WO2005076420A1 - Gekoppelte optische resonatoren - Google Patents

Gekoppelte optische resonatoren Download PDF

Info

Publication number
WO2005076420A1
WO2005076420A1 PCT/DE2005/000113 DE2005000113W WO2005076420A1 WO 2005076420 A1 WO2005076420 A1 WO 2005076420A1 DE 2005000113 W DE2005000113 W DE 2005000113W WO 2005076420 A1 WO2005076420 A1 WO 2005076420A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
optical
resonators
frequency
nonlinear
Prior art date
Application number
PCT/DE2005/000113
Other languages
English (en)
French (fr)
Inventor
Volker Raab
Ralf Menzel
Original Assignee
Volker Raab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volker Raab filed Critical Volker Raab
Priority to DE112005000657T priority Critical patent/DE112005000657D2/de
Publication of WO2005076420A1 publication Critical patent/WO2005076420A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator

Definitions

  • nonlinear processes in optics are of high technical relevance, such as frequency doubling.
  • light is generated at one wavelength in order to then convert it to light of half the wavelength, that is to say twice the frequency, by means of nonlinear crystals.
  • a characteristic of nonlinear effects is that they are not proportional to the irradiated intensity, but depend on it with higher potency. The effects are therefore extremely weak at low intensities, but grow strongly at high intensities. It therefore makes sense to resonantly increase the intensity of an existing light field in an (auxiliary) resonator R1. To do this, however, the incident light must have a wavelength that matches the resonator R1.
  • laser light is practically always used as a light source for nonlinear processes.
  • Laser light is generated in a laser resonator R2, which contains an active material in which the energy supplied from outside is converted into light. The light then contains all those frequencies that correspond to the resonances of the laser resonator R2.
  • the primary problem is to adjust the frequency of the pump resonator R2 in which the laser light is generated to that of the auxiliary resonator R1 so that the generated light can really penetrate into R1 and is not reflected on the input mirror.
  • the installation of the non-linear medium in the pump resonator is not practical if the active medium is an edge-emitting semiconductor, since the maximum permissible power density of such semiconductor materials does not allow a reasonable power increase, so that this method is only suitable for solid-state lasers and vertical emitters.
  • the active control loop method is also practical for semiconductor emitters and exists commercially. However, the effort is extremely high. In addition, this method only allows one wavelength at a time. The latter is impractical for projection devices because narrow-band light leads to interference effects. These effects, known as "speckle", lead to a troubled and coarse-grained image. problem
  • the problem to be solved is therefore to find an arrangement or a method which makes the active control loop unnecessary in systems with edge emitters by the resonators R1 and R2 automatically “looking for” common resonance frequencies and oscillating on them work with multiple frequencies simultaneously.
  • the solution to the problem is based on building the R2 pump resonator long enough and with low quality.
  • the coupled resonators must be set so that their respective resonances cannot influence each other. In addition, it must be ensured that under all circumstances there is a wavelength that is resonant for both resonators at the same time.
  • FSR free spectral ranges
  • These requirements link the free spectral ranges ("free spectral ranges", FSR) and the qualities F of the two coupled resonators. These conditions can be met if the pumping resonator R2 is at least the ratio of the quality Fl longer than the power-increasing resonator R1. This becomes clear when you consider that a wavelength within the i-th resonance of a resonator fulfills the following condition: (il / F) * FSR ⁇ ⁇ (i + l / F) * FSR.
  • the proposed solution is simple, since it works completely passively, ie without complicated and error-prone control loops, and can also save all converter processes from optical to electronic and back.
  • the proposed solution is flexible because it is based on a large number of different
  • the proposed solution can be used for diverse processes, the high optical resolution
  • This basic structure means that the pumping laser can automatically adapt to the wavelength of the high-performance resonator. This eliminates the need for active control loops, and in practice there are a number of other aspects that need to be taken into account, which are to be explained using figures 1 and 2, among other things: a) The driving light-generating resonator R2 must be tunable in dimensions so that it can match the wavelength of the power-increasing one Can adjust resonators Rl. b) The power-increasing resonator Rl must deliver a feedback signal which specifies the necessary wavelength for the driving resonator Rl. c) The resonator R1 must act as a filter and remove wavelengths that are not resonant from the overall system.
  • non-resonant wavelengths must not feed back into the amplifying medium.
  • light in the resonator R1 preferably only rotates in one direction, since then, for example, the nonlinear crystal also emits frequency-doubled light in only one direction.
  • e) there are all aspects that generally apply to non-linear optical processes: high input light outputs, good beam quality, adapted focusing, precise adjustment of all optical components.
  • the coupling mirror (3b) must be at an angle in the beam path. If the resonator R1 is a linear arrangement in this case, then both condition d) would be violated and high resonator losses would occur, since an oblique incidence leads to “walk-off”, that is to say a sideways drift of the field in the resonator R1. Taken together, the resonator R1 should therefore be a ring resonator.
  • Such a ring resonator can in principle deliver a feedback signal via each of its deflection mirrors (3b, 3c, 5b, 8a, 8b).
  • the coupling-in mirror must again be excluded, since otherwise, according to condition c), the feedback light would not be distinguishable from the non-resonant light.
  • a second deflecting mirror (3c) should be chosen to be partially transparent.
  • the driving resonator also forms a ring resonator, namely along (4b, 5b). Taken together, these are two ring resonators that have a common piece of optical path, namely exactly the part that lies between the coupling and feedback mirror of the doubling ring, i.e. the path between the mirrors (3b) and (3 c).
  • the necessary length L2 of the resonator R2 can be easily obtained by passing the light through a fiber (6), which enables long optical paths to be saved in a space-saving manner.
  • Two other conditions on the coupled resonators are also worth explaining: the desired direction of rotation and the so-called impedance matching.
  • both directions of rotation have essentially the same losses due to the coupled rings, so that an equilibrium would be established in which the same amount of light circulates in both directions. According to condition d) this is not desirable.
  • an optical diode (2) that only allows light to pass in one direction.
  • an alternative (in principle any) partially permeable deflection mirror (3a in Fig. 1) an auxiliary mirror (4a) are attached, which only directs light in one direction of rotation back into the resonator.
  • the reverse direction of rotation receives lower losses and swings more strongly accordingly.
  • at least the ratio of the two parts can be influenced favorably.
  • additional frequency-selective elements (4a, 4b, 4c), such as etalons, gratings, Bragg gratings, fiber Bragg gratings, or the like. to further limit the possible rising frequencies. This can be particularly advantageous if the gain medium is very broadband, but only certain wavelengths or tunability are desired. In cases where several modes should swing at the same time, the number of modes can be selected by selecting these elements.
  • elements (16) are present in the structures which can influence the optical length of the resonators, this also ensures a certain tunability. In particular, in combination with selective elements (4) it is also possible to tune without a jump in the mode.
  • a practical setup for generating blue light is shown in Figure 2.
  • a broad-strip laser (1) with an anti-reflective-coated coupling-out facet (15) serves as an amplifier medium at a wavelength of 930 ⁇ m.
  • This laser is operated in V geometry.
  • the light entering and exiting is collimated by the lens (17b) and somewhat deflected.
  • the emerging light is guided via mirrors (5a) to the entrance mirror (3b) of the small resonator R1 with high quality. There it can resonate around the mirrors (3c, 5d, 8b, 3b).
  • Frequency doubling in a potassium niobate crystal, (7) generates blue light (10) at a wavelength of 465 nm, which emerges through the mirror (8b).
  • the lens (17e) ensures a stable mode within the resonator R1.
  • the feedback light that leaves the resonator R1 through the mirror (3c) thus has a wavelength that matches the resonator R1. It returns via the mirror (5b), the etalon (4c) for additional frequency selection, the mirrors (5c) and (3a) and the grating (4b) to the amplifying medium (1).
  • the lenses (17c, 17d) serve for a further frequency selection.
  • the resonator R2 is approximately V more than 3 m long, so that the condition L2> L1 * F1 is fulfilled. ⁇ -—.
  • optically reinforcing element 1. if necessary optical diode, optical isolator 3. partially transparent mirror 4. grating, Bragg grating, fiber Bragg grating, etalon or other wavelength-selective elements 5. mirror 6. if necessary optical fiber (eg glass fiber) 7. optical process, nonlinear crystal, optically parametric amplifier, measuring cell, etc. 8. if necessary, wavelength-selective partially transparent mirrors 9. if necessary, additional light for process (7) 10. useful signal from process (7) 11. in resonator R1 (along the Path 3b-3c-8a-8b-3b) circulating light 12. circulating light 13. in resonator R2 (along path 3a-4b-5a-5b-3a) circulating light 13.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

Es wird eine Anordnung und ein Verfahren vorgestellt, mit denen sich jeweils Laserlicht resonant in seiner Leistung überhöhen lässt. Vorteilhaft daran ist, dass keine aktiven Rückkopplungsschleifen mit mechanischen oder opto-elektronischen Komponenten notwendig sind, sondern es sich um selbstadjustierende gekoppelte Resonatoren handelt. Dies geschieht dadurch, dass die beiden gekoppelten Resonatoren in ihren optischen Längen, also auch in ihren freien Spektralbereichen, an die jeweiligen Resonatorgüten angepasst sind, um unter allen Umständen gemeinsame Resonanzfrequenzen zu besitzen. Deshalb muss der pumpende Resonator, in dem sich ein verstärkendes Lasermedium (1) befindet, um die Finesse F des überhöhenden Resonators, in dem typischer weise nichtlineare Effekte (7) ausgenutzt werden, optisch länger sein als die Länge des überhöhenden Resonators. Dazu kann vorteilhaft eine Lichtleitfaser (6) benutzt werden. Oder es kann auch eine herkömmliche Anordnung gemäss Abbildungsteil (b) ausreichen, wenn der überhöhende Resonator sehr kompakt ist. Es ist zweckmässig, gemäss der Abbildung beide Resonatoren als Ringresonatoren auszuführen, die ein Stück optischen Weg gemeinsam haben, da dann parasitäre Rückkopplung minimiert ist. Ausserdem ist ein richtungsselektives Element (2) vorteilhaft, da dann die Strahlung vorwiegend in einer Richtung umläuft. Dies ist insbesondere bei Frequenzkonversion günstig. Als richtungsselektives Element kann eine optische Diode (Bildteil (a)) oder ein Hilfsspiegel bzw. -gitter an einem der teildurchlässigen Umlenkspiegel (Bildteil (b)) eingesetzt werden. Eine Impedanzanpassung der Resonatoren verbessert die gegenseitige Ankopplung und reduziert Verluste. Diese Anordnung eignet sich insbesondere für Halbleiterlaser und Halbleiterverstärker in Breitstreifen- oder Trapezgeometrie (Abb. Teil (a) bzw. (b)). Sie ist vorteilhaft bei diversen nichtlinearen Prozessen (Frequenzverdopplung, Frequenzvervielfachung, Frequenzmischung, optisch parametrischer Verstärkung, optisch parametrischer Oszillation, Raman-Effekte zur Frequenzkonversion, Brillouin-Streuung zur Frequenzkonversion oder Phasenkonjugation, nichtlineare Absorption zur optischen Leistungsbegrenzung oder Moden-Kopplung, etc.) einzusetzen, da nichtlineare Prozesse umso besser funktionieren, je höher die Lichtleistung ist, aber vielfach die benötigten Leistungen durch den (Halbleiter-)Laser nicht zur Verfügung gestellt werden können.

Description

Beschreibung
Titel
Gekoppelte optische Resonatoren
Stand der Technik
Viele nichtlineare Prozesse der Optik sind von hoher technischer Relevanz, so zum Beispiel die Frequenz- Verdopplung. Dabei erzeugt man Licht bei einer Wellenlänge, um es dann mittels nichtlinearer Kristalle in Licht der halben Wellenlänge, also doppelter Frequenz umzuwandeln. Charakteristisch für nichtlineare Effekte ist dabei, dass sie nicht proportional zur eingestrahlten Intensität sind, sondern mit höherer Potenz davon abhängen. Deshalb sind die Effekte bei geringen Intensitäten äußerst schwach, wachsen aber bei hohen Intensitäten stark an. Somit ist es sinnvoll, die Intensität eines vorhandenen Lichtfelds in einem (Hilfs)- Resonator Rl resonant zu überhöhen. Dazu muss aber das eingestrahlte Licht eine zum Resonator Rl passende Wellenlänge besitzen.
Da inkohärentes Licht zu schwach für nichtlineare Effekte ist, wird praktisch immer Laserlicht als Lichtquelle für nichtlineare Prozesse genutzt. Laserlicht entsteht in einem Laserresonator R2, der ein aktives Material enthält, in dem die von außen zugeführte Energie in Licht umgewandelt wird. Das Licht enthält dann all diejenigen Frequenzen, die den Resonanzen des Laserresonators R2 entsprechen.
Das primäre Problem besteht darin, den Pumpresonator R2, in dem das Laserlicht erzeugt wird, in seiner Frequenz an diejenigen des Hilfsresonators Rl anzupassen, so dass das erzeugte Licht auch wirklich in Rl eindringen kann und nicht am Eingangsspiegel reflektiert wird. Dabei ist zu beachten, dass die von einem Resonator akzeptierten Frequenzen v und Wellenlängen λ=c/v bestimmt sind durch Frequenzbänder um die Vielfachen des „freien Spektralbereichs" („free spectral ränge", FSR), deren Bandbreite Δv=FSR/F durch die Finesse F bestimmt ist: i*FSR-Δv/2<v<i*FSR+Δv/2, bzw. |v/FSR-i|<l/F jeweils für ein beliebiges aber ganzzahliges i. Mehrere Resonatoren koppeln nur dann gut aneinander, wenn es gemeinsame v gibt, die die Resonanzbedingung für alle beteiligten Resonatoren erfüllen. Das wird umso schwieriger, je höher die einzelnen Güten, also je schmaler die Bänder und je kürzer die Resonatoren, also je größer die FSR sind. Die FSR lautet für lineare Resonatoren FSR=c/(2L) und für Ringresonatoren FSR=c/L.
Zwei gängige Verfahren der Resonanz-Erfüllung existieren. Erstens der Einbau des nichtlinearen Mediums in den Resonator R2 unter Verzicht auf einen zweiten Resonator Rl . Und zweitens der Aufbau zweier Resonatoren und einer elektronischen und elektrooptischen oder elektromechanischen Regelschleife, die eine kontinuierliche Anpassung der Resonanzfrequenzen aneinander vornimmt, wenn äußere Einflüsse (Temperaturdrift, Vibration, Stromänderung) die optischen Wege verändert haben.
Der Einbau des nichtlinearen Mediums in den Pumpresonator ist nicht praktikabel, wenn das aktive Medium ein kantenemittierender Halbleiter ist, da die maximal zulässige Leistungsdichte solcher Halbleitermaterialien keine sinnvolle Leistungsüberhöhung zulässt, so dass sich dieses Verfahren allenfalls für Festkörperlaser und Vertikalemitter eignet. Das Verfahren mit aktiver Regelschleife ist auch für Halbleiter-Emitter praktikabel und existiert kommerziell. Allerdings ist der Aufwand außerordentlich hoch. Außerdem lässt dieses Verfahren jeweils nur eine Wellenlänge zu. Letzteres ist unpraktikabel für Projektionseinrichtungen, da schmalbandiges Licht zu Interferenzeffekten führt. Diese, als „Speckle" bezeichneten Effekte führen zu einem unruhigen und grobkörnigen Bild. Problem
Das zu lösende Problem besteht also darin, eine Anordnung oder ein Verfahren zu finden, das die aktive Regelschleife bei Systemen mit Kantenemittern entbehrlich macht, indem sich die Resonatoren Rl und R2 selbsttätig gemeinsame Resonanzfrequenzen „suchen" und auf diesen oszillieren. Dieser Prozess soll möglichst auch mit mehreren Frequenzen gleichzeitig funktionieren.
Lösung
Die Lösung des Problems beruht darauf, den Pumpresonator R2 lang genug und mit geringer Güte zu bauen.
Die gekoppelten Resonatoren müssen so eingestellt werden, dass ihre jeweiligen Resonanzen sich nicht gegenseitig beeinflussen können. Ausserdem muss sichergestellt werden, dass es unter allen Umständen eine Wellenlänge gibt, die für beide Resonatoren gleichzeitig resonant ist. Diese Voraussetzungen verknüpfen die freien Spektralbereiche („free spectral ränge", FSR) und die Güten F der beiden gekoppelten Resonatoren. Erfüllbar sind diese Bedingungen, wenn der pumpende Resonator R2 mindestens um das Verhältnis der Güte Fl länger ist als der leistungsüberhöhende Resonator Rl . Dies wird klar, wenn man bedenkt, dass eine Wellenlänge innerhalb der i-ten Resonanz eines Resonators folgende Bedingung erfüllt: (i-l/F)*FSR<λ<(i+l/F)*FSR. Diese Wellenlängen-Formel besagt, dass die Umlauflänge des überhöhenden Resonators Rl bis auf höchstens λ/Fl einem Vielfachen der Wellenlänge λ entspricht, pro Umlauf also bis zu 2π/Fl Phasendifferenz auftreten kann. Wenn dieses Licht aus dem ankoppelnden Spiegel austritt, durch das Verstärkungsmedium läuft und zum Resonator Rl zurückkehrt, muss es laut Voraussetzung mindestens einen Weg L1*FKL2 zurücklegen. Es kumuliert sich also eine Phasendifferenz von bis zu 2π/Fl*Fl =2π. Das entspricht genau der Resonanzbedingung des Resonators R2. Mit anderen Worten lässt sich so über eine Anpassung der optischen Längen an die Resonatorgüten ein System schaffen, das auch unter (schwach) variierenden äußeren Bedingungen, beispielsweise thermischen Ausdehnungen, immer eine gemeinsame Resonanzfrequenz besitzt, ohne dass eine aktive Regelung eines der beiden Ringe notwendig würde. Dies zeichnet es gegenüber herkömmlichen Konzepten aus, die aktiv geregelte Kontrollmechanismen voraussetzen und in die jeweiligen FSR eingreifen, indem die optische Länge von mindestens einem Resonator variiert wird.
Erreichte Vorteile
Die vorgeschlagene Lösung ist effizient, da sie im wesentlichen mit den gleichen optischen
Komponenten auskommt, wie die existierenden Lösungen, aber auf viele Komponenten verzichten kann.
Die vorgeschlagene Lösung ist einfach, da sie vollkommen passiv, also ohne komplizierte und fehleranfällige Regelschleifen auskommt und auch alle Wandlerverfahren von optischen in elektronische und zurück einsparen kann.
Die vorgeschlagene Lösung ist flexibel, da sie auf eine große Zahl von unterschiedlichen
Halbleiterstrukturen anwendbar ist. Zudem können viele Halbleiter auch an derartige
Anwendungen angepasst werden.
Die vorgeschlagene Lösung ist für vielfältige Prozesse einsetzbar, die hohe optische
Leistungen benötigen.
Die vorgeschlagene Lösung ist in der Lage, bei geeignet gewählten FSR und
Verstärkungsprofilen auf mehreren Wellenlängen gleichzeitig zu operieren. Dadurch wird die
Kohärenz des entstehenden Lichts teilweise zerstört, was für viele technische Anwendungen
(insbesondere Projektions-Apparaturen) von hoher Wichtigkeit ist. Weitere Ausgestaltung der Erfindung
Dieser prinzipielle Aufbau bewirkt, dass sich der pumpende Laser selbsttätig an die Wellenlänge des leistungsüberhöhenden Resonators anpassen kann. Dadurch werden aktive Regelschleifen überflüssig, hl der Praxis sind einige weitere Aspekte zu berücksichtigen, die unter anderem anhand der Abbildungen 1 und 2 erläutert werden sollen: a) Der treibende lichterzeugende Resonator R2 muss in Maßen durchstimmbar sein, damit er sich an die Wellenlänge des leistungsüberhöhenden Resonators Rl anpassen kann. b) Der leistungsüberhöhende Resonator Rl muss ein Rückkopplungs-Signal liefern, das dem treibenden Resonator Rl die notwendige Wellenlänge vorgibt. c) Der Resonator Rl muss als Filter wirken und Wellenlängen, die nicht resonant sind, aus dem Gesamtsystem entfernen. Insbesondere dürfen nicht-resonante Wellenlängen nicht in das verstärkende Medium zurückkoppeln. d) Wünschenswert ist es, wenn Licht im Resonator Rl vorzugsweise nur in einer Richtung umläuft, da dann beispielsweise der nichtlineare Kristall auch frequenzverdoppeltes Licht nur in einer Richtung emittiert. e) Hinzu kommen alle Aspekte, die generell für nichtlineare optische Prozesse gelten: hohe Eingangs-Lichtleistungen, gute Strahlqualität, angepasste Fokussierung, genaue Justage aller optischer Komponenten.
Diese genannten Anforderungen lassen sich schrittweise in ein Resonatordesign umsetzen. So folgt aus Forderung c), dass der Ankoppelspiegel (3b) unter einem Winkel im Strahlengang stehen muss. Handelt es sich beim Resonator Rl in diesem Fall um eine lineare Anordnung, so würde sowohl Bedingung d) verletzt, als auch hohe Resonatorverluste auftreten, da ein schräger Einfall zu „walk-off führt, also einer seitwärts-Drift des Feldes im Resonator Rl. Zusammen genommen sollte der Resonator Rl also ein Ringresonator sein. Ein solcher Ringresonator kann ein Rückkoppel-Signal prinzipiell über jeden seiner Umlenkspiegel (3b, 3c, 5b, 8a, 8b) liefern. Der Einkoppelspiegel ist hier aber wiederum auszuschließen, da anderenfalls gemäß Bedingung c) das Rückkoppel-Licht nicht vom nichtresonanten Licht zu unterscheiden wäre. Deshalb ist ein zweiter Umlenkspiegel (3c) teildurchlässig zu wählen. Damit dieses Rückkoppel-Signal wieder zum verstärkenden Medium (1) gelangt, muss es entweder wieder zurück durch den Verdoppler-Ring (Widerspruch zu d)), oder auf einem anderen Weg gefuhrt werden. Die zweite Variante bedeutet dann, dass auch der treibende Resonator einen Ringresonator bildet, nämlich längs (4b, 5b). Zusammen genommen handelt es sich also um zwei Ringresonatoren, die ein gemeinsames Stück optischen Weg besitzen, nämlich genau den Teil, der zwischen Einkoppel- und Rückkoppelspiegel des Verdopplungs- Rings liegt, also die Strecke zwischen den Spiegeln (3b) und (3 c).
Die notwendige Länge L2 des Resonators R2 lässt sich einfach erhalten, indem das Licht durch eine Faser (6) geleitet wird, die platzsparend lange optische Wege ermöglicht. Zwei weitere Bedingungen an die gekoppelten Resonatoren sind zudem erläuterungswürdig: die gewünschte Umlaufrichtung und die sogenannte Impedanzanpassung. Um möglichst viel Licht in den verdoppelnden Resonator einkoppeln zu können, müssen die Reflektivitäten des Eintritts- und des Austrittsspiegels (3b, 3 c) an die Konversionseffizienz und die resonatorinternen Verluste angepasst werden: das Produkt aus Verlustfaktor V, Konversionsfaktor (1-η) und Rückkopplungsgrad RFB an Spiegel (3c) muss gleich der Einkoppelreflektivität R;n=V*(l- η)*RFB an Spiegel (3b) sein, da anderenfalls ein Teil des Lichts vom Eintrittsspiegel wegreflektiert wird. Zweitens besitzen ohne weitere Maßnahmen beide Umlaufrichtungen durch die gekoppelten Ringe im wesentlichen die selben Verluste, so dass sich ein Gleichgewicht einstellen würde, in dem gleich viel Licht in beiden Richtungen zirkuliert. Das ist gemäß Bedingung d) nicht wünschenswert. Abhilfe lässt sich mit Hilfe einer optischen Diode (2) schaffen, die Licht nur in einer Richtung passieren lässt. Wenn diese optische Diode vermieden werden soll, kann alternativ an einem (im prinzip beliebigen) teildurchlässigen Umlenkspiegel (3a in Abb. 1) ein Hilfsspiegel (4a) angebracht werden, der nur Licht der einen Umlaufrichtung zurück in den Resonator lenkt. Dadurch bekommt die umgekehrte Umlaufrichtung geringere Verluste und wird entsprechend stärker ausgeprägt anschwingen. So lässt sich zumindest das Verhältnis der beiden Anteile günstig beeinflussen. Durchaus sinnvoll kann es sein, durch zusätzliche frequenzselektive Elemente (4a, 4b, 4c), wie z.B. Etalons, Gitter, Bragg-Gitter, Faser-Bragg-Gitter, o.dgl. eine weitere Einschränkung der möglichen anschwingenden Frequenzen zu bewirken. Dies kann insbesondere dann vorteilhaft sein, wenn das Verstärkungsmedium sehr breitbandig ist, aber nur bestimmte Wellenlängen oder Durchstimmbarkeit erwünscht sind. In Fällen, in denen mehrere Moden gleichzeitig anschwingen sollen, kann durch Wahl dieser Elemente die Zahl der Moden vorgewählt werden.
In der Praxis werden praktisch immer zusätzliche Linsen (17) benötigt, um einen stabilen Betrieb zu ermöglichen. Auch Blenden (18) können die Qualität der Apparatur verbessern. Je nach nichtlinearem Prozess (7) kann es sinnvoll oder notwendig sein, einige oder alle Spiegel (5d, 8a, 8b) teildurchlässig auszuführen, um Nutzlicht auszukoppeln (z.B. bei Frequenzverdoppmng) oder Hilfslicht einzustrahlen (z.B. bei parametrischer Verstärkung oder nichtlinearen Messverfahren).
Wenn in den Aufbauten Elemente (16) vorhanden sind, die die optische Länge der Resonatoren beeinflussen können, so wird dadurch ebenfalls eine gewisse Durchstimmbarkeit gewährleistet. Insbesondere in Kombination mit selektiven Elementen (4) kann so auch modensprung-freies Durchstimmen erzielt werden.
Ausführungsbeispiele
Ein praxisnaher Aufbau zur Erzeugung blauen Lichts ist in Abbildung 2 dargestellt. Ein Breitstreifenlaser (1) mit antireflex-beschichteter Auskoppel-Facette (15) dient als Verstärkermedium bei einer Wellenlänge von 930 um. Dieser Laser ist in V-Geometrie betrieben. Das ein- und austretende Licht wird durch die Linse (17b) kollimiert und etwas abgelenkt. Über Spiegel (5a) wird das austretende Licht zum Eintrittsspiegel (3b) des kleinen Resonators Rl mit hoher Güte geleitet. Dort kann es resonant über die Spiegel (3c, 5d, 8b, 3b) umlaufen. Eine Frequenzverdopplung in einem Kalium-Niobat-Kristall ,(7) generiert blaues Licht (10) bei einer Wellenlänge von 465 nm, das durch den Spiegel (8b) austritt. Die Linse (17e) sorgt für eine stabile Mode innerhalb des Resonators Rl. Das Rückkoppellicht, das den Resonator Rl durch den Spiegel (3c) verlässt, hat somit eiiie zum Resonator Rl passende Wellenlänge. Es kehrt über den Spiegel (5b), das Etalon (4c) zur zusätzlichen Frequenzselektion, die Spiegel (5c) und (3a) und das Gitter (4b) zum verstärkenden Medium (1) zurück. Die Linsen (17c, 17d) dienen in Kombination mit den Blenden (18a, 18b) und dem Gitter (4b) einer weiteren Frequenzselektion. Der Rfesonator Rl besitzt eine Güte Fl=30 und eine Länge Ll=10 cm. Der Resonator R2 ist etwaVmehr als 3 m lang, so dass die Bedingung L2>L1*F1 erfüllt ist. ^-— .
Eine zweckmäßige Modifikation dieses Aufbaus ist in Abbildung 3 dargestellt. Sie könnte z.B. darin bestehen, den Breitstreifenlaser durch einen Trapezverstärker zu ersetzten, der eingangsseitig stumpf an eine Faser angekoppelt wird. Dadurch erzielt man einen langen Resonator R2, der aus verhältnismäßig wenigen Komponenten besteht. Bezugszeichenliste
1. optisch verstärkendes Element 2. ggf. optische Diode, optischer Isolator 3. teildurchlässige Spiegel 4. Gitter, Bragg-Gitter, Faser-Bragg-Gitter, Etalon oder sonstige wellenlängenselektive Elemente 5. Spiegel 6. ggf. optische Faser (z.B. Glasfaser) 7. optischer Prozess, nichtlinearer Kristall, optisch parametrischer Verstärker, Messzelle, etc. 8. ggf. wellenlängenselektive teildurchlässige Spiegel 9. ggf. zusätzliches Licht für Prozess (7) 10. Nutzsignal aus Prozess (7) 11. im Resonator R1 (entlang des Wegs 3b-3c-8a-8b-3b) umlaufendes Licht 12. im Resonator R2 (entlang des Wegs 3a-4b-5a-5b-3a) umlaufendes Licht 13. im Resonator R3 (entlang des Wegs 4a-15-4a) umlaufendes Licht 14. gemeinsamer optischer Weg der Resonatoren R1 und R2 zwischen (3b) und (3c) 15. Austrittsfläche des optisch verstärkenden Elements (1 ) 16. Stellelemente, die die optische Weglänge mittels mechanischer (16a) oder elektrooptischer (16b) Verfahren verändern 17. Linse 18. Blende

Claims

Patentansprüche: 1. Gekoppelte optische Resonatoren, a. in deren einem Resonator Rl mit einer optischen Länge Ll und einer Finesse Fl (auch als Güte bezeichnet) die Leistungsüberhöhung für technische Prozesse (insbesondere Frequenzvervielfachung und — mischung) genutzt wird, b. in einen weitereren Resonator R2 mit einer optischen Länge L2 und einer Finesse F2, der ein optisch verstärkendes Medium enthält, das vorzugsweise ein Halbleiter ist, die Energie von außen zugeführt wird c. und es möglicherweise weitere angekoppelte Resonatoren gibt, dadurch gekennzeichnet, dass -v, d. die verschiedenen Längen L und Resonatorgüten F/so aufeinander abgestimmt sind, dass es immer gemeinsame Resonanzfrequenzen innerhalb des Verstärkungsbereichs des verstärkenden Mediums gibt, auch wenn durch äußere Einflüsse (Vibrationen, Temperaturschwankungen, Stellelemente oder sonstiges) moderate Variationen der optischen Weglängen L auftreten, was insbesondere dadurch realisiert sein kann, dass die Länge L2 des Resonators mit verstärkendem Medium um den Faktor Fl länger ist als Ll, also folgende Beziehung gilt: L2äLl*Fl,
2. Gekoppelte optische Resonatoren nach Anspruch 1, dadurch gekeimzeichnet, dass es sich bei mindestens einem Resonator um einen Ringresonator handelt.
3. Gekoppelte optische Resonatoren nach Anspruch 1, dadurch gekennzeichnet, dass die Resonatoren Rl und R2 beide Ringresonatoren sind, die einen Teil ihrer optischen Wege gemeinsam haben, und für Resonator Rl die sogenannte „Impedanzanpassung" gilt, also für die Reflektivitäten Rein und RrüCk der Koppelspiegel und die Resonatorverluste V, sowie die Konversionseffizienz η des nichtlinearen Prozesses (mindestens) näherungsweise gilt: Rein = Rmc *V*(l-η).
4. Gekoppelte optische Resonatoren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem verstärkenden Medium um einen kantenemittierenden Halbleiter in Breitstreifen- oder Trapezgeometrie („tapered amplifier", „tapered laser") handelt.
5. Gekoppelte optische Resonatoren nach Anspruch 1 bis 4, die eines oder mehrere der folgenden Elemente enthalten: a. eine optische Diode, auch als optischer Isolator bezeichnet, zur Selektion einer speziellen Umlaufrichtung; b. Gitter, Bragg-Gitter, Etalons oder sonstige wellenlängenselektive Elemente zur zusätzlichen Beschränkung der Oszillationsfrequenz(en); c. mchtlineare Kristalle zur Nutzung nichtlinearer optischer Effekte, insbesondere i. Frequenzverdopplung, ii. Frequenzvervielfachung, iii. Frequenzmischung, iv. optisch parametrische Verstärkung, v. optisch parametrische Oszillation; d. Substanzen, die bei den entstehenden Intensitäten mchtlineare physikalische Effekte zeigen, insbesondere i. Raman-Streuung zur Frequenzkonversion, ii. Brillouin-Streuung zur Frequenzkonversion oder Phasenkonjugation, iii. nichtlineare Absorption zur optischen Leistungsbegrenzung oder Moden-Kopplung; e. ein Messvolumen, in dem sich eine mit Licht zu vermessende Substanz befindet; f. eine optische Faser, insbesondere zur Realisierung langer optischer Wege im Resonator R2; g. Faltspiegel und dergleichen, die lange optische Wege auf kleinem Raum realisieren; h. Stellelemente, die die optische Länge mindestens eines Resonators verändern können, insbesondere elektrooptische oder mechanische Komponenten; i. weitere optische Elemente, insbesondere Linsen, Spiegel, Blenden;
6. Verfahren zur Erzeugung hoher optischer Intensitäten zur Nutzbarmachung nichtlinearer optischer Prozesse durch a. resonante Leistungsüberhöhung mittels eines optischen Resonators Rl , b. pumpen dieses Resonators mittels eines zweiten Resonators R2, c. geeignete nichtlineare Kristalle oder Substanzen für die gewünschten Prozesse, insbesondere i. Frequenzverdopplung, ii. Frequenzvervielfachung, iii. Frequenzmischung, iv. optisch parametrischer Verstärkung, v. optisch parametrischer Oszillation, vi. Raman-Effekte zur Frequenzkonversion, vii. Brillouin-Streuung zur Frequenzkonversion oder Phasenkonjugation, viii. nichtlineare Absorption zur optischen Leistungsbegrenzung oder Moden-Kopplung und d. gegebenenfalls weitere Resonatoren, dadurch gekennzeichnet, dass e. der Resonator Rl einen Teil seines Lichts in den Resonator R2 zurück gibt, so dass Resonator R2 auf dieser/diesen durch Rl vorgegebenen Wellenlänge(n) schwingt; f. der Resonator R2 so dimensioniert ist, dass er immer Eigenmoden innerhalb der Resonanzlinien des Resonators Rl besitzt, was durch ausreichende optische Länge realisiert werden kann; g. die Resonatoren Rl und R2 so miteinander gekoppelt sind, dass Licht, das aus dem aktiven Material von Resonator R2 austritt, nicht wieder in das aktive Material zurückkehren kann, ohne durch mindestens einen Teil des Resonators Rl gelaufen zu sein, was sich insbesondere durch die Gestaltung von Rl und R2 jeweils als Ringresonator erzielen lässt;
7. Verfahren nach Ansprach 6, in dem für die optischen Komponenten des Resonators Rl Impedanzanpassung gilt, also Rsm= Rrü_k*V*(l-η).
8. Verfahren nach Ansprach 6 oder 7 zur Erzeugung frequenzverdoppelten Lichts gleichzeitig bei mehreren Wellenlängen, insbesondere zur Vermeidung von Speckies und anderen Kohärenzeffekten für Projektionsapparaturen, zu erzielen durch Dimensionierung aller Resonatoren so, dass in den Resonatoren Rl und R2 mehrere Wellenlängen gleichzeitig oszillieren können, was sich insbesondere dadurch erreichen lässt, dass die freien Spektralbereiche der Resonatoren Rl und R2 kleiner sind als die Verstärkungsbandbreite des verstärkenden Mediums.
9. Verfahren nach Ansprüchen 6 bis 8, in dem mehrstufig die Frequenzen des Lichts geändert werden.
PCT/DE2005/000113 2004-01-23 2005-01-21 Gekoppelte optische resonatoren WO2005076420A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005000657T DE112005000657D2 (de) 2004-01-23 2005-01-21 Gekoppelte optische Resonatoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003750A DE102004003750A1 (de) 2004-01-23 2004-01-23 Gekoppelte optische Resonatoren
DE102004003750.7 2004-01-23

Publications (1)

Publication Number Publication Date
WO2005076420A1 true WO2005076420A1 (de) 2005-08-18

Family

ID=34745098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000113 WO2005076420A1 (de) 2004-01-23 2005-01-21 Gekoppelte optische resonatoren

Country Status (2)

Country Link
DE (2) DE102004003750A1 (de)
WO (1) WO2005076420A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100644A (zh) * 2016-05-20 2016-11-09 北京航空航天大学 基于直接射频转换的共轭相位获取装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362480B2 (en) * 2020-06-03 2022-06-14 Honeywell International Inc. Self-injection locked stimulated Brillouin scattering laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642409A1 (de) * 1995-10-26 1997-04-30 Hewlett Packard Co Passiv verriegelter externer optischer Hohlraum
GB2313951A (en) * 1996-06-05 1997-12-10 Jin Tiafeng Single longitudinal mode frequency-converted laser
US6088379A (en) * 1997-06-10 2000-07-11 Nikon Corporation Ultraviolet laser apparatus and semiconductor exposure apparatus
DE19923005A1 (de) * 1999-05-14 2000-11-23 Max Born Inst Fuer Nichtlinear Verfahren und Anordnung zur Frequenzkonversion von Laserstrahlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642409A1 (de) * 1995-10-26 1997-04-30 Hewlett Packard Co Passiv verriegelter externer optischer Hohlraum
GB2313951A (en) * 1996-06-05 1997-12-10 Jin Tiafeng Single longitudinal mode frequency-converted laser
US6088379A (en) * 1997-06-10 2000-07-11 Nikon Corporation Ultraviolet laser apparatus and semiconductor exposure apparatus
DE19923005A1 (de) * 1999-05-14 2000-11-23 Max Born Inst Fuer Nichtlinear Verfahren und Anordnung zur Frequenzkonversion von Laserstrahlung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUCHHAVE P ET AL: "Nonlinear frequency conversion in coupled ring cavities", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 200, no. 1-6, 15 December 2001 (2001-12-15), pages 359 - 368, XP004326904, ISSN: 0030-4018 *
RAAB V ET AL: "Generation of 465 nm light by frequency doubling of a diode laser in two passively coupled ring resonators", LASERS AND ELECTRO-OPTICS, 2004. (CLEO). CONFERENCE ON SAN FRANCISCO, CA, USA MAY 20-21, 2004, PISCATAWAY, NJ, USA,IEEE, vol. 2, 20 May 2004 (2004-05-20), pages 469 - 470, XP010744819, ISBN: 1-55752-777-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100644A (zh) * 2016-05-20 2016-11-09 北京航空航天大学 基于直接射频转换的共轭相位获取装置及方法
CN106100644B (zh) * 2016-05-20 2018-08-24 北京航空航天大学 基于直接射频转换的共轭相位获取装置及方法

Also Published As

Publication number Publication date
DE112005000657D2 (de) 2006-12-07
DE102004003750A1 (de) 2005-08-11

Similar Documents

Publication Publication Date Title
DE69923577T3 (de) Optisch gepumpter halbleiterlaser mit resonatorinterner frequenzumwandlung
EP1161782B1 (de) Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen
DE112015004310T5 (de) Faseroszillatoren mit geringem trägerphasenrauschen
DE19980508B4 (de) Verfahren zur resonanten Frequenzkonversion von Laserstrahlung und Vorrichtung zur Resonanzverstärkung
DE102006023601B4 (de) Lasersystem
DE112011103954T5 (de) Frequenzkamm-Quelle mit großem Abstand der Kammlinien
EP3411754B1 (de) Verfahren zur erzeugung von laserpulsen
WO1990015460A1 (de) Frequenzverdoppelter laser
EP3227751B1 (de) Vorrichtung und verfahren zum erzeugen elektromagnetischer strahlung
DE102018212551B4 (de) Laserlichtquelle und Laser-Projektor damit
DE112009001295B4 (de) Laserlichtquelle mit einem räumlichen Lichtmodulator
DE19634161C2 (de) Verfahren zum Einstellen und Quelle schmalbandiger kohärenter Strahlung
DE19642409B4 (de) &#34;Lasersystem mit externem Resonator&#34;
WO2005076420A1 (de) Gekoppelte optische resonatoren
WO2004066460A1 (de) Laserresonator und frequenzkonvertierter laser
DE10052461B4 (de) Vorrichtung zum Erzeugen von Laserlicht
DE69907618T2 (de) Störunanfälliges Lasersystem
EP0517266B1 (de) Laser
DE19611015A1 (de) Abstimmbarer optischer parametrischer Oszillator
DE19548647C2 (de) Durchstimmbare, justierstabile Halbleiterlaserlichtquelle sowie ein Verfahren zur optisch stabilen, weitgehend kontinuierlichen Durchstimmung von Halbleiterlasern
DE10339210B4 (de) Laserresonator und Frequenzkonvertierter Laser
DE19909497C1 (de) Elektrooptisch gesteuerter Laserresonator ohne mechanisch bewegliche Teile, insbesondere für spektral abstimmbare Laser und für räumlich steuerbaren Ausgangsstrahl, sowie Verwendungen
DE10118793B4 (de) UV-Festkörperlaser
DE102018010364A1 (de) Laserlichtquelle und Laser-Projektor damit
DE19923005B4 (de) Verfahren und Vorrichtung zur Frequenzkonversion von Laserstrahlung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050006573

Country of ref document: DE

REF Corresponds to

Ref document number: 112005000657

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000657

Country of ref document: DE

122 Ep: pct application non-entry in european phase