WO2005078419A1 - Radiation photofluorographic device and radiation photofluorographic method - Google Patents

Radiation photofluorographic device and radiation photofluorographic method Download PDF

Info

Publication number
WO2005078419A1
WO2005078419A1 PCT/JP2005/002323 JP2005002323W WO2005078419A1 WO 2005078419 A1 WO2005078419 A1 WO 2005078419A1 JP 2005002323 W JP2005002323 W JP 2005002323W WO 2005078419 A1 WO2005078419 A1 WO 2005078419A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detector
reference axis
along
source
Prior art date
Application number
PCT/JP2005/002323
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Sasakura
Original Assignee
Pony Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pony Industry Co., Ltd. filed Critical Pony Industry Co., Ltd.
Publication of WO2005078419A1 publication Critical patent/WO2005078419A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates to a fluoroscopic imaging apparatus that can be used for, for example, a fluoroscopic inspection of an electronic circuit board, and a radiographic imaging method using the same. More specifically, the present invention relates to a radioscopic imaging apparatus including a radiation source, a radiation detector, and a sample stand having a mounting portion between the radiation source and the radiation detector, and a radiographic imaging method using the same. Concerns.
  • Patent Document 1 JP 2003-166951 A
  • the detector is configured to be two-dimensionally movable in a YZ vertical plane and to be tiltable about an axis perpendicular to the vertical plane.
  • the sample stage is configured to be rotatable in order to perform fluoroscopic imaging by changing the relative angle between the sample on the sample stage and the detection object.
  • an object of the present invention is to provide a radiographic imaging apparatus having a simple configuration and a radiographic imaging method using the same.
  • the features of the radioscopic imaging apparatus include a radiation source, a radiation detector, and a sample table having a mounting portion between the radiation source and the radiation detector.
  • the radiation detector is configured to be movable along a trajectory that rotates around a reference axis along a radiation direction of radiation emitted from the radiation source. is there.
  • the radiation detector is movable along a trajectory rotating around a reference axis along a radiation direction of the radiation emitted from the radiation source.
  • the trajectory is desirably in an arc shape centered on the radiation source or its vicinity.
  • the detection surface of the detection object can be vertically oriented with two degrees of freedom with respect to the radiation source, and the image can be stabilized.
  • the sample mounting portion of the sample stage is configured to be movable in a plane orthogonal to the reference axis. It is also a force that can position the desired imaging position of the sample on the imaging line connecting the detector and the source moved to an arbitrary position.
  • the detector driving unit is configured to rotate a rotating frame around the reference axis by a detector rotating mechanism, and the cable of the radiation detector and z or the detector driving unit is connected to the detector rotating. It is desirable to have a configuration that penetrates the rotating shaft of the mechanism. According to this configuration, by passing these cables through the rotating shaft, it is possible to prevent the cables from becoming entangled with the shaft of the rotating frame, and it is possible to improve the degree of freedom of control of the detector drive unit.
  • the sample stage may be configured to raise and lower the mounting section along the reference axis direction. According to the configuration, the sample can be arranged at an arbitrary position on the photographing line, and a photographed image at an arbitrary magnification can be obtained.
  • a feature of the radiographic imaging method according to the present invention is that the radiographic imaging apparatus described in item V of the above-described configuration is used, and the radiographic imaging apparatus is arranged along the radiation direction of the radiation emitted from the radiation source.
  • the radiation detector along a trajectory that rotates around the reference axis To shoot.
  • the sample stage may be raised and lowered along the reference axis direction to take a picture.
  • the configuration is simplified by the rationalization of the driving part and the cable management despite the high degree of freedom of imaging. It became possible to aim at.
  • FIG. 1 is a front view showing a radiographic imaging apparatus.
  • FIG. 2 is a plan view showing a radiographic imaging apparatus.
  • FIG. 3 is an enlarged front view of a rotation mechanism.
  • FIG. 4 is an enlarged front view of a state where a main part of FIG. 3 is rotated.
  • FIG. 5 is a sectional view taken along line AA of FIG. 4.
  • FIG. 6 is a diagram showing a relationship between a detection object, a rotating frame, and an upper plate at the time of photographing, where (al) -a (a4) is a plan view, and (bl) — (b4) are (al) — The side view corresponding to () is shown.
  • radiographic imaging apparatus 2: source, 3: source apparatus, 10: base frame, 12: pedestal, 20: sample base, 21: base base, 22: lifting mechanism, 22a: drive screw, 22b: slider, 23: lifting platform, 24: Y-axis linear motion mechanism, 24a: rail, 24b: slider, 25: X-axis linear motion mechanism, 25a: rail, 25b: slider, 26: middle plate, 27: upper Plate, 28: receiver, 30: radiation detector, 40: detector drive unit, 41: detector rotation mechanism, 42: upper frame, 43: rotary bearing, 44: rotary cylinder, 44a: hole, 45 : Rotation drive mechanism, 45a: Large gear, 45b: Pion gear, 45c, Motor, 50: Detector slide mechanism, 51: Rotating frame, 52: Slide table, 53: Moving frame, 54: Slide mechanism, 54a: rail, 54b: slider, 55: slide drive mechanism, 55a: rack, 55b: pion gear, 55c: motor, C: cable, F: imaging line, S:
  • a radiographic apparatus 1 includes a source apparatus 3 serving as an X-ray source 2, a sample table 20 on which a sample S is mounted, and a fluoroscopic X-ray. And a detector driving unit 40 for moving the radiation detector 30 three-dimensionally by rotation and sliding as described later.
  • the radiation source device 3 generates a sufficiently wide-angle X-ray from the radiation source 2 within a visual field V-V range. Therefore, it is possible to cope with the moving range of the radiation detector 30 by the detector driving unit 40 without basically moving the radiation source device 3.
  • the sample table 20 can move a mounting section 28 for mounting the sample S in an XY direction on a horizontal plane by an X-axis linear motion mechanism 25 and a Y-axis linear motion mechanism 24.
  • the elevating mechanism 22 can elevate the placing unit 28 in the Z direction.
  • the lifting mechanism 22 includes a driving screw 22a having a screw feed mechanism such as a trapezoidal screw or a ball screw and a slider 22b, the Y-axis linear movement mechanism 24 includes a rail 24a and a slider 24b, and the X-axis linear movement mechanism 25 includes a rail 25a. And a slider 25b.
  • driving screws 22 a are rotatably supported on bases 21 and 21 on pedestals 12 and 12 supported on base frame 10, A fixed slider 22b is screwed into this.
  • the four drive screws 22a are linked to a motor (not shown), and drive up and down the elevator 23 with respect to the base 21 by driving rotation.
  • a Y-axis linear motion mechanism 24 is placed between the lifting table 23 and the middle plate 26, and an X-axis linear motion mechanism 25 is placed between the middle plate 26 and the upper plate 27 while changing the direction.
  • a drive mechanism that does not operate intervenes to control the position of the
  • the radiation detector 30 is obtained by attaching a scintillator for converting X-ray energy to light on an image sensor having a pixel matrix structure.
  • the light receiving surface of the radiation detector 30 to which the scintillator 1 is attached is planar.
  • the fluoroscopic image is output as an electric signal.
  • the detector drive unit 40 moves the radiation detector 30 along a trajectory M that rotates around a reference axis L along a radiation direction of radiation emitted from the radiation source 2.
  • the reference axis L coincides with the Z-axis direction and is located at the center of the field of view V—V of the source 2.
  • the reference axis L does not necessarily have to be located at the center of the field of view VV, but it is best to make it coincide with the center for the most efficient use of the source.
  • the detector drive unit 40 rotates the rotating frame 51 around the reference axis L by the detector rotating mechanism 41.
  • the detector slide mechanism 50 drives and moves a slide table 52 that supports the radiation detector 30 along the trajectory M of the rotating frame 51.
  • the orbit M has an arc shape centered on the source 2 or its vicinity.
  • the detector rotating mechanism 41 rotatably supports a hollow rotary cylinder 44 serving as a rotating shaft with respect to an upper frame 42 supported by the base frame 10 by a pair of upper and lower rotary bearings 43, 43. .
  • the rotary cylinder 44 penetrates through the hole 44a in the direction of the reference axis L, and passes the cables C of the radiation detector 30 and the detector drive unit 40. This prevents the cables C from being entangled due to the rotation of the rotating frame 51.
  • a large gear 45a is fixed to the lower end of the rotary cylinder 44 with its center aligned with the reference axis L, and a corresponding pinion gear 45b is provided by a motor 45c supported by the upper frame 42. By driving, the rotation of the rotating frame 51 is controlled.
  • a rail 54a and a rack 55a are arranged along the track M on one side of the rotating frame 51!
  • a slider 54b of the slide mechanism 54 guides the moving frame 53 along the track M along the rail 54a.
  • the pinion gear 55b that meshes with the rack 55a is driven and rotated by the motor 55c, thereby driving the slide table 52 along the track M as a result.
  • the trajectory M orients the imaging plane of the radiation detector 30 so as to always be perpendicular to the source 2.
  • the relative position between the radiation source 2 and the radiation detector 30 with respect to the sample S on the mounting unit 28 can be changed as shown in FIG.
  • the shooting angle and magnification can be changed freely.
  • the direction in which the imaging is extended as described above can be appropriately selected.
  • FIG. 6 is a diagram showing the relationship between the detection object, the rotating frame, and the upper plate at the time of imaging, and (al)-(a4) are plan views, respectively. bl)-(b4) show side views corresponding to (al)-(a4), respectively.
  • the movement trajectory M of the detector 30 is rotated by the detector rotating mechanism 41 on the rotating frame 51 and further on the rotating frame 51.
  • the position of the detection body 30 is determined by sliding.
  • the sample S on the mounting portion 28 of the upper plate 27 is placed on the imaging line F connecting the center of the detection object 30 and the radiation source 2 determined appropriately as described above so as to pass through the desired portion or the vicinity thereof.
  • the movement of the plate 27 is controlled. To adjust the magnification, the upper plate 27 may be moved up and down along the Z axis.
  • the trajectory M is configured to be arc-shaped around the radiation source 2, but the trajectory M may be configured to be linear.
  • the relative relationship between the radiation source 2 and the radiation detector 30 can be kept constant, and thereby the imaging conditions can be made uniform.
  • the radiation detection body 30 may be a member having a substantially planar force-receiving surface using a digital flat panel X-ray detector.
  • a digital flat panel X-ray detector For example, films, other types of flat panel detectors, scannable line sensors, etc. can be used.
  • the radiation source 2 is not necessarily limited to the X-ray radiation source, and other types of radiation may be used.
  • the reference axis L is aligned in the Z-axis direction.
  • the reference axis L need not always be aligned, and the reference axis L can be oriented in any direction.
  • the reference axis L may be made coincident with the Z-axis direction, and the radiation source 2 may be arranged on the upper side and the detector 30 may be arranged on the lower side.
  • the above-described embodiment is the most excellent in terms of reducing the load on the detector rotating mechanism 41.
  • the present invention can be used as any fluoroscopic imaging apparatus and imaging method for performing fluoroscopic imaging of a sample with radiation.
  • the bonding state of soldering on an electronic circuit board, the wettability of wires and chips of semiconductors and electronic components, the evaluation of mold resin, and the like can be performed by fluoroscopic imaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A simple-configuration radiation photofluorographic device and a radiation photofluorographic method using this. The radiation photofluorographic device comprises a radiation source (2), a radiation detector (30) and a sample table (20) having a mounting unit (28) between the radiation source (2) and the radiation detector (30). A detector drive unit (40) is so constructed that the radiation detector (30) can move along a path (M) turning around a reference axis (L) along the radiation direction of a radiation ray emitted from the radiation source (2). The path (M) is formed in an arcuate shape with the radiation source (2) or its vicinity as its center. The detector drive unit (40) is so constructed as to allow a detector rotating mechanism (41) to rotate a rotation frame (51) around the reference axis (L), or to allow the cable (C) of the radiation detector (30) and/or the detector drive unit (40) to penetrate the rotation axis (44) of the detector rotating mechanism (41).

Description

明 細 書  Specification
放射線透視撮影装置及びこれを用いた放射線透視撮影方法  Radiographic apparatus and radiographic method using the same
技術分野  Technical field
[0001] 本発明は、例えば電子回路基板の透視撮影検査等に用いることの可能な透視撮 影装置及びこれを用いた放射線透視撮影方法に関するものである。さらに詳しくは、 線源と、放射線検出体と、これら線源及び放射線検出体との間に載置部を有する試 料台とを備えた放射線透視撮影装置及びこれを用いた放射線透視撮影方法に関す る。  The present invention relates to a fluoroscopic imaging apparatus that can be used for, for example, a fluoroscopic inspection of an electronic circuit board, and a radiographic imaging method using the same. More specifically, the present invention relates to a radioscopic imaging apparatus including a radiation source, a radiation detector, and a sample stand having a mounting portion between the radiation source and the radiation detector, and a radiographic imaging method using the same. Concerns.
背景技術  Background art
[0002] 上述の如き構成の透視撮影装置としては、次の特許文献 1に記載の装置が知られ ている。  [0002] As a fluoroscopic imaging apparatus having the above configuration, an apparatus described in Patent Document 1 below is known.
特許文献 1 :特開 2003— 166951号公報  Patent Document 1: JP 2003-166951 A
[0003] 同装置では、検出器を YZ垂直平面内で二次元的に移動可能で且つ同垂直平面 内に垂直な軸周りで検出器を傾斜可能に構成している。そして、試料台の上の試料 と検出体との相対角度を変えて透視撮影を行うために、試料台を回転可能に構成し ている。 [0003] In this apparatus, the detector is configured to be two-dimensionally movable in a YZ vertical plane and to be tiltable about an axis perpendicular to the vertical plane. The sample stage is configured to be rotatable in order to perform fluoroscopic imaging by changing the relative angle between the sample on the sample stage and the detection object.
[0004] しかし、同従来装置によれば、試料台を回転させると、その回転機構の配線等を引 き回すために装置の構成が複雑となる問題があった。特に、線源が下部に存在する と当該部分の周りに配線を配置しなければならな 、ので、配線の弓 Iき回しが煩雑で めつに。  [0004] However, according to the conventional apparatus, when the sample stage is rotated, there is a problem that the configuration of the apparatus is complicated because wiring and the like of the rotation mechanism are routed. In particular, if the radiation source is at the lower part, the wiring must be arranged around the relevant part, so that the wiring of the wiring bow I is complicated and troublesome.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] かかる従来の実情に鑑みて、本発明は、構成の簡素な放射線透視撮影装置及び これを用いた放射線透視撮影方法を提供することを目的とする。 [0005] In view of such conventional circumstances, an object of the present invention is to provide a radiographic imaging apparatus having a simple configuration and a radiographic imaging method using the same.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するため、本発明に係る放射線透視撮影装置の特徴は、線源と、 放射線検出体と、これら線源及び放射線検出体との間に載置部を有する試料台とを 備えた構成であって、前記放射線検出体が前記線源から発せられる放射線の放射 方向に沿った基準軸周りで回転する軌道に沿って移動可能であるように検出体駆動 ユニットを構成したことにある。 [0006] In order to achieve the above object, the features of the radioscopic imaging apparatus according to the present invention include a radiation source, a radiation detector, and a sample table having a mounting portion between the radiation source and the radiation detector. To Wherein the radiation detector is configured to be movable along a trajectory that rotates around a reference axis along a radiation direction of radiation emitted from the radiation source. is there.
[0007] 同特徴によれば、「前記放射線検出体が前記線源から発せられる放射線の放射方 向に沿った基準軸周りで回転する軌道に沿って移動可能である」から、少なくとも検 出体は試料台の異なる部分に移動可能であり、且つ、試料台と検出体とを相対的に 回転させることができる。これにより、試料を垂直軸周りの異なる方向から透視撮影す ることが可能となる。検出体の軌道に対する移動と回転とを制御すればよいので、上 部の検出体移動機構が簡素となる。また、下の試料台は回転させる必要がないので 、下部配線の引き回しが簡素となる。  [0007] According to the feature, "the radiation detector is movable along a trajectory rotating around a reference axis along a radiation direction of the radiation emitted from the radiation source." Can move to different parts of the sample stage, and can relatively rotate the sample stage and the detection body. This makes it possible to perform fluoroscopic imaging of the sample from different directions around the vertical axis. Since the movement and rotation of the detection object with respect to the trajectory may be controlled, the upper detection object moving mechanism is simplified. In addition, since the lower sample stage does not need to be rotated, routing of the lower wiring is simplified.
[0008] 前記軌道は前記線源またはその近傍を中心とする円弧状であることが望ましい。こ れにより、線源に対し検出体の検出面を 2自由度で垂直に配向することができ、画像 の安定ィ匕を図ることができる。  [0008] The trajectory is desirably in an arc shape centered on the radiation source or its vicinity. Thus, the detection surface of the detection object can be vertically oriented with two degrees of freedom with respect to the radiation source, and the image can be stabilized.
[0009] そして、前記試料台の試料載置部が前記基準軸に直交する平面内で移動自在な 構成にすることが望ましい。任意の位置に移動させられた検出体と線源とを結ぶ撮影 線上に試料の撮影希望位置を位置させることができる力もである。  [0009] It is preferable that the sample mounting portion of the sample stage is configured to be movable in a plane orthogonal to the reference axis. It is also a force that can position the desired imaging position of the sample on the imaging line connecting the detector and the source moved to an arbitrary position.
[0010] 加えて、前記検出体駆動ユニットが前記基準軸周りで検出体回転機構により回転 フレームを回転させる構造であり、前記放射線検出体及び z又は前記検出体駆動 ユニットのケーブルが前記検出体回転機構の回転軸を貫通する構成とすることが望 ましい。同構成によれば、これらケーブル類を回転軸を貫通させることで、回転フレー ムの軸にケーブル類が絡みつくことを防止でき、検出体駆動ユニットの制御自由度を 向上させることができる。  [0010] In addition, the detector driving unit is configured to rotate a rotating frame around the reference axis by a detector rotating mechanism, and the cable of the radiation detector and z or the detector driving unit is connected to the detector rotating. It is desirable to have a configuration that penetrates the rotating shaft of the mechanism. According to this configuration, by passing these cables through the rotating shaft, it is possible to prevent the cables from becoming entangled with the shaft of the rotating frame, and it is possible to improve the degree of freedom of control of the detector drive unit.
[0011] また、前記試料台が前記載置部を前記基準軸方向に沿って昇降させる構成とすれ ばよい。同構成によれば、上記撮影線上の任意位置に試料を配置することができ、 任意倍率の撮影画像を得ることができる。  [0011] Further, the sample stage may be configured to raise and lower the mounting section along the reference axis direction. According to the configuration, the sample can be arranged at an arbitrary position on the photographing line, and a photographed image at an arbitrary magnification can be obtained.
[0012] 一方、本発明に係る特徴とする放射線透視撮影方法の特徴は、上記特徴構成の V、ずれかに記載の放射線透視撮影装置を用い、前記線源から発せられる放射線の 放射方向に沿った基準軸周りで回転する軌道に沿って前記放射線検出体を移動さ せて撮影を行うことにある。さらに、前記試料台を前記載置部を前記基準軸方向に沿 つて昇降させて撮影を行ってもょ 、。 [0012] On the other hand, a feature of the radiographic imaging method according to the present invention is that the radiographic imaging apparatus described in item V of the above-described configuration is used, and the radiographic imaging apparatus is arranged along the radiation direction of the radiation emitted from the radiation source. The radiation detector along a trajectory that rotates around the reference axis To shoot. Furthermore, the sample stage may be raised and lowered along the reference axis direction to take a picture.
発明の効果  The invention's effect
[0013] 上記本発明に係る放射線透視撮影装置及びこれを用いた放射線透視撮影方法の 特徴によれば、撮影の自由度が高い割に駆動部分及びケーブル取り回しの合理ィ匕 により、構成の簡素化を図ることが可能となった。  [0013] According to the features of the radiographic apparatus and the radiographic method using the apparatus according to the present invention, the configuration is simplified by the rationalization of the driving part and the cable management despite the high degree of freedom of imaging. It became possible to aim at.
[0014] 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項か ら明らかになるであろう。  [0014] Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]放射線透視撮影装置を示す正面図である。 FIG. 1 is a front view showing a radiographic imaging apparatus.
[図 2]放射線透視撮影装置を示す平面図である。  FIG. 2 is a plan view showing a radiographic imaging apparatus.
[図 3]回転機構の拡大正面図である。  FIG. 3 is an enlarged front view of a rotation mechanism.
[図 4]図 3の要部を回転させた状態の拡大正面図である。  FIG. 4 is an enlarged front view of a state where a main part of FIG. 3 is rotated.
[図 5]図 4の A— A断面図である。  FIG. 5 is a sectional view taken along line AA of FIG. 4.
[図 6]撮影時における検出体と回転フレーム及び上板の関係を示す図であり、 (al) 一 (a4)はそれぞれ平面図、(bl)— (b4)はそれぞれ (al)— (a4)に対応する側面図 を示す。  FIG. 6 is a diagram showing a relationship between a detection object, a rotating frame, and an upper plate at the time of photographing, where (al) -a (a4) is a plan view, and (bl) — (b4) are (al) — The side view corresponding to () is shown.
符号の説明  Explanation of symbols
[0016] 1:放射線透視撮影装置, 2:線源, 3:線源装置, 10:基礎フレーム, 12:台座, 20 :試料台, 21:基礎台, 22:昇降機構, 22a:駆動ねじ, 22b:スライダー, 23:昇降台 , 24 :Y軸直動機構, 24a:レール, 24b:スライダー, 25 :X軸直動機構, 25a:レー ル, 25b:スライダー, 26:中板, 27:上板, 28:載置部, 30:放射線検出体, 40:検 出体駆動ユニット, 41:検出体回転機構, 42:上フレーム, 43:回転ベアリング, 44: 回転筒, 44a:孔部, 45:回転駆動機構, 45a:大ギア, 45b:ピ-オンギア, 45c,モ 一ター, 50:検出体スライド機構, 51:回転フレーム, 52:スライド台, 53:移動フレー ム, 54:スライド機構, 54a:レール, 54b:スライダー, 55:スライド駆動機構, 55a:ラ ック, 55b:ピ-オンギア, 55c:モーター, C:ケーブル, F:撮影線, S:試料, L:基準 軸, M:軌道 発明を実施するための最良の形態 [0016] 1: radiographic imaging apparatus, 2: source, 3: source apparatus, 10: base frame, 12: pedestal, 20: sample base, 21: base base, 22: lifting mechanism, 22a: drive screw, 22b: slider, 23: lifting platform, 24: Y-axis linear motion mechanism, 24a: rail, 24b: slider, 25: X-axis linear motion mechanism, 25a: rail, 25b: slider, 26: middle plate, 27: upper Plate, 28: receiver, 30: radiation detector, 40: detector drive unit, 41: detector rotation mechanism, 42: upper frame, 43: rotary bearing, 44: rotary cylinder, 44a: hole, 45 : Rotation drive mechanism, 45a: Large gear, 45b: Pion gear, 45c, Motor, 50: Detector slide mechanism, 51: Rotating frame, 52: Slide table, 53: Moving frame, 54: Slide mechanism, 54a: rail, 54b: slider, 55: slide drive mechanism, 55a: rack, 55b: pion gear, 55c: motor, C: cable, F: imaging line, S: sample, L: reference axis, M: Orbit BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に、添付図面を参照しながら、本発明をさらに詳しく説明する。  Next, the present invention will be described in more detail with reference to the accompanying drawings.
図 1一 6に示すように、本発明に係る放射線透視撮影装置 1は、 X線の線源 2となる 線源装置 3と、試料 Sを載置するための試料台 20と、透視 X線を検出するための放射 線検出体 30と、放射線検出体 30を後述の如く回転及びスライドにより 3次元的に移 動させるための検出体駆動ユニット 40とを備えている。  As shown in FIGS. 16, a radiographic apparatus 1 according to the present invention includes a source apparatus 3 serving as an X-ray source 2, a sample table 20 on which a sample S is mounted, and a fluoroscopic X-ray. And a detector driving unit 40 for moving the radiation detector 30 three-dimensionally by rotation and sliding as described later.
[0018] 本実施形態における線源装置 3は、線源 2から視野 V-V範囲に示す十分に広角の X線を発生する。よって、線源装置 3を基本的に移動させなくとも検出体駆動ユニット 40による放射線検出体 30の移動範囲に対応することができる。  The radiation source device 3 according to the present embodiment generates a sufficiently wide-angle X-ray from the radiation source 2 within a visual field V-V range. Therefore, it is possible to cope with the moving range of the radiation detector 30 by the detector driving unit 40 without basically moving the radiation source device 3.
[0019] 試料台 20は試料 Sを載置するための載置部 28を X軸直動機構 25及び Y軸直動機 構 24により水平面内である XY方向に移動させることができる。また、昇降機構 22は Z方向に載置部 28を昇降させることができる。昇降機構 22は台形ねじ又はボールね じ等のねじ送り機構を有する駆動ねじ 22a及びスライダー 22bを備え、 Y軸直動機構 24はレール 24a及びスライダー 24bを備え, X軸直動機構 25はレール 25a及びスラ イダー 25bを備えている。  The sample table 20 can move a mounting section 28 for mounting the sample S in an XY direction on a horizontal plane by an X-axis linear motion mechanism 25 and a Y-axis linear motion mechanism 24. The elevating mechanism 22 can elevate the placing unit 28 in the Z direction. The lifting mechanism 22 includes a driving screw 22a having a screw feed mechanism such as a trapezoidal screw or a ball screw and a slider 22b, the Y-axis linear movement mechanism 24 includes a rail 24a and a slider 24b, and the X-axis linear movement mechanism 25 includes a rail 25a. And a slider 25b.
[0020] 具体的には、基礎フレーム 10の上に支持された台座 12, 12上の基礎台 21, 21に 4本の駆動ねじ 22aが回転自在に支持され、昇降台 23の 4力所に固定されたスライ ダー 22bがこれに螺合する。 4本の駆動ねじ 22aは図示しないモーターに連動し、駆 動回転で基礎台 21に対し昇降台 23を昇降させる。昇降台 23と中板 26との間には Y 軸直動機構 24が、また中板 26と上板 27との間には X軸直動機構 25が向きを変えて 配置されると共に、図示しない駆動機構が介在し、上述の載置部 28の位置制御を行  Specifically, four driving screws 22 a are rotatably supported on bases 21 and 21 on pedestals 12 and 12 supported on base frame 10, A fixed slider 22b is screwed into this. The four drive screws 22a are linked to a motor (not shown), and drive up and down the elevator 23 with respect to the base 21 by driving rotation. A Y-axis linear motion mechanism 24 is placed between the lifting table 23 and the middle plate 26, and an X-axis linear motion mechanism 25 is placed between the middle plate 26 and the upper plate 27 while changing the direction. A drive mechanism that does not operate intervenes to control the position of the
[0021] 放射線検出体 30は、ピクセルマトリックス構造の撮像素子上に X線エネルギーを光 に変換するシンチレーターを張り付けたものである。放射線検出体 30のシンチレータ 一を貼り付けた受光面は平面的である。そして、最終的に、透視画像は電気信号とし て出力される。 The radiation detector 30 is obtained by attaching a scintillator for converting X-ray energy to light on an image sensor having a pixel matrix structure. The light receiving surface of the radiation detector 30 to which the scintillator 1 is attached is planar. Finally, the fluoroscopic image is output as an electric signal.
[0022] 検出体駆動ユニット 40は、放射線検出体 30を線源 2から発せられる放射線の放射 方向に沿った基準軸 L周りで回転する軌道 Mに沿って移動させる。ここに、本実施形 態では、基準軸 Lは Z軸方向に一致し、且つ、線源 2の視野 V— Vの中心に位置して いる。基準軸 Lは必ずしも視野 V-Vの中心に位置させなくてもよいが、中心に一致さ せるのが最も線源の利用効率に優れることとなる。検出体駆動ユニット 40は基準軸 L 周りで検出体回転機構 41により回転フレーム 51を回転させる。また、検出体スライド 機構 50は放射線検出体 30を支持するスライド台 52を回転フレーム 51の軌道 Mに沿 つて駆動移動させる。軌道 Mは線源 2またはその近傍を中心とする円弧状である。 The detector drive unit 40 moves the radiation detector 30 along a trajectory M that rotates around a reference axis L along a radiation direction of radiation emitted from the radiation source 2. Here, this embodiment In this state, the reference axis L coincides with the Z-axis direction and is located at the center of the field of view V—V of the source 2. The reference axis L does not necessarily have to be located at the center of the field of view VV, but it is best to make it coincide with the center for the most efficient use of the source. The detector drive unit 40 rotates the rotating frame 51 around the reference axis L by the detector rotating mechanism 41. Further, the detector slide mechanism 50 drives and moves a slide table 52 that supports the radiation detector 30 along the trajectory M of the rotating frame 51. The orbit M has an arc shape centered on the source 2 or its vicinity.
[0023] 検出体回転機構 41は、基礎フレーム 10に支持された上フレーム 42に対して回転 軸となる中空の回転筒 44を上下一対の回転ベアリング 43, 43により回転可能に支 持してある。回転筒 44は基準軸 L方向に対して孔部 44aで貫通しており、放射線検 出体 30及び検出体駆動ユニット 40のケーブル類 Cを通過させている。これにより、回 転フレーム 51の回転によるこれらケーブル Cの絡みつきを防止している。回転駆動 機構 45に関し、大ギア 45aがその中心を基準軸 Lに一致させて回転筒 44の下端側 に固定され、これに嚙み合うピ-オンギア 45bを上フレーム 42に支持されたモーター 45cが駆動することにより回転フレーム 51を回転制御する。  The detector rotating mechanism 41 rotatably supports a hollow rotary cylinder 44 serving as a rotating shaft with respect to an upper frame 42 supported by the base frame 10 by a pair of upper and lower rotary bearings 43, 43. . The rotary cylinder 44 penetrates through the hole 44a in the direction of the reference axis L, and passes the cables C of the radiation detector 30 and the detector drive unit 40. This prevents the cables C from being entangled due to the rotation of the rotating frame 51. Regarding the rotary drive mechanism 45, a large gear 45a is fixed to the lower end of the rotary cylinder 44 with its center aligned with the reference axis L, and a corresponding pinion gear 45b is provided by a motor 45c supported by the upper frame 42. By driving, the rotation of the rotating frame 51 is controlled.
[0024] 検出体スライド機構 50において、回転フレーム 51の一側にはレール 54a,ラック 55 aが軌道 Mに沿って配置されて!、る。スライド機構 54のスライダー 54bがレール 54a に沿って移動フレーム 53を軌道 Mに沿ってガイドする。また、スライド駆動機構 55で は、ラック 55aに嚙み合うピ-オンギア 55bがモーター 55cにより駆動回転され、スラ イド台 52を結果として軌道 Mに沿って駆動させる。軌道 Mは放射線検出体 30の撮 影面を常に線源 2に垂直の関係となるように配向する。  In the detection object slide mechanism 50, a rail 54a and a rack 55a are arranged along the track M on one side of the rotating frame 51! A slider 54b of the slide mechanism 54 guides the moving frame 53 along the track M along the rail 54a. Further, in the slide drive mechanism 55, the pinion gear 55b that meshes with the rack 55a is driven and rotated by the motor 55c, thereby driving the slide table 52 along the track M as a result. The trajectory M orients the imaging plane of the radiation detector 30 so as to always be perpendicular to the source 2.
[0025] 以上の構成により、図 6の如く載置部 28上の試料 Sに対して線源 2と放射線検出体 30との相対位置を変更可能であり、これにより、試料 Sの撮影位置、撮影角度、拡大 率を自由に変更することができる。また、上述の如ぐ撮像の引き延ばし方向も適宜 選択することが可能である。  With the above configuration, the relative position between the radiation source 2 and the radiation detector 30 with respect to the sample S on the mounting unit 28 can be changed as shown in FIG. The shooting angle and magnification can be changed freely. In addition, the direction in which the imaging is extended as described above can be appropriately selected.
[0026] ここで、図 6をさらに説明すると、図 6は、撮影時における検出体と回転フレーム及 び上板の関係を示す図であり、(al)—(a4)はそれぞれ平面図、(bl)—(b4)はそ れぞれ (al)— (a4)に対応する側面図を示す。検出体 30の移動軌跡 Mは回転フレ ーム 51上において検出体回転機構 41により回転し、さらに回転フレーム 51上にお いてスライドすることで検出体 30の位置が定まる。このように適宜定まった検出体 30 の中心と線源 2とを結ぶ撮影線 F上に上板 27の載置部 28上の試料 Sがその撮影所 望部又はその近傍を通過させるように上板 27を移動制御することとなる。また、拡大 率を調整するためには、上板 27を Z軸に沿って昇降させればよい。 Here, FIG. 6 will be further described. FIG. 6 is a diagram showing the relationship between the detection object, the rotating frame, and the upper plate at the time of imaging, and (al)-(a4) are plan views, respectively. bl)-(b4) show side views corresponding to (al)-(a4), respectively. The movement trajectory M of the detector 30 is rotated by the detector rotating mechanism 41 on the rotating frame 51 and further on the rotating frame 51. The position of the detection body 30 is determined by sliding. The sample S on the mounting portion 28 of the upper plate 27 is placed on the imaging line F connecting the center of the detection object 30 and the radiation source 2 determined appropriately as described above so as to pass through the desired portion or the vicinity thereof. The movement of the plate 27 is controlled. To adjust the magnification, the upper plate 27 may be moved up and down along the Z axis.
[0027] 最後に、本発明のさらに他の実施形態の可能性について説明する。  Finally, the possibility of still another embodiment of the present invention will be described.
上記実施形態では、軌道 Mを線源 2を中心に円弧状となるように構成したが、軌道 Mを直線状に構成しても構わない。ただし、上述のように円弧状に軌道 Mを構成する ことで、線源 2と放射線検出体 30との相対関係を一定に保ち、これにより撮影条件を 均一化することが可能となる。  In the above embodiment, the trajectory M is configured to be arc-shaped around the radiation source 2, but the trajectory M may be configured to be linear. However, by configuring the trajectory M in an arc shape as described above, the relative relationship between the radiation source 2 and the radiation detector 30 can be kept constant, and thereby the imaging conditions can be made uniform.
[0028] 上記実施形態では、放射線検出体 30としてデジタル式のフラットパネル X線検出 器を用いた力 受光面が実質的に面状をなす部材であれば構わない。例えば、フィ ルム、他の形式のフラットパネル検出器、スキャン可能なラインセンサ等を用いること ができる。  In the above-described embodiment, the radiation detection body 30 may be a member having a substantially planar force-receiving surface using a digital flat panel X-ray detector. For example, films, other types of flat panel detectors, scannable line sensors, etc. can be used.
[0029] また、線源 2は必ずしも X線の線源に限られず、他の種類の放射線を利用しても構 わない。  The radiation source 2 is not necessarily limited to the X-ray radiation source, and other types of radiation may be used.
[0030] 上記実施形態では、基準軸 Lを Z軸方向に一致させたが、これらは必ずしも一致さ せる必要はなぐ基準軸 Lはあらゆる方向に配向することができる。また、基準軸 Lを Z 軸方向に一致させ、線源 2を上に、検出体 30を下に配置してもよい。但し、検出体回 転機構 41に対する負荷を軽減する意味では上記実施形態が最も優れて ヽる。  In the above embodiment, the reference axis L is aligned in the Z-axis direction. However, the reference axis L need not always be aligned, and the reference axis L can be oriented in any direction. Further, the reference axis L may be made coincident with the Z-axis direction, and the radiation source 2 may be arranged on the upper side and the detector 30 may be arranged on the lower side. However, the above-described embodiment is the most excellent in terms of reducing the load on the detector rotating mechanism 41.
[0031] なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にす るためのものにすぎず、該記入により本発明は添付図面の構成に限定されるもので はない。  [0031] It should be noted that the reference numerals written in the claims are merely for convenience of comparison with the drawings, and the present invention is limited to the configuration of the attached drawings. There is no.
産業上の利用可能性  Industrial applicability
[0032] 本発明は、放射線による試料の透視撮影を行うあらゆる透視撮影装置及び撮影方 法として利用することができる。例えば、電子回路基板における半田付の接合状態や 、半導体、電子部品のワイヤー、チップの塗れ性、モールド榭脂の評価等を透視撮 影により行うことができる。 [0032] The present invention can be used as any fluoroscopic imaging apparatus and imaging method for performing fluoroscopic imaging of a sample with radiation. For example, the bonding state of soldering on an electronic circuit board, the wettability of wires and chips of semiconductors and electronic components, the evaluation of mold resin, and the like can be performed by fluoroscopic imaging.

Claims

請求の範囲 The scope of the claims
[1] 線源(2)と、放射線検出体 (30)と、これら線源(2)及び放射線検出体 (30)との間に 載置部 (28)を有する試料台(20)とを備えた放射線透視撮影装置であって、前記放 射線検出体 (30)が前記線源(2)から発せられる放射線の放射方向に沿った基準軸 (L)周りで回転する軌道 (M)に沿って移動可能であるように検出体駆動ユニット (40 )を構成してあることを特徴とする放射線透視撮影装置。  [1] A source (2), a radiation detector (30), and a sample stage (20) having a mounting portion (28) between the source (2) and the radiation detector (30) A radiographic apparatus provided with the radiation detector (30), wherein the radiation detector (30) rotates along a trajectory (M) rotating around a reference axis (L) along a radiation direction of radiation emitted from the radiation source (2). A radiographic imaging apparatus characterized by comprising a detector driving unit (40) so as to be movable.
[2] 前記軌道 (M)が前記線源 (2)またはその近傍を中心とする円弧状であることを特徴 とする請求項 1記載の放射線透視撮影装置。  [2] The radiographic imaging apparatus according to claim 1, wherein the trajectory (M) has an arc shape centered on the radiation source (2) or its vicinity.
[3] 前記試料台(20)の試料載置部 (28)が前記基準軸 (L)に直交する平面内で移動自 在であることを特徴とする請求項 1に記載の放射線透視撮影装置。  [3] The radioscopic imaging apparatus according to claim 1, wherein the sample mounting portion (28) of the sample stage (20) is movable in a plane orthogonal to the reference axis (L). .
[4] 前記検出体駆動ユニット (40)が前記基準軸 (L)周りで検出体回転機構 (41)により 回転フレーム(51)を回転させる構造であり、前記放射線検出体(30)及び Z又は前 記検出体駆動ユニット (40)のケーブル (C)が前記検出体回転機構 (41)の回転軸( 44)を貫通することを特徴とする請求項 1に記載の放射線透視撮影装置。  [4] The detector driving unit (40) is configured to rotate a rotating frame (51) around the reference axis (L) by a detector rotating mechanism (41), and the radiation detector (30) and Z or The radiographic imaging apparatus according to claim 1, wherein the cable (C) of the detector drive unit (40) penetrates a rotation axis (44) of the detector rotation mechanism (41).
[5] 前記試料台(20)が前記載置部(28)を前記基準軸 (L)方向に沿って昇降させうるも のであることを特徴とする請求項 1乃至 4のいずれかに記載の放射線透視撮影装置 [5] The method according to any one of claims 1 to 4, wherein the sample stage (20) is capable of moving the mounting portion (28) up and down along the direction of the reference axis (L). Radiography equipment
[6] 請求項 1乃至 4の ヽずれかに記載の放射線透視撮影装置を用いた放射線透視撮影 方法であって前記線源 (2)から発せられる放射線の放射方向に沿った基準軸 (L)周 りで回転する軌道 (M)に沿って前記放射線検出体 (30)を移動させて撮影を行うこと を特徴とする放射線透視撮影方法。 [6] A radiographic imaging method using the radiographic imaging apparatus according to any one of claims 1 to 4, wherein a reference axis (L) along a radiation direction of radiation emitted from the radiation source (2). A radiographic imaging method, characterized in that imaging is performed by moving the radiation detector (30) along a trajectory (M) rotating around it.
[7] 請求項 5に記載の放射線透視撮影装置を用いた放射線透視撮影方法であって前記 線源 (2)から発せられる放射線の放射方向に沿った基準軸 (L)周りで回転する軌道 (M)に沿って前記放射線検出体 (30)を移動させ、さらに前記試料台(20)を前記載 置部 (28)を前記基準軸 (L)方向に沿って昇降させて撮影を行うことを特徴とする放 射線透視撮影方法。  [7] A radiographic imaging method using the radiographic imaging apparatus according to claim 5, wherein the orbit rotates around a reference axis (L) along a radiation direction of radiation emitted from the radiation source (2). M), the radiation detector (30) is moved, and the sample table (20) is further moved up and down along the reference axis (L) with respect to the mounting section (28) to perform imaging. Characteristic radiography method.
PCT/JP2005/002323 2004-02-18 2005-02-16 Radiation photofluorographic device and radiation photofluorographic method WO2005078419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004041951 2004-02-18
JP2004-041951 2004-02-18

Publications (1)

Publication Number Publication Date
WO2005078419A1 true WO2005078419A1 (en) 2005-08-25

Family

ID=34857954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002323 WO2005078419A1 (en) 2004-02-18 2005-02-16 Radiation photofluorographic device and radiation photofluorographic method

Country Status (1)

Country Link
WO (1) WO2005078419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505340A (en) * 2004-07-05 2008-02-21 デイジ プレシジョン インダストリーズ リミテッド X-ray operating device
CN104024836A (en) * 2011-12-22 2014-09-03 Sec株式会社 Automatic X-ray inspection apparatus for SMT inline process
WO2016070649A1 (en) * 2014-11-05 2016-05-12 同方威视技术股份有限公司 Double-channel security check machine based on rotary arc-shaped detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010300A1 (en) * 1999-08-06 2001-02-15 Hitachi Medical Corporation Mobile radiography device
JP2001145615A (en) * 1999-10-05 2001-05-29 Koninkl Philips Electronics Nv C-shaped arm x-ray device
JP2001319951A (en) * 2000-05-10 2001-11-16 Fujitsu Ltd Method and apparatus for connection test

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010300A1 (en) * 1999-08-06 2001-02-15 Hitachi Medical Corporation Mobile radiography device
JP2001145615A (en) * 1999-10-05 2001-05-29 Koninkl Philips Electronics Nv C-shaped arm x-ray device
JP2001319951A (en) * 2000-05-10 2001-11-16 Fujitsu Ltd Method and apparatus for connection test

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505340A (en) * 2004-07-05 2008-02-21 デイジ プレシジョン インダストリーズ リミテッド X-ray operating device
JP4886684B2 (en) * 2004-07-05 2012-02-29 デイジ プレシジョン インダストリーズ リミテッド X-ray operating device
CN104024836A (en) * 2011-12-22 2014-09-03 Sec株式会社 Automatic X-ray inspection apparatus for SMT inline process
JP2015502555A (en) * 2011-12-22 2015-01-22 セック カンパニー リミテッドSec Co., Ltd. Automatic X-ray inspection system for SMT inline
EP2796862A4 (en) * 2011-12-22 2015-08-12 Sec Co Ltd Automatic x-ray inspection apparatus for smt inline process
WO2016070649A1 (en) * 2014-11-05 2016-05-12 同方威视技术股份有限公司 Double-channel security check machine based on rotary arc-shaped detector

Similar Documents

Publication Publication Date Title
US6411674B1 (en) Radiation tomography device and subject examination apparatus using the same
US7197109B2 (en) Real-time digital x-ray imaging apparatus
CN100500095C (en) X-ray diagnostic apparatus
KR101684717B1 (en) Combined panoramic and computed tomography apparatus
JP2007029168A (en) X-ray ct imaging apparatus
WO2008066017A1 (en) X-ray fluoroscope
CN111432729B (en) X-ray CT photographing device
JPH07136158A (en) X-ray plane tomograph
WO2005078419A1 (en) Radiation photofluorographic device and radiation photofluorographic method
US5093575A (en) Dual rotatable head gamma camera
JPH0998971A (en) Medical use x-ray photographing equipment
JP4205691B2 (en) Medical X-ray equipment
KR20120115692A (en) Medical radiography system
US6459759B1 (en) X-ray tomography apparatus and method of taking tomographic image of object with the apparatus
JP5881006B2 (en) Tomography equipment
JP2001153819A (en) X-ray laminographic device
JP3693318B2 (en) X-ray variable perspective angle fluoroscope
JP3853647B2 (en) Radiographic imaging equipment
JP2008122337A (en) Multifunctional x-ray inspecting apparatus
JP4577214B2 (en) X-ray inspection equipment
WO2005008227A1 (en) Transmission imager
JP5091506B2 (en) X-ray diagnostic equipment
JP3784062B2 (en) X-ray fluoroscopic imaging device
JP3214928U (en) X-ray equipment
JP2003038473A (en) X-ray machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP