JPH10283847A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH10283847A
JPH10283847A JP8287597A JP8287597A JPH10283847A JP H10283847 A JPH10283847 A JP H10283847A JP 8287597 A JP8287597 A JP 8287597A JP 8287597 A JP8287597 A JP 8287597A JP H10283847 A JPH10283847 A JP H10283847A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
tin oxide
fine particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8287597A
Other languages
Japanese (ja)
Inventor
Takeshi Nakanishi
健 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8287597A priority Critical patent/JPH10283847A/en
Publication of JPH10283847A publication Critical patent/JPH10283847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film which excels in electric conductivity and photo-transmissiveness, can be fabricated easily, and is applicable as an electric connecting means for an optical element. SOLUTION: Electroconductive particulates are mixed with a sol liquid as a composition of a sol-gel film electroconductive so that a coating liquid is obtained, which is applied to a base and subjected to a baking process in a 400 deg.C reductive atmosphere, and thus an intended transparent conductive film is obtained. The conductive composition contains, for example, lithium tin oxide. The obtained film can be applied widely to electronic devices such as solar cell, liquid crystal element, etc. In the case of a high Bayes rate and a large photo-confining effects, this is used to a solar cell, which should enhance the transducing efficiency owing to enhancement of the shortcircuit photo-current density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電膜に関
し、より詳細には、太陽電池、液晶素子、その他電子デ
バイス全般に適用されるもので、塗布法により膜を形成
し得る当該透明導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film, and more particularly to a transparent conductive film which can be applied to a solar cell, a liquid crystal element, and other electronic devices, and can form a film by a coating method. About.

【0002】[0002]

【従来の技術】近年、太陽電池、液晶素子、その他電子
デバイス用の電極として、透明導電膜の必要性が高くな
ってきている。また、従来、光が関係する素子に用いる
透明導電性材料として、アンチモンドープ酸化錫、フッ
素ドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウ
ムドープ酸化亜鉛、酸化インジウム錫などが知られてい
る。そして、透明導電膜作製方法としてはスパッタリン
グ法、CVD法、真空蒸着法、塗布法があるが、塗布法
以外の方法は設備コストが高く、量産性に欠ける。これ
に対し、塗布法は設備的に低コストであり、量産性にも
富むため、これまで盛んに研究され、検討されてきた。
具体的な方法としては、導電性微粒子をバインダ樹脂に
分散させた液を塗布する方法があり、また、ゾル−ゲル
法のように導電性材料の原料のゾルを塗布、乾燥レゲル
化する方法がある。
2. Description of the Related Art In recent years, there has been an increasing need for transparent conductive films as electrodes for solar cells, liquid crystal elements, and other electronic devices. Conventionally, as a transparent conductive material used for an element involving light, antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium tin oxide, and the like are known. As a method for producing a transparent conductive film, there are a sputtering method, a CVD method, a vacuum evaporation method, and a coating method. However, methods other than the coating method have high equipment costs and lack mass productivity. On the other hand, the coating method is inexpensive in terms of equipment and rich in mass productivity, and thus has been actively studied and studied.
As a specific method, there is a method of applying a liquid in which conductive fine particles are dispersed in a binder resin, and a method of applying a sol of a raw material of a conductive material, such as a sol-gel method, and drying and regelating. is there.

【0003】[0003]

【発明が解決しようとする課題】導電性微粒子をバイン
ダ樹脂に分散させる例として、特開平5−5069号公
報、同5−151826、同6−76636、同6−1
19816、同6−125101、同7−242842
号公報が挙げられる。特開平6−119816号公報を
例に挙げると、導電性微粒子を酸化インジウム錫微粒子
としたものであるが、バインダ樹脂がシリカで絶縁性で
あるため、そこをキァリアが通りにくく、また、キァリ
アが消滅しやすいことで低抵抗化に限界がある。
Examples of dispersing conductive fine particles in a binder resin are disclosed in JP-A-5-5069, JP-A-5-151826, JP-A-5-151826, JP-A-6-76636, and JP-A-6-76636.
19816, 6-125101, 7-242842
Publication. For example, Japanese Patent Application Laid-Open No. HEI 6-119816 discloses that the conductive fine particles are made of indium tin oxide fine particles. However, since the binder resin is silica and insulating, the carrier hardly passes therethrough. There is a limit in lowering resistance because it is easily extinguished.

【0004】また、ゾル−ゲル法を用いる例としては、
特開平5−28834号公報、同5−116941、同
6−96619、同6−150741、同7−9404
4、同7−182939号公報が挙げられる。特開平5
−28834号公報を例に挙げると、透明導電膜として
酸化インジウム錫ゾル−ゲル膜を用いているが、ゾル−
ゲル膜では塗膜にクラックや粒界が生じやすいため均一
な膜を形成するのが困難である。そのため、この方法に
も低抵抗化に限界がある。また、特開平5−31482
0号公報、同7−262840ではバインダ樹脂として
導電性の酸化インジウム錫を用いているが、導電性微粒
子の粒径が大きく、膜が緻密でないため、現状では、こ
れらの塗布法においては10-3Ωcmオーダーが限界で
あり、10-4Ωcm台の抵抗を実現することが不可能で
あった。
[0004] Examples of using the sol-gel method include:
JP-A-5-28834, JP-A-5-11694, JP-A-6-96619, JP-A-6-150741, and JP-A-7-9404
4, No. 7-182939. JP 5
For example, JP-A-28834 uses an indium tin oxide sol-gel film as a transparent conductive film.
In the case of a gel film, it is difficult to form a uniform film because cracks and grain boundaries tend to occur in the coating film. Therefore, this method also has a limit in reducing the resistance. In addition, Japanese Patent Application Laid-Open No. 5-31482
0 JP, but using a conductive indium tin oxide as the 7-262840 In the binder resin, the particle size is large of the conductive fine particles, since the film is not dense, at present, in these coating methods 10 - The limit was on the order of 3 Ωcm, and it was impossible to realize a resistance of the order of 10 −4 Ωcm.

【0005】本発明は、上述した従来技術における問題
点に鑑みてなされたもので、導電性及び光の透過性に優
れ、容易に作製でき、光素子の電気的接続手段として適
用し得る透明導電膜を提供することをその解決課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has excellent conductivity and light transmission, can be easily manufactured, and can be used as a means for electrically connecting optical elements. The problem is to provide a membrane.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、導電
性バインダの組成液中に分散させた導電性微粒子を含有
する導電性塗料を基体に塗布し、乾燥することにより光
透過性薄膜を形成してなる透明導電膜としたものであ
る。
According to the first aspect of the present invention, a light-transmitting thin film is formed by applying a conductive paint containing conductive fine particles dispersed in a composition solution of a conductive binder to a substrate, followed by drying. Is formed as a transparent conductive film.

【0007】請求項2の発明は、請求項1記載の透明導
電膜において、前記導電性微粒子の粒径が10nm以下
であることを特徴としてなる透明導電膜としたものであ
る。
According to a second aspect of the present invention, there is provided the transparent conductive film according to the first aspect, wherein the conductive fine particles have a particle size of 10 nm or less.

【0008】請求項3の発明は、請求項1又は2記載の
透明導電膜において、前記導電性バインダの組成液がゾ
ル状を呈し、10-2〜10-4Ωcmの抵抗率を有するも
のであることを特徴としてなる透明導電膜としたもので
ある。
According to a third aspect of the present invention, in the transparent conductive film according to the first or second aspect, the composition liquid of the conductive binder has a sol state and has a resistivity of 10 −2 to 10 −4 Ωcm. This is a transparent conductive film characterized by the following.

【0009】請求項4の発明は、請求項1ないし3のい
ずれか記載の透明導電膜において、前記導電性バインダ
が酸化インジウム錫、アンチモンドープ酸化錫、フッ素
ドープ酸化錫、アルミニウムドープ酸化亜鉛あるいはガ
リウムドープ酸化亜鉛を含む組成であることを特徴とし
てなる透明導電膜としたものである。
According to a fourth aspect of the present invention, in the transparent conductive film according to any one of the first to third aspects, the conductive binder is indium tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide or gallium. This is a transparent conductive film characterized by having a composition containing doped zinc oxide.

【0010】請求項5の発明は、請求項1ないし4のい
ずれか記載の透明導電膜において、前記導電性微粒子が
10-3〜10-4Ωcmの抵抗率を有するものであること
を特徴としてなる透明導電膜としたものである。
A fifth aspect of the present invention is the transparent conductive film according to any one of the first to fourth aspects, wherein the conductive fine particles have a resistivity of 10 -3 to 10 -4 Ωcm. This is a transparent conductive film.

【0011】請求項6の発明は、請求項1ないし5いず
れか記載の透明導電膜において、前記導電性微粒子が酸
化インジウム錫、アンチモンドープ酸化錫、フッ素ドー
プ酸化錫、アルミニウムドープ酸化亜鉛あるいはガリウ
ムドープ酸化亜鉛であることを特徴としてなる透明導電
膜としたものである。
According to a sixth aspect of the present invention, in the transparent conductive film according to any one of the first to fifth aspects, the conductive fine particles are made of indium tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide or gallium-doped. This is a transparent conductive film characterized by being zinc oxide.

【0012】請求項7の発明は、請求項1ないし6いず
れか記載の透明導電膜において、前記透明導電膜が3〜
30%のヘイズ率を有するものであることを特徴として
なる透明導電膜としたものである。
According to a seventh aspect of the present invention, there is provided the transparent conductive film according to any one of the first to sixth aspects, wherein the transparent conductive film is 3 to
The transparent conductive film has a haze ratio of 30%.

【0013】上記した課題解決手段では、クラックが少
なく、10-4Ωcmオーダーの比抵抗を実現するための
バインダとしてかかる導電性バインダを用い、これに粒
径10nm以下の導電性微粒子を分散させることにより
透明導電膜を得る。導電性の微粒子はクラック防止のた
めのフィラとしての効果も示す。
In the above-mentioned means for solving the above problems, such a conductive binder is used as a binder for realizing a specific resistance of the order of 10 −4 Ωcm with few cracks, and conductive fine particles having a particle size of 10 nm or less are dispersed therein. To obtain a transparent conductive film. The conductive fine particles also have an effect as a filler for preventing cracks.

【0014】酸化インジウム錫(以下「ITO」と略記
する)を例として具体的に説明すると、導電性バインダ
の原料として、ITOゾル液を作製し、このゾルと粒径
1〜10nmのITO超微粒子を混合し、塗布液とす
る。混合比は微粒子/ゾル液が9/1から1/1の間が
適当である。導電性微粒子および導電性バインダの材質
はITOに限定されず、アンチモンドープ酸化錫、フッ
素ドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウ
ムドープ酸化亜鉛を用いても良い。
Specifically, indium tin oxide (hereinafter abbreviated as “ITO”) will be specifically described. An ITO sol solution is prepared as a raw material of a conductive binder, and this sol is mixed with ultrafine ITO particles having a particle size of 1 to 10 nm. Are mixed to form a coating solution. The mixing ratio of fine particles / sol solution is suitably between 9/1 and 1/1. The material of the conductive fine particles and the conductive binder is not limited to ITO, and antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, and gallium-doped zinc oxide may be used.

【0015】得られた塗布液の塗布方法は、一般的によ
く知られた塗布方法、例えば、スピンコート法、ディッ
プコート法、エアナイフコート法、カーテンコート法、
ロールコート法、ワイヤーバーコード法、グラビアコー
ト法により塗布することが出来る。塗布基板としては、
ガラス、ポリエチレンテレフタレートフィルム(PE
T,PEN等)、フッ素系フィルム(PFA,FEP
等)、ステンレス、透明セラミックス等が挙げられる。
[0015] The coating method of the obtained coating solution is a well-known coating method such as a spin coating method, a dip coating method, an air knife coating method, a curtain coating method, and the like.
It can be applied by a roll coating method, a wire barcode method, or a gravure coating method. As a coating substrate,
Glass, polyethylene terephthalate film (PE
T, PEN, etc.), fluorinated films (PFA, FEP)
Etc.), stainless steel, transparent ceramics and the like.

【0016】このように、導電性微粒子のバインダを導
電性のバインダとすることでキャリアが消滅しにくくな
り、キャリア移動度が向上する。また、導電性バインダ
自体、キャリアを多く保有しているのでキャリア濃度も
増加する。従って、低抵抗率を得ることが出来る。ま
た、微粒子に起因する表面凹凸もあり、10〜30%の
ヘイズ率があり、光散乱による光閉じ込め効果がある。
透過率は高く、光の吸収ロスも少ない。
As described above, by making the binder of the conductive fine particles a conductive binder, carriers are less likely to disappear and carrier mobility is improved. In addition, since the conductive binder itself has many carriers, the carrier concentration also increases. Therefore, a low resistivity can be obtained. In addition, there are surface irregularities due to fine particles, a haze ratio of 10 to 30%, and an effect of confining light by light scattering.
High transmittance and low light absorption loss.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)次のような組成で試薬を混合、撹拌し、I
TOゾル液を得た。 酢酸(99.9%、キシダ化学製) 20 cc インジウム(III)アセチルアセトナート(キシダ化学製) 2.3 g 塩化錫(IV)・n水和物(塩化錫wt%=74%、 n=4〜7、キシダ化学製) 0.3 g 硝酸(比重1.38、キシダ化学製) 0.5 cc このようにして得られたゾル液とITO超微粒子分散液
(平均粒径6nm、固形分濃度10%)を超微粒子分散
液/ゾル液=9/1の比で混合して塗布液を得た。この
ようにして得られた塗布液をスピンコート法により、2
00rpm、90secの条件で10cm角のコーニン
グガラス上に塗布した。次に、これを400℃で1時間
窒素雰囲気中で焼成を行った。得られた塗膜の膜厚を自
動エリプソメータで、比抵抗、キァリア濃度、キァリア
移動度をホール測定装置で、ヘイズ率をヘイズメータ
で、透過率を自記分光光度計で測定した。その結果を表
1に示す。表1に示すように、この実施例による透明導
電膜では、3.2×10-4Ωcmという比抵抗が得られ
ており、10-4Ωcmオーダーの膜が実現している。
(Example 1) A reagent having the following composition was mixed and stirred, and
A TO sol solution was obtained. Acetic acid (99.9%, manufactured by Kishida Chemical) 20 cc indium (III) acetylacetonate (manufactured by Kishida Chemical) 2.3 g Tin (IV) chloride · n hydrate (tin chloride wt% = 74%, n = 4-7, manufactured by Kishida Chemical) 0.3 g Nitric acid (specific gravity: 1.38, manufactured by Kishida Chemical) 0.5 cc The sol solution thus obtained and an ultrafine particle dispersion of ITO (average particle size: 6 nm, solid content: (Concentration: 10%) at a ratio of ultrafine particle dispersion / sol liquid = 9/1 to obtain a coating liquid. The coating solution obtained in this manner was spin-coated to obtain 2
It was applied on a 10 cm square corning glass under the conditions of 00 rpm and 90 sec. Next, this was fired at 400 ° C. for 1 hour in a nitrogen atmosphere. The film thickness of the obtained coating film was measured with an automatic ellipsometer, the specific resistance, the carrier concentration, and the carrier mobility were measured with a Hall measuring device, the haze ratio was measured with a haze meter, and the transmittance was measured with a self-recording spectrophotometer. Table 1 shows the results. As shown in Table 1, in the transparent conductive film according to this example, a specific resistance of 3.2 × 10 −4 Ωcm was obtained, and a film on the order of 10 −4 Ωcm was realized.

【0018】(実施例2)次のような組成で試薬を混
合、撹拌し、アルミニウムドープ酸化亜鉛ゾル液を得
た。 酢酸(99.9%、キシダ化学製) 20 cc 亜鉛アセチルアセトナート(キシダ化学製) 2.0 g 塩化アルミニウム(III)(キシダ化学製) 0.2 g 硝酸(比重1.38、キシダ化学製) 0.5 cc このようにしてゾル液を得た。このゾル液以外は上記実
施例1と同様であり、導電性微粒子としてはITO超微
粒子を用いた。この実施例による透明導電膜では、6.
7×10-4Ωcmという比抵抗が得られており、10-4
Ωcmオーダーの膜が実現している(表1,参照)。
Example 2 A reagent having the following composition was mixed and stirred to obtain an aluminum-doped zinc oxide sol solution. Acetic acid (99.9%, manufactured by Kishida Chemical) 20 cc zinc acetylacetonate (manufactured by Kishida Chemical) 2.0 g Aluminum chloride (III) (manufactured by Kishida Chemical) 0.2 g Nitric acid (specific gravity 1.38, manufactured by Kishida Chemical) ) 0.5 cc In this way, a sol solution was obtained. Except for this sol solution, it was the same as in Example 1 above, and ITO ultrafine particles were used as the conductive fine particles. In the transparent conductive film according to this embodiment, 6.
7 × 10 -4 and the resistivity obtained that [Omega] cm, 10 -4
A film on the order of Ωcm has been realized (see Table 1).

【0019】(実施例3)次のような組成で試薬を混
合、撹拌し、アンチモンドープ酸化錫ゾル液を得た。 酢酸(99.9%、キシダ化学製) 20 cc 錫アセチルアセトナート(キシダ化学製) 2.0 g 塩化アンチモン(III)(キシダ化学製) 0.25g 硝酸(比重1.38、キシダ化学製) 0.5 cc このようにしてゾル液を得た。このゾル液以外は実施例
1と同様であり、導電性微粒子としてはITO超微粒子
を用いた。この実施例による透明導電膜では、5.5×
10-4Ωcmという比抵抗が得られており、10-4Ωc
mオーダーの膜が実現している(表1,参照)。
Example 3 Reagents having the following composition were mixed and stirred to obtain an antimony-doped tin oxide sol solution. Acetic acid (99.9%, Kishida Chemical) 20 cc tin acetylacetonate (Kishida Chemical) 2.0 g Antimony (III) chloride (Kishida Chemical) 0.25 g Nitric acid (specific gravity 1.38, Kishida Chemical) 0.5 cc Thus, a sol solution was obtained. Except for this sol solution, it was the same as Example 1, and ITO ultrafine particles were used as the conductive fine particles. In the transparent conductive film according to this embodiment, 5.5 ×
A specific resistance of 10 -4 Ωcm has been obtained, and 10 -4 Ωc
An m-order film has been realized (see Table 1).

【0020】(実施例4)実施例1と同じ組成で得られ
るゾル液とアンチモンドープ酸化錫微粒子分散液(平均
粒径8nm、固形分濃度10%)を超微粒子分散液/ゾ
ル液=9/1の比で混合して塗布液を得た。この塗布液
を得た後のプロセスは実施例1と同様に行われる。結果
として、9.8×10-4Ωcmという比抵抗が得られて
おり、10-4Ωcmオーダーの膜が実現している(表
1,参照)。
(Example 4) A sol solution obtained with the same composition as in Example 1 and an antimony-doped tin oxide fine particle dispersion (average particle size 8 nm, solid content concentration 10%) were mixed with an ultrafine particle dispersion / sol solution = 9 / The mixture was mixed at a ratio of 1 to obtain a coating solution. The process after obtaining this coating liquid is performed in the same manner as in Example 1. As a result, a specific resistance of 9.8 × 10 −4 Ωcm was obtained, and a film on the order of 10 −4 Ωcm was realized (see Table 1).

【0021】(比較例1)次のような組成で試薬を混
合、撹拌し、シリカゾル液を得た。 エタノール(キシダ化学製) 15.4 g テトラエキシシラン(キシダ化学製) 35.1 g 蒸留水 0.35 g 塩酸(35.5%、キシダ化学製) 0.5 g このようにして得られたゾル液と実施例1で用いたと同
じITO超微粒子分散液を超微粒子分散液/ゾル液=9
/1の比で混合して塗布液を得た。この塗布液を得た後
のプロセスは実施例1と同様に行われる。結果として、
得られる導電膜は、比抵抗値2.6×10-1Ωcmであ
り、10-4Ωcmオーダーの値が得られない(表1,参
照)。
Comparative Example 1 A reagent having the following composition was mixed and stirred to obtain a silica sol solution. Ethanol (manufactured by Kishida Chemical) 15.4 g Tetraexisilane (manufactured by Kishida Chemical) 35.1 g Distilled water 0.35 g Hydrochloric acid (35.5%, manufactured by Kishida Chemical) 0.5 g obtained in this manner. The sol liquid and the same ITO ultrafine particle dispersion used in Example 1 were mixed with ultrafine particle dispersion / sol liquid = 9.
The mixture was mixed at a ratio of / 1 to obtain a coating solution. The process after obtaining this coating liquid is performed in the same manner as in Example 1. as a result,
The obtained conductive film has a specific resistance of 2.6 × 10 −1 Ωcm, and a value on the order of 10 −4 Ωcm cannot be obtained (see Table 1).

【0022】(比較例2)実施例1で得られたゾル液を
単独で塗布液とした。得られた塗布液をスピンコート法
により、200rpm、90secの条件で10cm角
のコーニングガラス上に塗布した。この塗布液を得た後
のプロセスは実施例1と同様に行われる。結果として、
得られる導電膜は、比抵抗値9.3×10-3Ωcmであ
り、10-4Ωcmオーダーの値が得られない(表1,参
照)。
Comparative Example 2 The sol obtained in Example 1 was used alone as a coating liquid. The obtained coating liquid was applied on a 10 cm square corning glass by spin coating at 200 rpm and 90 sec. The process after obtaining this coating liquid is performed in the same manner as in Example 1. as a result,
The obtained conductive film has a specific resistance of 9.3 × 10 −3 Ωcm, and a value on the order of 10 −4 Ωcm cannot be obtained (see Table 1).

【0023】(比較例3)実施例1で得られたゾル液と
ITO微粒子分散液(平均粒径20nm、固形分濃度1
0%、三菱マテリアル製)を超微粒子分散液/ゾル液=
9/1の比で混合して塗布液を得た。この塗布液を得た
後のプロセスは実施例1と同様に行われる。結果とし
て、得られる導電膜は、比抵抗値6.5×10-3Ωcm
であり、10-4Ωcmオーダーの値が得られない(表
1,参照)。
(Comparative Example 3) The sol liquid obtained in Example 1 and a dispersion liquid of ITO fine particles (average particle diameter: 20 nm, solid content concentration: 1)
0%, manufactured by Mitsubishi Materials Corporation)
The mixture was mixed at a ratio of 9/1 to obtain a coating solution. The process after obtaining this coating liquid is performed in the same manner as in Example 1. As a result, the resulting conductive film has a specific resistance value of 6.5 × 10 −3 Ωcm.
And a value on the order of 10 −4 Ωcm cannot be obtained (see Table 1).

【0024】[0024]

【表1】 [Table 1]

【0025】本発明の透明導電膜はいずれも10-4Ωc
mオーダーの比抵抗を有しており、従来法の透明導電膜
と比較して明らかに低抵抗である。実施例1〜4と比較
例1の比較よりバインダ樹脂として、導電性ゾル−ゲル
膜を使用することは低抵抗化に効果があることがわか
る。比較例2よりゾル−ゲル膜単独では低抵抗化が不十
分であることがわかる。実施例1と比較例3の比較よ
り、微粒子の粒径を小さくすることで低抵抗化に大きな
効果がでることがわかった。
Each of the transparent conductive films of the present invention is 10 -4 Ωc.
It has a specific resistance of the order of m, and is clearly lower than the conventional transparent conductive film. From the comparison between Examples 1 to 4 and Comparative Example 1, it can be seen that the use of a conductive sol-gel film as the binder resin is effective in lowering the resistance. Comparative Example 2 shows that the use of the sol-gel film alone is insufficient to reduce the resistance. From a comparison between Example 1 and Comparative Example 3, it was found that reducing the particle size of the fine particles had a significant effect on lowering the resistance.

【0026】[0026]

【発明の効果】【The invention's effect】

請求項1,2に対応する効果:導電性バインダを用いる
ことでキャリアが消滅しにくくなり、キャリア移動度が
向上し、また、導電性バインダ自体、キャリアを多く保
有しているのでキャリア濃度も増加することから、低抵
抗率を得ることができる。また、導電性微粒子を粒径を
10nm以下とし、その微粒子のバインダ樹脂を導電性
ゾル−ゲル膜とすることで、光の透過率が高く、光の吸
収ロスも少なく、かつ、微粒子に起因する表面凹凸もあ
り、光散乱による光閉じ込め効果をもつことになり、光
素子に適した導電膜が得られる。さらに、塗布という簡
単な方法で膜が形成されることから導電性,可視透過性
に優れた透明導電膜が低コストで容易に作製できること
になる。
Effects corresponding to the first and second aspects: The use of the conductive binder makes it difficult for carriers to disappear, improves the carrier mobility, and increases the carrier concentration because the conductive binder itself has many carriers. Therefore, a low resistivity can be obtained. In addition, the conductive fine particles have a particle size of 10 nm or less, and the binder resin of the fine particles is a conductive sol-gel film, so that light transmittance is high, light absorption loss is small, and the fine particles are caused by the fine particles. There is also a surface unevenness, which has a light confinement effect by light scattering, and a conductive film suitable for an optical element can be obtained. Further, since a film is formed by a simple method of coating, a transparent conductive film having excellent conductivity and visible transmittance can be easily manufactured at low cost.

【0027】請求項3,4に対応する効果:請求項1お
よび2の効果に加えて、導電性バインダの組成液として
10-2〜10-4Ωcm抵抗率のものを用いることによ
り、導電性微粒子の特性を引き出すことを可能とする条
件付けをすることができ、かかる数値範囲を実現するた
めの組成物を具体的に提示することにより実施を可能と
する。
Effects corresponding to the third and fourth aspects: In addition to the effects of the first and second aspects, the use of a conductive binder composition liquid having a resistivity of 10 −2 to 10 −4 Ωcm makes it possible to obtain conductive properties. Conditioning can be performed to enable the characteristics of the fine particles to be extracted, and the present invention can be implemented by specifically presenting a composition for achieving such a numerical range.

【0028】請求項5,6に対応する効果:請求項1な
いし4の効果に加えて、粒径が10nm以下の導電性微
粒子が持つ特性として実現可能な最も低い範囲の抵抗率
を限定するもので、優れた導電性をもつ膜が提供され、
かかる数値範囲を実現するための組成物を具体的に提示
することにより実施を可能とする。
Effects corresponding to the fifth and sixth aspects: In addition to the effects of the first to fourth aspects, the present invention limits the lowest range of resistivity that can be realized as the characteristics of the conductive fine particles having a particle size of 10 nm or less. In, a film with excellent conductivity is provided,
Implementation is possible by specifically presenting a composition for realizing such a numerical range.

【0029】請求項7に対応する効果:請求項1〜7の
効果に加えて、ヘイズ率が3〜10%と低い場合には、
液晶素子、その他、電子デバイス用の電極として用い
る。また、微粒子を使用することによる光閉じ込め効果
により得られる高いヘイズ率10〜30%の場合に、太
陽電池として応用でき、太陽電池の変換効率向上に役立
つ。
Effects corresponding to claim 7: In addition to the effects of claims 1 to 7, when the haze ratio is as low as 3 to 10%,
Used as electrodes for liquid crystal elements and other electronic devices. In addition, when the haze ratio is 10 to 30%, which is high due to the light confinement effect of using fine particles, it can be applied as a solar cell, which helps to improve the conversion efficiency of the solar cell.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性バインダの組成液中に分散させた
導電性微粒子を含有する導電性塗料を基体に塗布し、乾
燥することにより光透過性薄膜を形成してなる透明導電
膜。
1. A transparent conductive film formed by applying a conductive paint containing conductive fine particles dispersed in a composition liquid of a conductive binder to a substrate, followed by drying to form a light-transmitting thin film.
【請求項2】 請求項1記載の透明導電膜において、前
記導電性微粒子の粒径が10nm以下であることを特徴
としてなる透明導電膜。
2. The transparent conductive film according to claim 1, wherein said conductive fine particles have a particle size of 10 nm or less.
【請求項3】 請求項1又は2記載の透明導電膜におい
て、前記導電性バインダの組成液がゾル状を呈し、10
-2〜10-4Ωcmの抵抗率を有するものであることを特
徴としてなる透明導電膜。
3. The transparent conductive film according to claim 1, wherein the composition liquid of the conductive binder has a sol shape,
A transparent conductive film having a resistivity of -2 to 10 -4 Ωcm.
【請求項4】 請求項1ないし3のいずれか記載の透明
導電膜において、前記導電性バインダが酸化インジウム
錫、アンチモンドープ酸化錫、フッ素ドープ酸化錫、ア
ルミニウムドープ酸化亜鉛あるいはガリウムドープ酸化
亜鉛を含む組成であることを特徴としてなる透明導電
膜。
4. The transparent conductive film according to claim 1, wherein the conductive binder contains indium tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, or gallium-doped zinc oxide. A transparent conductive film having a composition.
【請求項5】 請求項1ないし4のいずれか記載の透明
導電膜において、前記導電性微粒子が10-3〜10-4Ω
cmの抵抗率を有するものであることを特徴としてなる
透明導電膜。
5. The transparent conductive film according to claim 1, wherein the conductive fine particles are 10 -3 to 10 -4 Ω.
A transparent conductive film having a resistivity of about 0.5 cm.
【請求項6】 請求項1ないし5いずれか記載の透明導
電膜において、前記導電性微粒子が酸化インジウム錫、
アンチモンドープ酸化錫、フッ素ドープ酸化錫、アルミ
ニウムドープ酸化亜鉛あるいはガリウムドープ酸化亜鉛
であることを特徴としてなる透明導電膜。
6. The transparent conductive film according to claim 1, wherein the conductive fine particles are indium tin oxide,
A transparent conductive film characterized by being antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide or gallium-doped zinc oxide.
【請求項7】 請求項1ないし6いずれか記載の透明導
電膜において、前記透明導電膜が3〜30%のヘイズ率
を有するものであることを特徴としてなる透明導電膜。
7. The transparent conductive film according to claim 1, wherein said transparent conductive film has a haze ratio of 3 to 30%.
JP8287597A 1997-04-01 1997-04-01 Transparent conductive film Pending JPH10283847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8287597A JPH10283847A (en) 1997-04-01 1997-04-01 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8287597A JPH10283847A (en) 1997-04-01 1997-04-01 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH10283847A true JPH10283847A (en) 1998-10-23

Family

ID=13786473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8287597A Pending JPH10283847A (en) 1997-04-01 1997-04-01 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH10283847A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332130A (en) * 2000-05-19 2001-11-30 Tdk Corp Functional film
US6420647B1 (en) * 1998-11-06 2002-07-16 Pacific Solar Pty Limited Texturing of glass by SiO2 film
US6759645B2 (en) 2000-02-04 2004-07-06 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
WO2005050675A1 (en) * 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited Transparent base with transparent conductive film, method for producing same, and photoelectric converter comprising such base
JP2007280910A (en) * 2006-04-03 2007-10-25 Ind Technol Res Inst Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles
JP2009266500A (en) * 2008-04-23 2009-11-12 Sumitomo Metal Mining Co Ltd Transparent conductive film, transparent conductive substrate and device using the same, and method of manufacturing transparent conductive film
JP2009296000A (en) * 2004-01-16 2009-12-17 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420647B1 (en) * 1998-11-06 2002-07-16 Pacific Solar Pty Limited Texturing of glass by SiO2 film
US6759645B2 (en) 2000-02-04 2004-07-06 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
JP2001332130A (en) * 2000-05-19 2001-11-30 Tdk Corp Functional film
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
US7846562B2 (en) 2003-11-18 2010-12-07 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
JPWO2005050675A1 (en) * 2003-11-18 2007-12-06 日本板硝子株式会社 Transparent substrate with transparent conductive film, method for producing the same, and photoelectric conversion element including the substrate
US7608294B2 (en) 2003-11-18 2009-10-27 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
JP4542039B2 (en) * 2003-11-18 2010-09-08 日本板硝子株式会社 Transparent substrate with transparent conductive film, method for producing the same, and photoelectric conversion element including the substrate
JP2010262931A (en) * 2003-11-18 2010-11-18 Nippon Sheet Glass Co Ltd Transparent base with transparent conductive film, method of manufacturing same, and photoelectric converter comprising such base
WO2005050675A1 (en) * 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited Transparent base with transparent conductive film, method for producing same, and photoelectric converter comprising such base
JP2009296000A (en) * 2004-01-16 2009-12-17 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method
US8293457B2 (en) 2004-01-16 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
US8624252B2 (en) 2004-01-16 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and el television
JP2007280910A (en) * 2006-04-03 2007-10-25 Ind Technol Res Inst Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles
JP2011119273A (en) * 2006-04-03 2011-06-16 Ind Technol Res Inst Method of manufacturing aluminum-added zinc oxide transparent conductive film containing metal nanoparticle
JP2009266500A (en) * 2008-04-23 2009-11-12 Sumitomo Metal Mining Co Ltd Transparent conductive film, transparent conductive substrate and device using the same, and method of manufacturing transparent conductive film

Similar Documents

Publication Publication Date Title
EP2547735B1 (en) Anti-corrosion agents for transparent conductive film
KR100236154B1 (en) Coating solution for forming a transparent and electrically conductive film
US8957318B2 (en) Stabilization agents for silver nanowire based transparent conductive films
CN1096684C (en) Transparent conductive composition, transparent conductive layer formed of the same, and manufacturing method thereof
JPH1145619A (en) Conductive composition, transparent conductive film formed by using this, and its manufacture
US20100028634A1 (en) Metal oxide coatings for electrically conductive carbon nanotube films
CN106205774A (en) A kind of electrocondution slurry and transparent conducting coating
US20140255707A1 (en) Stabilization agents for silver nanowire based transparent conductive films
US20140205845A1 (en) Stabilization agents for transparent conductive films
JPH10283847A (en) Transparent conductive film
US20140072826A1 (en) Anticorrosion agents for transparent conductive film
JP5181322B2 (en) Method for producing conductive tin oxide powder
US9343195B2 (en) Stabilization agents for silver nanowire based transparent conductive films
KR100484102B1 (en) Composition for forming transparent conductive layer, transparent conductive layer formed therefrom and image display device employing the same
Maksimenko et al. Fabrication, charge carrier transport, and application of printable nanocomposites based on indium tin oxide nanoparticles and conducting polymer 3, 4-ethylenedioxythiophene/polystyrene sulfonic acid
US20140170427A1 (en) Anticorrosion agents for transparent conductive film
JPH0945140A (en) Zinc oxide transparent conducting film
JP2009199775A (en) White conductive powder, its manufacturing method, and usage
JP3002327B2 (en) Paint for forming conductive / high refractive index film and transparent material laminate with conductive / high refractive index film
JP3152070B2 (en) Composition for forming transparent conductive film
JPH09217055A (en) Production of transparent electroconductive solution
JPS6280918A (en) Manufacturing transparent conductive film
US20150083461A1 (en) Ultra-thin azo with nano-layer alumina passivation
CN107652702A (en) A kind of thermoset composition for being used to form transparent conductive film
JPH09185998A (en) Liquid crystal display