200535090 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於一種形成透明導電膜用分散液,透明導 電膜之形成方法及透明電極,特別是包含金屬微粒子、合 金微粒子以及氧化物微粒子,可用於電子電氣工業等領域 之形成透明導電膜用分散液,使用該分散液之透明導電膜 之形成方法及該透明導電膜構成之透明電極。 【先前技術】 一般以液晶顯示器爲代表之平面顯示器的電極係使用 ITO、ΑΤΟ等氧化物構成的透明電極。該情況的製造方法 有蒸鍍法、離子鍍法、濺鍍法等,藉由這些方法將金屬氧 化物附著於玻璃基板上,形成透明電極。更一般地,現狀 是以灘鍍法形成作爲氧化物膜之IΤ 0膜。 而且,使用作爲帶電防止膜、電極·電路形成用膜之 透明導電膜的形成方法,已知有調製摻雜錫的氧化銦粉末 的分散液,塗佈該分散液於基板上,乾燥後燒成得到透明 導電膜的方法(例如參照專利文獻1 )。於該專利文獻1 所示的方法,在玻璃基板等的透明基板上直接形成氧化物 膜’所得透明電極膜爲了用於以液晶、電漿顯示器爲代表 之平面顯示器,在該透明基板上成膜後,必須於200〜900 °C (於實施例在40(TC下進行)燒成。然而,今後隨著大 型化以及成爲主流之壓克力基板上製造顯示器,由於對基 板熱的限制,如4 0 (TC高溫下的成膜技術,有基板無法承 200535090 (2) 受的問題。 作爲這些問題的解決方法,顯示器用透明電極的情 況,藉由例如使用金屬奈米粒子,塗佈、乾燥、燒成以製 造I TO膜、ΑΤΟ膜,已知可低價形成大面積的透明導電膜 (例如參照專利文獻2 )。 而且,已知使用 Ag超微粒子等的金屬超微粒子,於 透明塑膠薄片等的基材上在較低溫形成透明導電膜,可得 低電阻的膜(例如參照專利文獻3 )。如該專利文獻3所 示,藉由使用Ag,雖可低電阻化,但Ag超微粒子因離體 子吸收而著色,產生無法得到足夠透過率的問題。 而且,已知於基板上將透明導電性金屬膜以及透明導 電膜形成用金屬氧化物,以該順序交錯層合複數層,各層 或層合膜一起燒成成爲低電阻導電膜(例如參照專利文獻 4 )。於該情況,有製造過程變得複雜的問題。 再者,作爲帶電防止膜之其他製造方法,也有使用低 電阻的透明氧化物粒子,藉由接觸該粒子確保導電性之技 術。於該情況,爲達到更緻密的堆積,採用基材上形成透 明導電膜後,再於其上塗佈第2層的膜,利用其熱收縮, 提高粒子彼此的密合性,降低接觸電阻,其結果可降低表 面電阻之方法。於該情況,有製造過程變得複雜的問題。 【專利文獻1】日本公開專利特開平〇 7 - 2 4 2 8 4 2號公 報(專利請求範圍、實施例) 【專利文獻2】日本公開專利特開2 003 -249 1 3 1號公 報(專利請求範圍) -6 - 200535090 (3) 【專利文獻3】日本公開專利特開"ο卜1 763 3 9號公 報(專利請求範圍) 【專利文獻4】日本公開專利特開2 〇 〇 3 _ 2 4 9〗2 6號公 報(專利請求範圍) 【發明內容】 〔發明所欲解決之課題〕 但是’於上述傳統的方法,發現只使用氧化物微粒子 的情況透過率雖筒電阻也變高,又只使用金屬微粒子的情 況電阻雖變低透過率也變低的現象。再者,使用氧化物微 粒子以及金屬微粒子的情況,有製造過程變得複雜的問 題。 本發明的課題係解決上述傳統技術的問題點,提供包 含金屬微粒子、合金微粒子、或這些的混合物以及摻雜金 屬的氧化物之分散液,使用該分散液於低溫燒成,形成具 低電阻且高透過率之透明導電膜之方法以及該透明導電膜 構成之透明電極。 〔解決課題之手段〕 本發明的透明導電膜形成用分散液,其特徵爲:選自 銦、錫、銻、鋁以及鋅所成群的1種金屬微粒子’選自該 金屬2種以上金屬構成的合金之至少1種微粒子’或者該 金屬微粒子以及合金微粒子的混合物’以及選自摻雜Sn 之I η 2 Ο 3、摻雜s b之S η Ο 2、摻雜Ζ η之I η 2 〇 3以及摻雜A 1 -7- 200535090 (4) 之ZnO所成群之至少1種氧化物微粒子,混合、分散於有 機溶劑中。藉由使用該分散液,於低溫燒成,可形成具低 電阻且高透過率之透明導電膜。 本發明的透明導電膜的形成方法,其特徵爲:將上述 透明導電膜形成用分散液塗佈於基材上之後燒成。 上述燒成係選自真空環境、惰性氣體環境、還原性氣 體環境以及氧化性氣體環境所成群之環境中進行。 上述燒成係最初在選自真空環境、惰性氣體環境以及 還原性氣體環境所成群之金屬、合金不氧化的環境中進 行,然後於氧化性氣體環境中進行。 於上述氧化性氣體環境中燒成後,再於選自真空環 境、惰性氣體環境、還原性氣體環境之環境中進行燒成。 藉由使用上述分散液、採用上述燒成步驟,於低溫燒 成,可形成具低電阻且高透過率之透明導電膜。 上述惰性氣體環境係至少1種選自稀有氣體、二氧化 碳以及氮氣所成群之惰性氣體構成之環境,上述還原性氣 體環境係至少I種選自氫氣、一氧化碳以及低級醇所成群 之還原性氣體構成之環境’上述氧化性氣體環境係至少1 種選自含氧元素氣體所成群之氧化性氣體構成之環境。 上述真空環境’係包含至少1種選自稀有氣體、二氧 化碳以及氮氣所成群之惰性氣體、至少1種選自含氧元素 氣體所成群之氧化性氣體、至少1種選自氫氣、一氧化碳 以及低級醇所成群之還原性氣體、或該惰性氣體以及氧化 性氣體或還原性氣體構成之混合氣體。 -8- 200535090 (5) 上述氧化性氣體環境,其特徵包含:氧氣、含氧氣 體、水蒸氣或含水蒸氣氣體。 上述金屬微粒子以及合金微粒子係有機化合物附著於 微粒子周圍之微粒子。 而且,本發明的透明電極係藉由上述透明導電膜的形 成方法,由形成之透明導電膜構成。 〔發明的效果〕 根據本發明,藉由使用包含特定的微粒子、合金微粒 子或這些的混合物以及摻雜特定金屬的氧化物微粒子之透 明導電膜形成用分散液,於低溫燒成,可形成透明導電 膜’所得膜可具有低電阻以及高透過率的效果,而且可提 供由該導電膜構成、可用於各種用途之透明電極等之效 果。 【實施方式】 以下,說明本發明的實施態樣,所謂「金屬微粒子」 的情況,無特別限制,該微粒子也包含合金微粒子。 如上述包含透明導電膜形成用金屬氧化物的各金屬成 分(銦、錫、銻、鋁以及鋅)的至少1種金屬微粒子、選 自該成分金屬2種以上的金屬構成之至少1種合金微粒 子 '這些金屬微粒子以及合金微粒子之混合微粒子、以及 ί參雜錫、銻、鋁或鋅之氧化物的分散液,係用以形成透明 導電膜有用之分散液。 -9- 200535090 (6) 用於本發明的金屬氧化物,可例如I Τ Ο (I η _ s η - Ο ) ( s η 的範圍通常爲0SSnS20重量%、較佳爲3SSnS10重量 %)作爲摻雜Sn之ln203、ATO(Sn-Sb-0)(Sb的範圍通常 • 爲〇^Sb^20重量%、較佳爲5SSbS15重量%)作爲摻 雜 Sb 之 Sn〇2、IZO(In-Zn-O) (Zn 的範圍通常爲 〇$Zn$ 20重量%、較佳爲5SZngl5重量%)作爲摻雜Zn之 ln203、AZO(Zn-Al-0)(Al 的範圍通常爲 0SAIS20 重量 φ %、較佳爲5 S A1 S 1 5重量% )作爲摻雜A1之ZnO,這些 ITO、ΑΤΟ、IZO、AZO在以形成透明導電膜爲目的上有 用。 本發明的透明導電膜形成方法可使用的基材,只要是 透明基材無特別限制,例如壓克力基材、聚醯亞胺基材、 聚對苯二甲酸乙二酯(ΡΕΤ )薄片等必須以低溫燒成之有 機樹脂材料構成的基材,如有機系彩色濾光片之附有有機 系膜之玻璃電極等。作爲有機樹脂材料,除上述外可使用 • 例如乙醯纖維素類、聚苯乙烯、聚苯乙烯類、聚醚類、聚 醯亞胺、環氧樹脂、酚氧樹脂、聚碳酸酯、聚氟化乙烯、 •鐵弗龍(登記商標)等。作爲該基材的形狀,無特別限 - 制’例如平板、立體物、薄片等。該被處理的基板在塗佈 分散液前,使用純水、超音波等洗淨較佳。 於本發明,對基板的塗佈方法,無特別限制,例如可 使用旋轉塗佈法、噴塗法 '噴墨法、浸漬法、滾輪塗佈 法、網版印刷法、接觸印刷法等。塗佈係只要可得所期望 的膜厚,一次塗佈、重複塗佈皆可。 200535090 (7) 本發明的透明導電膜形成方法,使用習知的塗佈方法 塗佈上述分散液於被處理基材上後,在選自真空環境、惰 性氣體環境、還原性氣體環境以及氧化性氣體環境所成群 .至少2種的環境中,進行至少2階段燒成處理(退火處 理)。於該情況,最初在氧化性氣體環境中燒成時,所得 膜的表面電阻變高,故不合適。然而,於真空環境中燒 成,導入氧化性氣體較佳,於該情況金屬、合金並不氧 • 化’具有只將附著於粒子表面的有機物質燃燒的效果。於 本發明,較佳爲第二階段在氧化性氣體環境中燒成,氧化 金屬微粒子。又,最初的燒成前,也可藉由將塗佈了分散 液的基材在既定溫度下乾燥,除去分散劑。該分散劑的去 除也可在燒成步驟進行。 根據本發明,上述燒成步驟的燒成溫度,在金屬微粒 子、合金微粒子的融點以上低於被處理基材的軟化點的溫 度爲止之間的耐熱容許溫度較佳。該燒成溫度例如在3 0 0 • °C以下更好。只要在該溫度範圍,基材不會受到損傷。 如此於本發明,因可在比傳統的情況低溫下形成緻密 的膜’可於低溫製造電阻低之透明導電膜,且在氧化性氣 體環境燒成,所得膜可達成透過性提高。而且,於燒成步 驟’燒成時進行U V燈照射,在縮短時間、低溫化方面更 具效果。再者,本發明的燒成,使用習知的大氣電漿的方 法也有效。 根據本發明,於真空環境中燒成塗佈膜的情況,其真 空狀態,可只用幫浦,或者也可一旦啓動幫浦後導入惰性 -11 - 200535090 (8) 氣體、還原性氣體、氧化性氣體。真空環境中的燒成’通 常可在1(Γ5〜103Pa程度下進行。 而且,如上述燒成環境’惰性氣體環境可例如至少1 種選自稀有氣體、二氧化碳以及氮氣所成群之惰性氣體構 成之環境,該稀有氣體包含氬、氖等,還原性氣體環境係 至少1種選自氫氣、一氧化碳以及低級醇所成群之還原性 氣體構成之環境,氧化性氣體環境係至少1種選自含氧元 g 素氣體例如氧氣、含氧氣體、水蒸氣、或含水蒸氣氣體等 所成群之氧化性氣體構成之環境,該含氧氣體包含大氣 (亦即空氣)等。 再者,上述真空環境也可包含惰性氣體、氧化性氣 體、還原性氣體、或惰性氣體與氧化性氣體或還原性氣體 構成的混合氣體。 在上述還原性氣體環境之低級醇係碳數1〜6的低級 醇,例如甲醇、乙醇、丙醇、丁醇、己醇等。該上述還原 φ 性氣體環境係爲了只除去金屬粒子表面的氧之燒成環境, 亦即將氧化物還原成金屬之環境。 本發明使用的金屬微粒子以及合金微粒子的粒徑,以 〇.5nm〜50nm較佳。若不到〇 · 5 n m,粒子實質的表面積增 加,其結果附著於粒子周圍的有機物質增加,不僅燒成時 間變長,容易產生熱收縮造成之龜裂。又若超過50nm, 分散於有機溶劑時,容易產生沈澱。而且,金屬氧化物微 粒子的初級粒徑爲20〜30 nm的程度較佳。 本發明使用的金屬微粒子以及合金微粒子的製作方 - 12 - 200535090 (9) 法’無特別限制,例如可以爲氣體中蒸發法,也 還原法 '有機金屬化合物朝高溫環境的噴塗之熱 上述製作法中的氣體中蒸發法,係在氣體環 劑蒸氣共存的氣相中使金屬蒸發,使蒸發的金屬 勻的微粒子分散於溶劑中,得到分散液的方法( 專利第2 5 6 1 5 3 7號公報)。藉由該氣體中蒸發法 全部粒徑5 Onm以下粒度的金屬微粒子。如此的 子作爲原料,爲了適用於各種用途,於最後步驟 溶劑進行取代,爲增加該微粒子的分散安定性, 定的步驟添加分散劑。藉此金屬微粒子各個單獨 且保持具流動性的狀態。 作爲上述有機溶劑,只要根據使用的金屬微 類適當選擇即可,例如下述。亦即,可適當使用 醇、丙醇、異丙醇、丁醇、己醇、庚醇、辛醇、 己醇、以及松脂醇等醇類、乙二醇、丙二醇等二 酮、甲乙酮、以及二乙酮等酮類、乙酸乙酯、乙 以及乙酸苄酯等酯類、甲氧基乙醇以及乙氧基乙 類、二氧陸圜以及四氫呋喃等醚類、N,N-二甲基 的醯胺類、苯、甲苯、二甲苯、三甲基苯以及十 等芳香族碳化氫類、己烷、庚烷、辛烷、壬烷、 一烷、十二烷、十三烷、十四烷、十五烷、十六 院、十九院、一十院以及二甲基戊院等長鍵院、 環庚烷以及環辛烷等環烷等之常溫液體的物質。 溶劑中也可包含水。 可爲溼式 速原法° 境中且溶 凝縮成均 例如曰本 ,可製造 金屬微粒 可以有機 可以在既 均勻分散 粒子的種 甲醇、乙 癸醇、環 醇類、丙 酸丁酯、 醇等醚醇 甲醯胺等 —垸基苯 癸烷、十 烷、十八 環己烷、 於該有機 -13- (10) (10)200535090 而且,於氣體中蒸發法作爲分散調製的金屬微粒子之 有機溶劑,可使用如上述之溶劑,較佳爲使用如甲苯、二 甲苯、苯、十四烷之無極性溶劑、如丙酮、乙酮之酮類、 如甲醇、乙醇、丙醇、丁醇之醇類等。而且,在調製噴墨 用的墨水液的情況,需考慮與噴墨頭材料(包含表面的包 覆材料)的相容性(例如具有所謂不腐蝕、溶解等物 性)、噴墨頭內的金屬微粒子的凝集、粒子堵塞,必須選 擇適當的溶劑。 · 上述有機溶劑,可單獨使用,也可以使用混合溶劑的 形式。例如可以是長鏈院的混合物之硫油精(m i n e r a 1 spirit ) o 上述溶劑的使用量,根據使用的金屬微粒子的種類、 用途,容易塗佈且可得期望的膜厚作適當設定。例如若使 用溶劑,可使金屬微粒子成爲1〜70重量%的濃度,該金屬 微粒子的濃度,即使在分散液製造後藉由真空中加熱等可 以隨時調整。 而且,如上述本發明使用的金屬微粒子、合金微粒 子,也可以是有機化合物附著在微粒子周圍之微粒子。藉 由氣體中蒸發法製作的金屬微粒子分散液,係粒徑50nm 以下的金屬微粒子’在孤立狀態’選自烷胺、羧醯胺以及 胺基羧酸鹽所成群的至少1種作爲分散劑’分散於有機溶 劑之物質。該金屬微粒子,係於其周圍有作爲分散劑之有 機化合物附著的狀態之粒子,若使用該微粒子,變得容易 分散。 -14 - 200535090 (11) 上述分散劑的烷胺可爲第1〜3級胺,也可爲一 胺、三胺。主鏈的碳數4〜20之烷胺較佳,主鏈 8〜1 8之烷胺從安定性、使用性的觀點更好。若烷胺 碳數比4短,胺的鹼性太強,有腐蝕金屬微粒子的 最後造成金屬微粒子溶解的問題。而且,若烷胺主 數比20長,金屬微粒子分散液的濃度高時,分散 上升,使用性變差,且燒成後的膜中容易殘留碳, 阻値升高的問題。而且,雖然全部級數的烷胺作爲 有效用,從安定性、使用性上適合使用第1級胺。 作爲烷胺的具體例,例如丁胺、辛胺、十二胺 胺、十八胺、椰油胺(cocamine )、牛脂胺( amine )、氫化牛脂胺、油胺、月桂胺、以及硬脂 第1級胺、二椰油基胺、二氫化牛脂胺、以及二硬 之第2級胺、以及如十二烷基二甲基胺、二(十二 單甲基胺、十四烷基二甲基胺、十八烷基二甲基胺 基二甲基胺、十二烷基十四烷基二甲基胺、以及三 之第3級胺、其他如萘二胺、硬脂基丙二胺、環辛 以及壬二胺等二胺。 作爲上述羧醯胺以及胺基羧酸鹽的具體例,例 酿胺、軟脂醯胺、月桂醯月桂胺、油醯胺、油醯 月女、油酿月桂胺、硬脂醯苯胺(s t e a r a n i I i d e )、油 基甘胺酸等。 而且,於本發明使用的金屬微粒子,可以溼 (液態還原)法等的化學還原法所得者,藉由該還 .胺、二 的碳數 :主鏈的 傾向, 鏈的碳 液黏度 有比電 分散劑 、十六 Tallow 胺等之 脂胺等 烷基) 、椰油 辛胺等 二胺、 如硬脂 二乙醇 胺基乙 式還原 原法製 -15· 200535090 (12) 造微粒子的情況,可以任意調整粒徑在5 Onm以下。該還 原法係例如由以下的方式進行。在分散劑添加於原料的狀 態,於既定溫度加熱分解原料,或利用如氫、氫化硼鈉等 .的還原劑,產生金屬微粒子。產生的金屬微粒子幾乎全部 在獨立狀態下收集。該金屬微粒子的粒徑約爲5 Onm以 下。該金屬微粒子分散液若以如上述的有機溶劑取代,可 得期望的金屬微粒子分散液。所得分散液即使藉由真空中 ϋ 加熱而濃縮,仍維持安定的分散狀態。 由如上述本發明的透明導電膜形成方法所形成的透明 導電膜,可用於例如平面顯示器用透明電極、透明帶電防 止膜、透明電磁波遮蔽膜、面發熱體、透明電極天線、太 陽電池、電子紙用電極、透明電極氣體感測器等。 然後,說明本發明使用的金屬微粒子的製造法的一個 例子。 (製造例1 ) 藉由在氦氣壓力 0.5托(torr)的條件下使用高頻誘 導加熱之氣體中蒸發法,生成包含Sn爲6重量%之In-Sn 合金微粒子時,使α-松脂醇以及十二胺20 : 1 (體積比) 的蒸氣接觸生成過程的In-Sn合金微粒子、冷卻取樣,收 集In-Sn合金微粒子,調製包含20重量%以獨立狀態分散 於α-松脂醇溶劑中平均粒徑l〇nm的In-Sn合金微粒子之 分散液。對該分散液(膠體液)1體積,添加5體積的丙 酮,然後攪拌。藉由丙酮的極性作用,沈澱分散液中的微 -16- 200535090 (13) 粒子。靜置2小時後,除去上層溶液。由該沈澱物完全去 除殘留溶劑,製作平均粒徑1 Onm的In-Sn合金微粒子。 此外,In、Sn、Sb、Al、Zn的各金屬微粒子、這些 金屬構成之In-Sn以外的合金微粒子也可由上述製造法同 樣得到。 以下,說明本發明的實施例以及比較例。 〔實施例1〕 使用製造例1藉由氣體中蒸發法製作的In-Sn合金微 粒子,作爲金屬微粒子。該粒子之平均粒徑爲lOiim,以 X射線繞射,確認爲沒有被氧化的合金微粒子。該微粒子 中Sn的含量以螢光X射線分析,確認爲6重量%。使用 初級粒子20nm的ITO微粒子,作爲與該合金微粒子組合 之氧化物微粒子。該合金微粒子以及氧化物微粒子係以 5 : 9 5 (重量% )的比例,使其成爲全部固體成分重量30 重量%的濃度,混合、分散於有機溶劑(甲苯)中,得到 透明導電膜形成用分散液。 將如此所得分散液以旋轉塗佈法塗佈於玻璃基材上, 進行成膜。所得塗膜於lxl(T3Pa減壓下23 0 °C、30分鐘的 條件下進行燒成(第一次退火)。然後,返回大氣環境, 於空氣中2 3 0 °C、1 〇分鐘進行燒成(第二次退火)。所得 透明導電膜(膜厚:2 0 0 n m )係十分緻密,其表面電阻爲 6 Ο Ω / □的低,5 5 0 n m的透過率爲9 9.4 %的高。於該情況, 在大氣環境中的燒成後,再於還原性氣體環境(氫氣環境 -17- 200535090 (14) 以及一氧化碳環境)中燒成(第三次退火),所得透明導 電膜的表面電阻變得更低。 實施例1所得透明導電膜,係有用於顯示器機器的透 明電極。 (比較例1 ) 從實施例1所得分散液除去In-Sn合金微粒子,只有 ITO微粒子之分散液,藉由與實施例1同樣的方法塗佈於 玻璃基材上,進行成膜。然後,所得塗膜,在與實施例1 同樣的條件下2 3 0 °C、3 0分鐘燒成。所得透明導電膜,透 過率雖有98 %高,其表面電阻爲7χ103Ω/□非常的高。 由以上實施例1以及比較例.1的結果,推測以下的觀 點。 只使用IΤ Ο微粒子的情況’因使用的原料在已氧化狀 態,所得膜雖顯示充分的透過率,在表面電阻方面無法滿 足。此因低溫燒成的情況,I Τ Ο微粒子彼此不繼續燒結, I TO微粒子的接觸電阻高,其結果造成高電阻的膜。如此 只使用ITO微粒子之分散液,進行低溫燒成的情況,無法 作爲透明電極。 另一方面,推測倂用ITO微粒子與金屬微粒子的情 況,因粒徑小的金屬微粒子埋入IT0微粒子間的間隙,該 金屬微粒子達到接著劑的角色,使膜緻密化,達成微粒子 接觸電阻的降低,其結果成爲低電阻的膜。 上述金屬微粒子與IT0微粒子的調配比例,因金屬微 -18- 200535090 (15) 粒子只要有接著劑的作用即可’全部微粒子中金屬微粒子 的濃度一般爲1〜30重量%的程度,較佳爲3〜30重量%的 程度。從分散液的成本面,金屬微粒子的濃度低者較佳。 然後,改變透明導電膜形成用金屬氧化物的各成分金 屬的金屬微粒子、氧化物微粒子的種類及組成比例’以及 燒成條件,根據實施例1所述的方法進行燒成’測定所得 膜之表面電阻以及透過率。其結果表示於表1。比較例也 表示於表1。200535090 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a dispersion for forming a transparent conductive film, a method for forming a transparent conductive film, and a transparent electrode, and particularly includes metal particles, alloy particles, and oxide particles. It can be used to form a dispersion liquid for forming transparent conductive films in the fields of electronic and electrical industries, a method for forming a transparent conductive film using the dispersion liquid, and a transparent electrode composed of the transparent conductive film. [Prior art] The electrodes of flat-panel displays typically represented by liquid crystal displays are transparent electrodes made of oxides such as ITO and ATTO. Manufacturing methods in this case include a vapor deposition method, an ion plating method, a sputtering method, and the like. Metal oxides are adhered to a glass substrate by these methods to form a transparent electrode. More generally, the current status is to form an ITO film as an oxide film by a beach plating method. Furthermore, using a method for forming a transparent conductive film as an antistatic film and a film for forming electrodes and circuits, a dispersion liquid of tin-doped indium oxide powder is known. The dispersion liquid is applied to a substrate, dried, and fired. A method of obtaining a transparent conductive film (for example, refer to Patent Document 1). In the method described in this patent document 1, an oxide film is formed directly on a transparent substrate such as a glass substrate. The obtained transparent electrode film is used to form a film on a transparent substrate for a flat display such as a liquid crystal display or a plasma display. After that, it must be fired at 200 ~ 900 ° C (at 40 (TC) in the examples. However, in the future, as the size and size of mainstream acrylic substrates become larger, displays will be manufactured. Due to thermal restrictions on substrates, such as 4 0 (The film-forming technology under high temperature of TC has the problem that the substrate cannot support 200535090 (2). As a solution to these problems, in the case of transparent electrodes for displays, for example, metal nano particles are used for coating and drying. And firing to produce I TO film and ATTO film, and it is known that a large-area transparent conductive film can be formed at low cost (for example, refer to Patent Document 2). Furthermore, it is known to use metal ultrafine particles such as Ag ultrafine particles for transparent plastic sheets. When a transparent conductive film is formed at a relatively low temperature on a substrate such as this, a low-resistance film can be obtained (for example, refer to Patent Document 3). As shown in this Patent Document 3, resistance can be reduced by using Ag. However, Ag ultrafine particles are colored due to in vitro absorption, which causes a problem that a sufficient transmittance cannot be obtained. Furthermore, it is known that a transparent conductive metal film and a metal oxide for forming a transparent conductive film are laminated on the substrate in this order. A plurality of layers, each layer, or a laminated film are fired together to form a low-resistance conductive film (for example, refer to Patent Document 4). In this case, there is a problem that the manufacturing process becomes complicated. Furthermore, as another method for manufacturing a charge prevention film, There is also a technology that uses low-resistance transparent oxide particles and ensures conductivity by contacting the particles. In this case, in order to achieve a more dense deposit, a transparent conductive film is formed on a substrate, and then a second layer is coated thereon. The film of the layer uses the thermal shrinkage to improve the adhesion between particles and reduce the contact resistance. As a result, the surface resistance can be reduced. In this case, there is a problem that the manufacturing process becomes complicated. [Patent Document 1] Japanese Publication Patent Publication No. 07- 2 4 2 8 4 2 (Patent Request Range, Examples) [Patent Document 2] Japanese Laid-Open Patent Publication No. 2 003 -249 1 3 1 Gazette (Scope of Patent Requests) -6-200535090 (3) [Patent Document 3] Japanese Patent Publication No. 1 763 3 9 (Patent Application) [Patent Document 4] Japanese Patent Publication No. 2 〇 〇 2 _ 2 4 9〗 2 No. 6 (Scope of patent application) [Summary] [Questions to be Solved by the Invention] However, according to the above-mentioned conventional method, it is found that when only oxide fine particles are used, the transmittance is not limited to the tube resistance. In the case where it becomes high and only metal fine particles are used, the resistance decreases and the transmittance decreases. Furthermore, when oxide fine particles and metal fine particles are used, there is a problem that the manufacturing process becomes complicated. The problem of the present invention is to solve the problem The problem of the above conventional technology is to provide a dispersion liquid containing metal fine particles, alloy fine particles, or a mixture of these, and a metal-doped oxide. The dispersion liquid is fired at low temperature to form a transparent conductive material with low resistance and high transmittance. Film method and transparent electrode made of the transparent conductive film. [Means for Solving the Problem] The dispersion liquid for forming a transparent conductive film of the present invention is characterized in that one kind of metal fine particles selected from the group consisting of indium, tin, antimony, aluminum, and zinc is selected from the group consisting of two or more kinds of metals. At least one kind of fine particles of the alloy 'or a mixture of the metal fine particles and the alloy fine particles' and selected from the group consisting of I η 2 0 doped with Sn, S η 0 doped with sb 2, and I η 2 doped with Zn η And at least one kind of oxide fine particles grouped by ZnO doped with A 1 -7- 200535090 (4), mixed and dispersed in an organic solvent. By using this dispersion, firing at low temperature can form a transparent conductive film with low resistance and high transmittance. The method for forming a transparent conductive film of the present invention is characterized in that the dispersion liquid for forming a transparent conductive film is coated on a substrate and then fired. The firing is performed in an environment selected from the group consisting of a vacuum environment, an inert gas environment, a reducing gas environment, and an oxidizing gas environment. The firing system is first performed in an environment in which metals and alloys selected from the group consisting of a vacuum environment, an inert gas environment, and a reducing gas environment are not oxidized, and then in an oxidizing gas environment. After firing in the oxidizing gas environment, firing is performed in an environment selected from a vacuum environment, an inert gas environment, and a reducing gas environment. By using the dispersion and the firing step described above, firing at low temperature can form a transparent conductive film with low resistance and high transmittance. The inert gas environment is an environment composed of at least one inert gas selected from the group consisting of rare gases, carbon dioxide, and nitrogen, and the reducing gas environment is at least one reductive gas selected from the group consisting of hydrogen, carbon monoxide, and lower alcohols. Structure of the environment 'The oxidizing gas environment is an environment consisting of at least one oxidizing gas selected from the group consisting of oxygen-containing gas. The above-mentioned vacuum environment includes at least one inert gas selected from the group consisting of rare gases, carbon dioxide, and nitrogen, at least one oxidizing gas selected from the group consisting of oxygen-containing gas, and at least one selected from hydrogen, carbon monoxide, and Reducing gas formed by a group of lower alcohols, or a mixed gas composed of the inert gas and an oxidizing gas or a reducing gas. -8- 200535090 (5) The characteristics of the above oxidizing gas environment include: oxygen, oxygen-containing gas, water vapor or water vapor gas. The above-mentioned metal fine particles and alloy fine particles based organic compounds adhere to fine particles around the fine particles. The transparent electrode of the present invention is formed of the formed transparent conductive film by the method for forming a transparent conductive film described above. [Effects of the Invention] According to the present invention, by using a dispersion liquid for forming a transparent conductive film containing specific fine particles, alloy fine particles, or a mixture of these, and oxide fine particles doped with a specific metal, firing at low temperature can form transparent conductive materials. The film obtained by the film can have the effects of low resistance and high transmittance, and can also provide the effect of a transparent electrode composed of the conductive film and used in various applications. [Embodiment] Hereinafter, embodiments of the present invention will be described. The case of "metal fine particles" is not particularly limited, and the fine particles also include alloy fine particles. As described above, at least one type of metal fine particles including each metal component (indium, tin, antimony, aluminum, and zinc) of the metal oxide for forming a transparent conductive film, and at least one type of alloy fine particles composed of two or more metals selected from the component metals. 'These mixed particles of metal particles and alloy particles, as well as dispersion liquids of oxides of tin, antimony, aluminum, or zinc, are dispersion liquids useful for forming transparent conductive films. -9- 200535090 (6) The metal oxide used in the present invention may be, for example, I Τ Ο (I η _ s η-Ο) (the range of s η is usually 0SSnS20% by weight, preferably 3SSnS10% by weight) as a dopant Ln203 with hetero Sn, ATO (Sn-Sb-0) (the range of Sb is usually 0 ^ Sb ^ 20% by weight, preferably 5SSbS15% by weight) as Sb-doped SnO2, IZO (In-Zn- O) (The range of Zn is usually 0% Zn $ 20% by weight, preferably 5SZngl 5% by weight). As the Zn doped ln203, AZO (Zn-Al-0) (the range of Al is usually 0SAIS20% by weight, It is preferably 5 S A1 S 1 5 wt%). As ZnO doped with A1, these ITO, ATTO, IZO, and AZO are useful for the purpose of forming a transparent conductive film. The substrate that can be used in the transparent conductive film forming method of the present invention is not particularly limited as long as it is a transparent substrate, such as an acrylic substrate, a polyimide substrate, a polyethylene terephthalate (PET) sheet, and the like. Substrates that must be made of low-temperature-fired organic resin materials, such as glass electrodes with organic films attached to organic color filters. As organic resin materials, you can use in addition to the above • For example, ethyl acetate cellulose, polystyrene, polystyrene, polyether, polyimide, epoxy resin, phenolic resin, polycarbonate, polyfluoride Ethylene, Teflon (registered trademark), etc. The shape of the substrate is not particularly limited-for example, a flat plate, a three-dimensional object, a sheet, and the like. The substrate to be processed is preferably washed with pure water, ultrasound, or the like before coating the dispersion. In the present invention, the substrate coating method is not particularly limited, and for example, a spin coating method, a spray coating method, an inkjet method, a dipping method, a roll coating method, a screen printing method, a contact printing method, and the like can be used. The coating system may be applied once and repeatedly as long as a desired film thickness is obtained. 200535090 (7) In the transparent conductive film forming method of the present invention, the dispersion liquid is coated on a substrate to be treated using a conventional coating method, and is selected from a vacuum environment, an inert gas environment, a reducing gas environment, and an oxidizing property. Grouping in a gaseous environment. In at least two types of environments, at least two stages of firing treatments (annealing treatments) are performed. In this case, it is not suitable because the surface resistance of the obtained film becomes high when firing in an oxidizing gas environment for the first time. However, it is preferable to introduce an oxidizing gas when firing in a vacuum environment. In this case, the metal and alloy are not oxidized. This has the effect of burning only the organic substances attached to the surface of the particles. In the present invention, it is preferable that the second stage is sintered in an oxidizing gas environment to oxidize the metal fine particles. Before the first firing, the dispersant may be removed by drying the substrate on which the dispersion liquid is applied at a predetermined temperature. Removal of this dispersant can also be performed in the firing step. According to the present invention, the firing temperature in the firing step is preferably a heat-resistant allowable temperature between a temperature above a melting point of the metal fine particles and alloy fine particles and a temperature lower than a softening point of the substrate to be treated. The firing temperature is preferably, for example, 300 ° C or lower. As long as it is in this temperature range, the substrate is not damaged. Thus, in the present invention, since a dense film can be formed at a lower temperature than the conventional case, a transparent conductive film having a low resistance can be produced at a low temperature, and the film is fired in an oxidizing gas environment, and the resulting film can have improved permeability. Furthermore, the UV lamp irradiation during the firing step 'is more effective in shortening the time and lowering the temperature. In addition, the firing method of the present invention is also effective using a conventional atmospheric plasma method. According to the present invention, when the coating film is fired in a vacuum environment, the vacuum state can be used only by the pump, or the inert gas can be introduced after starting the pump -11-200535090 (8) gas, reducing gas, oxidation性 气。 Sexual gas. The firing in a vacuum environment is usually performed at a temperature of about 1 to 5 to 103 Pa. In addition, the firing environment as described above may be composed of at least one inert gas selected from the group consisting of a rare gas, carbon dioxide, and nitrogen. Environment, the rare gas contains argon, neon, etc., the reducing gas environment is at least one selected from the group consisting of hydrogen, carbon monoxide and lower alcohols, and the oxidizing gas environment is at least one selected from the group consisting of An oxygen-containing gas environment such as oxygen, an oxygen-containing gas, water vapor, or a group of oxidizing gases containing water vapor, and the oxygen-containing gas includes the atmosphere (ie, air), etc. Furthermore, the vacuum environment described above An inert gas, an oxidizing gas, a reducing gas, or a mixed gas composed of an inert gas and an oxidizing gas or a reducing gas may be included. The lower alcohol in the above-mentioned reducing gas environment is a lower alcohol having 1 to 6 carbon atoms, for example Methanol, ethanol, propanol, butanol, hexanol, etc. The reducing φ gas environment is a firing environment for removing only oxygen on the surface of metal particles. The environment in which oxides are reduced to metals. The particle size of the metal fine particles and alloy fine particles used in the present invention is preferably from 0.5 nm to 50 nm. If the particle size is less than 0.5 nm, the substantial surface area of the particles increases, and as a result, the particles adhere to The increase of organic matter around the particles will not only increase the firing time, but also easily cause cracks caused by thermal shrinkage. If it exceeds 50nm, it will easily cause precipitation when dispersed in organic solvents. In addition, the primary particle size of the metal oxide fine particles is 20 The degree is preferably ~ 30 nm. The preparation method of the metal microparticles and alloy microparticles used in the present invention-12-200535090 (9) The method 'is not particularly limited, for example, it can be a vaporization method or a reduction method' The organometallic compound is exposed to high temperature Heat of spraying in the environment The gas evaporation method in the above manufacturing method is a method for evaporating metals in a gas phase in which a gas ring agent vapor coexists, and dispersing the evaporated metal uniform particles in a solvent to obtain a dispersion (Patent No. 2 5 6 1 5 3 7). By the evaporation method in this gas, all metal particles with a particle size of 5 Onm or less are used. As a raw material, in order to be suitable for various applications, the solvent is substituted in the last step. In order to increase the dispersion stability of the microparticles, a dispersant is added in a predetermined step. The metal microparticles are individually and fluidly maintained. As the above-mentioned organic solvent As long as it is appropriately selected according to the metal type used, for example, the following. That is, alcohol, propanol, isopropanol, butanol, hexanol, heptanol, octanol, hexanol, and pinoresinol may be appropriately used. Other alcohols, diketones such as ethylene glycol, propylene glycol, methyl ethyl ketone, and ketones such as diethyl ketone, esters such as ethyl acetate, ethyl, and benzyl acetate, methoxy ethanol and ethoxy ethyl, and dioxol Ethers such as osmium and tetrahydrofuran, N, N-dimethylammonium amines, benzene, toluene, xylene, trimethylbenzene, and ten other aromatic hydrocarbons, hexane, heptane, octane, nonane , Monodecane, dodecane, tridecane, tetradecane, pentadecane, sixteenth house, nineteenth house, tenth house, and dimethylpenter house such as long-bond house, cycloheptane and cyclooctane, etc. A substance at room temperature, such as naphthenic. The solvent may contain water. It can be used in the wet tachygen method, and it can be coagulated and condensed in the environment. For example, metal particles can be produced. Organic particles can be dispersed uniformly in the species of methanol, ethyldecanol, cyclic alcohols, butyl propionate, alcohol, etc. Ethyl alcohol methylformamide and the like-fluorenylbenzenedecane, decadecane, octadecane cyclohexane, and the organic -13- (10) (10) 200535090 Furthermore, the organic method for the dispersion and preparation of metal fine particles is evaporated in a gas. As the solvent, solvents such as those mentioned above can be used, preferably non-polar solvents such as toluene, xylene, benzene and tetradecane, ketones such as acetone and ethyl ketone, alcohols such as methanol, ethanol, propanol, and butanol Class, etc. In addition, when preparing ink for inkjet, it is necessary to consider compatibility with inkjet head materials (including surface coating materials) (for example, physical properties such as non-corrosion and dissolution), and metal in the inkjet head. For the agglomeration and clogging of fine particles, an appropriate solvent must be selected. · The above organic solvents can be used alone or in the form of a mixed solvent. For example, it may be sulfone olein (mixed spirit) of a long chain compound. The amount of the solvent to be used may be appropriately set according to the type and application of the metal fine particles to be used, and a desired film thickness may be obtained. For example, if a solvent is used, the concentration of the metal fine particles can be 1 to 70% by weight. The concentration of the metal fine particles can be adjusted at any time even after the dispersion is manufactured by heating in a vacuum or the like. Furthermore, as described above, the metal fine particles and alloy fine particles used in the present invention may be fine particles in which an organic compound adheres to the periphery of the fine particles. Dispersion liquid of metal fine particles produced by gas evaporation method. At least one kind of metal fine particles having a particle size of 50 nm or less is "in an isolated state" selected from the group consisting of alkylamines, carboxamides, and aminocarboxylates as dispersants. 'Dispersed in organic solvents. The metal fine particles are particles in a state where an organic compound as a dispersing agent is adhered to the metal fine particles, and when the fine particles are used, they are easily dispersed. -14-200535090 (11) The alkylamine of the dispersant may be a 1st to 3rd amine, or a monoamine or a triamine. Alkylamines having 4 to 20 carbon atoms in the main chain are preferable, and alkylamines having 8 to 18 main chain are more preferable from the viewpoints of stability and workability. If the alkylamine has a carbon number shorter than 4, the basicity of the amine is too strong, and there is a problem that the metal particles are corroded and the metal particles are finally dissolved. In addition, if the main number of alkylamines is longer than 20, when the concentration of the metal fine particle dispersion is high, the dispersion will increase, the workability will deteriorate, and carbon will remain in the sintered film, which will increase the problem of resistance. In addition, although alkylamines of all stages are effectively used, primary amines are suitable for use in terms of stability and usability. Specific examples of alkylamines include butylamine, octylamine, dodecylamine, octadecylamine, cocamine, amine, hydrogenated tallowamine, oleylamine, laurylamine, and stearylamine. Primary amines, dicocoamines, dihydrotallowamines, and dihard secondary amines, such as dodecyldimethylamine, bis (dodecylmonomethylamine, tetradecyldimethylamine Methylamine, octadecyldimethylaminodimethylamine, dodecyltetradecyldimethylamine, and tertiary tertiary amines, others such as naphthalenediamine, stearylpropylenediamine Diamines, such as cyclooctyl and nonanediamine. As specific examples of the carboxyamidamine and amine carboxylate, amines, palmitoylamine, laurylamine, laurylamine, oleylamine, oleylamine, oil Laurylamine, stearani Iide, oleylglycine, etc. The metal microparticles used in the present invention can be obtained by chemical reduction methods such as wet (liquid reduction) method, etc. Carbon number of amines and diamines: the tendency of the main chain, and the viscosity of the carbon liquid of the chain is more than that of the aliphatic amines such as electric dispersants, hexadecyl Tallow amines, etc. Yl), coco-octylamine diamines, such as stearyl diethanol amine of formula B-200 535 090 -15 restore the original SYSTEM (12) where fine particles made, the particle size can be adjusted in the following 5 Onm. This reduction method is performed in the following manner, for example. In the state where the dispersant is added to the raw material, the raw material is decomposed by heating at a predetermined temperature, or a reducing agent such as hydrogen or sodium borohydride is used to generate metal fine particles. Almost all the generated metal fine particles are collected in a separate state. The particle size of the metal fine particles is about 5 nm or less. When the metal fine particle dispersion is replaced with the organic solvent as described above, a desired metal fine particle dispersion can be obtained. Even if the obtained dispersion was concentrated by heating in a vacuum, the dispersion was maintained in a stable state. The transparent conductive film formed by the method for forming a transparent conductive film according to the present invention as described above can be used for, for example, transparent electrodes for flat displays, transparent anti-charge films, transparent electromagnetic wave shielding films, surface heating elements, transparent electrode antennas, solar cells, and electronic paper. Use electrode, transparent electrode gas sensor, etc. Next, an example of a method for manufacturing metal fine particles used in the present invention will be described. (Manufacturing Example 1) When an In-Sn alloy fine particle containing 6 wt% of Sn was generated by a vapor-in-gas method using high-frequency induction heating under a helium pressure of 0.5 Torr, α-pinitol was produced. And dodecyl amine 20: 1 (volume ratio) vapor contact formation process of In-Sn alloy particles, cooling sampling, collection of In-Sn alloy particles, prepared by 20% by weight in an independent state dispersed in α-pinitol solvent average A dispersion of In-Sn alloy fine particles with a particle size of 10 nm. To this dispersion (colloid liquid) was added 1 volume, and 5 volumes of acetone was added, followed by stirring. By the polar action of acetone, micro-16-200535090 (13) particles in the dispersion are precipitated. After standing for 2 hours, the upper solution was removed. The residual solvent was completely removed from the precipitate, and In-Sn alloy fine particles having an average particle diameter of 1 Onm were produced. In addition, the metal fine particles of In, Sn, Sb, Al, and Zn, and alloy fine particles other than In-Sn made of these metals can be obtained in the same manner as the above-mentioned production method. Hereinafter, examples and comparative examples of the present invention will be described. [Example 1] In-Sn alloy fine particles produced by the gas-in-gas method in Production Example 1 were used as metal fine particles. The particles had an average particle size of 10 μm and were diffracted by X-rays, and were confirmed to be alloy fine particles which had not been oxidized. The content of Sn in the fine particles was analyzed by fluorescent X-rays and was confirmed to be 6% by weight. ITO fine particles having primary particles of 20 nm were used as oxide fine particles combined with the alloy fine particles. The alloy fine particles and the oxide fine particles are mixed at a ratio of 5:95 (wt%) to a concentration of 30 wt% of the total solid content, and mixed and dispersed in an organic solvent (toluene) to obtain a transparent conductive film. Dispersions. The dispersion liquid thus obtained was applied to a glass substrate by a spin coating method, and formed into a film. The obtained coating film was fired under the conditions of lxl (23 ° C under a reduced pressure of T3Pa for 30 minutes (first annealing). Then, it was returned to the atmosphere and fired in air at 230 ° C for 10 minutes. (Second annealing). The obtained transparent conductive film (film thickness: 200 nm) is very dense, its surface resistance is as low as 60 Ω / □, and its transmittance at 5 50 nm is as high as 99.4%. In this case, after firing in the atmospheric environment, and then firing in a reducing gas environment (hydrogen environment-17- 200535090 (14) and carbon monoxide environment) (third annealing), the surface of the obtained transparent conductive film The resistance becomes lower. The transparent conductive film obtained in Example 1 has transparent electrodes for display devices. (Comparative Example 1) In-Sn alloy fine particles are removed from the dispersion liquid obtained in Example 1, and only the dispersion liquid of ITO fine particles is used. It was coated on a glass substrate by the same method as in Example 1 to form a film. Then, the obtained coating film was fired at 230 ° C for 30 minutes under the same conditions as in Example 1. The obtained transparent conductive Film, although the transmittance is 98% high, its surface resistance is 7 × 103Ω / □ Very high. Based on the results of Example 1 and Comparative Example 1. above, the following points are estimated. When using only ITO fine particles, 'The raw material used is in an oxidized state, although the obtained film shows a sufficient transmittance. The surface resistance cannot be satisfied. Due to the low-temperature firing, the ITO particles do not continue to sinter with each other, and the TO TO particles have high contact resistance, which results in a high-resistance film. In this way, only the dispersion of ITO particles is used for low temperature In the case of firing, it cannot be used as a transparent electrode. On the other hand, it is presumed that when ITO fine particles and metal fine particles are used, the metal fine particles having a small particle diameter are buried in the gap between the IT0 fine particles, and the metal fine particles serve as an adhesive, so The film is densified and the contact resistance of the fine particles is reduced, resulting in a low-resistance film. The mixing ratio of the metal fine particles to the IT0 fine particles is because of the metal micro-18-200535090 (15) as long as the particles have the function of an adhesive. The concentration of the metal fine particles in the fine particles is generally about 1 to 30% by weight, preferably about 3 to 30% by weight. In terms of the cost of the dispersion, the concentration of the metal fine particles is preferably lower. Then, the types and composition ratios of the metal fine particles and oxide fine particles of each component metal of the metal oxide for forming a transparent conductive film are changed according to the firing conditions. The method described in Example 1 was calcined to measure the surface resistance and transmittance of the obtained film. The results are shown in Table 1. Comparative examples are also shown in Table 1.
-19- (16)200535090-19- (16) 200535090
透過率 (550nm) ON ON 00 ON 00 Os 00 os ON 〇\ ON ON 00 os Os ON 00 ON Os s; 座ΓΠ ϋ □ 晅〜 § ο CM jn s § ο jn o o rn r<> m Oi § o 鹏 |g 减 11 1 /—s e鹏 r鰂 m m 衫 m m 1§ 〇 o o O O O 氣體 環境 ^cs 一氧化碳 & ffl- 嫉 大氣 一氧化碳 -R ^ m ^ 天氣壓 大氣壓 天氣壓 ώ —〇 ώ S ΓΟ —〇 ώ —ο m ^ ιΐε 〇 ro <N ο m (Ν o m <N o S o m fN ο s 第二次退火(氧化性氣體環境) 酲φ IT) V) 廳* mm 喊 减 嫉 4< 祕 减 +< 祕 嫉 4< m ni 4< 嫉 +< 祕 m 减 4< 祕 +< 祕 减 •R ^ IS 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 ! 1_ 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓i 大氣壓 大氣壓 大氣壓 侧一 H| P 〇 *〇 <N Ο ΓΜ Ο fS fN ο m rs Ο m CN 〇 m <N o (N 〇 m (N o rn (N Ο rn CN Ο m ΓΜ Ο rn <N o m CN 〇 rn <N o m fM ο fN CN 〇 m fN m 鹏 减 Μ 1 S Μ 酹 ι〇 氣體 環境 只減壓 只減壓 只減壓 一氧化碳 只減壓 ^TN (Ν 只減壓 一氧化碳 <N 只減壓 一氧化碳 只減壓 只減壓 只減壓 一氧化碳 / SlDi W遨 I 濉 R ^ Ml 1.00E-03 1.00Ε-03 1.00E-03 1.00E-03 1.00E-03 大氣壓 大氣壓 1_ 1.00E-03 1 1.00E-03 大氣壓 大氣壓 1.00E-03 1.00E-03 大氣壓 大氣壓 (N 〇6 <N oc 1.00Ε-03 1.00E-03 刨一 SIB 〇 (N § Ο Ό (Ν Ο m fN 〇 ro CM o <N Ο m (Ν 〇 rn (N o m (N o rn (N o ro (N Ο rn (Ν 〇 (N o ro rsi o rn (N o ro <N o CN Ο m (Ν 〇 ro (N 組成比 氧化物 微粒子 95 \vt% 90 \vt% 85 wt% 95 wt% 95 wt% 95 wt% 1_ 95 wt% 1_ 90 wt% 90 wt% 90 wt% 90wto/〇 _1 80 wt% 1 1 1 80 vvt% 1 80 wt% i 80 wt% 80 wt% 75 wt% 95 wt% 95 wt% 金屬微 粒子 5wt% 10 wt% 15 wt% 5 wt% 1__ 5 wt% 5 wt% 5 wt% 10 wt% 10 wt% 10 wt% 10 wt% 20 wt% 20 wt% 20 wt% _1 20 wt% j 20 wt% 25 wt% 5 wt% 5 wt% 使用材料 氧化物 微粒子 Ο Η Ο t Ο Η i g c fc § N 金屬微 粒子 = In-Sn Sn 6vvt% In-Sn Sn 6wt% 1_ In-Sn Sn 6\vt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6vvt% In-Sn Sn 6\vt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6\vt% In-Zn Zn 6wt% In-Zn Zn 6wt% W匡 (Ν rn 卜 00 Os 〇 一 <N 寸 卜 OO ON -20- 200535090(17)Transmittance (550nm) ON ON 00 ON 00 Os 00 os ON 〇 \ ON ON 00 os Os ON 00 ON Os s; Block ΓΠ ϋ □ 晅 ~ § ο CM jn s § ο jn oo rn r < > m Oi § o Peng | g minus 11 1 / —se pen r 鲗 mm shirt mm 1§ 〇oo OOO gas environment ^ cs carbon monoxide & ffl- the atmosphere carbon monoxide -R ^ m ^ weather pressure atmospheric pressure weather pressure free —〇 FREE S ΓΟ — 〇ώ —ο m ^ ιΐε 〇ro < N ο m (Ν om < N o S om fN ο s Second annealing (oxidizing gas environment) 酲 φ IT) V) Hall * mm shout jealousy 4 < Secret reduction + < Secret 4 < m ni 4 < Secret + < Secret m &4; Secret + < Secret • R ^ IS Atmospheric pressure Atmospheric pressure Atmospheric pressure Atmospheric pressure Atmospheric pressure i Atmospheric pressure Atmospheric pressure side H | P 〇 * 〇 < N Ο ΓΜ Ο fS fN ο m rs Ο m CN 〇m < N o (N 〇m (N o rn (N Ο rn CN Ο m ΓΜ Ο rn < N om CN 〇rn < N om fM ο fN CN 〇m fN m Peng minus M 1 S Μ 〇〇 The gas environment only decompresses only decompresses only carbon monoxide only decompresses TN (N only decompresses carbon monoxide < N decompression only carbon monoxide decompression only decompression only decompression only carbon monoxide / SlDi W 遨 I 濉 R ^ Ml 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 atmospheric pressure atmospheric pressure 1_ 1.00E- 03 1 1.00E-03 Atmospheric pressure 1.00E-03 1.00E-03 Atmospheric pressure (N 〇6 < N oc 1.00E-03 1.00E-03 SIB 〇 (N § Ο Ό (N 〇 m fN 〇ro CM o < N Ο m (Ν 〇rn (N om (N o rn (N o ro (N Ο rn (Ν 〇 (N o ro rsi o rn (N o ro < N o CN Ο m (Ν 〇 ro (N composition ratio oxide particles 95 \ vt% 90 \ vt% 85 wt% 95 wt% 95 wt% 95 wt% 1_ 95 wt% 1_ 90 wt% 90 wt% 90 wt% 90wto / 〇_1 80 wt% 1 1 1 80 vvt% 1 80 wt% i 80 wt% 80 wt% 75 wt% 95 wt% 95 wt% metal particles 5wt% 10 wt% 15 wt% 5 wt% 1__ 5 wt% 5 wt% 5 wt% 10 wt% 10 wt% 10 wt% 10 wt% 20 wt% 20 wt% 20 wt% _1 20 wt% j 20 wt% 25 wt% 5 wt% 5 wt% Oxide particles 0 Η Ο t Ο Η igc fc § N Metal particles = In-Sn Sn 6vvt% In-Sn Sn 6wt% 1_ In-Sn Sn 6 \ vt% In-Sn Sn 6wt% In-Sn Sn 6wt% In -Sn Sn 6vvt% In-Sn Sn 6 \ vt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In-Sn Sn 6wt% In -Sn Sn 6 \ vt% In-Zn Zn 6wt% In-Zn Zn 6wt% W Kuang (N rn 00 00 Os 〇 一 & N inch OO ON -20- 200535090 (17)
98% 99% 98% 97% 1 1_ 96% 97% 98% 99% 98% 96% 97% 96% 98% 97% 97% 97% 98% 99% 99% 97% s § <N Os 00 o s (N 〇 s 4500 4000 2000 2500 2800 7000 6500 360 o o O O o o o o o o o _ 一氧化碳 甲醇 大氣 嫉 一氧化碳 一氧化碳I 甲醇 大氣 大氣 大氣壓 大氣壓 大氣壓 1.00E-03 1.00E-03 1.00E-03 大氣壓 1 大氣壓 j 大氣壓 1.00E-03 1.00E-03 230 230 230 o rn ΓΜ 〇 <N 〇 m <N 230 ο (Ν Ο m (Ν 230 〇 m CN to «〇 嫉 -K 祕 大氣 祕 大氣 大氣 大氣 if 大氣 大氣」 大氣1 1 .」 大氣 _1 U 大氣 大氣壓 大氣壓 大氣壓 大氣壓 ί_ 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 〇 ro (N o m <N 230 Ο (Ν 230 230 230 230 230 230 o ro (N 230 __1 230 1 230 _1 230 _1 230 1 1 ο (Ν 230 o m (N 230 rs 只減壓 一氧化腺 只減壓 只減壓 只減壓 只減壓 只減壓 一氧化碳 只減壓 只減壓 只減壓 IS 只減壓 大氣壓 大氣壓 1.00E-03 1.00E-03 大氣壓 大氣壓 1.00E-03 1.00E-03 大氣壓 大氣壓 (N 00 ΓΜ oc 1.00E-03 1 j 1.00E-03 1 (N 00 <N OC (Ν 〇6 大氣壓 大氣壓 1.00E-03 〇 (N o m ΓΜ 230 ί 〇 m ΓΝ 230 230 230 230 230 230 o rn (N 230 230 230 250 250 250 250 250 250 95 \vt% 95 wt% 90 wt% 90 \vt% 90 wt% 90 wt% 90 wt% 80 \vt% 80 wt% 80 wt% 1 80 wt% 80 wt% 97 wt% 97 wt% 97 wt% 97 wt% 90 wt% 90 wt% 90 wt% 97 wt% 5 wt% 5 wt% 10 wt% 10 wt% 10 wt% 10 wt% 10 wt% 20 wt% 20 wt% 20 wt% | 20 wt% 20 wt% 3 wt% 3 wt% 3 wt% 3 wt% 10 wt% 10 wt% 10wt% 3 wt% IZO IZO IZO IZO IZO IZO IZO IZO ΪΖ0 IZO | IZO IZO ATO ATO ATO ATO ΑΤΟ ATO ATO AZO In-Zn Zn 6wt% In-Zn Zn 6\vt% In-Zn Zn 6wt% In-Zn i Zn 6wt% | In-Zn Zn 6\vt% In-Zn Zn 6vvt% In-Zn Zn 6vvt% In-Zn Zn 6vvt% In-Zn Zn 6\vt% In-Zn Zn 6wt% In-Zn Zn 6wt% In-Zn Zn 6wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5\vt% Sn-Sb Sb 5wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5\vt% Sn-Sb Sb 5\vt% Zn-AI A1 5wt% r\i (N rn <N CM 00 ΓΜ (N rn rn rn 对 r〇 m Γ- γο 00 -21 - 200535090 (18)98% 99% 98% 97% 1 1_ 96% 97% 98% 99% 98% 96% 97% 96% 98% 97% 97% 97% 98% 99% 99% 97% s < N Os 00 os (N 〇s 4500 4000 2000 2500 2800 7000 6500 360 oo OO ooooooo _ carbon monoxide methanol atmosphere carbon monoxide carbon monoxide I methanol atmosphere atmospheric pressure atmospheric pressure atmospheric pressure 1.00E-03 1.00E-03 atmospheric pressure 1 atmospheric pressure j atmospheric pressure 1.00E-03 1.00E-03 230 230 230 o rn Γ 〇 < N 〇m < N 230 ο (Ν Ο m (Ν230 〇m CN to «〇 嫉 -K Secret atmosphere Secret atmosphere Atmosphere if atmospheric atmosphere" Atmosphere 1 1 . Atmosphere_1 U Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric Pressures Ro (N om < N 230 Ο (Ν230 230 230 230 230 230 230 o ro (N 230 __1 230 1 230 _1 230 _1 230 1 1 ο (Ν 230 om (N 230 rs only decompresses the nitric oxide gland Decompression only decompression only decompression only decompression only decompression only carbon monoxide decompression only decompression only decompression only decompression IS only decompression atmospheric pressure atmospheric pressure 1.00E-03 1.00E-03 atmospheric pressure atmospheric pressure 1.00E-03 1.00E-03 atmospheric pressure atmospheric pressure (N 00 ΓΜ oc 1.00E-03 1 j 1.00E-03 1 (N 00 < N OC (N 〇6 atmospheric pressure atmospheric pressure 1.00E-03 〇 (N om ΓΜ 230 ί 〇m ΓΝ 230 230 230 230 230 230 230 o rn (N 230 230 230 250 250 250 250 250 250 250 95 \ vt% 95 wt% 90 wt% 90 \ vt% 90 wt% 90 wt% 90 wt% 80 \ vt% 80 wt% 80 wt% 1 80 wt% 80 wt% 97 wt% 97 wt% 97 wt% 97 wt% 90 wt% 90 wt% 90 wt% 97 wt% 5 wt% 5 wt% 10 wt% 10 wt% 10 wt% 10 wt% 10 wt% 20 wt% 20 wt% 20 wt% | 20 wt% 20 wt% 3 wt% 3 wt% 3 wt% 3 wt% 10 wt% 10 wt% 10wt% 3 wt% IZO IZO IZO IZO IZO IZO IZO IZO IZO ΪZ0 IZO | IZO IZO ATO ATO ATO ATO ΑΤΟ ATO ATO AZO In-Zn Zn 6wt% In-Zn Zn 6 \ vt% In-Zn Zn 6wt% In-Zn i Zn 6wt% | In-Zn Zn 6 \ vt% In-Zn Zn 6vvt% In -Zn Zn 6vvt% In-Zn Zn 6vvt% In-Zn Zn 6 \ vt% In-Zn Zn 6wt% In-Zn Zn 6wt% In-Zn Zn 6wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5 \ vt % Sn-Sb Sb 5wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5wt% Sn-Sb Sb 5 \ vt% Sn-Sb Sb 5 \ vt% Zn-AI A1 5wt% r \ i (N rn < N CM 00 ΓΜ (N rn rn rn vs r. m Γ- γο 00 -21-200535090 (18)
96% 97% 98% ! 99% I 97% 98% 98% 98% 98% 97% 420 444 576 456 CM as 廿 [4800 § 1000 § o O 大氣 大氣 1.00E-03 1.00E-03 〇 m CN o <N m 嫉 •K 祕 大氣 m 大氣 I大氣1 m m 大氣 j 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 大氣壓 1大氣壓1 大氣壓 大氣壓 大氣壓 ο ΓΟ (Ν 230 Ο m (Ν ο rn (Ν 230 Ο m fN Ρ〇Ί 230 o <N 230 ! S 一氧化碳 只減壓 只減壓 只減壓 IS JUfi 只減壓 只減壓 只減壓 只減壓 03 ra oc <N 〇d <N 〇6 大氣壓 大氣壓 1.00Ε-03 1.00E-03 1.00E-03 1.00E-03 ! (Ν 沄 (N (Ν 250 250 ΓΜ PM 230 〇 CN 250 97 wt% 97 wt% 90 wt% 90 wt% 90 wt% 90 wt% |95 wt% | 95 wt% 97 wt% 97 wt% 3 wt% 3 wt% 10wt% 10 wt% 10 wt% 10 wt% 5 wt% 5 wt% 3 vvt% 3 vvt% Ο r〇 〇 P〇 〇 po 〇 r〇 〇 fsj § 〇 L— 〇 s 〇 fN < rsj < LNJ < < < < t 匕 Zn-Al Al 5wt% Zn-Al AI 5vvt% Zn-Al AI 5wt% Zn-Al A! 5\vt% Zn-Al Al 5wt% Zn-Al Al 5wt% In-Zn Zn 6wt% Sn-Sb Sb 5wt% Zn-Al Al 5vvt% 5 rn JO 5 5 -22 20053509096% 97% 98%! 99% I 97% 98% 98% 98% 98% 97% 420 444 576 456 CM as 廿 [4800 § 1000 § o O Atmosphere 1.00E-03 1.00E-03 〇m CN o < N m KK secret atmosphere m atmosphere I atmosphere 1 mm atmosphere j atmosphere pressure atmosphere pressure atmosphere pressure atmosphere pressure 1 atmosphere pressure 1 atmosphere pressure atmosphere pressure ο ΓΟ (Ν 230 Ο m (Ν ο rn (Ν230 Ο m fN Ρ〇Ί 230) o < N 230! S carbon monoxide only decompression only decompression only IS JUfi decompression only decompression only decompression only decompression only 03 ra oc < N 〇d < N 〇6 atmospheric pressure atmospheric pressure 1.00E-03 1.00E-03 1.00E-03 1.00E-03! (Ν 沄 (N (Ν 250 250 ΓΜ PM 230 〇CN 250 97 wt% 97 wt% 90 wt% 90 wt% 90 wt% 90 wt% | 95 wt% | 95 wt% 97 wt% 97 wt% 3 wt% 3 wt% 10 wt% 10 wt% 10 wt% 10 wt% 5 wt% 5 wt% 3 vvt% 3 vvt% 〇 r〇〇〇〇〇PO 〇r〇 〇fsj § 〇L— 〇s 〇fN < rsj < LNJ < < < t Zn-Al Al 5wt% Zn-Al AI 5vvt% Zn-Al AI 5wt% Zn-Al A! 5 \ vt% Zn-Al Al 5wt% Zn-Al Al 5w t% In-Zn Zn 6wt% Sn-Sb Sb 5wt% Zn-Al Al 5vvt% 5 rn JO 5 5 -22 200535090
98% 70% 98% 68% 97% 98% 72% 95% 98% 96% 丨 7000 § ο § 5; 1200 48000 3240 36600 4570 2568 只減壓 只減壓 只減壓 只減壓 |l.00E-03 1 1.00E-03 1.00E-03 1.00E-03 ο s 230 (N 250 1只減壓1 l只減壓I u 只減壓 大氣 I只減壓| 只減壓 大氣 |只減壓1 大氣 [1.00E-03 1 [1.00E-03 1 1大氣壓I 1.00E-03 大氣壓 |l.00E-03 | 1.00E-03 大氣壓 [1.00E-03 1 大氣壓 |23〇J ο m (Ν § Ο m (Ν 230 250 Ο rs PM 250 lOOvvt% [80wt% 1 |80vvt% 1 80wt% 80 wt% |l00wt%| 90 wt% 90 wt% 100 wt% 90 wt% (20wt% 1 20wt% 20wt% 20 wt% JO wt% 10 wt% 10 wt% |ιτο 1 ITO ITO ITO 1ATQ - 1 ATO ATO AZO AZO Tn-Sn Sn 6wt% In-Sn Sn 6\vt% Sn-Sb Sb 5wt% Sn-Sb Sb 5vvt% Zn-AI A1 5\vt% (Ν rn 对 卜 oc o 200535090 (20) 以下所述係解析表丨記載的實施例以及比較例白宅 據。 貫施例2〜4使用In微粒子與IT〇微粒子,實施 5〜18使用In-Sn(sn: 6重量%)合金微粒子以及ΙΤ〇 粒子。於所得膜,不添加Sn者比添加Sn者顯示高電 値,透過率幾乎相同。 貫施例1 9〜32使用ΐη·Ζη ( zn : 6重量% )微粒子以 IZO微粒子。所得膜,其電阻値與使用In_Sn合金微粒 /1 TO微粒子的情況,顯示相同程度略高的値,其透過率 這些情況幾乎相同程度。 實施例3 3〜3 9使用S η - S b ( S b : 5重量% )微粒子以 ΑΤΟ微粒子。所得膜’其電阻値與使用in微粒子或Ιη· 合金微粒子/ιτο微粒子、In-Zrl合金微粒子/ΙΖ0微粒子 情況比較,顯示較高的値,透過率與這些情況幾乎相同 度。該膜係熱安定性、化學安定性優異的膜。而且,該 再於6 0 0 °C燒成後也無法見到電阻値的變化。 實施例40〜46使用Zn-A1 ( A1 : 5重量% )微粒子以 AZO微粒子。所得膜,其電阻値比使用Sn-Sb微粒 /ΑΤΟ微粒子低、比使用In-Sn微粒子/ITO微粒子、In-微粒子/IZO微粒子高,透過率與這些情況幾乎相同程度 於以上的實施例,係考慮金屬微粒子的金屬以及作 母粒子的金屬氧化物的構成金屬相同的組合,然而,母 子的構成金屬以及金屬微粒子的金屬相異的例表示於實 例47〜50 。 數 例 微 阻 及 子 與 及 Sn 的 程 膜 及 子 Zn 〇 爲 粒 施 -24- (21) (21)200535090 實施例47使用In微粒子以及ΑΤΟ微粒子。所得膜之 電阻値以及透過率’與使用Sn-Sb微粒子/ΑΤΟ微粒子的 情況幾乎相同程度。 實施例48使用Ιη-Ζη微粒子(Ζη: 6重量%)以及 IΤ 〇微粒子。所得膜之電阻値以及透過率’與1 n - s η微粒 子/ΙΤΟ微粒子幾乎相同程度。 實施例49使用Sn-Sb微粒子(Sb ·· 5重量% )以及 AZO微粒子。所得膜,其電阻値比使用 Ζη-Α1微粒子 /AZO微粒子的情況顯示較高的値,透過率則幾乎相同程 度。 實施例 50使用Zn-Al微粒子(AI : 5重量%)以及 ITO微粒子。所得膜,其電阻値比使用In-Sn微粒子/ITO 微粒子的情況顯示較低的値,透過率則幾乎相同程度。 上述膜全部具優異的蝕刻特性,特別是使用In-Zn微 粒子以及氧化物微粒子得到的膜,與使用In微粒子、In-Sn微粒子或Sn-Sb微粒子以及氧化物微粒子得到的膜比 較’具優異的蝕刻特性。由此,使用In_Zn微粒子與氧化 物微粒子構成系統得到的膜,得知爲加工性優異的膜。 由上述實施例得知,以各種金屬微粒子以及金屬氧化 物母粒子的混合材料作爲起始材料,檢討燒成方法的結 果’得知可形成具既定表面電阻以及透過率之各種透明導 電膜。 於比較例】〜I 〇,只使用氧化物(I τ Ο、A Τ Ο以及 AZO )微粒子的情況、使用金屬微粒子以及氧化物 -25- (22) 200535090 (I TO、ΑΤΟ以及 AZO )微粒子的情況, 燒成時以及最初在氧化性氣體環境中燒成 的表面電阻以及透過率。只使用ITO微粒 或 AZO微粒子的情況,電阻値高,不適 使用金屬微粒子以及氧化物微粒子的情況 中燒成時,透過率太低,不適合作爲透明 最初在氧化性氣體環境中燒成(第一次退 空環境中燒成(第二次退火)時,電阻値 導電膜。又從這些比較例,雖可藉由在氧 燒成時間變長,使透過特性變好,同時| 化,電阻値大幅劣化。 〔產業上的利用可能性〕 根據本發明,使用特定分散液,於低 成具低電阻且高透過率的透明導電膜,該 方法以及所得膜,例如在電氣電子工業等 平面顯示器等的顯示器機器、顯示器表面 波遮蔽膜等使用的透明導電膜(例如透明1 只在真空環境中 時,評價所得膜 子、ΑΤΟ微粒子 合作爲導電膜。 ,只在真空環境 導電膜,而且。 火)、然後在真 高,不適合作爲 化性氣體環境中 g爲膜中進行氧 溫燒成’因可形 透明導電膜形成 領域,可適用於 的帶電以及電磁 I極)的領域。 -26-98% 70% 98% 68% 97% 98% 72% 95% 98% 96% 丨 7000 § ο § 5; 1200 48000 3240 36600 4570 2568 only decompression only decompression only decompression only decompression | l.00E- 03 1 1.00E-03 1.00E-03 1.00E-03 ο 230 (N 250 1 decompression 1 l decompression I u decompression atmosphere only I decompression only | decompression atmosphere only | decompression only 1 atmosphere [1.00E-03 1 [1.00E-03 1 1 atmospheric pressure I 1.00E-03 atmospheric pressure | l.00E-03 | 1.00E-03 atmospheric pressure [1.00E-03 1 atmospheric pressure | 23〇J ο m (N § Ο m (N 230 250 Ο rs PM 250 lOOvvt% [80wt% 1 | 80vvt% 1 80wt% 80 wt% | l00wt% | 90 wt% 90 wt% 100 wt% 90 wt% (20wt% 1 20wt% 20wt% 20 wt% JO wt% 10 wt% 10 wt% | ιτο 1 ITO ITO ITO 1ATQ-1 ATO ATO AZO AZO Tn-Sn Sn 6wt% In-Sn Sn 6 \ vt% Sn-Sb Sb 5wt% Sn-Sb Sb 5vvt% Zn- AI A1 5 \ vt% (N rn vs. oc o 200535090 (20) The examples and comparative examples described in the analysis table 丨 are described below. Examples 2 to 4 are implemented using In fine particles and IT 0 fine particles. 5 to 18 using In-Sn (sn: 6% by weight) Microparticles and ITO particles. In the obtained film, those with no Sn added exhibited higher electrical conductivity than those with Sn, and the transmittance was almost the same. Example 1 9 to 32 ΐη · Zη (zn: 6% by weight) fine particles were used as IZO fine particles. The obtained film has a resistance 値 that is slightly higher than that when the In_Sn alloy particles / 1 TO fine particles are used, and the transmittance of these films is almost the same. Example 3 3 to 39 9 S η-S b ( S b: 5% by weight) microparticles are ΑΟΟ microparticles. The obtained film has a higher resistance compared with the use of in microparticles or 1η · alloy microparticles / ιτο microparticles, In-Zrl alloy microparticles / ΙZO microparticles, and shows a higher 値, transmission rate Almost the same degree as these cases. This film is a film excellent in thermal stability and chemical stability. Furthermore, no change in resistance 于 was observed after firing at 600 ° C. Examples 40 to 46 used Zn-A1 (A1: 5% by weight) fine particles and AZO fine particles. The obtained film had lower electrical resistance than that using Sn-Sb particles / ATO particles, higher resistance than In-Sn particles / ITO particles, In-particles / IZO particles, and the transmittance was almost the same as those in the above examples. The same combination of the metal of the metal fine particles and the constituent metal of the metal oxide as the mother particle is considered. However, examples in which the constituent metal of the mother and the child and the metal of the metal fine particles are different are shown in Examples 47 to 50. Several examples of the micro-resistance neutron and Sn process membranes and ions Zn 〇 are particles -24- (21) (21) 200535090 Example 47 uses In microparticles and ATTO microparticles. The resistance 値 and transmittance 'of the obtained film were almost the same as those in the case where Sn-Sb fine particles / ATO fine particles were used. Example 48 used 1η-Zη microparticles (Zη: 6% by weight) and ITO microparticles. The resistance 値 and transmittance ′ of the obtained film were almost the same as those of 1 n-s η fine particles / ITO fine particles. In Example 49, Sn-Sb fine particles (Sb ·· 5% by weight) and AZO fine particles were used. The obtained film exhibited higher resistance than the case where Znη-A1 fine particles / AZO fine particles were used, and the transmittance was almost the same. Example 50 uses Zn-Al fine particles (AI: 5 wt%) and ITO fine particles. The obtained film exhibited a lower resistance 値 than that when In-Sn fine particles / ITO fine particles were used, and the transmittance was almost the same. All of the above-mentioned films have excellent etching characteristics. In particular, films obtained using In-Zn particles and oxide particles are more excellent than films obtained using In particles, In-Sn particles or Sn-Sb particles and oxide particles. Etching characteristics. Thus, it was found that the film obtained by using the In_Zn fine particles and the oxide fine particles to constitute a system was a film having excellent processability. According to the above examples, it was found that using a mixed material of various metal fine particles and metal oxide mother particles as a starting material, and reviewing the results of the firing method, it was found that various transparent conductive films having a predetermined surface resistance and transmittance can be formed. In Comparative Examples] to I 〇, using only oxide (I τ Ο, A Τ Ο and AZO) fine particles, using metal fine particles and oxide -25- (22) 200535090 (I TO, ΑΤΟ and AZO) fine particles In some cases, surface resistance and transmittance during firing and firing in an oxidizing gas environment. When only ITO particles or AZO particles are used, the resistance is high, and when the metal particles and oxide particles are not suitable for firing, the transmittance is too low, and it is not suitable as a transparent first firing in an oxidizing gas environment (first time When firing in a vacuum environment (second annealing), the resistance 値 conductive film. From these comparative examples, although the sintering time can be made longer by oxygen, the transmission characteristics can be improved, and the resistance 値 can be greatly increased. [Industrial Applicability] According to the present invention, a specific dispersion liquid is used to form a transparent conductive film with low resistance and high transmittance, and the method and the resulting film are used in, for example, flat displays such as the electrical and electronic industries Transparent conductive films used in display devices, display surface wave shielding films, etc. (for example, when transparent 1 is used only in a vacuum environment, the resulting film and ATTO fine particles cooperate to form a conductive film. Conductive films are only used in a vacuum environment, and fire.), Then, in the real high temperature, it is not suitable for the chemical gas environment to perform oxygen temperature firing in the 'formable transparent conductive film formation field' , Can be applied to the field of charging and electromagnetic I pole). -26-