TWI309050B - Azo transparent conducting film with metallic nano particles and method of producing thereof - Google Patents

Azo transparent conducting film with metallic nano particles and method of producing thereof Download PDF

Info

Publication number
TWI309050B
TWI309050B TW95111762A TW95111762A TWI309050B TW I309050 B TWI309050 B TW I309050B TW 95111762 A TW95111762 A TW 95111762A TW 95111762 A TW95111762 A TW 95111762A TW I309050 B TWI309050 B TW I309050B
Authority
TW
Taiwan
Prior art keywords
aluminum
metal particles
transparent conductive
zinc oxide
nano metal
Prior art date
Application number
TW95111762A
Other languages
Chinese (zh)
Other versions
TW200739619A (en
Inventor
Cheng Chuan Wang
Shoe Wen Lee
Ai Kang Li
Dong Hwang Chen
Kun Yang Wu
Sung Hsun Chiang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95111762A priority Critical patent/TWI309050B/en
Priority to JP2006149382A priority patent/JP2007280910A/en
Publication of TW200739619A publication Critical patent/TW200739619A/en
Application granted granted Critical
Publication of TWI309050B publication Critical patent/TWI309050B/en
Priority to JP2011028102A priority patent/JP5469107B2/en

Links

Description

Ι3〇9〇^οε/ε 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種透明導電膜(transparent conducting film)及其製造方法’且特別是有關於一種具有低電阻係數 (resistivity)的含奈米金屬粒子(metallic nano particles)之摻在呂 氧化鋅(Al-doped zinc oxide,AZO)透明導電膜及其製造方 法。Ι3〇9〇^οε/ε Nine, invention description: [Technical field of the invention] The present invention relates to a transparent conducting film and a method of manufacturing the same, and in particular to a method having a low electrical resistivity ( A conductive nano-particle of a resistivity-containing aluminum-doped zinc oxide (AZO) transparent conductive film and a method for producing the same.

【先前技術】 透明導電氧化物(transparent conducting oxide,TCO) 薄膜因具有良好的導電性、可見光範圍内的高透明度、紅 外線南反射比、及半導體特性,因而被廣泛應用於各種光 電產品,例如:平面顯示器、太陽能電池、光電晶體、接 觸感應面板(Wh P_l)、發光元件、有機發光平面顯示 示面板(PDPPanel)、汽車防熱除霧玻璃、光 ^轉換&、透明加熱器防靜電膜、紅外線反㈣置 用破璃等。因此關於TC〇的材料開發、性質與製程 9文良及應用研究等’―直都備受重視。尤 種光電元件的蓬勃發展,更使得卡 八、年來各 材料絲絲注㈣ί點使㈣核板使㈣了⑺薄膜 程。;S = = =為氣相製程與濕式製[Prior Art] Transparent conductive oxide (TCO) thin films are widely used in various optoelectronic products due to their good electrical conductivity, high transparency in the visible range, infrared reflectance, and semiconductor characteristics, such as: Flat panel display, solar cell, photoelectric crystal, touch sensing panel (Wh P_l), light-emitting element, organic light-emitting flat display panel (PDPPanel), automotive heat-resistant defogging glass, optical conversion &, transparent heater anti-static film, infrared Anti (four) use broken glass and so on. Therefore, the material development, nature and process of TC〇9 Wenliang and applied research, etc., are highly valued. The thriving development of the special optoelectronic components has made it possible to make four (4) nucleus plates (4) and (7) film processes. ;S = = = for gas phase process and wet process

前述方法需i用熱處:疋為主’但是因為 薄膜的曰初 的條件與方式對於TCO 造成丁^:: *、明相結構、緻密性有相當的影塑’、®而 “伽_在導電性質與先穿透度的表現上;;變:而 5The above method requires i to use heat: 疋 is the main one. However, because of the initial conditions and methods of the film, the TCO causes D:: *, the phase structure and the compactness have considerable shadows, and the gamma is Conductive properties and the performance of the first penetration; change: and 5

I309(H t薄膜晶格結構趨於完整與結晶成長變大,可使薄膜介面 有助於載子移動力的提升,使導電性質增加。所以 4lTC0溥膜的製程’都需經過高溫製程或後段高溫熱 理來提升其導電性質(τ>4⑻。c)。 、、然而,熱處理温度高雖會幫助結晶成長,但同時也會 ==0xygenvacancy)降低,反而造成Τ 【發明内容】 本电明的目的就是在提供—種含奈米金屬粒子之推銘 升透明^電膜’在不影響光穿透率的情況下提 开溥膜的導電性。 本發明的再一目的是提供一種含奈米金屬粒子之捧銘 :透 透明ir:提出一種含奈米金屬粒子之軸氧化筆〇) 魄化鋅以及奈米金係數,包括摻 °-°1 at.〇/0^ 5 at.% 〇 ,、中不米金屬粒子的含量為 紹=^發_較佳實施_述之含奈米麵粒子之摻 依料剌的健料觸叙含奈 鋁虱化鋅(AZO)透明導電膣, 、蜀粒子之杉 ^〜^(^/。。、私紹乳化鋅的紹含量可 依照本發明的較佳實施例所述之含奈米金屬粒子之摻 6 13〇9Q乳 doc/e 鋁氧化鋅透明導電膜,、、 • 金、鉑、銦、鎵、锂上述奈米金屬粒子是選自包括銀、 _本發明的$佳;:銅與鉈其中之-。 鋁氧化鋅透明導電土Λ &例所述之含奈米金屬粒子之摻 度。 包、,其具有約200 nm至1000 _的厚 依照本發明的軔 I呂氧化鋅透明導雷 Λ也例所述之含奈米金屬粒子之掺 nm。 、’上述奈米金屬粒子的粒徑約小於5〇 本 g月 x? φ (ΑΖΟ)透明導電腹f含奈米金屬粒子之摻銘氧化鋅 以溶凝勝法製作摻$ t造方法,是先將—金屬前驅物加入 還原作用 i氣化鋅的一含醇反應液中,藉醇類的 - 奸,以形成·!溶凝膠形成的同時產生奈米金屬 ^膠體洛液。這種膠體溶液是含奈米金屬粒 t ^呂氧化鋅膠體溶液。接著,將膠體溶液製成—薄膜, 再、’上述薄膜進行熱處理製程,以職—透明導電膜。 ,依照本發明的較佳實施例所述的製造方法,上述熱處 理製程包括兩段式製程,包括第一次熱處理:進行锻燒; 以及第,次熱處理:進行氫氣熱處理。 依照本發明的較佳實施例所述的製造方法’上述熱處 理製程可為氫氣熱處理。 依照本發明的較佳實施例所述的製造方法’上述將膠 體溶液製成薄膜的方法包括旋轉塗佈法(spin coating)、浸 塗法(dipping)、印刷(printing)、網板印刷(screen printing)、 模板印刷(stencil printing)、喷塗(spraying)或滚輪旋塗 (roller coating)。 7 I309Q^doc/e 導本的較佳實施例所述的製造方法,上述透明 電把中的奈米金屬粒子的含量為aG1 at。/。至5 at.%^月 金屬佳實施例所述的製造方法’上述奈米 銳c括銀、金,、銦、鎵、鎳,、鋼與 屬粒化辞_)透明導電膜内因含奈米金 =,Γ提Γ膜的導電性。而且,本發明有別於^ 進二’疋以濕式製程製備透明導電膜,故可在 進仃,不但設備成本較低,且產品面積大。 Η牛下 易憧為Ϊί;=Ϊ:;他:的一 明如下。卜文m關,並配合所附圖式,作詳細說 【實施方式】 之捭:發明之—較佳實施例的含奈米金屬粒子 之接=化鋅(ΑΖ〇)透明導電膜的製 子I309 (Ht film lattice structure tends to be complete and crystal growth becomes larger, which can make the film interface contribute to the improvement of carrier mobility and increase the conductivity. Therefore, the process of 4lTC0 film needs to go through high temperature process or the latter stage. High temperature heat treatment to improve its electrical conductivity (τ > 4 (8). c). However, although the high heat treatment temperature will help crystal growth, it will also reduce = 0 xygenvacancy), but cause Τ [invention] The purpose is to provide the conductivity of the ruthenium film without providing a change in the light transmittance of the nano-metal film containing nano-metal particles. A further object of the present invention is to provide a nano-particle containing nano-particles: transparent ir: an axis-oxidized pen containing nano metal particles) zinc telluride and nano-gold coefficient, including blending °-°1 At.〇/0^ 5 at.% 〇,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The zinc-containing (AZO) transparent conductive ruthenium, the ruthenium granules of the ruthenium granules, and the granules of the emulsified zinc can be blended according to the preferred embodiment of the present invention. 13〇9Q milk doc/e aluminum zinc oxide transparent conductive film,, • gold, platinum, indium, gallium, lithium, the above nano metal particles are selected from the group consisting of silver, _ the invention is good;: copper and bismuth - Aluminium ZnO transparent conductive Λ 掺 掺 例 例 例 例 例 例 例 例 例 例 例 例 例 例 掺 掺 掺 掺 掺 掺 掺 含 含 含 含 含 含 含 含 含 含 含 吕 吕 吕 吕 吕 吕 吕 吕 吕 吕 吕 吕 吕 吕Also, the nano metal-containing particles are doped with nm. The particle size of the above-mentioned nano metal particles is less than about 5 〇. g g x φ (ΑΖΟ) transparent conductive belly f The method for preparing the doped zinc oxide by using the metal oxide particles is to add the metal precursor into the alcohol-containing reaction solution of the zinc sulfide, and the alcohol-based rape Forming! The formation of the lyotropic gel produces a nano-metal colloidal Loose solution. The colloidal solution is a colloidal solution containing nano-sized metal particles t ^ Zn ZnO. Next, the colloidal solution is made into a film, and then The film is subjected to a heat treatment process, the job-transparent conductive film. According to the manufacturing method of the preferred embodiment of the present invention, the heat treatment process comprises a two-stage process, including a first heat treatment: performing calcination; and Heat treatment: heat treatment of hydrogen. According to a preferred embodiment of the present invention, the above heat treatment process may be a hydrogen heat treatment. According to a preferred embodiment of the present invention, the above-described method of forming a colloidal solution into a film Methods include spin coating, dipping, printing, screen printing, stencil printing, spraying (spraying) Or roller coating. 7 I309Q^doc/e The manufacturing method described in the preferred embodiment, the content of the nano metal particles in the transparent electric handle is aG1 at. / to 5 at .%^月金属佳佳例 The manufacturing method described in the above-mentioned nano sharp c including silver, gold, indium, gallium, nickel, steel and granules _) transparent conductive film containing nano gold = Γ Lifting the conductivity of the film. Moreover, the present invention is different from the second process in the preparation of a transparent conductive film by a wet process, so that it can be advanced, which not only has low equipment cost, but also has a large product area. Under the yak, it is easy to be Ϊί;=Ϊ:;卜文m关, and with the accompanying drawings, the details are described. [Embodiment] The invention - the preferred embodiment of the nano-particle-containing metal-containing zinc-containing (yttrium) transparent conductive film preparation

請麥照圖1,先進行步驟1ηΛ由丨k M 摻銘氧化鋅(AZ0)膠體溶液:這個 物104加入以溶凝膠法製作C :至翁月ij驅 中,經過步驟K)6混合“ίί 3辞的含醇反應液102 之後,再進行步驟⑽%1:反2,與金属前驅物 藉著醇類的還原作用,於摻合物,以便 生奈米金屬粒子,以形成喊膠形成的同時產 子是選自包括銀、金、銘、姻體;:液禮而上述奈米金屬粒 之一,且餘是金或_㈡金^Ϊ ^、銅與銘其中 8 1309(¾¾^ 然後,於步驟120中,進行塗佈成膜,以將膠體溶液 • 製成一薄膜。而上述製成薄膜的方法例如是旋轉塗佈法 (spin coating)、浸塗法(dipping)、印刷(printing)、網板印刷 (screen printing)、模板印刷(stencil printing)、喷塗⑽mying) 或滾輪旋塗(roller⑶也啤);較佳是旋轉塗佈法或者浸塗 法。 之後,於步驟130中,對上述薄膜進行熱處理,以形 成一層透明導電膜,其厚度例如是在20 _至2000臟之 攀 間,且較佳是具有200 _至i_nm的厚度。而步驟13〇 的熱處理製程可以是兩段式製程或者直接進行一道氮氣熱 處理。其中’上述兩段式製程包括進行锻燒的第一次熱處 理以及進行氫氣熱處理的第二次熱處理。再者,所形成的 透明導電膜中的奈米金屬粒子的含量約為讀政%至$ at.〇/〇 ;較佳是在〇 〇5的%至】站%之間。而且,上述太 金屬粒子的粒徑約小於5〇11111。 不〆、 、下將舉出數個貫例以詳細說明本發明之内容, • 發明之範圍並不僅限於這些實例。 一 貫例-:含銀奈綠子之AZ〇透明導電膜的Please take a photo of Fig. 1, first step 1ηΛ by 丨k M with a zinc oxide (AZ0) colloidal solution: this material 104 is added by sol gel method to make C: to Weng Yue ij drive, after step K) 6 mix After the alcohol-containing reaction liquid 102 of the ίί 3, the step (10)%1: reverse 2 is carried out, and the metal precursor is reduced by the alcohol, and the mixture is mixed to form the nano metal particles to form a shim gel. At the same time, the child is selected from the group consisting of silver, gold, Ming, and marriage; one of the above-mentioned nano-metal particles, and the remainder is gold or _(two) gold ^Ϊ ^, copper and Ming among them 8 1309 (3⁄43⁄4^ In step 120, coating is performed to form a film to form a film into a film, and the film forming method is, for example, spin coating, dipping, printing. ), screen printing, stencil printing, spraying (10) mying) or roller spinning (roller (3) also beer); preferably by spin coating or dip coating. Thereafter, in step 130, The film is heat-treated to form a transparent conductive film having a thickness of, for example, 20 Å to 2000 The climbing room preferably has a thickness of 200 _ to i_nm. The heat treatment process of step 13 可以 may be a two-stage process or a direct nitrogen heat treatment. The 'two-stage process includes the first one for calcination. The second heat treatment and the second heat treatment for performing the hydrogen heat treatment. Further, the content of the nano metal particles in the formed transparent conductive film is about 5% to at.〇/〇; preferably at 〇〇5. % to the station%. Moreover, the particle size of the above-mentioned tow particles is less than about 5〇11111. Several examples will be given to illustrate the contents of the present invention in detail, and the scope of the invention is not limited These examples. Consistent example - AZ〇 transparent conductive film containing silver navel green

〜犯节、視开配眾成含0.1ΜΛ g+離子的乙醇,也可以先取適 Ι3〇9__ .. 量硝酸銀與去離子水經均句混合攪拌配製成含〇.iMAg+ 離子的水溶液。接著,取適量醋酸鋅(Zn(CJJ3C〇〇)2_2H2〇) 與氯化無(Αΐα3·6Η20)(Α1/Ζη原子數比約為! at.%)置入於 3〇ml樣本瓶中。然後,分別取適量的2-曱氧基乙醇 (2-meth^yeAanol)、上述〇JM硝酸銀與乙醇溶液或水溶 液、與單乙酉手胺(m〇n〇ethan〇lamine,MEA)(MEA/Zn2+,莫 耳比率為1 : 1),依序加至含有醋酸鋅與氯化鋁的樣本瓶 巾均勻混合’配製成含〇.75M Zn2+離子之混合溶液。然後, 將上述混合溶液置於恆溫水槽,持溫60它均勻攪拌小 特,即可得含銀奈米粒子之AZ〇膠體溶液。 之後’取適量之含銀奈米粒子之AZ0膠體溶液於玻 f基板上,然後依序進行塗佈、乾燥、鍛燒、氫氣熱處理 等動作,以獲得-同時具有高透光度與導電性的導電膜。 舉例來說,其步驟如下: 1.將製備好的含銀奈錄^AZQ雜紐滴於玻 璃基板上,然後以約3000 rpm進行旋轉塗佈3〇秒。 • 2.將㈣完後的麵基板置於350。(:的高溫爐中乾燥 10分釦。然後可選擇進行以下的的步驟3a或。 3a.兩段式熱處理:第一次熱處理是將塗佈乾燥後的 玻璃基板,放入高溫爐中進行鍛燒丨小時,來提升試片的 結晶性與透光度。第二次熱處理:將锻燒後的試片送入通 有3%氫氣(¾)與97%氬氣⑽之混合氣氛的管型爐中,進 行氫氣熱處理1小時,使試片產生氧空缺,藉此進一步提 升導電性質。 1309·— 人通處理:將;佈乾燥後的玻璃基板送 氫氣熱處理2小時,固3的:^型爐中,進行 實二ίΐί氧空缺’藉此進—步提升導電性質。 ==電阻係數值低於現有獅=;電; 米粒子的粒徑範圍約在20-30 nm。隨著銀含旦 =表面晶教凝集的現象越明顯。當Ag = 二3tf)成較為連續緻密的薄膜,其厚度約 有娜在可見光範圍的光穿透度上仍保 Λ例:個米f子之AZ〇透明導電膜的製備方法 基乙醇的、ΐ:补要是利用製備AZ〇膠體溶液所用的甲氧 子,因二膠體用的/在將金的前驅物還原成原子態的金粒 匕勝體的存在,所得粒子為奈米級。 子水經ί ^ = Ϊ ^金酸(HAUa4)與乙醇或去離 溶液作為金屬aiMAu3+離子的乙醇或水 由〜,^物’之後的製程則與實例一相似。 膜在第Ί f =的不同金粒子含量的AZO透明導電 2可知,本人^明弟二次熱處理的電阻係數如圖2所示。從圖 電阻伟數⑽透明導電膜在完成熱處理之後,波 =數可低於2Xl〇l,甚至是接近㈣、丄電 卜關於貫例一的含金奈米粒子之Az〇透明導電 11 :wf.doc/e 率(transmittance),則可參考圖3,其為不同太 未孟粒子含量之AZ0透明導電臈,以uv 二 =長300_〜800_之光穿透性質。由圖3可知,光曰義 透率可大於85%以上。 疋牙 所述’在本發明之軸氧化鋅(AZQ)透明導電膜 下金屬粒子,所以能夠在不影響光穿透率的情況 明阻係數,進而提升薄膜的導電性。而且,本發 月的,疋以濕式製程製備透料電膜, ^ 可在健條件下進行,不但設備成本較低= 雖然本發明已以較佳實施例揭露如上,然其 明’任何熟1此技藝者’在不脫離本發明之精神 ^圍内,當可作些許之更動與㈣,因此树明之 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是依照本發明之一較佳實施例的含奈米金屬粒 之摻鋁氧化鋅(ΑΖΟ)透明導電膜的製程步驟圖。 、圖2是本發明的含奈米金屬粒子之摻鋁氧化鋅(ΑΖ〇 透明導電膜在兩段式熱處理的奈米金/粒+含量及其 數的關係曲線圖。 % ” 圖3是在不同奈米金粒子含量的本發明之摻鋁 (ΑΖΟ)透明導電膜的波長與穿透率的曲線圖。 【主要元件符號說明】 100、106、108、120、130 :步驟 104 ··金屬前驅物 ⑺2 :以溶凝膠法製作ΑΖΟ的含醇反應液 12~ 犯 、 、 视 、 、 、 、 、 、 、 、 、 含 含 含 含 含 含 含 含 含 含 含 含 含 含 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇 乙醇Next, an appropriate amount of zinc acetate (Zn(CJJ3C〇〇)2_2H2〇) and chlorinated (Αΐα3·6Η20) (Α1/Ζη atomic ratio of about ! at.%) were placed in a 3 〇 ml sample bottle. Then, an appropriate amount of 2-methoxypheneethanol (2-meth^yeAanol), the above-mentioned 〇JM silver nitrate and ethanol solution or aqueous solution, and monoethylamine (MEA) (MEA/Zn2+) The molar ratio is 1: 1), and is sequentially added to a sample bottle containing zinc acetate and aluminum chloride to form a mixed solution containing 〇.75M Zn2+ ions. Then, the above mixed solution is placed in a constant temperature water bath, and the temperature is maintained at 60, and the mixture is uniformly stirred to obtain an AZ 〇 colloidal solution containing silver nanoparticles. Then 'take an appropriate amount of AZ0 colloidal solution containing silver nanoparticles on the glass substrate, and then sequentially apply, dry, calcination, hydrogen heat treatment, etc. to obtain - simultaneously with high transparency and conductivity Conductive film. For example, the steps are as follows: 1. The prepared silver-containing lanthanum AZQ was added to a glass substrate, and then spin-coated at about 3000 rpm for 3 seconds. • 2. Place the surface substrate after (4) at 350. (: 10 minutes of drying in a high temperature furnace. Then you can choose to perform the following steps 3a or 3. 3a. Two-stage heat treatment: the first heat treatment is to apply the dried glass substrate to a high temperature furnace for forging After burning for a few hours, the crystallinity and transparency of the test piece are improved. The second heat treatment: the calcined test piece is fed into a tube type having a mixed atmosphere of 3% hydrogen (3⁄4) and 97% argon (10). In the furnace, hydrogen gas heat treatment is carried out for 1 hour to generate oxygen vacancies in the test piece, thereby further improving the conductive properties. 1309·——People's treatment: The glass substrate after drying the cloth is subjected to hydrogen heat treatment for 2 hours, solid 3: In the furnace, the actual oxygen vacancy is carried out to increase the conductive properties. == The resistivity value is lower than the existing lion =; electricity; the particle size range of the rice particles is about 20-30 nm. = The phenomenon of surface crystal agglutination is more obvious. When Ag = 2 3tf), it is a continuous and dense film, and its thickness is about the light transmittance of the visible light range. The AZ is transparent. Method for preparing conductive film based on ethanol, hydrazine: supplement is used to prepare AZ 〇 colloidal solution Methoxy child, due to / in the presence of gold atom precursor is reduced to form the gold particles dagger body wins, two nanoscale particles resulting colloid used. The process of water after ί ^ = Ϊ ^ gold acid (HAUa4) and ethanol or the removal solution as the metal aiMAu3+ ion of ethanol or water from ~, ^' is similar to that of Example 1. The AZO transparent conductive 2 of the film with the different gold content of the second = f = 2, the resistance coefficient of the second heat treatment of the person I Ming is shown in Fig. 2. From the graph resistance (10) transparent conductive film after the completion of heat treatment, the wave = number can be lower than 2Xl〇l, or even close to (four), 丄 卜 关于 贯 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 关于 含 含 含For the .doc/e rate, please refer to Fig. 3, which is the AZ0 transparent conductive yt of different tera-particle content, with uv 2 = length 300_~800_ light penetration property. As can be seen from Fig. 3, the aperture transmittance can be greater than 85%. The above-mentioned metal particles under the axial zinc oxide (AZQ) transparent conductive film of the present invention can improve the conductivity of the film without affecting the light transmittance. Moreover, in the present month, the wet film is prepared by a wet process, which can be carried out under healthy conditions, which not only has low equipment cost = although the present invention has been disclosed in the preferred embodiment as above, 1 The skilled artisan's scope can be changed and (4) without departing from the spirit of the invention, and therefore the scope of the invention is defined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a process drawing diagram of an aluminum-doped zinc oxide (yttrium) transparent conductive film containing nano metal particles in accordance with a preferred embodiment of the present invention. 2 is a graph showing the relationship between the content of aluminum nano/zinc+ in the two-stage heat treatment of the aluminum-containing zinc oxide containing the nano metal particles of the present invention (%). FIG. A graph of the wavelength and transmittance of the aluminum-doped (yttrium) transparent conductive film of the present invention with different nano gold particle contents. [Main element symbol description] 100, 106, 108, 120, 130: Step 104 ·· Metal precursor (7) 2: Preparation of an alcohol-containing reaction solution of hydrazine by a sol gel method 12

Claims (1)

:wf.doc/e 十、申請專利範圍: - 1. 一種含奈米金屬粒子之摻鋁氧化鋅(AZO)透明導電 膜,其具有小於2χ10_3Ωτιη之電阻係數,包括: 摻鋁氧化鋅;以及 奈米金屬粒子,其中該奈米金屬粒子的含量為0.01 at.%至 5 at.%。 2.如申請專利範圍第1項所述之含奈米金屬粒子之摻 鋁氧化鋅透明導電膜,其具有85%以上之光穿透度。 • 3.如申請專利範圍第1項所述之含奈米金屬粒子之摻 鋁氧化鋅透明導電膜,其中該摻鋁氧化鋅的鋁含量為0.5 at.%至 10 at.%。 4. 如申請專利範圍第1項所述之含奈米金屬粒子之掺 - 鋁氧化鋅透明導電膜,其中該奈米金屬粒子是選自包括 銀'金'鈎 '銦 '鎵'鎳 '鈀 '銅與鉈其t之一。 5. 如申請專利範圍第1項所述之含奈米金屬粒子之摻 鋁氧化鋅透明導電膜,其具有200 nm至1000 nm的厚度。 φ 6.如申請專利範圍第1項所述之含奈米金屬粒子之掺 鋁氧化鋅透明導電膜,其中該奈米金屬粒子的粒徑小於50 7 nm ° 7.—種含奈米金屬粒子之摻鋁氧化鋅(AZO)透明導電 膜的製造方法,包括: 將一金屬前驅物加入以溶凝膠法製作摻鋁氧化鋅的一 含醇反應液中,藉醇類的還原作用,於摻鋁氧化鋅溶凝膠 形成的同時產生奈米金屬粒子,以形成一膠體溶液,該膠 13 d〇c/e 體溶液是含兮太, 化鋅膠體, 對叇薄膜進行一埶處f 8.如申嗜直 …处衣^以形成-透明導電膜。 紹氧化鋅7項所述之含奈米金屬粒子之推 錢的製造方法,其中該熱處 包括: f - 人熱處理··進行鍛燒;以及 弟二次熱處理:進行氫氣熱處理。 链負ttt請專利範圍第7項所述之含奈求金屬粒子之摻 翻導朗的製造方法,其中賴處理製程包括 虱軋熱處理。 |0.如申請專利範圍第7項所述之含奈米金屬粒子之 摻铭,化鋅透明導電朗製造方法,其巾將該膠體溶液製 成°亥薄膜的方法包括旋轉塗佈法(Spin c〇ating)、浸塗法 (diPf^g)、印刷(printing)、網板印刷(screen printing)、模板 印刷(stencil printing)、喷塗(spraying)或滾輪旋塗(r〇ller coating) ° 11. 如申請專利範圍第7項所述之含奈米金屬极子之 摻鋁氧化鋅透明導電膜的製造方法,其中該透明導電與中 的該奈米金屬粒子的含量為〇.〇1 at·%至5 at.%。 12. 如申請專利範圍第7項所述之含奈米金屬卷1子 摻紹氧化鋅透明導電膜的製造方法,其中該奈米金屬极子 是選自包括銀、金、鉑、銦、鎵、錄、把、銅與銘其中之:wf.doc/e X. Patent application scope: - 1. An aluminum-doped zinc oxide (AZO) transparent conductive film containing nano metal particles, which has a resistivity of less than 2χ10_3Ωτιη, including: aluminum-doped zinc oxide; The metal metal particles, wherein the content of the nano metal particles is 0.01 at.% to 5 at.%. 2. The aluminum-doped zinc oxide transparent conductive film containing nano metal particles according to claim 1, which has a light transmittance of 85% or more. 3. The aluminum-doped zinc oxide transparent conductive film containing nano metal particles according to claim 1, wherein the aluminum-doped zinc oxide has an aluminum content of 0.5 at.% to 10 at.%. 4. The aluminum-doped zinc-containing transparent conductive film containing nano metal particles according to claim 1, wherein the nano metal particles are selected from the group consisting of silver 'gold' hook 'indium' gallium 'nickel' palladium 'Copper and one of its t. 5. The aluminum-doped zinc oxide transparent conductive film containing nano metal particles according to claim 1, which has a thickness of from 200 nm to 1000 nm. Φ 6. The aluminum-doped zinc oxide transparent conductive film containing nano metal particles according to claim 1, wherein the nano metal particles have a particle diameter of less than 50 7 nm ° 7. The method for manufacturing an aluminum-doped zinc oxide (AZO) transparent conductive film comprises: adding a metal precursor to an alcohol-containing reaction solution prepared by a melt-gel method to form aluminum-doped zinc oxide, and performing the reduction by alcohol reduction The aluminum zinc oxide sol gel is formed at the same time to produce nano metal particles to form a colloidal solution. The 13 d〇c/e solution of the gel is a ruthenium-containing, zinc-zinc colloid, and a ruthenium film is applied to the tantalum film. Such as Shen Zhi straight ... to ^ to form a transparent conductive film. A method for producing a nanoparticle-containing nanoparticle according to the seventh aspect of the invention, wherein the heat includes: f-man heat treatment·for calcination; and second heat treatment: hydrogen heat treatment. Chain negative ttt Please refer to the manufacturing method of the metal-containing metal particles according to Item 7 of the patent scope, wherein the Lai processing process includes a rolling heat treatment. |0. The method for manufacturing a nano-particle containing nano-particles as described in claim 7 of the patent application, the method for producing a transparent zinc-conducting galvanic method, the method for forming the colloidal solution into a film, including spin coating method (Spin) C〇ating), dip coating, printing, screen printing, stencil printing, spraying or roller coating (r〇ller coating) 11. The method for producing an aluminum-doped zinc oxide transparent conductive film containing a nano metal pole according to claim 7, wherein the content of the nano metal particles in the transparent conductive material is 〇.〇1 at ·% to 5 at.%. 12. The method according to claim 7, wherein the nano metal dipole is selected from the group consisting of silver, gold, platinum, indium, and gallium. , recording, turning, copper and Ming
TW95111762A 2006-04-03 2006-04-03 Azo transparent conducting film with metallic nano particles and method of producing thereof TWI309050B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW95111762A TWI309050B (en) 2006-04-03 2006-04-03 Azo transparent conducting film with metallic nano particles and method of producing thereof
JP2006149382A JP2007280910A (en) 2006-04-03 2006-05-30 Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles
JP2011028102A JP5469107B2 (en) 2006-04-03 2011-02-14 Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95111762A TWI309050B (en) 2006-04-03 2006-04-03 Azo transparent conducting film with metallic nano particles and method of producing thereof

Publications (2)

Publication Number Publication Date
TW200739619A TW200739619A (en) 2007-10-16
TWI309050B true TWI309050B (en) 2009-04-21

Family

ID=38682127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95111762A TWI309050B (en) 2006-04-03 2006-04-03 Azo transparent conducting film with metallic nano particles and method of producing thereof

Country Status (2)

Country Link
JP (2) JP2007280910A (en)
TW (1) TWI309050B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288767B2 (en) 2010-01-04 2012-10-16 National Taiwan University Thin-film transistor and forming method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573288B (en) * 2010-10-18 2017-03-01 鴻海精密工業股份有限公司 Light emitting diode and manufacture method for same
KR101324558B1 (en) * 2012-04-04 2013-11-01 부산대학교 산학협력단 Transparent composite conductive oxide thin films and method for preparing the oxide thin films
KR101351475B1 (en) 2012-12-31 2014-01-15 순천대학교 산학협력단 Fabrication method for transparent conductive oxide thin film and transparent conductive oxide thin film made by the method
KR101397078B1 (en) * 2013-09-10 2014-05-19 부산대학교 산학협력단 Transparent composite conductive oxide thin films and display device produced using the oxide thin films
JP6436487B2 (en) * 2014-12-29 2018-12-12 小林 博 Manufacturing method for manufacturing transparent conductive film
CN108231998A (en) * 2017-12-31 2018-06-29 中国科学院声学研究所 One kind mixes vanadium ZnO thick films and preparation method thereof
CN108329023B (en) * 2018-03-05 2021-03-30 国网湖南省电力有限公司 Preparation method of zinc oxide based nano composite powder resistance card

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61205619A (en) * 1985-03-08 1986-09-11 Osaka Tokushu Gokin Kk Transparent electrically-conductive film of heat-resistant zinc oxide
JP3834339B2 (en) * 1992-12-15 2006-10-18 出光興産株式会社 Transparent conductive film and method for producing the same
JPH10283847A (en) * 1997-04-01 1998-10-23 Sharp Corp Transparent conductive film
JP4814491B2 (en) * 2004-02-24 2011-11-16 株式会社アルバック Method for forming transparent conductive film and transparent electrode
JP5070524B2 (en) * 2005-07-28 2012-11-14 Dowaエレクトロニクス株式会社 Production method of conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288767B2 (en) 2010-01-04 2012-10-16 National Taiwan University Thin-film transistor and forming method thereof

Also Published As

Publication number Publication date
TW200739619A (en) 2007-10-16
JP5469107B2 (en) 2014-04-09
JP2011119273A (en) 2011-06-16
JP2007280910A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
TWI309050B (en) Azo transparent conducting film with metallic nano particles and method of producing thereof
Nütz et al. Wet-chemical synthesis of doped nanoparticles: optical properties of oxygen-deficient and antimony-doped colloidal SnO2
Lindroos et al. Growth of CuS thin films by the successive ionic layer adsorption and reaction method
Lin et al. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method
Uysal et al. Structural and optical properties of SnO2 nano films by spin-coating method
Shao et al. Enhanced ultraviolet emission from poly (vinyl alcohol) ZnO nanoparticles using a SiO2–Au core/shell structure
Geng et al. Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids
Ogi et al. Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis
Ren et al. Introduction of Ag nanoparticles and AZO layer to prepare AZO/Ag/FTO trilayer films with high overall photoelectric properties
Syed Zahirullah et al. Structural and optical properties of Cu-doped ZnO nanorods by silar method
Lee et al. Transparent, homogeneous tin oxide (SnO2) thin films containing SnO2-coated gold nanoparticles
Jeng The influence of annealing atmosphere on the material properties of sol–gel derived SnO2: Sb films before and after annealing
Su et al. The surface-plasmon-resonance and band bending effects on the photoluminescence enhancement of Ag-decorated ZnO nanorods
Senol et al. The effect of cobalt and boron on the structural, microstructural, and optoelectronic properties of ZnO nanoparticles
Arunachalam et al. Influence of sprayed nanocrystalline Zn-doped TiO2 photoelectrode with the dye extracted from Hibiscus Surattensis as sensitizer in dye-sensitized solar cell
Yilmaz et al. The effect of Pb doping on the characteristic properties of spin coated ZnO thin films: Wrinkle structures
Mazón-Montijo et al. Iron pyrite thin films via thermal treatment of chemically deposited precursor films
Vadivel et al. Effect of W doping on structural, optical and photocatalytic activity of SnO 2 nanostructure thin films
Anitha et al. Influence of fluorine doped CdO thin films by an simplified spray pyrolysis technique using nebulizer
Kumar et al. Fabrication of plasmonic gold-nanoparticle-transition metal oxides thin films for optoelectronic applications
Guo et al. Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method
Mariappan et al. Nanostructured CexZn1− xO thin films: Influence of Ce doping on the structural, optical and electrical properties
Mrabet et al. Mechanism of wettability conversion on sprayed Zn2SnO4 thin films surfaces modified by thermal annealing in air
Khelifi et al. Influence of Ti doping on SnO2 thin films properties prepared by ultrasonic spray technique
Adedokun et al. Effect of precipitating agents on the performance of ZnO nanoparticles based photo-anodes in dye-sensitized solar cells