, preferably about 3 to 30 wt%. It is convenient to From the viewpoint of the cost of the dispersion, the concentration of the metal fine particles is lower, and the more preferable.
[0060] 次に、透明導電膜形成用金属酸化物の各成分金属の金属微粒子や酸化物微粒 子の種類及び組成比並びに焼成条件を変えて、実施例 1記載の方法に準じて焼成 を行い、得られた膜について表面抵抗及び透過率を測定した。その結果を表 1に示 す。表 1には、比較例もあわせて示す。  Next, calcination was performed according to the method described in Example 1 by changing the types and composition ratios of the metal fine particles and oxide fine particles of each component metal of the metal oxide for forming a transparent conductive film and the calcination conditions. The surface resistance and transmittance of the obtained film were measured. The results are shown in Table 1. Table 1 also shows comparative examples.
[0061] [表 1] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
In-Zn In-Zn
28 Zn6wt% IZO 20wt% 80wt% 230 1.00E-03 減圧のみ 30 230 大気圧 大気 15 230 大気圧 —酸化炭素 10 60 99 28 Zn6wt% IZO 20wt% 80wt% 230 1.00E-03 Decompression only 30 230 Atmospheric pressure Atmosphere 15 230 Atmospheric pressure — Carbon oxide 10 60 99
In-Zn In-Zn
29 Zn6wt% 120 20wl% 80wt% 230 大気圧 N2 15 230 大気圧 酸素 15 230 大気圧 メタノー 10 65 9829 Zn6wt% 120 20wl% 80wt% 230 Atmospheric pressure N 2 15 230 Atmospheric pressure Oxygen 15 230 Atmospheric pressure Methanol 10 65 98
In-Zn In-Zn
30 Zn6wt% IZO 20wt% 80wt% 230 大気圧 2 30 230 大気圧 大気 15 230 1.00E-03 大気 10 62 9630 Zn6wt% IZO 20wt% 80wt% 230 Atmospheric pressure 2 30 230 Atmospheric pressure Atmospheric 15 230 1.00E-03 Atmospheric 10 62 96
In-Zn In-Zn
31 Zn6wt JZO 20 t% 80wt% 230 8.2 减圧のみ 15 230 大気圧 酸素 15 230 1.00E-03 大気 10 60 97 31 Zn6wt JZO 20 t% 80wt% 230 8.2 Atmospheric pressure only 15 230 Atmospheric pressure Oxygen 15 230 1.00E-03 Atmosphere 10 60 97
In-Zn In-Zn
32 Zn6wt% IZO 20wt% 80wt% 230 8.2 減圧のみ 30 230 大気圧 大気 15 230 1.00E-03 —酸化炭素 10 50 96 32 Zn6wt% IZO 20wt% 80wt% 230 8.2 Decompression only 30 230 Atmospheric pressure Atmosphere 15 230 1.00E-03 —Carbon oxide 10 50 96
Sn-Sb Sn-Sb
33 Sb5wt% ATO 3wt 97wt 230 1.00E-03 减圧のみ 30 230 大気圧 酸素 15 4500 98 33 Sb5wt% ATO 3wt 97wt 230 1.00E-03 Atmospheric pressure only 30 230 Atmospheric pressure Oxygen 15 4500 98
Sn-Sb Sn-Sb
34 Sb5wt% ATO 3wt% 97wt% 230 1.00E-03 一酸化炭素 30 230 大気圧 大気 15 4000 97 34 Sb5wt% ATO 3wt% 97wt% 230 1.00E-03 Carbon monoxide 30 230 Atmospheric pressure Atmosphere 15 4000 97
Sn-Sb Sn-Sb
35 Sb5wt ATO 3wt% 97wt% 250 8.2 減圧のみ 30 230 大気圧 酸素 15 230 大気圧 N2、水素 10 2000 9735 Sb5wt ATO 3wt% 97wt% 250 8.2 Decompression only 30 230 Atmospheric pressure Oxygen 15 230 Atmospheric pressure N 2 , Hydrogen 10 2000 97
Sn-Sb Sn-Sb
36 Sb5wt% ATO 3wt% 97wt% 250 8.2 减圧のみ 30 230 大気圧 大気 15 230 大気圧 一酸化炭素 10 2500 97 36 Sb5wt% ATO 3wt% 97wt% 250 8.2 Atmospheric pressure only 30 230 Atmospheric pressure Atmosphere 15 230 Atmospheric pressure Carbon monoxide 10 2500 97
Sn-Sb Sn-Sb
37 Sb5wt% ATO 10wt% 90wt% 250 8.2 減圧のみ 30 230 大気圧 酸素 15 230 大気圧 メタノー/ 10 2800 98 37 Sb5wt% ATO 10wt% 90wt% 250 8.2 Decompression only 30 230 Atmospheric pressure Oxygen 15 230 Atmospheric pressure Methanol / 10 2800 98
Sn-Sb Sn-Sb
38 Sb5wt% ATO 10wt% 90wt% 250 大気圧 30 230 大気圧 大気 15 230 1.00E-03 大気 10 7000 99 38 Sb5wt% ATO 10wt% 90wt% 250 Atmospheric pressure 30 230 Atmospheric pressure Atmospheric 15 230 1.00E-03 Atmospheric 10 7000 99
Sn-Sb Sn-Sb
39 Sb5wt% ATO 10wt 90wt 250 大気圧 30 230 大気圧 酸素 15 230 1.00E-03 大気 10 6500 99 39 Sb5wt% ATO 10wt 90wt 250 Atmospheric pressure 30 230 Atmospheric pressure Oxygen 15 230 1.00E-03 Atmospheric 10 6500 99
Zn-Al Zn-Al
40 Al 5wt AZO 3wt 97wt% 250 1.00E-03 減圧のみ 30 230 大気圧 大気 15 360 97 40 Al 5wt AZO 3wt 97wt% 250 1.00E-03 Decompression only 30 230 Atmospheric pressure Atmosphere 15 360 97
Zn-Al Zn-Al
41 Al 5wt% AZO 3wt 97wt 250 1.00E-03 一酸化炭素 30 230 大気圧 酸素 15 420 96 41 Al 5wt% AZO 3wt 97wt 250 1.00E-03 Carbon monoxide 30 230 Atmospheric pressure Oxygen 15 420 96
Zn-Al Zn-Al
42 Al 5wt% AZO 3wt% 97wt% 250 8.2 減圧のみ 30 230 大気圧 大気 15 444 97 42 Al 5wt% AZO 3wt% 97wt% 250 8.2 Decompression only 30 230 Atmospheric pressure Atmosphere 15 444 97
Zn-Al Zn-Al
43 Al 5wt% AZO 10 t% 90wt% 250 8.2 減圧のみ 30 230 大気圧 酸素 15 504 98 43 Al 5wt% AZO 10 t% 90wt% 250 8.2 Decompression only 30 230 Atmospheric pressure Oxygen 15 504 98
Zn-Al Zn-Al
44 Ai 5wt% AZO 10wt% 90wt% 250 8.2 減圧のみ 30 230 大気圧 大気 15 576 99 44 Ai 5wt% AZO 10wt% 90wt% 250 8.2 Decompression only 30 230 Atmospheric pressure Atmosphere 15 576 99
Zn-Al Zn-Al
45 Al 5wt% AZO I0wt 90wt% 250 大気圧 30 230 大気圧 酸素 15 230 1.00E-03 大気 10 456 97 45 Al 5wt% AZO I0wt 90wt% 250 Atmospheric pressure 30 230 Atmospheric pressure Oxygen 15 230 1.00E-03 Atmosphere 10 456 97
Zn-Al Zn-Al
46 Al 5wt% AZO 10wt 90wt% 250 大気圧 ァ 30 230 大気圧 大気 15 230 1.00E-03 大気 10 492 98 46 Al 5wt% AZO 10wt 90wt% 250 Atmospheric pressure a 30 230 Atmospheric pressure Atmospheric 15 230 1.00E-03 Atmospheric 10 492 98
47 In ATO 5wt% 95wt% 250 1.00E-03 減圧のみ 15 250 大気圧 大気 15 4800 9847 In ATO 5wt% 95wt% 250 1.00E-03 Decompression only 15 250 Atmospheric pressure Atmosphere 15 4800 98
In-Zn In-Zn
48 Zn6wt% ITO 5wt% 95wt% 230 1.00E-03 减圧のみ 15 230 大気圧 酸素 15 90 98 48 Zn6wt% ITO 5wt% 95wt% 230 1.00E-03 Atmospheric pressure only 15 230 Atmospheric pressure Oxygen 15 90 98
Sn-Sb Sn-Sb
49 Sb5wt AZO 3wt% 97wt% 230 1.00E-03 減圧のみ 30 230 大気圧 酸素 15 1000 98 49 Sb5wt AZO 3wt% 97wt% 230 1.00E-03 Decompression only 30 230 Atmospheric pressure Oxygen 15 1000 98
Zn-Al Zn-Al
50 Al 5wt% ITO 3wt 97wt% 250 1.00E-03 滅圧のみ 30 230 大気圧 大気 15 120 97 比!  50 Al 5wt% ITO 3wt 97wt% 250 1.00E-03 Decompression only 30 230 Atmospheric pressure Atmosphere 15 120 97 ratio!
1 ITO 100wt% 230 1.00E-03 滅圧のみ 30 7000 98 1 ITO 100wt% 230 1.00E-03 Decompression only 30 7000 98
2 In ITO 20wt% 80wt% 230 1.00E-03 減圧のみ 30 60 702 In ITO 20wt% 80wt% 230 1.00E-03 Decompression only 30 60 70
3 In ITO 20 t 80wt% 230 大気圧 酸素 30 230 1.00E-03 减圧のみ 15 900 983 In ITO 20 t 80wt% 230 Atmospheric pressure Oxygen 30 230 1.00E-03 Atmospheric pressure only 15 900 98
In-Sn In-Sn
4 Sn6wt ITO 20wt 80wt% 230 1.00E-03 滅圧のみ 30 54 68 4 Sn6wt ITO 20wt 80wt% 230 1.00E-03 Decompression only 30 54 68
In-Sn In-Sn
5 Sn6wt% ITO 20wt% 80wt% 230 大気圧 大気 30 230 1.00E-03 減圧のみ 15 1200 9 5 Sn6wt% ITO 20wt% 80wt% 230 Atmospheric pressure Air 30 230 1.00E-03 Decompression only 15 1200 9
6 ATO 100wt% 250 l.OOE-03 減圧のみ 30 48000 96 ATO 100wt% 250 l.OOE-03 Decompression only 30 48000 9
Sn-Sb Sn-Sb
7 Sb5wt% ATO 10wt% 90wt% 250 l.OOE-03 减庄のみ 30 3240 7 7 Sb5wt% ATO 10wt% 90wt% 250 l.OOE-03 减 sho only 30 3240 7
Sn-Sb Sn-Sb
8 Sb5wt% ATO 10wt% 90wt% 250 大気圧 大気 30 250 1.00E-03 減圧のみ 15 36600 9 8 Sb5wt% ATO 10wt% 90wt% 250 Atmospheric pressure Atmosphere 30 250 1.00E-03 Decompression only 15 36 600 9
9 AZO 100wt 250 l.OOE-03 減圧のみ 30 4570 99 AZO 100wt 250 l.OOE-03 Decompression only 30 4570 9
Zn-Al Zn-Al
10 Al 5wt% AZO 10wt% 90wt 250 大気圧 大気 30 250 1.00E-03 減圧のみ 15 2568 9 10 Al 5wt% AZO 10wt% 90wt 250 Atmospheric pressure Atmosphere 30 250 1.00E-03 Decompression only 15 2568 9
1記載の実施例及び比較例のデータを解析すれば、 以下の通りである。 Analysis of the data of the examples and comparative examples described in 1 shows the following.
実施例 2〜4では I n微粒子と I T〇微粒子とを、 実施例 5〜18では I n_Sn合 金微粒 In Examples 2 to 4, In fine particles and I T〇 fine particles were used, and in Examples 5 to 18, In_Sn alloy fine particles.
差替え用紙(規則 26) 子(Sn : 6wt%)と ITO微粒子とを用いた。得られた膜において、 Snを添加しないもの は Snを添加したものに比べ高い抵抗値を示した力 透過率はほぼ同等であった。 Replacement form (Rule 26) (Sn: 6 wt%) and ITO fine particles were used. In the obtained films, those without the addition of Sn exhibited a higher resistance value than those with the addition of Sn, and the force transmittance was almost the same.
[0063] 実施例 19一 32では In - Zn合金微粒子(Zn: 6wt%)と IZO微粒子を使用した。得 られた膜において、抵抗値は In— Sn合金微粒子 ZITO微粒子を用いた場合と同程 度力、若干高めの値を示し、透過率はこれらの場合とほぼ同程度であった。 In Examples 19-32, In—Zn alloy fine particles (Zn: 6 wt%) and IZO fine particles were used. In the obtained film, the resistance value was almost the same as that in the case of using the In—Sn alloy fine particles and the ZITO fine particles, and the value was slightly higher, and the transmittance was almost the same as in these cases.
[0064] 実施例33—39では311_31)合金微粒子(3
Figure imgf000019_0001
と ΑΤ〇微粒子とを用いた。
In Examples 33-39, 311_31) alloy fine particles (3
Figure imgf000019_0001
And ΑΤ〇 fine particles.
得られた膜にぉレ、て、抵抗値は In微粒子又は In-Sn合金微粒子 ΖΙΤΟ微粒子を用 レ、た場合や、 In— Zn合金微粒子 ΖΙΖΟ微粒子を用いた場合と比べて高めの値を示 したが、透過率はこれらの場合とほぼ同程度であった。この膜は、熱的安定性、化学 的安定性に優れた膜であった。また、この膜をさらに 600°Cで焼成した後も抵抗値の 変化は見られなかった。  In the obtained film, the resistance value is higher than when using In fine particles or In-Sn alloy fine particles ΖΙΤΟ fine particles, or when using In-Zn alloy fine particles ΖΙΖΟ fine particles. However, the transmittance was almost the same as in these cases. This film was excellent in thermal stability and chemical stability. No change in resistance was observed even after baking this film at 600 ° C.
[0065] 実施例 40— 46では Zn— A1合金微粒子(A1: 5wt%)と AZ〇微粒子とを用いた。得 られた膜において、抵抗値は Sn— Sb微粒子/ ATO微粒子を用いた場合より低ぐ I n— Sn微粒子 /ITO微粒子や In— Zn微粒子 /IZO微粒子を用いた場合よりも高レヽ 値を示した力 S、透過率はこれらの場合とほぼ同程度であった。 In Examples 40-46, Zn—A1 alloy fine particles (A1: 5 wt%) and AZ〇 fine particles were used. In the obtained film, the resistance value is lower than when using Sn—Sb fine particles / ATO fine particles, and higher than when using In—Sn fine particles / ITO fine particles or In—Zn fine particles / IZO fine particles. The force S and the transmittance were almost the same as in these cases.
[0066] 以上の実施例では、金属微粒子の金属と、母粒子としての金属酸化物の構成金属 とが同じである組み合わせについて考察した力 母粒子の構成金属と金属微粒子の 金属とが異なるものである例を実施例 47— 50に示す。 [0066] In the above example, the metal constituting the metal fine particles and the metal constituting the metal oxide as the base particles were considered. An example is shown in Examples 47-50.
[0067] 実施例 47では In微粒子と ATO微粒子とを用いた。得られた膜において、抵抗値 及び透過率は、 Sn - Sb微粒子/ ATO微粒子を用いた場合とほぼ同程度であった。 [0067] In Example 47, In fine particles and ATO fine particles were used. In the obtained film, the resistance value and the transmittance were almost the same as those when the Sn—Sb fine particles / ATO fine particles were used.
[0068] 実施例 48では In— Zn微粒子(Zn: 6wt%)と ITO微粒子とを用いた。得られた膜に おいて、抵抗値及び透過率は、 In— Sn微粒子 ZITO微粒子とほぼ同程度であった。 In Example 48, In—Zn fine particles (Zn: 6 wt%) and ITO fine particles were used. In the obtained film, the resistance value and the transmittance were almost the same as those of the In—Sn fine particles and the ZITO fine particles.
[0069] 実施例 49では Sn— Sb微粒子(Sb: 5wt%)と AZ〇微粒子とを用いた。得られた膜 において、抵抗値は Zn— A1微粒子 ZAZO微粒子を用いた場合より高い値を示し、 透過率はほぼ同程度であった。 In Example 49, Sn—Sb fine particles (Sb: 5 wt%) and AZ〇 fine particles were used. In the obtained film, the resistance value was higher than that when the Zn-A1 fine particles and the ZAZO fine particles were used, and the transmittance was almost the same.
[0070] 実施例 50では Zn— A1微粒子 (A1: 5wt%)と ITO微粒子とを用いた。得られた膜に おいて、抵抗値は In— Sn微粒子/ ITO微粒子とを用いた場合より若干低い値を示し たが、透過率はほぼ同程度であった。 [0071] 上記膜は全て、エッチング特性に優れていた力 特に In— Zn微粒子と酸化物微粒 子とを用いて得られた膜は、 In微粒子、 In— Sn微粒子又は Sn— Sb微粒子と酸化物 微粒子とを用いて得られた膜と比べて、エッチング特性に優れていた。このこと力ら、 In-Zn微粒子と酸化物微粒子とからなる系を用いて得られた膜は、加工性に優れた 膜であることが分かる。 In Example 50, Zn—A1 fine particles (A1: 5 wt%) and ITO fine particles were used. In the obtained film, the resistance value was slightly lower than that in the case of using the In—Sn fine particles / ITO fine particles, but the transmittance was almost the same. [0071] All of the above films had excellent etching characteristics. In particular, films obtained using In-Zn fine particles and oxide fine particles were composed of In fine particles, In-Sn fine particles or Sn-Sb fine particles and oxides. The etching characteristics were superior to the film obtained using the fine particles. From these facts, it can be seen that the film obtained using the system composed of the In-Zn fine particles and the oxide fine particles is a film excellent in workability.
[0072] 上記実施例から明らかなように、各種の金属微粒子と金属酸化物母粒子との混合 材料を出発材料として焼成方法を検討した結果、所定の表面抵抗及び透過率を有 する種々の透明導電膜が形成できることが分かった。  As is clear from the above examples, as a result of examining the firing method using a mixed material of various metal fine particles and metal oxide base particles as a starting material, it was found that various transparent materials having a predetermined surface resistance and transmittance were obtained. It was found that a conductive film could be formed.
[0073] 比較例 1一 10では、酸化物(IT〇、 ΑΤ〇及び ΑΖΟ)微粒子のみを用いた場合、金 属微粒子と酸化物(ΙΤΟ、 ΑΤΟ及び ΑΖ〇)微粒子とを用いた場合について、真空雰 囲気中でのみ焼成した時、及び最初に酸化性ガス雰囲気中で焼成した時の、得られ た膜の表面抵抗及び透過率を評価した。 ΙΤ〇微粒子、 ΑΤ〇微粒子又は ΑΖ〇微粒 子のみを用いた場合は、抵抗値が高ぐ導電膜として不具合であった。金属微粒子と 酸化物微粒子とを用いた場合は、真空雰囲気中でのみ焼成した時には透過率が低 すぎて透明導電膜として不具合であり、また、最初酸化性ガス雰囲気中(1stァニー ノレ)で、次いで真空雰囲気中(2ん dァニール)で焼成した時には抵抗値が高ぐ導電 膜として不具合であった。また、これらの比較例から、酸化性ガス雰囲気中での焼成 時間を長くすることにより透過特性は良好になるが、同時に膜中の酸化が進行してし まうために抵抗値は大幅に劣化することがわかった。  [0073] In Comparative Examples 1-110, when only oxide (IT〇, ΑΤ〇, and ΑΖΟ) fine particles were used, when metal fine particles and oxide (ΙΤΟ, ΑΤΟ, and ΑΖ〇) fine particles were used, The surface resistance and transmittance of the obtained film were evaluated when firing only in a vacuum atmosphere and first firing in an oxidizing gas atmosphere. When only ΙΤ〇 fine particles, ΑΤ〇 fine particles or ΑΖ〇 fine particles were used, there was a problem as a conductive film having a high resistance value. In the case of using metal fine particles and oxide fine particles, when fired only in a vacuum atmosphere, the transmittance is too low, which is a problem as a transparent conductive film. In addition, first, in an oxidizing gas atmosphere (1st annealing), Then, when it was fired in a vacuum atmosphere (2 d-anneal), it had a problem as a conductive film having a high resistance value. Also, from these comparative examples, the transmission characteristics are improved by increasing the baking time in an oxidizing gas atmosphere, but at the same time, the resistance value is significantly degraded due to the progress of oxidation in the film. I understand.
産業上の利用可能性  Industrial applicability
[0074] 本発明によれば、特定の分散液を用いて、低温焼成で、低抵抗かつ高透過率を有 する透明導電膜を形成することができるので、この透明導電膜形成方法及び得られ た膜は、例えば電気電子工業等の分野で、フラットパネルディスプレー等のディスプ レー機器やディスプレー表面の帯電及び電磁波シールド膜等に使用される透明電 導膜 (例えば、透明電極)の分野に適用できる。 According to the present invention, a transparent conductive film having low resistance and high transmittance can be formed by firing at a low temperature using a specific dispersion liquid. The film can be applied to the field of a transparent conductive film (for example, a transparent electrode) used for a display device such as a flat panel display, a charging of a display surface, and an electromagnetic wave shielding film in a field of, for example, an electric and electronic industry. .

Claims

請求の範囲 The scope of the claims
[1] インジウム、錫、アンチモン、アルミニウム及び亜鉛から選ばれた少なくとも 1種の金 属の微粒子、該金属から選ばれた 2種以上の金属からなる合金の少なくとも 1種の微 粒子、又は該金属微粒子及び合金微粒子の混合物と、 Snドープ In O 、 Sbドープ S  [1] Fine particles of at least one metal selected from indium, tin, antimony, aluminum and zinc, at least one fine particle of an alloy composed of two or more metals selected from the metals, or the metal A mixture of fine particles and alloy fine particles, Sn-doped In O, Sb-doped S
2 3  twenty three
n〇、 Znドープ In〇及び A1ドープ Zn〇から選ばれた少なくとも 1種の酸化物の微粒 Fine particles of at least one oxide selected from n〇, Zn-doped In〇 and A1-doped Zn〇
2 2 3 2 2 3
子とが有機溶媒中に混合、分散されてなることを特徴とする透明導電膜形成用分散 液。  A dispersion for forming a transparent conductive film, wherein the dispersion is mixed and dispersed in an organic solvent.
[2] 請求項 1記載の透明導電膜形成用分散液を基材に塗布後、焼成することを特徴と する透明導電膜の形成方法。  [2] A method for forming a transparent conductive film, which comprises applying the dispersion for forming a transparent conductive film according to claim 1 to a substrate, followed by baking.
[3] 前記焼成を真空雰囲気、不活性ガス雰囲気、還元性ガス雰囲気及び酸化性ガス 雰囲気から選ばれた雰囲気中で行うことを特徴とする請求項 2記載の透明導電膜の 形成方法。 3. The method for forming a transparent conductive film according to claim 2, wherein the firing is performed in an atmosphere selected from a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, and an oxidizing gas atmosphere.
[4] 前記焼成を、最初に真空雰囲気、不活性ガス雰囲気及び還元性ガス雰囲気から 選ばれた金属や合金を酸化しない雰囲気中で行い、次いで酸化性ガス雰囲気中で 行うことを特徴とする請求項 2又は 3記載の透明導電膜の形成方法。  [4] The calcination is performed first in an atmosphere in which a metal or alloy selected from a vacuum atmosphere, an inert gas atmosphere, and a reducing gas atmosphere is not oxidized, and then in an oxidizing gas atmosphere. Item 4. The method for forming a transparent conductive film according to Item 2 or 3.
[5] 前記酸化性ガス雰囲気中での焼成後、更に真空雰囲気、不活性雰囲気及び還元 性ガス雰囲気から選ばれた雰囲気中で焼成することを特徴とする請求項 3又は 4記 載の透明導電膜の形成方法。  5. The transparent conductive material according to claim 3, wherein after firing in the oxidizing gas atmosphere, firing is further performed in an atmosphere selected from a vacuum atmosphere, an inert atmosphere, and a reducing gas atmosphere. Method of forming a film.
[6] 前記不活性ガス雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1 種の不活性ガスからなる雰囲気であり、前記還元性ガス雰囲気が、水素、一酸化炭 素及び低級アルコールから選ばれた少なくとも 1種の還元性ガスからなる雰囲気であ り、前記酸化性ガス雰囲気が酸素元素含有ガスから選ばれた少なくとも 1種の酸化性 ガスからなる雰囲気であることを特徴とする請求項 3 5のいずれかに記載の透明導 電膜の形成方法。  [6] The inert gas atmosphere is an atmosphere composed of at least one inert gas selected from a rare gas, carbon dioxide and nitrogen, and the reducing gas atmosphere is hydrogen, carbon monoxide and lower alcohol. Wherein the oxidizing gas atmosphere is an atmosphere comprising at least one oxidizing gas selected from oxygen-containing gases. Item 36. The method for forming a transparent conductive film according to any one of Items 35 to 35.
[7] 前記真空雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1種の不 活性ガス、酸素元素含有ガスから選ばれた少なくとも 1種の酸化性ガス、水素、一酸 化炭素及び低級アルコールから選ばれた少なくとも 1種の還元性ガス、又は該不活 性ガスと酸化性ガス若しくは還元性ガスとからなる混合ガスを含んでレ、ることを特徴と する請求項 3— 5のいずれかに記載の透明導電膜の形成方法。 [7] The vacuum atmosphere includes at least one inert gas selected from a rare gas, carbon dioxide and nitrogen, at least one oxidizing gas selected from a gas containing an oxygen element, hydrogen, carbon monoxide and At least one reducing gas selected from lower alcohols, or a mixed gas comprising the inert gas and an oxidizing gas or a reducing gas. The method for forming a transparent conductive film according to any one of claims 3-5.
[8] 前記酸化性ガス雰囲気が、酸素、酸素含有ガス、水蒸気又は水蒸気含有ガスを含 んでいることを特徴とする請求項 3— 7のいずれかに記載の透明導電膜の形成方法 8. The method for forming a transparent conductive film according to claim 3, wherein the oxidizing gas atmosphere contains oxygen, an oxygen-containing gas, water vapor, or a water vapor-containing gas.
[9] 前記金属微粒子及び合金微粒子が、その微粒子の周りに有機化合物が付着して なる微粒子であることを特徴とする請求項 2 8のいずれかに記載の透明導電膜の 形成方法。 9. The method for forming a transparent conductive film according to claim 28, wherein the metal fine particles and the alloy fine particles are fine particles obtained by adhering an organic compound around the fine particles.
[10] 請求項 2— 9のいずれかに記載の方法により形成した透明導電膜からなることを特 徴とする透明電極。  [10] A transparent electrode comprising a transparent conductive film formed by the method according to any one of claims 2 to 9.
PCT/JP2005/003009 2004-02-24 2005-02-24 Dispersion liquid for forming transparent conductive film, method for forming transparent conductive film and transparent electrode WO2005081265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004047342A JP4814491B2 (en) 2004-02-24 2004-02-24 Method for forming transparent conductive film and transparent electrode
JP2004-047342 2004-02-24

Publications (1)

Publication Number Publication Date
WO2005081265A1 true WO2005081265A1 (en) 2005-09-01

Family

ID=34879471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003009 WO2005081265A1 (en) 2004-02-24 2005-02-24 Dispersion liquid for forming transparent conductive film, method for forming transparent conductive film and transparent electrode

Country Status (3)

Country Link
JP (1) JP4814491B2 (en)
TW (1) TW200535090A (en)
WO (1) WO2005081265A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182605A (en) * 2006-01-06 2007-07-19 Konica Minolta Holdings Inc Method for forming thin film, and thin film
TWI309050B (en) * 2006-04-03 2009-04-21 Ind Tech Res Inst Azo transparent conducting film with metallic nano particles and method of producing thereof
WO2008013238A1 (en) * 2006-07-28 2008-01-31 Ulvac, Inc. Method for forming transparent conductive film
JP2008182141A (en) * 2007-01-26 2008-08-07 Seiko Epson Corp Ultraviolet radiation detection sensor, method of manufacturing the same, method of detecting ultraviolet radiation, and solar battery
JP2008258050A (en) * 2007-04-06 2008-10-23 Ulvac Japan Ltd Application liquid for forming transparent conductive film, formation method of transparent conductive film, and transparent electrode
JP5222486B2 (en) * 2007-04-11 2013-06-26 株式会社アルバック Method for forming transparent conductive film
TWI490353B (en) * 2010-10-29 2015-07-01 Hon Hai Prec Ind Co Ltd Coated article and method for making the same
TWI491751B (en) * 2010-10-29 2015-07-11 鴻海精密工業股份有限公司 Coated article and method for making the same
CN103451618B (en) * 2013-08-15 2016-06-15 京东方科技集团股份有限公司 A kind of preparation method of transparent conductive oxide film layer
WO2016088882A1 (en) * 2014-12-05 2016-06-09 富士フイルム株式会社 Method for manufacturing metal oxide film, metal oxide film, thin-film transistor, method for manufacturing thin-film transistor, electronic device, and ultraviolet irradiation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPH06139822A (en) * 1992-10-23 1994-05-20 Asahi Glass Co Ltd Transparent conducting film, reflection-proof electrification preventing film, and their manufacture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234309A (en) * 1989-03-06 1990-09-17 Japan Synthetic Rubber Co Ltd Composition for conductive film formation
KR100472496B1 (en) * 1997-07-23 2005-05-16 삼성에스디아이 주식회사 Transparent conductive composition, transparent conductive layer formed therefrom and manufacturing method of the transparent conductive layer
JP4377003B2 (en) * 1999-07-23 2009-12-02 日本曹達株式会社 Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
JP4099911B2 (en) * 1999-10-07 2008-06-11 日立電線株式会社 Transparent conductive film forming substrate and forming method
JP4902048B2 (en) * 2001-01-11 2012-03-21 日揮触媒化成株式会社 Substrate with transparent conductive film and display device
JP2003249131A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Manufacturing method for transparent conductive film
JP4002469B2 (en) * 2002-05-21 2007-10-31 触媒化成工業株式会社 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPH06139822A (en) * 1992-10-23 1994-05-20 Asahi Glass Co Ltd Transparent conducting film, reflection-proof electrification preventing film, and their manufacture

Also Published As

Publication number Publication date
TWI364402B (en) 2012-05-21
JP4814491B2 (en) 2011-11-16
JP2005243249A (en) 2005-09-08
TW200535090A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
WO2005081265A1 (en) Dispersion liquid for forming transparent conductive film, method for forming transparent conductive film and transparent electrode
JP4807933B2 (en) Method for forming transparent conductive film and transparent electrode
Hwang et al. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode
EP1840244B1 (en) Method for forming metal thin film, and metal thin film
JP4677092B2 (en) Electrode forming method for flat panel display
KR100768341B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
US20090236567A1 (en) Silver particle powder and process for production thereof
US20100025639A1 (en) Silver particle composite powder and process production thereof
WO2011040521A1 (en) Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP2008297580A (en) Method for producing silver fine powder coated with organic substance and silver fine powder
JP2011236453A (en) Silver particulate and method for producing the same, conductive paste containing the silver particulates, conductive film, and electronic device
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
JP2017179551A (en) Nickel particle, conductive paste, internal electrode and laminate ceramic capacitor
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
JP2006009120A (en) Metal particulate-dispersed body
KR20150118624A (en) Manufacture method of basic ink containing carbon-nonbonding metal nanoparticles & metal nanoparticles particle-dispersed ink
JP2009278045A (en) Workpiece and method for producing the same
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP5005362B2 (en) Silver particle dispersion and method for producing the same
EP3519510A1 (en) Ink composition, method for forming a conductive member, and conductive device
KR100728910B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
KR100819904B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
JP2012079933A (en) Wiring material, manufacturing method of wiring, and nanoparticle dispersion
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
JP5991459B2 (en) Silver fine particles, production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase