WO2005077251A1 - 内視鏡及び内視鏡システム - Google Patents

内視鏡及び内視鏡システム Download PDF

Info

Publication number
WO2005077251A1
WO2005077251A1 PCT/JP2005/002262 JP2005002262W WO2005077251A1 WO 2005077251 A1 WO2005077251 A1 WO 2005077251A1 JP 2005002262 W JP2005002262 W JP 2005002262W WO 2005077251 A1 WO2005077251 A1 WO 2005077251A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
marker
signal
sensor
information
Prior art date
Application number
PCT/JP2005/002262
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Tsuji
Akira Taniguchi
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05710213.9A priority Critical patent/EP1716802B1/en
Publication of WO2005077251A1 publication Critical patent/WO2005077251A1/ja
Priority to US11/505,216 priority patent/US7837616B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3908Soft tissue, e.g. breast tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/397Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave
    • A61B2090/3975Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave active
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention relates to an endoscope and an endoscope system which are inserted into a body or the like to perform an endoscopic examination or treatment.
  • endoscopes have been widely adopted in the medical field. It is also used for treatment under observation with a flexible endoscope for a squeezer. In this case, depending on the condition of the affected area, etc., it may be easier to perform a surgical operation under observation with a rigid endoscope.
  • a marker serving as a marker was placed at the target site, such as the affected area, where the treatment was to be performed. The position of this marker cannot be perceived as an image during optical observation with a rigid endoscope because the stomach wall, intestinal wall, etc., are interposed. The position was confirmed by means of (1).
  • Japanese Patent Application Laid-Open No. 2002-131009 discloses an endoscope apparatus configured to detect the shape of the insertion section including the position of the distal end of the flexible endoscope. It doesn't make it easy to approach a single point.
  • the present invention has been made in view of the above points, and has as its object to provide an endoscope and an endoscope system that facilitate smooth guide to a target site such as an affected part where a marker is placed. You.
  • the present invention relates to an endoscope provided with an objective optical system at a distal end portion of an insertion portion,
  • a sensor for electromagnetically detecting the position of a marker that is placed at the target site and that can transmit electromagnetic waves is provided so as to have a predetermined positional relationship with the position of the distal end of the insertion section. .
  • the operator can use the information by detecting the relative positional relationship between the position of the distal end of the endoscope and the marker placed at the target site such as the affected part. It is easy to smoothly approach the tip of the endoscope to the target site.
  • An endoscope having an objective optical system at the distal end of the insertion section
  • a marker that is placed at the target site and is capable of transmitting electromagnetic waves is capable of transmitting electromagnetic waves
  • the positional relationship between the insertion section and the marker is detected.
  • the surgeon can detect the relative positional relationship between the position of the insertion section of the endoscope and the mar power placed at the target site such as the affected part, so that the operator can obtain the information. This makes it easier to approach the insertion site smoothly to the target site.
  • FIG. 1 is an overall configuration diagram of an endoscope system including a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an overall configuration of a first endoscope device.
  • FIG. 3 is a block diagram showing an entire configuration of a second endoscope device.
  • FIG. 4A is a diagram showing an internal configuration of a rigid endoscope.
  • FIG. 4B is a diagram showing an internal configuration of a rigid endoscope of a modified example.
  • FIG. 5 is a diagram showing a schematic configuration of an indwelling marker.
  • FIG. 6 is a diagram showing a state of detection of a position between a sense coil, an indwelling marker, and a tip portion, and the like.
  • FIG. 7A is a diagram showing an example in which an indwelling marker is set according to the shape of a target part.
  • FIG. 7B is a diagram showing an example in which an indwelling marker is set according to the shape of a target part.
  • FIG. 8 is a diagram showing a drive waveform by a drive coil and a timing of a signal waveform transmitted by a source coil of an indwelling marker by the drive.
  • FIG. 9 is a diagram showing a drive waveform by a drive coil and a timing of a signal waveform transmitted by changing a source coil power frequency of an indwelling marker by the drive and the like.
  • FIG. 10 is a flowchart showing a procedure for placing an indwelling marker by endoscopy with a flexible endoscope for an extinguisher.
  • FIG. 11 is a flowchart showing a procedure for performing a surgical operation using a rigid endoscope after the placement of an indwelling marker using a flexible endoscope for an eraser.
  • FIG. 12 is a diagram showing a display example of an endoscope image and the like on a monitor.
  • FIG. 13 is a block diagram showing an overall configuration of an endoscope system including Embodiment 2 of the present invention.
  • FIG. 14 is a view showing a main part of a surgical operation system using a manipulator.
  • the first endoscope device 2 includes a flexible endoscope 11 that can be inserted along a bent body cavity, a light source device 12 that supplies illumination light to the flexible endoscope 11, and a flexible endoscope 11 Processor 13 that performs signal processing on the image sensor incorporated in the camera, a monitor 14 that displays video signals output from the processor 13, and information that is connected to the A keyboard 15 for inputting the information, and for example, mounted on the head of the surgeon 16 to enable the input of information to the indwelling marker MiZn and the like by voice.
  • Microphone microphone set with
  • the second endoscope apparatus 2 supplies a rigid endoscope 21 inserted into, for example, the abdomen 4a of the patient 4 for a surgical operation, and illumination light to the rigid endoscope 21.
  • a light source device 22, a processor device 23 that performs signal processing on an image pickup device built in the rigid endoscope 21, a monitor 24 that displays a video signal output from the processor device 23, and a processor device 23 are connected.
  • a keyboard 25 for inputting information.
  • the flexible endoscope 11 has a flexible and elongated insertion portion 30, a grip portion or a handle portion 31 provided at a proximal end of the insertion portion 30 and gripped by the surgeon 16, and extending from the handle portion 31.
  • the end of the universal cable 32 branches into, for example, a light guide cable 32a and a signal cable 32b, and the connectors 32c and 32d provided at the ends respectively connect the light source device 12 and the processor. It is detachably connected to the device 13.
  • the flexible endoscope 11 can be inserted into the stomach 33, for example, through the bent esophagus or the like by inserting the insertion portion 30 from the mouth.
  • a treatment instrument insertion port 34 is provided near the base end of the insertion section 30.
  • the distal end thereof is protruded through a channel provided in the insertion section 30 to perform treatment.
  • the indwelling marker MiZn can be indwelled by using the grasping forceps 35, which is a treatment tool for indwelling.
  • the insertion section 30 includes a hard distal end 30a, a bendable bending section 30b, and a soft (flexible) soft section 30c.
  • the surgeon 16 operates a bending knob provided on the handle section 31. By manipulating 36, the bending portion 30b can be bent in any direction, up and down, left and right.
  • a drive coil unit 37 for electromagnetically transmitting a signal for writing information to the indwelling marker MiZn is attached to the handle portion 31. Then, as will be described later, the surgeon 16 transmits the information to be written from the drive coil in the drive coil unit 37 by inputting a voice or the like by electromagnetic waves, and is transmitted to the memory in the indwelling marker MiZn. Make it possible to write (remember) information!
  • the rigid endoscope 21 includes a rigid and elongated insertion portion 40, a grip portion or a handle portion 41 provided at the base end of the insertion portion 40 and gripped by the surgeon 16, And a universal cable 42 extending from the handle portion 41.
  • This universal cable 42 The terminal side branches into, for example, a light guide cable 42a and a signal cable 42b, and connectors 42c and 42d provided at the respective ends are detachably connected to the light source device 22 and the processor device 23, respectively.
  • the rigid endoscope 21 detects the position of the indwelling marker 6, for example, near the base end of the insertion portion 40, or detects the position P of the distal end portion 40a of the insertion portion 40 in the rigid endoscope 21.
  • a sense coil unit 43 (with a built-in sense coil) capable of detecting the viewing direction S thereof is attached.
  • the sense coil unit 43 is also used for detecting the position of the indwelling marker MiZn.
  • the insertion portion 40 is inserted into the body from the abdomen 4a of the patient 4 via the trocar 44.
  • FIG. 2 shows a detailed configuration of the first endoscope device 2.
  • a light guide (see an enlarged view in FIG. 2) 45 for transmitting illumination light is inserted into the insertion portion 30 of the flexible endoscope 11. It is detachably connected to the light source device 12 shown in FIG. Then, the illumination light supplied from the light source device 12 is transmitted and emitted from the emission surface at the tip of the light guide 45.
  • the light exit surface of the light guide 45 is attached to an illumination window at the distal end 30a.
  • An observation window is provided at the distal end portion 30a adjacent to the illumination window, and an objective lens 46 is attached to the observation window.
  • a charge-coupled device (abbreviated as CCD) is provided as an imaging device. ) 47 are arranged.
  • the CCD 47 is electrically connected to a contact point of the connector 32d by a signal line. Then, the user connects the connector 32d to the processor device 13 to connect to the drive & signal processing circuit 48 inside the processor device 13.
  • a channel 49 is provided in the insertion section 30, and a treatment tool such as a grasping forceps 35 for placing the placement marker MiZn can be inserted through the channel 49.
  • a drive coil 50 for transmitting information to be written to the indwelling marker MiZn by electromagnetic waves is housed inside the drive coil unit 37 provided in the handle portion 31.
  • the drive coil 50 is connected to a signal line that passes through the inside of the handle portion 31 and the inside of the universal cable 32, and is connected to the processor device 13 via the connector 32d.
  • the drive & signal processing circuit 48 incorporated in the processor device 13 includes a timing generator 51 that generates timing signals such as various clocks, and a CCD that generates a CCD drive signal that drives the CCD 47 in synchronization with the timing signals. And a drive circuit 52.
  • An amplifier 53 amplifies the CCD output signal output from the CCD 47 by applying the CCD drive signal, an AZD converter 54 that converts the output signal of the amplifier 53 into an AZD, and a digital CCD output output from the AZD converter.
  • a video signal processing circuit 55 that performs signal processing for generating a video signal on the signal, a DZA conversion 56 that performs DZA conversion of the video signal output from the video signal processing circuit 55, and an analog output that is output from the DZA conversion 56
  • an amplifier 57 for amplifying the video signal.
  • the analog video signal amplified by the amplifier 57 is input to the monitor 14, and an endoscope image corresponding to the video signal is displayed on the display surface of the monitor 14.
  • timing generator 51 also supplies the timing signal to the AZD transformer 54, the video signal processing circuit 55, and the DZA converter 56.
  • the processor device 13 includes a CPU 58 for performing control processing, a voice recognition circuit 59 for performing voice recognition, and a drive coil drive circuit 60 for generating a signal for driving the drive coil 50.
  • Data and the like are input to the CPU 58 by operating the keyboard 15 by the surgeon 16 or the like.
  • a voice signal input by the surgeon 16 or the like via the microphone set 17 is voice-recognized by the voice recognition circuit 59, converted into corresponding character information, and input to the CPU 58.
  • the CPU 58 outputs a signal corresponding to data or character information input from the keyboard 15 or the voice recognition circuit 59 to the drive coil drive circuit 60.
  • the drive coil drive circuit 60 sends a signal corresponding to the input data or character information to a drive coil 50 in the nozzle unit 31.
  • the drive coil 50 converts the input information from the CPU 58 into a signal, Radiates as electromagnetic waves.
  • the indwelling marker MiZn receives this electromagnetic wave, uses a part of the electromagnetic wave as a power source, demodulates the information, and stores the transmitted information in the built-in memory 88a (see FIG. 5).
  • the signal radiated as electromagnetic waves from the drive coil 50 is based on the observations made by the surgeon 16, the date and time of detention (of the detention marker 6), and the serial number (of the detention marker MiZn) (that is, lZn, 2 / Information such as n,..., nZn) is superimposed. Then, the electromagnetic wave is received by the source coil Cmi for receiving and transmitting, which is built in the indwelling marker MiZn. Further, a part of the information is used as a power source, the transmitted signal is demodulated to generate a signal corresponding to the input information, and the signal is stored in the memory 88a of the IC chip 88 in the in-place marker Mi / n.
  • the information stored in the memory 88a of the indwelling marker MiZn is read out, so that the subsequent rigid endoscope can be used.
  • the procedure by the 21 side can be performed more smoothly.
  • the position at which the drive coil 50 is provided is not limited to the case where the drive coil 50 is provided at the handle portion 31 of the flexible endoscope 11, but may be any other position or a position other than the flexible endoscope 11, for example, a processor device. It is good to have it in 13!
  • FIG. 3 shows a detailed configuration of the second endoscope device 3.
  • FIG. 4A shows details of a rigid endoscope 21 constituting the second endoscope apparatus 3.
  • a light guide 61 is inserted through the rigid insertion portion 40 of the rigid endoscope 21.
  • the light guide 61 further extends from the handle portion 41. Through the cable 42.
  • the user connects the connector 42a to the light source device 22, so that the light guide 61 transmits illumination light incident from the light source device 22 via the connector 42a.
  • the light exit surface at the distal end of the light guide 61 is attached to an illumination window at the distal end portion 40a of the insertion section 40, and the transmitted illumination light is emitted forward from the illumination window.
  • An objective lens 62 is attached to an observation window provided adjacent to the illumination window, and a CCD 63 is arranged at an image forming position.
  • the CCD 63 is connected to a drive & signal processing circuit 64 incorporated in the processor device 23 as shown in FIG. 3 via a signal line inserted in the insertion section 40 or the like.
  • a sense coil unit 43 is detachably attached to the handle portion 41 of the rigid endoscope 21.
  • a connector receiver 65 is provided at one position on the outer peripheral surface of the handle portion 41, and a connector 66 provided on the case 43a on the sense coil unit 43 side is detachably connected to the connector receiver.
  • a convex portion is provided on the outer peripheral surface of the handle portion 41, The case 43a is fitted to the convex part of, and is detachably attached.
  • the sense coil Cx, Cy, Cz and the drive coil Cd are built in the case 43a of the sense coil unit 43, and the sense coil Cx, Cy, Cz and the drive coil Cd are connected to the connector 66. It is connected to the contact by a lead wire.
  • the sense coils Cx, Cy, Cz and the drive coil Cd are connected via signal lines connected to the contact points of the connector receiver 65, and the processing circuit 67 for the sense coil in the processor device 23 shown in FIG. And the drive coil signal processing circuit 68.
  • the drive coil Cd may be shared by one of the sense coils Cx, Cy, and Cz.
  • FIG. 4B shows a configuration in a modified example in which the drive coil Cd is also used, for example, by the sense coil Cx.
  • the sense coil CxZCd is used not only as the sense coil Cx but also as the drive coil Cd. Therefore, in this case, the drive coil Cd can be omitted.
  • each rigid endoscope 21 incorporates, for example, a memory IC 69 in which a scope ID unique to the rigid endoscope 21 is written so that the rigid endoscope 21 can be used in a state suitable for the mirror 21!
  • the information of the memory IC 69 is read by the CPU 70 provided in the processor 23, and the information is obtained by bringing the distal end portion 40a of the rigid endoscope 21 close to the part where the placement marker MiZn is placed. Used for treatment.
  • the sense coil unit 43 is detachable as described above, if the mechanical dimensions such as the length of the insertion section 40 of the rigid endoscope 21 are different, the positions of the sense coils Cx, Cy, and Cz are different. And the position P of the distal end portion 40a of the insertion portion 40 are different from each other. In order to determine the positional relationship between them, information that can be uniquely determined is needed.
  • the sense coil unit 43 when the sense coil unit 43 is made detachable and has compatibility so as to be detachably attached to various rigid endoscopes, the above information on each rigid endoscope is required. It becomes.
  • the memory IC 69 in each rigid endoscope 21 together with the scope ID and information specific to each rigid endoscope are used. The information is read by the processor device 23 side, converted into necessary information, and used for the position detection by the sense coil unit 43, and also used for the position detection of the distal end portion 40a.
  • FIG. 6, which will be described later, shows a state in which the position P and the like of the tip portion 40a are displayed in a coordinate system for detecting the position of the placement marker MiZn using the sense coils Cx, Cy, and Cz.
  • the information specific to the rigid endoscope includes the positions of the sense coils Cx, Cy, and Cz by mounting the sense coil unit 43 and the mechanical dimensions of the rigid endoscope 21 (the length of the insertion section 40, the sense coil, In addition to the positional force of Cx, Cy, and Cz, in addition to the distance to the objective lens 62 at the tip 40a and the spatial coordinate position), the lens magnification of the objective lens 62, the lens viewing angle, and the oblique direction (perspective angle) for the direct-view type and the oblique type )).
  • All of these pieces of information may be stored in the memory IC69, or the memory IC69 may store only the model number and the serial number of the rigid endoscope 21, and may store the information based on the information.
  • One-to-one conversion may be performed by using a not-shown LUT (look-up table) memory provided on the processor device 23 side.
  • the rigid endoscope 21 can be identified not only by the memory IC 69 storing the scope ID but also by an optical reading means such as a barcode.
  • the handle portion 41 of the rigid endoscope 21 is provided with switches Sa and Sb for an instruction operation. Then, for example, when the switch Sa is pressed and turned on, the operation signal is input to the CPU 70 provided in the processor device 23.
  • the CPU 70 sends a signal from the drive coil Cd to the placement marker MiZn toward the placement marker MiZn, and the placement marker MiZn receives this signal and performs a transmission operation. Start.
  • a signal for stopping transmission is transmitted from the drive coil Cd to the placement marker MiZn, and the placement marker MiZn stops transmitting.
  • signals can be controlled so as not to emit signals unnecessarily.
  • the switches Sa and Sb may be provided in the sense coil unit 43. In this case, the signal is transmitted to the CPU 70 via the connector 66 and the connector receiver 65.
  • the switch Sa may serve as a transmission start and transmission stop function.
  • the drive and signal processing circuit 64 in the processor device 23 shown in FIG. 3 has the same configuration as the drive and signal processing circuit 48 shown in FIG.
  • the drive & signal processing circuit 64 has a timing generator 71 that generates various timing signals, and a CCD drive circuit 72 that generates a CCD drive signal that drives the CCD 63 in synchronization with the timing signals.
  • an amplifier 73 that amplifies the CCD output signal output from the CCD 63, an AZD conversion 74 that converts the output signal of the amplifier 73 into an AZD, and an output from the AZD conversion
  • a video signal processing circuit 75 that performs signal processing for generating a video signal on the digital CCD output signal, a DZA conversion 76 that performs DZA conversion on the video signal output from the video signal processing circuit 75, and a DZA conversion 76
  • an amplifier 77 that amplifies the analog video signal output from
  • the analog video signal amplified by the amplifier 77 is input to the monitor 24, and an endoscope image corresponding to the video signal is displayed on the display surface of the monitor 24.
  • the timing generator 71 also supplies the timing signal to the AZD converter 74, the video signal processing circuit 75, and the DZA converter 76.
  • the drive coil signal processing circuit 68 includes a timing generator (clock generator) 78 that generates clocks of various timings, and a filter by a BPF set to pass the clock from the timing generator 78. And an amplifier 80 that amplifies the clock that has passed through the filter 79.
  • a timing generator clock generator
  • the clock output from the timing generator 78 to the filter 79 is controlled by the CPU 70. That is, in response to the switch Sa being turned on, the CPU 70 outputs a clock from the timing generator 78 to the filter 79 side.
  • the clock force having a predetermined frequency amplified through the amplifier 80 is applied to the drive coil Cd.
  • the drive coil Cd emits an applied clock signal as an electromagnetic wave, and the electromagnetic wave is received by the source coil Cmi of the indwelling marker MiZn and used as a power supply.
  • a signal used for position detection and the like is transmitted by the supply of the power.
  • the signal transmitted from the indwelling marker MiZn is received by the sense coils Cx, Cy, and Cz. Then, it is inputted to the amplifier 81 of the processing circuit 67 for the sense coil in the processor device 23. After being amplified by the amplifier 81, a signal within a predetermined band is extracted by the filter 82, and further AZD-converted by the AZD converter 83 to be converted into a digital signal. This digital signal is input to the Fourier transform circuit 84 and also to the CPU 70.
  • the Fourier transform circuit 84 performs a frequency analysis for extracting a frequency component of the input signal, specifically, a source coil force of the indwelling marker MiZn, and extracts a frequency component of the signal from a result of the frequency analysis. Extract.
  • the extracted signal is output to the amplitude'phase detection circuit 85, and the amplitude'phase detection circuit 85 detects the amplitude and phase value (deviation from the reference phase) of the signal, and outputs the signal to the marker coordinate detection circuit 85. Output to 86.
  • the marker coordinate detection circuit 86 detects (calculates) the three-dimensional coordinates of each in-place marker MiZn from the amplitude and phase values of the signals detected by the three sense coils Cx, Cy, and Cz.
  • the calculated information is output to the video signal processing circuit 75 via the CPU 70, and is superimposed on the video signal of the endoscope image generated by the video signal processing circuit 75, and is displayed on the display surface of the monitor 24.
  • the position of the indwelling marker MiZn can be displayed together with the endoscope image.
  • the CPU 70 to which the output signal from the AZD converter is input decodes information modulated (superimposed) on the position detection signal to obtain information written in the memory 88 a of the IC chip 88. Then, the CPU 70 outputs the information to the video signal processing circuit 75, and performs control processing so that the information such as! / And the findings written on the display surface of the monitor 24 along with the position of the indwelling marker MiZn can be displayed.
  • FIG. 5 shows the configuration of the indwelling marker MiZn.
  • the indwelling marker MiZn includes, for example, a source coil CmiZn used for transmission and reception in an outer case such as a capsule shape, a modulation / demodulation circuit 87 connected to the source coil CmiZn to perform modulation / demodulation, and a memory 88a for storing transmitted information. And a modulation / demodulation circuit 87 and an IC chip 88 for controlling writing to and reading from the memory 88a.
  • information for later treatment is transmitted by the flexible endoscope 11.
  • Write (remember) in memory 88a is transmitted by the flexible endoscope 11.
  • the IC chip 88 is driven to transmit for position detection, and reads out information stored in the memory 88a, modulates and transmits the information. I will. Then, the rigid endoscope 21 receives the transmitted signal and refers to, for example, a finding in the demodulated information, and uses the signal to perform the treatment smoothly or appropriately.
  • FIG. 6 shows how the indwelling marker MiZn is detected by the sense coils Cx, Cy, and Cz.
  • single-axis coils (solenoid coils) are arranged so that they have sensitivity (that is, have directivity) in the three orthogonal x, y, and z directions. It is used to detect the electromagnetic field strength and phase shift from the source coil CmiZn, and the three-dimensional coordinate position of the source coil CmiZn is calculated based on the detected information.
  • the position of the tip 40a of the insertion section 40 (or the objective lens 62 at the tip 40a), which is a predetermined three-dimensional coordinate position when the origin is the sense coils Cx, Cy, and Cz, is stored in the IC memory 69. It can be calculated from the information of the object.
  • the coordinates of the position P of the tip 40a are indicated by (Xo, yo, zo) with the sense coils Cx, Cy, Cz as the origin.
  • the position of the source coil CmiZ3 in three-dimensional coordinates can be displayed, for example, with the position of the tip portion 40a as the origin.
  • the pupil position of the objective lens 62 is set as the position P of the distal end portion 40a, and the coordinate system with the position P as the origin is indicated as (,, ⁇ !).
  • the sense coil Cx is arranged so as to have directivity in the axial direction of the input section 40, and the visual field direction S of the objective lens 62 is changed to the sense coils Cx, Cy, It becomes parallel to the x-axis direction in the coordinate system (x, y, z) with Cz as the origin, and also becomes the direction in the coordinate system (x ⁇ ⁇ ', ⁇ ! With the position P of the tip 40a as the origin.
  • the case of the direct-view type is shown.
  • FIGS. 7A and 7B show how the placement marker MiZn is placed in the target region 5 of interest such as the affected part. According to the shape of the target area 5 such as an affected part, the placement marker MiZn may be placed as shown in FIG. 7A or FIG. 7B.
  • the target area 5 has a substantially triangular shape as shown in FIG. 7A, it is preferable to place three placement markers M1Z3, M2 / 3, and M3Z3 at positions near each vertex.
  • the target area 5 has a substantially rectangular shape as shown in FIG. 7B, four placement markers M1Z4, M2 / 4, M3 / 4, and M4Z4 may be placed at positions near each vertex. If the target area 5 is circular or elliptical, three or more placement markers MiZn may be placed along the outer shape!
  • FIG. 8 shows signals transmitted from the drive coil Cd of the rigid endoscope 21 to, for example, three indwelling markers MiZ3 and signals transmitted for position detection and the like by the source coil Cmi of the indwelling marker MiZ3. Shows the timing of
  • the drive coil Cd outputs a burst wave having an oscillation frequency of, for example, ⁇ as a signal of a predetermined cycle.
  • the signals shown in FIGS. 8B and 1D are the fundamental waves (carrier waves) of the output signals. On this fundamental wave, unique information and information such as findings recorded in the memory 88a in each of the indwelling markers M1Z3 to M3Z3 are superimposed.
  • FIGS. 8B to 8D The output signals of the three indwelling markers M1Z3 to M3Z3 are shown in FIGS. 8B to 8D.
  • a signal is transmitted at a predetermined amplitude from the transmission timing of the burst wave of the drive coil Cd at times tl, t2, and t3, respectively.
  • Cx, Cy, Cz it is possible to recognize which signal corresponds to which source coil Cmi / 3.
  • the sense coils Cx, Cy, and Cz and each source coil CmiZ are detected.
  • the directivity by the sense coils Cx, Cy, and Cz, and the amplitude value of the detected signal waveform for example, the three-dimensional coordinates of the source coil CmiZ3 having the coordinate system of the sense coils Cx, Cy, and Cz as the origin are obtained. The position can be calculated.
  • the origin is the sense coils Cx, Cy, and Cz
  • the position of the distal end portion 40a of the insertion portion 40 (or the objective lens 62 at the distal end portion 40a) at a predetermined three-dimensional coordinate position is set as the origin, and the source coil CmiZ3 is formed. It is also possible to calculate the position of three-dimensional coordinates.
  • the position of the three-dimensional coordinates of the source coil CmiZ3 is set so that the distal end portion 40a of the rigid endoscope 21 can be easily visually approached to the target region 5 where the placement marker MiZ3 is placed.
  • the tip portion 40a of the insertion section 40 is displayed as the origin of the three-dimensional coordinate system.
  • FIG. 9 shows a transmission method different from the method of FIG.
  • the oscillation frequency of the drive coil Cd is, for example, a 10 kHz burst wave.
  • the transmission signals from these source coils CmlZ3—Cm3Z3 have the same start timing, but instead have different transmission frequencies, such as 10 kHz, 12 kHz, and 14 kHz, respectively.
  • the source coils Cml / 3—Cm3 / 3 have different frequencies such as 10 kHz, 12 kHz, and 14 kHz, respectively.
  • the signal is received by the sense coils Cx, Cy, and Cz provided in the surgical rigid endoscope 21, and the source coil Cmi is obtained from the frequency. Can be recognized.
  • Indwelling marker M3Z1 When injecting M3Z3, when inputting predetermined information to each indwelling marker MiZ3 from the gastrointestinal endoscope device 2 side, serial number data is also input. When a burst wave is received, a fundamental wave of 10 kHz, 12 kHz, and 14 kHz is transmitted and output, respectively. "
  • FIGS. 9B to 9D show fundamental waves of the output signal.
  • this fundamental wave unique information and the like recorded in the memory 88a in each of the placement markers MiZ3 are superimposed.
  • the timing for transmitting with the fundamental wave and the timing for transmitting with the unique information superimposed may be alternately changed at a constant cycle.
  • the endoscope system 1 having such a configuration diagnoses a treatment target area such as an affected part with the flexible endoscope 11 for a masking device and indwells the indwelling marker MiZn based on the diagnosis result, and then indwells.
  • a treatment target area such as an affected part
  • the flexible endoscope 11 for a masking device
  • indwells the indwelling marker MiZn based on the diagnosis result
  • the procedure of the surgical operation using the rigid endoscope 21 using the indwelling marker MiZn will be described with reference to FIGS.
  • an endoscopy is performed by using the flexible endoscope 11 for the extinguisher.
  • the patient 4 is inserted from the mouth side by a flexible endoscope 11 for an extinguisher, and an endoscopic examination is performed inside the digestive tract, for example, inside the stomach 33. .
  • EMR Endoscopic mucosal resection
  • the operator 16 places the placement marker MiZn in the treatment target region 5 as shown in step S2. .
  • the placement marker MiZn three or more placement markers MiZn are placed so as to surround the target area 5 by the grasping forceps 35 inserted into the channel 49 of the flexible endoscope 11 or the like.
  • a hook or the like is attached to the indwelling marker MiZn in advance, and the tip of the hook is inserted into the surface of the target area 5 such as the affected part, thereby placing the indwelling marker MiZn. it can. Also, instead of using a hook or the like, it is easier to place the bioadhesive polymer on the outer surface of the placement marker MiZn and place it on the surface of the target area 5 using a bioadhesive polymer.
  • step S3 the surgeon 16 inputs a finding, a detention date and time, a serial number for the total number n of detention markers MiZn to be detained, for example, by voice input using the microphone set 17, or the like.
  • the CPU 58 in the processor device 13 causes the driving coil driving circuit to transmit the input information to the driving coil 50 as well. Activate 60.
  • the indwelling marker Mi / n receives the signal by the source coil Cmi / n and uses it as a power source, and stores the information transmitted to the memory 88a in the IC chip 88. I do.
  • FIG. 11 shows a typical procedure of the treatment in this case.
  • step S 11 the insertion part 40 of the rigid endoscope 21 is also inserted through the trocar 44 into the abdomen 4 a of the patient 4 with equal force.
  • the endoscope image captured by the CCD 63 of the rigid endoscope 21 is displayed on the display surface of the monitor 24.
  • step S12 to step S17 in FIG. 11 may be performed under the control of the CPU 70 in accordance with the program 70a built in the CPU 70!
  • n 3.
  • the drive coil Cd is sequentially shifted from the transmission timing of the force as shown by time tl, t2, and t3 so as not to overlap.
  • signals for position detection, etc. are sequentially transmitted from the source coils CmlZ3 to Cm3Z3 (S13).
  • the sense coils Cx, Cy, and Cz in the sense coil unit 43 attached to the rigid endoscope 21 receive signals from the respective source coils CmiZ3. Then, under the control of the CPU 70, the sense coil processing circuit 67 detects each three-dimensional position of the source coil CmiZ3 (placement marker MiZ3) (S14). The detection (calculation) of the three-dimensional position becomes possible by detecting the amplitude value and phase of the received signal.
  • the CPU 70 may calculate a normal vector perpendicular to the plane from the plane including the placement markers M1Z3 to M3Z3.
  • information input and stored in the memory 88a by the operator 16 is also read and input to the CPU 70. This information is also sent from the CPU 70 to the video signal processing circuit 75, superimposed on the video signal, output to the monitor 24, and displayed on the monitor 24 (S17).
  • FIG. 12 shows a display example on the monitor 24 in this case.
  • an endoscope image captured by the CCD 63 of the rigid endoscope 21 is displayed, and adjacent to the display area Re, the insertion section 40 of the rigid endoscope 21 is displayed.
  • a guide image serving as a guide for the insertion direction at the distal end is displayed in the insertion guide display area Rg.
  • the view direction S when the view direction S is set to, for example, the direction with the position of the objective lens 62 as the origin, the direction is set to a direction perpendicular to the monitor screen, and the detected detention is performed.
  • the position of the indwelling marker MiZn is indicated by using the and components perpendicular to this direction at the position shifted in the viewing direction S by the component in the indwelling marker MiZn. That is, the monitor screen relatively shows the and components of the indwelling marker MiZn.
  • MiZn is M1Z3-M3Z3.
  • the value of the ⁇ 'component since it is difficult to visually grasp the value of the ⁇ 'component as it is, for example, two concentric circles H and C having different sizes in proportion to the component values are displayed.
  • the size of the circles H and C is proportional to the size of the component at the distance from the position ⁇ of the tip 40a to the placement marker MiZn.
  • the circle C is displayed assuming that the value of the component at the distance from the position P of the tip 40a to the placement marker MiZn is a radius. Displaying in this manner makes it easier to visually perform the operation of bringing the tip portion 40a closer to the target area 5 side.
  • the surgeon 16 since the information 5a of the target area 5 is displayed on the right side of the viewing direction S, the surgeon 16 changes the distal end portion 40a of the insertion section 40 so as to face the right side. It is easy to visually understand that approaching the target area 5 is easy.
  • the center position of the placement markers M1Z3-M3Z3 is 0, the center positions O of the placement markers M1Z3-M3Z3, and the normal vector V of the plane including these are displayed.
  • the normal vector B it is possible to determine whether the tip 40a is approaching the direction force perpendicular to the surface!
  • the operator approaches the target region 5 by referring to the information displayed on the monitor 24 and adjusting the orientation of the insertion section 40 of the rigid endoscope 21 (S18).
  • the center position O and the like of the target region 5 are displayed together with the viewing direction S and the like of the distal end portion 40a of the rigid endoscope 21 by the objective lens 62. Since the normal vector V and the like of the surface of the target region 5 are also displayed, the tip portion 40a of the insertion portion 40 can smoothly approach the center position O of the target region 5. Further, it is easy to visually recognize whether or not a directional force perpendicular to the surface of the target region 5 is approached or observed from the direction of the normal line solid V.
  • the target area 5 By approaching the target area 5, the target area 5 is put into the observation field of view of the objective lens 62 of the rigid endoscope 21, and a treatment is performed using a treatment tool (not shown) or the like (S19). Also, remove the placed placement markers M1Z3-M3Z3. Then, the surgical operation ends.
  • the position of the distal end portion 40a of the rigid endoscope 21 is defined as (xo, yo, zo).
  • the position (xo, yo, zo) of the distal end portion 40a of the rigid endoscope 21 and the viewing direction S of the objective lens 62 are
  • the position (xo, yo, zo) of the distal end portion 40a and the visual field direction S of the objective lens 62 become Decisions are possible. Then, after calculating the position (xo, yo, zo) of the tip 40a, when displaying the result of calculating the position of the indwelling marker MiZ3 on the monitor 24, the position of the tip 40a is determined by the coordinate origin as described above. By displaying as, the tip portion 40a can be visually easily approached to the indwelling marker MiZ3.
  • a sense coil for position detection is provided at the distal end 40a of the rigid endoscope 21 in which the sense coils Cx, Cy, Cz, etc. are detachably attached to the handle portion 41. If provided, the position of the distal end portion 40a of the rigid endoscope 21 and the viewing direction S can be determined from the position and orientation of the sense coil. Therefore, the sense coil may be arranged at the distal end portion 40a in this manner.
  • the operator can detect the relative positional relationship between the position of the distal end portion of the endoscope and the force placed at the target site such as the affected part, so that the operator can obtain the information.
  • the tip can be smoothly approached to the target site by using.
  • the position of the distal end portion 40a and the visual field direction S can be detected by the rigid endoscope 21 so that the target area 5 where the placement marker MiZn is placed is smoothly placed.
  • a force that explains the structure and action, etc. that enabled the approach, etc. The present invention can be applied to the mirror 11 as in the following embodiment 2.
  • FIG. 13 shows an endoscope system 1B having a second embodiment of the present invention.
  • This endoscope system 1B has a configuration in which the sense coils Cx, Cy, Cz are arranged at the distal end portion 30a of the flexible endoscope 11 in FIG. 1 or FIG. The position of the distal end 30a of the endoscope 11 and the direction of the visual field by the objective lens 46 provided at the distal end 30a can be detected.
  • the position of the distal end portion 30a of the insertion section 30 of the flexible endoscope 11 and the viewing direction S ′ of the objective lens 46 are determined by providing the distal end portion 30a with the sense coils Cx, Cy, and Cz. The positions of Cy and Cz and their orientation forces The position of the distal end portion 30a of the flexible endoscope 11 and the viewing direction S ′ are determined.
  • the imaging portion at the distal end 30a of the flexible endoscope 11 is generally made of a hard member, the flexibility is improved by incorporating the sense coils Cx, Cy, and Cz at a position shifted backward by a known position.
  • the position of the distal end portion 30a of the endoscope 11 and the direction of the visual field can be determined. If the sense coils Cx, Cy, and Cz are arranged as described above, they do not interfere with other components built in the distal end portion 30a, such as the optical system such as the objective lens 46 of the flexible endoscope 11.
  • the positions of the indwelling markers M1Z3 to M3Z3 are defined as (xl, yl, zl), (x2, y2, z2), and (x3, y3, z3).
  • the displayed endoscope image is expressed as a plane perpendicular to the Z axis.
  • the origins of X, ⁇ , and Z are the same as the position of the distal end portion 30a of the flexible endoscope 11 described above.
  • An indwelling mask detected by the sense coils Cx, Cy, Cz provided in the flexible endoscope 11 M1Z3 The positions (xl, yl, zl), (x2, y2, z2), and (x3, y3, z3) of M3Z3 are transformed as values in the space of X, Y, and ⁇ , respectively.
  • the distance D between the tip and the placement marker M1Z3 is the distance between the origin of the X, ⁇ , Z space and the point (XI, Y1, Z1).
  • simple calculation is possible as the square root of the sum of squares of each term of (XI, Yl, Z1), and this distance can be displayed on the screen.
  • the endoscope image Since the image is perpendicular to the Z axis on the surface, the detention force of (XI, Yl, Z1) projected on the XY plane is the position of M1Z3, that is, from the origin of X, ⁇ , Z space (XI, Y1, 0) It is expressed as a solid W heading for.
  • the user who performs an endoscopic examination or treatment can easily determine in which direction the endoscope should be turned.
  • the vector W shown in the case of the placement marker M1Z3 may be displayed with respect to the center position of the placement marker M1Z3—M3Z3.
  • the processor device W has the same configuration as the processor device 23 in FIG. 1, and the processor device 23 ′ has the same configuration as the processor device 13 in FIG. It is good. Further, in this case, a unit 43 ′ incorporating a drive coil is connected to the rigid endoscope 21 (corresponding to the drive coil unit 37 in FIG. 1).
  • treatment is first performed with the rigid endoscope 21, and in this case, if treatment with the flexible endoscope 11 is easier, treatment with the rigid endoscope 11 is performed.
  • the present invention can also be applied to a case in which surgery is performed using the surgical ma- piulators 92a and 92b that constitute the robot surge ely 91 as shown in FIG.
  • the slave manipulator 92a has a surgical instrument 94 having an insertion portion 93 whose distal end is inserted into the body c via the insertion hole b in the abdominal wall 4a of the patient, and a direct support for supporting the surgical instrument 94.
  • a robot 95 having a plurality of axes having degrees of freedom of movement and rotation.
  • a three-dimensional (three-dimensional) scope in which a pair of objective optical systems 90a and 90b and image pickup devices (not shown) are arranged at respective image forming positions of the objective optical systems 90a and 90b on the left and right, respectively. And a pair of treatment tools 97a and 97b.
  • the distal end portion 96a of the stereoscopic scope 96 and the pair of treatment tools 97a and 97b can be bent with multiple degrees of freedom.
  • a master manipulator 92b having an articulated structure is provided as an operating means, and a head mount display (abbreviated as HMD) 98 mounted by an operator 103 and a pair of treatment instruments are provided at the distal end of the master manipulator 92b.
  • Operating arms 99a and 99b are provided.
  • the slave manipulator 92a and the master manipulator 92b are connected to the control device 100, and the position of the tip of the master manipulator 92b is set to the slave manipulator 9b.
  • the axis of the slave manipulator 92a is provided with an actuator (not shown), an encoder 101 for detecting its rotational position, and a speed reducer (not shown). Further, an encoder 102 is provided at the joint of the master-pilator 92b, the rotating part of the HMD 98, and the joint of the operation arms 99a and 99b.
  • the master manipulator 92b when the operator 103 operates the master manipulator 92b while observing the image displayed on the HMD 98, the master manipulator 92b generates an operation signal corresponding to the operation and controls the operation signal. Output to device 100.
  • the control device 100 controls the operation of the slave manipulator 92a based on the operation signal.
  • the slave manipulator 92a operates following the operation and the surgical instrument inserted into the body c. 94 can be operated.
  • the HMD98 and an encoder 102 are attached to a portion of the head of the operator 103 which serves as a rotation axis of the HMD98.
  • the slave manipulator follows the movement of the encoder 102 and moves.
  • the three-dimensional scope 96 fixed to 92a displays the image of the field of view on the HMD 98, and the operator 103 can perform the procedure in the sense of being in the body c.
  • reference numerals A1 to A5 indicate parts that can rotate or move freely.
  • the three-dimensional scope 96 the three-dimensional position at the distal end 96a of the HMD 98 and its view direction S can be detected, and these can be displayed on the display surface of the HMD 98 along with the position of the in-place markers M1Z3-M3Z3, etc., as described above.
  • a marker that transmits signals electromagnetically is placed, so that the endoscope can be smoothly moved to the marker using the electromagnetic sensor provided on the endoscope. Guides the patient to perform procedures under endoscopic observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 内視鏡の挿入部の先端部には対物光学系が設けてある。患部等の対象部位には電磁波を送信可能とするマーカが留置される。内視鏡の挿入部の後端や先端部などには、留置されたマーカの位置を電磁的に検出するためのセンサが、前記挿入部の先端部の位置と所定の位置関係となるように設けてある。

Description

明 細 書
内視鏡及び内視鏡システム
技術分野
[0001] 本発明は、体内等に挿入して内視鏡検査や処置を行うための内視鏡及び内視鏡 システムに関する。
背景技術
[0002] 近年、医療用分野において、内視鏡が広く採用されるようになった。また、消ィ匕器 用の軟性内視鏡の観察下による処置にも利用される。この場合、患部の状況等によ つては、硬性内視鏡の観察下による外科手術による処置の方が行い易い場合がある このような場合、従来では、術者は、外科手術で検査、処置を行おうとする患部等 の対象部位に、目印となるマーカを留置していた。このマーカの位置は、胃壁、腸壁 等が介在するため、硬性内視鏡による光学的な観察の際には画像として認知できな いため、先行例においては、体外からの触感や X線透視等の手段により位置確認を 行っていた。
[0003] 上述のように先行例の内視鏡においては、マーカを留置しても、そのマーカの位置 を簡単に認知できなかった。
また、マーカの位置を認知して、さらにそのマーカの位置に内視鏡の先端側を円滑 にアプローチすることができると、内視鏡検査や処置を円滑に行い易くなるが、先行 、てはそのような構成になって!/、なかった。
なお、日本国特開 2002— 131009号公報には、軟性内視鏡の先端部の位置を含 む挿入部の形状を検出できる構成の内視鏡装置が開示されているが、留置されるマ 一力の位置にアプローチをし易くするものでもない。
[0004] 本発明は、上述した点に鑑みてなされたもので、マーカが留置される患部等の対象 部位に円滑にガイドし易くする内視鏡及び内視鏡システムを提供することを目的とす る。
発明の開示 課題を解決するための手段
[0005] 本発明は、挿入部の先端部に対物光学系を備えた内視鏡において、
対象部位に留置され、電磁波を送信可能とするマーカの位置を電磁的に検出する ためのセンサを、前記挿入部の先端部の位置と所定の位置関係となるように設けたこ とを特徴とする。
上記構成により、内視鏡の先端部の位置と、患部等の対象部位に留置されるマー 力との相対的な位置関係を検出可能とすることにより、術者は、その情報を利用して 対象部位に対して内視鏡の先端部を円滑にアプローチし易くなる。
[0006] 本発明の内視鏡システムは、
挿入部の先端部に対物光学系を備えた内視鏡と、
対象部位に留置され、電磁波を送信可能とするマーカと、
前記マーカの位置を検出するためのセンサと、
を備え、
前記挿入部の位置及び前記マーカの位置関係が検出されるようにしたことを特徴と する。
[0007] 上記構成により、内視鏡の挿入部の位置と、患部等の対象部位に留置されるマー 力との相対的な位置関係を検出可能とすることにより、術者は、その情報を利用して 対象部位に対して挿入部を円滑にアプローチし易くなる。
図面の簡単な説明
[0008] [図 1]図 1は本発明の実施例 1を備えた内視鏡システムの全体構成図である。
[図 2]図 2は第 1の内視鏡装置の全体構成を示すブロック図である。
[図 3]図 3は第 2の内視鏡装置の全体構成を示すブロック図である。
[図 4A]図 4Aは硬性内視鏡の内部構成を示す図である。
[図 4B]図 4Bは変形例の硬性内視鏡の内部構成を示す図である。
[図 5]図 5は留置マーカの概略の構成を示す図である。
[図 6]図 6はセンスコイルと留置マーカ及び先端部との位置検出等の様子を示す図で ある。
[図 7A]図 7Aは対象部位の形状に応じて留置マーカを設定する例を示す図である。 [図 7B]図 7Bは対象部位の形状に応じて留置マーカを設定する例を示す図である。
[図 8]図 8はドライブコイルによる駆動波形とその駆動により留置マーカのソースコイル 力 送信する信号波形のタイミング等を示す図である。
[図 9]図 9はドライブコイルによる駆動波形とその駆動により留置マーカのソースコイル 力 周波数を変えて送信する信号波形のタイミング等を示す図である。
[図 10]図 10は消ィヒ器用の軟性内視鏡による内視鏡検査により留置マーカを留置す る手順を示すフローチャートである。
[図 11]図 11は消ィ匕器用の軟性内視鏡による留置マーカの留置後における硬性内視 鏡による外科手術する際の処置する手順を示すフローチャートである。
[図 12]図 12はモニタでの内視鏡画像等の表示例を示す図である。
[図 13]図 13は本発明の実施例 2を備えた内視鏡システムの全体構成を示すブロック 図である。
[図 14]図 14はマニピュレータを用いた手術システムの主要部を示す図である。
発明を実施するための最良の形態
以下、図面を参照して本発明の各実施例を説明する。
(実施例 1)
図 1から図 12を参照して本発明の実施例 1を説明する。
図 1に示すように本実施例を備えた内視鏡システム 1は、例えば消化器用内視鏡装 置としての第 1の内視鏡装置 2と、外科手術用内視鏡装置としての第 2の内視鏡装置 3と、特に第 1の内視鏡装置 3側により患者 4の患部等の検査或いは処置する対象領 域 (対象部位) 5に留置される RF— IDタグ等により構成される n個の留置マーカ MiZ n(i= l, 2, ···、!!)とを備えて ヽる。
第 1の内視鏡装置 2は、屈曲した体腔内に沿って挿入可能とする軟性内視鏡 11と 、この軟性内視鏡 11に照明光を供給する光源装置 12と、軟性内視鏡 11に内蔵され た撮像素子に対する信号処理を行うプロセッサ装置 13と、このプロセッサ装置 13か ら出力される映像信号を表示するモニタ 14と、プロセッサ装置 13に接続され、留置 マーカ Mi/n等への情報の入力を行うキーボード 15と、例えば術者 16のヘッドに装 着され、音声によって留置マーカ MiZn等への情報の入力等を行うことを可能とする マイク(を備えたマイクセット) 17とからなる。
[0010] また、第 2の内視鏡装置 2は、外科手術のために例えば患者 4の腹部 4a等に挿入さ れる硬性内視鏡 21と、この硬性内視鏡 21に照明光を供給する光源装置 22と、硬性 内視鏡 21に内蔵された撮像素子に対する信号処理を行うプロセッサ装置 23と、この プロセッサ装置 23から出力される映像信号を表示するモニタ 24と、プロセッサ装置 2 3に接続され、情報の入力を行うキーボード 25とからなる。
軟性内視鏡 11は、軟性で細長の挿入部 30と、この挿入部 30の基端に設けられ、 術者 16により把持される把持部或いはハンドル部 31と、このハンドル部 31から延出 されるユニバーサルケーブル 32とを有し、このユニバーサルケーブル 32の末端側は 、例えばライトガイドケーブル 32aと信号ケーブル 32bとに分岐し、それぞれ末端に設 けられたコネクタ 32c及び 32dは、光源装置 12とプロセッサ装置 13とに着脱自在に 接続される。 この軟性内視鏡 11は、口部から挿入部 30を挿入し、屈曲した食道等 の管路を経て例えば胃 33の内部等に挿入することができる。
[0011] また、挿入部 30の基端付近には処置具挿入口 34が設けてあり、処置具を挿入して 、挿入部 30内に設けられたチャンネルを介してその先端側を突出して処置したり、留 置用の処置具となる把持鉗子 35を用いて留置マーカ MiZnを留置することができる ようにしている。
また、挿入部 30は、硬質の先端部 30aと、湾曲自在の湾曲部 30bと、軟性 (可撓性 )の軟性部 30cとから構成され、術者 16は、ハンドル部 31に設けた湾曲ノブ 36を操 作することにより、湾曲部 30bを上下、左右の任意の方向に湾曲することができる。 また、ハンドル部 31には、留置マーカ MiZnに情報を書き込むために電磁的に信 号を送信するための駆動コイルユニット 37がとりつけられている。そして、後述するよ うに術者 16は音声入力等をすることにより、駆動コイルユニット 37内の駆動コイルか ら書き込む情報を電磁波で送信することにより、留置マーカ MiZn内のメモリ内に送 信された情報を書き込む (記憶)することができるようにして!/、る。
[0012] 一方、硬性内視鏡 21は、硬質性で細長の挿入部 40と、この挿入部 40の基端に設 けられ、術者 16により把持される把持部或いはハンドル部 41と、このハンドル部 41か ら延出されるユニバーサルケーブル 42とを有する。このユニバーサルケーブル 42の 末端側は、例えばライトガイドケーブル 42aと信号ケーブル 42bとに分岐し、それぞれ 末端に設けられたコネクタ 42c及び 42dは、光源装置 22とプロセッサ装置 23とに着 脱自在に接続される。
また、この硬性内視鏡 21には、例えばその挿入部 40の基端付近には、留置マーカ 6の位置を検出したり、この硬性内視鏡 21における挿入部 40の先端部 40aの位置 P と、その視野方向 Sを検出可能とする(センスコイルを内蔵した)センスコイルユニット 4 3が取り付けられている。
[0013] このセンスコイルユニット 43は、留置マーカ MiZnの位置検出にも利用される。
この硬性内視鏡 21は、その挿入部 40がトラカール 44を介して患者 4の腹部 4aから 体内に刺入される。
[0014] 図 2は第 1の内視鏡装置 2の詳細な構成を示す。
図 2に示すように、軟性内視鏡 11の挿入部 30内には照明光を伝送するライトガイド (図 2における拡大図参照) 45が挿通されており、その後端側の入射端は、図 1に示 した光源装置 12に着脱自在に接続される。そして、光源装置 12から供給される照明 光を伝送し、ライトガイド 45の先端の出射面から出射する。このライトガイド 45の出射 面は、先端部 30aの照明窓に取り付けられている。
先端部 30aには、この照明窓に隣接して観察窓が設けてあり、この観察窓には対物 レンズ 46が取り付けてあり、その結像位置には撮像素子として例えば電荷結合素子 (CCDと略記) 47が配置されている。この CCD47は、信号線によりコネクタ 32dの接 点に電気的に接続されている。そして、ユーザは、このコネクタ 32dをプロセッサ装置 13に接続することにより、プロセッサ装置 13内部の駆動 &信号処理回路 48に接続さ れる。
また、挿入部 30内にはチャンネル 49が設けてあり、留置マーカ MiZnを留置する ための把持鉗子 35等の処置具を揷通することができる。
[0015] また、ハンドル部 31に設けた駆動コイルユニット 37の内部には、留置マーカ MiZn に対して書き込む情報を電磁波により送信する駆動コイル 50が収納されている。この 駆動コイル 50は、ハンドル部 31内部及びユニバーサルケーブル 32内を揷通された 信号線と接続され、コネクタ 32dを介してプロセッサ装置 13と接続される。 プロセッサ装置 13に内蔵された駆動 &信号処理回路 48は、各種のクロック等のタ イミング信号を生成するタイミングジェネレータ 51と、そのタイミング信号に同期して C CD47を駆動する CCD駆動信号を発生する CCD駆動回路 52とを有する。
また、 CCD駆動信号の印加により、 CCD47から出力される CCD出力信号を増幅 するアンプ 53と、このアンプ 53の出力信号を AZD変換する AZD変 54と、この AZD変 から出力されるデジタルの CCD出力信号に対して映像信号生成の 信号処理を行う映像信号処理回路 55と、この映像信号処理回路 55から出力される 映像信号を DZA変換する DZA変 56と、この DZA変 56から出力される アナログの映像信号を増幅するアンプ 57とを有する。
[0016] このアンプ 57により増幅されたアナログの映像信号は、モニタ 14に入力され、モ- タ 14の表示面には、この映像信号に対応する内視鏡画像が表示される。
なお、タイミングジェネレータ 51は、タイミング信号を、 AZD変 54、映像信号 処理回路 55及び DZA変換器 56にも供給する。
また、このプロセッサ装置 13には、制御処理を行う CPU58と、音声認識を行う音声 認識回路 59と、駆動コイル 50を駆動する信号を生成する駆動コイル用駆動回路 60 とが内蔵されている。
CPU58には、術者 16等によりキーボード 15の操作によりデータ等が入力される。 また、術者 16等によりマイクセット 17を介して入力される音声信号は、音声認識回路 59により音声認識されて対応する文字情報に変換されて CPU58に入力される。
[0017] CPU58は、キーボード 15や音声認識回路 59から入力されるデータや文字情報に 対応する信号を駆動コイル用駆動回路 60に出力する。駆動コイル用駆動回路 60は 、入力されたデータや文字情報に対応する信号をノヽンドル部 31内の駆動コイル 50 に送り、この駆動コイル 50は CPU58側からの入力情報を変調した信号にして、電磁 波として放射する。
[0018] 留置マーカ MiZnは、この電磁波を受信して、その一部を電源に利用すると共に、 復調して、送信された情報を内蔵したメモリ 88a (図 5参照)に記憶する。
具体的には、駆動コイル 50から電磁波として放射される信号は、術者 16による所 見、(留置マーカ 6の)留置日時、(留置マーカ MiZnの)通し番号(つまり lZn, 2/ n、 · ··、 nZn)などの情報が重畳される。そして、留置マーカ MiZnに内蔵された受 信及び送信を兼ねるソースコイル Cmiによりその電磁波を受信する。さらにその一部 を電源に利用し、送信された信号を復調して、上記入力情報に対応する信号を生成 し、留置マーカ Mi/n内の ICチップ 88のメモリ 88aに記憶する。
本実施例においては、留置マーカ MiZnのソースコイル Cmiから送信される信号 による位置情報の他に、留置マーカ MiZnのメモリ 88a内に記憶された情報を、読み 出すことにより、以後の硬性内視鏡 21側による処置をより円滑に行えるようにする。
[0019] なお、駆動コイル 50を設ける位置は、軟性内視鏡 11のハンドル部 31に設ける場合 に限定されるものでなぐ他の位置或いは、軟性内視鏡 11以外の位置、例えばプロ セッサ装置 13に設けるようにしても良!、。
図 3は第 2の内視鏡装置 3の詳細な構成を示す。また、図 4Aは第 2の内視鏡装置 3 を構成する硬性内視鏡 21の詳細を示す。
図 4Aに示すように、硬性内視鏡 21の硬質性の挿入部 40内には、ライトガイド 61が 揷通されており、このライトガイド 61はさらにハンドル部 41から延出されたュ-バーサ ルケーブル 42内に揷通されている。
そして、図 1に示すようにユーザは、コネクタ 42aを光源装置 22に接続することによ り、光源装置 22からコネクタ 42aを経て入射される照明光をライトガイド 61は伝送する 。このライトガイド 61の先端の出射面は、挿入部 40の先端部 40aの照明窓に取り付 けてあり、伝送された照明光は、この照明窓から前方に出射される。
[0020] また、この照明窓に隣接して設けられた観察窓には、対物レンズ 62が取り付けてあ り、その結像位置には CCD63が配置されている。この CCD63は、挿入部 40内等に 挿通された信号線を介して図 3に示すようにプロセッサ装置 23に内蔵された駆動 & 信号処理回路 64と接続される。
図 4Aに示すように、この硬性内視鏡 21のハンドル部 41には、センスコイルユニット 43が着脱自在に装着される。
例えば、ハンドル部 41の外周面における 1箇所には、コネクタ受け 65が設けてあり 、このコネクタ受けには、センスコイルユニット 43側のケース 43aに設けたコネクタ 66 が着脱自在に接続される。なお、ハンドル部 41の外周面には、凸部が設けてあり、こ の凸部にケース 43aが嵌合して着脱自在に取り付けられる。
[0021] このセンスコイルユニット 43のケース 43a内にはセンスコイル Cx、 Cy、 Czと、ドライ ブコイル Cdとが内蔵されており、センスコイル Cx、 Cy、 Czとドライブコイル Cdは、コネ クタ 66の接点にリード線にて接続されている。
[0022] そして、これらセンスコイル Cx、 Cy、 Czとドライブコイル Cdは、コネクタ受け 65の接 点に接続された信号線を介して、図 3に示すプロセッサ装置 23内のセンスコイル用 処理回路 67及びドライブコイル用信号処理回路 68にそれぞれ接続される。
なお、ドライブコイル Cdをセンスコイル Cx、 Cy、 Czの 1つで兼用するようにしても良 い。
図 4Bは、ドライブコイル Cdを、例えばセンスコイル Cxにより兼用した変形例の場合 の構成を示す。図 4Bにおいて、センスコイル CxZCdは、センスコイル Cxとして使用 されると共に、ドライブコイル Cdとしても使用される。従って、この場合には、ドライブコ ィル Cdを省くことができる。
[0023] また、本実施例においては、センスコイルユニット 43を、硬性内視鏡 21に着脱自在 にして 、るので、図 4Aに示すようにセンスコイルユニット 43が実際に装着される硬性 内視鏡 21に適した状態で使用できるように各硬性内視鏡 21には、その硬性内視鏡 21に固有のスコープ IDを書き込んだ例えばメモリ IC69が内蔵されて!、る。
そして、このメモリ IC69の情報は、プロセッサ装置 23内に設けた CPU70により読 みとられ、その情報は、硬性内視鏡 21の先端部 40aを留置マーカ MiZnが留置され ている部位に接近させて処置する際に利用される。
[0024] 上記のようにセンスコイルユニット 43が着脱自在の場合には、硬性内視鏡 21の揷 入部 40の長さ等の機械的な寸法が異なると、センスコイル Cx、 Cy、 Czの位置と挿入 部 40の先端部 40aの位置 Pとの相対的な位置が異なり、それらの位置関係を決定す るためには、それを一義的に決定可能とする情報が必要となる。
このようにセンスコイルユニット 43を、着脱自在として互換性を有するものにして、種 々の硬性内視鏡に対して着脱可能に組み合わせようとする場合、個々の硬性内視 鏡における上記情報が必要となる。これを達成する為に、本実施例においては、各 硬性内視鏡 21内のメモリ IC69にスコープ IDと共に、個々の硬性内視鏡特有の情報 を記憶しており、その情報をプロセッサ装置 23側で読みとり、必要な情報に変換した 上で、センスコイルユニット 43による位置検出の際に利用すると共に、先端部 40aの 位置検出にも利用する。
[0025] 後述する図 6において、センスコイル Cx、 Cy、 Czによる留置マーカ MiZnの位置 検出の座標系にお 、て、先端部 40aの位置 P等を表示した様子を示す。
この場合、硬性内視鏡特有の情報とは、センスコイルユニット 43の取り付けによるセ ンスコイル Cx、 Cy、 Czの位置と、硬性内視鏡 21の機械的寸法 (挿入部 40の長さと、 センスコイル Cx、 Cy、 Czの位置力も先端部 40aの対物レンズ 62までの距離や空間 座標位置)以外にも、対物レンズ 62のレンズ倍率、レンズ視野角、直視タイプや斜視 タイプにおける斜視の方向(斜視角)等の情報が挙げられる。
[0026] これら全ての情報を上記メモリ IC69に記憶しておいても良いし、或いは、メモリ IC6 9には、硬性内視鏡 21の機種番号と製造番号のみを記憶し、その情報を基にプロセ ッサ装置 23側に設けた図示しない LUT (ルック UPテーブル)メモリにより、 1対 1に変 換して用いるようにしても良い。なお、硬性内視鏡 21を識別するためには、スコープ I Dを記憶したメモリ IC69に限らず、バーコード等の光学的な読みとり手段等によって も同様に達成できる。
また、図 4Aに示すように硬性内視鏡 21の例えばノヽンドル部 41には、指示操作用 のスィッチ Saと、 Sbと力設けてある。そして、例えばスィッチ Saを押して ONすること により、その操作信号がプロセッサ装置 23内に設けた CPU70に入力される。
[0027] そして、 CPU70は、この指示信号を受けて、留置マーカ MiZnに向けてドライブコ ィル Cdから留置マーカ MiZn側に信号を送り、留置マーカ MiZnは、この信号を受 けて送信動作を開始する。
[0028] また、スィッチ Sbを操作することにより、ドライブコイル Cdから留置マーカ MiZnに 対して送信を停止する信号を送り、留置マーカ MiZnは送信を停止する。このよう〖こ して、不必要に信号を放射しな 、ように制御できるようにして 、る。
[0029] なお、スィッチ Sa、 Sbは、センスコイルユニット 43に設けるようにしても良い。この場 合には、コネクタ 66、コネクタ受け 65を介してその信号を CPU70に伝送する。
[0030] また、スィッチ Saのみにより、送信開始と送信停止の機能を兼ねるようにしても良い 図 3に示すプロセッサ装置 23内の駆動 &信号処理回路 64は、図 2に示す駆動 & 信号処理回路 48と同様の構成である。
つまり、駆動 &信号処理回路 64は、各種のタイミング信号を生成するタイミングジェ ネレータ 71と、そのタイミング信号に同期して CCD63を駆動する CCD駆動信号を 発生する CCD駆動回路 72とを有する。
[0031] また、 CCD駆動信号の印加により、 CCD63から出力される CCD出力信号を増幅 するアンプ 73と、このアンプ 73の出力信号を AZD変換する AZD変翻 74と、この AZD変 から出力されるデジタルの CCD出力信号に対して映像信号生成の 信号処理を行う映像信号処理回路 75と、この映像信号処理回路 75から出力される 映像信号を DZA変換する DZA変翻 76と、この DZA変翻 76から出力される アナログの映像信号を増幅するアンプ 77とを有する。
このアンプ 77により増幅されたアナログの映像信号は、モニタ 24に入力され、モ- タ 24の表示面には、この映像信号に対応する内視鏡画像が表示される。
なお、タイミングジェネレータ 71は、タイミング信号を、 AZD変 74、映像信号 処理回路 75及び DZA変換器 76にも供給する。
[0032] また、ドライブコイル用信号処理回路 68は、各種のタイミングのクロックを発生するタ イミングジェネレータ(クロックジェネレータ) 78と、このタイミングジェネレータ 78から のクロックを通すように設定された BPFによるフィルタ 79と、このフィルタ 79を通過し たクロックを増幅するアンプ 80とを有する。
タイミングジェネレータ 78からフィルタ 79側に出力されるクロックは、 CPU70により 制御される。つまり、スィッチ Saが ONされたことを受けて、 CPU70はタイミングジエネ レータ 78からフィルタ 79側にクロックを出力する。
上記アンプ 80を経て増幅された所定周波数のクロック力 ドライブコイル Cdに印加 される。このドライブコイル Cdは、印加されたクロックの信号を電磁波として放射し、こ の電磁波は留置マーカ MiZnのソースコイル Cmiにより受信され、電源として利用さ れる。また、その電源の供給により、位置検出等に用いられる信号を送信する。
[0033] 留置マーカ MiZn側から送信される信号は、センスコイル Cx、 Cy、 Czにより受信さ れ、プロセッサ装置 23内のセンスコイル用処理回路 67のアンプ 81に入力される。こ のアンプ 81により増幅されされた後、フィルタ 82により所定の帯域内の信号が取り出 され、さらに AZD変 83により AZD変換されてデジタルの信号に変換される。 このデジタルの信号は、フーリエ変換回路 84に入力されると共に、 CPU70に入力 される。
フーリエ変換回路 84は、入力される信号、具体的には留置マーカ MiZnのソース コイル力 送信される信号の周波数成分を抽出するための周波数分析を行い、その 周波数分析結果から前記信号の周波数成分を抽出する。
[0034] 抽出された信号を振幅'位相検出回路 85に出力し、振幅'位相検出回路 85は、信 号の振幅及び位相値 (基準の位相からのずれ)を検出して、マーカ座標検出回路 86 に出力する。マーカ座標検出回路 86は、 3つのセンスコイル Cx、 Cy、 Czにより検出 した信号の振幅及び位相値から各留置マーカ MiZnの 3次元座標を検出(算出)す る。
[0035] 算出された情報は、 CPU70を介して映像信号処理回路 75に出力され、映像信号 処理回路 75が生成する内視鏡画像の映像信号に重畳する等して、モニタ 24の表示 面に内視鏡画像と共に留置マーカ MiZnの位置を表示することができるようにしてい る。
また、 AZD変 からの出力信号が入力される CPU70は、位置検出用の信 号に変調 (重畳)された情報を復号化処理して、 ICチップ 88のメモリ 88aに書き込ま れた情報を得る。そして、 CPU70は、映像信号処理回路 75に出力し、モニタ 24の 表示面に留置マーカ MiZnの位置と共に、書き込まれて!/、る所見等の情報を表示で きるように制御処理する。
[0036] 図 5は留置マーカ MiZnの構成を示す。
留置マーカ MiZnは、例えばカプセル形状等の外装ケース内に送信及び受信に 用いるソースコイル CmiZnと、このソースコイル CmiZnに接続され、変復調を行う 変復調回路 87と、送信された情報を記憶するメモリ 88aを有し、変復調回路 87及び メモリ 88aへの書き込み及び読み出し等を制御する ICチップ 88とからなる。
本実施例においては、軟性内視鏡 11により、後で処置するための情報を送信して メモリ 88a内に書き込む (記憶する)。
[0037] そして、硬性内視鏡 21により処置する際には、 ICチップ 88は、位置検出のために 送信するように駆動すると共に、メモリ 88a内に記憶された情報を読み出し、変調して 送信もする。そして、硬性内視鏡 21側では、送信された信号を受信し、復調した情報 における例えば所見を参照するなどすることにより、処置を円滑に或いは適切に行う ために利用する。
図 6は、センスコイル Cx、 Cy、 Czにより留置マーカ MiZnを検出する様子を示す。
[0038] センスコイル Cx、 Cy、 Czは、直交する 3軸 x、 y、 z方向に感度を持つ(つまり指向性 を持つ)ように単軸コイル(ソレノイド状コイル)が配置され、留置マーカ MiZnのソー スコイル CmiZnからの電磁界強度及び位相ずれを検出するのに用いられ、それら の検出情報によりソースコイル CmiZnの 3次元の座標位置が算出される。
また、センスコイル Cx、 Cy、 Czを原点とすると所定の 3次元座標位置となる挿入部 40の先端部 40a (或!/、は先端部 40aにおける対物レンズ 62)の位置を、 ICメモリ 69 力もの情報により算出することができる。
図 6では、センスコイル Cx、 Cy、 Czを原点として、先端部 40aの位置 Pの座標を (X o, yo, zo)で示している。本実施例においては、例えば先端部 40aの位置を原点と して、ソースコイル CmiZ3の 3次元座標の位置を表示することができる。この場合、 図 6により示すと、例えば対物レンズ 62の瞳位置を先端部 40aの位置 Pとし、その位 置 Pを原点とした座標系を ( 、 、 τ! )として示している。
[0039] また、本実施例にお!、ては、センスコイル Cxを揷入部 40の軸方向に指向性を持つ ように配置して、対物レンズ 62の視野方向 Sがセンスコイル Cx、 Cy、 Czを原点とする 座標系(x、 y、 z)における x軸方向と平行になると共に、先端部 40aの位置 Pを原点と する座標系(x^ ヽ ' 、 τ! )においても 方向となるように設定している。このため、 センスコイル Cx、 Cy、 Czを原点とした座標系と、先端部 40aの位置 Pを原点とする座 標系との相互変換が容易となる。なお、本実施例においては、直視タイプの場合で 示している。
図 7A及び図 7Bは患部等の注目すべき対象領域 5に対して留置マーカ MiZnを留 置する様子を示す。 患部等の対象領域 5の形状に応じて、図 7A或いは図 7Bのように留置マーカ MiZ nを留置すると良い。
図 7Aのように対象領域 5が略 3角形に近い形状の場合には、各頂点付近の位置に 3つの留置マーカ M1Z3, M2/3, M3Z3を留置すると良い。
[0040] また、図 7Bのように対象領域 5が略四角形に近い形状の場合には、各頂点付近の 位置に 4つの留置マーカ M1Z4, M2/4, M3/4, M4Z4を留置すると良い。 また、対象領域 5が円形や楕円形の場合には、その外形に沿って 3つ或いはそれ 以上の留置マーカ MiZnを留置しても良!、。
手術時に、手技の取り残しをなくす為にも、留置マーカ MiZnにおける総数 nと通し 番号 iZnを認知できることは重要となる。
図 8は、硬性内視鏡 21のドライブコイル Cdから、留置された例えば 3つの留置マー 力 MiZ3に送信させる信号と、留置マーカ MiZ3側のソースコイル Cmiにより位置検 出等のために送信する信号のタイミングを示す。
[0041] 図 8 (A)に示すようにドライブコイル Cdは、発振周波数が例えば ΙΟΚΗζのバースト 波を所定周期の信号として出力する。
これを受けることにより、留置マーカ M1Z3— M3Z3には電力が供給され、各々、 図 8 (B)一 (D)に示す出力信号を送信する。
図 8 (B)一 (D)に示す信号は、それぞれ出力信号の基本波 (搬送波)である。この 基本波には、各々の留置マーカ M1Z3— M3Z3内のメモリ 88aに記録された固有 情報や所見等の情報等が重畳されて 、る。
本実施例では、 3個の留置マーカ M1Z3— M3Z3の位置情報を認識する必要が あるが、その 3個の留置マーカ M1Z3— M3Z3の出力信号は、図 8 (B)—図 8 (D) に示すように、ドライブコイル Cdのバースト波の発信タイミングから、各々 tl, t2, t3 の時間に、所定の振幅で発信することにより、その信号を外科用の硬性内視鏡 21に 設けたセンスコイル Cx、 Cy、 Czで受信する際に、どの信号が、どのソースコイル Cmi /3に対応するものかを認識できるようにしている。
[0042] また、時間 tl, t2, t3からの時間遅延を、ソースコイル CmiZ3からの信号波形の 位相ずれとして検出することにより、センスコイル Cx、 Cy、 Czと各ソースコイル CmiZ 3との間の距離を検出できるようにしている。また、上記距離と、センスコイル Cx、 Cy、 Czによる指向性と検出された信号波形の振幅値から、例えばセンスコイル Cx、 Cy、 Czの座標系を原点としたソースコイル CmiZ3の 3次元座標の位置を算出できるよう にしている。
また、センスコイル Cx、 Cy、 Czを原点とすると所定の 3次元座標位置となる挿入部 40の先端部 40a (或 、は先端部 40aにおける対物レンズ 62)の位置を原点として、ソ ースコイル CmiZ3の 3次元座標の位置を算出することもできる。
[0043] 本実施例においては、硬性内視鏡 21の先端部 40aを、留置マーカ MiZ3が留置 された対象領域 5に視覚的にアプローチし易くするため、ソースコイル CmiZ3の 3次 元座標の位置を算出した結果を表示する場合には、挿入部 40の先端部 40aを 3次 元座標系の原点として表示する。
[0044] 内視鏡を用いた手技により、留置マーカ M1Z3— M3Z3を留置する場合、消化 器用の内視鏡装置 2側力 各留置マーカ MiZ3に所定の情報をインプットする際、 通し番号のデータもインプットするので、この時に、「ドライブコイル Cdからのバースト 波を受信後、各々 tl, t2, t3の時間後から発信信号を出力する」という情報を一緒に プログラミングすることによって可能となる。
図 9は、図 8の方法とは別の送信方法を示す。
図 9 (A)に示すようにドライブコイル Cdの発信周波数を例えば 10kHzのバースト波 とする。
[0045] これを受け、留置マーカ M1Z3— M3Z3に内蔵したソースコイル CmlZ3— Cm
3Z3には電力が供給され、各々、図 9 (B)—図 9 (D)に示す出力信号を発信する。 これらソースコイル CmlZ3— Cm3Z3からの発信信号は、開始のタイミングとしては 全て同じであるが、代わりに、発信周波数が、各々 10kHz、 12kHz, 14kHzのように 、お互いに異なるようにしている。
[0046] この場合にも、 3個の留置マーカ M1Z3— M3Z3の位置情報を認識する必要が あるが、ソースコイル Cml/3— Cm3/3は各々 10kHz、 12kHz, 14kHzのように 互いに相異なる周波数で発信することにより、その信号を外科用の硬性内視鏡 21に 設けられたセンスコイル Cx、 Cy、 Czで受信し、その周波数からどのソースコイル Cmi に対応するものかであるを認識できる。
留置マーカ M3Z1— M3Z3を留置する際に、消化器用の内視鏡装置 2側から各 留置マーカ MiZ3に所定の情報をインプットする際、通し番号のデータもインプット するので、この時に、「ドライブコイル Cdからのバースト波を受信したら、各々 10kHz 、 12kHz, 14kHzの基本波を発信出力する」と言う情報を一緒にプログラミングする ことによって可能となる。
また、図 9 (B)—図 9 (D)は、出力信号の基本波を示している。この基本波には、各 々の留置マーカ MiZ3内のメモリ 88aに記録された固有情報等が重畳されている。 或いは、基本波で送信するタイミングと、固有情報を重畳して送信するタイミングとを 一定周期で交互に変更するようにしても良 、。
[0047] このような構成の内視鏡システム 1による患部等の処置対象領域に対する消ィ匕器用 の軟性内視鏡 11による診断及びその診断結果により留置マーカ MiZnの留置を行 い、そして留置された留置マーカ MiZnを利用して硬性内視鏡 21による外科手術の 手順を図 10及び図 11を参照して説明する。
図 10に示すように最初のステップ S 1にお 、て、消ィヒ器用の軟性内視鏡 11により、 内視鏡検査を行う。
具体的には、例えば図 1に示すように、消ィヒ器用の軟性内視鏡 11により、患者 4の 口部側から挿入して、消化管内、例えば胃 33の内側を内視鏡検査する。
この内視鏡検査により、この軟性内視鏡 11による処置、例えば内視鏡観察下での 粘膜切除術としての EMR (Endoscopic mucosal resection)等を行う。
[0048] そして、硬性内視鏡による外科手術の方が処置しやすい対象領域 5がある場合に は、ステップ S2に示すように術者 16は、その処置対象領域 5に留置マーカ MiZnを 留置する。留置マーカ MiZnを留置する場合には、軟性内視鏡 11のチャンネル 49 内に挿通した把持鉗子 35等により対象領域 5を囲むように 3つ以上の留置マーカ Mi Znを留置する。
なお、留置マーカ MiZnを留置する場合、図 2の拡大図に示すようにチャンネル 49 の内径よりも小さい外径の留置マーカ MiZnやチャンネル 49内を揷通できる把持部 を先端に設けた把持鉗子 35を採用すると、患者 4に苦痛を強いることなぐ或いは術 者 16は、簡単に留置ができる。
また、留置マーカ MiZnを留置する場合、留置マーカ MiZnにフックなどを予め取 り付けておき、そのフックの先端を患部等の対象領域 5表面に差し込むことにより、留 置マーカ MiZnを留置することができる。また、フックなどを使用しないで、生体接着 性ポリマを留置マーカ MiZnの外表面に塗布したものを用いて、対象領域 5表面に 留置することちでさる。
[0049] そして、術者 16は、ステップ S3に示すように、例えばマイクセット 17による音声入力 等により、所見、留置日時、留置する留置マーカ MiZnの総数 nに対する通し番号等 の入力を行う。
この入力を行った後、留置マーカ MiZnへの送信或いは書き込みの音声入力等を 行うことにより、プロセッサ装置 13内の CPU58は、入力された情報を駆動コイル 50 力も送信するように駆動コイル用駆動回路 60を作動させる。
そして、ステップ S4に示すように、留置マーカ Mi/nは、ソースコイル Cmi/nによ りその信号を受信して電源として利用すると共に、 ICチップ 88内のメモリ 88aに送信 された情報を記憶する。
その後、術者 16は、軟性内視鏡 11を体腔内から引き出す。
そして、留置した日時後の適当な日時において、術者は、硬性内視鏡 21により外 科手術を行う。この場合の代表的な処置の手順を図 11に示す。
[0050] ステップ S 11に示すように、患者 4の腹部 4a等力も硬性内視鏡 21の挿入部 40をト ラカール 44を介して刺入する。
そして、この硬性内視鏡 21の CCD63により撮像された内視鏡画像は、モニタ 24の 表示面に表示される。
なお、図 11のステップ S 12からステップ S 17までの処理を CPU70に内蔵されてプ ログラム 70aに従って、 CPU70の制御で行うようにしても良!、。
術者は、スィッチ Saを操作する等して、ステップ S 12に示すように留置マーカ MiZ nにドライブコイル Cdからドライブ用の信号を送信する。以下では n= 3とする。
[0051] この信号の送信により、留置マーカ MiZ3から、図 8に示すようにドライブコイル Cd 力もの送信のタイミングから時間 tl, t2, t3のように順次ずれて、重ならないようにし たタイミングで、ソースコイル CmlZ3から Cm3Z3まで (位置検出等のための)信号 が順次送信される(S 13)。
そして、硬性内視鏡 21に取り付けたセンスコイルユニット 43内のセンスコイル Cx、 Cy、 Czは、各ソースコイル CmiZ3からの信号を受信する。そして、 CPU70の制御 により、センスコイル用処理回路 67は、ソースコイル CmiZ3 (留置マーカ MiZ3)の 各 3次元位置を検出する(S14)。 3次元位置の検出(算出)には、受信した信号の振 幅値と位相を検出することにより可能となる。
[0052] これらの位置情報は、 CPU70に送られ、 CPU70は、 3つの留置マーカ M1Z3— M3/3力 3つの留置マーカ M1/3— M3/3を含む平面及び 3つの留置マーカ M1Z3— M3Z3の例えば中心位置の座標をが算出する(S15)。
[0053] なお、 CPU70は、留置マーカ M1Z3— M3Z3を含む平面から、さらにその平面 に垂直な法線ベクトルを算出するようにしても良 、。
これらの情報は、 CPU70から映像信号処理回路 75に送られ、映像信号に重畳さ れてモニタ 24に出力され、内視鏡画像と共に対象領域の情報が表示される(S16)。
また、術者 16により、入力されてメモリ 88aに格納された情報も読み出され、 CPU 70に入力される。この情報も CPU70から映像信号処理回路 75に送られ、映像信号 に重畳されてモニタ 24に出力され、モニタ 24により表示される(S17)。
この場合におけるモニタ 24による表示例を図 12に示している。内視鏡画像の表示 エリア Reには、硬性内視鏡 21の CCD63により撮像した内視鏡画像が表示され、ま たこの表示エリア Reに隣接して、硬性内視鏡 21の挿入部 40の先端側の挿入方向等 のガイドとなるガイド画像が挿入ガイド表示エリア Rgに表示される。
[0054] また、メモリ記憶情報表示エリア Rmには、留置マーカ M1Z3— M3Z3のメモリ 88 aから読み出された術者 16による所見等の情報が表示される。
[0055] 図 12の挿入ガイド表示エリア Rgでは、対物レンズ 62の位置を原点としてその視野 方向 Sを例えば 方向に設定した場合、この 方向をモニタ画面に垂直な方向に 設定し、検出された留置マーカ MiZnの位置を視覚的に示すために、留置マーカ M iZnにおける 成分だけ視野方向 Sにずらした位置において、留置マーカ MiZn の位置をこの 方向に垂直な 及び 成分を用いて示している。 つまり、モニタ画面は、留置マーカ MiZnの 及び 成分を相対的に示してい る。なお、図 12では MiZnは M1Z3— M3Z3となる。
また、そのままでは、 χ' 成分の値を視覚的に把握しにくくなるので、例えば 成 分の値に比例した大きさが異なる 2つの同心の円 H、 Cを表示する。この円 H、 Cの大 きさは、先端部 40aの位置 Ρから留置マーカ MiZnまでの距離における 成分の大 きさに比例する。
[0056] 例えば円 Cは、先端部 40aの位置 Pから留置マーカ MiZnまでの距離における 成分の値を半径としたものとして表示する。このように表示することにより、先端部 40a を対象領域 5側に接近させる操作を視覚的に行い易くなる。
[0057] 図 12の具体例では、視野方向 Sの右側に対象領域 5の情報 5aが表示されるので、 術者 16は、挿入部 40の先端部 40aを右側に向くように変更すれば、対象領域 5側に 接近できることが視覚的に容易に分力る。
また、図 12においては、留置マーカ M1Z3— M3Z3の中心位置を 0、留置マー 力 M1Z3— M3Z3の中心位置 O力 これらを含む面の法線ベクトル V等を表示する 。この法線ベルトル Vを表示することにより、その面に垂直な方向力も先端部 40aが 接近して!/ヽるカゝ、斜めの方向から接近して ヽるか等を判断できる。
このようにして術者は、モニタ 24に表示された情報を参照して、硬性内視鏡 21の挿 入部 40の向き等を調整する等して対象領域 5にアプローチする(S 18)。
[0058] このように、挿入ガイド表示エリア Rgには、硬性内視鏡 21の先端部 40aの対物レン ズ 62による視野方向 S等と共に、対象領域 5の中心位置 O等が表示されると共に、そ の対象領域 5の面の法線ベクトル V等も表示されるので、挿入部 40の先端部 40aを スムーズに対象領域 5の中心位置 Oにアプローチすることができる。また、法線べタト ル Vの方向から、対象領域 5の面に垂直な方向力もアプローチ或いは観察している か否か等も視覚的に認識し易い。
対象領域 5にアプローチして、対象領域 5を硬性内視鏡 21の対物レンズ 62の観察 視野に入れ、図示しない処置具を用いる等して処置を行う(S19)。また、留置した留 置マーカ M1Z3— M3Z3を取り除く。そして、外科手術を終了する。
図 11による留置マーカ MiZ3の位置算出に伴う対象領域 5の表示等に付 、て補 足説明する。
[0059] 硬性内視鏡 21の先端部 40aの位置を (xo, yo, zo)とする。
この場合、硬性内視鏡 21の先端部 40aの位置 (xo, yo, zo)及び、対物レンズ 62 の視野方向 Sは、
1)ハンドル部 41に取り付けられるセンスコイルユニット 43内にあるセンスコイル Cx, Cy, Czの位置及びそれぞれの向きと、センスコイルユニット 43が硬性内視鏡 21に装 着された状態での物理的位置、方向との関係力 予め決められる。
そのため、センスコイルユニット 43内のセンスコイル Cx, Cy, Czの位置、及びそれ ぞれの向きが分かれば、先端部 40aの位置(xo, yo, zo)及び対物レンズ 62の視野 方向 Sは、決定が可能である。そして、先端部 40aの位置 (xo, yo, zo)を算出した後 、留置マーカ MiZ3の位置算出した結果をモニタ 24に表示する場合には、前述した ように先端部 40aの位置を座標の原点として表示することにより、視覚的に先端部 40 aを留置マーカ MiZ3にアプローチし易くできる。
[0060] 本実施例の場合、ハンドル部 41にセンスコイルユニット 43を装着する構成にして!/ヽ るので、硬性内視鏡 21の光学系など、先端部 40aに内蔵する他の部品と干渉するこ とがない。
なお、本実施例では、ハンドル部 41にセンスコイル Cx, Cy, Cz等を着脱自在で取 り付けるようにしている力 硬性内視鏡 21の先端部 40aに位置検出のためのセンスコ ィルを設ければ、そのセンスコイルの位置、向きから硬性内視鏡 21の先端部 40aの 位置及び視野方向 Sを決定することが可能である。従って、このように先端部 40aに センスコイルを配置しても良 、。
本実施例によれば、内視鏡の先端部の位置と、患部等の対象部位に留置されるマ 一力との相対的な位置関係を検出可能とすることにより、術者は、その情報を利用し て先端部を対象部位に対して円滑にアプローチできる。
従って本実施例によれば、外科手術等を行い易くすることができる。
[0061] なお、上述の実施例においては、硬性内視鏡 21により、その先端部 40aの位置や 視野方向 Sを検出できるようにして、留置マーカ MiZnが留置される対象領域 5にス ムーズにアプローチなどができるようにした構成及び作用等を説明した力 軟性内視 鏡 11に対しても以下の実施例 2のようにして適用することができる。
[0062] (実施例 2)
次に本発明の実施例 2を図 13を参照して説明する。図 13は本発明の実施例 2を備 えた内視鏡システム 1 Bを示す。
本内視鏡システム 1Bは、図 1或いは図 2において、軟性内視鏡 11の先端部 30aに センスコイル Cx, Cy, Czを配置した構成にして、センスコイル Cx, Cy, Czによるこの 軟性内視鏡 11の先端部 30aの位置とその先端部 30aに設けた対物レンズ 46による 視野方向^ を検出できるようにしている。
つまり、軟性内視鏡 11の挿入部 30の先端部 30aの位置及び対物レンズ 46視野方 向 S' は、先端部 30a〖こセンスコイル Cx、 Cy、 Czを設ければ、そのセンスコイル Cx、 Cy、 Czの位置、及びそれらの向き力 その軟性内視鏡 11の先端部 30aの位置、視 野方向 S' は決定される。
また、軟性内視鏡 11の先端部 30aにおける撮像部分は一般に硬性の部材で構成 されているため、既知の位置だけ後方にずらした位置にセンスコイル Cx, Cy, Czを 内蔵することでその軟性内視鏡 11の先端部 30aの位置、視野方向^ の決定が可 能である。上記のようにセンスコイル Cx, Cy, Czを配置すれば、軟性内視鏡 11の対 物レンズ 46等の光学系など先端部 30aに内蔵する他の部品と干渉することがない。
[0063] 上記のような軟性内視鏡 11を用いる前提で、予め硬性内視鏡 21側力 生体内に 留置マーカ MiZ3を留置した場合で説明する。
[0064] 留置マーカ M1Z3— M3Z3それぞれの空間の位置を、(xl, yl, zl)、 (x2, y2, z2)、 (x3, y3, z3)とする。
軟性内視鏡 11の視野方向 S' を、ここでは Z軸、原点を光学系の視野中心とし、視 野上方を Yのプラス方向、視野右方向を Xのプラス方向とする座標系の XYZ空間を 設定する。
この座標系においては、表示される内視鏡画像は Z軸に垂直な平面として表現され る。 X, Υ, Zの原点は、上記の軟性内視鏡 11の先端部 30aの位置と同じとなってい る。
[0065] この軟性内視鏡 11に設けられたセンスコイル Cx、 Cy、 Czにより検出される留置マ 一力 M1Z3— M3Z3の位置(xl, yl, zl)、 (x2, y2, z2)、 (x3, y3, z3)は、それ ぞれ X, Y, Ζの空間の値として変換される。
それらの座標を (XI, Y1, Ζ1)、 (Χ2, Υ2, Ζ2)、 (Χ3, Υ3, Ζ3)とする。 軟性内視鏡 11の先端部 30aを留置マーカ M1Z3に接近させることを想定すると、 XYZ空間の原点と、 (XI, Yl, Z1)の座標を接近させることと等価となる。
[0066] よって、先端部と留置マーカ M1Z3の距離 Dは、 X, Υ, Z空間の原点と、(XI, Y1 , Z1)の点との距離である。計算式では (XI, Yl, Z1)の各項の二乗和の平方根とし て単純計算が可能であり、この距離を画面上に表示することができる。
一方、軟性内視鏡 11の先端部 30aをどの方向に向けて 、くことが留置マーカ Ml Z3と軟性内視鏡 11の先端部 30aとが接近する方向であるかに関しては、内視鏡画 面上では画像は Z軸に垂直であるため XY平面に投影した (XI, Yl, Z1)の留置マ 一力 M1Z3の位置、すなわち X, Υ, Z空間の原点から(XI, Y1, 0)へ向かうベタト ル Wで表現される。
これを画面上に表現することで、どの方向に内視鏡先端を向ければ 、 、かを術者 などの内視鏡検査或いは処置を行うユーザは、容易に判断可能である。
[0067] 例えば XI, Y1ともプラスであれば、右斜め上方向に矢印を出すことが可能であり、 その方向に留置マーカ M1Z3が存在する。この場合に対応するモニタ 14での表示 例を図 13のモニタ 14の表示面に示している。
また、例えば、 XI, Y1ともマイナスであれば、左斜め下方向に矢印を出すことが可 能であり、その方向に留置マーカ M1Z3が存在することになる。
この場合においても、留置マーカ M1/3などに挿入部 30の先端部 30aをァプロ一 チさせることを視覚的に簡単に行えるようになり、軟性内視鏡 11による処置がし易く なる。なお、留置マーカ M1Z3の場合で説明した力 他の留置マーカ M2Z3、 M3 Z3の場合も同様である。
[0068] また、上記留置マーカ M1Z3の場合で示したベクトル Wを留置マーカ M1Z3— M 3Z3の中心位置に対して表示するようにしても良!、。
なお、図 13において、プロセッサ装置 W は、図 1におけるプロセッサ装置 23と同 じ構成であり、またプロセッサ装置 23' は、図 1におけるプロセッサ装置 13と同じ構 成である。また、この場合には、硬性内視鏡 21には駆動コイルを内蔵したユニット 43 ' が接続される(図 1における駆動コイルユニット 37に相当する)。
[0069] 図 13においては、硬性内視鏡 21により最初に処置などを行い、その場合において 、軟性内視鏡 11により処置した方が処置し易い場合には、硬性内視鏡 11の観察下 で図示しな!、把持鉗子等を用いて留置マーカ M1Z3— M3Z3を留置し、その後軟 性内視鏡 11により留置マーカ M1Z3— M3Z3に向けてその先端部 30aをァプロ一 チさせる様子を示す。
つまり、実施例 1における軟性内視鏡 11による留置マーカ M1Z3— M3Z3の留 置と、その後の留置マーカ M1Z3— M3Z3が留置された対象領域 5への硬性内視 鏡 21によるアプローチの手順における、軟性内視鏡 11と硬性内視鏡 21とによる機 能を入れ替えたものに相当する。
このように本実施例によれば、実施例 1とほぼ同様の効果を有する。
[0070] なお、本発明は、図 14に示すようにロボットサージエリー 91を構成する手術用のマ -ピユレータ 92a、 92bを用いて手術を行うような場合にも適用することができる。 ス レーブマニピュレータ 92aは、その先端部が患者の腹壁 4a内に揷入孔 bを介して体 内 cに挿入される挿入部 93を有する手術器具 94と、この手術器具 94を支持するため の直動及び回転の自由度を有する複数の軸を有するロボット 95とから構成される。 挿入部 93の先端部には、左右に一対の対物光学系 90a、 90b及び対物光学系 90 a、 90bの各結像位置にそれぞれ図示しない撮像素子が配置された 3次元(立体)ス コープ 96と、一対の処置具 97a、 97bとが設けてある。
立体スコープ 96の先端部 96a及び一対の処置具 97a, 97bは、それぞれ多自由度 にて湾曲可能になっている。
一方、操作手段として、多関節構造を有するマスタマニピュレータ 92bが設けてあり 、このマスタマニピュレータ 92bの先端部には、術者 103が装着するヘッドマウントデ イスプレイ (HMDと略記) 98と一対の処置器具用の操作アーム 99a、 99bが設けてあ る。
[0071] スレーブマニピュレータ 92a及びマスタマニピュレータ 92bは、制御装置 100に接 続されており、マスタマニピュレータ 92bの先端部の位置がスレーブマニピュレータ 9 2aの位置に対応し、さらに HMD98の回転部の位置が 3次元スコープ 96の湾曲角 に対応し、さらに操作アーム 99a、 99b力 処置具 97a、 97bの位置に対応して動作 するように制御装置 100により制御される。
なお、スレーブマニピュレータ 92aの軸には、図示しないァクチユエータとその回転 位置を検出するエンコーダ 101及び図示しない減速機が設けてある。また、マスタマ -ピユレータ 92bの関節部、 HMD98の回転部及び操作アーム 99a、 99bの関節部 には、エンコーダ 102が設けられている。
そして、術者 103は、 HMD98に表示される画像を観察しながらマスタマ-ピュレー タ 92bの操作を行うと、マスタマニピュレータ 92bは、その操作に対応した操作信号を 発生して、その操作信号を制御装置 100に出力する。
[0072] 制御装置 100は、この操作信号によりスレーブマニピュレータ 92aの動作を制御す る。これにより、術者 103は、 HMD98に表示される画像を観察しながらマスタマ-ピ ユレータ 92bの操作を行うと、その操作に追随してスレーブマニピュレータ 92aが動作 し、体内 cに挿入された手術器具 94を操作することができる。
[0073] また、術者 103の頭部に HMD98及び HMD98の回転軸となる部分にエンコーダ 102が取り付けてあり、術者 103が頭部を動かすと、エンコーダ 102の動きに追随し て、スレーブマニピュレータ 92aに固定された 3次元スコープ 96がその視野の画像を HMD98に表示することになり、術者 103は、体内 cにいるような臨場感の中で処置 ができる。なお、図 14において、符号 A1— A5は回転或いは移動自在である部分を 示している。
この場合においても、例えば 3次元スコープ 96の先端部 96aにセンスコイル Cx, C yCzを設けておき、かつ体内 cにおける対象領域に留置マーカ M1Z3— M3Z3を 留置するようにすれば、 3次元スコープ 96の先端部 96aにおける 3次元位置と、その 視野方向 Sとを検出可能となり、それらを HMD98の表示面に立体画像とともに、留 置マーカ M1Z3— M3Z3の位置等も表示するようにすれば、上述した実施例のよう に留置マーカ M1Z3— M3Z3の位置を光学的に視認できないような場合にも、 3次 元スコープ 96の先端部 96aを簡単に留置マーカ M1Z3— M3Z3の位置にァプロ ーチすることができる。 なお、上述した各実施例等を部分的に組み合わせる等して構成される実施例等も 本発明に属する。
産業上の利用可能性
体内の患部等を処置する場合、電磁的に信号を送信するマーカを留置することに より、内視鏡に設けた電磁的なセンサを用いて内視鏡の先端側をマーカに円滑にァ ブローチできるようにガイドでき、内視鏡観察下での処置を行 1ヽ易くする。

Claims

請求の範囲
[I] 挿入部の先端部に対物光学系を備えた内視鏡と、
対象部位に留置され、電磁波を送信可能とするマーカと、
前記マーカの位置を検出するためのセンサと、
を備え、
前記挿入部の位置及び前記マーカの位置関係が検出されるようにしたことを特徴と する内視鏡システム。
[2] 前記センサは、前記対物光学系の視野方向を検出可能に設けたことを特徴とする 請求項 1に記載の内視鏡システム。
[3] 前記センサは、前記内視鏡に着脱自在に取り付けられることを特徴とする請求項 1に 記載の内視鏡。
[4] 前記マーカ力 電磁波を送信させるための駆動信号を送信する信号送信手段を有 することを特徴とする請求項 1に記載の内視鏡システム。
[5] 前記マーカの記憶手段に情報を書き込む信号を送信する情報送信手段を有する ことを特徴とする請求項 1に記載の内視鏡システム。
[6] 前記センサは、 3次元位置を検出する複数のコイルにより構成されることを特徴とす る請求項 1に記載の内視鏡システム。
[7] 前記センサは、前記信号送信手段の機能を兼ねることを特徴とする請求項 4に記 載の内視鏡システム。
[8] 前記センサは、前記情報送信手段の機能を兼ねることを特徴とする請求項 5に記 載の内視鏡システム。
[9] 前記マーカの送信動作を制御する制御スィッチを有することを特徴とする請求項 1 に記載の内視鏡システム。
[10] 前記センサは、前記挿入部の先端部若しくは前記挿入部の基端の把持部に設けら れることを特徴とする請求項 1に記載の内視鏡システム。
[II] 挿入部の先端部に対物光学系を備えた内視鏡において、
対象部位に留置され、電磁波を送信可能とするマーカの位置を電磁的に検出する ためのセンサを、前記挿入部の先端部の位置と所定の位置関係となるように設けたこ とを特徴とする内視鏡。
[12] さらに前記センサは、前記対物光学系の視野方向を検出可能に設けたことを特徴 とする請求項 11に記載の内視鏡。
[13] 前記センサは、前記内視鏡に着脱自在に取り付けられることを特徴とする請求項 1 に記載の内視鏡。
[14] 前記マーカ力 電磁波を送信させるための駆動信号を送信する信号送信手段を有 することを特徴とする請求項 11に記載の内視鏡。
[15] 前記マーカの記憶手段に情報を書き込む信号を送信する情報送信手段を有する ことを特徴とする請求項 11に記載の内視鏡。
[16] 前記センサは、 3次元位置を検出する複数のコイルにより構成されることを特徴とす る請求項 11に記載の内視鏡。
[17] 前記センサは、前記信号送信手段の機能を兼ねることを特徴とする請求項 14に記 載の内視鏡。
[18] 前記センサは、前記情報送信手段の機能を兼ねることを特徴とする請求項 15に記 載の内視鏡。
[19] 前記マーカの送信動作を制御する制御スィッチを有することを特徴とする請求項 1 1に記載の内視鏡。
[20] 前記センサは、前記挿入部の先端部若しくは前記挿入部の基端の把持部に設けら れることを特徴とする請求項 11に記載の内視鏡。
[21] 前記内視鏡の種類に固有の情報を格納した情報格納手段を有することを特徴とす る請求項 11に記載の内視鏡。
[22] 前記センサは、前記マーカとの相対的な位置関係を算出する位置算出手段に接 続されることを特徴とする請求項 11に記載の内視鏡。
[23] 前記センサは、該センサを内蔵したセンサユニットが前記内視鏡に着脱自在に取り 付けられることを特徴とする請求項 13に記載の内視鏡。
[24] 前記センサユニットが取り付けられる位置と前記先端部との相対的な位置関係を算 出可能とする情報を格納した情報格納手段を有することを特徴とする請求項 23に記 載の内視鏡。
[25] 細長の挿入部の先端部に対物光学系を設けた内視鏡と、
前記内視鏡に設けられ、対象部位に留置されて電磁波を送信可能とするマーカの 位置を電磁的に検出するセンサと、
前記センサの出力信号により前記マーカの位置と前記先端部との相対的な位置関 係を算出し、算出した位置関係に関する情報を表示手段に出力する信号処理を行う 信号処理手段と、
を備えたことを特徴とする内視鏡装置。
[26] 前記信号処理手段は、さらに、前記対物光学系の視野方向を算出する信号処理を 行うことを特徴とする請求項 25に記載の内視鏡装置。
[27] さらに前記位置関係に関する情報と前記対物光学系の視野方向に関する情報とを 表示する表示手段を有することを特徴とする請求項 25に記載の内視鏡装置。
[28] 前記表示手段は、前記内視鏡に設けられた撮像手段により撮像した内視鏡画像を 表示することを特徴とする請求項 25に記載の内視鏡装置。
[29] 前記表示手段は、前記マーカに設けられた記憶手段から読み出された情報を表示 する表示部が設けてあることを特徴とする請求項 25に記載の内視鏡装置。
[30] 前記信号処理手段は、前記センサの出力信号により前記マーカの位置を算出する マーカ位置算出手段を有することを特徴とする請求項 25に記載の内視鏡装置。
[31] 前記表示手段は、前記先端部と前記マーカとの相対的な位置関係を表示すること を特徴とする請求項 25に記載の内視鏡装置。
[32] 前記表示手段は、前記先端部を前記マーカの位置にアプローチするための移動 方向等のガイド情報を表示することを特徴とする請求項 25に記載の内視鏡装置。
[33] 前記信号処理手段は、前記マーカに設けられた記憶手段に情報を書き込む信号 を生成する書き込み用信号生成手段を有することを特徴とする請求項 25に記載の 内視鏡装置。
[34] 前記書き込み用信号生成手段は、キーボードによる入力信号又はマイクからの音 声の入力信号から前記記憶手段に書き込む信号を生成することを特徴とする請求項 33に記載の内視鏡装置。
[35] 前記センサは、該センサを内蔵したセンサユニットが前記内視鏡に着脱自在に取り 付けられることを特徴とする請求項 25に記載の内視鏡装置。
[36] 前記内視鏡は、前記挿入部が硬性の硬性内視鏡であることを特徴とする請求項 25 に記載の内視鏡装置。
[37] 前記内視鏡は、前記挿入部が軟性の硬性内視鏡であることを特徴とする請求項 25 に記載の内視鏡装置。
[38] 前記内視鏡は、 1対の対物光学系を備えた立体スコープであることを特徴とする請 求項 25に記載の内視鏡装置。
[39] さらに前記立体スコープの移動を、操作信号に従って制御する制御装置を有する ことを特徴とする請求項 38に記載の内視鏡装置。
[40] 前記制御装置に対して前記操作信号を発生する操作信号発生手段を有することを 特徴とする請求項 39に記載の内視鏡装置。
[41] 電磁波を発生するマーカが留置された対象部位に、内視鏡の先端部をアプローチ する際のガイド支援方法は、
留置マーカに信号を送信させる処理を行う信号送信開始処理ステップと、 前記留置マーカからの信号を受信して留置マーカの位置の算出処理を行う位置算 出処理ステップと、
前記内視鏡の先端部と前記留置マーカの位置との位置関係に関する情報を表示 する処理を行う情報表示処理ステップと、
を具備することを特徴とするガイド支援方法。
[42] さらに前記留置マーカに設けられた記憶手段に記憶された情報を表示する処理を 行う記憶情報表示処理ステップを有することを特徴とする請求項 41に記載のガイド 支援方法。
PCT/JP2005/002262 2004-02-16 2005-02-15 内視鏡及び内視鏡システム WO2005077251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05710213.9A EP1716802B1 (en) 2004-02-16 2005-02-15 Endoscope and endoscope system
US11/505,216 US7837616B2 (en) 2004-02-16 2006-08-16 Endoscope,system, and method for detecting relative position of endoscope and markers placed at target area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-038856 2004-02-16
JP2004038856A JP2005224528A (ja) 2004-02-16 2004-02-16 内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/505,216 Continuation US7837616B2 (en) 2004-02-16 2006-08-16 Endoscope,system, and method for detecting relative position of endoscope and markers placed at target area

Publications (1)

Publication Number Publication Date
WO2005077251A1 true WO2005077251A1 (ja) 2005-08-25

Family

ID=34857823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002262 WO2005077251A1 (ja) 2004-02-16 2005-02-15 内視鏡及び内視鏡システム

Country Status (6)

Country Link
US (1) US7837616B2 (ja)
EP (1) EP1716802B1 (ja)
JP (1) JP2005224528A (ja)
KR (1) KR20060116849A (ja)
CN (1) CN100496375C (ja)
WO (1) WO2005077251A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079762B2 (en) 2006-09-22 2015-07-14 Ethicon Endo-Surgery, Inc. Micro-electromechanical device
US7713265B2 (en) 2006-12-22 2010-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for medically treating a tattoo
US8801606B2 (en) 2007-01-09 2014-08-12 Ethicon Endo-Surgery, Inc. Method of in vivo monitoring using an imaging system including scanned beam imaging unit
US8273015B2 (en) 2007-01-09 2012-09-25 Ethicon Endo-Surgery, Inc. Methods for imaging the anatomy with an anatomically secured scanner assembly
US8216214B2 (en) 2007-03-12 2012-07-10 Ethicon Endo-Surgery, Inc. Power modulation of a scanning beam for imaging, therapy, and/or diagnosis
US8626271B2 (en) 2007-04-13 2014-01-07 Ethicon Endo-Surgery, Inc. System and method using fluorescence to examine within a patient's anatomy
US7995045B2 (en) 2007-04-13 2011-08-09 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US8160678B2 (en) 2007-06-18 2012-04-17 Ethicon Endo-Surgery, Inc. Methods and devices for repairing damaged or diseased tissue using a scanning beam assembly
US7982776B2 (en) 2007-07-13 2011-07-19 Ethicon Endo-Surgery, Inc. SBI motion artifact removal apparatus and method
US9125552B2 (en) 2007-07-31 2015-09-08 Ethicon Endo-Surgery, Inc. Optical scanning module and means for attaching the module to medical instruments for introducing the module into the anatomy
US7983739B2 (en) 2007-08-27 2011-07-19 Ethicon Endo-Surgery, Inc. Position tracking and control for a scanning assembly
US7925333B2 (en) 2007-08-28 2011-04-12 Ethicon Endo-Surgery, Inc. Medical device including scanned beam unit with operational control features
KR100925641B1 (ko) * 2007-12-10 2009-11-06 고려대학교 산학협력단 신체 내부 영상 출력을 위한 디스플레이 시스템
JP5208495B2 (ja) * 2007-12-27 2013-06-12 オリンパスメディカルシステムズ株式会社 医療用システム
US8050520B2 (en) 2008-03-27 2011-11-01 Ethicon Endo-Surgery, Inc. Method for creating a pixel image from sampled data of a scanned beam imager
US8332014B2 (en) 2008-04-25 2012-12-11 Ethicon Endo-Surgery, Inc. Scanned beam device and method using same which measures the reflectance of patient tissue
US8543240B2 (en) 2009-11-13 2013-09-24 Intuitive Surgical Operations, Inc. Master finger tracking device and method of use in a minimally invasive surgical system
US8682489B2 (en) 2009-11-13 2014-03-25 Intuitive Sugical Operations, Inc. Method and system for hand control of a teleoperated minimally invasive slave surgical instrument
US8996173B2 (en) 2010-09-21 2015-03-31 Intuitive Surgical Operations, Inc. Method and apparatus for hand gesture control in a minimally invasive surgical system
US8521331B2 (en) 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
US8935003B2 (en) 2010-09-21 2015-01-13 Intuitive Surgical Operations Method and system for hand presence detection in a minimally invasive surgical system
JP5796982B2 (ja) * 2011-03-31 2015-10-21 オリンパス株式会社 手術用システムの制御装置及び制御方法
JP6323974B2 (ja) * 2012-05-18 2018-05-16 オリンパス株式会社 手術支援装置
US9463307B2 (en) * 2012-12-21 2016-10-11 Medtronic Xomed, Inc. Sinus dilation system and method
CN103142231B (zh) * 2013-02-16 2015-05-13 深圳市资福技术有限公司 一种胶囊内窥镜的谐波检测装置和检测方法
JP6010225B2 (ja) * 2013-06-13 2016-10-19 テルモ株式会社 医療用マニピュレータ
DE102015109371A1 (de) * 2015-06-12 2016-12-15 avateramedical GmBH Vorrichtung und Verfahren zur robotergestützten Chirurgie
EP3503801A4 (en) 2016-08-26 2020-05-13 Musc Foundation for Research Development METAL CLAMP DETECTORS AND METHOD FOR DETECTION
JP6737984B2 (ja) * 2016-09-16 2020-08-12 国立大学法人京都大学 読み取り装置のアンテナ
JP2019524353A (ja) * 2016-10-24 2019-09-05 シーエスエー メディカル, インコーポレイテッド 末梢肺病変の凍結療法を実施するための方法および装置
DE102017103198A1 (de) * 2017-02-16 2018-08-16 avateramedical GmBH Vorrichtung zum Festlegen und Wiederauffinden eines Bezugspunkts während eines chirurgischen Eingriffs
CA3063913A1 (en) * 2017-07-07 2019-01-10 Shadwell Endoscopic, Inc. System and method for marking and subsequently locating sites of biopsies using rfid technology
US11065064B2 (en) * 2017-11-14 2021-07-20 Biosense Webster (Israel) Ltd. Calibration of a rigid ENT tool
US11147629B2 (en) * 2018-06-08 2021-10-19 Acclarent, Inc. Surgical navigation system with automatically driven endoscope
WO2020185218A1 (en) * 2019-03-12 2020-09-17 Intuitive Surgical Operations, Inc. Layered functionality for a user input mechanism in a computer-assisted surgical system
JP6754150B1 (ja) * 2020-02-12 2020-09-09 リバーフィールド株式会社 手術用ロボット
US20220142708A1 (en) * 2020-11-12 2022-05-12 Cardiofocus, Inc. Ablation Catheters with Multiple Endoscopes and Imaging Chip Endoscopes and System for Altering an Orientation of an Endoscopic Image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199125A (ja) * 1997-09-26 1999-04-13 Olympus Optical Co Ltd 内視鏡画像ファイリングシステム
JP2002131009A (ja) 1998-03-18 2002-05-09 Olympus Optical Co Ltd 位置推定方法
JP2003135389A (ja) * 2001-11-06 2003-05-13 Olympus Optical Co Ltd カプセル型医療装置
JP2004041709A (ja) * 2002-05-16 2004-02-12 Olympus Corp カプセル医療装置
JP2004041724A (ja) * 2002-06-17 2004-02-12 Biosense Inc 対象の体内の組織の位置を求める装置および方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US6702736B2 (en) * 1995-07-24 2004-03-09 David T. Chen Anatomical visualization system
CA2246287C (en) * 1996-02-15 2006-10-24 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6115636A (en) * 1998-12-22 2000-09-05 Medtronic, Inc. Telemetry for implantable devices using the body as an antenna
US7174201B2 (en) * 1999-03-11 2007-02-06 Biosense, Inc. Position sensing system with integral location pad and position display
US20030055315A1 (en) * 2001-09-14 2003-03-20 Gatto Dominick L. Method and apparatus for endoscope system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199125A (ja) * 1997-09-26 1999-04-13 Olympus Optical Co Ltd 内視鏡画像ファイリングシステム
JP2002131009A (ja) 1998-03-18 2002-05-09 Olympus Optical Co Ltd 位置推定方法
JP2003135389A (ja) * 2001-11-06 2003-05-13 Olympus Optical Co Ltd カプセル型医療装置
JP2004041709A (ja) * 2002-05-16 2004-02-12 Olympus Corp カプセル医療装置
JP2004041724A (ja) * 2002-06-17 2004-02-12 Biosense Inc 対象の体内の組織の位置を求める装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1716802A4

Also Published As

Publication number Publication date
US20060276686A1 (en) 2006-12-07
JP2005224528A (ja) 2005-08-25
CN100496375C (zh) 2009-06-10
US7837616B2 (en) 2010-11-23
EP1716802A4 (en) 2009-10-21
EP1716802B1 (en) 2013-07-03
KR20060116849A (ko) 2006-11-15
CN1917803A (zh) 2007-02-21
EP1716802A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2005077251A1 (ja) 内視鏡及び内視鏡システム
US11877721B2 (en) Device and methods of improving laparoscopic surgery
JP5314913B2 (ja) カプセル医療システム
EP1399201B1 (en) Device for in-vivo procedures
JP4898709B2 (ja) 経自然開口的または経皮的な医療システム
US20070161855A1 (en) Medical procedure through natural body orifice
US20100152539A1 (en) Positionable imaging medical devices
WO2006112136A1 (ja) 手術支援装置及び処置支援装置
WO2013027203A1 (en) Wearable user interface
JP4027876B2 (ja) 体腔内観察システム
Ciuti et al. A comparative evaluation of control interfaces for a robotic-aided endoscopic capsule platform
US20210030510A1 (en) Surgery system, image processor, and image processing method
CN116096309A (zh) 腔内机器人(elr)系统和方法
JP2008018257A (ja) 医療装置
US20230113687A1 (en) Systems and methods for robotic endoscopic submucosal dissection
JP5419333B2 (ja) 人体の内腔を観察するための体内撮像デバイス
JP2023529291A (ja) トリプル画像化ハイブリッドプローブのためのシステム及び方法
Junior et al. Robotic endoscopy
JP2017169994A (ja) 内視鏡先端位置特定システム
JP2006136663A (ja) 内視鏡形状検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005710213

Country of ref document: EP

Ref document number: 1020067016353

Country of ref document: KR

Ref document number: 200580004846.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11505216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005710213

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016353

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11505216

Country of ref document: US