JPS6280918A - Manufacturing transparent conductive film - Google Patents

Manufacturing transparent conductive film

Info

Publication number
JPS6280918A
JPS6280918A JP22073185A JP22073185A JPS6280918A JP S6280918 A JPS6280918 A JP S6280918A JP 22073185 A JP22073185 A JP 22073185A JP 22073185 A JP22073185 A JP 22073185A JP S6280918 A JPS6280918 A JP S6280918A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
conductive film
zinc oxide
sheet resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22073185A
Other languages
Japanese (ja)
Inventor
宏 早味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22073185A priority Critical patent/JPS6280918A/en
Publication of JPS6280918A publication Critical patent/JPS6280918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、透明導電膜の製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for manufacturing a transparent conductive film.

ざらに詳細には、ガラス、高分子材料等で形成された光
透過性基板上に、透明導電膜を形成する方法に関する。
More specifically, the present invention relates to a method of forming a transparent conductive film on a light-transmitting substrate made of glass, polymeric material, or the like.

〈従来の技術および発明が解決しようとする問題点〉 従来、液晶ディスプレイ、エレクトロルミネッセンスデ
ィスプレイ、エレクトロクロミックディスプレイ等の表
示素子、或いは太陽電池等の光電変換素子の窓電極材料
として、透明導電膜が利用されている。
<Prior art and problems to be solved by the invention> Conventionally, transparent conductive films have been used as window electrode materials for display elements such as liquid crystal displays, electroluminescent displays, and electrochromic displays, or for photoelectric conversion elements such as solar cells. has been done.

この透明導電膜としては、光透過性基板上に、金、銀、
白金、パラジウム等の貴金属isを形成したものと、酸
化インジウム、酸化第二スズ、酸化インジウム・スズ(
ITO)、l化カドミウム・スズ(CTO)等の酸化物
半導体1膜を形成したものが挙げられる。
As this transparent conductive film, gold, silver,
Precious metals such as platinum and palladium are formed, and indium oxide, stannic oxide, and indium tin oxide (
Examples include those in which a single film of an oxide semiconductor such as ITO) or cadmium tin chloride (CTO) is formed.

このうち、貴金属薄膜による透明導電膜は、光透過性が
やや劣るものの、面抵抗が100Ω/口(Ω/口は単位
平方センチメートル当たりの面抵抗を意味する)以下の
ものが容易に得られ、また電磁シールド効果も有する等
の優れた特性を有する。これに対し゛て、酸化物半導体
薄膜による透明導電膜は、貴金属薄膜より面抵抗は劣る
が(通常100Ω/口以上)、光透過性は85〜90%
と優れた特性を有する。一般的には、要求特性に応じて
適宜材料が選定されており、現在量も広(利用されてい
るのは、後者の酸化物半導体薄膜によるものである。
Among these, transparent conductive films made of noble metal thin films have a slightly inferior light transmittance, but can easily have a sheet resistance of 100 Ω/hole (Ω/hole means sheet resistance per unit square centimeter), and It has excellent properties such as having an electromagnetic shielding effect. On the other hand, a transparent conductive film made of an oxide semiconductor thin film has a sheet resistance inferior to that of a noble metal thin film (usually 100 Ω/hole or more), but a light transmittance of 85 to 90%.
and has excellent characteristics. In general, materials are selected as appropriate depending on the required characteristics, and there is currently a wide range of materials available (the latter, oxide semiconductor thin films, are in use).

これらの酸化物半導体簿膜を導′fR層としたちのは、
前述のように面抵抗がやや高いので、面抵抗を下げる目
的で、例えば、酸化インジウムには酸化第二スズを、酸
化第二スズには酸化カドミウムをそれぞれドーピングす
る方法が行なわれている。
These oxide semiconductor films are used as the conductor'fR layer.
As mentioned above, the sheet resistance is rather high, so in order to lower the sheet resistance, for example, indium oxide is doped with stannic oxide, and stannic oxide is doped with cadmium oxide.

また、これら異種酸化物半導体をドーピングする方法以
外に、酸化インジウム、酸化第二スズ等の酸化物半導体
膜中にフッ素をドーピングする方法も行なわれている。
In addition to these methods of doping a different type of oxide semiconductor, a method of doping fluorine into an oxide semiconductor film of indium oxide, stannic oxide, or the like has also been used.

このうち、低面抵抗の膜が比較的容易に得られるという
理由から、酸化インジウム系の材料が一般的に用いられ
るが、酸化イン°ジウムは、他の透明導電膜材料と比較
して材料コスト(ケミカルコスト)がかなり轟くつくと
いう問題がある。
Among these materials, indium oxide-based materials are generally used because films with low surface resistance can be obtained relatively easily, but indium oxide is less expensive than other transparent conductive film materials. The problem is that (chemical costs) are quite high.

そこで、最近では、安価な酸化亜鉛を用いて物理気相蒸
着法或いは化学気相蒸着法により膜形成する方法も検討
されている。しかしながら、この方法によれば、酸化イ
ンジウム系の材料を用いた場合よりも光透過性がやや劣
るとともに、面抵抗も高(、液晶表示素子の電極や、太
陽電池等の光電変換素子の窓電極のように、特に低面抵
抗が要求される用途には使用し難いという問題がある。
Therefore, recently, methods of forming a film by physical vapor deposition or chemical vapor deposition using inexpensive zinc oxide have been studied. However, according to this method, the light transmittance is slightly inferior to the case of using indium oxide-based materials, and the sheet resistance is also high (e.g., electrodes of liquid crystal display elements, window electrodes of photoelectric conversion elements such as solar cells). There is a problem in that it is difficult to use in applications that require particularly low sheet resistance.

一方、酸化第二スズ等の酸化物半導体膜にフッ素をドー
ピングする方法については、物理気相蒸着法または化学
気相蒸着法J用いられ、例えば、物理気相蒸着法である
イオンブレーティング法で行なう場合、四フフ化炭素(
CF4)等の含フツ素系炭化水素ガスを含有する混合ガ
ス雰囲気下にプラズマを発生させて蒸着を行うのが一般
的であるが、ドーパントであるフッ素の膜内濃度および
分布を制御する必要性から、混合ガス中の含フツ素系炭
化水素ガスの混合比および分圧を逐次制御しながら膜形
成を行なう必要があり、工業的に実施する際の問題点と
なっている。また、含フツ素系炭化水素ガスは、コスト
的にやや高価である点も問題とされている。
On the other hand, physical vapor deposition or chemical vapor deposition is used to dope fluorine into an oxide semiconductor film such as stannic oxide. If carried out, carbon tetrafluoride (
Generally, deposition is performed by generating plasma in a mixed gas atmosphere containing a fluorine-containing hydrocarbon gas such as CF4), but it is necessary to control the concentration and distribution of fluorine, which is a dopant, in the film. Therefore, it is necessary to perform film formation while sequentially controlling the mixing ratio and partial pressure of the fluorine-containing hydrocarbon gas in the mixed gas, which is a problem when it is carried out industrially. Another problem with fluorine-containing hydrocarbon gas is that it is rather expensive.

く目的〉 この発明は上記問題点に鑑みてなされたものであり、低
面抵抗の透明導電膜を容易かつコスト安価に製造できる
方法を提供することを目的とする。
Purpose The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a transparent conductive film with low sheet resistance easily and at low cost.

く問題点を解決するための手段および作用〉上記目的を
達成するためのこの発明の透明導電膜の製造方法として
は、光透過性基板上に、フッ化アルミニウムがドーピン
グされた酸化亜鉛膜を形成することを特徴としている。
Means and Effects for Solving the Problems> The method for manufacturing a transparent conductive film of the present invention to achieve the above object includes forming a zinc oxide film doped with aluminum fluoride on a light-transmitting substrate. It is characterized by

即ち、この発明は、物理気相蒸着法等の薄膜形成法によ
り、フッ化アルミニウムがドーピングされた酸化亜鉛膜
を形成した場合、酸化亜鉛単独の膜では達成できなかっ
た光透過性と面抵抗の両面において優れた特性を発揮す
る透明導電膜を得ることができることを見い出し、かが
る知見に基いてなされたものである。
That is, the present invention provides that when a zinc oxide film doped with aluminum fluoride is formed by a thin film forming method such as physical vapor deposition, light transmittance and sheet resistance that could not be achieved with a film made of zinc oxide alone can be achieved. This invention was based on the discovery that it was possible to obtain a transparent conductive film that exhibited excellent properties on both sides.

具体的には、ガラスまたはプラスチックフィルム等の高
分子材料による成形体上に、物理気相蒸着法等のsi形
成法により、フッ化アルミニウムがドーピングされた酸
化亜鉛のFIJIgIを形成するものであり、上記薄膜
形成法としては、スパッタリング法、イオンブレーティ
ング法、真空蒸着法等も採用することができる。
Specifically, FIJIgI of zinc oxide doped with aluminum fluoride is formed on a molded body made of a polymeric material such as glass or a plastic film by a Si formation method such as a physical vapor deposition method. As the above-mentioned thin film forming method, sputtering method, ion blating method, vacuum evaporation method, etc. can also be adopted.

上記の製造方法において、酸化亜鉛膜内のフッ化アルミ
ニウムのドーピング量としては、特に限定を要しないが
、酸化亜鉛に対して、1〜20重量%の範囲が特に望ま
しい。
In the above manufacturing method, the amount of aluminum fluoride doped in the zinc oxide film is not particularly limited, but is particularly preferably in the range of 1 to 20% by weight relative to zinc oxide.

また、フッ化アルミニウムをドーピングした酸化亜鉛膜
の膜厚は、用途に応じて適宜選択すればよく、例えば、
RFスパッタリング法を用いて、5ffffj%のフッ
化アルミニウムをドーピングした膜厚200OAの酸化
亜鉛膜を、形成すると、その面抵抗は210Ω/口のも
のが得られる。なお、フッ化アルミニウムをドーピング
しない酸化亜鉛膜単独の場合の面抵抗は1o5Ω/口で
あり、フッ化アルミニウムをドーピングすることにより
、導電性を大幅に低減させることができる。
Further, the thickness of the zinc oxide film doped with aluminum fluoride may be appropriately selected depending on the application.
When a zinc oxide film doped with 5ffffj% aluminum fluoride and having a thickness of 200 OA is formed using the RF sputtering method, a sheet resistance of 210 Ω/hole is obtained. Note that the sheet resistance of a zinc oxide film alone without doping with aluminum fluoride is 105 Ω/portion, and by doping with aluminum fluoride, the conductivity can be significantly reduced.

このように、フッ化アルミニウムをドーピングした酸化
亜鉛膜により透明導電膜を形成する場合には、酸化イン
ジウム等のコストの高い材料を用いる必要がないととも
に、フッ素源としてコストの高い含フツ素系炭化水素を
用いる必要もないので、コスト的に有利となる。しがも
、雰囲気ガスの微妙なコントロールを要することなく容
易に透明導電膜を形成することができる。
In this way, when forming a transparent conductive film using a zinc oxide film doped with aluminum fluoride, there is no need to use expensive materials such as indium oxide, and it is also possible to use expensive fluorine-containing carbide as a fluorine source. Since there is no need to use hydrogen, it is advantageous in terms of cost. However, a transparent conductive film can be easily formed without requiring delicate control of atmospheric gas.

〈実施例1〉 ガラス基板上に以下の条件でフッ化アルミニウムをドー
ピングした酸化亜鉛膜による透明導電膜を形成した。
<Example 1> A transparent conductive film made of a zinc oxide film doped with aluminum fluoride was formed on a glass substrate under the following conditions.

■基板      厚み0.5M 可視光透過度92% ■使用装置    RFスパッタリング装装置ツタ−ゲ
ット  Zn O/A I F3−97/3(重層比)
ホットプレス後 焼結 ■RF投入電力  200W ■使用ガス    Arガス ガス圧6. OX 10’Torr ■膜厚      250OA (多重反射形干浮顕微鏡で測定) この結果、400〜800nmの波長の可視光に対して
(以下同様)光透過度が82%以上、面抵抗が482Ω
/口の透明導電膜が得られた。
■Substrate thickness 0.5M Visible light transmittance 92% ■Equipment used RF sputtering equipment Target Zn O/A I F3-97/3 (multilayer ratio)
Sintering after hot pressing ■RF input power 200W ■Used gas Ar gas Gas pressure 6. OX 10'Torr ■Film thickness 250OA (Measured using a multiple reflection type floating microscope) As a result, the light transmittance for visible light with a wavelength of 400 to 800 nm (hereinafter the same) is 82% or more, and the sheet resistance is 482Ω.
/ A transparent conductive film was obtained.

〈実施例2〉 ガラス基板上に以下の条件でフッ化アルミニウムをドー
ピングした酸化亜鉛膜による透明導電膜を形成した。
<Example 2> A transparent conductive film made of a zinc oxide film doped with aluminum fluoride was formed on a glass substrate under the following conditions.

■基板      厚み0.5mm 可視光透過度92% ■使用装置    RFマグネトロンスパッタリング装
置 ■ターゲット    Zn O/A I F3−951
5(重量比)ホットプレス後 焼結 ■RF投入電力  150W ■使用ガス    Arガス ガス圧1 、 OX 10’Torr ■膜厚      200OA この結果、光透過度が80%以上、面抵抗が180Ω/
口の透明導電膜が得られた。
■Substrate thickness 0.5mm Visible light transmittance 92% ■Equipment used RF magnetron sputtering device ■Target Zn O/A I F3-951
5 (weight ratio) Sintering after hot pressing ■RF input power 150W ■Used gas Ar gas gas pressure 1, OX 10'Torr ■Film thickness 200OA As a result, the light transmittance is 80% or more and the sheet resistance is 180Ω/
A transparent conductive film was obtained.

〈実施例3〉 ガラス基板上に以下の条件でフッ化アルミニウムをドー
ピングした酸化亜鉛膜による透明導電膜を形成した。
<Example 3> A transparent conductive film made of a zinc oxide film doped with aluminum fluoride was formed on a glass substrate under the following conditions.

■基板      厚み0.5mm 可視光透過度92% ■使用袋fa     RFイオンブレーティング装置 ■ターゲット   Zn O/A I F3=90/1
0(重量比)粉末を混合後ペ レット状に成形し焼結 ■RF投入電力  200W ■使用ガス    Arと02の混合ガス(A r10
2=80/2G ) ガス圧5. OX 10’Torr ■膜厚      1500A この結果、光透過度が75〜80%、面抵抗が1300
Ω/口の透明導電膜が得られた。
■Substrate thickness 0.5mm Visible light transmittance 92% ■Bag used RF ion brating device ■Target Zn O/A I F3=90/1
After mixing the 0 (weight ratio) powder, it is formed into pellets and sintered ■ RF input power 200 W ■ Gas used Mixed gas of Ar and 02 (Ar10
2=80/2G) Gas pressure5. OX 10'Torr ■Film thickness 1500A As a result, light transmittance is 75-80% and sheet resistance is 1300
A transparent conductive film of Ω/mouth was obtained.

〈実施例4〉 ポリエステルフィルム基板上に以下の条件でフッ化アル
ミニウムをドーピングした酸化亜鉛膜による透明導電膜
を形成した。
<Example 4> A transparent conductive film made of a zinc oxide film doped with aluminum fluoride was formed on a polyester film substrate under the following conditions.

■基板      厚み10(1m 可視光透過度90% ■使用装置     RFマグネトロンスパッタリング
装置 ■ターゲット    Zn O/A I F3=951
5(重量比)ホットプレス後 焼結 ■RF投入電力  100W ■使用ガス    Arガス ガス圧8. Qx 10’Torr ■膜厚      1000A この結果、光透過度が83%以上、面抵抗が6700/
口の透明導電膜が得られた。
■Substrate thickness: 10 (1m) Visible light transmittance: 90% ■Equipment used: RF magnetron sputtering equipment ■Target: Zn O/A I F3=951
5 (weight ratio) Sintering after hot pressing ■RF input power 100W ■Used gas Ar gas Gas pressure 8. Qx 10'Torr ■Film thickness 1000A As a result, the light transmittance is 83% or more and the sheet resistance is 6700/
A transparent conductive film was obtained.

く比較例1〉 ターゲットとして酸化亜鉛焼結体を使用し、他の条件と
して実施例1と同一の条件で酸化亜鉛膜を形成したとこ
ろ、光透過度が70〜75%、面抵抗が8X10’Ω/
口であった。
Comparative Example 1> When a zinc oxide film was formed using a zinc oxide sintered body as a target and under the same conditions as in Example 1, the light transmittance was 70 to 75% and the sheet resistance was 8X10'. Ω/
It was the mouth.

く比較例2〉 ターゲットとして酸化亜鉛焼結体を使用し、他の条件と
して実施例2と同一の条件で酸化亜鉛膜を形成したとこ
ろ、光透過度が70〜80%、面抵抗が1.0X104
Ω/口であった。
Comparative Example 2> When a zinc oxide film was formed using a zinc oxide sintered body as a target and under the same conditions as in Example 2, the light transmittance was 70-80% and the sheet resistance was 1. 0X104
It was Ω/mouth.

く比較例3〉 ターゲットとして酸化亜鉛焼結体を使用し、他の条件と
して実施例3と同一の条件で酸化亜鉛膜を形成したとこ
ろ、光透過度が80%以上、面抵抗が1.0X101Ω
/口であった。
Comparative Example 3 When a zinc oxide film was formed using a zinc oxide sintered body as a target and under the same conditions as in Example 3, the light transmittance was 80% or more and the sheet resistance was 1.0×101Ω.
/It was a mouth.

以上により、フッ化アルミニウムをドーピングした酸化
亜鉛膜による透明導T@膜は、良好な光透過性を発揮す
るとともに、面抵抗の低減化を達成できることが明白で
ある。
From the above, it is clear that a transparent conductive T@ film made of a zinc oxide film doped with aluminum fluoride exhibits good light transmittance and can achieve a reduction in sheet resistance.

〈発明の効果〉 以上のように、この発明の透明導電膜の製造方法によれ
ば、コストの高い酸化インジウムや含フツ素系炭化水素
等を使用することなく低面抵抗の透明導電膜を製造でき
るとともに、雰囲気ガスの微妙なコント0−ルが不要で
、製造の容易化も図れるという特有の効果を奏する。
<Effects of the Invention> As described above, according to the method for producing a transparent conductive film of the present invention, a transparent conductive film with low sheet resistance can be produced without using expensive indium oxide or fluorine-containing hydrocarbons. In addition, it has the unique effect of not requiring delicate control of atmospheric gas and facilitating manufacturing.

Claims (1)

【特許請求の範囲】[Claims] 1、光透過性基板上にフッ化アルミニウムがドーピング
された酸化亜鉛膜を形成することを特徴とする透明導電
膜の製造方法。
1. A method for producing a transparent conductive film, which comprises forming a zinc oxide film doped with aluminum fluoride on a light-transmissive substrate.
JP22073185A 1985-10-03 1985-10-03 Manufacturing transparent conductive film Pending JPS6280918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22073185A JPS6280918A (en) 1985-10-03 1985-10-03 Manufacturing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22073185A JPS6280918A (en) 1985-10-03 1985-10-03 Manufacturing transparent conductive film

Publications (1)

Publication Number Publication Date
JPS6280918A true JPS6280918A (en) 1987-04-14

Family

ID=16755642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22073185A Pending JPS6280918A (en) 1985-10-03 1985-10-03 Manufacturing transparent conductive film

Country Status (1)

Country Link
JP (1) JPS6280918A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241805A (en) * 1987-03-27 1988-10-07 株式会社ブリヂストン Transparent conducting film and manufacture thereof
JPH01194208A (en) * 1988-01-28 1989-08-04 Asahi Glass Co Ltd Transparent conductive membrane
EP0463079A1 (en) * 1989-03-17 1992-01-02 Harvard College Zinc oxyfluoride transparent conductor.
JP2010502541A (en) * 2006-08-29 2010-01-28 ピルキングトン・グループ・リミテッド Method for producing glass article coated with low resistivity doped zinc oxide and coated glass article produced by the process
US8859104B2 (en) 2008-02-28 2014-10-14 Isis Innovation Limited Transparent conducting oxides
US9236157B2 (en) 2009-09-03 2016-01-12 Isis Innovation Limited Transparent electrically conducting oxides

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241805A (en) * 1987-03-27 1988-10-07 株式会社ブリヂストン Transparent conducting film and manufacture thereof
JPH01194208A (en) * 1988-01-28 1989-08-04 Asahi Glass Co Ltd Transparent conductive membrane
EP0463079A1 (en) * 1989-03-17 1992-01-02 Harvard College Zinc oxyfluoride transparent conductor.
JP2010502541A (en) * 2006-08-29 2010-01-28 ピルキングトン・グループ・リミテッド Method for producing glass article coated with low resistivity doped zinc oxide and coated glass article produced by the process
US8859104B2 (en) 2008-02-28 2014-10-14 Isis Innovation Limited Transparent conducting oxides
US9552902B2 (en) 2008-02-28 2017-01-24 Oxford University Innovation Limited Transparent conducting oxides
US9236157B2 (en) 2009-09-03 2016-01-12 Isis Innovation Limited Transparent electrically conducting oxides

Similar Documents

Publication Publication Date Title
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
US4623601A (en) Photoconductive device containing zinc oxide transparent conductive layer
US20050175862A1 (en) Indium-tin oxide (ITO) film and process for its production
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
JPH0372011B2 (en)
JP3163015B2 (en) Transparent conductive film
JPS6280918A (en) Manufacturing transparent conductive film
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
US4728581A (en) Electroluminescent device and a method of making same
JPH0945140A (en) Zinc oxide transparent conducting film
JP2004050643A (en) Thin film laminated body
KR20150075173A (en) Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH06293956A (en) Zinc oxide transparent conductive film, its formation and sputtering target used therefor
JP3780100B2 (en) Transparent conductive film with excellent processability
JPH0756131A (en) Production of transparent conductive film
Poonthong et al. Performance Analysis of Ti‐Doped In2O3 Thin Films Prepared by Various Doping Concentrations Using RF Magnetron Sputtering for Light‐Emitting Device
JPH10283847A (en) Transparent conductive film
JP3837903B2 (en) Transparent conductive film and manufacturing method thereof
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
CN106024110A (en) Strontium stannate-based flexible transparent conductive electrode and preparation method thereof
JPS61294703A (en) Light transmitting conductive film and manufacture thereof
Nakazawa et al. Transparent and conductive cadmium-tin oxide films deposited by atom beam sputtering