JP3693318B2 - X-ray variable perspective angle fluoroscope - Google Patents

X-ray variable perspective angle fluoroscope Download PDF

Info

Publication number
JP3693318B2
JP3693318B2 JP2000010764A JP2000010764A JP3693318B2 JP 3693318 B2 JP3693318 B2 JP 3693318B2 JP 2000010764 A JP2000010764 A JP 2000010764A JP 2000010764 A JP2000010764 A JP 2000010764A JP 3693318 B2 JP3693318 B2 JP 3693318B2
Authority
JP
Japan
Prior art keywords
ray
imaging unit
stage
imaging
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000010764A
Other languages
Japanese (ja)
Other versions
JP2001201464A (en
Inventor
完 臣永
哲昭 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000010764A priority Critical patent/JP3693318B2/en
Publication of JP2001201464A publication Critical patent/JP2001201464A/en
Application granted granted Critical
Publication of JP3693318B2 publication Critical patent/JP3693318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はエックス線による透視撮像装置に関するものである。
【0002】
【従来の技術】
最近電子回路の小形、高密度化に伴って、電子部品、LSIチップの接合部の不良解析等に不良と思われる特定点を方向を変えて透視観察したいという要求が高まっている。特定点を多方向から透視するには従来例えば図8に示すようにエックス線源1とエックス線撮像部7とを一体のC形フレーム30に取付けC形フレーム30を測定点Pを通る軸21を中心にして参照符号Eの方向に傾斜回転させる方法が知られている。ところが、この方法では斜視角が大きくなるとエックス線源1の下端角部31が被測定物2と干渉(接触)する為、エックス線出射点と被測定部を近づけることができず、高倍率観察ができない(倍率はエックス線射出点と被測定物とエックス線撮像部との比で決まる)という重大な欠点がある。また、装置が大がかりになるという問題もあった。従来の他の方法として図9に示すようにエックス線源1にエックス線出射角の大きい透過形エックス線を用い、エックス線撮像部7のみをエックス線出射点を中心とする半径上を移動(エックス線撮像部7の移動状態は点線で示す)させ、被測定点Pをエックス線出射点40とエックス線撮像部7とを結ぶ線上に位置決めして、所望の傾斜方向から観察する方法があった。この方法は、エックス線源1と被測定物2とを近づけ、高倍率が得られる特長があるが、一方エックス線撮像部の傾斜角を変えることにより、エックス線倍率が変ってしまうという重大な欠点があった。
【0003】
【発明が解決しようとする課題】
このように、従来の技術には、被測定点を斜視角を変えて透視観察する場合に大きな拡大率が得られないか、または、一定の拡大倍率を保ったまま斜視角を変えることができない欠点がある。
本発明はこれらの欠点を除去し、大きな拡大倍率が得られ、しかも、斜視角を変えても倍率が変わらず、更に、これを簡素な機構で実施しようとすることを目的とする。
【0004】
【課題を解決するための手段】
本発明は上記の目的を達成する為に、透過形エックス線源と、このエックス線源の下部に被測定物を水平方向に位置決めするXYステージと、XYステージを倍率方向である鉛直方向に位置決めするZステージを設け、このXYステージの下部にエックス線撮像部と、この撮像部を水平方向に直線移動させる撮像部直線移動ステージと、この直線移動ステージの動作に伴ってエックス線検出面が常にエックス線出射点を向くよう、エックス線撮像部を傾斜させる撮像部傾斜機構と、エックス線出射点を通る鉛直線を中心に撮像部を回転させる撮像部回転機構で可変斜視角透視撮像装置を構成したものである。
より具体的にこの動作を図1、図2を用い説明する。
両図において、1はエックス線源、2は被検査対象物(例えば高密度実装プリント基板)、7はエックス線撮像部である。
鉛直線(Z軸)に対して傾斜角αを変えて観察する場合(つまり、X軸−Z軸またはY軸−Z軸平面内での視角の変更)について図1を参照して説明する。被測定対象物2の被測定点PをXYステージでエックス線源1のエックス線出射点から所望の傾斜α方向に対応した位置に位置決めし、この出射方向にエックス線撮像部7を位置決めする。更にこの位置に応じてエックス線撮像部7のエックス線検出面19をエックス線が垂直に入射するように傾斜(角度β)させる。このようにして、透視観察を行う。
次に図2を用いて、X軸に対する角度θを変えて観察する場合について説明する。この場合にはXYステージで被測定物2の被測定点PをX軸に対して所望の位置(x1、y1)に位置決めし、この位置と、エックス線出射点Oを結ぶ直線上にエックス線撮像部7の直線移動機構と撮像部回転機構(共に図示せず)でエックス線撮像部7を位置決めし、この位置に応じて撮像部傾斜機構でエックス線検出19を傾斜させ、所望の角度から透視観察を行うようにしたものである。
【0005】
以下本発明の一実施例を図1〜図7によって説明する。図3は本発明の実施例の正面図、図4は同じく側面図、図5はエックス線撮像部7と撮像部直線移動ステージ13の平面図である。両図において、点線で示した撮像部は夫々移動したときの状態を示している。1は透過形エックス線源であり、130度の照射角を有する。このエックス線源1の下部にはXYステージがあり、被測定物2である高密度実装基板がこのXYステージ3に固定されている。このXYステージ3は鉛直(Z軸)方向に位置決めするZステージ4に組付けられている。このZ軸ステージはXYステージの四隅に配置される。このZ軸の作用により、エックス線源1と被測定物2が最も接近したときはその間隔は0.5mm、最も離れたときで、150mmとなる。最も近づけたときに拡大倍率は最大となり、最も離したときに最小となる。現状のエックス線源の場合、拡大倍率としては数倍から1000倍まで可能である。41はエックス線防護キャビネットである。図6、図7は各ステージの動きを模式的に示したものである。両図においては本実施例の装置のうちの稼動部分のみを示しており、他の構造物は省略している。
【0006】
以下図1から図7を用い詳細に説明する。XYステージ3の下方にはエックス線像を光の画像に変換するエックス線イメージインテンシファイア(以下II管と称する)5及びそれを電気信号に変換するテレビカメラ6とで構成されるエックス線撮像部7が配設されている。エックス線撮像部7は回転支持部9によって枠10に回転自在(回転方向を図6と図7の参照符号Dとして示す)に組付けられており、図4に示すように、回転支持部9はモータ11に駆動されるウォーム歯車12に固定されている。図5に示すように、枠10は撮像部直線移動ステージ13のテーブル14に取付けられ、参照符号Bの方向に移動する。図4に示すように、撮像部直線移動ステージ13は、モータ15に駆動されるウォーム歯車16が組付けられた回転軸17に固定されている。図6、図7に示すように、撮像部直線移動ステージ13はこの回転軸17を中心に参照符号Cの方向に回転する。次にエックス線出射点Oと被測定点Pとエックス線II5と傾斜角αと回転角θの関係を主要部の縦断面である図1と主要部の平面である図2によって説明する。被測定点Pを倍率Aでα,θの方向から観察する場合には、先ず被測定点PがA=L/ZとなるTを含む面上に来るようZステージ4(図6、図7参照)で位置決めする。次に被測定点Pがエックス線出射点Oを通る垂線に対して角度αの方向を成し、かつX軸に対しθの角を成す点(x1、y1)に来るようXYステージで位置決めする。このとき、
【数1】
A=L/Z …(2)
【数2】
tanθ=y1/x1 …(4)
を満足させる。次に、
r/Z=R/L …(5)
及θを満足する点Qにエックス線II5を位置決めし、この位置に応じてウォーム歯車12とモータ11、回転支持部9で構成されるII管傾斜機構18によってII管5のエックス線検出面19がエックス線出射点Oを向くよう位置決めする。
【0007】
以上の説明では拡大倍率Aを決めた後、傾斜角αと回転角θとを同時に決定するよう各位置決め機構を動作させる方法について述べたが、拡大倍率Aを決めた後、回転角θを決め傾斜方向αを次々に変えて観察し、この観察が終った後、傾斜角αを決め回転方向θを次々に変えて観察することももちろん出来る。更に観察方向α及びθを決定しておき、拡大倍率のみを変えて、不良箇所をだんだん拡大して観察することによって不良解析を行うことができる。この場合にも(1)〜(5)式に示した各位置の関係を守れば良い。この各位置の計算及動作指令は図示しないコンピュータ、制御装置によるが、これは衆知のパーソナルコンピュータ及数値制御ボードで構成できる。
【0008】
【発明の効果】
以上述べた如く本発明によれば、従来のエックス線検査装置にエックス線撮像部を水平に移動させ、これに伴ってエックス線検出面を傾斜させ、エックス線撮像部を水平移動機構ごと回転させる機構を付加するのみで被測定点を傾斜方向からも水平回転方向からも拡大倍率の変化することなく所望の方向から被測定点の検査ができ、高密度実装基板の接合不良解析に威力を発する。
またこの機能は従来のエックス線源、エックス線撮像部、被測定物位置決めXYZステージにエックス線撮像部直線移動機構、傾斜機構回転機構を追加し、それ等を一定の幾何学的位置関係下に位置決めするのみであるから、比較的低小形で簡素低コストで実現できる。
【図面の簡単な説明】
【図1】 本発明の実施例の基本構成を示す正面図
【図2】 本発明の実施例の基本構成を示す側断面図
【図3】 本発明の一実施例を示す正面図
【図4】 本発明の一実施例を示す側断面図
【図5】 本発明の一実施例を示す平面図
【図6】 本発明の実施例の模式説明図
【図7】 本発明の実施例の模式説明図
【図8】 従来例の説明図
【図9】 従来例の説明図
【符号の説明】
1:エックス線源、2:被測定部、3:XYステージ、4:Zステージ、5:エックス線イメージインテンシファイア、6:テレビカメラ、13:撮像部直線移動機構、18:撮像部傾斜機構、19:撮像部回転機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluoroscopic imaging apparatus using X-rays.
[0002]
[Prior art]
Recently, with the miniaturization and high density of electronic circuits, there has been an increasing demand for perspective observation of specific points that are considered defective for analysis of defects in electronic parts and LSI chip joints. In order to see through a specific point from multiple directions, conventionally, for example, as shown in FIG. 8, the X-ray source 1 and the X-ray imaging unit 7 are attached to an integral C-shaped frame 30 and the C-shaped frame 30 is centered on an axis 21 passing through the measurement point P. Thus, a method of tilting and rotating in the direction of reference symbol E is known . However, in this method, when the oblique angle is increased, the lower end corner portion 31 of the X-ray source 1 interferes (contacts) with the object 2 to be measured, so that the X-ray emission point cannot be brought close to the portion to be measured, and high-magnification observation is not possible. There is a serious drawback that the magnification is determined by the ratio of the X-ray emission point, the object to be measured, and the X-ray imaging unit. There is also a problem that the apparatus becomes large. As another conventional method, as shown in FIG. 9, a transmission X-ray having a large X-ray exit angle is used for the X-ray source 1, and only the X-ray image pickup unit 7 is moved on a radius centered on the X-ray output point (of the X-ray image pickup unit 7). There is a method in which the measured point P is positioned on a line connecting the X-ray emission point 40 and the X-ray imaging unit 7 and observed from a desired tilt direction. This method has the advantage that the X-ray source 1 and the DUT 2 can be brought close to each other and a high magnification can be obtained, but there is a serious drawback that the X-ray magnification is changed by changing the tilt angle of the X-ray imaging unit. It was.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional technique, when the point to be measured is observed through a different perspective angle, a large enlargement ratio cannot be obtained, or the perspective angle cannot be changed while maintaining a constant magnification. There are drawbacks.
The object of the present invention is to eliminate these drawbacks, obtain a large magnification, and the magnification does not change even if the perspective angle is changed. Further, it is an object of the present invention to implement this with a simple mechanism.
[0004]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention achieves the above-mentioned transmission X-ray source, an XY stage that positions the object to be measured in the horizontal direction below the X-ray source, and a Z that positions the XY stage in the vertical direction that is the magnification direction. A stage is provided, an X-ray imaging unit below the XY stage, an imaging unit linear movement stage that linearly moves the imaging unit in the horizontal direction, and the X-ray detection surface always moves the X-ray emission point along with the operation of the linear movement stage. A variable perspective angle fluoroscopic imaging device is configured with an imaging unit tilting mechanism that tilts the X-ray imaging unit and an imaging unit rotation mechanism that rotates the imaging unit around a vertical line passing through the X-ray emission point.
More specifically, this operation will be described with reference to FIGS.
In both figures, 1 is an X-ray source, 2 is an object to be inspected (for example, a high-density mounting printed circuit board), and 7 is an X-ray imaging unit.
A case where observation is performed while changing the tilt angle α with respect to the vertical line (Z-axis) (that is, a change in viewing angle in the X-axis-Z-axis or Y-axis-Z-axis plane) will be described with reference to FIG. The measurement point P of the measurement object 2 is positioned on the XY stage at a position corresponding to the desired inclination α direction from the X-ray emission point of the X-ray source 1, and the X-ray imaging unit 7 is positioned in this emission direction. Further, according to this position, the X-ray detection surface 19 of the X-ray imaging unit 7 is inclined (angle β) so that the X-rays are incident vertically. In this way, fluoroscopic observation is performed.
Next, the case where observation is performed with the angle θ with respect to the X axis being changed will be described with reference to FIG. In this case, the measurement point P of the measurement object 2 is positioned at a desired position (x1, y1) with respect to the X axis on the XY stage, and the X-ray imaging unit is on a straight line connecting this position and the X-ray emission point O. The X-ray imaging unit 7 is positioned by the linear movement mechanism 7 and the imaging unit rotating mechanism (both not shown), and the X-ray detection 19 is tilted by the imaging unit tilting mechanism according to this position, and the fluoroscopic observation is performed from a desired angle. It is what I did.
[0005]
An embodiment of the present invention will be described below with reference to FIGS. 3 is a front view of the embodiment of the present invention, FIG. 4 is a side view of the same, and FIG. 5 is a plan view of the X-ray imaging unit 7 and the imaging unit linear movement stage 13. In both figures, the imaging units indicated by dotted lines show the states when they have moved. Reference numeral 1 denotes a transmissive X-ray source having an irradiation angle of 130 degrees. There is an XY stage below the X-ray source 1, and a high-density mounting substrate as the DUT 2 is fixed to the XY stage 3. The XY stage 3 is assembled to a Z stage 4 that is positioned in the vertical (Z-axis) direction. The Z axis stage is arranged at the four corners of the XY stage. By the action of the Z axis, when the X-ray source 1 and the DUT 2 are closest, the distance is 0.5 mm, and when the X-ray source 1 is farthest, it is 150 mm. The magnification is the maximum when it is closest, and the minimum when it is farthest. In the case of the current X-ray source, the magnification can be several times to 1000 times. Reference numeral 41 denotes an X-ray protective cabinet. 6 and 7 schematically show the motion of each stage. In both figures, only the operating part of the apparatus of the present embodiment is shown, and other structures are omitted.
[0006]
This will be described in detail below with reference to FIGS. Below the XY stage 3 is an X-ray imaging unit 7 which is composed of an X-ray image intensifier (hereinafter referred to as II tube) 5 for converting an X-ray image into a light image and a TV camera 6 for converting the X-ray image into an electric signal. It is arranged. The X-ray imaging unit 7 is rotatably mounted on the frame 10 by the rotation support unit 9 (the rotation direction is indicated by reference sign D in FIGS. 6 and 7). As shown in FIG. It is fixed to a worm gear 12 that is driven by a motor 11. As shown in FIG. 5, the frame 10 is attached to the table 14 of the imaging unit linear movement stage 13 and moves in the direction of reference sign B. As shown in FIG. 4, the imaging unit linear movement stage 13 is fixed to a rotating shaft 17 on which a worm gear 16 driven by a motor 15 is assembled. As shown in FIGS. 6 and 7, the imaging unit linear movement stage 13 rotates in the direction of the reference symbol C around the rotation shaft 17. Next, the relationship among the X-ray emission point O, the measured point P, the X-ray II5, the inclination angle α and the rotation angle θ will be described with reference to FIG. 1 which is a longitudinal section of the main part and FIG. When observing the measured point P from the directions of α and θ at the magnification A, first, the Z stage 4 (FIGS. 6 and 7) is such that the measured point P is on a plane including T where A = L / Z. Refer to) for positioning. Next, positioning is performed on the XY stage so that the point P to be measured comes to a point (x1, y1) that forms an angle α with respect to a perpendicular passing through the X-ray exit point O and forms an angle θ with respect to the X axis. At this time,
[Expression 1]
A = L / Z (2)
[Expression 2]
tan θ = y1 / x1 (4)
To satisfy. next,
r / Z = R / L (5)
The X-ray II5 is positioned at a point Q that satisfies the above and θ, and the X-ray detection surface 19 of the II tube 5 is made to X-ray by the II tube tilting mechanism 18 constituted by the worm gear 12, the motor 11, and the rotation support portion 9 according to this position. Position it so that it faces the exit point O.
[0007]
In the above description, the method of operating each positioning mechanism so as to simultaneously determine the inclination angle α and the rotation angle θ after determining the magnification A is described. However, after the magnification A is determined, the rotation angle θ is determined. Observing by changing the inclination direction α one after another, of course, after this observation is finished, it is of course possible to determine the inclination angle α and change the rotation direction θ one after another. Further, it is possible to perform defect analysis by determining the observation directions α and θ, changing only the magnification, and magnifying and observing the defective portion gradually. In this case as well, the relationship between the positions shown in equations (1) to (5) may be maintained. The calculation and operation command for each position depends on a computer and a control device (not shown), but this can be constituted by a publicly known personal computer and a numerical control board.
[0008]
【The invention's effect】
As described above, according to the present invention, the conventional X-ray inspection apparatus is provided with a mechanism for horizontally moving the X-ray imaging unit, inclining the X-ray detection surface accordingly, and rotating the X-ray imaging unit together with the horizontal movement mechanism. Thus, the measurement point can be inspected from a desired direction without changing the enlargement magnification from both the tilt direction and the horizontal rotation direction.
In addition, this function adds a X-ray imaging unit linear movement mechanism and tilt mechanism rotation mechanism to the conventional X-ray source, X-ray imaging unit, measurement object positioning XYZ stage, and only positions them in a certain geometric positional relationship. Therefore, it can be realized at a relatively low size and at a low cost.
[Brief description of the drawings]
1 is a front view showing a basic configuration of an embodiment of the present invention. FIG. 2 is a side sectional view showing a basic configuration of an embodiment of the present invention. FIG. 3 is a front view showing an embodiment of the present invention. FIG. 5 is a plan view showing an embodiment of the present invention. FIG. 6 is a schematic explanatory view of an embodiment of the present invention. FIG. 7 is a schematic view of an embodiment of the present invention. Explanatory drawing [FIG. 8] Explanatory drawing of conventional example [FIG.
1: X-ray source, 2: measured part, 3: XY stage, 4: Z stage, 5: X-ray image intensifier, 6: TV camera, 13: imaging unit linear movement mechanism, 18: imaging unit tilting mechanism, 19 : Imaging unit rotation mechanism

Claims (2)

エックス線を発生するエックス線源と、該エックス線源の下部に被測定物を水平方向に位置決めするXYステージと、該XYステージを鉛直方向に位置決めするZステージと、前記XYステージの下部に設けたエックス線撮像部と、該撮像部を水平方向に直線移動させる撮像部直線移動ステージと、該直線移動ステージの動作に伴って前記撮像部のエックス線検出面が常に前記エックス線源のエックス線出射点に向くように傾斜させる撮像部傾斜機構と、前記撮像部直線移動ステージを回転させる撮像部回転機構とを有することを特徴とするエックス線可変斜視角透視装置。  An X-ray source for generating X-rays, an XY stage for positioning a measurement object in the horizontal direction below the X-ray source, a Z stage for positioning the XY stage in a vertical direction, and an X-ray imaging provided at the lower part of the XY stage And an imaging unit linear movement stage that linearly moves the imaging unit in a horizontal direction, and an X-ray detection surface of the imaging unit is always inclined toward the X-ray emission point of the X-ray source in accordance with the operation of the linear movement stage. An X-ray variable perspective angle fluoroscopic device, comprising: an imaging unit tilting mechanism that rotates and an imaging unit rotation mechanism that rotates the imaging unit linear movement stage. エックス線を放射する透過形エックス線源と、このエックス線源の下方に配され、被測定物水平方向に位置決めするXY位置決め手段と、このXY位置決め手段を上下方向に位置決めするZ位置決め手段と、XY位置決め手段の下方に配設されて、エックス線像を撮像するエックス線撮像手段と、このエックス線撮像手段を水平方向に直線移動させる撮像部直線移動手段と、この撮像部直線移動に伴って前記エックス線撮像手段のエックス線検出面をエックス線源の方向に向ける撮像部傾斜手段と、この撮像部直線移動手段、撮像部傾斜手段及エックス線撮像手段を前記エックス線源のエックス線出射点を通る鉛直線を中心に回転させる撮像部回転手段を備えたことを特徴とするエックス線可変斜視角透視装置。 A transmission X-ray source that radiates X-rays, an XY positioning means that is disposed below the X-ray source and positions in the horizontal direction of the measurement object, a Z positioning means that positions the XY positioning means in the vertical direction, and an XY positioning means An X-ray imaging means for taking an X-ray image, an imaging unit linear moving means for linearly moving the X-ray imaging means in the horizontal direction, and an X-ray of the X-ray imaging means in accordance with the linear movement of the imaging unit Imaging section tilting means for directing the detection surface in the direction of the X-ray source, and imaging section rotation for rotating the imaging section linear moving means, the imaging section tilting means and the X-ray imaging means about a vertical line passing through the X-ray emission point of the X-ray source An X-ray variable perspective angle fluoroscopic device comprising means.
JP2000010764A 2000-01-19 2000-01-19 X-ray variable perspective angle fluoroscope Expired - Fee Related JP3693318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010764A JP3693318B2 (en) 2000-01-19 2000-01-19 X-ray variable perspective angle fluoroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010764A JP3693318B2 (en) 2000-01-19 2000-01-19 X-ray variable perspective angle fluoroscope

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005080142A Division JP3784062B2 (en) 2005-03-18 2005-03-18 X-ray fluoroscopic imaging device
JP2005080141A Division JP2005233970A (en) 2005-03-18 2005-03-18 X-ray fluoroscopic imaging equipment

Publications (2)

Publication Number Publication Date
JP2001201464A JP2001201464A (en) 2001-07-27
JP3693318B2 true JP3693318B2 (en) 2005-09-07

Family

ID=18538744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010764A Expired - Fee Related JP3693318B2 (en) 2000-01-19 2000-01-19 X-ray variable perspective angle fluoroscope

Country Status (1)

Country Link
JP (1) JP3693318B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0415053D0 (en) * 2004-07-05 2004-08-04 Dage Prec Ind Ltd X-ray manipulator
JP2006184267A (en) * 2004-11-30 2006-07-13 Nagoya Electric Works Co Ltd System, method and program for x-ray inspection
JP2006162335A (en) * 2004-12-03 2006-06-22 Nagoya Electric Works Co Ltd X-ray inspection device, x-ray inspection method and x-ray inspection program
JP5166834B2 (en) * 2007-11-15 2013-03-21 株式会社庄内クリエート工業 X-ray inspection equipment
KR101181845B1 (en) * 2011-12-22 2012-09-11 주식회사 쎄크 Automatic x-ray inspection apparatus for surface mount technology in-line

Also Published As

Publication number Publication date
JP2001201464A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US6411674B1 (en) Radiation tomography device and subject examination apparatus using the same
US7016465B2 (en) X-ray CT apparatus
US5541856A (en) X-ray inspection system
KR100894138B1 (en) X-ray inspecting apparatus and method thereof
WO2008066017A1 (en) X-ray fluoroscope
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
JP3693318B2 (en) X-ray variable perspective angle fluoroscope
KR101693614B1 (en) Jig for X-ray Examination
JP3784062B2 (en) X-ray fluoroscopic imaging device
JP4072420B2 (en) Calibration method for fluoroscopic inspection apparatus
JP2004257914A (en) X-ray fluoroscopic apparatus
JP4590702B2 (en) X-ray inspection equipment
KR20010014630A (en) X-ray inspection method and apparatus used for the same
JP4732886B2 (en) X-ray fluoroscopy system
JP5881006B2 (en) Tomography equipment
JP2011064662A (en) Ct apparatus with table for fluoroscopic observation
JP2001153819A (en) X-ray laminographic device
JP4155866B2 (en) X-ray tomography system
JPH10239253A (en) Silhouette image pick-up method and device and object inspection method and device
JP2005233970A (en) X-ray fluoroscopic imaging equipment
JPH01265145A (en) X-ray inspection device
WO2005078419A1 (en) Radiation photofluorographic device and radiation photofluorographic method
WO2013061927A1 (en) Appearance inspection device
JP2004212200A (en) X-ray inspection system, and method of using x-ray inspection system
JP2713287B2 (en) X-ray tomography method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees