WO2005064698A1 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
WO2005064698A1
WO2005064698A1 PCT/JP2004/019194 JP2004019194W WO2005064698A1 WO 2005064698 A1 WO2005064698 A1 WO 2005064698A1 JP 2004019194 W JP2004019194 W JP 2004019194W WO 2005064698 A1 WO2005064698 A1 WO 2005064698A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
type
group
thermoelectric
Prior art date
Application number
PCT/JP2004/019194
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoji Funahashi
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005516598A priority Critical patent/JP4595123B2/en
Publication of WO2005064698A1 publication Critical patent/WO2005064698A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric generator including a catalytic combustion heat source and a thermoelectric generation module.
  • a battery is a storage type power source, not an energy conversion type power source, and further improvement in energy density poses a problem in terms of safety. Therefore, there is a high expectation for the development of an energy conversion type compact power supply that can be used for a long time without charging and can be used as needed as a power supply instead of a battery. I am waiting.
  • thermoelectric power generation is possible if a heat source is present, and the system is smaller and lighter because it does not require a turbine or electrolyte. It also requires less power, requires less noise, and requires less maintenance. This is a very good power generation method. For this reason, combining thermoelectric power generation modules with excellent performance and small and safe heat sources will enable continuous use of the power supply, greatly improving the convenience of electronic equipment.
  • thermoelectric conversion materials used in thermoelectric power generation modules have been used. Most of the forces being developed contain toxic elements such as Te and Se.
  • thermoelectric conversion materials made of various oxidants have been reported as thermoelectric conversion materials having high safety and high durability even in high-temperature air (Patent No. 3069701, Japanese Patent No. 3443641, Japanese Patent No. 3089301, Japanese Patent No. 3472814, Japanese Patent No. 3472813, Japanese Patent Application Laid-Open No. 2003-282964, etc.).
  • thermoelectric conversion materials As described above, new materials are being developed for thermoelectric conversion materials, but the efficiency is high! ⁇ ⁇ At present, development of thermoelectric power generation modules required to realize thermoelectric power generation and small power supply units that combine them with heat sources is delayed. Disclosure of the invention
  • the present invention has been made in view of the current state of the prior art as described above, and its main purpose is to provide a power supply device excellent in portability suitable as a power supply for portable equipment and the like,
  • An object of the present invention is to provide a novel thermoelectric generator capable of supplying power with stable performance for a long time. Means for solving the problem
  • thermoelectric power generation module with excellent performance using composite oxides as p-type and n-type thermoelectric conversion materials, and by using this module in combination with a catalytic combustion type heat source, The present inventors have found that a small, lightweight, and highly portable power supply device that can be used stably over time can be obtained, and the present invention has been completed.
  • thermoelectric generator That is, the present invention provides the following thermoelectric generator.
  • thermoelectric conversion elements electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material, and the unbonded one end of the P-type thermoelectric conversion material of the thermoelectric conversion element
  • thermoelectric power generation module in which a plurality of thermoelectric conversion elements are connected in series by a method of connecting to the unjoined end of the n-type thermoelectric conversion material of another thermoelectric conversion element
  • thermoelectric generation module A catalytic combustion heat source arranged to heat one surface of the thermoelectric generation module.
  • Thermoelectric generator provided.
  • Catalytic combustion heat source is generated in the catalytic combustion chamber filled with catalyst and in the catalytic combustion chamber 2.
  • thermoelectric generator according to the above item 2, wherein the catalytic combustion heat source further comprises a fuel container containing fuel to be supplied to the catalytic combustion chamber.
  • thermoelectric generator according to item 2, wherein the catalytic combustion heat source further includes a preheater.
  • thermoelectric generator according to item 3, wherein the catalytic combustion heat source further includes a preheater.
  • thermoelectric generation module 6.Power of p-type thermoelectric conversion material used in thermoelectric generation module
  • a 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, One or more elements selected from the group force of Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids are also selected, and
  • a 2 is Ti, V, Cr, Mn, Fe, One or more elements selected from the group consisting of Ni, Cu, Ag, Mo, W, Nb and Ta, 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 2.0 ⁇ c ⁇ 4.5; 0 ⁇ d ⁇ 2.0; 8 ⁇ e ⁇ 10) and a general formula: Bi Pb M 1 Co M 20 (where M 1 is
  • M 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta, and 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g ⁇ 0.4; 1.8 ⁇ h ⁇ 2.2; 1.6 ⁇ i ⁇ 2.2; 0 ⁇ j ⁇ 0.5; 8 ⁇ k ⁇ 10. ) Is at least one oxide selected from the group consisting of composite oxides represented by
  • thermoelectric conversion material has the general formula: Ln R 1 Ni R 2 O (where Ln is a lanthanoid
  • R 1 is a group consisting of Na, K, Sr, Ca and Bi.One or more elements are selected.
  • R 2 is Ti, V, The group force consisting of Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta is also one or more elements selected from the group consisting of 0.5 ⁇ m ⁇ 1.7; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3. ), And a general formula: (Ln R 3 ) Ni R 4 O (where Ln is a member selected from lanthanoids or st 2 uw
  • R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi
  • R 4 is Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Group power consisting of Ta
  • the thermoelectric generator according to item 1 wherein the thermoelectric generator is at least one selected oxide selected from the group consisting of the composite oxides represented by the formula (1).
  • thermoelectric generation module 7. Power of p-type thermoelectric conversion material used in thermoelectric generation module
  • a 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni
  • the group force consisting of Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids is also one or more elements selected from the group consisting of 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ e ⁇ 10) and a general formula: Bi Pb M 1 Co Of 2
  • M 1 is one or more elements selected from the group consisting of Sr, Ca, and Ba, and is 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g ⁇ 0.4; 1.8 ⁇ h ⁇ 2.2; 8 ⁇ k ⁇ 10) at least one selected oxidizing compound consisting of a composite oxide represented by)
  • the n-type thermoelectric conversion material has the general formula: La R 1 NiO (where R 1 is mnr from Na, K, Sr, Ca and Bi
  • R 6 is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Cu; 0.5 ⁇ x ⁇ 1.2; 0 ⁇ y ⁇ 0.5 ; 0.5 ⁇ p ⁇ 1.2; 0.01 ⁇ q ⁇ 0.5; 2.8 ⁇ r ⁇ 3.2.
  • Item 2 The thermoelectric generator according to Item 1, which is at least one kind of acid selected from the group consisting of composite oxides represented by the formula (1).
  • thermoelectric generator according to any one of the above items 1 to 17, wherein a cooling means is provided on a surface of the thermoelectric generation module opposite to a surface to be heated.
  • thermoelectric generator of the present invention uses a plurality of thermoelectric conversion elements each formed by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material, and uses the p-type thermoelectric conversion material of the thermoelectric conversion element.
  • a thermoelectric power generation module comprising a plurality of thermoelectric conversion elements connected in series by a method of electrically connecting one unbonded end of the thermoelectric conversion element to an unbonded end of an n-type thermoelectric conversion material of another thermoelectric conversion element; and And a catalytic combustion heat source arranged to heat one surface of the thermoelectric generation module.
  • thermoelectric generation module any heat source can be used without particular limitation as long as it can heat one surface of the thermoelectric generation module by thermal energy generated by catalytic combustion.
  • thermoelectric power generation module Usually, it is possible to use a catalytic combustion type heat source provided with a catalytic combustion section filled with a catalyst and a heat transfer section for transmitting thermal energy generated in the catalytic combustion section to the thermoelectric power generation module.
  • the specific structure of the catalytic combustion section is not particularly limited, and various types of known catalytic combustors can be used. Usually, a combustor having a structure in which a catalyst component is supported on various substrates can be used.
  • any component can be used without particular limitation as long as it has a catalytic activity for a catalytic combustion reaction, that is, an oxidation reaction of a fuel component described later.
  • one side of the thermoelectric power generation module can be heated to, for example, about 800 ° C. or more by the thermal energy generated by the catalytic combustion reaction.
  • precious metals such as Pt and Pd, acid oxides such as Coo and the like can be used as the catalyst component, but are not limited thereto.
  • Pt fine particles, Pd fine particles, a mixture thereof and the like are particularly preferable.
  • a substrate for supporting the catalyst component it is preferable to use a material having sufficient strength and excellent heat resistance.
  • ceramic materials having excellent heat resistance such as alumina and zirconia, and metals having better heat resistance having a coefficient of thermal expansion close to those of these heat-resistant ceramics, for example, Fe—Cr— such as SUS—510 stainless steel
  • a composite material or the like obtained by coating the surface of an A1-based ceramic with the above-described heat-resistant ceramic and sintering can be used as a base material.
  • the shape of the substrate is not particularly limited, but it is preferable that the fuel gas flow be good and the contact area between the fuel and the catalyst component be large.
  • a substrate having a honeycomb structure can be used.
  • the fuel is not particularly limited as long as it is a substance capable of catalytic combustion, but is preferably a substance containing no toxic substances before and after combustion from the viewpoint of safety.
  • a hydrocarbon gas such as methane, ethane, propane, and butane, and an organic liquid such as methanol, ethanol, and ethyl ether can be used.
  • the fuel supply method is not particularly limited, and a fuel container containing a fuel may be connected to the fuel supply port of the catalytic combustion unit, and the fuel container and the catalytic combustion heat source may be integrated.
  • a fuel container or the like provided separately from the catalytic combustion heat source may be used as a fuel supply source, and the fuel supply source and the fuel supply port of the catalytic combustion unit may be connected by a pipe such as a pipe or a hose.
  • the heat source device can be easily moved and used as a power source for a portable device that can be used even in a place where no fuel supply source exists. Can be used effectively.
  • the fuel contained in the fuel container may be in any state of gas, liquid and solid as long as safety against rupture or the like can be maintained.
  • a liquid or solid fuel when used, for example, it may be volatilized in a fuel container and brought into a gaseous state in advance.
  • gas In order to supply gas to the catalytic combustion section, it is preferable to keep the inside of the fuel container at a higher pressure than the combustion section.
  • a fuel supply port is usually provided in a fuel container.
  • a blower using a fan or the like may be mounted to promote the supply of the fuel gas to the catalytic combustion section. In this case, as the power of the fan, for example, electric energy generated by thermoelectric generation can be used.
  • the fuel gas is usually mixed with an oxygen-containing gas such as air or the like, and supplied to the catalytic combustion section as a fuel concentration suitable for catalytic combustion.
  • the catalytic combustion heat source is usually provided with a supply port for supplying an oxygen-containing gas such as air.
  • a mixing chamber for mixing the fuel gas and the oxygen-containing gas can be provided. Since the fuel concentration varies depending on the type of fuel, the type of catalyst substance, etc., it cannot be specified unconditionally. However, when used in a mixture with air, the concentration of the fuel gas is usually 0.5 to 10% by volume percentage. Should be within the range.
  • the heat conduction section is a section that transmits heat energy generated in the catalytic combustion section to the thermoelectric generation module.
  • the heat conduction section may be provided in accordance with the shape of the catalytic combustion section so that heat energy can be efficiently transmitted to the thermoelectric generation module.
  • the heat conduction part As a plate-like shape, it can be installed so that the combustion gas that has reached a high temperature by catalytic combustion can be directly blown to the heat conducting part.
  • a structure may be adopted in which a heat conducting portion is disposed in parallel with the passage of the combustion gas, and heat is transferred by contact with the passing combustion gas.
  • the heat conducting portion can be installed as a cylinder such as a square or a circle so as to surround the passage of the combustion gas.
  • the material of the heat conducting portion is preferably chemically stable even in high-temperature air, and is not damaged by heating and cooling.
  • a high-temperature operating type oxidizing material as the thermoelectric conversion material, it is usually sufficient to heat the high-temperature part of the thermoelectric power generation module to about 400 to 800 ° C.
  • It is preferably formed of a material that is stable even at about ° C, for example, ceramics such as alumina, and metals such as stainless steel, silver, and platinum having high high-temperature durability.
  • the fuel gas or the catalytic combustion section is heated to a temperature required for the catalytic combustion reaction.
  • the heating temperature varies depending on the type of the fuel, the type of the catalyst substance, and the like, but generally, the heating may be performed up to about 300 ° C.
  • a preheater for heating the fuel gas or the catalytic combustion section to the temperature required for catalytic combustion is usually installed in the catalytic combustion heat source.
  • the preheater for example, a burner that burns fuel gas, a heater that stores excess power generated by thermoelectric generation in a capacitor or a battery, and generates heat by the power when restarting, etc. can be used. .
  • the preheater with the catalytic combustion type heat source.
  • the preheating of the fuel gas is performed.
  • the vessel may be installed outside the catalytic combustion heat source.
  • thermoelectric generation module for example, a plurality of thermoelectric conversion elements formed by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are used. Structure in which a plurality of thermoelectric conversion elements are connected in series by electrically connecting one end of the non-bonded type thermoelectric conversion material to the other end of the n-type thermoelectric conversion material of another thermoelectric conversion element Can be used.
  • the specific shape is not particularly limited, but may be determined by the above-described catalytic combustion heat source. For efficient heating, it is preferable that the area of the substrate surface to which the thermoelectric conversion material is bonded is large. Normally, a module having a plate-like structure as a whole is preferable.
  • the type of the p-type thermoelectric conversion material and the type of the n-type thermoelectric conversion material are not particularly limited. Each of the materials exhibits a positive Seebeck coefficient when a temperature difference is generated between both ends. And a material having a negative Seebeck coefficient may be used. In the present invention, it is particularly preferable to use a thermoelectric conversion material which can be used stably in high-temperature air and also has an oxidizing power.
  • thermoelectric conversion material a composite oxide represented by Ca Co O, Ca Co
  • Co-based layered oxides such as complex oxides in which a part of 222 or Z is substituted with other elements can be used.
  • thermoelectric conversion material a composite oxidizing material represented by LnNiO (Ln is a lanthanoid) is used.
  • a composite oxide having a layered perovskite structure such as a composite oxide in which 24 and / or Z or Ni is partially substituted with another element, can be used.
  • thermoelectric conversion materials will be described more specifically.
  • the ⁇ -type thermoelectric conversion material has the general formula: Ca A 1 Co A 2 O (where A 1 is Na, K, Li, abcde
  • a 2 Is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta; 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 2.0 ⁇ c ⁇ 4.5; 0 ⁇ d ⁇ 2.0; 8 ⁇ e ⁇ 10.
  • M 1 is Na, K, Li, Ti, V, Cr, fghijk
  • the group force consisting of Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta is also one or more elements selected, and 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g ⁇ 0.4; 1.8 ⁇ h ⁇ 2.2; 1.6 ⁇ i ⁇ 2.2; 0 ⁇ j ⁇ 0.5; 8 ⁇ k ⁇ 10.
  • the at least one selected selected from the group consisting of the composite iris can be used.
  • examples of the lanthanoid element include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the like.
  • the composite oxide represented by such a general formula is Ca CoO composed of Ca, Co and 0.
  • Co in CoO layer is replaced by A 2, part s the or Pb and Bi in the latter
  • These composite oxides have a high Seebeck coefficient as a p-type thermoelectric conversion material, and also have good electric conductivity. For example, it has a Seebeck coefficient of about 100 VZK or more at a temperature of 100 K or more, and an electric resistivity of about 50 m ⁇ cm or less, preferably about 30 m ⁇ cm or less. We can get something that shows a tendency to decrease.
  • an example of a preferred oxidized product is a compound represented by a general formula: Ca A 1 Co O ab 4 e
  • a 1 is, Na, K, Li, Ti , V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi
  • a complex oxide represented by the formula: Bi Pb M 1 Co fgh 2 which is one or more of the following elements: 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ e ⁇ 10.
  • M 1 is a group consisting of Sr, Ca and Ba.
  • M 1 is a group consisting of Sr, Ca and Ba.
  • These oxides have, for example, a Seebeck coefficient of about 100 ⁇ or more at a temperature of 100 K or more and an electric resistivity of about 10 m ⁇ cm or less. The Seebeck coefficient increases with increasing temperature, and the electric resistivity decreases. May be shown.
  • the composite oxide represented by each of the above general formulas may be either a single crystal or a polycrystalline sintered body.
  • the method for producing these complex oxidized products is not particularly limited as long as the method can produce a single crystal or a polycrystal having the above-mentioned composition.
  • a single crystal production method such as a flux method, a zone melt method, a pulling method, a glass anneal method via a glass precursor, a solid-state reaction method, a powder production method such as a sol-gel method, a sputtering method, a laser method.
  • a composite oxide having a crystal structure having the above composition may be produced by a known method such as a thin film production method such as a brazing method and a chemical 'vapor-deposition' method.
  • the above-mentioned composite oxidized product can be produced, for example, by mixing and firing the raw materials so as to have the same element component ratio as the target composite oxide. .
  • the firing temperature and the firing time are not particularly limited as long as the desired composite oxide is formed. For example, in the temperature range of about 1073 to 1373K (absolute temperature), — Bake for about 40 hours.
  • a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form the target composite oxide.
  • a carbonate is used as a raw material, it may be calcined at about 1073 to 1173 K (absolute temperature) for about 10 hours and then calcined under the above conditions.
  • the firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted.
  • the firing atmosphere may be usually an oxidizing atmosphere such as an oxygen stream or air, but when the raw material contains a sufficient amount of oxygen, the firing may be performed in an inert atmosphere, for example. It is possible.
  • the amount of oxygen in the resulting composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, etc., and the higher the oxygen partial pressure, the higher the oxygen ratio in the above general formula can be. .
  • a raw material is melted, rapidly cooled, and solidified.
  • the melting conditions at this time may be any conditions that can uniformly melt the raw material.However, in order to prevent contamination of the melting vessel power and evaporation of the raw material components, for example, when using an aluminum crucible, It is preferable to melt by heating to about 1473-1673K (absolute temperature).
  • the heating time is not particularly limited, and the heating may be performed until the raw material is uniformly melted. Usually, the heating time may be about 30 minutes to 1 hour.
  • heating The means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted.
  • the atmosphere at the time of melting may be an oxygen-containing atmosphere such as in air or an oxygen gas stream of about 300 ml Zl or less.If the raw material contains a sufficient amount of oxygen, the atmosphere is melted in an inert atmosphere. Is also good.
  • the quenching condition is not particularly limited, but the quenching may be performed under such a condition that at least the surface portion of the formed solid becomes a glassy amorphous layer.
  • the melt may be poured onto a metal plate and rapidly cooled by means of upward compression.
  • the cooling rate should be about 500K (absolute temperature) Z seconds or more, and preferably 3 ⁇ seconds or more.
  • the heat treatment temperature may be about 1153 to 1203 K (absolute temperature), and heating may be performed in an oxygen-containing atmosphere such as air or an oxygen stream. When heating in an oxygen stream, for example, heating may be performed in an oxygen stream having a flow rate of about 300 mlZ or less.
  • the heat treatment time is not particularly limited, and may be determined according to the degree of growth of the target single crystal. Force Normally, the heating time may be about 60 to 1000 hours.
  • the mixing ratio of the raw materials can be determined according to the composition of the target composite oxide. Specifically, when a fibrous composite oxide single crystal is formed from the amorphous layer portion on the surface of the solidified product, the composition of the melt in the amorphous portion is defined as a liquid phase composition, and Since an oxidized single crystal having a composition of a solid phase in phase equilibrium grows, the composition of the starting material can be determined by the relationship between the composition of the melt phase and the composition of the solid phase (single crystal) which are in equilibrium with each other. it can.
  • the size of the composite oxide single crystal obtained by such a method is determined by a force that can vary depending on the type of the raw material, composition ratio, heat treatment conditions, and the like. For example, a length of about 10 to 1000 m and a width of 20 to 200 ⁇ m It has a fibrous shape of about m and a thickness of about 11 ⁇ m.
  • the oxygen content of the obtained substance can be controlled by the oxygen flow rate during firing, and the higher the flow rate, the higher the content Although the amount of oxygen increases, the change in the amount of oxygen contained Does not significantly affect the electrical characteristics of the.
  • the raw material is not particularly limited as long as it can form an oxide by firing, and a metal alone, an oxide, various conjugates (such as carbonates) and the like can be used.
  • Ca sources include calcium oxide (CaO), calcium chloride (CaCl 2), calcium carbonate (CaCO 3), and calcium nitrate.
  • Co O Co O
  • Co O cobalt chloride
  • CoCO cobalt carbonate
  • C cobalt nitrate
  • the alkoxide conjugate of No. 3 232 732 can be used.
  • elemental elements, oxides, chlorides, carbonates, nitrates, hydroxides, alkoxide compounds and the like can be used.
  • a compound containing two or more kinds of the constituent elements of the above-mentioned composite oxide is used.
  • thermoelectric conversion material As the n-type thermoelectric conversion material, a general formula: Ln R 1 Ni R 2 O (where Ln is a lanthanoid force mnpqr
  • R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi
  • R 2 is Ti, V , Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta are one or more elements selected from the group consisting of 0.5 ⁇ m ⁇ 1.7; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.
  • Ln R 3 Ni R 4 O (where Ln is the lanthanoid force selected st 2 uw
  • R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi
  • R 4 is Ti, V, Cr, Group power consisting of Mn, Fe, Co, Cu, Mo, W, Nb and Ta
  • At least one kind of oxide selected from the group consisting of the complex oxides represented by the formula (1) can be used.
  • the m value is 0.5 ⁇ m ⁇ 1.7, and preferably 0.5 ⁇ m ⁇ 1.2.
  • examples of the lanthanoid element include La-Ce-Pr, Nd, Sm, Eu-Gd, Tb-Dy-Ho, Er, Tm, and Lu.
  • the composite oxide represented by each of the above general formulas has a negative Seebeck coefficient. When a temperature difference is generated between both ends of a material made of the oxide, a potential generated by a thermoelectromotive force is generated. Is higher on the high temperature side than on the low temperature side, indicating the properties as an n-type thermoelectric conversion material.
  • the composite oxide has a negative Seebeck coefficient at a temperature of 373 K or higher, and has a Seebeck coefficient of about 11 to 20 V / K at a temperature of 373 K or higher.
  • the above-described composite oxide has a very low electric resistivity, and for example, has an electric resistivity of about 20 m ⁇ cm or less at a temperature of 373 K or more. This comes out.
  • the former has a crystal structure of a perovskite type, and the latter has a crystal structure generally called a layered perovskite.
  • R 1 or R 3 Part of substitution by R 1 or R 3 either composite Sani ⁇ also Ln
  • Ni is substituted with R 2 or R 4 .
  • thermoelectric conversion materials include:
  • st 2 w, K, Sr, Ca and Bi forces are also one or more elements selected. 0.5 ⁇ s ⁇ 1.2; 0 ⁇ t ⁇ 0.5; 3.6 ⁇ w ⁇ 4.4.
  • the composite oxide represented by the general formula: La R 1 NiO and the composite oxide represented by the general formula: (La R 3 ) N mnrst 2 iO are, for example, at a temperature of 100 K or more. -1-1-30mV / K see w
  • the material has a Beck coefficient and exhibits low electrical resistivity. Further, for example, at a temperature of 100 K or more, the material can have an electric resistivity of about 10 m ⁇ cm or less.
  • the composite oxide represented by the general formula: La R 5 Ni R 6 O can be heated at a temperature of 100 ° C. or more.
  • P It has a negative Seebeck coefficient and exhibits a very low electrical resistivity with low electrical conductivity, and has an electrical resistivity of 10 m ⁇ cm or less at a temperature of 100 ° C or more.
  • the polycrystalline sintered body of each of the above composite oxides can be manufactured by mixing and firing the raw materials so as to have the same metal component ratio as that of the target composite oxide. it can. That is, Ln in the above general formula, By mixing and firing the raw materials so that the metal component ratio of R 4 and Ni is attained, a polycrystalline sintered body of the target composite oxide can be obtained.
  • the raw material is not particularly limited as long as it can form an oxidized product by firing, and may be a simple metal, an oxide, various oxidized products (such as a carbonate), or the like.
  • La source lanthanum oxylan (La O), lanthanum carbonate (La (CO)), lanthanum nitrate (La (NO)), salt
  • Ni sources include nickel oxide (NiO), nickel nitrate (N
  • Xinickel Ni (OC H)
  • Xinickel Ni (OC H)
  • OC H Xinickel
  • Compounds, chlorides, carbonates, nitrates, hydroxides, alkoxide compounds and the like can be used. Further, a compound containing two or more kinds of constituent elements of the composite acid oxidant of the present invention may be used.
  • the calcination temperature and the calcination time are not particularly limited as long as they are conditions under which the target composite oxide is formed. For example, in a temperature range of about 1123 to 1273 K (absolute temperature), It may be fired for about 40 hours.
  • a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form a target composite oxide.
  • a carbonate when used as a raw material, it may be calcined at about 873 to 1073 K (absolute temperature) for about 10 hours and then calcined under the above conditions.
  • the firing means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted.
  • the firing atmosphere may be usually an oxygen atmosphere, an oxidizing atmosphere such as in air, When the raw material contains a sufficient amount of oxygen, for example, calcination can be performed in an inert atmosphere.
  • the amount of oxygen in the resulting composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, and the like.
  • thermoelectric conversion material for example, it can be manufactured as a single crystal by a method such as the flatus method.
  • thermoelectric conversion element used in the present invention is one in which one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are electrically connected.
  • the sum of the absolute values of the thermoelectromotive forces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material is, for example, at least about 60 ⁇ VZK at all temperatures in the range of 293 to 1073K (absolute temperature), preferably 100 ⁇ VZK. It is preferable to use a combination of thermoelectric conversion materials so as to be about ⁇ VZK or more. Further, both materials preferably have an electric resistivity of about 50 m ⁇ cm or less, preferably about 8 m ⁇ cm or less at all temperatures in the range of 293 to 1073 K (absolute temperature).
  • the shape, size, etc. of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material to be used are not particularly limited, but may vary depending on the size, shape, etc. of the target thermoelectric power generation module. First, it may be determined appropriately so as to exhibit necessary thermoelectric performance. For example, a rectangular parallelepiped material with a cross section of about 10 cm on a side and a length of about 100 m to 20 cm, or a cylindrical material with a cross section of —10 cm and a length of about 100 m to 20 cm Can be used as
  • the specific method for electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material is not particularly limited, but may be 293-1073K (absolute) when joined. It is preferable to use a method that can maintain the characteristics in which the thermoelectromotive force of the element is 60 VZK or more and the electric resistance is 200 m ⁇ or less in the entire range of (temperature).
  • connection method for example, as a method that can withstand use at high temperatures, one end of the P-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are bonded to a conductive material using a bonding agent.
  • Method one end of p-type thermoelectric conversion material and one end of n-type thermoelectric conversion material directly or conductive Examples thereof include a method of pressing or sintering through a material, a method of electrically contacting a p-type thermoelectric conversion material and an n-type thermoelectric conversion material using a conductive material, and the like.
  • these methods will be described more specifically.
  • connection The electric resistance generated by the connection depends on the connection method, the area of the joint, the type and size of the conductive material to be used, etc., but generally, the electric resistance of the joint occupying the resistance of the entire thermoelectric conversion element. It is preferable to set the connection conditions so that the resistance ratio is about 50% or less.It is more preferable to set it so that it is about 10% or less.It is more preferable to set it so that it is about 5% or less. More preferred.
  • FIG. 1 schematically shows an example of a heat conversion element obtained by bonding one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a conductive material using a bonding agent.
  • the (a-1) type device is obtained by bonding one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a substrate using a bonding agent.
  • a bonding agent the ability to use metal paste, solder, etc.
  • a material that is chemically stable without melting even at a high temperature of about 1073K and can maintain low resistance such as gold, silver, platinum, etc. It is preferable to use a noble metal base.
  • the bonding agent may be solidified while applying pressure in order to bring the substrate and the thermoelectric conversion material into close contact.
  • the substrate it is preferable to use a material which is not oxidized even in air at a high temperature of about 1073K.
  • a substrate having an oxidized ceramic such as alumina may be used.
  • the length, width, thickness, etc. of the substrate should be set appropriately according to the size of the module, electrical resistance, etc.
  • the (a-2) type element shown in Fig. 1 uses a conductive ceramic substrate as a substrate.
  • a bonding agent is applied only to an adhesive portion between the substrate and the thermoelectric conversion material.
  • a conductive bonding agent is used between the bonded part of the p-type thermoelectric conversion material and the bonded part of the n-type thermoelectric conversion material as in (a-1) type. It is necessary to electrically connect the p-type thermoelectric conversion material and the n-type thermoelectric conversion material by a method of connection, a method of providing a metal coating on insulating ceramics such as the type (a-3).
  • the conductive ceramic used in the (a-2) type element it is preferable to use a material that is not oxidized even in air at a high temperature of about 1073K. Further, the length, width, thickness, and the like of the substrate may be appropriately set according to the size of the module, electric resistance, and the like.
  • the metal coating used in the (a-3) type element may be any metal coating that is not oxidized in high-temperature air and has low electric resistance. For example, silver formed by a vapor deposition method or the like may be used. Precious metal coatings such as gold and platinum can be used.
  • the (a-4) type element in FIG. 1 is one in which one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are connected by a conductive wire.
  • the same bonding agent as that of the (a-1) type element can be used for connecting the conductive wires.
  • the conductive wire it is preferable to use a material which is not oxidized even in the air at a high temperature of about 1073K.
  • a gold, silver, platinum wire or the like can be used.
  • the length and shape of the conductor may be appropriately selected according to the size of the module, electric resistance, and the like.
  • FIG. 2 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrical connection by sintering or crimping.
  • the (s-1) type element in Fig. 2 is a thermoelectric conversion element in which an end of a p-type thermoelectric conversion material and an end of an n-type thermoelectric conversion material are directly sintered and connected.
  • a cut is made in the sintered surface using a diamond cutter or the like, and a part of both materials is cut. Can be obtained by separating
  • the length of the cut is not particularly limited, and may be appropriately determined based on necessary electric resistance, voltage, mechanical strength, and the like.
  • the larger the area the lower the electrical resistance of the entire device.
  • the length of the separated part of the thermoelectric conversion material is short, the temperature difference between the high temperature area and the low temperature area As the voltage becomes smaller, the generated voltage S becomes smaller, so it is necessary to decide appropriately taking these points into consideration.
  • the (s-2) type element in FIG. 2 is used to prevent reaction between thermoelectric conversion materials and maintain high mechanical strength when forming the element by sintering or pressure bonding.
  • This is a device obtained by sintering or crimping with a conductive material such as a metal sheet, a metal net, a binder, conductive ceramics, etc. arranged on the device.
  • a conductive material such as a metal sheet, a metal net, a binder, conductive ceramics, etc.
  • the metal sheet, the metal net or the like any material can be used without particular limitation as long as it can prevent a reaction between the materials and has a low resistance.
  • the thickness is preferably about 100 m.
  • the binder for example, a noble metal paste or the like used in the bonding method using the binder can be used.
  • the conductive ceramics include, but are not particularly limited to, plate-shaped conductive ceramics having an appropriate thickness. Can be used.
  • the (s-3) type element in FIG. 2 uses conductive ceramics as a substrate, and is joined to one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material by sintering.
  • the (s4) type element uses the same metal sheet or metal net as the (s2) type element, through which one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are electrically conductive. It is bonded to a conductive ceramic substrate by sintering.
  • the (s-5) type element is composed of two oxide plates having the same shape and area as the cross section of each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, such as a metal sheet and a metal net.
  • the oxidizing plate is not particularly limited as long as it can be bonded to the thermoelectric conversion material to be bonded by sintering, and does not deteriorate power generation characteristics even when used at a high temperature for a long time. Can be used.
  • the composition is more preferably the same as the thermoelectric conversion material to be joined.
  • the thickness of the oxide plate is not particularly limited, it is usually about 11 to 13 mm.
  • the adhesion between materials can be further improved by firing under pressure by a method such as hot press sintering.
  • FIG. 3 is a drawing schematically showing an example of a thermoelectric conversion element obtained by bringing a p-type thermoelectric conversion material and an n-type thermoelectric conversion material into electrical contact using a conductive material.
  • the (c1) -type element in Fig. 3 is formed by making a hole in a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and penetrating a conductive material into the hole to form a P-type thermoelectric conversion material and an n-type thermoelectric conversion material. Is a thermoelectric conversion element electrically connected.
  • the conductive material it is preferable to use a material that is chemically stable and does not melt even at a high temperature of about 1073K and has low resistance.
  • conductive ceramics in the form of plates and rods are coated with gold, silver, or the like by a vapor deposition method to impart conductivity.
  • a plate-like or rod-like material can be used.
  • the (c-2) -type thermoelectric conversion element is configured such that various conductive materials such as a conductive wire are fixed to an end of a p-type thermoelectric conversion material and an end of an n-type thermoelectric conversion material with a clip or the like, and electrically connected. These are connected thermoelectric conversion elements.
  • the material of the clip is, for example, It is preferable to use metals such as gold, and insulating ceramics such as alumina, which are preferable to use a suitable material.
  • the conductive material any material can be used as long as it can electrically connect the p-type thermoelectric conversion material and the n-type thermoelectric conversion material with low resistance.
  • various metals and conductive ceramics can be used.
  • the length, width, thickness, etc. of the conductor material should be determined appropriately according to the module size, electrical resistance, etc.
  • the mechanism for fixing the conductor material is not particularly limited.
  • the conductor material may be fixed by sandwiching the conductor material with a clip of a panel type, a screw type, or the like.
  • the (c-3) -type thermoelectric conversion element is a thermoelectric conversion element in which the above-described various conductive materials are screwed and electrically connected to the end of the p-type thermoelectric conversion material and the end of the n-type thermoelectric conversion material. Element.
  • the conductor material the same materials as those used in the above (c-1) type element can be used.
  • thermoelectric generation module uses a plurality of the thermoelectric conversion elements described above, and connects the unbonded end of the P-type thermoelectric conversion material of the thermoelectric conversion element to the unbonded end of the n-type thermoelectric conversion material of another thermoelectric conversion element.
  • a plurality of thermoelectric conversion elements are connected in series by an electrical connection method.
  • thermoelectric conversion element Normally, an unbonded end of the thermoelectric conversion element is adhered to the substrate using a bonding agent. The end of the P-type thermoelectric conversion material and the n-type thermoelectric conversion material of another thermoelectric conversion element are bonded together. And on the board! You have to connect.
  • FIG. 4 shows, as an example, a schematic diagram of a thermoelectric power generation module having a structure in which a plurality of (a-1) type elements are connected on a substrate using a bonding agent.
  • thermoelectric power generation module in Fig. 4 uses an (a-1) type element as a thermoelectric conversion element such that the unjoined ends of the p-type and n-type thermoelectric conversion materials are in contact with the substrate.
  • the thermoelectric conversion element is obtained by bonding the thermoelectric conversion element on the substrate so that the P-type thermoelectric conversion material and the n-type thermoelectric conversion material are connected in series using a bonding agent. is there.
  • the substrate is mainly used for the purpose of improving thermal uniformity and mechanical strength, maintaining electrical insulation, and the like.
  • the material of the substrate is not particularly limited, but it is chemically stable at a high temperature of about 675 K or higher without causing melting, breakage, etc., and does not react with thermoelectric conversion materials, bonding agents, etc.
  • the temperature of the high-temperature portion of the device can be made close to the temperature of the high-temperature heat source, and the generated voltage value can be increased.
  • the thermoelectric conversion material used in the present invention is an oxide, it is preferable to use an oxide ceramic such as alumina as the substrate material in consideration of the coefficient of thermal expansion and the like.
  • thermoelectric conversion element When the thermoelectric conversion element is bonded to the substrate, it is preferable to use a bonding agent that can be connected with low resistance.
  • a bonding agent that can be connected with low resistance.
  • noble metal pastes such as silver, gold, and platinum, solders, platinum wires, and the like can be suitably used.
  • FIG. 5 is a schematic cross-sectional view of an example of a thermoelectric generation module using a (s-2) type element obtained by a contact method.
  • the thermoelectric conversion element should be bonded using a bonding agent so that the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are connected in series, similarly to the module in Fig. 4. .
  • an insulating ceramic substrate such as alumina may be bonded to the thermoelectric conversion element using a bonding agent.
  • a bonding agent used for connecting the substrate on the low-temperature side it is preferable to use a bonding agent having high thermal conductivity in order to release the heat transmitted through the high-temperature side force module to the low-temperature side force into the atmosphere.
  • a bonding agent having good electrical insulation since it is necessary to maintain insulation between the elements, when applying a bonding agent to the entire substrate, it is necessary to use a bonding agent having good electrical insulation.
  • a bonding agent for example, a silicone bonding agent or the like can be used.
  • thermoelectric conversion element when used in a non-contact state with a conductive substance, for example, when the low-temperature part side is used in contact with the atmosphere, it is not necessary to bond insulating ceramics to the low-temperature part side. It may be used with the thermoelectric conversion material exposed.
  • thermoelectric conversion elements used in one module is not limited, and can be arbitrarily selected depending on required power.
  • FIG. 4 shows a schematic structure of a module using 84 thermoelectric conversion elements. The output of the module is approximately equal to the output of the thermoelectric conversion element multiplied by the number of thermoelectric conversion elements used, and is a value.
  • the thermoelectric power generation module can generate a voltage by arranging one end of the module at the high temperature section and the other end of the module at the low temperature section.
  • the substrate surface may be arranged in the high-temperature section, and the other end may be arranged in the low-temperature section.
  • the thermoelectric power generation module The module is not limited to such an installation method.It is only necessary to arrange one end on the high-temperature side and the other end on the low-temperature side.For example, for the modules in Figs. 4 and 5, It is permissible to install with the side opposite to the low temperature section.
  • thermoelectric generator of the present invention includes a thermoelectric generator module and a catalytic combustion heat source, and the catalytic combustion heat source is arranged so as to heat one surface of the thermoelectric generator module.
  • the heat conduction part of the catalytic combustion type heat source should be installed so as to be in close contact with one surface of the thermoelectric power generation module.
  • thermoelectric generator The overall structure of the thermoelectric generator is not particularly limited! For example, as shown in an embodiment to be described later, a structure is adopted in which the combustion gas burned in the catalytic combustion unit is directly blown onto the heat conduction unit to heat the heat conduction unit, and this heat heats one surface of the thermoelectric power generation module. be able to. Further, the heat conducting portion may be provided in a structure surrounding the catalytic combustion portion, and the heat conducting portion may be heated by contact with the combustion gas passing through the catalytic combustion portion.
  • the heating temperature of the heat conduction section can be controlled by adjusting the fuel supply amount. For this reason, a fuel supply valve for controlling the flow rate of the supplied fuel is usually installed in the catalytic combustion section.
  • the surface opposite to the surface heated by the catalytic combustion heat source that is, the low-temperature portion of the thermoelectric power generation module is cooled to increase the temperature difference between both ends of the thermoelectric conversion material.
  • the cooling means is not particularly limited, and various cooling means such as water cooling, air cooling, and cooling using an endothermic reaction can be applied. Especially, considering the light weight, air cooling is desirable. In the case of air cooling, for example, a fin, a heat bath (heat sink), or the like may be brought into close contact with a low-temperature surface of the thermoelectric generation module as a cooler. In this case, the module may be cooled by natural heat radiation.
  • the power generation efficiency can be further improved.
  • the driving force of the fan for example, exhaust gas generated by combustion can be used. If the exhaust gas is sufficiently cooled down to about room temperature, it may be blown directly to the fins.
  • thermoelectric generator of the present invention will be specifically described with reference to the drawings.
  • FIG. 6 is a drawing schematically showing an example of the thermoelectric generator of the present invention.
  • a catalytic combustor is installed so as to be in close contact with one surface of the thermoelectric power generation module via a heating plate as a heat conducting part.
  • the fuel tank is connected to the catalytic combustor via a preheating burner.
  • a fuel supply valve and an air intake valve are provided at a connection portion between the fuel tank and the preheating burner, and a fuel replenishing port for replenishing fuel is provided in the fuel tank.
  • thermoelectric generator In the thermoelectric generator, a heat insulating material is arranged around the catalytic combustor to prevent a high temperature due to reaction heat. This facilitates use as a portable device.
  • a fin is provided as a cooler on the low-temperature side surface of the thermoelectric generation module, and a fan is further provided so that the fin can be forcibly cooled.
  • the air introduced by opening the air intake valve is also sent to the preheating burner together with the fuel.
  • the preheat burner is used to heat the catalytic combustor. After the catalytic combustor is heated to a temperature required for catalytic combustion, the supply of fuel to the preheat burner is stopped.
  • the gas mixture of fuel and air is sent to the catalytic combustor, where catalytic combustion of the gas mixture occurs.
  • the burned gas is blown to a heating plate, which is a heat conducting portion, and the thermoelectric power module in contact with the heating plate is heated by the heat energy of the combustion gas.
  • Combustion gas is discharged as exhaust gas from a combustion gas discharge port via a pipe connected to the catalytic combustor.
  • the power generation amount can be increased by increasing the number of modules or increasing the heating temperature.
  • the thermoelectric power module with the above-mentioned structure can generate power of about 100 mW or more per unit volume when the high temperature part is heated to about 300 ° C or more.
  • a small and lightweight device with a size of about 3cm X 3cm X 5cm-30cm X 30cm X 20cm and a weight of about lOOg-about 5kg, can generate a power of about 0.1-50W. Obtainable.
  • thermoelectric generator of the present invention is a combination of a thermoelectric generator module having excellent thermoelectric conversion performance and a catalytic combustion heat source.
  • thermoelectric generator having such a structure can be used as a portable power source by integrating a fuel container, and electric energy can be easily obtained at places where various devices are used. In addition, even small and lightweight devices can obtain power up to about 50W.
  • thermoelectric generator of the present invention can be effectively used as a power source suitable for carrying, for example, a power source for portable devices such as a mobile phone and a notebook computer.
  • FIG. 1 is a drawing schematically showing an example of a heat conversion element obtained by bonding a thermoelectric conversion material to a conductive material using a bonding agent.
  • FIG. 2 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrically connecting by sintering or crimping.
  • FIG. 3 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrically contacting a thermoelectric conversion material using a conductive material.
  • FIG. 4 is a schematic diagram of a thermoelectric power generation module having a structure in which a plurality of (a-1) type devices are connected on a substrate.
  • FIG. 5 is a schematic cross-sectional view of an example of a thermoelectric power generation module using a (s-2) type element.
  • FIG. 6 is a drawing schematically showing an example of the thermoelectric generator of the present invention.
  • FIG. 7 is a graph showing the power generation characteristics of the power generator obtained in Example 1.
  • FIG. 8 is a graph showing the relationship between the open-circuit voltage of the thermoelectric conversion elements of Reference Examples 1, 63, and 75 and the temperature of the high-temperature part.
  • FIG. 9 is a graph showing the relationship between the electric resistance of the thermoelectric conversion element of Reference Example 1 and Reference Example 75 and the temperature of the high-temperature part.
  • thermoelectric generator of the present invention will be described more specifically.
  • thermoelectric generator having the structure shown in FIG. 6 was manufactured under the following conditions.
  • thermoelectric conversion material represented by a composition formula: Ca Bi Co O was produced by the following method.
  • This powder was formed into a disc having a diameter of about 20mm and a thickness of about 2 to 10mm under pressure, a gold sheet was spread on an alumina boat, and the formed body was placed on the gold sheet. It was baked for 20 hours in an air stream (300 ml / min). Next, the obtained sintered body was ground using an agate mortar and a pestle.
  • the obtained powder was pressed into a 30 mm square, 5 mm thick square plate, and subjected to hot press sintering in air at 1123 K (850 ° C) under air under uniaxial pressure of lOMPa for 20 hours.
  • the obtained hot-press sintered body was cut into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain a p-type thermoelectric conversion material.
  • thermoelectric conversion material represented by a composition formula: La Bi NiO was produced by the following method.
  • the precipitate was heated and baked in air at 1073K (800 ° C) for 10 hours to thermally decompose nitrate.
  • the fired product was mixed with an agate mortar and pestle.
  • the obtained powder was press-formed into a disk having a diameter of 2 cm and a thickness of about 2 to 10 mm, and then a platinum sheet was laid on an alumina boat, and the formed body was placed thereon, and the powder was placed at 1273 K (1000 ° C ), And calcined in an oxygen stream (300 ml / min) for 20 hours.
  • the obtained sintered body was ground using an agate mortar and pestle. This powder was pressed again to the above-mentioned size and baked under the same conditions. The body was ground using an agate mortar and pestle.
  • the obtained powder was pressed into a 30 mm square, 5 mm thick square plate, and subjected to hot press sintering in air at 1173K (900 ° C) under uniaxial pressing of lOMPa for 20 hours.
  • the obtained hot-press sintered body was cut into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain an n-type thermoelectric conversion material.
  • thermoelectric conversion material after firing at 1153K (880 ° C) for 20 hours, the powder obtained by grinding is further ball-milled using an agate pot and balls. For 10 minutes. Observation of the obtained oxide powder with a scanning electron microscope revealed that more than 80% of the particles were in the range of 110 ⁇ m in particle diameter.
  • This oxide powder was added to a commercially available silver paste (trade name: H-4215, manufactured by Shoei Chemical Co., Ltd.) to obtain a conductive paste for bonding a P-type thermoelectric conversion material.
  • the silver paste used was 85% by weight of silver powder, 1% by weight of bismuth borosilicate glass, 5% by weight of ethyl cellulose, 4% by weight of terbinol, and 5% by weight of butyl carbitol acetate. Was 6.25 parts by weight with respect to 100 parts by weight of the silver powder in the silver paste.
  • the powder obtained by firing twice at 1273K (1000 ° C) for 20 hours and then pulverizing twice was further ball-milled for 10 minutes using an agate pot and balls. Crushed. Observation of the obtained powdery powder with a scanning electron microscope revealed that 80% or more of the particles had a particle size of 110 ⁇ m.
  • This oxide powder was added to a commercially available silver paste to obtain a conductive paste for connecting an n-type thermoelectric conversion material.
  • the type of the silver paste used and the amount of the oxidized powder added are the same as those of the conductive paste for connecting a p-type thermoelectric conversion material.
  • thermoelectric conversion material and n-type thermoelectric conversion material were connected to a conductive substrate, and a pair of p-type thermoelectric conversion materials and an n-type thermoelectric conversion material were manufactured.
  • a 5 mm x 8 mm, 5 mm x 8 mm surface of a lmm-thick alumina plate was A substrate on which a paste was uniformly applied and dried to form a conductive film of a silver paste was used.
  • the conductive paste for connecting the p-type thermoelectric conversion material and the conductive paste for connecting the n-type thermoelectric conversion material described above were applied to the 4 mm X 4 mm surfaces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, respectively.
  • the conductive paste was dried and solidified by heating in air at 800 ° C) for 15 minutes.
  • an insulating ceramic paste containing alumina as a main component was applied to the connection portion and dried to produce a thermoelectric conversion element.
  • thermoelectric conversion elements were joined on a substrate such that the thermoelectric power conversion modules were connected to each other to obtain a thermoelectric power generation module in which ten thermoelectric conversion elements were connected in series. Silver paste was used as the bonding agent.
  • the catalytic combustor has a honeycomb structure (2 cm X 2 cm X lcm) with 30 lmm-square ventilation holes made by applying and sintering alumina on a SUS-510 stainless steel substrate.
  • platinum and palladium fine particles having a particle size of 100 ⁇ m or less were supported at a weight ratio of 1: 1.
  • the catalytic combustion type heat source includes a heating plate, a preheating burner, and a fuel tank.
  • a fuel supply valve and an air supply are provided at a junction between the preheating burner and the fuel tank.
  • An intake valve is provided.
  • thermoelectric generator The main body of the thermoelectric generator is made of SUS-310 stainless steel, and a heat insulating material is inserted between the peripheral portion of the catalytic combustor and the outer wall.
  • the preheating burner is a burner having a structure for burning fuel gas.
  • the heating plate is SUS
  • Liquid fuel butane is stored as fuel in the fuel tank.
  • thermoelectric generator is configured such that a heating plate of a catalytic combustion type heat source is fixed to the alumina substrate surface of the above-described thermoelectric generator module with screws so that the heating plate is in close contact with the alumina substrate, and the alumina substrate is heated by thermal energy due to catalytic combustion. Te ru.
  • Aluminum cooling fins are provided on the other surface of the thermoelectric power generation module, and a fan is provided above the cooling fins. This fan is configured to rotate by blowing exhaust gas generated by combustion onto a wind fan located above the fan, and to blow the air to the fins to improve the cooling efficiency of the fins.
  • a gas mixture of liquid butane and air contained in a fuel tank was supplied to a preheating burner, and the catalyst combustor was heated by the combustion heat of the preheating burner. After the temperature of the catalytic combustor rose to 300 ° C or more, the supply of fuel to the preheating burner was stopped, and the heating by the preheating burner was stopped.
  • the heating plate was heated by spraying the combustion gas generated by catalytic combustion on the heating plate, and the heat used to heat the substrate surface of the thermoelectric power generation module.
  • thermoelectric power generation module was heated, and a voltage was generated between the conductors connected to both ends of the thermoelectric power generation module due to the temperature difference from the opposite surface of the module.
  • FIG. 7 is a graph showing power generation characteristics when the high-temperature portion of the thermoelectric generation module is heated at 400 ° C.
  • the output showed a parabolic dependence on the current value.
  • the external resistance at which the output reached its maximum value almost coincided with the internal resistance of the module. From these results, it is clear that the generator of Example 1 is designed to sufficiently exhibit the characteristics of the thermoelectric module.
  • Example 2 In a thermoelectric generator having the same structure as in Example 1, a large carrier of 28 cm X 28 cm X 5 cm was used as an alumina carrier of a catalytic combustor, and a SUS-310 stainless plate of 28 cm X 28 cm X 3 cm was used as a heating plate. .
  • thermoelectric generation module As the thermoelectric generation module, the thermoelectric generation modules used in Example 1 were connected in series.
  • a module having a size of 26 cm X 26 cm X 7 mm with nine pieces bonded was used.
  • thermoelectric generator 30 cm X 30 cm X 20 cm.
  • thermoelectric generator having a structure similar to that of Example 1 was manufactured except that an electric heater having an output of 2 kW was used as a preheater of a catalytic combustor.
  • a capacitor that can charge surplus power during operation of the thermoelectric generator was installed. This capacitor is replaceable, and when charging is insufficient, an already charged capacitor can be used as a starting power source.
  • thermoelectric conversion elements that can be used in the thermoelectric generator of the present invention will be shown as reference examples.
  • thermoelectric conversion element of each of the reference examples described later in place of the thermoelectric conversion element used in the first embodiment, a thermoelectric generator having excellent performance as in the first embodiment can be obtained.
  • the raw materials are mixed so as to have the same element ratio as that of the complex oxidized product represented by Bi Co O, and
  • the obtained fired product was pulverized, shaped, and fired in an oxygen gas flow of 300 ml / min at 1153K for 20 hours. Then, the obtained fired product is pulverized and press-formed, and subjected to hot press sintering at 1123 K for 20 hours under uniaxial pressure of lOMPa in air to obtain a composite oxidized product for a p-type thermoelectric conversion material.
  • lOMPa uniaxial pressure of lOMPa in air
  • the chemical formula is represented by La Bi NiO.
  • the raw materials are mixed so as to have the same element ratio as that of the composite acidified product, dissolved in distilled water and mixed with stirring in an alumina crucible, and the resulting aqueous solution is heated to evaporate the water and dried. Hardened. The dried product was heated in the atmosphere at 873K for 10 hours, and the obtained fired product was pulverized and mixed, then molded under pressure, and fired at 1273K for 20 hours in an oxygen gas flow of 300 ml / min.
  • the fired product was pulverized, mixed, and press-molded, and again fired in an oxygen gas flow of 300 ml / min at 1273K for 20 hours, and the obtained fired product was pulverized and pressure-molded. Thereafter, hot-press sintering was performed at 1173 K for 20 hours under uniaxial pressure of 10 MPa in air to produce a composite oxide for an n-type thermoelectric conversion material.
  • Each of the composite oxide for the p-type thermoelectric conversion material and the composite oxide for the n-type thermoelectric conversion material obtained by the above-described method has a plane parallel to the pressing axis during hot pressing by 4 mm. It was cut into a rectangular parallelepiped shape with a length of 4 mm and a length of 5 mm in the pressurized surface to produce a p-type thermoelectric conversion material and an n-type thermoelectric conversion material.
  • thermoelectric conversion material For each of the p-type thermoelectric conversion material and n-type thermoelectric conversion material obtained in this way, apply a silver paste to the 4 mm X 4 mm surface, apply them to the surface, apply silver paste on the surface, length 8 mm, width It was set up in parallel on a 5 mm, lmm thick alumina substrate.
  • thermoelectric conversion material having the compositions shown in Tables 1 and 2 below were used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, respectively.
  • the (a-1) type thermoelectric conversion element (Reference Example 2-62) was produced.
  • the firing temperature for producing each oxide is changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering is also changed in the range of 1123 to 1173 °. Was changed.
  • Tables 1 and 2 below show the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973 ⁇ and the output at 973 ⁇ and a temperature difference of 600 ⁇ .
  • thermoelectromotive force obtained by dividing the voltage by the temperature difference between the high and low temperature ends was 60 ⁇ VZK or more in the temperature range of 293 to 1073K.
  • thermoelectric conversion material 3 ⁇ 4 'l63— 65
  • n-type thermoelectric conversion material 3 ⁇ 4 'l63— 65
  • thermoelectric conversion material in the same manner as in Reference Example 63 except that a composite oxide having a composition shown in Table 3 below was used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, (a- Type 2) thermoelectric conversion elements were fabricated.
  • the firing temperature for producing each oxide was changed in the range of 1073-1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 1231-1173K.
  • Table 3 shows the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973 K, and the output at 973 K and a temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material with the same composition and shape as those used in Reference Example 1, apply a silver paste on the 4 mm X 4 mm surface of each thermoelectric conversion material, length 8 mm, width 5 mm The surface of a 2 mm-thick alumina substrate was placed in parallel on a conductive substrate coated with silver by a vapor deposition method.
  • thermoelectric element of FIG. 1 was used as Reference Examples 67 and 68, except that a composite oxide having the composition shown in Table 4 below was used. A conversion element was manufactured.
  • each The sintering temperature for producing the oxidized product was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
  • thermoelectric conversion element obtained at 973K and the thermoelectric conversion element obtained at 973K
  • Table 4 below shows the output at K and a temperature difference of 600 ⁇ .
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, apply a silver paste to a 4 mm X 4 mm surface of each thermoelectric conversion material, length 10 mm, diameter 0 Place both ends of a 5mm platinum wire on the surface of each thermoelectric conversion material coated with silver paste, and perform heat treatment at 1073K for 15 minutes in air to dry and solidify the silver paste! ⁇ , Fig. 1
  • the (a-4) type thermoelectric conversion element (Reference Example 69) was produced.
  • thermoelectric element shown in FIG. 1 was used as Reference Examples 70 and 71, except that a composite oxide having the composition shown in Table 5 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
  • thermoelectric conversion element the thermoelectromotive force and electric resistance at 973K were measured.
  • Table 5 below shows the output at K and a temperature difference of 600 °.
  • each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was 4 mm x 5 mm.
  • the surfaces were brought into close contact with each other, and hot press sintering was performed at 1073K for 3 hours while pressing the surfaces perpendicularly.
  • thermoelectric element shown in FIG. 2 was used as Reference Examples 73 and 74, except that a composite oxide having the composition shown in Table 6 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
  • thermoelectric conversion element the thermoelectromotive force and electrical resistance at 973K were obtained.
  • Table 6 below shows the output at K and a temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was 4 mm x 5 mm. A 0.25-mm, 23-mesh Zinch silver mesh is sandwiched between the surfaces, and heat treatment is performed for 3 hours in air at 1073K while applying pressure vertically to the contact surface. The ⁇ -type thermoelectric conversion material and ⁇ -type The thermoelectric conversion materials were joined.
  • the joining interface was cut from one end of the material in the longitudinal direction (direction of length 5mm) to a length of 3mm using a diamond cutter, and the p-type thermoelectric conversion material and the n-type thermoelectric conversion material were separated. separated.
  • a (s-2) type sintered element (Reference Example 75) shown in FIG. 2 was obtained.
  • thermoelectric conversion material in the same manner as in Reference Example 75, except that a composite oxide having the composition shown in Table 7 below was used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, Type 2) thermoelectric conversion elements were fabricated.
  • the firing temperature for producing each oxide was changed in the range of 1073-1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 1231-1173K.
  • Table 7 shows the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973 K, and the output at 973 K and a temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material with the same composition and shape as those used in Reference Example 1, a 4 mm X 4 mm surface of the ⁇ -type thermoelectric conversion material and a 4 mm X 4 mm La Bi Ni 8mm long, 5mm wide, 2mm thick so that it lies on both sides of the surface
  • thermoelectric conversion element shown in Fig. 2 was fabricated by bonding a ⁇ -type thermoelectric conversion material and an ⁇ -type thermoelectric conversion material to a conductive substrate.
  • thermoelectric element of FIG. 2 was used as Reference Examples 79 and 80, except that a composite oxide having the composition shown in Table 8 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
  • thermoelectric conversion element the thermoelectromotive force and electrical resistance at 973 ⁇
  • Table 8 below shows the output at the temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, the 4 mm X 4 mm surface of the ⁇ -type thermoelectric conversion material and the 4 mm X 4 of the n-type thermoelectric conversion material A 0.25mm diameter, 23 mesh Zinch silver mesh is placed on the surface of each mm, and the conductivity of La Bi NiO of length 8mm, width 5mm, and thickness 2mm is placed on both sides.
  • thermoelectric conversion element (Reference Example 81) in FIG. 2 was produced.
  • thermoelectric conversion element the thermoelectromotive force and electrical resistance at 973 ⁇
  • Table 9 shows the output at a temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, apply one-sided force to the 4 mm X 5 mm side surface of each material in the longitudinal direction (length 5 mm). A hole with a diameter of 1 mm was drilled at a position 2 mm from the left and right ends to the opposite side of the material. By inserting a 1.2mm diameter silver wire into this hole and connecting the p-type and n-type thermoelectric conversion materials, the (c-1) type A replacement element (Reference Example 84) was produced.
  • thermoelectric conversion element the thermoelectromotive force and electric resistance at 973K were measured.
  • Table 10 below shows the output at K and a temperature difference of 600 ⁇ .
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, attach a silver panel-type clip to the upper surface (4 X 4 mm surface) of each material. A 0.5-mm-diameter, 10-mm-long wire made of silver was fixed and connected to a p-type thermoelectric conversion material and an n-type thermoelectric conversion material. Reference Example 87) was produced.
  • thermoelectric conversion element the thermoelectromotive force and electric resistance at 973K were measured,
  • Table 11 shows the output at K and a temperature difference of 600 °.
  • thermoelectric conversion material Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, a female thread was cut on the upper surface (4 mm X 4 mm surface) of each material.
  • a conductive substrate made of La Bi NiO with a length of 8 mm, a width of 5 mm, and a thickness of 2 mm with two holes
  • thermoelectric conversion material Is placed on both materials such that the positions of the holes match the positions of the threads of the thermoelectric conversion material, and the conductive substrate is screwed to the P-type thermoelectric conversion material and the n-type thermoelectric conversion material.
  • S-3) type thermoelectric conversion element (Reference Example 90) shown in FIG.
  • thermoelectric conversion of the (c3) type in FIG. An element was manufactured.
  • the firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
  • thermoelectric conversion element obtained at 973 K
  • Table 12 below shows the output at K and a temperature difference of 600 ⁇ .
  • FIG. 8 is a graph showing the relationship between the generated voltage (open-circuit voltage) and the temperature of the high-temperature part when the high-temperature part is 300-1000 100 and the low-temperature part is 293-400 ⁇ .
  • the generated voltage (open-circuit voltage) tended to increase as the temperature of the high-temperature part rose.
  • the generated voltage of the elements of Reference Examples 1 and 63 tends to be higher than the generated voltage of the element of Reference Example 75.
  • This is 5 mm, which is the same as the length of the ⁇ -type thermoelectric conversion material and the ⁇ -type thermoelectric conversion material in the elements of Reference Examples 1 and 63 in which the substrate is bonded to the upper surface of the material.
  • the element of Reference Example 75 in which the side of the material was cut by sintering, was affected by the 3 mm separation length between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. Can be thought of. In other words, the longer the material is separated from the lower temperature side, the greater the temperature difference between them, and the higher the generated voltage.
  • Fig. 9 is a graph showing the relationship between the electric resistance and the temperature of the high-temperature part for the devices of Reference Examples 1 and 75. As is clear from this, a tendency was observed that the electrical resistance decreased with increasing temperature.
  • thermoelectric conversion elements obtained in Reference Example 1 were placed on an alumina substrate of 8 cm in length, 6 cm in width, and lmm in thickness such that the unbonded surfaces of the elements were in contact with each other, and silver paste was used. Then, a p-type end and an n-type end of each element were alternately connected to produce a thermoelectric conversion module (Reference Example 93) shown in FIG. [0204] Instead of the thermoelectric conversion element obtained in Reference Example 1, the thermoelectric conversion element obtained in Reference Example 75, 63, 81, or 84 was used. 97 thermoelectric conversion modules were fabricated.
  • thermoelectric conversion modules For each of the obtained thermoelectric conversion modules, the alumina substrate was used as the high temperature part, the junction between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was used as the low temperature part, the high temperature part was used as 973K, and the low temperature part was used.
  • Table 13 shows the open-circuit voltage, internal resistance, and maximum output when the temperature difference is 600 ° C.
  • the open-circuit voltage is the voltage generated when a temperature difference is applied to the module without applying an external resistor. The output reached its maximum when loaded with the same resistance as the internal resistance of the module.
  • thermoelectric conversion material that can be used in the thermoelectric generator of the present invention
  • a production example and physical properties of the obtained oxide are shown as reference examples, and the thermoelectric generator used in the thermoelectric generator of the present invention is shown. It shows that it is effective as a conversion material.
  • a composite oxide having properties as a replacement material was produced by the following method.
  • the raw material a carbonate or oxide containing a constituent element of the target composite oxide was used, and the raw materials were mixed so as to have the same element ratio as the composition formula shown in Table 14-Table 81. It was calcined at 1073K for 10 hours at atmospheric pressure. Next, the obtained fired product was pulverized, molded, and fired in an oxygen gas flow of 300 ml / min for 20 hours. Then the resulting firing The material was pulverized and press-formed, and subjected to hot press sintering for 20 hours under uniaxial pressure of lOMPa in air to produce a composite oxide for a p-type thermoelectric conversion material. The firing temperature for producing each oxide was changed in the range of 1073 to 1273K depending on the composition, and further, the temperature of hot press sintering was changed in the range of 123 to 1173K.
  • Table 14 and Table 81 below show the measurement results of the Seebeck coefficient at 700 ° C, the electric resistivity at 700 ° C, and the thermal conductivity at 700 ° C for each of the obtained iridani products.
  • each of the oxides shown in Table 14-Table 81 has excellent properties as a p-type thermoelectric conversion material, and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited also when these oxides are used in place of the p-type thermoelectric conversion material in the thermoelectric power generator of Example 1.
  • a nitrate containing a constituent element of a target composite oxide was used as a raw material. After complete dissolution and thorough mixing in an alumina crucible, the water was evaporated to dryness. Next, the precipitate was calcined in an air at 600 ° C for 10 hours in air to decompose nitrate. Thereafter, the fired product was pulverized, pressed, and fired in an oxygen stream of 300 mlZ for 20 hours to synthesize a composite oxide. The firing temperature and firing time were appropriately changed within the range of 700-1100 ° C so that the target oxide was formed.
  • Tables 82 to 128 below show the element ratio, the Seebeck coefficient at 700 ° C, the electric resistivity at 700 ° C, and the thermal conductivity at 700 ° C in each of the obtained composite oxides. Show.
  • each of the oxides shown in Table 82 to Table 128 has excellent characteristics as an n-type thermoelectric conversion material, and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited even when these oxides are used instead of the n-type thermoelectric conversion material in the thermoelectric power generator of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A thermoelectric generator comprises a thermoelectric generating module and a catalyst burning heat source. The thermoelectric generating module is composed by using thermoelectric conversion devices connected in series where one end of a p-type thermoelectric conversion material is electrically connected to one end of an n-type thermoelectric conversion material and by connecting the unconnected end of the p-type thermoelectric conversion material of thermoelectric conversion device to the unconnected end of the n-type thermoelectric conversion of another thermoelectric conversion device. The catalyst burning heat source is disposed so as to heat one surface of the thermoelectric generating module. The thermoelectric generator is a power supply suitable for the power supply of portable devices and excellent in portability, and can supply power with a stable performance for a long time.

Description

明 細 書  Specification
熱電発電装置  Thermoelectric generator
技術分野  Technical field
[0001] 本発明は、触媒燃焼式熱源と熱電発電モジュールとを備えた熱電発電装置に関す る。  The present invention relates to a thermoelectric generator including a catalytic combustion heat source and a thermoelectric generation module.
背景技術  Background art
[0002] 携帯電話やノート型パソコンなど携帯型の電子機器の進歩に伴い、これらの機器 へ電力を供給する小型電源の開発も進んで ヽる。  [0002] With the development of portable electronic devices such as mobile phones and notebook computers, the development of small power supplies for supplying power to these devices is also progressing.
[0003] 近年、コンピューターの CPU (中央演算処理装置)等のように、電子機器の性能向 上の速さは目を見はるものがあり、これに比例して電力消費量も飛躍的に増加してい る。 [0003] In recent years, the speed of improving the performance of electronic devices, such as the CPU (Central Processing Unit) of computers, has been remarkable, and the power consumption has increased dramatically in proportion to this. It has increased.
[0004] 現在実用化されている小型電源は、そのほとんどが電池である力 その高性能化、 例えば、高エネルギー密度化は、電子機器の進歩に十分に追随できていない。この ため、一回の充電で機器を使用できる時間が短くなる等の弊害が生じており、電源の 性能が不十分であることが、進歩した機器の利便性を損なう大きな要因となっている  [0004] Small power supplies currently in practical use are mostly batteries. Their high performance, for example, high energy density, has not been able to sufficiently follow the progress of electronic devices. For this reason, there are adverse effects such as shortening the time that the device can be used with one charge, and insufficient power supply performance is a major factor that impairs the convenience of advanced equipment.
[0005] そもそも、電池は、エネルギー変換型電源ではなぐ貯蔵型電源であり、これ以上 のエネルギー密度の向上は安全性面から問題がある。そこで、電池に代わる電源と して、無充電で長時間用いることができ、しかも使用する場所で電気エネルギーを必 要なだけ得ることが可能なエネルギー変換型の小型電源の開発への期待が高まつ ている。 [0005] In the first place, a battery is a storage type power source, not an energy conversion type power source, and further improvement in energy density poses a problem in terms of safety. Therefore, there is a high expectation for the development of an energy conversion type compact power supply that can be used for a long time without charging and can be used as needed as a power supply instead of a battery. I am waiting.
[0006] 熱電発電は、熱源が存在すれば発電が可能であり、タービンや電解質が不必要で あるためにシステムが小型、軽量となり、しカゝも、騒音の発生も少なぐメンテナンスも ほとんど必要ない等、非常に優れた発電方法である。このため、優れた性能を有する 熱電発電モジュールと、小型で安全な熱源とを組み合わせれば、電源の連続使用が 可能となり、電子機器の利便性が大きく向上するものと考えられる。  [0006] Thermoelectric power generation is possible if a heat source is present, and the system is smaller and lighter because it does not require a turbine or electrolyte. It also requires less power, requires less noise, and requires less maintenance. This is a very good power generation method. For this reason, combining thermoelectric power generation modules with excellent performance and small and safe heat sources will enable continuous use of the power supply, greatly improving the convenience of electronic equipment.
[0007] 従来から、熱電発電モジュールに用いる熱電変換材料にっ 、ては各種の材料が 開発されている力 そのほとんどは Teや Se等の毒性元素を含むものである。これに対 して、近年、安全性が高ぐし力も高温の空気中でも耐久性が良好な熱電変換材料と して、各種の酸ィ匕物カゝらなる熱電変換材料が報告されている (特許第 3069701号公 報、特許第 3443641号公報、特許第 3089301号公報、特許第 3472814号公報、 特許第 3472813号公報、特開 2003— 282964号等参照)。 [0007] Conventionally, various types of thermoelectric conversion materials used in thermoelectric power generation modules have been used. Most of the forces being developed contain toxic elements such as Te and Se. On the other hand, in recent years, thermoelectric conversion materials made of various oxidants have been reported as thermoelectric conversion materials having high safety and high durability even in high-temperature air (Patent No. 3069701, Japanese Patent No. 3443641, Japanese Patent No. 3089301, Japanese Patent No. 3472814, Japanese Patent No. 3472813, Japanese Patent Application Laid-Open No. 2003-282964, etc.).
[0008] この様に、熱電変換材料については、新たな材料の開発が進められているが、効 率のよ!ヽ熱電発電を実現するために必要となる熱電発電モジュールや、これを熱源 と組み合わせた小型電源装置については、開発が遅れているのが現状である。 発明の開示 [0008] As described above, new materials are being developed for thermoelectric conversion materials, but the efficiency is high!開 発 At present, development of thermoelectric power generation modules required to realize thermoelectric power generation and small power supply units that combine them with heat sources is delayed. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記した如き従来技術の現状に鑑みてなされたものであり、その主な目 的は、携帯用機器などの電源として適した携帯性に優れた電源装置であって、長時 間安定した性能で電力を供給できる新規な熱電発電装置を提供することである。 課題を解決するための手段 [0009] The present invention has been made in view of the current state of the prior art as described above, and its main purpose is to provide a power supply device excellent in portability suitable as a power supply for portable equipment and the like, An object of the present invention is to provide a novel thermoelectric generator capable of supplying power with stable performance for a long time. Means for solving the problem
[0010] 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、 p型熱 電変換材料と n型熱電変換材料として複合酸化物を用いた優れた性能の熱電発電 モジュールを開発すると共に、このモジュールを触媒燃焼式の熱源と組み合わせて 用いることによって、長時間安定に使用可能であって、小型、軽量で携帯性に優れ た電源装置が得られることを見出し、ここに本発明を完成するに至った。  [0010] The present inventors have intensively studied to achieve the above object. As a result, we developed a thermoelectric power generation module with excellent performance using composite oxides as p-type and n-type thermoelectric conversion materials, and by using this module in combination with a catalytic combustion type heat source, The present inventors have found that a small, lightweight, and highly portable power supply device that can be used stably over time can be obtained, and the present invention has been completed.
[0011] 即ち、本発明は、下記の熱電発電装置を提供するものである。  [0011] That is, the present invention provides the following thermoelectric generator.
1. p型熱電変換材料の一端と n型熱電変換材料の一端とを電気的に接続してなる熱 電変換素子を複数個用い、該熱電変換素子の P型熱電変換材料の未接合の一端を 、他の熱電変換素子の n型熱電変換材料の未接合の端部に接続する方法で複数の 熱電変換素子を直列に接続してなる熱電発電モジュールと、  1. Using a plurality of thermoelectric conversion elements electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material, and the unbonded one end of the P-type thermoelectric conversion material of the thermoelectric conversion element A thermoelectric power generation module in which a plurality of thermoelectric conversion elements are connected in series by a method of connecting to the unjoined end of the n-type thermoelectric conversion material of another thermoelectric conversion element,
該熱電発電モジュールの一方の面を加熱するように配置された触媒燃焼式熱源と を  A catalytic combustion heat source arranged to heat one surface of the thermoelectric generation module.
備えてなる熱電発電装置。  Thermoelectric generator provided.
2.触媒燃焼式熱源が、触媒を充填してなる触媒燃焼室と、触媒燃焼室で発生した 熱エネルギーを熱電発電モジュールに伝えるための熱伝達部とを備えたものである 上記項 1に記載の熱電発電装置。 2. Catalytic combustion heat source is generated in the catalytic combustion chamber filled with catalyst and in the catalytic combustion chamber 2. The thermoelectric generator according to the above item 1, comprising a heat transfer unit for transmitting heat energy to the thermoelectric generator module.
3.触媒燃焼式熱源が、更に、触媒燃焼室に供給する燃料を収容した燃料容器を備 えたものである上記項 2に記載の熱電発電装置。  3. The thermoelectric generator according to the above item 2, wherein the catalytic combustion heat source further comprises a fuel container containing fuel to be supplied to the catalytic combustion chamber.
4.触媒燃焼式熱源が、更に、予熱器を備えたものである上記項 2に記載の熱電発 電装置。  4. The thermoelectric generator according to item 2, wherein the catalytic combustion heat source further includes a preheater.
5.触媒燃焼式熱源が、更に、予熱器を備えたものである上記項 3に記載の熱電発 電装置。  5. The thermoelectric generator according to item 3, wherein the catalytic combustion heat source further includes a preheater.
6.熱電発電モジュールで用いる p型熱電変換材料力 一般式: Ca A1 Co A2 O ( a b c d e 式中、 A1は、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよ びランタノイドからなる群力も選択される一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群から選択される一種又は 二種以上の元素であり、 2.2≤a≤3.6 ;0≤b≤0.8 ;2.0≤c≤4.5 ;0≤d≤2.0 ;8≤e≤ 10である。)で表される複合酸化物、及び一般式: Bi Pb M1 Co M20 (式中、 M16.Power of p-type thermoelectric conversion material used in thermoelectric generation module General formula: Ca A 1 Co A 2 O (where a 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, One or more elements selected from the group force of Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids are also selected, and A 2 is Ti, V, Cr, Mn, Fe, One or more elements selected from the group consisting of Ni, Cu, Ag, Mo, W, Nb and Ta, 2.2≤a≤3.6; 0≤b≤0.8; 2.0≤c≤4.5; 0≤ d≤2.0; 8≤e≤10) and a general formula: Bi Pb M 1 Co M 20 (where M 1 is
f g h i j k  f g h i j k
、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノィ ドからなる群から選択される一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群から選択される一種又は二種以上の 元素であり、 1.8≤f≤2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ; 1.6≤i≤2.2 ;0≤j≤0.5 ;8≤k≤ 10である。 )で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物 であり、 , Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and lanthanide M 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta, and 1.8≤ f≤2.2; 0≤g≤0.4; 1.8≤h≤2.2; 1.6≤i≤2.2; 0≤j≤0.5; 8≤k≤10. ) Is at least one oxide selected from the group consisting of composite oxides represented by
n型熱電変換材料が、一般式: Ln R1 Ni R2 O (式中、 Lnはランタノイドカゝら選択さ If the n-type thermoelectric conversion material has the general formula: Ln R 1 Ni R 2 O (where Ln is a lanthanoid
m n p q r  m n p q r
れる一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群力 選 択される一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu、 Mo、 W、 Nb及び Taからなる群力も選択される一種又は二種以上の元素であり、 0.5≤m≤ 1.7 ;0≤n≤0.5 ;0.5≤p≤1.2 ;0≤q≤0.5 ;2.7≤r≤3.3である。)で表される複合酸ィ匕 物、及び一般式: (Ln R3 ) Ni R4 O (式中、 Lnはランタノイドから選択される一種又 s t 2 u w R 1 is a group consisting of Na, K, Sr, Ca and Bi.One or more elements are selected.R 2 is Ti, V, The group force consisting of Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta is also one or more elements selected from the group consisting of 0.5≤m≤1.7; 0≤n≤0.5; 0.5≤p≤ 1.2; 0≤q≤0.5; 2.7≤r≤3.3. ), And a general formula: (Ln R 3 ) Ni R 4 O (where Ln is a member selected from lanthanoids or st 2 uw
は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選択される一 種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu、 Mo、 W、 Nb及び Taからなる群力 選択される一種又は二種以上の元素であり、 0.5≤s≤1.2 ;0≤t≤ 0.5 ;0.5≤u≤1.2 ;0≤v≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物からなる 群力 選ばれた少なくとも一種の酸ィ匕物である上記項 1に記載の熱電発電装置。Is two or more elements, R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and R 4 is Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Group power consisting of Ta One or more elements selected from the group consisting of 0.5≤s≤1.2; 0≤t≤0.5; 0.5≤u≤1.2; 0≤v≤0.5; 3.6≤w≤4.4. 3. The thermoelectric generator according to item 1, wherein the thermoelectric generator is at least one selected oxide selected from the group consisting of the composite oxides represented by the formula (1).
7. 熱電発電モジュールで用いる p型熱電変換材料力 一般式: Ca A1 Co O (式 a 4 e 中、 A1は、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y及びラ ンタノイドからなる群力も選択される一種又は二種以上の元素であり、 2.2≤ a≤ 3.6; 0 ≤b≤0.8 ;8≤e≤10である。)で表される複合酸化物、及び一般式: Bi Pb M1 Co O f 27. Power of p-type thermoelectric conversion material used in thermoelectric generation module General formula: Ca A 1 Co O (where a 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, The group force consisting of Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids is also one or more elements selected from the group consisting of 2.2≤a≤3.6; 0≤b≤0.8; 8≤e ≤10) and a general formula: Bi Pb M 1 Co Of 2
(式中、 M1は、 Sr、 Ca及び Baからなる群力 選択される一種又は二種以上の元素で あり、 1.8≤f≤2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ;8≤k≤10である。 )で表される複合酸化 物からなる群力 選ばれた少なくとも一種の酸ィ匕物であり、 (Wherein, M 1 is one or more elements selected from the group consisting of Sr, Ca, and Ba, and is 1.8≤f≤2.2; 0≤g≤0.4; 1.8≤h≤2.2; 8≤ k ≦ 10) at least one selected oxidizing compound consisting of a composite oxide represented by)
n型熱電変換材料が、一般式: La R1 NiO (式中、 R1は、 Na、 K、 Sr、 Ca及び Biから m n r The n-type thermoelectric conversion material has the general formula: La R 1 NiO (where R 1 is mnr from Na, K, Sr, Ca and Bi
なる群から選択される一種又は二種以上の元素であり、 0.5≤m≤1.2 ;0≤n≤0.5 ; 2.7≤r≤3.3である。)で表される複合酸化物、一般式:(La R3 ) NiO (式中、 R3は、 s t 2 w Is one or more elements selected from the group consisting of, 0.5≤m≤1.2; a 2. 7 ≤r≤3 3; 0≤n≤0.5.. ), A general formula: (La R 3 ) NiO (where R 3 is st 2 w
Na、 K、 Sr、 Ca及び Biからなる群から選択される一種又は二種以上の元素であり、 0.5 ≤s≤1.2 ;0≤t≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物、及び一般式: L a R5 Ni R6 O (式中、 R5は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選択される少 P One or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and 0.5 ≤ s ≤ 1.2; 0 ≤ t ≤ 0.5; 3.6 ≤ w ≤ 4.4. ) And a general formula: L a R 5 Ni R 6 O (where R 5 is a small P selected from the group consisting of Na, K, Sr, Ca, Bi and Nd)
なくとも一種の元素であり、 R6は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選択 される少なくとも一種の元素であり、 0.5≤x≤ 1.2 ;0≤y≤0.5 ;0.5≤p≤ 1.2 ;0.01≤q ≤0.5 ;2.8≤r≤3.2である。)で表される複合酸化物からなる群から選ばれた少なくと も一種の酸ィヒ物である上記項 1に記載の熱電発電装置。 R 6 is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Cu; 0.5≤x≤1.2; 0≤y≤0.5 ; 0.5≤p≤ 1.2; 0.01≤q ≤0.5; 2.8≤r≤3.2. Item 2. The thermoelectric generator according to Item 1, which is at least one kind of acid selected from the group consisting of composite oxides represented by the formula (1).
8. 熱電発電モジュールの加熱される面の反対側の面に、冷却手段を設けてなる上 記項 1一 7のいずれかに記載の熱電発電装置。  8. The thermoelectric generator according to any one of the above items 1 to 17, wherein a cooling means is provided on a surface of the thermoelectric generation module opposite to a surface to be heated.
本発明の熱電発電装置は、 p型熱電変換材料の一端と n型熱電変換材料の一端と を電気的に接続してなる熱電変換素子を複数個用い、該熱電変換素子の p型熱電 変換材料の未接合の一端を、他の熱電変換素子の n型熱電変換材料の未接合の端 部に電気的に接続する方法で複数の熱電変換素子を直列に接続してなる熱電発電 モジュールと、該熱電発電モジュールの一方の面を加熱するように配置された触媒 燃焼式熱源とを備えてなるものである。 [0013] 以下、本発明の熱電発電装置、及びその各構成要素について具体的に説明する The thermoelectric generator of the present invention uses a plurality of thermoelectric conversion elements each formed by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material, and uses the p-type thermoelectric conversion material of the thermoelectric conversion element. A thermoelectric power generation module comprising a plurality of thermoelectric conversion elements connected in series by a method of electrically connecting one unbonded end of the thermoelectric conversion element to an unbonded end of an n-type thermoelectric conversion material of another thermoelectric conversion element; and And a catalytic combustion heat source arranged to heat one surface of the thermoelectric generation module. Hereinafter, the thermoelectric generator of the present invention and its respective components will be specifically described.
[0014] (1)触媒燃焼式熱源 (1) Catalytic combustion heat source
触媒燃焼式熱源としては、触媒燃焼によって発生する熱エネルギーによって、熱電 発電モジュールの片面を加熱できるものであれば、特に限定なく使用できる。  As the catalytic combustion heat source, any heat source can be used without particular limitation as long as it can heat one surface of the thermoelectric generation module by thermal energy generated by catalytic combustion.
[0015] 通常は、触媒を充填してなる触媒燃焼部と、触媒燃焼部で発生した熱エネルギー を熱電発電モジュールに伝えるための熱伝達部とを備えた触媒燃焼式熱源を用いる ことができる。 [0015] Usually, it is possible to use a catalytic combustion type heat source provided with a catalytic combustion section filled with a catalyst and a heat transfer section for transmitting thermal energy generated in the catalytic combustion section to the thermoelectric power generation module.
[0016] 触媒燃焼部の具体的な構造については、特に限定的ではなぐ公知の各種構造の 触媒燃焼器を用いることができる。通常は、触媒成分を各種基材に担持させた構造 の燃焼器を用いることができる。  [0016] The specific structure of the catalytic combustion section is not particularly limited, and various types of known catalytic combustors can be used. Usually, a combustor having a structure in which a catalyst component is supported on various substrates can be used.
[0017] 触媒成分としては、触媒燃焼反応、即ち、後述する燃料成分の酸化反応に対して 触媒活性を有する成分であれば特に限定なく使用できる。特に、触媒燃焼反応によ つて発生した熱エネルギーによって、熱電発電モジュールの片面を、例えば 800°C 程度以上に加熱できるものであることが好ましい。例えば、 Pt, Pd等の貴金属類、 Co o等の酸ィ匕物などを触媒成分として用いることができるが、これらに限定されるもの As the catalyst component, any component can be used without particular limitation as long as it has a catalytic activity for a catalytic combustion reaction, that is, an oxidation reaction of a fuel component described later. In particular, it is preferable that one side of the thermoelectric power generation module can be heated to, for example, about 800 ° C. or more by the thermal energy generated by the catalytic combustion reaction. For example, precious metals such as Pt and Pd, acid oxides such as Coo and the like can be used as the catalyst component, but are not limited thereto.
3 4 3 4
ではない。高温での耐久性を考慮した場合には、特に、 Pt微粒子、 Pd微粒子、これ らの混合物等が好ましい。  is not. In consideration of durability at high temperatures, Pt fine particles, Pd fine particles, a mixture thereof and the like are particularly preferable.
[0018] 触媒成分を担持させるための基材は、十分な強度を有し、且つ耐熱性に優れた材 料を用いることが好ましい。例えば、アルミナ、ジルコユアなどの耐熱性に優れたセラ ミックス材料や、これらの耐熱性セラミックスに熱膨張率が近ぐ更に良好な耐熱性を 有する金属、例えば、 SUS— 510ステンレス等の Fe— Cr— A1系セラミックスの表面に 上記した耐熱性セラミックスをコーティングし、焼結させた複合材料などを基材として 用いることができる。該基材の形状については、特に限定的ではないが、燃料気体 の流通性が良好で、燃料と触媒成分との接触面積が大きいことが好ましい。例えば、 ハ-カム構造の基材などを用いることができる。  [0018] As a substrate for supporting the catalyst component, it is preferable to use a material having sufficient strength and excellent heat resistance. For example, ceramic materials having excellent heat resistance such as alumina and zirconia, and metals having better heat resistance having a coefficient of thermal expansion close to those of these heat-resistant ceramics, for example, Fe—Cr— such as SUS—510 stainless steel A composite material or the like obtained by coating the surface of an A1-based ceramic with the above-described heat-resistant ceramic and sintering can be used as a base material. The shape of the substrate is not particularly limited, but it is preferable that the fuel gas flow be good and the contact area between the fuel and the catalyst component be large. For example, a substrate having a honeycomb structure can be used.
[0019] 燃料としては、触媒燃焼ができる物質であればよぐ特に限定はされないが、安全 面から、燃焼前後において有毒物質を含まない物質であることが好ましい。例えば、 メタン、ェタン、プロパン、ブタンなどの炭化水素気体やメタノール、エタノール、ジェ チルエーテルなどの有機物液体等を用いることができる。 [0019] The fuel is not particularly limited as long as it is a substance capable of catalytic combustion, but is preferably a substance containing no toxic substances before and after combustion from the viewpoint of safety. For example, A hydrocarbon gas such as methane, ethane, propane, and butane, and an organic liquid such as methanol, ethanol, and ethyl ether can be used.
[0020] 燃料の供給方法については、特に限定的ではなぐ燃料を収容した燃料容器を触 媒燃焼部の燃料供給口に接続し、燃料容器と触媒燃焼式熱源とを一体化した構造 としても良ぐ或いは、触媒燃焼式熱源とは別個に設けた燃料容器などを燃料供給 源として用い、該燃料供給源と触媒燃焼部の燃料供給口とをパイプ、ホースなどの 配管で接続しても良い。  [0020] The fuel supply method is not particularly limited, and a fuel container containing a fuel may be connected to the fuel supply port of the catalytic combustion unit, and the fuel container and the catalytic combustion heat source may be integrated. Alternatively, a fuel container or the like provided separately from the catalytic combustion heat source may be used as a fuel supply source, and the fuel supply source and the fuel supply port of the catalytic combustion unit may be connected by a pipe such as a pipe or a hose.
[0021] 特に、燃料容器と触媒燃焼式熱源とを一体化した構造とする場合には、熱源装置 の移動が容易となり、燃料供給源の存在しない場所においても使用可能な携帯機器 用の電源として有効に利用できる。  [0021] In particular, when the fuel container and the catalytic combustion type heat source are integrated, the heat source device can be easily moved and used as a power source for a portable device that can be used even in a place where no fuel supply source exists. Can be used effectively.
[0022] 燃料容器中に収容する燃料は、破裂などに対する安全性を保つことができれば気 体、液体、固体のいかなる状態でも良い。液体や固体燃料を用いる場合には、例え ば、燃料容器内で揮発させてあらかじめ気体状態にしておけばよい。触媒燃焼部へ 気体を供給するために、燃料容器内は燃焼部よりも高圧状態にしておくことが好まし い。尚、燃焼により燃料が減少するため、通常、燃料容器には燃料補充口を設ける。 さらに、触媒燃焼部への燃料気体の供給を促進するために、ファン等を用いたブロワ 一を装着してもよい。この場合、ファンの動力としては、例えば、熱電発電によって生 じた電気エネルギーを用いることができる。  [0022] The fuel contained in the fuel container may be in any state of gas, liquid and solid as long as safety against rupture or the like can be maintained. When a liquid or solid fuel is used, for example, it may be volatilized in a fuel container and brought into a gaseous state in advance. In order to supply gas to the catalytic combustion section, it is preferable to keep the inside of the fuel container at a higher pressure than the combustion section. In addition, since fuel decreases by combustion, a fuel supply port is usually provided in a fuel container. Further, a blower using a fan or the like may be mounted to promote the supply of the fuel gas to the catalytic combustion section. In this case, as the power of the fan, for example, electric energy generated by thermoelectric generation can be used.
[0023] 燃料気体は、通常、空気等の酸素含有気体等と混合して、触媒燃焼に適した燃料 濃度として、触媒燃焼部に供給する。このため、触媒燃焼式熱源には、通常、空気な どの酸素含有気体を供給するための供給口を設ける。また、必要に応じて、燃料気 体と酸素含有気体を混合するための混合室を設けることができる。燃料濃度は、燃料 の種類、触媒物質の種類等によって異なるので、一概に規定できないが、空気と混 合して用いる場合は、通常、体積百分率で燃料気体の濃度を 0. 5— 10%程度の範 囲とすればよい。  [0023] The fuel gas is usually mixed with an oxygen-containing gas such as air or the like, and supplied to the catalytic combustion section as a fuel concentration suitable for catalytic combustion. For this reason, the catalytic combustion heat source is usually provided with a supply port for supplying an oxygen-containing gas such as air. If necessary, a mixing chamber for mixing the fuel gas and the oxygen-containing gas can be provided. Since the fuel concentration varies depending on the type of fuel, the type of catalyst substance, etc., it cannot be specified unconditionally. However, when used in a mixture with air, the concentration of the fuel gas is usually 0.5 to 10% by volume percentage. Should be within the range.
[0024] 熱伝導部は、触媒燃焼部で発生した熱エネルギーを熱電発電モジュールに伝える 部分である。熱伝導部は、触媒燃焼部の形状に応じて、熱エネルギーを効率よく熱 電発電モジュールに伝えることができるように設置すればよい。例えば、熱伝導部を 板状の形状として、触媒燃焼によって高温に達した燃焼気体が、熱伝導部に直接吹 き付けられるように設置することができる。また、燃焼気体の通過経路に平行に熱伝 導部を配置して、通過する燃焼気体との接触によって熱を伝える構造としてもよい。 この場合、熱伝導部は、例えば、燃焼気体の通過経路を取り囲む形で、四角形、円 形などの筒状として設置することができる。 [0024] The heat conduction section is a section that transmits heat energy generated in the catalytic combustion section to the thermoelectric generation module. The heat conduction section may be provided in accordance with the shape of the catalytic combustion section so that heat energy can be efficiently transmitted to the thermoelectric generation module. For example, the heat conduction part As a plate-like shape, it can be installed so that the combustion gas that has reached a high temperature by catalytic combustion can be directly blown to the heat conducting part. Further, a structure may be adopted in which a heat conducting portion is disposed in parallel with the passage of the combustion gas, and heat is transferred by contact with the passing combustion gas. In this case, for example, the heat conducting portion can be installed as a cylinder such as a square or a circle so as to surround the passage of the combustion gas.
[0025] 熱伝導部の材質は、高温の空気中においても化学的に安定であり、加熱'冷却サ イタルによっても破損のな 、ものであることが好ま 、。熱電変換材料として高温作動 型の酸ィ匕物を用いる場合には、通常、熱電発電モジュールの高温部を 400— 800°C 程度に加熱すればよぐこの場合には、熱伝導部は、 800°C程度においても安定な 材料、例えば、アルミナなどのセラミックス、高温耐久性の高いステンレス、銀、白金 などの金属などで形成することが好ま 、。  [0025] The material of the heat conducting portion is preferably chemically stable even in high-temperature air, and is not damaged by heating and cooling. In the case of using a high-temperature operating type oxidizing material as the thermoelectric conversion material, it is usually sufficient to heat the high-temperature part of the thermoelectric power generation module to about 400 to 800 ° C. It is preferably formed of a material that is stable even at about ° C, for example, ceramics such as alumina, and metals such as stainless steel, silver, and platinum having high high-temperature durability.
[0026] 触媒燃焼を開始するためには、通常、燃料気体又は触媒燃焼部を触媒燃焼反応 に必要な温度まで加熱する。加熱温度は、燃料の種類や触媒物質の種類などによつ て異なるが、通常、 300°C程度まで加熱すればよい。このため、触媒燃焼式熱源に は、通常、燃料気体又は触媒燃焼部を触媒燃焼に必要な温度まで加熱するための 予熱器を設置する。予熱器としては、例えば、燃料気体を燃焼させる方式のパーナ 一や、熱電発電によって発生した余剰電力をキャパシターや電池等に貯電し、再起 動時にその電力により発熱するヒーター等を用いることができる。電源装置の携帯性 を高めるためには、予熱器を触媒燃焼式熱源に一体化させることが好ましいが、例え ば、該触媒燃焼装置の外部から燃料気体を導入する場合には、燃料気体の予熱器 を触媒燃焼式熱源の外部に設置しても良 、。  [0026] In order to start catalytic combustion, usually, the fuel gas or the catalytic combustion section is heated to a temperature required for the catalytic combustion reaction. The heating temperature varies depending on the type of the fuel, the type of the catalyst substance, and the like, but generally, the heating may be performed up to about 300 ° C. For this reason, a preheater for heating the fuel gas or the catalytic combustion section to the temperature required for catalytic combustion is usually installed in the catalytic combustion heat source. As the preheater, for example, a burner that burns fuel gas, a heater that stores excess power generated by thermoelectric generation in a capacitor or a battery, and generates heat by the power when restarting, etc. can be used. . In order to enhance the portability of the power supply device, it is preferable to integrate the preheater with the catalytic combustion type heat source.For example, when introducing the fuel gas from outside the catalytic combustion device, the preheating of the fuel gas is performed. The vessel may be installed outside the catalytic combustion heat source.
[0027] (2)熱電発電モジュール  (2) Thermoelectric power generation module
熱電発電モジュールとしては、例えば、 p型熱電変換材料の一端と n型熱電変換材 料の一端とを電気的に接続してなる熱電変換素子を複数個用い、このような熱電変 換素子の P型熱電変換材料の未接合の一端を、他の熱電変換素子の n型熱電変換 材料の未接合の端部に電気的に接続する方法で複数の熱電変換素子を直列に接 続してなる構造のものを用いることができる。  As the thermoelectric generation module, for example, a plurality of thermoelectric conversion elements formed by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are used. Structure in which a plurality of thermoelectric conversion elements are connected in series by electrically connecting one end of the non-bonded type thermoelectric conversion material to the other end of the n-type thermoelectric conversion material of another thermoelectric conversion element Can be used.
[0028] 具体的な形状については、特に限定的ではないが、上記した触媒燃焼式熱源によ り効率よく加熱するためには、熱電変換材料を接合した基板面の面積が大き!ヽことが 好ましぐ通常は、全体として板状の構造のモジュールが好ましい。 [0028] The specific shape is not particularly limited, but may be determined by the above-described catalytic combustion heat source. For efficient heating, it is preferable that the area of the substrate surface to which the thermoelectric conversion material is bonded is large. Normally, a module having a plate-like structure as a whole is preferable.
[0029] p型熱電変換材料と n型熱電変換材料の種類にっ 、ては特に限定的ではなく、そ れぞれ、両端に温度差を生じさせた場合に、正のゼーベック係数を示す材料と、負 のゼーベック係数を示す材料を用いればよい。本発明では、特に、高温の空気中に ぉ 、て安定に使用できる酸ィ匕物力もなる熱電変換材料を用いることが好まし 、。  [0029] The type of the p-type thermoelectric conversion material and the type of the n-type thermoelectric conversion material are not particularly limited. Each of the materials exhibits a positive Seebeck coefficient when a temperature difference is generated between both ends. And a material having a negative Seebeck coefficient may be used. In the present invention, it is particularly preferable to use a thermoelectric conversion material which can be used stably in high-temperature air and also has an oxidizing power.
[0030] 具体的には、 p型熱電変換材料としては、 Ca Co Oで表される複合酸化物、 Ca Co [0030] Specifically, as the p-type thermoelectric conversion material, a composite oxide represented by Ca Co O, Ca Co
3 4 9 3 4 3 4 9 3 4
Oの Ca及び Z又は Coの一部を他の元素で置換した複合酸化物、 Bi M Co 0 (Mは、A composite oxide obtained by substituting a part of Ca and Z or Co of O with another element, Bi M Co 0 (M is
9 2 2 2 99 2 2 2 9
Sr、 Ca又は Baである)で表される複合酸化物、 Bi M Co 0の Bi及び Sr, Ca or Ba), a complex oxide represented by Bi M Co 0 Bi and
2 2 2 9 Z又は Mの一部を 他の元素で置換した複合酸ィ匕物等の CoO系層状酸ィ匕物等を用いることができる。ま  Co-based layered oxides such as complex oxides in which a part of 222 or Z is substituted with other elements can be used. Ma
2  2
た、 n型熱電変換材料としては、 LnNiO (Lnはランタノイドである)で表される複合酸ィ匕  In addition, as an n-type thermoelectric conversion material, a composite oxidizing material represented by LnNiO (Ln is a lanthanoid) is used.
3  Three
物、 LnNiOの Ln及び Z又は Niの一部を他の元素で置換した複合酸化物等のぺロブ  , Such as complex oxides in which part of Ln and Z or Ni of LnNiO are replaced with other elements
3  Three
スカイト構造を有する複合酸化物、 Ln NiOで NiOの Ln  Composite oxide with skyte structure, Ln NiO with Ln of NiO
2 4 表される複合酸化物、 Ln  2 4 Complex oxide represented by Ln
2 4 及 び Z又は Niの一部を他の元素で置換した複合酸ィ匕物等の層状ぺロブスカイト構造を 有する複合酸ィ匕物等を用いることができる。  A composite oxide having a layered perovskite structure, such as a composite oxide in which 24 and / or Z or Ni is partially substituted with another element, can be used.
[0031] これらの熱電変換材料について、更に具体的に説明する。 [0031] These thermoelectric conversion materials will be described more specifically.
[0032] Ώ¾ί熱雷 橼材料 [0032] ¾ί ¾ίThermal thunder橼 Material
Ρ型熱電変換材料としては、一般式: Ca A1 Co A2 O (式中、 A1は、 Na、 K、 Li、 a b c d e The Ρ-type thermoelectric conversion material has the general formula: Ca A 1 Co A 2 O (where A 1 is Na, K, Li, abcde
Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノイド力らなる群力 ら選択される一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群から選択される一種又は二種以上の元素であり、 2.2≤a≤3.6 ;0≤b≤0.8 ;2.0≤c≤4.5 ;0≤d≤2.0 ;8≤e≤10である。)で表される複 合酸化物、及び一般式: Bi Pb M1 Co M20 (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 f g h i j k One or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids; A 2 Is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta; 2.2≤a≤3.6; 0≤ b≤0.8; 2.0≤c≤4.5; 0≤d≤2.0; 8≤e≤10. ) And a general formula: Bi Pb M 1 Co M 20 (where M 1 is Na, K, Li, Ti, V, Cr, fghijk
Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイド力らなる群力ら選択さ れる一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群力も選択される一種又は二種以上の元素であり、 1.8≤f≤ 2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ; 1.6≤i≤2.2 ;0≤j≤0.5 ;8≤k≤10である。)で表される 複合酸ィ匕物からなる群力 選ばれた少なくとも一種の酸ィ匕物を用いることができる。 上記各一般式においてランタノイド元素としては、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Lu等を例示できる。 Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and one or more elements selected from a group of lanthanoids, and M 2 is Ti, V, The group force consisting of Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta is also one or more elements selected, and 1.8≤f≤ 2.2; 0≤g≤0.4; 1.8≤ h≤2.2; 1.6≤i≤2.2; 0≤j≤0.5; 8≤k≤10. ) The at least one selected selected from the group consisting of the composite iris can be used. In each of the above general formulas, examples of the lanthanoid element include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the like.
[0033] この様な一般式で表される複合酸化物は、 Ca、 Co及び 0により構成される Ca CoO [0033] The composite oxide represented by such a general formula is Ca CoO composed of Ca, Co and 0.
2 3 という組成比、又は Bi、 M1及び 0により構成される Bi M1 0という組成比の岩塩型構造 2 3 that the composition ratio, or Bi, rock-salt type composition ratio of configured Bi M 1 0 by M 1 and 0 structure
2 2 4  2 2 4
を有する層と、六つの 0がーつの Coに八面体配位し、その八面体がお互いに辺を共 有するように二次元的に配列した CoO層が交互に積層した構造を有するものであり、  And a CoO layer in which six 0s are octahedrally coordinated with one Co and two-dimensionally arranged so that the octahedra have sides with each other. ,
2  2
前者の場合、 Ca CoOの Caの一部が A1で置換され、さらにこの層の Coの一部及び In the former case, a part of Ca of Ca CoO is replaced by A 1, further part of Co in the layer and
2 3  twenty three
CoO層の Coの一部が A2によって置換されており、後者では Biの一部が Pb又は のSome of Co in CoO layer is replaced by A 2, part s the or Pb and Bi in the latter
2 2
一部で置換され、 Coの一部が M2によって置換されて!、る。 It is replaced with a part, part of Co is replaced by M 2!, Ru.
[0034] これらの複合酸化物は p型熱電変換材料として高いゼーベック係数を有し、且つ電 気伝導性も良好である。例えば、 100K以上の温度で 100 VZK程度以上のゼー ベック係数と、 50m Ω cm程度以下、好ましくは 30m Ω cm程度以下の電気抵抗率を 有し、温度の上昇とともにゼーベック係数が増加し、電気抵抗率が減少する傾向を示 すものを得ることができる。  [0034] These composite oxides have a high Seebeck coefficient as a p-type thermoelectric conversion material, and also have good electric conductivity. For example, it has a Seebeck coefficient of about 100 VZK or more at a temperature of 100 K or more, and an electric resistivity of about 50 mΩcm or less, preferably about 30 mΩcm or less. We can get something that shows a tendency to decrease.
[0035] 上記した複合酸ィ匕物の内で、好ましい酸ィ匕物の一例として、一般式: Ca A1 Co O a b 4 e[0035] Among the above-mentioned complex oxidized products, an example of a preferred oxidized product is a compound represented by a general formula: Ca A 1 Co O ab 4 e
(式中、 A1は、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y及 びランタノイドからなる群力も選択される一種又は二種以上の元素であり、 2.2≤a≤ 3.6 ;0≤b≤0.8 ;8≤e≤10である。)で表される複合酸化物、一般式: Bi Pb M1 Co f g h 2(Wherein, A 1 is, Na, K, Li, Ti , V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, also the group force consisting of Y及beauty lanthanoid is selected A complex oxide represented by the formula: Bi Pb M 1 Co fgh 2, which is one or more of the following elements: 2.2 ≤ a ≤ 3.6; 0 ≤ b ≤ 0.8; 8 ≤ e ≤ 10.
O (式中、 M1は、 Sr、 Ca及び Baからなる群力 選択される一種又は二種以上の元素 k O (wherein, M 1 is a group consisting of Sr, Ca and Ba. One or more selected elements k
であり、 1.8≤f≤2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ;8≤k≤10である。)で表される複合酸 化物からなる群力も選ばれた少なくとも一種の酸ィ匕物等を挙げることができる。これら の酸化物は、例えば、 100K以上の温度で 100 νΖκ程度以上のゼーベック係数 と、 10m Ω cm程度以下の電気抵抗率を有し、温度の上昇とともにゼーベック係数が 増加し、電気抵抗率が減少する傾向を示すものとすることができる。  1.8≤f≤2.2; 0≤g≤0.4; 1.8≤h≤2.2; 8≤k≤10. )), At least one kind of oxide selected from the group consisting of the complex oxide represented by the formula (1). These oxides have, for example, a Seebeck coefficient of about 100 νΖκ or more at a temperature of 100 K or more and an electric resistivity of about 10 mΩcm or less.The Seebeck coefficient increases with increasing temperature, and the electric resistivity decreases. May be shown.
[0036] 上記各一般式で表される複合酸化物は、単結晶体或いは多結晶焼結体の何れで も良い。 [0036] The composite oxide represented by each of the above general formulas may be either a single crystal or a polycrystalline sintered body.
[0037] これらの複合酸ィ匕物の製造方法については、特に限定はなぐ上記した組成を有 する単結晶体又は多結晶体を製造できる方法であればよい。 [0038] 例えば、フラックス法、ゾーンメルト法、引き上げ法、ガラス前駆体を経由するガラス ァニール法等の単結晶製造法、固相反応法、ゾルゲル法等の粉末製造法、スパッタ リング法、レーザーアブレーシヨン法、ケミカル 'ベーパ一'デポジション法等の薄膜 製造法等の公知の方法によって上記組成を有する結晶構造の複合酸化物を製造す ればよい。 [0037] The method for producing these complex oxidized products is not particularly limited as long as the method can produce a single crystal or a polycrystal having the above-mentioned composition. [0038] For example, a single crystal production method such as a flux method, a zone melt method, a pulling method, a glass anneal method via a glass precursor, a solid-state reaction method, a powder production method such as a sol-gel method, a sputtering method, a laser method. A composite oxide having a crystal structure having the above composition may be produced by a known method such as a thin film production method such as a brazing method and a chemical 'vapor-deposition' method.
[0039] これらの方法の例として、以下、固相反応法による本発明の複合酸化物の製造方 法について説明する。  As an example of these methods, a method for producing the composite oxide of the present invention by a solid-phase reaction method will be described below.
[0040] 上記した複合酸ィ匕物は、例えば、目的とする複合酸化物の元素成分比率と同様の 元素成分比率となるように原料物質を混合し、焼成することによって製造することがで きる。  [0040] The above-mentioned composite oxidized product can be produced, for example, by mixing and firing the raw materials so as to have the same element component ratio as the target composite oxide. .
[0041] 焼成温度及び焼成時間については、目的とする複合酸化物が形成される条件とす れば良ぐ特に限定されないが、例えば、 1073— 1373K (絶対温度)程度の温度範 囲において、 20— 40時間程度焼成すれば良い。尚、原料物質として炭酸塩や有機 化合物等を用いる場合には、焼成する前に予め仮焼きして原料物質を分解させた後 、焼成して目的の複合酸化物を形成することが好ましい。例えば、原料物質として炭 酸塩を用いる場合には、 1073— 1173K (絶対温度)程度で 10時間程度仮焼きした 後、上記した条件で焼成すれば良い。焼成手段は特に限定されず、電気加熱炉、ガ ス加熱炉等任意の手段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等 の酸ィ匕性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例 えば、不活性雰囲気中で焼成することも可能である。生成する複合酸化物中の酸素 量は、焼成時の酸素分圧、焼成温度、焼成時間等により制御することができ、酸素分 圧が高い程、上記一般式における酸素比率を高くすることができる。  [0041] The firing temperature and the firing time are not particularly limited as long as the desired composite oxide is formed. For example, in the temperature range of about 1073 to 1373K (absolute temperature), — Bake for about 40 hours. When a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form the target composite oxide. For example, when a carbonate is used as a raw material, it may be calcined at about 1073 to 1173 K (absolute temperature) for about 10 hours and then calcined under the above conditions. The firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted. The firing atmosphere may be usually an oxidizing atmosphere such as an oxygen stream or air, but when the raw material contains a sufficient amount of oxygen, the firing may be performed in an inert atmosphere, for example. It is possible. The amount of oxygen in the resulting composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, etc., and the higher the oxygen partial pressure, the higher the oxygen ratio in the above general formula can be. .
[0042] また、ガラス前駆体を経由するガラスァニール法では、まず、原料物質を溶融し、急 冷して固化させる。この際の溶融条件は、原料物質を均一に溶融できる条件であれ ば良いが、溶融容器力 の汚染や原料成分の蒸発を防止するためには、例えば、ァ ルミナ製ルツボを用いる場合には、 1473— 1673K (絶対温度)程度に加熱して溶融 することが好ましい。加熱時間については特に限定はなぐ原料物質が均一に溶融 するまで加熱すればよぐ通常、 30分一 1時間程度の加熱時間とすれば良い。加熱 手段については、特に限定されず、電気加熱炉、ガス加熱炉等の任意の手段を採用 することができる。溶融の際の雰囲気は、例えば空気中や 300mlZl程度以下の酸 素気流中等の酸素含有雰囲気とすればよいが、原料物質が十分量の酸素を含む場 合には、不活性雰囲気で溶融しても良い。 [0042] In the glass annealing method via a glass precursor, first, a raw material is melted, rapidly cooled, and solidified. The melting conditions at this time may be any conditions that can uniformly melt the raw material.However, in order to prevent contamination of the melting vessel power and evaporation of the raw material components, for example, when using an aluminum crucible, It is preferable to melt by heating to about 1473-1673K (absolute temperature). The heating time is not particularly limited, and the heating may be performed until the raw material is uniformly melted. Usually, the heating time may be about 30 minutes to 1 hour. heating The means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted. The atmosphere at the time of melting may be an oxygen-containing atmosphere such as in air or an oxygen gas stream of about 300 ml Zl or less.If the raw material contains a sufficient amount of oxygen, the atmosphere is melted in an inert atmosphere. Is also good.
[0043] 急冷条件については特に限定的ではないが、形成される固化物の少なくとも表面 部分がガラス状の非晶質層となる条件で急冷すればよい。例えば、溶融物を金属板 上に流し出し、上方力 圧縮する等の手段により急冷すればよい。冷却速度は、通 常、 500K (絶対温度) Z秒程度以上とすればよぐ ιο3κΖ秒以上とすることが好ま しい。 [0043] The quenching condition is not particularly limited, but the quenching may be performed under such a condition that at least the surface portion of the formed solid becomes a glassy amorphous layer. For example, the melt may be poured onto a metal plate and rapidly cooled by means of upward compression. Usually, the cooling rate should be about 500K (absolute temperature) Z seconds or more, and preferably 3 κΖ seconds or more.
[0044] 次いで、急冷により形成された固化物を酸素含有雰囲気中で熱処理することによつ て、該固化物の表面から、目的とする複合酸化物が繊維状の単結晶として成長する  [0044] Next, by subjecting the solidified material formed by rapid cooling to a heat treatment in an oxygen-containing atmosphere, a target composite oxide grows as a fibrous single crystal from the surface of the solidified material.
[0045] 熱処理温度は、 1153— 1203K (絶対温度)程度とすればよぐ空気中や酸素気流 中等の酸素含有雰囲気中で加熱すればよい。酸素気流中で加熱する場合には、例 えば、 300mlZ分程度以下の流量の酸素気流中で加熱すればよい。熱処理時間に ついては、特に限定はなぐ目的とする単結晶の成長の程度に応じて決めればよい 力 通常、 60— 1000時間程度の加熱時間とすればよい。 The heat treatment temperature may be about 1153 to 1203 K (absolute temperature), and heating may be performed in an oxygen-containing atmosphere such as air or an oxygen stream. When heating in an oxygen stream, for example, heating may be performed in an oxygen stream having a flow rate of about 300 mlZ or less. The heat treatment time is not particularly limited, and may be determined according to the degree of growth of the target single crystal. Force Normally, the heating time may be about 60 to 1000 hours.
[0046] 原料物質の混合割合は、目的とする複合酸化物の組成に応じて決めることができ る。具体的には、上記固化物の表面の非晶質層部分から繊維状の複合酸化物単結 晶が形成される際に、該非晶質部分の溶融物の組成を液相組成として、これと相平 衡にある固相の組成の酸ィ匕物単結晶が成長するので、互いに平衡状態にある融液 相と固相(単結晶)の組成の関係によって、出発原料の組成を決めることができる。  [0046] The mixing ratio of the raw materials can be determined according to the composition of the target composite oxide. Specifically, when a fibrous composite oxide single crystal is formed from the amorphous layer portion on the surface of the solidified product, the composition of the melt in the amorphous portion is defined as a liquid phase composition, and Since an oxidized single crystal having a composition of a solid phase in phase equilibrium grows, the composition of the starting material can be determined by the relationship between the composition of the melt phase and the composition of the solid phase (single crystal) which are in equilibrium with each other. it can.
[0047] この様な方法で得られる複合酸化物単結晶の大きさは、原料物質の種類、組成比 、熱処理条件等により変わり得る力 例えば、長さ 10— 1000 m程度、幅 20— 200 μ m程度、厚さ 1一 5 μ m程度の繊維状の形状を有するものとなる。  [0047] The size of the composite oxide single crystal obtained by such a method is determined by a force that can vary depending on the type of the raw material, composition ratio, heat treatment conditions, and the like. For example, a length of about 10 to 1000 m and a width of 20 to 200 μm It has a fibrous shape of about m and a thickness of about 11 μm.
[0048] 上記したガラス前駆体を経由するガラスァニール法及び固相反応法の何れの方法 においても、焼成時の酸素流量により得られる物質の含有酸素量を制御することが でき、流量が多いほど含有酸素量も多くなるが、含有酸素量の変化は、複合酸化物 の電気的特性に大きな影響を及ばさな 、。 [0048] In any of the above-mentioned glass annealing method and the solid-phase reaction method via the glass precursor, the oxygen content of the obtained substance can be controlled by the oxygen flow rate during firing, and the higher the flow rate, the higher the content Although the amount of oxygen increases, the change in the amount of oxygen contained Does not significantly affect the electrical characteristics of the.
[0049] 原料物質は焼成により酸化物を形成し得るものであれば特に限定されず、金属単 体、酸化物、各種ィ匕合物 (炭酸塩等)等が使用できる。例えば、 Ca源としては、酸ィ匕 カルシウム(CaO)、塩化カルシウム(CaCl )、炭酸カルシウム(CaCO )、硝酸カル  [0049] The raw material is not particularly limited as long as it can form an oxide by firing, and a metal alone, an oxide, various conjugates (such as carbonates) and the like can be used. For example, Ca sources include calcium oxide (CaO), calcium chloride (CaCl 2), calcium carbonate (CaCO 3), and calcium nitrate.
2 3  twenty three
シゥム(Ca (NO ) )、水酸化カルシウム(Ca (OH) )、ジメトキシカルシウム(Ca (OC  Shim (Ca (NO)), calcium hydroxide (Ca (OH)), dimethoxy calcium (Ca (OC
3 2 2  3 2 2
H ) )、ジエトキシカルシウム(Ca (OC H ) )、ジプロポキシカルシウム(Ca (OC H H)), diethoxy calcium (Ca (OC H)), dipropoxy calcium (Ca (OC H
3 2 2 5 2 3 73 2 2 5 2 3 7
) )等のアルコキシドィ匕合物等を用いることができ、 Co源としては酸ィ匕コバルト(CoO))), Etc., and the source of Co may be oxidized cobalt (CoO
2 2
、 Co O、 Co O )、塩化コバルト(CoCl )、炭酸コバルト(CoCO )、硝酸コバルト(C , Co O, Co O), cobalt chloride (CoCl), cobalt carbonate (CoCO), cobalt nitrate (C
2 3 3 4 2 3 2 3 3 4 2 3
o (NO ) )、水酸化コバルト(Co (OH) )、ジプロポキシコバルト(Co (OC H ) )等 o (NO)), cobalt hydroxide (Co (OH)), dipropoxy cobalt (Co (OCH)), etc.
3 2 2 3 7 2 のアルコキシドィ匕合物等を用いることができる。その他の元素についても同様に元素 単体、酸化物、塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシド化合物等を用いる ことができる。また、上記複合酸ィ匕物の構成元素を二種以上含む化合物を使用して ちょい。 The alkoxide conjugate of No. 3 232 732 can be used. Similarly, for other elements, elemental elements, oxides, chlorides, carbonates, nitrates, hydroxides, alkoxide compounds and the like can be used. Further, a compound containing two or more kinds of the constituent elements of the above-mentioned composite oxide is used.
[0050] n型熱雷栾椽材料  [0050] n-type thermal lightning material
n型熱電変換材料としては、一般式: Ln R1 Ni R2 O (式中、 Lnはランタノイド力 m n p q r As the n-type thermoelectric conversion material, a general formula: Ln R 1 Ni R 2 O (where Ln is a lanthanoid force mnpqr
選択される一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群 から選択される一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu 、 Mo、 W、 Nb及び Taからなる群から選択される一種又は二種以上の元素であり、 0.5 ≤m≤1.7 ;0≤n≤0.5 ;0.5≤p≤1.2 ;0≤q≤0.5 ;2.7≤r≤3.3である。)で表される複 合酸化物、及び一般式: (Ln R3 ) Ni R4 O (式中、 Lnはランタノイド力 選択される s t 2 u w R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and R 2 is Ti, V , Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta are one or more elements selected from the group consisting of 0.5 ≤ m ≤ 1.7; 0 ≤ n ≤ 0.5; 0.5 ≤ p ≤1.2; 0≤q≤0.5; 2.7≤r≤3.3. ) And the general formula: (Ln R 3 ) Ni R 4 O (where Ln is the lanthanoid force selected st 2 uw
一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選択さ れる一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu、 Mo、 W、 Nb及び Taからなる群力 選択される一種又は二種以上の元素であり、 0.5≤s≤1.2 ; 0≤t≤0.5 ;0.5≤u≤1.2 ;0≤v≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物か らなる群力 選ばれた少なくとも一種の酸ィ匕物を用いることができる。上記一般式に おいて、 m値は、 0.5≤m≤1.7であり、 0.5≤m≤ 1.2であることが好ましい。また、ラン タノイド元素としては、 Laゝ Ceゝ Pr、 Nd、 Sm、 Euゝ Gd、 Tbゝ Dyゝ Ho、 Er、 Tm、 Lu等を例 示できる。 [0051] 上記各一般式で表される複合酸化物は、負のゼーベック係数を有するものであり、 該酸化物からなる材料の両端に温度差を生じさせた場合に、熱起電力により生じる 電位は、高温側の方が低温側に比べて高くなり、 n型熱電変換材料としての特性を 示す。具体的には、上記複合酸化物は、 373K以上の温度において負のゼーベック 係数を有し、例えば、 373K以上の温度で 1一— 20 V/K程度のゼーベック係数を 有するものとなる。 R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and R 4 is Ti, V, Cr, Group power consisting of Mn, Fe, Co, Cu, Mo, W, Nb and Ta One or more elements selected from the group consisting of 0.5≤s≤1.2; 0≤t≤0.5; 0.5≤u≤1.2; 0≤v≤0.5; 3.6≤w≤4.4. ) At least one kind of oxide selected from the group consisting of the complex oxides represented by the formula (1) can be used. In the above general formula, the m value is 0.5≤m≤1.7, and preferably 0.5≤m≤1.2. In addition, examples of the lanthanoid element include La-Ce-Pr, Nd, Sm, Eu-Gd, Tb-Dy-Ho, Er, Tm, and Lu. [0051] The composite oxide represented by each of the above general formulas has a negative Seebeck coefficient. When a temperature difference is generated between both ends of a material made of the oxide, a potential generated by a thermoelectromotive force is generated. Is higher on the high temperature side than on the low temperature side, indicating the properties as an n-type thermoelectric conversion material. Specifically, the composite oxide has a negative Seebeck coefficient at a temperature of 373 K or higher, and has a Seebeck coefficient of about 11 to 20 V / K at a temperature of 373 K or higher.
[0052] 更に、上記複合酸化物は、電気伝導性がよぐ低い電気抵抗率を示し、例えば、 3 73K以上の温度にぉ 、て、 20m Ω cm程度以下の電気抵抗率を有するものとするこ とがでさる。  [0052] Further, the above-described composite oxide has a very low electric resistivity, and for example, has an electric resistivity of about 20 mΩcm or less at a temperature of 373 K or more. This comes out.
[0053] 上記した複合酸ィ匕物は、前者がベロブスカイト型の結晶構造、後者が一般に層状 ぺロブスカイトと呼ばれる結晶構造を有するものであり、一般に前者力 SABO構造、後  [0053] In the above-described composite oxidized product, the former has a crystal structure of a perovskite type, and the latter has a crystal structure generally called a layered perovskite.
3 者が A BO構造とも呼ばれる。どちらの複合酸ィ匕物も Lnの一部が R1又は R3で置換さThe three are also called ABO structures. Part of substitution by R 1 or R 3 either composite Sani匕物also Ln
2 4 twenty four
れ、 Niの一部が R2又は R4で置換されている。 And a part of Ni is substituted with R 2 or R 4 .
[0054] 上記した n型熱電変換材料の内で、好ま ヽ複合酸化物の一例として、 [0054] Among the n-type thermoelectric conversion materials described above, preferred examples of the composite oxide include:
一般式: La R1 NiO (式中、 R1は、 Na General formula: La R 1 NiO (where R 1 is Na
m n r 、 K、 Sr、 Ca及び Biからなる群から選択される 一種又は二種以上の元素であり、 0.5≤m≤1.2 ;0≤n≤0.5 ;2.7≤r≤3.3である。)で 表される複合酸化物、一般式:(La R3 ) NiO (式中、 R3は、 Na It is one or more elements selected from the group consisting of mnr, K, Sr, Ca and Bi, where 0.5≤m≤1.2; 0≤n≤0.5; 2.7≤r≤3.3. ), A general formula: (La R 3 ) NiO (where R 3 is Na
s t 2 w 、 K、 Sr、 Ca及び Bi 力もなる群力 選択される一種又は二種以上の元素であり、 0.5≤s≤1.2 ;0≤t≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物、一般式: La R5 Ni R6 O (式中、 R5 x P q r は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選択される少なくとも一種の元素であり、 R6は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選択される少なくとも一種の元 素であり、 0.5≤x≤ 1.2 ;0≤y≤0.5 ;0.5≤p≤ 1.2 ;0.01≤q≤0.5 ;2.8≤r≤3.2である。 )で表される複合酸ィ匕物等を挙げることができる。 st 2 w, K, Sr, Ca and Bi forces are also one or more elements selected. 0.5≤s≤1.2; 0≤t≤0.5; 3.6≤w≤4.4. ), A composite oxide represented by the general formula: La R 5 Ni R 6 O (where R 5 x P qr is at least one selected from the group consisting of Na, K, Sr, Ca, Bi and Nd) a element, R 6 is at least one of elemental selected Ti, V, Cr, Mn, Fe, from the group consisting of Co and Cu, 0.5≤x≤ 1.2; 0≤y≤0.5; 0.5 ≤p≤1.2; 0.01≤q≤0.5; 2.8≤r≤3.2.
[0055] これらの内で、一般式: La R1 NiOで表される複合酸化物と、一般式:(La R3 ) N m n r s t 2 iOで表される複合酸化物は、例えば 100K以上の温度で- 1一- 30mV/K程度のゼー w Among these, the composite oxide represented by the general formula: La R 1 NiO and the composite oxide represented by the general formula: (La R 3 ) N mnrst 2 iO are, for example, at a temperature of 100 K or more. -1-1-30mV / K see w
ベック係数を有し、且つ低い電気抵抗率を示す。また、例えば、 100K以上の温度に おいて、 10m Ω cm程度以下の電気抵抗率を有するものとすることができる。  It has a Beck coefficient and exhibits low electrical resistivity. Further, for example, at a temperature of 100 K or more, the material can have an electric resistivity of about 10 mΩcm or less.
[0056] また、一般式: La R5 Ni R6 Oで表される複合酸化物は、 100°C以上の温度にお Further, the composite oxide represented by the general formula: La R 5 Ni R 6 O can be heated at a temperature of 100 ° C. or more.
P いて負のゼーベック係数を有するものであり、更に、電気伝導性がよぐ低い電気抵 抗率を示し、 100°C以上の温度において、 10m Ω cm以下の電気抵抗率である。 P It has a negative Seebeck coefficient and exhibits a very low electrical resistivity with low electrical conductivity, and has an electrical resistivity of 10 mΩcm or less at a temperature of 100 ° C or more.
[0057] 上記各複合酸化物の多結晶焼結体は、目的とする複合酸化物の金属成分比率と 同様の金属成分比率となるように原料物質を混合し、焼成することによって製造する ことができる。即ち、上記一般式における Ln、
Figure imgf000016_0001
R4及び Niの金属成分比率 となるように原料物質を混合し、焼成することにより、目的とする複合酸化物の多結晶 焼結体を得ることができる。
[0057] The polycrystalline sintered body of each of the above composite oxides can be manufactured by mixing and firing the raw materials so as to have the same metal component ratio as that of the target composite oxide. it can. That is, Ln in the above general formula,
Figure imgf000016_0001
By mixing and firing the raw materials so that the metal component ratio of R 4 and Ni is attained, a polycrystalline sintered body of the target composite oxide can be obtained.
[0058] 原料物質としては、焼成により酸ィ匕物を形成し得るものであれば特に限定されず、 金属単体、酸化物、各種ィ匕合物 (炭酸塩等)等を使用できる。例えば、 La源としては 、酸ィ匕ランタン (La O )、炭酸ランタン (La (CO ) )、硝酸ランタン (La (NO ) )、塩 [0058] The raw material is not particularly limited as long as it can form an oxidized product by firing, and may be a simple metal, an oxide, various oxidized products (such as a carbonate), or the like. For example, as the La source, lanthanum oxylan (La O), lanthanum carbonate (La (CO)), lanthanum nitrate (La (NO)), salt
2 3 2 3 3 3 3 化ランタン (LaCl )、水酸化ランタン (La (OH) )、アルコキシドィ匕合物(ジメトキシラ  2 3 2 3 3 3 3 Lanthanum hydride (LaCl), lanthanum hydroxide (La (OH)), alkoxide compound (dimethoxyla
3 3  3 3
ンタン(La (OCH ) )、ジエトキシランタン(La (OC H ) )、ジプロポキシランタン(La  (La (OCH)), Diethoxysilane (La (OCH)), Dipropoxylantan (La
3 3 2 5 3  3 3 2 5 3
(OC H ) )等)等を使用でき、 Ni源としては、酸ィ匕ニッケル (NiO)、硝酸ニッケル (N (OC H)), etc.). Ni sources include nickel oxide (NiO), nickel nitrate (N
3 7 3 3 7 3
i (NO ) )、塩化ニッケル(NiCl )、水酸化ニッケル(Ni(OH) )、アルコキシド化合 i (NO)), nickel chloride (NiCl), nickel hydroxide (Ni (OH)), alkoxide compound
3 2 2 2 3 2 2 2
物(ジメトキシニッケル(Ni (OCH ) )、ジエトキシニッケル(Ni (OC H ) )、ジプロボ  Products (dimethoxynickel (Ni (OCH)), diethoxynickel (Ni (OCH)), dipropo
3 2 2 5 2  3 2 2 5 2
キシニッケル (Ni (OC H ) )等)等を使用できる。その他の元素についても同様に酸  Xinickel (Ni (OC H)) or the like can be used. The same applies to other elements.
3 7 2  3 7 2
化物、塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシド化合物等を用いることがで きる。また本発明の複合酸ィ匕物の構成元素を二種以上含む化合物を使用してもよい  Compounds, chlorides, carbonates, nitrates, hydroxides, alkoxide compounds and the like can be used. Further, a compound containing two or more kinds of constituent elements of the composite acid oxidant of the present invention may be used.
[0059] 焼成温度及び焼成時間については、目的とする複合酸化物が形成される条件とす ればよぐ特に限定されないが、例えば、 1123— 1273K (絶対温度)程度の温度範 囲において、 20時間一 40時間程度焼成すればよい。尚、原料物質として炭酸塩や 有機化合物等を用いる場合には、焼成する前に予め仮焼して原料物質を分解させ た後、焼成して目的の複合酸化物を形成することが好ましい。例えば、原料物質とし て、炭酸塩を用いる場合には、 873— 1073K (絶対温度)程度で 10時間程度仮焼し た後、上記した条件で焼成すればよい。 The calcination temperature and the calcination time are not particularly limited as long as they are conditions under which the target composite oxide is formed. For example, in a temperature range of about 1123 to 1273 K (absolute temperature), It may be fired for about 40 hours. When a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form a target composite oxide. For example, when a carbonate is used as a raw material, it may be calcined at about 873 to 1073 K (absolute temperature) for about 10 hours and then calcined under the above conditions.
[0060] 焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる 。焼成雰囲気は、通常、酸素気流中、空気中等の酸ィ匕性雰囲気中とすればよいが、 原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で焼成するこ とも可能である。 [0060] The firing means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted. The firing atmosphere may be usually an oxygen atmosphere, an oxidizing atmosphere such as in air, When the raw material contains a sufficient amount of oxygen, for example, calcination can be performed in an inert atmosphere.
[0061] 生成する複合酸化物中の酸素量は、焼成時の酸素分圧、焼成温度、焼成時間等 により制御することができ、酸素分圧が高い程、上記一般式における酸素比率を高く することができるが、熱電特性には大きな影響を与えない。  [0061] The amount of oxygen in the resulting composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, and the like. The higher the oxygen partial pressure, the higher the oxygen ratio in the above general formula. But does not significantly affect the thermoelectric properties.
[0062] また、上記した p型熱電変換材料として用いる複合酸化物と同様に、例えば、フラッ タス法などの方法によって単結晶体として製造することも可能である。  [0062] Similarly to the above-described composite oxide used as the p-type thermoelectric conversion material, for example, it can be manufactured as a single crystal by a method such as the flatus method.
[0063] 熱雷変換素子  [0063] Thermal lightning conversion element
本発明で用いる熱電変換素子は、上記した p型熱電変換材料の一端と n型熱電変 換材料の一端とを電気的に接続したものである。この場合、 p型熱電変換材料と n型 熱電変換材料の熱起電力の絶対値の和が、例えば、 293— 1073K (絶対温度)の 範囲の全ての温度において 60 μ VZK程度以上、好ましくは 100 μ VZK程度以上 となるように熱電変換材料を組合せて用いることが好ましい。また、両材料とも、 293 一 1073K (絶対温度)の範囲の全ての温度にお!、て電気抵抗率が 50m Ω cm程度 以下、好ましくは 8m Ω cm程度以下であることが好まし 、。  The thermoelectric conversion element used in the present invention is one in which one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are electrically connected. In this case, the sum of the absolute values of the thermoelectromotive forces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material is, for example, at least about 60 μVZK at all temperatures in the range of 293 to 1073K (absolute temperature), preferably 100 μVZK. It is preferable to use a combination of thermoelectric conversion materials so as to be about μVZK or more. Further, both materials preferably have an electric resistivity of about 50 mΩcm or less, preferably about 8 mΩcm or less at all temperatures in the range of 293 to 1073 K (absolute temperature).
[0064] 使用する p型熱電変換材料及び n型熱電変換材料の形状、大きさ等につ!ヽては、 特に限定されるものではなぐ目的とする熱電発電モジュールの大きさ、形状等に応 じて、必要な熱電性能を発揮できるように適宜決めればよい。例えば、一辺が 一 10cm程度の断面と 100 m— 20cm程度の長さを有する直方体状の材料や、断 面の直径が — 10cmであって、長さが 100 m— 20cm程度の円柱状の材料 として用いることができる。  [0064] The shape, size, etc. of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material to be used are not particularly limited, but may vary depending on the size, shape, etc. of the target thermoelectric power generation module. First, it may be determined appropriately so as to exhibit necessary thermoelectric performance. For example, a rectangular parallelepiped material with a cross section of about 10 cm on a side and a length of about 100 m to 20 cm, or a cylindrical material with a cross section of —10 cm and a length of about 100 m to 20 cm Can be used as
[0065] p型熱電変換材料の一端と n型熱電変換材料の一端を電気的に接続するための具 体的な方法については、特に限定はないが、接合した際に、 293— 1073K (絶対温 度)の全ての範囲において素子の熱起電力が 60 VZK以上、電気抵抗が 200m Ω以下の特性を維持できる方法が好ま 、。  [0065] The specific method for electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material is not particularly limited, but may be 293-1073K (absolute) when joined. It is preferable to use a method that can maintain the characteristics in which the thermoelectromotive force of the element is 60 VZK or more and the electric resistance is 200 mΩ or less in the entire range of (temperature).
[0066] 具体的な接続方法としては、例えば、高温での使用に耐え得る方法として、接合剤 を用いて P型熱電変換材料の一端と n型熱電変換材料の一端を導電性材料に接着 する方法、 p型熱電変換材料の一端と n型熱電変換材料の一端を直接又は導電性 材料を介して圧着又は焼結させる方法、導体材料を用いて p型熱電変換材料と n型 熱電変換材料を電気的に接触させる方法等を例示できる。以下、これらの方法につ いてより具体的に説明する。 As a specific connection method, for example, as a method that can withstand use at high temperatures, one end of the P-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are bonded to a conductive material using a bonding agent. Method, one end of p-type thermoelectric conversion material and one end of n-type thermoelectric conversion material directly or conductive Examples thereof include a method of pressing or sintering through a material, a method of electrically contacting a p-type thermoelectric conversion material and an n-type thermoelectric conversion material using a conductive material, and the like. Hereinafter, these methods will be described more specifically.
[0067] 尚、接続によって生じる電気抵抗は、接続方法や接合部分の面積、使用する導電 性材料の種類、大きさなどに依存するが、一般に、熱電変換素子全体の抵抗に占め る接合部の抵抗の割合が 50%程度以下となるように接続条件を設定することが好ま しぐ 10%程度以下となるように設定することがより好ましぐ 5%程度以下となるよう に設定することが更に好まし 、。  [0067] The electric resistance generated by the connection depends on the connection method, the area of the joint, the type and size of the conductive material to be used, etc., but generally, the electric resistance of the joint occupying the resistance of the entire thermoelectric conversion element. It is preferable to set the connection conditions so that the resistance ratio is about 50% or less.It is more preferable to set it so that it is about 10% or less.It is more preferable to set it so that it is about 5% or less. More preferred.
[0068] 図 1は、接合剤を用 ヽて p型熱電変換材料の一端と n型熱電変換材料の一端を導 電性材料に接着して得られた熱変換素子の一例を模式的に示す図面である。図 1に おいて、(a— 1)型の素子は、接合剤を用いて p型熱電変換材料の一端と n型熱電変 換材料の一端を基板に接着したものである。接合剤としては、金属ペースト、ハンダ などを用いることができる力 特に、 1073K程度の高温においても溶融することなぐ 化学的に安定であり、低抵抗を維持できるものとして、金、銀、白金などの貴金属べ 一ストを用いることが好ましい。接着時には、基板と熱電変換材料とを密着させるため に、加圧しながら接合剤を固化させても良い。基板としては、 1073K程度の高温の 空気中においても酸ィ匕されない材料を用いることが好ましぐ例えば、アルミナなどの 酸ィ匕物セラミックス力もなる基板を用いればよい。基板の長さ、幅、厚さなどは、モジ ユールの大きさ、電気抵抗等に合わせて適宜設定すればょ ヽ。  FIG. 1 schematically shows an example of a heat conversion element obtained by bonding one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a conductive material using a bonding agent. It is a drawing. In FIG. 1, the (a-1) type device is obtained by bonding one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a substrate using a bonding agent. As a bonding agent, the ability to use metal paste, solder, etc.Especially, as a material that is chemically stable without melting even at a high temperature of about 1073K and can maintain low resistance, such as gold, silver, platinum, etc. It is preferable to use a noble metal base. At the time of bonding, the bonding agent may be solidified while applying pressure in order to bring the substrate and the thermoelectric conversion material into close contact. As the substrate, it is preferable to use a material which is not oxidized even in air at a high temperature of about 1073K. For example, a substrate having an oxidized ceramic such as alumina may be used. The length, width, thickness, etc. of the substrate should be set appropriately according to the size of the module, electrical resistance, etc.
[0069] 図 1に示した (a— 2)型の素子は、基板として導電性セラミックス基板を用いるもので あり、この場合には、基板と熱電変換材料との接着部分にのみ接合剤を付与すれば よいが、絶縁性セラミックスを用いる場合には、(a— 1)型のように p型熱電変換材料の 接着部分と n型熱電変換材料の接着部分の間を導電性を有する接合剤で連結する 方法、(a— 3)型のように絶縁性セラミックスに金属被覆を設ける方法などによって p型 熱電変換材料と n型熱電変換材料を電気的に接続することが必要である。  [0069] The (a-2) type element shown in Fig. 1 uses a conductive ceramic substrate as a substrate. In this case, a bonding agent is applied only to an adhesive portion between the substrate and the thermoelectric conversion material. However, when using insulating ceramics, a conductive bonding agent is used between the bonded part of the p-type thermoelectric conversion material and the bonded part of the n-type thermoelectric conversion material as in (a-1) type. It is necessary to electrically connect the p-type thermoelectric conversion material and the n-type thermoelectric conversion material by a method of connection, a method of providing a metal coating on insulating ceramics such as the type (a-3).
[0070] (a— 2)型の素子で用いる導電性セラミックスについては、 1073K程度の高温の空 気中においても酸ィ匕されない材料を用いることが好ましい。また、基板の長さ、幅、厚 さなどは、モジュールの大きさ、電気抵抗等に合わせて適宜設定すればよい。 [0071] (a— 3)型の素子で用いる金属被覆としては、高温の空気中で酸化されず、低い電 気抵抗を有するものであればよぐ例えば、蒸着法などによって形成された銀、金、 白金などの貴金属の被覆を用いることができる。 [0070] As the conductive ceramic used in the (a-2) type element, it is preferable to use a material that is not oxidized even in air at a high temperature of about 1073K. Further, the length, width, thickness, and the like of the substrate may be appropriately set according to the size of the module, electric resistance, and the like. [0071] The metal coating used in the (a-3) type element may be any metal coating that is not oxidized in high-temperature air and has low electric resistance. For example, silver formed by a vapor deposition method or the like may be used. Precious metal coatings such as gold and platinum can be used.
[0072] 図 1の (a— 4)型の素子は、 p型熱電変換材料の一端と n型熱電変換材料の一端を 導線で接続したものである。導線の接続には、(a— 1)型の素子と同様の接合剤を用 いることができる。導線としては、 1073K程度の高温の空気中においても酸ィ匕されな い材料を用いることが好ましぐ例えば、金、銀、白金線などを用いることができる。導 線の長さ、形状などについても、モジュールの大きさ、電気抵抗などに合わせて適宜 選択すればよい。  The (a-4) type element in FIG. 1 is one in which one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are connected by a conductive wire. The same bonding agent as that of the (a-1) type element can be used for connecting the conductive wires. As the conductive wire, it is preferable to use a material which is not oxidized even in the air at a high temperature of about 1073K. For example, a gold, silver, platinum wire or the like can be used. The length and shape of the conductor may be appropriately selected according to the size of the module, electric resistance, and the like.
[0073] 図 2は、焼結又は圧着によって電気的に接続して得られた熱電変換素子の一例を 模式的に示す図面である。  FIG. 2 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrical connection by sintering or crimping.
[0074] 図 2の(s - 1)型素子は、 p型熱電変換材料の端部と n型熱電変換材料の端部を直 接焼結させて接続した熱電変換素子である。このような材料は、例えば、 p型熱電変 換材料の一面と n型熱電変換材料の一面を焼結させた後、ダイヤモンドカッターなど を用いて焼結面に切り込みを入れて、両材料の一部分を分離させることによって得る ことができる。切り込みの長さについては特に限定されず、必要な電気抵抗、電圧、 機械的強度などに基づいて適宜決めればよい。両材料の接触部分については、そ の面積が大きくなると素子全体の電気抵抗が低減するが、その一方で熱電変換材料 の分離した部分の長さが短いと、高温部と低温部の温度差が小さくなつて発生電圧 力 S小さくなるので、これらの点を考慮して適宜決めればょ 、。  [0074] The (s-1) type element in Fig. 2 is a thermoelectric conversion element in which an end of a p-type thermoelectric conversion material and an end of an n-type thermoelectric conversion material are directly sintered and connected. For example, after sintering one surface of the p-type thermoelectric conversion material and one surface of the n-type thermoelectric conversion material, a cut is made in the sintered surface using a diamond cutter or the like, and a part of both materials is cut. Can be obtained by separating The length of the cut is not particularly limited, and may be appropriately determined based on necessary electric resistance, voltage, mechanical strength, and the like. As for the contact area between the two materials, the larger the area, the lower the electrical resistance of the entire device.On the other hand, if the length of the separated part of the thermoelectric conversion material is short, the temperature difference between the high temperature area and the low temperature area As the voltage becomes smaller, the generated voltage S becomes smaller, so it is necessary to decide appropriately taking these points into consideration.
[0075] 図 2の (s— 2)型素子は、焼結や圧着によって素子を形成する際に、熱電変換材料 間における反応防止、高い機械的強度の維持等のために、熱電変換材料間に金属 シート、金属網、結合剤、導電性セラミックスなどの導電性材料を配置した状態で焼 結や圧着を行って得られた素子である。この場合、金属シート、金属網などとしては、 材料間の反応を防止でき、しかも低抵抗の材料であれば特に限定なく使用できる。 厚さは、通常、 1一 100 m程度が好ましい。結合剤としては、例えば、前記した結合 剤を用いる接着方法で使用する貴金属ペースト等を用いることができる。また、導電 性セラミックスとしては、特に限定はなぐ適当な厚さの板状等の導電性セラミックス等 を使用できる。 [0075] The (s-2) type element in FIG. 2 is used to prevent reaction between thermoelectric conversion materials and maintain high mechanical strength when forming the element by sintering or pressure bonding. This is a device obtained by sintering or crimping with a conductive material such as a metal sheet, a metal net, a binder, conductive ceramics, etc. arranged on the device. In this case, as the metal sheet, the metal net or the like, any material can be used without particular limitation as long as it can prevent a reaction between the materials and has a low resistance. Usually, the thickness is preferably about 100 m. As the binder, for example, a noble metal paste or the like used in the bonding method using the binder can be used. The conductive ceramics include, but are not particularly limited to, plate-shaped conductive ceramics having an appropriate thickness. Can be used.
[0076] 図 2の(s— 3)型素子は、導電性セラミックスを基板として用い、これに p型熱電変換 材料の一端と n型熱電変換材料の一端を焼結によって接合したものである。また、 (s 4)型素子は、(s 2)型素子と同様の金属シート、金属網などを用い、これを介して 、p型熱電変換材料の一端と n型熱電変換材料の一端を導電性セラミックス基板に焼 結によって接合したものである。(s— 5)型素子は、 p型熱電変換材料及び n型熱電変 換材料のそれぞれの横断面と同様の形状及び面積を有する 2枚の酸化物板を、金 属シート、金属網等の導電性物質を介して、それぞれ p型熱電変換材料と n型熱電 変換材料に焼結によって接合したものである。酸ィ匕物板としては、接合対象の熱電 変換材料に焼結によって接合させることができ、しかも長時間高温で使用した場合に も発電特性を劣化させることがない材料であれば、特に限定無く使用できる。特に、 接合対象の熱電変換材料と同じ結晶構造を有する酸化物を用いることが好ましぐ 組成についても接合対象の熱電変換材料と同じであることがより好ましい。酸化物板 の厚さについては、特に限定的ではないが、通常、 1一 3mm程度とすればよい。  The (s-3) type element in FIG. 2 uses conductive ceramics as a substrate, and is joined to one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material by sintering. The (s4) type element uses the same metal sheet or metal net as the (s2) type element, through which one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are electrically conductive. It is bonded to a conductive ceramic substrate by sintering. The (s-5) type element is composed of two oxide plates having the same shape and area as the cross section of each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, such as a metal sheet and a metal net. They are joined to a p-type thermoelectric conversion material and an n-type thermoelectric conversion material by sintering via a conductive substance. The oxidizing plate is not particularly limited as long as it can be bonded to the thermoelectric conversion material to be bonded by sintering, and does not deteriorate power generation characteristics even when used at a high temperature for a long time. Can be used. In particular, it is preferable to use an oxide having the same crystal structure as the thermoelectric conversion material to be joined. The composition is more preferably the same as the thermoelectric conversion material to be joined. Although the thickness of the oxide plate is not particularly limited, it is usually about 11 to 13 mm.
[0077] 図 2に示す素子を焼結法で作製する際には、ホットプレス焼結などの方法で加圧下 で焼成することによって、材料間の密着性をより向上させることができる。  When the element shown in FIG. 2 is manufactured by a sintering method, the adhesion between materials can be further improved by firing under pressure by a method such as hot press sintering.
[0078] 図 3は、導体材料を用いて p型熱電変換材料と n型熱電変換材料を電気的に接触 させて得られる熱電変換素子の一例を模式的に示す図面である。  FIG. 3 is a drawing schematically showing an example of a thermoelectric conversion element obtained by bringing a p-type thermoelectric conversion material and an n-type thermoelectric conversion material into electrical contact using a conductive material.
[0079] 図 3の(c 1)型素子は、 p型熱電変換材料と n型熱電変換材料に孔を開け、そこに 導体材料を貫通させて、 P型熱電変換材料と n型熱電変換材料を電気的に接続した 熱電変換素子である。導体材料としては、 1073K程度の高温においても溶融するこ となぐ化学的に安定であり、低抵抗の材料を用いることが好ましい。例えば、上記し た金属シート、金属網等の他、板状、棒状などの導電性セラミックス;アルミナなどの 絶縁性セラミックスの表面を蒸着法等で金、銀等を被覆して導電性を付与した板状、 棒状などの材料等を用いることができる。  [0079] The (c1) -type element in Fig. 3 is formed by making a hole in a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and penetrating a conductive material into the hole to form a P-type thermoelectric conversion material and an n-type thermoelectric conversion material. Is a thermoelectric conversion element electrically connected. As the conductive material, it is preferable to use a material that is chemically stable and does not melt even at a high temperature of about 1073K and has low resistance. For example, in addition to the above-described metal sheets, metal nets, and the like, conductive ceramics in the form of plates and rods; insulating ceramics such as alumina are coated with gold, silver, or the like by a vapor deposition method to impart conductivity. A plate-like or rod-like material can be used.
[0080] (c - 2)型熱電変換素子は、 p型熱電変換材料の端部と n型熱電変換材料の端部に 、導線等の各種の導体材料をクリップ等で固定して電気的に接続した熱電変換素子 である。クリップの材質としては、例えば 1073K程度の高温の空気中でも酸ィ匕されな い材料を用いることが好ましぐ金などの金属、アルミナ等の絶縁セラミックス等を用 いることができる。導体材料としては、 p型熱電変換材料と n型熱電変換材料を低抵 抗で電気的に接続できる材料であればよぐ例えば、各種金属、導電性セラミックス などを用いることができる。導体材料の長さ、幅、厚さ等は、モジュールサイズ、電気 抵抗等に合わせ適宜決めればょ ヽ。 [0080] The (c-2) -type thermoelectric conversion element is configured such that various conductive materials such as a conductive wire are fixed to an end of a p-type thermoelectric conversion material and an end of an n-type thermoelectric conversion material with a clip or the like, and electrically connected. These are connected thermoelectric conversion elements. The material of the clip is, for example, It is preferable to use metals such as gold, and insulating ceramics such as alumina, which are preferable to use a suitable material. As the conductive material, any material can be used as long as it can electrically connect the p-type thermoelectric conversion material and the n-type thermoelectric conversion material with low resistance. For example, various metals and conductive ceramics can be used. The length, width, thickness, etc. of the conductor material should be determined appropriately according to the module size, electrical resistance, etc.
[0081] 導体材料を固定する機構としては、特に限定はなぐ例えば、パネ式、ねじ込み式 等のクリップで導体材料を挟み込んで固定すればよい。  [0081] The mechanism for fixing the conductor material is not particularly limited. For example, the conductor material may be fixed by sandwiching the conductor material with a clip of a panel type, a screw type, or the like.
[0082] (c - 3)型熱電変換素子は、 p型熱電変換材料の端部と n型熱電変換材料の端部に 上記した各種の導体材料をねじ止めして電気的に接続した熱電変換素子である。導 体材料としては、上記 (c—1)型素子で用いたものと同様の材料を使用できる。  [0082] The (c-3) -type thermoelectric conversion element is a thermoelectric conversion element in which the above-described various conductive materials are screwed and electrically connected to the end of the p-type thermoelectric conversion material and the end of the n-type thermoelectric conversion material. Element. As the conductor material, the same materials as those used in the above (c-1) type element can be used.
[0083] 熱雷発雷モジュール  [0083] Thermal lightning strike module
熱電発電モジュールは、上記した熱電変換素子を複数個用い、該熱電変換素子 の P型熱電変換材料の未接合の端部を、他の熱電変換素子の n型熱電変換材料の 未接合の端部に電気的に接続する方法で複数の熱電変換素子を直列に接続したも のである。  The thermoelectric generation module uses a plurality of the thermoelectric conversion elements described above, and connects the unbonded end of the P-type thermoelectric conversion material of the thermoelectric conversion element to the unbonded end of the n-type thermoelectric conversion material of another thermoelectric conversion element. A plurality of thermoelectric conversion elements are connected in series by an electrical connection method.
[0084] 通常は、接合剤を用いて熱電変換素子の未接合の端部を基板上に接着する方法 で、 P型熱電変換材料の端部と、他の熱電変換素子の n型熱電変換材料の端部とを 基板上にお!ヽて接続すればょ ヽ。  [0084] Normally, an unbonded end of the thermoelectric conversion element is adhered to the substrate using a bonding agent. The end of the P-type thermoelectric conversion material and the n-type thermoelectric conversion material of another thermoelectric conversion element are bonded together. And on the board! You have to connect.
[0085] 図 4に、一例として、接合剤を用いて基板上に複数の (a— 1)型素子を接続した構造 の熱電発電モジュールの概略図を示す。  FIG. 4 shows, as an example, a schematic diagram of a thermoelectric power generation module having a structure in which a plurality of (a-1) type elements are connected on a substrate using a bonding agent.
[0086] 図 4の熱電発電モジュールは、熱電変換素子として、(a— 1)型素子を用い、 p型熱 電変換材料と n型熱電変換材料の未接合の端部が基板に接するようにして素子を配 置し、接合剤を用いて、 P型熱電変換材料と n型熱電変換材料が直列に接続されるよ うに、該基板上に熱電変換材素子を接着して得られたものである。  [0086] The thermoelectric power generation module in Fig. 4 uses an (a-1) type element as a thermoelectric conversion element such that the unjoined ends of the p-type and n-type thermoelectric conversion materials are in contact with the substrate. The thermoelectric conversion element is obtained by bonding the thermoelectric conversion element on the substrate so that the P-type thermoelectric conversion material and the n-type thermoelectric conversion material are connected in series using a bonding agent. is there.
[0087] 基板は、主として、均熱性や機械強度の向上、電気的絶縁性の保持等の目的で用 いられるものである。基板の材質は特に限定されないが、 675K程度以上の高温に おいて、溶融、破損等を生じることが無ぐ化学的に安定であり、しかも熱電変換材料 、接合剤等と反応しな 、絶縁体であって熱伝導性がょ 、材料を用いることが好ま Uヽ 。熱伝導性が高い基板を用いることによって、素子の高温部分の温度を高温熱源の 温度に近づけることができ、発生電圧値を高くすることが可能となる。また、本発明で 用いる熱電変換材料が酸ィ匕物であることから、熱膨張率などを考慮すると、基板材料 としては、アルミナ等の酸ィ匕物セラミックスを用いることが好まし 、。 [0087] The substrate is mainly used for the purpose of improving thermal uniformity and mechanical strength, maintaining electrical insulation, and the like. The material of the substrate is not particularly limited, but it is chemically stable at a high temperature of about 675 K or higher without causing melting, breakage, etc., and does not react with thermoelectric conversion materials, bonding agents, etc. However, it is preferable to use a material that has thermal conductivity. . By using a substrate having high thermal conductivity, the temperature of the high-temperature portion of the device can be made close to the temperature of the high-temperature heat source, and the generated voltage value can be increased. In addition, since the thermoelectric conversion material used in the present invention is an oxide, it is preferable to use an oxide ceramic such as alumina as the substrate material in consideration of the coefficient of thermal expansion and the like.
[0088] 熱電変換素子を基板に接着する場合には、低抵抗で接続可能な接合剤を用いる ことが好ましい。例えば、銀、金、白金等の貴金属ペースト、はんだ、白金線等を好適 に用いることができる。 When the thermoelectric conversion element is bonded to the substrate, it is preferable to use a bonding agent that can be connected with low resistance. For example, noble metal pastes such as silver, gold, and platinum, solders, platinum wires, and the like can be suitably used.
[0089] 図 5は、接触法によって得られた(s— 2)型素子を用いた熱電発電モジュールの一 例の断面の概略図である。高温部のセラミックス基板については、図 4のモジュール と同様にして、接合剤を用いて p型熱電変換材料と n型熱電変換材料が直列に接続 されるように熱電変換素子を接着すればょ ヽ。  FIG. 5 is a schematic cross-sectional view of an example of a thermoelectric generation module using a (s-2) type element obtained by a contact method. For the ceramic substrate in the high-temperature part, the thermoelectric conversion element should be bonded using a bonding agent so that the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are connected in series, similarly to the module in Fig. 4. .
[0090] 低温部側にっ 、ては、例えば、接合剤を用いてアルミナなどの絶縁セラミックス基 板を熱電変換素子に接着すればょ ヽ。低温部側の基板接続に用いる接合剤として は、高温側力 モジュールを伝わってきた熱を低温側力 大気中へ逃がすために、 熱伝導度の高い接合剤を用いることが好ましい。また、各素子間の絶縁性を保持す る必要があることから、基板全体に接合剤を付与する場合には、電気絶縁性の良い 接合剤を用いる必要がある。この様な接合剤としては、例えば、シリコーン系接合剤 等を用いることができる。また、熱電変換素子の低温部側が導電性物質に非接触状 態で用いられる場合、例えば、低温部側が大気に接する状態で用いられる場合等に は、低温部側に絶縁セラミックスを接着することなぐ熱電変換材料が露出した状態 で用いても良い。  On the low-temperature part side, for example, an insulating ceramic substrate such as alumina may be bonded to the thermoelectric conversion element using a bonding agent. As the bonding agent used for connecting the substrate on the low-temperature side, it is preferable to use a bonding agent having high thermal conductivity in order to release the heat transmitted through the high-temperature side force module to the low-temperature side force into the atmosphere. In addition, since it is necessary to maintain insulation between the elements, when applying a bonding agent to the entire substrate, it is necessary to use a bonding agent having good electrical insulation. As such a bonding agent, for example, a silicone bonding agent or the like can be used. Also, when the low-temperature part side of the thermoelectric conversion element is used in a non-contact state with a conductive substance, for example, when the low-temperature part side is used in contact with the atmosphere, it is not necessary to bond insulating ceramics to the low-temperature part side. It may be used with the thermoelectric conversion material exposed.
[0091] 一つのモジュールに用いる熱電変換素子の数は限定されず、必要とする電力によ り任意に選択することができる。図 4は、 84個の熱電変換素子を用いたモジュールの 概略の構造を示すものである。モジュールの出力は、熱電変換素子の出力に熱電変 換素子の使用数を乗じたものとほぼ等し 、値となる。  [0091] The number of thermoelectric conversion elements used in one module is not limited, and can be arbitrarily selected depending on required power. FIG. 4 shows a schematic structure of a module using 84 thermoelectric conversion elements. The output of the module is approximately equal to the output of the thermoelectric conversion element multiplied by the number of thermoelectric conversion elements used, and is a value.
[0092] 熱電発電モジュールは、その一端を高温部に配置し、他端を低温部に配置するこ とによって電圧を発生することができる。例えば、図 4及び図 5のモジュールでは、基 板面を高温部に配置し、他端を低温部に配置すればよい。尚、該熱電発電モジユー ルは、この様な設置方法に限定されず、いずれか一端を高温側に配置し、他端を低 温部側に配置すればよぐ例えば、図 4及び図 5のモジュールについては、高温部側 と低温部側を反対にして設置しても良 、。 [0092] The thermoelectric power generation module can generate a voltage by arranging one end of the module at the high temperature section and the other end of the module at the low temperature section. For example, in the modules shown in FIGS. 4 and 5, the substrate surface may be arranged in the high-temperature section, and the other end may be arranged in the low-temperature section. The thermoelectric power generation module The module is not limited to such an installation method.It is only necessary to arrange one end on the high-temperature side and the other end on the low-temperature side.For example, for the modules in Figs. 4 and 5, It is permissible to install with the side opposite to the low temperature section.
[0093] (3)熱電発電装置  [0093] (3) Thermoelectric generator
本発明の熱電発電装置は、熱電発電モジュールと触媒燃焼式熱源とを備えたもの であって、該熱電発電モジュールの一方の面を加熱できるように該触媒燃焼式熱源 を配置したものである。例えば、触媒燃焼式熱源の熱伝導部が、熱電発電モジユー ルの一方の面に密着するように設置すればょ 、。  The thermoelectric generator of the present invention includes a thermoelectric generator module and a catalytic combustion heat source, and the catalytic combustion heat source is arranged so as to heat one surface of the thermoelectric generator module. For example, the heat conduction part of the catalytic combustion type heat source should be installed so as to be in close contact with one surface of the thermoelectric power generation module.
[0094] 熱電発電装置の全体の構造につ!、ては、特に限定的ではな!、。例えば、後述する 実施例に示すように、触媒燃焼部で燃焼した燃焼ガスを熱伝導部に直接吹き付けて 熱伝導部を加熱し、この熱によって熱電発電モジュールの一方の面を加熱する構造 とすることができる。また、触媒燃焼部を取り囲む構造で熱伝導部を設置し、触媒燃 焼部を通過する燃焼ガスとの接触により熱伝導部を加熱する構造としても良い。  [0094] The overall structure of the thermoelectric generator is not particularly limited! For example, as shown in an embodiment to be described later, a structure is adopted in which the combustion gas burned in the catalytic combustion unit is directly blown onto the heat conduction unit to heat the heat conduction unit, and this heat heats one surface of the thermoelectric power generation module. be able to. Further, the heat conducting portion may be provided in a structure surrounding the catalytic combustion portion, and the heat conducting portion may be heated by contact with the combustion gas passing through the catalytic combustion portion.
[0095] 熱伝導部の加熱温度については、燃料の供給量を調整することによって制御が可 能である。このため、通常、触媒燃焼部には、供給する燃料の流量を制御するための 燃料供給弁を設置する。  [0095] The heating temperature of the heat conduction section can be controlled by adjusting the fuel supply amount. For this reason, a fuel supply valve for controlling the flow rate of the supplied fuel is usually installed in the catalytic combustion section.
[0096] また、発電効率を高めるには、触媒燃焼式熱源によって加熱する面の反対側の面 、即ち、熱電発電モジュールの低温部を冷却して、熱電変換材料の両端の温度差を 大きくすればよい。冷却手段については、特に限定はなぐ水冷、空冷、吸熱反応を 用いた冷却等の各種の冷却手段を適用可能である。特に、軽量さを考慮すれば、空 冷が望ましい。空冷の場合には、例えば、熱電発電モジュールの低温面に冷却器と して、フィン、熱浴 (ヒートシンク)等を密着させればよい。この場合、自然放熱によりモ ジュールを冷却してもよいが、ファンを取り付けてフィンや熱浴を強制冷却すれば、よ り発電効率を向上させることができる。ファンの駆動力としては、例えば、燃焼により 生じた排気ガスを用いることができる。また排気ガスが室温程度まで、十分冷えてい れば、それをフィンへ直接吹きかけてもよい。  [0096] To increase the power generation efficiency, the surface opposite to the surface heated by the catalytic combustion heat source, that is, the low-temperature portion of the thermoelectric power generation module is cooled to increase the temperature difference between both ends of the thermoelectric conversion material. Just fine. The cooling means is not particularly limited, and various cooling means such as water cooling, air cooling, and cooling using an endothermic reaction can be applied. Especially, considering the light weight, air cooling is desirable. In the case of air cooling, for example, a fin, a heat bath (heat sink), or the like may be brought into close contact with a low-temperature surface of the thermoelectric generation module as a cooler. In this case, the module may be cooled by natural heat radiation. However, if a fin or a heat bath is forcibly cooled by attaching a fan, the power generation efficiency can be further improved. As the driving force of the fan, for example, exhaust gas generated by combustion can be used. If the exhaust gas is sufficiently cooled down to about room temperature, it may be blown directly to the fins.
[0097] 以下、図面を参照しつつ、本発明の熱電発電装置を具体的に説明する。  [0097] Hereinafter, the thermoelectric generator of the present invention will be specifically described with reference to the drawings.
[0098] 図 6は、本発明の熱電発電装置の一例を模式的に示す図面である。図 6の熱電発 電装置では、熱電発電モジュールの一方の面に、熱伝導部としての加熱板を介して 触媒燃焼器が密着するように設置されている。触媒燃焼器には、予熱バーナーを介 して燃料タンクが結合されている。燃料タンクと予熱バーナーの結合部分には、燃料 供給弁及び空気取込弁を設け、更に、該燃料タンクには、燃料を補充するための燃 料補充口を設けている。 FIG. 6 is a drawing schematically showing an example of the thermoelectric generator of the present invention. Fig. 6 Thermoelectric generation In the electric equipment, a catalytic combustor is installed so as to be in close contact with one surface of the thermoelectric power generation module via a heating plate as a heat conducting part. The fuel tank is connected to the catalytic combustor via a preheating burner. A fuel supply valve and an air intake valve are provided at a connection portion between the fuel tank and the preheating burner, and a fuel replenishing port for replenishing fuel is provided in the fuel tank.
[0099] 該熱電発電装置は、触媒燃焼器の周辺に断熱材を配置して反応熱で高温となるこ とを防止している。これにより、携帯用としての使用が容易となる。  [0099] In the thermoelectric generator, a heat insulating material is arranged around the catalytic combustor to prevent a high temperature due to reaction heat. This facilitates use as a portable device.
[0100] 熱電発電モジュールの低温側の面には、冷却器としてフィンを設置し、更に、ファン を設置してフィンを強制冷却できる構造として 、る。この様な構造とすることによって、 燃焼ガスによって加熱された面と、ファンによって冷却された面との間の温度差が大 きくなり、効率の良い発電が可能となる。 [0100] A fin is provided as a cooler on the low-temperature side surface of the thermoelectric generation module, and a fan is further provided so that the fin can be forcibly cooled. With such a structure, the temperature difference between the surface heated by the combustion gas and the surface cooled by the fan increases, and efficient power generation becomes possible.
[0101] 図 6の装置では、燃料タンク中に収容された燃料は、予熱バーナー部に送られる。  [0101] In the apparatus shown in Fig. 6, the fuel contained in the fuel tank is sent to the preheating burner section.
一方、空気取込弁を開放して導入された空気も、燃料と共に予熱バーナー部に送ら れる。  On the other hand, the air introduced by opening the air intake valve is also sent to the preheating burner together with the fuel.
[0102] 予熱バーナーは、触媒燃焼器を加熱するために用いられるものであり、触媒燃焼 に必要な温度に触媒燃焼器が加熱された後、予熱バーナーへの燃料の供給が停止 される。  [0102] The preheat burner is used to heat the catalytic combustor. After the catalytic combustor is heated to a temperature required for catalytic combustion, the supply of fuel to the preheat burner is stopped.
[0103] 次 ヽで、燃料と空気の混合気体は、触媒燃焼器に送られ、ここで混合気体の触媒 燃焼が生じる。燃焼したガスは、熱伝導部である加熱板に吹き付けられ、燃焼ガスの 熱エネルギーにより、加熱板に接触している熱電発電モジュールが加熱される。燃焼 ガスは、触媒燃焼器に接続された配管を経て、燃焼気体排出口より排気ガスとして排 出される。  [0103] Next, the gas mixture of fuel and air is sent to the catalytic combustor, where catalytic combustion of the gas mixture occurs. The burned gas is blown to a heating plate, which is a heat conducting portion, and the thermoelectric power module in contact with the heating plate is heated by the heat energy of the combustion gas. Combustion gas is discharged as exhaust gas from a combustion gas discharge port via a pipe connected to the catalytic combustor.
[0104] 本発明の熱電発電装置では、モジュール数を多くすることや加熱温度を高くするこ とによって、発電量を大きくすることが可能である。例えば、前述した構造の熱電発電 モジュールでは、高温部を 300°C程度以上に加熱した場合に、単位体積あたり 100 mW程度以上の発電が可能である。このため、例えば、大きさ 3cm X 3cm X 5cm— 30cm X 30cm X 20cm程度、重さ lOOg— 5kg程度という小型、軽量な装置とした場 合であっても、 0. 1一 50W程度の電力を得ることができる。 発明の効果 [0104] In the thermoelectric generator of the present invention, the power generation amount can be increased by increasing the number of modules or increasing the heating temperature. For example, the thermoelectric power module with the above-mentioned structure can generate power of about 100 mW or more per unit volume when the high temperature part is heated to about 300 ° C or more. For this reason, for example, a small and lightweight device with a size of about 3cm X 3cm X 5cm-30cm X 30cm X 20cm and a weight of about lOOg-about 5kg, can generate a power of about 0.1-50W. Obtainable. The invention's effect
[0105] 本発明の熱電発電装置は、優れた熱電変換性能を有する熱電発電モジュールと 触媒燃焼式熱源とを組み合わせたものである。  The thermoelectric generator of the present invention is a combination of a thermoelectric generator module having excellent thermoelectric conversion performance and a catalytic combustion heat source.
[0106] この様な構造の熱電発電装置は、燃料容器を一体化することによって携帯電源とし ての使用が可能であり、各種機器の使用場所において、容易に電気エネルギーを得 ることができる。また小型、軽量な装置であっても、 50W程度までの電力を得ることが 可能である。 [0106] The thermoelectric generator having such a structure can be used as a portable power source by integrating a fuel container, and electric energy can be easily obtained at places where various devices are used. In addition, even small and lightweight devices can obtain power up to about 50W.
[0107] このため、本発明の熱電発電装置は、携帯に適した電源として、例えば、携帯電話 、ノート型パソコン等の携帯機器用の電源等として有効に用いることができる。  [0107] Therefore, the thermoelectric generator of the present invention can be effectively used as a power source suitable for carrying, for example, a power source for portable devices such as a mobile phone and a notebook computer.
図面の簡単な説明  Brief Description of Drawings
[0108] [図 1]図 1は、接合剤を用いて熱電変換材料を導電性材料に接着して得られた熱変 換素子の一例を模式的に示す図面である。  FIG. 1 is a drawing schematically showing an example of a heat conversion element obtained by bonding a thermoelectric conversion material to a conductive material using a bonding agent.
[図 2]図 2は、焼結又は圧着によって電気的に接続して得られた熱電変換素子の一 例を模式的に示す図面である。  FIG. 2 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrically connecting by sintering or crimping.
[図 3]図 3は、導体材料を用 ヽて熱電変換材料を電気的に接触させて得られた熱電 変換素子の一例を模式的に示す図面である。  FIG. 3 is a drawing schematically showing an example of a thermoelectric conversion element obtained by electrically contacting a thermoelectric conversion material using a conductive material.
[図 4]図 4は、複数の(a— 1)型素子を基板上に接続した構造の熱電発電モジュール の概略図である。  FIG. 4 is a schematic diagram of a thermoelectric power generation module having a structure in which a plurality of (a-1) type devices are connected on a substrate.
[図 5]図 5は、(s— 2)型素子を用いた熱電発電モジュールの一例の断面の概略図で ある。  FIG. 5 is a schematic cross-sectional view of an example of a thermoelectric power generation module using a (s-2) type element.
[図 6]図 6は、本発明の熱電発電装置の一例を模式的に示す図面である。  FIG. 6 is a drawing schematically showing an example of the thermoelectric generator of the present invention.
[図 7]図 7は、実施例 1で得られた発電装置の発電特性を示すグラフである。  FIG. 7 is a graph showing the power generation characteristics of the power generator obtained in Example 1.
[図 8]図 8は、参考例 1, 63及び 75の熱電変換素子の開放電圧と高温部の温度との 関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the open-circuit voltage of the thermoelectric conversion elements of Reference Examples 1, 63, and 75 and the temperature of the high-temperature part.
[図 9]図 9は、参考例 1及び参考例 75の熱電変換素子の電気抵抗と高温部の温度と の関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the electric resistance of the thermoelectric conversion element of Reference Example 1 and Reference Example 75 and the temperature of the high-temperature part.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0109] 以下、本発明の熱電発電装置について、更に具体的に説明する。 [0110] 実施例 1 Hereinafter, the thermoelectric generator of the present invention will be described more specifically. [0110] Example 1
下記の条件に従って図 6に示した構造の熱電発電装置を作製した。  A thermoelectric generator having the structure shown in FIG. 6 was manufactured under the following conditions.
[0111] Ό型熱 栾椽材料 [0111] Ό heat栾椽material
組成式: Ca Bi Co O で表される p型熱電変換材料を下記の方法で作製した。  A p-type thermoelectric conversion material represented by a composition formula: Ca Bi Co O was produced by the following method.
2.7 0.3 4 9.2  2.7 0.3 4 9.2
[0112] まず、炭酸カルシウム(CaCO )、酸化ビスマス(Bi 0 )及び酸化コバルト(Co 0 )を  First, calcium carbonate (CaCO 2), bismuth oxide (Bi 0) and cobalt oxide (Co 0)
3 2 3 3 4 3 2 3 3 4
Ca:Bi:Co (原子比) =2.7:0.3:4となるように秤量し、十分に混合した。得られた混合物 をアルミナるつぼに入れ、 1073K (800°C)、空気中で 10時間焼成し、得られた焼成物 をめのう乳鉢と乳棒を用いて十分に混合した。 It was weighed so that Ca: Bi: Co (atomic ratio) = 2.7: 0.3: 4 and mixed well. The obtained mixture was placed in an alumina crucible, fired in air at 1073 K (800 ° C.) for 10 hours, and the obtained fired product was sufficiently mixed using an agate mortar and a pestle.
[0113] この粉体を直径 20mm、厚さ 2— 10mm程度の円盤状に加圧成形し、アルミナボート に金シートを敷きその上に該成形体をのせて、 1153K(880°C)、酸素気流中(300ml/ 分)で 20時間焼成した。次いで、得られた焼結体を、めのう乳鉢と乳棒を用い粉砕し た。 [0113] This powder was formed into a disc having a diameter of about 20mm and a thickness of about 2 to 10mm under pressure, a gold sheet was spread on an alumina boat, and the formed body was placed on the gold sheet. It was baked for 20 hours in an air stream (300 ml / min). Next, the obtained sintered body was ground using an agate mortar and a pestle.
[0114] 得られた粉体を 30mm角、厚さ 5mmの角板状に加圧成形し、 lOMPaの一軸加圧下、 1123K (850°C)、空気中で 20時間ホットプレス焼結を行った。得られたホットプレス焼 結体を加圧面に垂直な面が 4mm角、加圧面に沿った長さが 5mmの直方体となるよう に切り出し、成形して p型熱電変換材料を得た。  [0114] The obtained powder was pressed into a 30 mm square, 5 mm thick square plate, and subjected to hot press sintering in air at 1123 K (850 ° C) under air under uniaxial pressure of lOMPa for 20 hours. . The obtained hot-press sintered body was cut into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain a p-type thermoelectric conversion material.
[0115] n型熱雷栾椽材料  [0115] n-type thermal lightning material
組成式: La Bi NiO で表される n型熱電変換材料を下記の方法で作製した。  An n-type thermoelectric conversion material represented by a composition formula: La Bi NiO was produced by the following method.
0.9 0.1 3.1  0.9 0.1 3.1
[0116] まず、硝酸ランタン(La (NO ) ·6Η Ο)、硝酸ビスマス(Bi(NO ) ·5Η Ο)及び硝酸二  [0116] First, lanthanum nitrate (La (NO) 6Η), bismuth nitrate (Bi (NO) 5Η) and dinitrate
3 3 2 3 3 2  3 3 2 3 3 2
ッケル(Ni(N〇 ) ·6Η〇)を La:Bi:Ni (原子比) =0·9:0·1:1·0となるよう秤量し、アルミナる  Weigh nickel (Ni (N〇) · 6Η〇) so that La: Bi: Ni (atomic ratio) = 0 · 9: 0 · 1: 1 · 0
3 2 2  3 2 2
つぼ中で蒸留水に完全に溶解させて混合した。次いで、マグネティックスターラーを 用いて撹拌しながら、蒸留水を蒸発させて乾固した。  It was completely dissolved in distilled water in a pot and mixed. Next, the distilled water was evaporated to dryness while stirring with a magnetic stirrer.
[0117] 析出物を 1073K (800°C)の空気中で 10時間加熱し焼成して、硝酸塩を熱分解した。  [0117] The precipitate was heated and baked in air at 1073K (800 ° C) for 10 hours to thermally decompose nitrate.
次いで、焼成物をめのう乳鉢と乳棒で混合した。  Next, the fired product was mixed with an agate mortar and pestle.
[0118] 得られた粉体を直径 2cm、厚さ 2— 10mm程度の円盤状に加圧成形した後、アルミナ ボートに白金シートを敷き、その上に該成形体をのせて 1273K(1000°C)、酸素気流 中(300ml/分)で 20時間焼成した。得られた焼結体を、めのう乳鉢と乳棒を用いて粉 砕した。この粉末を再度上記の大きさに加圧成形し、同条件で焼成して、得られた焼 結体をめのう乳鉢と乳棒を用いて粉砕した。 [0118] The obtained powder was press-formed into a disk having a diameter of 2 cm and a thickness of about 2 to 10 mm, and then a platinum sheet was laid on an alumina boat, and the formed body was placed thereon, and the powder was placed at 1273 K (1000 ° C ), And calcined in an oxygen stream (300 ml / min) for 20 hours. The obtained sintered body was ground using an agate mortar and pestle. This powder was pressed again to the above-mentioned size and baked under the same conditions. The body was ground using an agate mortar and pestle.
[0119] 得られた粉体を 30mm角、厚さ 5mmの角板状に加圧成型し、 lOMPaの一軸加圧下、 1173K (900°C)の空気中で 20時間ホットプレス焼結を行った。得られたホットプレス焼 結体を加圧面に垂直な面が 4mm角、加圧面に沿った長さが 5mmの直方体となるよう に切り出し、成形して n型熱電変換材料を得た。  [0119] The obtained powder was pressed into a 30 mm square, 5 mm thick square plate, and subjected to hot press sintering in air at 1173K (900 ° C) under uniaxial pressing of lOMPa for 20 hours. . The obtained hot-press sintered body was cut into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain an n-type thermoelectric conversion material.
[0120] Ό型熱雷栾椽材料接続用導雷件ペースト [0120] Ό type heat lightning栾椽material connection Shirubekaminariken paste
上記した Ρ型熱電変換材料の製造工程にお 、て、 1153K (880°C)で 20時間焼成し た後、粉砕して得た粉体について、更に、めのうポットとボールを用いてボールミル粉 砕を 10分間行った。得られた酸化物粉末を走査式電子顕微鏡で観察したところ、 80 %以上の個数の粒子が粒径 1一 10 μ mの範囲内にあった。  In the above-mentioned process of manufacturing a type III thermoelectric conversion material, after firing at 1153K (880 ° C) for 20 hours, the powder obtained by grinding is further ball-milled using an agate pot and balls. For 10 minutes. Observation of the obtained oxide powder with a scanning electron microscope revealed that more than 80% of the particles were in the range of 110 μm in particle diameter.
[0121] この酸化物粉末を市販の銀ペースト(商標名: H— 4215昭栄化学社製)に添加して P型熱電変換材料接合用導電性ペーストを得た。使用した銀ペーストは、銀粉末 85 重量%、ホウケィ酸ビスマスガラス 1重量%、ェチルセルロース 5重量%、テルビネオ ール 4重量%及びプチルカルビトールアセテート 5重量%力 なるものであり、酸化物 粉末の添加量は、銀ペースト中の銀粉末 100重量部に対して 6. 25重量部であった  [0121] This oxide powder was added to a commercially available silver paste (trade name: H-4215, manufactured by Shoei Chemical Co., Ltd.) to obtain a conductive paste for bonding a P-type thermoelectric conversion material. The silver paste used was 85% by weight of silver powder, 1% by weight of bismuth borosilicate glass, 5% by weight of ethyl cellulose, 4% by weight of terbinol, and 5% by weight of butyl carbitol acetate. Was 6.25 parts by weight with respect to 100 parts by weight of the silver powder in the silver paste.
[0122] n型熱雷栾橼材料榇合用導雷件ペースト [0122] n-type thermal lightning paste
上記した n型熱電変換材料の製造において、 1273K (1000°C)で 20時間焼成し、粉 砕することを二回繰り返して得た粉体について、めのうポットとボールを用いて更に 1 0分間ボールミル粉砕した。得られた酸ィ匕物粉末を走査式電子顕微鏡で観察したと ころ、 80%以上の個数の粒子が粒径 1一 10 μ mの範囲内にあった。  In the production of the n-type thermoelectric conversion material described above, the powder obtained by firing twice at 1273K (1000 ° C) for 20 hours and then pulverizing twice was further ball-milled for 10 minutes using an agate pot and balls. Crushed. Observation of the obtained powdery powder with a scanning electron microscope revealed that 80% or more of the particles had a particle size of 110 μm.
[0123] この酸化物粉末を市販の銀ペーストに添加して n型熱電変換材料接続用導電性べ 一ストを得た。使用した銀ペーストの種類、酸ィ匕物粉末の添加量は、 p型熱電変換材 料接続用導電性ペーストと同様である。  [0123] This oxide powder was added to a commercially available silver paste to obtain a conductive paste for connecting an n-type thermoelectric conversion material. The type of the silver paste used and the amount of the oxidized powder added are the same as those of the conductive paste for connecting a p-type thermoelectric conversion material.
[0124] 熱雷変換素子  [0124] Thermal lightning conversion element
上記した P型熱電変換材料と n型熱電変換材料を導電性基板に接続して、一対の p 型熱電変換材料と n型熱電変換材料による熱電変換素子を製造した。  The above-mentioned P-type thermoelectric conversion material and n-type thermoelectric conversion material were connected to a conductive substrate, and a pair of p-type thermoelectric conversion materials and an n-type thermoelectric conversion material were manufactured.
[0125] 導電性基板としては、 5mm x 8mm、厚さ lmmのアルミナ板の 5mm x 8mmの面に銀 ペーストを均一に塗り、乾燥させて、銀ペーストによる導電性皮膜を形成した基板を 用いた。 [0125] As the conductive substrate, a 5 mm x 8 mm, 5 mm x 8 mm surface of a lmm-thick alumina plate was A substrate on which a paste was uniformly applied and dried to form a conductive film of a silver paste was used.
[0126] p型熱電変換材料と n型熱電変換材料の 4mm X 4mmの面に、それぞれ上記した p 型熱電変換材料接続用導電性ペーストと n型熱電変換材料接続用導電性ペースト を塗布し、上記アルミナ基板の銀ペースト被覆面上に、各熱電変換材料の導電性べ 一ストを塗布した面が接するように位置させ、 373K (100°C)で 10— 30分程度加熱した 後、 1073K(800°C)の空気中で 15分間加熱して、導電性ペースト剤を乾燥、固化させ た。次いで、基板と各熱電変換材料の接続部分を補強するために、アルミナを主成 分とする絶縁性のセラミックスペーストを該接続部分に塗布し、乾燥させて熱電変換 素子を作製した。  [0126] The conductive paste for connecting the p-type thermoelectric conversion material and the conductive paste for connecting the n-type thermoelectric conversion material described above were applied to the 4 mm X 4 mm surfaces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, respectively. After placing the surface coated with the conductive paste of each thermoelectric conversion material on the silver paste-coated surface of the above alumina substrate, and heating it at 373K (100 ° C) for about 10 to 30 minutes, The conductive paste was dried and solidified by heating in air at 800 ° C) for 15 minutes. Next, in order to reinforce the connection portion between the substrate and each thermoelectric conversion material, an insulating ceramic paste containing alumina as a main component was applied to the connection portion and dried to produce a thermoelectric conversion element.
[0127] 熱雷発雷モジュール  [0127] Thermal lightning strike module
大きさ 2cmX 2cm、厚さ lmmのアルミナ板を基板として用い、熱電変換素子の p型 熱電変換材料の未接合の端部と、他の熱電変換素子の n型熱電変換材料の未接合 の端部とが接続されるように、熱電変換素子を基板上に接合して、 10個の熱電変換 素子が直列に接続された熱電発電モジュールを得た。接合剤としては、銀ペーストを 用いた。  Using an alumina plate with a size of 2 cm x 2 cm and a thickness of lmm as the substrate, the unbonded end of the p-type thermoelectric conversion material of the thermoelectric conversion element and the unbonded end of the n-type thermoelectric conversion material of the other thermoelectric conversion element The thermoelectric conversion elements were joined on a substrate such that the thermoelectric power conversion modules were connected to each other to obtain a thermoelectric power generation module in which ten thermoelectric conversion elements were connected in series. Silver paste was used as the bonding agent.
[0128] 触體焼式熱源  [0128] Sintered heat source
触媒燃焼器としては、 SUS— 510ステンレス製基材にアルミナを塗布し、焼結させ てなる、 lmm角の通気孔を 30本有するハ-カム構造(2cm X 2cm X lcm)を有する 担体の壁面に、粒径 100 μ m以下の白金とパラジウム微粒子を 1: 1の重量比で担持 させたものを用いた。  The catalytic combustor has a honeycomb structure (2 cm X 2 cm X lcm) with 30 lmm-square ventilation holes made by applying and sintering alumina on a SUS-510 stainless steel substrate. In this case, platinum and palladium fine particles having a particle size of 100 μm or less were supported at a weight ratio of 1: 1.
[0129] 触媒燃焼式の熱源は、この触媒燃焼器の他に、加熱板、予熱バーナー及び燃料タ ンクを備えており、予熱バーナー部分と燃料タンクの接合部分には、燃料供給弁と空 気取込弁が設けられている。  [0129] In addition to the catalytic combustor, the catalytic combustion type heat source includes a heating plate, a preheating burner, and a fuel tank. A fuel supply valve and an air supply are provided at a junction between the preheating burner and the fuel tank. An intake valve is provided.
[0130] 熱電発電装置の本体は、 SUS— 310ステンレス製であり、触媒燃焼器の周辺部分 と外壁の間には、断熱材が挿入されている。 [0130] The main body of the thermoelectric generator is made of SUS-310 stainless steel, and a heat insulating material is inserted between the peripheral portion of the catalytic combustor and the outer wall.
[0131] 予熱バーナーは、燃料気体を燃焼させる構造のバーナーである。加熱板は、 SUS[0131] The preheating burner is a burner having a structure for burning fuel gas. The heating plate is SUS
—310ステンレス板によって形成されている。 [0132] 燃料タンク中には、燃料として液ィ匕ブタンが貯蔵されている。 -Made of 310 stainless steel plate. [0132] Liquid fuel butane is stored as fuel in the fuel tank.
[0133] 熱雷発電装置 [0133] Thermal lightning generator
熱電発電装置は、上記した熱電発電モジュールのアルミナ基板面に、触媒燃焼式 熱源の加熱板が密着するようにねじ止めで固定し、触媒燃焼による熱エネルギーで アルミナ基板が加熱されるように構成されて 、る。  The thermoelectric generator is configured such that a heating plate of a catalytic combustion type heat source is fixed to the alumina substrate surface of the above-described thermoelectric generator module with screws so that the heating plate is in close contact with the alumina substrate, and the alumina substrate is heated by thermal energy due to catalytic combustion. Te ru.
[0134] 熱電発電モジュールの他方の面には、アルミニウム製の冷却フィンが設けられ、更 に、冷却フィンの上部にはファンが設置されている。このファンは、燃焼による排気ガ スをファン上部にある風当てに吹きかけることによって回転し、フィンに送風してフィン の冷却効率を向上させるように構成されて 、る。  [0134] Aluminum cooling fins are provided on the other surface of the thermoelectric power generation module, and a fan is provided above the cooling fins. This fan is configured to rotate by blowing exhaust gas generated by combustion onto a wind fan located above the fan, and to blow the air to the fins to improve the cooling efficiency of the fins.
[0135] 熱雷発雷方法  [0135] Thermal lightning method
まず、燃料タンク中に収容された液ィ匕ブタンと空気の混合気体を予熱バーナーに 供給し、予熱バーナーにおける燃焼熱によって触媒燃焼器を加熱した。触媒燃焼器 の温度が 300°C以上まで昇温した後、予熱バーナーへの燃料の供給を止めて予熱 バーナーによる加熱を停止した。  First, a gas mixture of liquid butane and air contained in a fuel tank was supplied to a preheating burner, and the catalyst combustor was heated by the combustion heat of the preheating burner. After the temperature of the catalytic combustor rose to 300 ° C or more, the supply of fuel to the preheating burner was stopped, and the heating by the preheating burner was stopped.
[0136] 次 ヽで、燃料と空気を触媒燃焼器に供給して、触媒燃焼を開始した。  [0136] Next, fuel and air were supplied to the catalytic combustor to start catalytic combustion.
[0137] 触媒燃焼によって生じた燃焼ガスを加熱板に吹き付けることによって加熱板を加熱 し、この熱により熱電発電モジュールの基板面を加熱した。  [0137] The heating plate was heated by spraying the combustion gas generated by catalytic combustion on the heating plate, and the heat used to heat the substrate surface of the thermoelectric power generation module.
[0138] 一方、燃焼後の排気ガスは、燃焼気体排出口より排出され、その一部がファンの回 転に利用された。  [0138] On the other hand, the exhaust gas after combustion was discharged from the combustion gas discharge port, and a part thereof was used for rotation of the fan.
[0139] 以上の方法により、熱電発電モジュールのアルミナ基板面が加熱され、該モジユー ルの反対面との温度差により、該熱電発電モジュールの両端部に接続した導線間に 電圧が発生した。  [0139] By the above method, the alumina substrate surface of the thermoelectric power generation module was heated, and a voltage was generated between the conductors connected to both ends of the thermoelectric power generation module due to the temperature difference from the opposite surface of the module.
[0140] 図 7は、上記熱電発電モジュールの高温部を 400°Cで加熱した場合の発電特性を 示すグラフである。このグラフでは、出力は電流値に対して上に凸の放物線型の依 存性を示した。また出力が極大値を示す外部抵抗値はモジュールの内部抵抗とほぼ 一致した。これらの結果から、実施例 1の発電器は、熱電モジュールの特性を十分に 発揮するちのであることが明らかである。  FIG. 7 is a graph showing power generation characteristics when the high-temperature portion of the thermoelectric generation module is heated at 400 ° C. In this graph, the output showed a parabolic dependence on the current value. The external resistance at which the output reached its maximum value almost coincided with the internal resistance of the module. From these results, it is clear that the generator of Example 1 is designed to sufficiently exhibit the characteristics of the thermoelectric module.
[0141] 実施例 2 実施例 1と同様の構造の熱電発電装置において、触媒燃焼器のアルミナ担体とし て、 28cm X 28cm X 5cmの大型担体を用い、加熱板として 28cm X 28cm X 3cm の SUS— 310ステンレス板を用いた。 [0141] Example 2 In a thermoelectric generator having the same structure as in Example 1, a large carrier of 28 cm X 28 cm X 5 cm was used as an alumina carrier of a catalytic combustor, and a SUS-310 stainless plate of 28 cm X 28 cm X 3 cm was used as a heating plate. .
[0142] 熱電発電モジュールとしては、実施例 1で用いた熱電発電モジュールを直列に 16[0142] As the thermoelectric generation module, the thermoelectric generation modules used in Example 1 were connected in series.
9枚結合した大きさ 26cm X 26cm X 7mmのモジュールを用いた。 A module having a size of 26 cm X 26 cm X 7 mm with nine pieces bonded was used.
[0143] 得られた熱電発電装置の全体の大きさは、 30cm X 30cm X 20cmであり、実施例[0143] The overall size of the obtained thermoelectric generator was 30 cm X 30 cm X 20 cm.
1の発電装置と比べて、遙かに高い出力を有するものとなる。 It has a much higher output than the one power generator.
[0144] 実施例 3 [0144] Example 3
触媒燃焼器の予熱器として出力 2kWの電気ヒータを用 ヽること以外は、実施例 1と 同様の構造の熱電発電装置を作製した。ヒータへ電力を供給する電源として、熱電 発電装置の作動時の余剰電力を充電できるキャパシタを設置した。このキャパシタは 、交換可能であり、充電が不十分である場合には、既に充電されているキャパシタを 始動電源として用いることができる。  A thermoelectric generator having a structure similar to that of Example 1 was manufactured except that an electric heater having an output of 2 kW was used as a preheater of a catalytic combustor. As a power source for supplying power to the heater, a capacitor that can charge surplus power during operation of the thermoelectric generator was installed. This capacitor is replaceable, and when charging is insufficient, an already charged capacitor can be used as a starting power source.
[0145] この電気ヒータを用いて触媒燃焼器を 300°C程度まで加熱した後、燃料と空気を触 媒燃焼器に供給することによって、実施例 1の熱電発電装置と同様に発電が可能で めつに。 [0145] After heating the catalytic combustor to about 300 ° C using this electric heater and supplying fuel and air to the catalytic combustor, power can be generated in the same manner as in the thermoelectric generator of Example 1. For
[0146] 以下、本発明の熱電発電装置において用いることができる熱電変換素子の具体例 を参考例として示す。実施例 1で用いた熱電変換素子に代えて、後述する各参考例 の熱電変換素子を用いることによって、実施例 1と同様に優れた性能を有する熱電 発電装置を得ることができる。  [0146] Hereinafter, specific examples of thermoelectric conversion elements that can be used in the thermoelectric generator of the present invention will be shown as reference examples. By using the thermoelectric conversion element of each of the reference examples described later in place of the thermoelectric conversion element used in the first embodiment, a thermoelectric generator having excellent performance as in the first embodiment can be obtained.
[0147] 参考例 1一 62  [0147] Reference Example 1-1 62
原料として、炭酸カルシウム、酸化ビスマス及び酸化コバルトを用い、化学式: Ca  Using calcium carbonate, bismuth oxide and cobalt oxide as raw materials, the chemical formula: Ca
2.7 2.7
Bi Co O で表される複合酸ィ匕物と同様の元素比となるように原料物質を混合し、大The raw materials are mixed so as to have the same element ratio as that of the complex oxidized product represented by Bi Co O, and
0.3 4 9.4 0.3 4 9.4
気圧中において、 1073Kで 10時間仮焼した。次いで、得られた焼成物を粉砕し、成 形して、 300ml/分の酸素ガス気流中で 1153Kで 20時間焼成した。その後、得られ た焼成物を粉砕、加圧成形し、空気中で lOMPaの一軸加圧下に、 1123Kで 20時 間のホットプレス焼結を行い、 p型熱電変換材料用の複合酸ィ匕物を作製した。  At atmospheric pressure, it was calcined at 1073K for 10 hours. Next, the obtained fired product was pulverized, shaped, and fired in an oxygen gas flow of 300 ml / min at 1153K for 20 hours. Then, the obtained fired product is pulverized and press-formed, and subjected to hot press sintering at 1123 K for 20 hours under uniaxial pressure of lOMPa in air to obtain a composite oxidized product for a p-type thermoelectric conversion material. Was prepared.
[0148] 一方、原料として、 La, Bi及び Niの各硝酸塩を用い、化学式: La Bi NiO で表さ れる複合酸ィ匕物と同様の元素比となるように原料物質を混合し、アルミナるつぼ中で 蒸留水に溶解し撹拌混合した後、得られた水溶液を加熱して水を蒸発させて、乾固 した。乾固物を大気中、 873Kで 10時間加熱し、得られた焼成物を粉砕、混合した 後、加圧成形し、 300ml/分の酸素ガス気流中で 1273Kで 20時間焼成した。次い で、焼成物を粉砕し混合して、加圧成形後、再度、 300ml/分の酸素ガス気流中で 1 273Kで 20時間焼成し、得られた焼成物を粉砕し、加圧成形した後、空気中で 10M Paの一軸加圧下に、 1173Kで 20時間のホットプレス焼結を行って n型熱電変換材 料用の複合酸化物を作製した。 [0148] On the other hand, using the respective nitrates of La, Bi and Ni as raw materials, the chemical formula is represented by La Bi NiO. The raw materials are mixed so as to have the same element ratio as that of the composite acidified product, dissolved in distilled water and mixed with stirring in an alumina crucible, and the resulting aqueous solution is heated to evaporate the water and dried. Hardened. The dried product was heated in the atmosphere at 873K for 10 hours, and the obtained fired product was pulverized and mixed, then molded under pressure, and fired at 1273K for 20 hours in an oxygen gas flow of 300 ml / min. Next, the fired product was pulverized, mixed, and press-molded, and again fired in an oxygen gas flow of 300 ml / min at 1273K for 20 hours, and the obtained fired product was pulverized and pressure-molded. Thereafter, hot-press sintering was performed at 1173 K for 20 hours under uniaxial pressure of 10 MPa in air to produce a composite oxide for an n-type thermoelectric conversion material.
[0149] 上記した方法で得られた p型熱電変換材料用の複合酸化物と n型熱電変換材料用 の複合酸化物にっ 、て、それぞれホットプレス時の加圧軸に平行な面を 4mm X 4m m、加圧面内に長さ 5mmで直方体状に切り出し成形して、 p型熱電変換材料と n型 熱電変換材料を作製した。この様にして得られた p型熱電変換材料と n型熱電変換 材料のそれぞれ 1本ずつについて、 4mm X 4mm面に銀ペーストを塗り、それらを、 表面に銀ペーストを塗布した長さ 8mm、幅 5mm、厚さ lmmのアルミナ基板上に平 行に立てた。 [0149] Each of the composite oxide for the p-type thermoelectric conversion material and the composite oxide for the n-type thermoelectric conversion material obtained by the above-described method has a plane parallel to the pressing axis during hot pressing by 4 mm. It was cut into a rectangular parallelepiped shape with a length of 4 mm and a length of 5 mm in the pressurized surface to produce a p-type thermoelectric conversion material and an n-type thermoelectric conversion material. For each of the p-type thermoelectric conversion material and n-type thermoelectric conversion material obtained in this way, apply a silver paste to the 4 mm X 4 mm surface, apply them to the surface, apply silver paste on the surface, length 8 mm, width It was set up in parallel on a 5 mm, lmm thick alumina substrate.
[0150] 次いで、銀ペーストを乾燥、固化させるため、 1073K、空気中で 15分間熱処理を 行い、図 1の (a - 1)型の熱電変換素子 (参考例 1)を作製した。  [0150] Next, in order to dry and solidify the silver paste, a heat treatment was performed in air at 1073K for 15 minutes to produce a (a-1) type thermoelectric conversion element of Fig. 1 (Reference Example 1).
[0151] また、 p型熱電変換材料及び n型熱電変換材料として、下記表 1及び表 2に示す組 成の複合酸ィ匕物を用いること以外は、参考例 1と同様にして、図 1の(a-1)型の熱電 変換素子 (参考例 2— 62)を作製した。尚、各酸化物を製造する際の焼成温度につ いては、組成に応じて 1073— 1273Kの範囲で変更し、更に、ホットプレス焼結の温 度 ίこつ 、ても、 1123一 1173Κの範囲で変更した。  [0151] Further, in the same manner as in Reference Example 1, except that the composite oxidized products having the compositions shown in Tables 1 and 2 below were used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, respectively. The (a-1) type thermoelectric conversion element (Reference Example 2-62) was produced. The firing temperature for producing each oxide is changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering is also changed in the range of 1123 to 1173 °. Was changed.
[0152] 得られた熱電変換素子について、 973Κにおける熱起電力及び電気抵抗と、 973 Κ、温度差 600Κにおける出力を下記表 1及び表 2に示す。  [0152] Tables 1 and 2 below show the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973Κ and the output at 973Κ and a temperature difference of 600Κ.
[0153] また、後述する参考例を含めた全ての参考例について、 293— 1073Kの温度範 囲において、電圧を高低温端の温度差で除した熱起電力は 60 μ VZK以上であつ た。  [0153] In all the reference examples including the reference example described later, the thermoelectromotive force obtained by dividing the voltage by the temperature difference between the high and low temperature ends was 60 µVZK or more in the temperature range of 293 to 1073K.
[0154] [表 1] 接着型素子 ( a— 1 ) 型 [Table 1] Adhesive type (a-1) type
Figure imgf000032_0001
] 接着型素子 ( a— 1 ) 型
Figure imgf000032_0001
] Adhesive type (a-1) type
Figure imgf000033_0001
¾ 'l63— 65 参考例 1で用いたものと同様の組成及び形状の p型熱電変換材料と n型熱電変換 材料を用い、各熱電変換材料の 4mm X 4mmの面に銀ペーストを塗り、長さ 8mm、 幅 5mm、厚さ 2mmの導電性基板(La Bi NiO )の上に平行に立てた。
Figure imgf000033_0001
¾ 'l63— 65 Using a p-type thermoelectric conversion material and n-type thermoelectric conversion material with the same composition and shape as those used in Reference Example 1, apply a silver paste to the 4 mm X 4 mm surface of each thermoelectric conversion material, length 8 mm, width 5 mm And placed upright on a 2 mm thick conductive substrate (La Bi NiO).
0.9 0.1 3.1  0.9 0.1 3.1
[0157] 次いで、銀ペーストを乾燥、固化させるため、 1073K、空気中で 15分間熱処理を 行い、図 1の(a - 2)型の熱電変換素子 (参考例 63)を作製した。  [0157] Next, in order to dry and solidify the silver paste, a heat treatment was performed in air at 1073K for 15 minutes to produce a (a-2) type thermoelectric conversion element in FIG. 1 (Reference Example 63).
[0158] また、 p型熱電変換材料及び n型熱電変換材料として、下記表 3に示す組成の複合 酸ィ匕物を用いること以外は、参考例 63と同様にして、図 1の(a— 2)型の熱電変換素 子を作製した。尚、各酸化物を製造する際の焼成温度については、組成に応じて 10 73— 1273Kの範囲で変更し、更に、ホットプレス焼結の温度についても、 1123—1 173Kの範囲で変更した。  [0158] In addition, in the same manner as in Reference Example 63 except that a composite oxide having a composition shown in Table 3 below was used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, (a- Type 2) thermoelectric conversion elements were fabricated. The firing temperature for producing each oxide was changed in the range of 1073-1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 1231-1173K.
[0159] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 K、温度差 600Κにおける出力を下記表 3に示す。  Table 3 below shows the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973 K, and the output at 973 K and a temperature difference of 600 °.
[0160] [表 3]  [0160] [Table 3]
( a - 2 )型 (a-2) type
Figure imgf000034_0001
Figure imgf000034_0001
[0161] 参者例 66— 68 [0161] Participants 66-68
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、各熱電変換材料の 4mm X 4mmの面に銀ペーストを塗り、長さ 8mm、 幅 5mm、厚さ 2mmのアルミナ基板の表面を蒸着法によって銀で被覆した導電性基 板上に平行に立てた。  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material with the same composition and shape as those used in Reference Example 1, apply a silver paste on the 4 mm X 4 mm surface of each thermoelectric conversion material, length 8 mm, width 5 mm The surface of a 2 mm-thick alumina substrate was placed in parallel on a conductive substrate coated with silver by a vapor deposition method.
[0162] 次いで、銀ペーストを乾燥、固化させるため、 1073K、空気中で 15分間熱処理を 行い、図 1の(a - 3)型の熱電変換素子 (参考例 66)を作製した。  [0162] Next, in order to dry and solidify the silver paste, a heat treatment was performed in air at 1073K for 15 minutes to produce a (a-3) type thermoelectric conversion element (Reference Example 66) in Fig. 1.
[0163] また、参考例 67及び 68として、下記表 4に示す組成の複合酸ィ匕物を用いること以 外は、参考例 66と同様にして、図 1の(a— 3)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0163] Also, as in Reference Example 66, the (a-3) type thermoelectric element of FIG. 1 was used as Reference Examples 67 and 68, except that a composite oxide having the composition shown in Table 4 below was used. A conversion element was manufactured. In addition, each The sintering temperature for producing the oxidized product was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0164] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 [0164] The thermoelectric conversion element obtained at 973K and the
K、温度差 600Κにおける出力を下記表 4に示す。 Table 4 below shows the output at K and a temperature difference of 600Κ.
[0165] [表 4] [0165] [Table 4]
( a - 3 )型 (a-3) type
Figure imgf000035_0001
Figure imgf000035_0001
[0166] 参考例 69— 71 [0166] Reference Example 69—71
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、各熱電変換材料の 4mm X 4mmの面に銀ペーストを塗り、長さ 10mm 、直径 0. 5mmの白金線の両端をそれぞれ各熱電変換材料の銀ペーストを塗布した 面上に位置させ、銀ペーストを乾燥、固化させるため、 1073K、空気中で 15分間熱 処理を行!ヽ、図 1の(a - 4)型の熱電変換素子 (参考例 69)を作製した。  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, apply a silver paste to a 4 mm X 4 mm surface of each thermoelectric conversion material, length 10 mm, diameter 0 Place both ends of a 5mm platinum wire on the surface of each thermoelectric conversion material coated with silver paste, and perform heat treatment at 1073K for 15 minutes in air to dry and solidify the silver paste! ヽ, Fig. 1 The (a-4) type thermoelectric conversion element (Reference Example 69) was produced.
[0167] また、参考例 70及び 71として、下記表 5に示す組成の複合酸ィ匕物を用いること以 外は、参考例 69と同様にして、図 1の(a— 4)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。  [0167] Also, as in Reference Example 69, the (a-4) type thermoelectric element shown in FIG. 1 was used as Reference Examples 70 and 71, except that a composite oxide having the composition shown in Table 5 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0168] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 [0168] For the obtained thermoelectric conversion element, the thermoelectromotive force and electric resistance at 973K were measured,
K、温度差 600Κにおける出力を下記表 5に示す。 Table 5 below shows the output at K and a temperature difference of 600 °.
[0169] [表 5] ( a - 4 )型 [0169] [Table 5] (a-4) type
Figure imgf000036_0001
Figure imgf000036_0001
[0170] 参者例 72— 74 [0170] Participants 72-74
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、一本ずつの p型熱電変換材料と n型熱電変換材料のそれぞれの 4mm X 5mmの面同士を密着させ、その面に垂直に加圧しながら、 1073Kで 3時間ホット プレス焼成を行った。  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was 4 mm x 5 mm. The surfaces were brought into close contact with each other, and hot press sintering was performed at 1073K for 3 hours while pressing the surfaces perpendicularly.
[0171] 次いで、接合界面を材料の一端から長手方向(長さ 5mmの方向)に 3mmの長さま でダイヤモンドカッターを用いて切り込みを入れ、 p型熱電変換材料と n型熱電変換 材料とを分離した。この方法により、図 2に示す (s - 1)型の焼結型素子 (参考例 72) を得た。  [0171] Next, a cut was made at one end of the joining interface from one end of the material in a longitudinal direction (direction of 5 mm) to a length of 3 mm using a diamond cutter to separate the p-type thermoelectric conversion material from the n-type thermoelectric conversion material. did. By this method, a (s-1) type sintered element (Reference Example 72) shown in FIG. 2 was obtained.
[0172] また、参考例 73及び 74として、下記表 6に示す組成の複合酸ィ匕物を用いること以 外は、参考例 72と同様にして、図 2の(s— 1)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。  [0172] Also, as in Reference Example 72, the (s-1) type thermoelectric element shown in FIG. 2 was used as Reference Examples 73 and 74, except that a composite oxide having the composition shown in Table 6 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0173] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 [0173] For the obtained thermoelectric conversion element, the thermoelectromotive force and electrical resistance at 973K were
K、温度差 600Κにおける出力を下記表 6に示す。 Table 6 below shows the output at K and a temperature difference of 600 °.
[0174] [表 6] 焼結型素子 ( s - 1 ) 型 [0174] [Table 6] Sintered element (s-1) type
Figure imgf000037_0001
Figure imgf000037_0001
[0175] 参者例 75— 77 [0175] Participants 75-77
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、一本ずつの p型熱電変換材料と n型熱電変換材料のそれぞれの 4mm X 5mmの面の間に直径 0. 25mm, 23メッシュ Zinchの銀網をはさみ、接触面に垂 直方向に加圧しながら、 1073K、空気中で 3時間熱処理を行って、 ρ型熱電変換材 料と η型熱電変換材料を接合した。  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was 4 mm x 5 mm. A 0.25-mm, 23-mesh Zinch silver mesh is sandwiched between the surfaces, and heat treatment is performed for 3 hours in air at 1073K while applying pressure vertically to the contact surface.The ρ-type thermoelectric conversion material and η-type The thermoelectric conversion materials were joined.
[0176] 次いで、接合界面を材料の一端から長手方向(長さ 5mmの方向)に 3mmの長さま でダイヤモンドカッターを用いて切れ込みを ヽれ、 p型熱電変換材料と n型熱電変換 材料とを分離した。この方法により、図 2に示す (s— 2)型の焼結型素子 (参考例 75) を得た。  [0176] Next, the joining interface was cut from one end of the material in the longitudinal direction (direction of length 5mm) to a length of 3mm using a diamond cutter, and the p-type thermoelectric conversion material and the n-type thermoelectric conversion material were separated. separated. By this method, a (s-2) type sintered element (Reference Example 75) shown in FIG. 2 was obtained.
[0177] また、 p型熱電変換材料及び n型熱電変換材料として、下記表 7に示す組成の複合 酸ィ匕物を用いること以外は、参考例 75と同様にして、図 2の(S— 2)型の熱電変換素 子を作製した。尚、各酸化物を製造する際の焼成温度については、組成に応じて 10 73— 1273Kの範囲で変更し、更に、ホットプレス焼結の温度についても、 1123—1 173Kの範囲で変更した。  [0177] Also, in the same manner as in Reference Example 75, except that a composite oxide having the composition shown in Table 7 below was used as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, Type 2) thermoelectric conversion elements were fabricated. The firing temperature for producing each oxide was changed in the range of 1073-1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 1231-1173K.
[0178] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 K、温度差 600Κにおける出力を下記表 7に示す。  Table 7 below shows the thermoelectromotive force and electric resistance of the obtained thermoelectric conversion element at 973 K, and the output at 973 K and a temperature difference of 600 °.
[0179] [表 7] (s - 2)型 [Table 7] (s-2) type
Figure imgf000038_0001
Figure imgf000038_0001
[0180] 参者例 78— 80 [0180] Participants 78-80
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、 ρ型熱電変換材料の 4mm X 4mmの面と n型熱電変換材料の 4mm X 4mmの面の両面上に位置するように、長さ 8mm、幅 5mm、厚さ 2mmの La Bi Ni  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material with the same composition and shape as those used in Reference Example 1, a 4 mm X 4 mm surface of the ρ-type thermoelectric conversion material and a 4 mm X 4 mm La Bi Ni 8mm long, 5mm wide, 2mm thick so that it lies on both sides of the surface
0.9 0.1 0.9 0.1
O の導電性基板を載せ、接触面に垂直方向に加圧しながら 1073K、空気中で 3時Place the O conductive substrate and pressurize the contact surface in the vertical direction at 1073K in the air for 3 hours.
3.1 3.1
間熱処理を行って焼結させ、 ρ型熱電変換材料と η型熱電変換材料に導電性基板を 接合することにより、図 2の(s— 3)型の熱電変換素子を作製した。  The (s-3) type thermoelectric conversion element shown in Fig. 2 was fabricated by bonding a ρ-type thermoelectric conversion material and an η-type thermoelectric conversion material to a conductive substrate.
[0181] また、参考例 79及び 80として、下記表 8に示す組成の複合酸ィ匕物を用いること以 外は、参考例 78と同様にして、図 2の(s— 3)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0181] Also, as in Reference Example 78, the (s-3) type thermoelectric element of FIG. 2 was used as Reference Examples 79 and 80, except that a composite oxide having the composition shown in Table 8 below was used. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0182] 得られた熱電変換素子について、 973Κにおける熱起電力及び電気抵抗と、 973 [0182] For the obtained thermoelectric conversion element, the thermoelectromotive force and electrical resistance at 973Κ
Κ、温度差 600Κにおける出力を下記表 8に示す。 Table 8 below shows the output at the temperature difference of 600 °.
[0183] [表 8] [0183] [Table 8]
(s - 3)型  (s-3) type
参考例 熱起電力 ¾ 抵抗 出力  Reference example Thermoelectromotive force 抵抗 Resistance output
P型材料 n型材料  P-type material n-type material
No. ( V/K) (mQ) (mW)  No. (V / K) (mQ) (mW)
973K 973K
973K 973K 973K 973K
温度差 600K Temperature difference 600K
78 CI2JDI03CO4O94 La09Bi01NiO3., 150.0 35.0 4678 CI 2 JDI 03 CO 4 O 94 La 09 Bi 01 NiO3., 150.0 35.0 46
79 Ca3Co4089 LaNi03, 140.0 40.0 35 79 Ca 3 Co 4 0 89 LaNi0 3, 140.0 40.0 35
80 Ca2.6NA0.2B L0.2CO4O93 La09Bi01NiO32 140.0 35.0 40 [0184] 参考例 81— 83 80 Ca 2.6 NA 0.2 BL 0.2CO 4 O 93 La 09 Bi 01 NiO 32 140.0 35.0 40 [0184] Reference Example 81—83
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用 、、 ρ型熱電変換材料の 4mm X 4mmの面と n型熱電変換材料の 4mm X 4 mmの面の上に、それぞれ直径 0. 25mm, 23メッシュ Zinchの銀網を載せ、更に、 両面上に位置するように、長さ 8mm、幅 5mm、厚さ 2mmの La Bi NiO の導電性  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, the 4 mm X 4 mm surface of the ρ-type thermoelectric conversion material and the 4 mm X 4 of the n-type thermoelectric conversion material A 0.25mm diameter, 23 mesh Zinch silver mesh is placed on the surface of each mm, and the conductivity of La Bi NiO of length 8mm, width 5mm, and thickness 2mm is placed on both sides.
0.9 0.1 3.1  0.9 0.1 3.1
基板を載せ、接触面に垂直方向に加圧しながら 1073K、空気中で 3時間熱処理を 行って焼結させて、 ρ型熱電変換材料と η型熱電変換材料に導電性基板を接合する ことにより、図 2の(s— 4)型の熱電変換素子 (参考例 81)を作製した。  The substrate is placed, heat-treated in air at 1073K for 3 hours while applying pressure vertically to the contact surface, and sintered, and the conductive substrate is bonded to the ρ-type and η-type thermoelectric conversion materials. A (s-4) type thermoelectric conversion element (Reference Example 81) in FIG. 2 was produced.
[0185] また、参考例 82及び 83として、下記表 9に示す組成の複合酸ィ匕物を用いること以 外は、参考例 81と同様にして、図 2の(s-4)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0185] Further, in the same manner as in Reference Example 81, except that a composite oxidized product having the composition shown in Table 9 below was used as Reference Examples 82 and 83, the (s-4) type thermoelectric element of FIG. A conversion element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0186] 得られた熱電変換素子について、 973Κにおける熱起電力及び電気抵抗と、 973 [0186] For the obtained thermoelectric conversion element, the thermoelectromotive force and electrical resistance at 973Κ
Κ、温度差 600Κにおける出力を下記表 9に示す。 Table 9 below shows the output at a temperature difference of 600 °.
[0187] [表 9] [Table 9]
( s - 4 )型  (s-4) type
Figure imgf000039_0001
Figure imgf000039_0001
[0188] 参者例 84— 86 [0188] Examples of participants 84—86
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、各材料の側面である 4mm X 5mmの面に材料の一端力 長手方向(長 さ 5mmの方向)へ lmm、左右の端から 2mmの位置に直径 lmmのドリルで穴を材料 の反対側の面まで貫通させた。この穴に直径 1. 2mmの銀線を差し込み、 p型熱電 変換材料と n型熱電変換材料を接続することによって、図 3に示す (c - 1)型の熱電変 換素子 (参考例 84)を作製した。 Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, apply one-sided force to the 4 mm X 5 mm side surface of each material in the longitudinal direction (length 5 mm). A hole with a diameter of 1 mm was drilled at a position 2 mm from the left and right ends to the opposite side of the material. By inserting a 1.2mm diameter silver wire into this hole and connecting the p-type and n-type thermoelectric conversion materials, the (c-1) type A replacement element (Reference Example 84) was produced.
[0189] また、参考例 85及び 86として、下記表 10に示す組成の複合酸ィ匕物を用いること以 外は、参考例 84と同様にして、図 3の(c 1)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0189] Further, in the same manner as in Reference Example 84, except that a composite oxide having the composition shown in Table 10 below was used as Reference Examples 85 and 86, the (c1) type thermoelectric conversion of FIG. An element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0190] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 [0190] For the obtained thermoelectric conversion element, the thermoelectromotive force and electric resistance at 973K were measured,
K、温度差 600Κにおける出力を下記表 10に示す。 Table 10 below shows the output at K and a temperature difference of 600Κ.
[0191] [表 10] [0191] [Table 10]
接触型素子  Contact element
(c-1 )  (c-1)
 Type
Figure imgf000040_0001
Figure imgf000040_0001
[0192] 参者例 87— 89 [0192] Participants 87- 89
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、各材料の上部面 (4 X 4mmの面)側に、銀製のパネ式のクリップを用い て銀製の直径 0.5mm、長さ 10mmの導線を固定して、 p型熱電変換材料と n型熱電変 換材料を接続することによって、図 3に示す (c 2)型の熱電変換素子 (参考例 87)を 作製した。  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, attach a silver panel-type clip to the upper surface (4 X 4 mm surface) of each material. A 0.5-mm-diameter, 10-mm-long wire made of silver was fixed and connected to a p-type thermoelectric conversion material and an n-type thermoelectric conversion material. Reference Example 87) was produced.
[0193] また、参考例 88及び 89として、下記表 11に示す組成の複合酸ィ匕物を用いること以 外は、参考例 87と同様にして、図 3の(c 2)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0194] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973[0193] In addition, the same procedure as in Reference Example 87 was carried out except that the composite oxidized products having the compositions shown in Table 11 below were used as Reference Examples 88 and 89, and the thermoelectric conversion of the (c2) type in FIG. An element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K. [0194] For the obtained thermoelectric conversion element, the thermoelectromotive force and electric resistance at 973K were measured,
K、温度差 600Κにおける出力を下記表 11に示す。 Table 11 below shows the output at K and a temperature difference of 600 °.
[0195] [表 11] [0195] [Table 11]
( c-2 )型 (c-2) type
Figure imgf000041_0001
Figure imgf000041_0001
[0196] 参者例 90— 92 [0196] Participants 90-92
参考例 1で用いたものと同様の組成及び形状の P型熱電変換材料と n型熱電変換 材料を用い、各材料の上部面(4mm X 4mmの面)にメスのねじ山を切った。一方、 二力所の孔を設けた長さ 8mm、幅 5mm、厚さ 2mmの La Bi NiO の導電性基板  Using a P-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same composition and shape as those used in Reference Example 1, a female thread was cut on the upper surface (4 mm X 4 mm surface) of each material. On the other hand, a conductive substrate made of La Bi NiO with a length of 8 mm, a width of 5 mm, and a thickness of 2 mm with two holes
0.9 0.1 3.1  0.9 0.1 3.1
を、孔の位置が熱電変換材料のねじ山に位置と一致する様に両材料上に載せ、該 導電性基板を P型熱電変換材料と n型熱電変換材料にねじ止めすることによって、図 3に示す (s - 3)型の熱電変換素子 (参考例 90)を作製した。  Is placed on both materials such that the positions of the holes match the positions of the threads of the thermoelectric conversion material, and the conductive substrate is screwed to the P-type thermoelectric conversion material and the n-type thermoelectric conversion material. (S-3) type thermoelectric conversion element (Reference Example 90) shown in FIG.
[0197] また、参考例 91及び 92として、下記表 12に示す組成の複合酸ィ匕物を用いること以 外は、参考例 90と同様にして、図 3の(c 3)型の熱電変換素子を作製した。尚、各 酸ィ匕物を製造する際の焼成温度については、組成に応じて 1073— 1273Kの範囲 で変更し、更に、ホットプレス焼結の温度についても、 1123— 1173Kの範囲で変更 した。 [0197] Also, as in Reference Example 90, the thermoelectric conversion of the (c3) type in FIG. An element was manufactured. The firing temperature in producing each of the oxidized products was changed in the range of 1073 to 1273K depending on the composition, and the temperature of hot press sintering was also changed in the range of 123 to 1173K.
[0198] 得られた熱電変換素子について、 973Kにおける熱起電力及び電気抵抗と、 973 [0198] The thermoelectric conversion element obtained at 973 K
K、温度差 600Κにおける出力を下記表 12に示す。 Table 12 below shows the output at K and a temperature difference of 600Κ.
[0199] [表 12] ( c- 3 )型 [0199] [Table 12] (c-3) type
Figure imgf000042_0001
Figure imgf000042_0001
[0200] 特件試,験例 ί [0200] Special cases, test cases ί
参考例 1、 63及び 75で得た各熱電変換素子について、各素子の接合部を電気炉 により加熱し、他端部を冷却して発電特性を評価した。図 8は、高温部を 300— 100 0Κ、低温部を 293— 400Κとしたときの発生電圧(開放電圧)と高温部の温度との関 係を示すグラフである。発生電圧(開放電圧)は、高温部の温度上昇により増加する 傾向が認められた。  For each of the thermoelectric conversion elements obtained in Reference Examples 1, 63 and 75, the junction of each element was heated by an electric furnace, and the other end was cooled to evaluate the power generation characteristics. Figure 8 is a graph showing the relationship between the generated voltage (open-circuit voltage) and the temperature of the high-temperature part when the high-temperature part is 300-1000 100 and the low-temperature part is 293-400Κ. The generated voltage (open-circuit voltage) tended to increase as the temperature of the high-temperature part rose.
[0201] これらの各素子の発生電圧を比較すると、参考例 1及び 63の素子の発生電圧が、 参考例 75の素子の発生電圧より高い傾向が認められる。これは、材料の上面部に基 板を接合した参考例 1及び 63の素子では、 ρ型熱電変換材料と η型熱電変換材料の 分離している長さ力 材料の長さと同じ 5mmであるのに対して、材料側面を焼結させ て切り込みを入れた参考例 75の素子は、 p型熱電変換材料と n型熱電変換材料の分 離している長さが 3mmであることが影響しているものと考えることができる。即ち、低 温側からの材料が分離している長さが長い程、その間での温度差を大きく取ることが できるため、発生電圧が高くなるものと思われる。  When the generated voltages of these elements are compared, the generated voltage of the elements of Reference Examples 1 and 63 tends to be higher than the generated voltage of the element of Reference Example 75. This is 5 mm, which is the same as the length of the ρ-type thermoelectric conversion material and the η-type thermoelectric conversion material in the elements of Reference Examples 1 and 63 in which the substrate is bonded to the upper surface of the material. On the other hand, the element of Reference Example 75, in which the side of the material was cut by sintering, was affected by the 3 mm separation length between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. Can be thought of. In other words, the longer the material is separated from the lower temperature side, the greater the temperature difference between them, and the higher the generated voltage.
[0202] また、図 9は、参考例 1及び 75の素子について、電気抵抗と高温部の温度との関係 を示すグラフである。これから明らかなように、温度の上昇と共に電気抵抗が低下す る傾向が認められた。  [0202] Fig. 9 is a graph showing the relationship between the electric resistance and the temperature of the high-temperature part for the devices of Reference Examples 1 and 75. As is clear from this, a tendency was observed that the electrical resistance decreased with increasing temperature.
[0203] 参者例 93— 97  [0203] Participants 93-97
参考例 1で得た熱電変換素子を 84個用い、これらを長さ 8cm、幅 6cm、厚さ lmm のアルミナ基板上に、素子の接合していない面が接するように載せ、銀ペーストを用 いて、各素子の p型端部と n型端部を交互に接続して、図 4に示す熱電変換モジユー ル (参考例 93)を作製した。 [0204] 参考例 1で得た熱電変換素子に代えて、参考例 75、 63、 81又は 84で得た熱電変 換素子を用い、その他は、参考例 93と同様にして、参考例 94一 97の熱電変換モジ ユールを作製した。 Using 84 thermoelectric conversion elements obtained in Reference Example 1, these were placed on an alumina substrate of 8 cm in length, 6 cm in width, and lmm in thickness such that the unbonded surfaces of the elements were in contact with each other, and silver paste was used. Then, a p-type end and an n-type end of each element were alternately connected to produce a thermoelectric conversion module (Reference Example 93) shown in FIG. [0204] Instead of the thermoelectric conversion element obtained in Reference Example 1, the thermoelectric conversion element obtained in Reference Example 75, 63, 81, or 84 was used. 97 thermoelectric conversion modules were fabricated.
[0205] 得られた各熱電変換モジュールにつ 、て、アルミナ基板を高温部とし、 p型熱電変 換材料と n型熱電変換材料の接合部を低温部として、高温部を 973K、低温部との 温度差を 600Κとした場合の開放電圧と、内部抵抗及び最高出力を表 13に示す。こ こで開放電圧は外部抵抗を負荷せず、モジュールに温度差を与えた時生じる電圧で ある。出力はモジュールの内部抵抗と同じ抵抗値を負荷したとき最高値に達した。  [0205] For each of the obtained thermoelectric conversion modules, the alumina substrate was used as the high temperature part, the junction between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material was used as the low temperature part, the high temperature part was used as 973K, and the low temperature part was used. Table 13 shows the open-circuit voltage, internal resistance, and maximum output when the temperature difference is 600 ° C. Here, the open-circuit voltage is the voltage generated when a temperature difference is applied to the module without applying an external resistor. The output reached its maximum when loaded with the same resistance as the internal resistance of the module.
[0206] また、全ての参考例において、高温部を 973Κとした場合、 0. 5W以上の出力が得 られた。  [0206] In all the reference examples, when the high temperature part was set to 973 97, an output of 0.5 W or more was obtained.
[0207] [表 13]  [Table 13]
Figure imgf000043_0001
Figure imgf000043_0001
[0208] 更に、本発明の熱電発電装置で用いることができる熱電変換材料の一例について 、製造例と得られた酸化物の物性値を参考例として示して、本発明の熱電発電装置 で用いる熱電変換材料として有効であることを示す。 [0208] Further, with respect to an example of a thermoelectric conversion material that can be used in the thermoelectric generator of the present invention, a production example and physical properties of the obtained oxide are shown as reference examples, and the thermoelectric generator used in the thermoelectric generator of the present invention is shown. It shows that it is effective as a conversion material.
[0209] 参考例 98  [0209] Reference Example 98
一般式: Ca A1 Co A2 O又は一般式: Bi Pb M1 Co M20で表される p型熱電変 General formula: Ca A 1 Co A 2 O or general formula: p-type thermoelectric transformer represented by Bi Pb M 1 Co M 20
a b c d e f g h i j k  a b c d e f g h i j k
換材料としての特性を有する複合酸化物を下記の方法で作製した。  A composite oxide having properties as a replacement material was produced by the following method.
[0210] 原料物質としては、目的とする複合酸化物の構成元素を含む炭酸塩又は酸化物を 用い、表 14一表 81に記載した組成式と同じ元素比となるように原料物質を混合し、 大気圧中において、 1073Kで 10時間仮焼した。次いで、得られた焼成物を粉砕し、 成形して、 300ml/分の酸素ガス気流中で 20時間焼成した。その後、得られた焼成 物を粉砕、加圧成形し、空気中で lOMPaの一軸加圧下に、 20時間のホットプレス焼 結を行い、 p型熱電変換材料用の複合酸化物を作製した。各酸化物を製造する際の 焼成温度については、組成に応じて 1073— 1273Kの範囲で変更し、更に、ホットプ レス焼結の温度にっ 、ても、 1123— 1173Kの範囲で変更した。 [0210] As the raw material, a carbonate or oxide containing a constituent element of the target composite oxide was used, and the raw materials were mixed so as to have the same element ratio as the composition formula shown in Table 14-Table 81. It was calcined at 1073K for 10 hours at atmospheric pressure. Next, the obtained fired product was pulverized, molded, and fired in an oxygen gas flow of 300 ml / min for 20 hours. Then the resulting firing The material was pulverized and press-formed, and subjected to hot press sintering for 20 hours under uniaxial pressure of lOMPa in air to produce a composite oxide for a p-type thermoelectric conversion material. The firing temperature for producing each oxide was changed in the range of 1073 to 1273K depending on the composition, and further, the temperature of hot press sintering was changed in the range of 123 to 1173K.
[0211] 得られた各酸ィ匕物について、 700°Cにおけるゼーベック係数、 700°Cにおける電気 抵抗率及び 700°Cにおける熱伝導度の測定結果を下記表 14一表 81に示す。  [0211] Table 14 and Table 81 below show the measurement results of the Seebeck coefficient at 700 ° C, the electric resistivity at 700 ° C, and the thermal conductivity at 700 ° C for each of the obtained iridani products.
[0212] [表 14] [0212] [Table 14]
Figure imgf000045_0001
15]
Figure imgf000045_0001
15]
Figure imgf000046_0001
16]
Figure imgf000046_0001
16]
Figure imgf000047_0001
17]
Figure imgf000047_0001
17]
Figure imgf000048_0001
18]
Figure imgf000048_0001
18]
Figure imgf000049_0001
19]
Figure imgf000049_0001
19]
Figure imgf000050_0001
20]
Figure imgf000050_0001
20]
Figure imgf000051_0001
21]
Figure imgf000051_0001
twenty one]
Figure imgf000052_0001
22]
Figure imgf000052_0001
twenty two]
Figure imgf000053_0001
23]
Figure imgf000053_0001
twenty three]
Figure imgf000054_0001
24]
Figure imgf000054_0001
twenty four]
Figure imgf000055_0001
25]
Figure imgf000055_0001
twenty five]
Figure imgf000056_0001
26]
Figure imgf000056_0001
26]
Bi2Pb0.2SrL8Cr0.2Co20g 207 8.6 0.8 r 190 8.7 1.3 Bi 2 Pb 0. 2 Sr L8 Cr 0. 2 Co 2 0 g 207 8.6 0.8 r 190 8.7 1.3
BisPbo.sSr! 8Fe02Co209 198 8.3 1.4BisPbo.sSr! 8 Fe 02 Co 2 0 9 198 8.3 1.4
Bi2Pb02SrL 8Ni0.2Co209 199 9.0 1.1 Bi 2 Pb 02 Sr L 8 Ni 0. 2 Co 2 0 9 199 9.0 1.1
Bi2Pb0.2Srl 8Cu0.2Co209 201 7.9 1.0 Bi 2 Pb 0. 2 Sr l 8 Cu 0. 2 Co 2 0 9 201 7.9 1.0
Bi2Pb0.2Sr18Zn0.2Co209 210 8.1 1.3 Bi 2 Pb 0. 2 Sr 18 Zn 0. 2 Co 2 0 9 210 8.1 1.3
Bi,Pb02Sru 8Pb0.2Co209 206 8.0 0.9 Bi, Pb 02 Sr u 8 Pb 0. 2 Co 2 0 9 206 8.0 0.9
Bi2Pb02SrL 8Ca02Co209 205 7.8 1.1Bi 2 Pb 02 Sr L 8 Ca 02 Co 2 0 9 205 7.8 1.1
Bi2Pb02Sr! 8Ba02Co209 198 7.2 1.4Bi 2 Pb 02 Sr! 8 Ba 02 Co 2 0 9 198 7.2 1.4
Bi2Pb0.2Sr18Ala2Co20g 195 9.0 1.2 Bi 2 Pb 0. 2 Sr 18 Al a2 Co 2 0 g 195 9.0 1.2
Bi2Pb02SrL8Y02Co209 200 7.8 0.9Bi 2 Pb 02 Sr L8 Y 02 Co 2 0 9 200 7.8 0.9
B^Pb Si sし a0.2Co2(¾ 203 7.5 1.1B ^ Pb Si s and a 0. 2 Co 2 (¾ 203 7.5 1.1
Bi2Pb02SrLSCe02Co209 201 8.6 1.2Bi 2 Pb 02 Sr LS Ce 02 Co 2 0 9 201 8.6 1.2
Bi2Pb02SrL8Pr0.2Co209 208 8.2 0.9 Bi 2 Pb 02 Sr L8 Pr 0 . 2 Co 2 0 9 208 8.2 0.9
Bi2Pb02Sr18Nd02Co209 198 7.9 1.1Bi 2 Pb 02 Sr 18 Nd 02 Co 2 0 9 198 7.9 1.1
Bi2Pb02Sr! gSmo 2Co209 199 6.9 1.2 Bi 2 Pb 02 Sr! GSmo 2 Co 2 0 9 199 6.9 1.2
207 8.1 1.4 207 8.1 1.4
Bi2Pb02Srh 8Gd0_ 2Co209 198 9.0 0.8Bi 2 Pb 02 Sr h 8 Gd 0 _ 2 Co 2 0 9 198 9.0 0.8
Bi2Pb , 2SrL8Dy0.2Co209 201 8.2 1.3 Bi 2 Pb, 2 Sr L8 Dy 0. 2 Co 2 0 9 201 8.2 1.3
Bi2Pb02Srl sHo0,2Co209 200 7.9 1.2 Bi 2 Pb 02 Sr ls Ho 0 , 2 Co 2 0 9 200 7.9 1.2
198 8.6 1.1 198 8.6 1.1
BigPbo.gSr! 8Yb0.2Co209 205 9.1 1.0 BigPbo.gSr! 8 Yb 0. 2 Co 2 0 9 205 9.1 1.0
Bi2Ca2Co209 205 7.4 1.1Bi 2 Ca 2 Co 2 0 9 205 7.4 1.1
Bi aj 8Na02Co209 198 7.8 0.9Bi aj 8 Na 02 Co 2 0 9 198 7.8 0.9
Bi2Ca! 8K0.2Co209 195 7.7 0.8 Bi 2 Ca! 8 K 0. 2 Co 2 0 9 195 7.7 0.8
Bi2Cai gLi02Co20<, 200 8.0 1.0Bi 2 Cai g Li 02 Co 2 0 <, 200 8.0 1.0
Bi2CaL8Ti .2Co209 205 8.2 1.3 Bi 2 Ca L8 Ti. 2 Co 2 0 9 205 8.2 1.3
Bi2Ca, gV02Co209 198 7.9 1.2Bi 2 Ca, g V 02 Co 2 0 9 198 7.9 1.2
Bi,CaL8Cr02Co209 199 9.1 0.7Bi, Ca L8 Cr 02 Co 2 0 9 199 9.1 0.7
Bi2CaL8Mn02Co209 210 8.4 1.3Bi 2 Ca L8 Mn 02 Co 2 0 9 210 8.4 1.3
Bi2Ca,.sFe0 o209 200 8.6 1.4Bi 2 Ca, .s Fe 0 o 2 0 9 200 8.6 1.4
Bi2CaL8Ni02Co209 207 8.2 1.1Bi2Ca L8 Ni 02 Co 2 0 9 207 8.2 1.1
Bi2Cai 8Cu02Co209 198 7.9 1.0Bi 2 Cai 8 Cu 02 Co 2 0 9 198 7.9 1.0
Bi2Ca18Zn0i 2Co209 196 8.6 1.3Bi 2 Ca 18 Zn 0i 2 Co 2 0 9 196 8.6 1.3
Bi2CaL8Pb02Co,09 200 9.1 0.9Bi 2 Ca L8 Pb 02 Co, 0 9 200 9.1 0.9
Bi2Ca18Sr02Co209 198 6.9 1.1 27] Bi 2 Ca 18 Sr 02 Co 2 0 9 198 6.9 1.1 27]
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000058_0001
Figure imgf000059_0001
[9220]  [9220]
f6T6lO/1OOi<If/X3d S 869W0/S00Z OAV 29] f6T6lO / 1OOi <If / X3d S 869W0 / S00Z OAV 29]
Figure imgf000060_0001
30]
Figure imgf000060_0001
30]
Figure imgf000061_0001
31]
Figure imgf000061_0001
31]
a p a p
Bi2Pb0.2SrL8Laa 2Co! Jio A 205 7.9 1.3 Bi 2 Pb 0. 2 Sr L8 La a 2 Co! Jio A 205 7.9 1.3
Bi2Pb02Srl 8Ce0 20ο( 9Ti0 A 198 9.1 0.9Bi 2 Pb 0 2Sr l 8 Ce 0 2 0ο ( 9 Ti 0 A 198 9.1 0.9
Bi2Pb0 2Sr,.8Pr0.2Co! 9Ti0 A 195 8.4 1. 1 Bi 2 Pb 0 2 Sr ,. 8 Pr 0. 2 Co! 9 Ti 0 A 195 8.4 1. 1
Bi2Pb0.2SrL8Nd0.2Co' Jio A 200 8.6 1.4 Bi 2 Pb 0. 2 Sr L8 Nd 0. 2 Co 'Jio A 200 8.6 1.4
Bi2Pbo.2Sr sSmo.2COi.9Ti A 203 7.8 1.2Bi2Pbo.2Sr sSmo.2COi.9Ti A 203 7.8 1.2
Bi2Pb0 2SrLSEu0.2Co, 9Ti0 A 201 9.0 0.9 Bi 2 Pb 0 2 Sr LS Eu 0. 2 Co, 9 Ti 0 A 201 9.0 0.9
Bi2Pb0.2SrL8Gd0 2Co1 Ji0 A 208 8.2 1.1 Bi 2 Pb 0. 2 Sr L8 Gd 0 2 Co 1 Ji 0 A 208 8.2 1.1
Bi2Pb0.2SrL8Dy0.2CoL9Ti0 A 201 8.3 1.2 Bi 2 Pb 0. 2 Sr L 8Dy 0. 2 Co L9 Ti 0 A 201 8.3 1.2
Bi2Pb0.2SrL8Ho0.2CoL9Ti0 190 8.6 0.9 Bi2Pb 0. 2 Sr L8 Ho 0 .2Co L9 Ti 0 190 8.6 0.9
Bi2Pb0.2Sr1 8Er0 2Co! Ji0 A 198 8.7 1. 1 Bi 2 Pb 0. 2 Sr 1 8 Er 0 2 Co! Ji 0 A 198 8.7 1. 1
Bi2Pb0.2SrL8Yb0.2Co',9Tio A. 199 8.3 1.2 Bi 2 Pb 0. 2 Sr L 8Yb 0 .2Co ', 9Tio A. 199 8.3 1.2
Bi2Ca2Co! 9Ti0. A 200 7.9 1.3Bi 2 Ca 2 Co! 9 Ti 0 .A 200 7.9 1.3
BiaCaLgNao. ^.J .A 206 8.1 1.0BiaCaLgNao. ^. J.A 206 8.1 1.0
Bi2Ca! 8K02Co! 9Ti0 o9 205 8.0 0.9Bi 2 Ca! 8 K 02 Co! 9 Ti 0 o 9 205 8.0 0.9
Bi^Cauし in, 2Co1 91 i .A 198 7.8 1.1Bi ^ Cau in, 2 Co 19 1 i .A 198 7.8 1.1
Bi2CaL8Tia 2Co sTi0 ,,o9 201 7.2 1.0 o9 196 9.0 1.2 Bi 2 Ca L8 Ti a 2 Co s Ti 0 ,, o 9 201 7.2 1.0 o 9 196 9.0 1.2
Bi2Cai.8Cro.2COi.9Tic .A 202 7.8 1.1Bi2Cai.8Cro.2COi.9Tic .A 202 7.8 1.1
Bi2Ca1 8Mn0 2CoL9Tic .A 203 7.5 0.9Bi 2 Ca 18 Mn 0 2 Co L9 Ti c .A 203 7.5 0.9
Bi2CaL8Fe0 2CoL9Tic .A 205 8.6 0.8Bi 2 Ca L8 Fe 0 2 Co L9 Ti c .A 205 8.6 0.8
Bi2CaLaNi0.2CoL9Tic ■ A 198 8.2 1.0 Bi 2 Ca La Ni 0. 2 Co L9 Ti c ■ A 198 8.2 1.0
B i 2CaL 8Cu0 2Co ! gTic .,o9 195 7.9 1.3B i 2 Ca L 8 Cu 0 2 Co! G Ti c ., O 9 195 7.9 1.3
Bi2CaL8Zn0.2CoL9Tic .A 200 6.9 1.2 Bi 2 Ca L8 Zn 0. 2 Co L9 Ti c .A 200 6.9 1.2
.A 205 8.1 0.7 .A 205 8.1 0.7
Bi2CaL8Sr0.2Coi-9Ti .A 198 7.5 1.3 Bi 2 Ca L8 Sr 0. 2 Co i-9 Ti .A 198 7.5 1.3
Bi2CaL8Ba0> 2CoL9Ti .A 199 8.6 1.4 Bi 2 Ca L8 Ba 0> 2 Co L9 Ti .A 199 8.6 1.4
.A 210 8.2 1.1 12CaL 8Y0 2Co, 9Ti0 ,09 202 7.9 1.0 2CaL 8La02CoL gTi ,A 204 6.9 1.3 .A 210 8.2 1.1 1 2 Ca L 8 Y 0 2 Co, 9 Ti 0, 0 9 202 7.9 1.0 2Ca L 8 La 0 2Co L g Ti, A 204 6.9 1.3
).A 197 8.1 0.9 ) .A 197 8.1 0.9
Bi2Ca1 8Pr0.2Co1.9Ti ,.A 190 9.0 1.1 Bi 2 Ca 1 8 Pr 0. 2 Co 1. 9 Ti, .A 190 9.0 1.1
Bi2Cal sNd0 2CoL9Ti ).A 198 8.2 1.4Bi 2 Ca ls Nd 0 2 Co L9 Ti) .A 198 8.2 1.4
BiaCa! 8Sm0 2Co1 9Ti xA 199 7.9 1.2BiaCa! 8 Sm 0 2 Co 19 Ti xA 199 7.9 1.2
Bi2Ca1 8Eu0 2Co! 9Ti.A 201 8.6 0.9Bi 2 Ca 1 8 Eu 0 2 Co! 9 Ti.A 201 8.6 0.9
Bi2Ca,.8Gd0 2Co1 9Ti 207 9.1 1. 1 2CaLSOy0, 2CoL9Ti A 190 6.9 1.2 32] Bi 2 Ca ,. 8 Gd 0 2 Co 19 Ti 207 9.1 1.1 1 2Ca LS Oy 0 , 2 Co L9 Ti A 190 6.9 1.2 32]
Bi2CaL8Ho0 2CoL9Tic • A 198 7.4 0.9Bi 2 Ca L8 Ho 0 2 Co L9 Ti c • A 198 7.4 0.9
Bi2Ca1 8Er0 2Coi.9Tic .A 199 7.8 1.1Bi 2 Ca 18 Er 0 2 Coi. 9 Ti c .A 199 7.8 1.1
Bi2Ca, 8Yb0 2Co1 9Tic .,o9 201 7.7 1.2 Bi 2 Ca, 8 Yb 0 2 Co 19 Ti c ., O 9 201 7.7 1.2
Bi2Pb0 2Ca2CoL9Ti0. o9 206 8.2 0.8Bi 2 Pb 0 2 Ca 2 Co L9 Ti 0 .o 9 206 8.2 0.8
Bi2Pb0 2CaL8Na0i 2Coi .Jit • A 205 7.9 1.3 Bi 2 Pb 0 2 Ca L8 Na 0i 2 Coi .Ji t • A 205 7.9 1.3
Bi2Pb0 2CaL 8K02CoL Ti0. A 198 8.0 1.2Bi 2 Pb 0 2 Ca L 8 K 0 2Co L Ti 0 .A 198 8.0 1.2
Bi2Pb0 SCSLSし i .2Co! .Jic .A 195 8.1 1.1
Figure imgf000063_0001
A 200 7.5 0.8
Bi 2 Pb 0 SCSLS then i .2Co! .Jic .A 195 8.1 1.1
Figure imgf000063_0001
A 200 7.5 0.8
Bi2Pb0 2Ca! 8V0 2CoL Jio. A 203 8.6 1.3Bi 2 Pb 0 2 Ca! 8 V 0 2 Co L Jio.A 203 8.6 1.3
Bi2Pb0 sCai g 2C0 .Ji( .A 201 8.2 1.4Bi 2 Pb 0 sCai g 2C0 .Ji (.A 201 8.2 1.4
Bi2Pb0 2CaLSMn0.2Co .A 208 7.9 1.1 Bi 2 Pb 0 2 Ca LS Mn 0. 2 Co .A 208 7.9 1.1
Bi2Pb0 2CaL8Fe0.2Co .J c ,,o9 198 6.9 1.0 Bi 2 Pb 0 2 Ca L8 Fe 0. 2 Co .J c ,, o 9 198 6.9 1.0
Bi2Pb0 2CaL.gNio.2Co! .Jic .A 199 8.1 1.3Bi 2 Pb 0 2CaL.gNio.2Co! .Jic.A 199 8.1 1.3
Bi2Pb0 2CaL8Cu0.2Co .Ji .A 200 9.0 0.9 Bi 2 Pb 0 2 Ca L8 Cu 0. 2 Co .Ji .A 200 9.0 0.9
Bi2Pb0
Figure imgf000063_0002
g 2C0 .Ji( • A 206 8.2 1.1
Bi 2 Pb 0
Figure imgf000063_0002
g 2C0 .Ji ( • A 206 8.2 1.1
Bi2Pb 2CaL8Pb0.2Co . ic .A 205 7.9 1.4
Figure imgf000063_0003
A 198 8.6 1.2
Bi 2 Pb 2 Ca L8 Pb 0 . 2 Co. Ic .A 205 7.9 1.4
Figure imgf000063_0003
A 198 8.6 1.2
Bi2Pb0 .Jit .A 201 9.1 0.9Bi 2 Pb 0 .Jit .A 201 9.1 0.9
Bi2Pb0 2CaL8Al0.2Co .A 196 6.9 1.1 Bi 2 Pb 0 2 Ca L8 Al 0. 2 Co .A 196 6.9 1.1
Bi2Pb sTi0. 202 7.4 1.2Bi 2 Pb s Ti 0. 202 7.4 1.2
Bi2Pb0 .A 203 7.8 0.9Bi 2 Pb 0 .A 203 7.8 0.9
Bi2Pb0 .Jic .A 202 7.7 1. 1Bi 2 Pb 0 .Jic .A 202 7.7 1.1
Bi2Pb0 2Ca[ 8Pr0 2Co .Ji( .A 203 8.0 1.2Bi 2 Pb 0 2 Ca [ 8 Pr 0 2 Co .Ji ( .A 203 8.0 1.2
Bi2Pb0 2Ca, 8Nd0 2Co .Jit .,09 208 8.2 1.4 Bi 2 Pb 0 2 Ca, 8 Nd 0 2 Co .Ji t., 0 9 208 8.2 1.4
Bi2Pb0 2Ca1 8Sm0_ 2Co .9Ti( .A 198 7.9 0.8Bi 2 Pb 0 2 Ca 18 Sm 0 _ 2 Co. 9 Ti ( .A 198 7.9 0.8
Bi2Pb 2Ca1-8Eu0_ 2Co .9Ti( .A 199 9. 1 1.3Bi 2 Pb 2 Ca 1-8 Eu 0 _ 2 Co. 9 Ti ( .A 199 9. 1 1.3
Bi2Pb0 2CaL8Gd0.2Co .9Ti( .A 201 8.4 1.2 Bi 2 Pb 0 2 Ca L8 Gd 0. 2 Co. 9 Ti (.A 201 8.4 1.2
Bi2Pb0 2Cali8Dy0< 2Co .9Ti( .A 207 8.6 1.1 Bi 2 Pb 0 2 Ca li8 Dy 0 <2 Co. 9 Ti (.A 207 8.6 1.1
Bi2Pb0 Ca[ sHo0 2Co .9Ti( .A 190 7.8 0.8 Bi 2 Pb 0 Ca [s Ho 0 2 Co. 9 Ti (.A 190 7.8 0.8
Bi2Pb 2CaL8Er0.2Co ■ A 198 9.0 0.7 Bi 2 Pb 2 Ca L8 Er 0 . 2 Co ■ A 198 9.0 0.7
Bi2Pb0 2CaL8Yb0.2Co .9Ti( .A 199 8.2 1.3 Bi 2 Pb 0 2 Ca L8 Yb 0. 2 Co. 9 Ti (.A 199 8.2 1.3
Bi2Ba2CoL9Ti0. A 190 8.6 1. 1Bi 2 Ba 2 Co L9 Ti 0 .A 190 8.6 1. 1
Bi2BaL8Na0 2CoL9Tic ■ A 198 8.7 1.0Bi 2 Ba L8 Na 0 2 Co L9 Ti c ■ A 198 8.7 1.0
Bi2Ba! 8K0_2CoL9Ti0- fi 199 8.3 1.3Bi 2 Ba! 8 K 0 _ 2 Co L9 Ti 0- fi 199 8.3 1.3
Bi2Ba! ^°l.丁1( .A 201 9.0 0.9 33] Bi 2 Ba! ^ ° l.chome1 (.A 201 9.0 0.9 33]
Figure imgf000064_0001
34]
Figure imgf000064_0001
34]
Figure imgf000065_0001
35]
Figure imgf000065_0001
35]
Figure imgf000066_0001
°¾ζΐ9 I eつ 5 。qdZg
Figure imgf000066_0001
° ¾ ζ ΐ9 I e 5. q d Z g
1 Β ε ΐ g 1 Β ε ΐ g
' B0e ΐ a ' B 0 e ΐ a
Ie0sT9 I e 0 s T9
τ g τ g
' 3^g '3 ^ g
Ί¾2 9
Figure imgf000067_0001
Ί¾ 2 9
Figure imgf000067_0001
[9ε挲] [^εεο] 6秦 OOZdf/IDd S9 8691^90/SOOZ: OAV 37] [9ε 挲] [^ εεο] 6 Hata OOZdf / IDd S9 8691 ^ 90 / SOOZ: OAV 37]
m m
ca 210 7.9 1.2ca 210 7.9 1.2
Bi2Pb0.2Cal,sNi0.2CoL9V0, ,09 202 8.1 1.1 Bi 2 Pb 0. 2 Ca l , s Ni 0. 2 Co L9 V 0,, 0 9 202 8.1 1.1
Bi2Pb0.2CaKSCu 2C L9V0, 204 8.0 0.8 Bi 2 Pb 0. 2 Ca KS Cu 2 C L9 V 0, 204 8.0 0.8
Bi2Pb0.2CaL 8Zn0.2CoL 9V0. ^9 197 7.8 1.3 Bi 2 Pb 0. 2 Ca L 8 Zn 0. 2 Co L 9 V 0. ^ 9 197 7.8 1.3
Bi2Pb0.2CaL 8Pb0.2Co】. ^9 190 7.2 1.4 Bi 2 Pb 0. 2 Ca L 8 Pb 0. 2 Co ]. ^ 9 190 7.2 1.4
Bi2Pb0.2CaL 8Sr0< 2Co1>9V0< ^9 198 9.0 1.1 Bi 2 Pb 0. 2 Ca L 8 Sr 0 <2 Co 1> 9 V 0 <^ 9 198 9.0 1.1
B i 2Pb0, 2CaL sBa0_ 2Co L.9V0. L09 199 7.8 1.0 B i 2 Pb 0 , 2 Ca L s Ba 0 _ 2 Co L. 9 V 0. L 0 9 199 7.8 1.0
201 7.5 1.3 201 7.5 1.3
Bi2Pb0.2Ca1.8Y0.2CoL9V0.10;, 207 8.6 0.9 ... Bi 2 Pb 0 2 Ca 1 .8Y 0 2 Co L9 V 0 1 0;, 207 8.6 0.9
Bi2Pb0.2Ca 8La0.2CoL 9V0. fi9 190 8.2 1.1 Bi 2 Pb 0. 2 Ca 8 La 0. 2 Co L 9 V 0. Fi 9 190 8.2 1.1
Bi2Pb0.2CaL 8Ce0.2CoL 9V0. fi9 198 7.9 1.4 Bi 2 Pb 0. 2 Ca L 8 Ce 0. 2 Co L 9 V 0. Fi 9 198 7.9 1.4
Bi 2Pb0.2CaL 8Pr0.2CoL 9V0. fi9 199 6.9 1.2 Bi 2 Pb 0. 2 Ca L 8 Pr 0. 2 Co L 9 V 0. Fi 9 199 6.9 1.2
Bi2Pb0+ 2CaL 8Nd0.2CoL 9V0. A 201 8.1 0.9 Bi 2 Pb 0 + 2 Ca L 8 Nd 0. 2 Co L 9 V 0. A 201 8.1 0.9
BisPbo.sCauSnio.jCo'.sVo.iOg 210 9.0 1.1BisPbo.sCauSnio.jCo'.sVo.iOg 210 9.0 1.1
BiaPbo jCaLgEuo jCo!
Figure imgf000068_0001
206 8.2 1.2
BiaPbo jCaLgEuo jCo!
Figure imgf000068_0001
206 8.2 1.2
Bi2Pb0.2Ca,.8Gd0.2CoL 9V0. ,09 205 7.9 0.9 Bi 2 Pb 0. 2 Ca ,. 8 Gd 0. 2 Co L 9 V 0., 0 9 205 7.9 0.9
Bi2Pb0.2CaL 8Dy0.2CoL9V0. ^9 198 8.6 1.1 Bi 2 Pb 0. 2 Ca L 8 Dy 0. 2 Co L9 V 0. ^ 9 198 8.6 1.1
B i2Pb0.2CaL 8Ho0.2Co L 9V0. fi9 195 9.1 1.2 B i 2 Pb 0. 2 Ca L 8 Ho 0. 2 Co L 9 V 0. Fi 9 195 9.1 1.2
BiaPbo.sCaLgEro.sCoLgVo. A 200 6.9 1.4BiaPbo.sCaLgEro.sCoLgVo.A 200 6.9 1.4
BijPbo.sCai.sYbo.2CoL9V0. ,09 203 7.4 0.8 BijPbo.sCai.sYbo. 2 Co L9 V 0. , 0 9 203 7.4 0.8
Bi2Ba2CoL9V0 ^9 208 7.7 1.2 Bi 2 Ba 2 Co L9 V 0 ^ 9 208 7.7 1.2
198 8.0 1.1 198 8.0 1.1
Bi2Ba1 8K0.2CoL9V0 (09 199 8.2 1.4 Bi 2 Ba 1 8 K 0 .2Co L9 V 0 (0 9 199 8.2 1.4
Bi2Ba1 8Lio.2Co1 9V09 200 7.9 1.2 Bi 2 Ba 18 Lio.2Co 19 V 0 ! Θ 9 200 7.9 1.2
199 9.1 0.9 199 9.1 0.9
Bi2Ba1 8V0.2Co1 9V0 109 210 8.4 1.1 Bi 2 Ba 1 8 V 0. 2 Co 1 9 V 0 1 0 9 210 8.4 1.1
Bi2BaL8Cro.2Co1.9V0.109 202 8.6 1.2 Bi 2 Ba L8 Cro. 2 Co 1. 9 V 0. 1 0 9 202 8.6 1.2
Bi2BaL8Mn0.2CoL9V0. L09 204 8.2 0.9 Bi 2 Ba L8 Mn 0. 2 Co L9 V 0. L 0 9 204 8.2 0.9
Bi2Ba1 8Fe0. aCo Vo.A 197 7.9 1.1Bi 2 Ba 1 8 Fe 0 .aCo Vo.A 197 7.9 1.1
Bi2BaL8Ni0.2CoLgV0 ,09 190 8.6 1.2 Bi 2 Ba L8 Ni 0. 2 Co L gV 0, 0 9 190 8.6 1.2
Bi2BaL8Cu0. aCOi.gVo.iOg 198 9.1 1.4Bi 2 Ba L8 Cu 0 .aCOi.gVo.iOg 198 9.1 1.4
Bi2BaL8Zn0.2CoL9V0 A 199 6.9 0.8 Bi 2 Ba L8 Zn 0. 2 Co L9 V 0 A 199 6.9 0.8
BiaBaLgPbo.aCoLgVdOg 201 7.4 1.3BiaBaLgPbo.aCoLgVdOg 201 7.4 1.3
Bi2BaL8Ca0.2CoLSV0 109 207 7.8 1.2 Bi 2 Ba L8 Ca 0 .2Co LS V 0 1 0 9 207 7.8 1.2
BiaBaLgSrc.sCoLgVo.iOg 190 7.7 1.1BiaBaLgSrc.sCoLgVo.iOg 190 7.7 1.1
Bi2Bal sAl0.2CoL9V0 ^09 198 8.0 0.8 38] Bi 2 Ba ls Al 0. 2 Co L9 V 0 ^ 0 9 198 8.0 0.8 38]
Figure imgf000069_0001
39]
Figure imgf000069_0001
39]
Figure imgf000070_0001
"^Q2 T g
Figure imgf000070_0001
"^ Q 2 T g
B g  B g
g  g
g g
Ϊ8 ss ュ SS 。qd Ϊ8 s s s S S. qd
°qdzia ° qd z ia
°qd2ig ° qd 2 ig
°qdzia ° qd z ia
°qdzTa ° qd z Ta
°qdsig ° qd s ig
°qdsia ° qd s ia
0 Ϊ3
Figure imgf000071_0001
0 Ϊ3
Figure imgf000071_0001
[0挲] [8S20] 請 OOZdf/ェ:) d 69 8691790/S00Z OAV 41] [0 挲] [8S20] OOZdf / e :) d 69 8691790 / S00Z OAV 41]
Figure imgf000072_0001
42]
Figure imgf000072_0001
42]
Figure imgf000073_0001
43]
Figure imgf000073_0001
43]
Figure imgf000074_0001
Figure imgf000075_0001
45]
Figure imgf000074_0001
Figure imgf000075_0001
45]
Figure imgf000076_0001
46]
Figure imgf000076_0001
46]
Figure imgf000077_0001
47]
Figure imgf000077_0001
47]
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000078_0001
Figure imgf000079_0001
[9^20]  [9 ^ 20]
f6l6l0/f00Zdf/X3d LL 8691^90/SOOZ; ΟΛ\ 49] f6l6l0 / f00Zdf / X3d LL 8691 ^ 90 / SOOZ; ΟΛ \ 49]
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000080_0001
Figure imgf000081_0001
51] 51]
Figure imgf000082_0001
52]
Figure imgf000082_0001
52]
Figure imgf000083_0001
53]
Figure imgf000083_0001
53]
Figure imgf000084_0001
54]
Figure imgf000084_0001
54]
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000085_0001
Figure imgf000086_0001
[ss挲] [seso]
Figure imgf000086_0002
OAV 56]
[ss 挲] [seso]
Figure imgf000086_0002
OAV 56]
Figure imgf000087_0001
57]
Figure imgf000087_0001
57]
Figure imgf000088_0001
'°qdsig
Figure imgf000088_0001
'° qd s ig
'°qdzT9 '° qd z T9
° dzia ° d z ia
。 8  . 8
s^g
Figure imgf000089_0001
s ^ g
Figure imgf000089_0001
[8S挲] [9 0] f6l6l0/^00Zdf/X3d Z8 8691^90/SOOi OAV 59] [8S 挲] [9 0] f6l6l0 / ^ 00Zdf / X3d Z8 8691 ^ 90 / SOOi OAV 59]
Bi2Pb0.2SrL 8Cu0.2CoL 9Ag0. 09 197 8.6 1.2 Bi 2 Pb 0. 2 Sr L 8 Cu 0. 2 Co L 9 Ag 0. 0 9 197 8.6 1.2
Bi2Pb0.2SrL sZn0.2Co,.9Ag0. A 190 7.8 1.4 Bi 2 Pb 0. 2 Sr L s Zn 0. 2 Co ,. 9 Ag 0. A 190 7.8 1.4
Bi2Pb0.2SrL 8Pb0.2Coh 9Ag0. fi9 198 9.0 0.8 Bi 2 Pb 0. 2 Sr L 8 Pb 0. 2 Co h 9 Ag 0. Fi 9 198 9.0 0.8
Bi2Pb0.2Sr 8Ca0.2Co 9Ag0. fi9 199 8.2 1.3 Bi 2 Pb 0. 2 Sr 8 Ca 0. 2 Co 9 Ag 0. Fi 9 199 8.2 1.3
Bi2Pb0.2SrL 8Ba0 2CoL 9Ag0. ,09 201 8.3 1.2 Bi 2 Pb 0. 2 Sr L 8 Ba 0 2 Co L 9 Ag 0., 0 9 201 8.3 1.2
Bi2Pb0.2SrL8Al0i 2Co 9Ag0. fi9 207 8.4 1. 1 Bi 2 Pb 0. 2 Sr L8 Al 0i 2 Co 9 Ag 0. Fi 9 207 8.4 1. 1
Bi2Pb0.2SrL8Y0, 2Co1 9Ag0. fi9 190 8.6 0.8 Bi 2 Pb 0. 2 Sr L8 Y 0, 2 Co 1 9 Ag 0. Fi 9 190 8.6 0.8
Bi2Pb0.2SrL 8La0.2Co,, 9Ag0. fig 198 8.2 0.7 Bi 2 Pb 0. 2 Sr L 8 La 0. 2 Co ,, 9 Ag 0. Fi g 198 8.2 0.7
Bi2Pb0.2SrL 8Ce0 2CoL 9Ag0. A 199 7.9 1.3 Bi 2 Pb 0. 2 Sr L 8 Ce 0 2 Co L 9 Ag 0. A 199 7.9 1.3
201 8.6 0.8 201 8.6 0.8
Bi2Pb0.2SrL 8Nd0.2CoL 9Ag0. A 210 9. 1 1.3 Bi 2 Pb 0. 2 Sr L 8 Nd 0. 2 Co L 9 Ag 0. A 210 9. 1 1.3
B i 2Pb0.2Sr 8Sm0.2CoL 9Ag0 , 09 206 6.9 1.2 B i 2 Pb 0. 2 Sr 8 Sm 0. 2 Co L 9 Ag 0, 0 9 206 6.9 1.2
Bi2Pb0.2Sr 8Eu0.2CoL 9Ag0. i09 205 7.4 1.1 Bi 2 Pb 0. 2 Sr 8 Eu 0. 2 Co L 9 Ag 0. I0 9 205 7.4 1.1
Bi2Pb0.2SrL 8Gd0.2Coh 9Ag0. fi9 198 7.8 0.8 Bi 2 Pb 0. 2 Sr L 8 Gd 0. 2 Co h 9 Ag 0. Fi 9 198 7.8 0.8
Bi2Pb0.2SrL 8Dy0.2Co! 9Ag0. ,09 195 7.7 1.3 Bi 2 Pb 0. 2 Sr L 8 Dy 0. 2 Co! 9 Ag 0., 0 9 195 7.7 1.3
Bi2Pb0.2SrLgHo0i 2CoL9Ag0. A 200 8.0 1.4 Bi 2 Pb 0. 2 Sr Lg Ho 0i 2 Co L9 Ag 0. A 200 8.0 1.4
Bi2Pb0.2SrL 8Er0. A.9Ag0. A 203 8.2 1. 1 Bi 2 Pb 0. 2 Sr L 8 Er 0. A. 9 Ag 0. A 203 8.2 1. 1
Bi 2Pb0.2Sr,.8Yb0.2CoL 9Ag0. ,09 200 7.9 1.0 Bi 2 Pb 0. 2 Sr ,. 8 Yb 0. 2 Co L 9 Ag 0., 0 9 200 7.9 1.0
Bi2Ca2CoL9Ag0.109 201 8.4 0.9 Bi 2 Ca 2 Co L9 Ag 0 . 1 0 9 201 8.4 0.9
BigCa! gNao aCo! 9Ag0 109 208 8.6 1.1BigCa! GNao aCo! 9 Ag 0 1 0 9 208 8.6 1.1
Bi2CaL8K0.2Cot 9Ag0 ^9 198 7.8 1.4 Bi 2 Ca L8 K 0. 2 Co t 9 Ag 0 ^ 9 198 7.8 1.4
199 9.0 1.2 199 9.0 1.2
Bi2Ca, Ji02Co1 9Ag0 109 200 8.2 0.9Bi 2 Ca, Ji 0 2Co 19 Ag 0 1 0 9 200 8.2 0.9
Bi2CaL8V0 2Co1 9Ag0 ,09 206 8.3 1. 1Bi 2 Ca L8 V 0 2 Co 19 Ag 0 , 0 9 206 8.3 1.1
Βί,Οβ; 8Cr0.2CoL9Ag0 109 205 8.6 1.2 Βί, Οβ;. 8 Cr 0 2 Co L9 Ag 0 1 0 9 205 8.6 1.2
Bi2Cai.8Mna2Co1 9Ag(, j09 198 8.7 , 0.9Bi 2 Cai. 8 Mn a2 Co 19 Ag (, j0 9 198 8.7, 0.9
Bi2CaL8Fe0.2Co,.9Ag0. ,09 206 8.3 1. 1 Bi 2 Ca L8 Fe 0 .2Co ,. 9 Ag 0., 0 9 206 8.3 1. 1
Bi2CaL8Ni0 2CoL9Ag0. (Og 198 9.0 1.2Bi 2 Ca L8 Ni 0 2 Co L9 Ag 0. (Og 198 9.0 1.2
BijCai.gCuo.jCo! 9Ag0. ^9 207 7.9 1.4BijCai.gCuo.jCo! 9 Ag 0. ^ 9 207 7.9 1.4
Bi2Ca! 8Zn0 2Co1 9Ag0 109 190 8.1 0.8Bi 2 Ca! 8 Zn 0 2 Co 19 Ag 0 1 0 9 190 8.1 0.8
Bi2CaL8Pba2CoL9Ag0. fig 198 8.0 1.3Bi 2 Ca L8 Pb a2 Co L9 Ag 0 .fi g 198 8.0 1.3
Bi2CaL8Sr0 2Co! 9Ag0 109 199 7.8 1.2Bi 2 Ca L8 Sr 0 2 Co! 9 Ag 0 1 0 9 199 7.8 1.2
Bi2Ca1 8Ba0.2Co1 9Ag0. ,09 201 7.2 1. 1 Bi 2 Ca 1 8 Ba 0. 2 Co 1 9 Ag 0., 0 9 201 7.2 1. 1
BiaCa! gAlo aCo! 9Ag0 109 210 9.0 1.4BiaCa! GAlo aCo! 9 Ag 0 1 0 9 210 9.0 1.4
Bi2CaL8Y0.2Co1 9Ag0 109 206 8.2 1.2 Bi 2 Ca L8 Y 0. 2 Co 1 9 Ag 0 1 0 9 206 8.2 1.2
Bi2CaL8La0.2Cot gAg0 109 205 7.9 0.9 60] Bi 2 Ca L8 La 0. 2 Co tg Ag 0 1 0 9 205 7.9 0.9 60]
Figure imgf000091_0001
ΐ a
Figure imgf000091_0001
ΐ a
Bgz f g Bg z fg
'eg g  'eg g
8 3 8 3
'DS Ύΐ3
Figure imgf000092_0001
'' D S Ύΐ3
Figure imgf000092_0001
[19挲] [6320] [19 挲] [6320]
869^90/500^ OAV 6爵 OOZdf/I d 06
Figure imgf000093_0001
869 ^ 90/500 ^ OAV 6 Baroness OOZdf / Id 06
Figure imgf000093_0001
[29¾ [0920]  [29¾ [0920]
t6l6l0/ 00Zd£llDd 16 8691-90/S00Z OAV 63] t6l6l0 / 00Zd £ llDd 16 8691-90 / S00Z OAV 63]
Figure imgf000094_0001
64]
Figure imgf000094_0001
64]
Figure imgf000095_0001
/vu Ϊ6Ϊ0さ oifcld 6 O 8690AV o o o > 00 o cn
Figure imgf000095_0001
/ vu Ϊ6Ϊ0sa oifcld 6 O 8690AV ooo> 00 o cn
o一  o one
Figure imgf000096_0001
Figure imgf000096_0001
6 ·0 Ζ '8 zoz ¾T '°OH6 Ί038 '°χν8 '^a5 '0 dzI96 · 0 Ζ '8 zoz ¾ T' ° OH 6 Ί 03 8 '° χν 8' ^ a 5 '0 d z I9
Ζ ·ΐ 0 ·6 ooz 6οι 'οο^ο3ζ '0Js8.lB3z.0q Tg Ζ · ΐ 0 · 6 ooz 6 ο ι 'ο ο ^ 6Ί ο3 ζ' 0 Js 8. LB 3 z. 0 q Tg
fl 8"Ζ S6T ¾i °0Ζ °E38 ' ' eg2 '°qd3 τ g fl 8 "Ζ S6T ¾i ° 0 Ζ ° E 3 8 '' eg 2 '° qd 3 τ g
ΐ 'Τ 9 '8 86T 6oT ' i 'l°dz ° d8.'egs '0(w g ΐ 'Τ 9' 8 86T 6 o T 'i' l ° d z ° d 8 .'eg s ' 0 ( wg
6 '0 ·8 90Z ¾' '0οκθ3ζ '°u28''Bg5 '0qdz"ta 6 '0 · 8 90Z ¾'' 0 οκ θ3 ζ ' ° u2 8 '' Bg 5 ' 0 qd z "ta
ε 'ΐ Τ '6 9 Z ¾' 'Oop .1。つ5 '0ηつ8 ''eg2 '°qjei:a ε 'ΐ Τ' 6 9 Z ¾ '' O op. 1. 1 5 ' 0 η 1 8 `` eg 2 ' ° qj e i: a
0 ·ΐ Ζ' 01Z 60l °opi6 '03s 'eg2 "qj g 0 ΐ Ζ '01Z 6 0 l ° opi 6 '03 s ' eg 2 "qj g
τ ·ΐ ^'8 10Z 60T 'D。w6 ·, 03ζ。 js 'eg" "qj g τ · ΐ ^ '8 10Z 6 0 T ' D. w 6 ·, 03 ζ . j s ' eg "" qj g
\ "ΐ 0'6 661 60 ' °°Vf ' °3Z °uVis l^98 °qde T g \ "ΐ 0'6 661 6 0 '°° Vf' ° 3 Z ° u Vi sl ^ 9 8 ° qd e T g
ε "ΐ 8"Ζ 861 ¾! °oj¾6 'tOQZ '°J3S 'eg2 '°qjzi:g ε "ΐ 8" Ζ 861 ¾! ° oj¾ 6 ' t OQ Z ' ° J3 S 'eg 2 ' ° qj z i: g
8Ό 9 '8 061 601 °op[6 ' ' 03z '0A8 TBgs "qj3 τ g 8Ό 9 '8 061 6 0 1 ° op [ 6 ''03 z ' 0 A 8 T Bg s "qj 3 τ g
ΐ ·ΐ ·8 LOZ 6oT '° f Ίο ζ '°TI8 '^a5 '° dsTa ΐ · ΐ · 8 LOZ 6 o T '° f Ί ο ζ' ° TI 8 '^ a 5' ° d s Ta
Ζ ·ΐ ΐ ·6 10Z ¾' °oj¾6 Ί03ζ '°i 8 Bgs °qjz]:g Ζ ΐ ΐ ΐ6 10Z ¾ '° oj¾ 6 Ί 03 ζ ' ° i 8 Bg s ° qj z ]: g
2 ·ΐ Ζ '8 66T i ooyf 'ο33 '°¾8.'Bgs 0qjsTa 2 ・ ΐ Ζ '8 66T i ooyf' ο3 3 '° ¾ 8 .'Bg s 0 qj s Ta
8Ό 0'6 86Ϊ °ορ[ 'OQ2 '0Β^8 ΊΒ9ε °qjzTg 8Ό 0'6 86Ϊ ° ορ ['OQ 2 ' 0 Β ^ 8 Β Β9 ε ° qj z Tg
fl 8 L 061 60' 0ο^βΊθ3¾92 '°qjei:g ΐ 'Τ fS OS ' °° Ovf · ' 035 °¾λ8 ' 1 ΐ 3 fl 8 L 061 6 0 ' 0 ο ^ βΊ θ3¾9 2 ' ° qj e i: g ΐ 'Τ fS OS' °° Ovf '' 0 3 5 ° ¾λ 8 ' 1 ΐ 3
6 Ό 1 ·6 ZOZ ' °0W6 ,03e °-iaB 'Β9ζΐ9 6 Ό 1 66 ZOZ '° 0 W 6, 0 3 e ° -ia B ' Β 9 ζ ΐ9
Ζ ·ΐ 6· OIZ 60T '°off"Ojz '0ΟΗ8''Β9ζΙ9 Ζ ΐ 6 · OIZ 6 0 T '° off''Oj z ' 0 ΟΗ 8 '' Β9 ζ Ι9
1 ZS 66T ¾' '°ο[¾6 '^οつ s '°AQ8 'eg^g 1 ZS 66T ¾ '' ° ο [¾ 6 '^ ο s' ° AQ 8 ' eg ^ g
6 0'8 OOZ 60' '°ορ[6 Ίοつ ζ "° 98 ΊΒ9ζτ9 6 0'8 OOZ 6 0 '' ° ορ [6 Ί ο one ζ "° 9 8 Ί Β9 ζ τ9
Ζ 'ΐ L 'L 66T ¾' °o[¾6 l03e '°ng8 egZfg f\ 8'i. 86T ¾' '0ow6''o3z "HIS8 'Ε9ΖΤ9 Ζ 'ΐ L' L 66T ¾ '° o [¾ 6 l 03 e ' ° ng 8 egZfg f \ 8'i.86T ¾ '' 0 ow 6 `` o 3 z "HIS 8 ' Ε 9 Ζ Τ9
Τ ·ΐ fL 20Z  Τ · ΐ fL 20Z
Ζ "ΐ 6 '9 90Z 60, ϋο^6 'OQ3 'Bgzig ε -τ I ·6 OOZ ¾' '°OJ¾6 'Ι 3ζ '0Θ38 'TBgzig Ζ "ΐ 6 '9 90Z 6 0, ϋ ο ^ 6' OQ 3 'Bg z ig ε -τ I · 6 OOZ ¾''° OJ¾ 6' Ι 3 ζ '0 Θ3 8' T Bg z ig
8 Ό 9'8 66Ϊ 60' '0oj¾6 'o3s °¾ 8 'Bgzi:g f ·ΐ 6'Z 86Ϊ 60' 'Oo) ''o 入 'E 8 Ό 9'8 66Ϊ 6 0 '' 0 oj¾ 6 'o3 s ° ¾ 8 ' Bg z i: gfΐ6'Z 86Ϊ 6 0 '' O o) '' o input 'E
Ζ ·ΐ ZS 90S ¾' 06 ,o3z °-[v8 'Bazig ΐ ·ΐ 9 '8 90Z 6Or 0l ·'ο ζ 0Jss lt3gzTg Ζ · ΐ ZS 90S ¾ ' 06, o3 z °-[v 8 ' Ba z ig ΐ · ΐ 9 '8 90Z 6 O r 0 l ·' ο ζ 0 Js sl t3g z Tg
6"0 OOZ ¾ 1 '°ο^6 '03ζ '¾38 · 1 eg3 ig 6 "0 OOZ ¾ 1 '° ο ^ 6 '03 ζ ' ¾3 8 · 1 eg 3 ig
Ζ ·ΐ ΐ ·6 661 6。1 '0ο{¾6Ίοつ2 "q^ 'Bg g ΐ 'ΐ 6'Z 86Ϊ Ζ · ΐ ΐ · 6 661 6. 1 '0 ο {¾6 Ί ο one 2 "q ^' Bg g ΐ 'ΐ 6'Z 86Ϊ
6 Z ·8 80S  6 Z8 80S
Ζ ·ΐ 0 '8 102 601 0W6 1 o〇s '°TN i τ 9 fl L 'Z SOS Ζ ΐ 0 '8 102 6 0 1 0 W 6 1 o〇 s ' ° TN i τ 9 fl L' Z SOS
[99挲] [^920] [99 挲] [^ 920]
t6l6l0/t00Zd£/Ud S6 86990/£00i O 67] t6l6l0 / t00Zd £ / Ud S6 86990 / £ 00i O 67]
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000098_0001
Figure imgf000099_0001
sffl0266^ 69] sffl0266 ^ 69]
Figure imgf000100_0001
/6l20ssdf/3d 6686/930so OozAV.
Figure imgf000100_0001
/ 6l20ssdf / 3d 6686 / 930so OozAV.
u0卜8920  u0 8920
&  &
o  o
 ∞
< <
∞ _] ∞ _]
Figure imgf000102_0001
Figure imgf000102_0001
^eieiO/^OOidf/XDd OO 86 90/S00Z OAV °qdeT9 ^ eieiO / ^ OOidf / XDd OO 86 90 / S00Z OAV ° qd e T9
1ュ sz '。qdz ΐ g 1 s z '. qd z ΐ g
。人 JS i8 . Person J S i8
^S^g S
Figure imgf000103_0001
^ S ^ g S
Figure imgf000103_0001
K ¾ [0Z20] 6l6l0/^00ZdT/X3d 869^90/SOOZ O 73] K ¾ [0Z20] 6l6l0 / ^ 00ZdT / X3d 869 ^ 90 / SOOZ O 73]
Figure imgf000104_0001
74]
Figure imgf000104_0001
74]
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000105_0001
Figure imgf000106_0001
[9 ¾ [SZ20] "6ΐ6ΐΟ/1^0 <ΙΓΑΐ:Μ 1^(H 869 90/S00Z OAV / t6i6sさ ovzfclyl sen 8693/ O0ioozAV [9 ¾ [SZ20] "6ΐ6ΐΟ / 1 ^ 0 <ΙΓΑΐ: Μ 1 ^ (H 869 90 / S00Z OAV / t6i6s sa ovzfclyl sen 8693 / O0ioozAV
u9卜 u9
1 o 1 o 1 o o ~ 1 o 1 1 O 1 1 t 1 o O O —1 BiPbNb BCN0aao22829L9,.. 1 o 1 o 1 oo ~ 1 o 1 1 O 1 1 t 1 o OO —1 BiPbNb BCN0aao 22829L9 , ..
Figure imgf000107_0001
Figure imgf000107_0001
o o o o CD o o o 1 as o o oo o o σι o o 1 o o σ¾ o o o o o o o o o o o o o o o CD o o o 1 as o o oo o o σι o o 1 o o σ¾ o o o o o o o o o o o
c i 1 ~ 1 1 1 ci 1 ~ 1 1 1
O O o O o O o o o o o o o o o o o o O O o O o O o o o o o o o o o o o o o
o  o
2 2 2 O o  2 2 2 O o
¾ o  ¾ o
o o O  o o O
o  o
O  O
1 ω id .  1 ω id.
TO ∞ ∞ ∞ ∞ ∞ ω TO ∞ ∞ ∞ ∞ ∞ ω
a c cq α¾ °¾ 6" —1 a c cq α¾ ° ¾ 6 "—1
3 Three
. a- a- C a, .  a- a- C a,.
CQ CQ CQ CQ CQ CQ
77] 77]
Figure imgf000108_0001
78]
Figure imgf000108_0001
78]
Figure imgf000109_0001
79]
Figure imgf000109_0001
79]
Bi2CaL 8Ho0 2CoL 9Ta0 ^9 206 6.9 1.3Bi 2 Ca L 8 Ho 0 2 Co L 9 Ta 0 ^ 9 206 6.9 1.3
Bi Ca 8Er0 2CoL 9Ta0 09 205 7.4 0.9Bi Ca 8 Er 0 2 Co L 9 Ta 0 0 9 205 7.4 0.9
BisCa! 8Yb0i 2CoL9Ta0. i09 198 7.8 1. 1BisCa! 8 Yb 0i 2 Co L9 Ta 0. I0 9 198 7.8 1.1
Bi2Pb0.2C CoL. J¾i09 200 8.0 1.2 Bi 2 Pb 0. 2 C Co L. J¾i0 9 200 8.0 1.2
B i 2Pb0 2Ca! gNa0.2C 9Ta0 199 8.2 0.9B i 2 Pb 0 2 Ca! g Na 0. 2 C 9 Ta 0 199 8.2 0.9
Bi2Pb0.2Ca 8Ko.2CoL9Tao.iO9 210 7.9 1. 1 Bi 2 Pb 0. 2 Ca 8Ko.2CoL9Tao.iO9 210 7.9 1. 1
Bi2Pb0 2Ca【 8し i0 20ο: 9Ta0 202 9.1 1.2Bi 2 Pb 0 2 Ca 【 8 i 0 2 0ο : 9 Ta 0 202 9.1 1.2
Bi2Pb0 2Ca1 8Ti0.2Co 9Ta0 ^9 204 8.4 0.9 Bi 2 Pb 0 2 Ca 1 8 Ti 0. 2 Co 9 Ta 0 ^ 9 204 8.4 0.9
Bi2Pb0.2CaL8V0.2CoL9Ta i09 197 8.6 1.1 Bi 2 Pb 0. 2 Ca L8 V 0. 2 Co L9 Ta i 0 9 197 8.6 1.1
Bi 2Pb0.2Cah 8Cr0.2Co , .9Ta0> A 190 8.2 1.2 Bi 2 Pb 0. 2 Ca h 8 Cr 0. 2 Co,. 9 Ta 0> A 190 8.2 1.2
B i 2Pb0 2CaL sMnQ.2Co, 9Ta0 L09 198 7.9 1.4B i 2 Pb 0 2 Ca L s Mn Q. 2 Co, 9 Ta 0 L 0 9 198 7.9 1.4
Bi2Pb0 2CaL 8Fe0.2Coj 9Ta0 j09 199 8.6 0.8 Bi 2 Pb 0 2 Ca L 8 Fe 0. 2 Coj 9 Ta 0 j0 9 199 8.6 0.8
Bi2Pb0 2CaL 8Ni0. sCO] 9Ta0 L09 201 9.1 1.3Bi 2 Pb 0 2 Ca L 8 Ni 0 .sCO] 9 Ta 0 L 0 9 201 9.1 1.3
Bi2Pb0 2CaL 8Cu0.2CoL 9Ta0 ^9 207 6.9 1.2 Bi 2 Pb 0 2 Ca L 8 Cu 0. 2 Co L 9 Ta 0 ^ 9 207 6.9 1.2
Bi2Pb0>2CaL8Zn0.2CoL9Ta0 109 190 7.4 1. 1 Bi 2 Pb 0> 2 Ca L8 Zn 0. 2 Co L9 Ta 0 1 0 9 190 7.4 1. 1
Bi2Pb0.2CaL sPb0.2CoL 9Ta0. L09 198 7.8 0.8 Bi 2 Pb 0. 2 Ca L s Pb 0. 2 Co L 9 Ta 0. L 0 9 198 7.8 0.8
Bi2Pb0 2CaL 8Sr0.2CoL 9Ta0 ^9 199 7.7 1.3 Bi 2 Pb 0 2 Ca L 8 Sr 0. 2 Co L 9 Ta 0 ^ 9 199 7.7 1.3
Bi2Pb0.2CaL8Ba0.2CoL 9Ta0. ^9 201 8.0 1.4 Bi 2 Pb 0. 2 Ca L8 Ba 0. 2 Co L 9 Ta 0. ^ 9 201 8.0 1.4
Bi2Pb0 2Caし SA10.2CoL 9Ta0 ^9 210 8.2 1.1Bi 2 Pb 0 2 Ca and S A1 0. 2 Co L 9 Ta 0 ^ 9 210 8.2 1.1
Bi2Pb0.2CaL 8Y0 2CoL 9Ta0 t09 206 7.9 1.0 Bi 2 Pb 0. 2 Ca L 8 Y 0 2 Co L 9 Ta 0 t 0 9 206 7.9 1.0
205 9.1 1.3 205 9.1 1.3
Bi2Pb0 2CaL 8Ce0 2CoL 9Ta0,09 198 8.4 0.9 Bi 2 Pb 0 2 Ca L 8 Ce 0 2 Co L 9 Ta 0, 0 9 198 8.4 0.9
Bi2Pb0.2CaL 8Pr 2CoL 9Ta0. 195 8.6 1. 1 Bi 2 Pb 0. 2 Ca L 8 Pr 2 Co L 9 Ta 0. 195 8.6 1. 1
Bi2Pb0 2CaL 8Nd0_ 2Coh 9Ta0. L09 200 7.8 1.4Bi 2 Pb 0 2 Ca L 8 Nd 0 _ 2 Co h9 Ta 0 .L 0 9 200 7.8 1.4
Bi2Pb0.2Cah 8Sra0.2CoL 9Ta0. A 203 9.0 1.2 Bi 2 Pb 0. 2 Ca h 8 Sra 0. 2 Co L 9 Ta 0. A 203 9.0 1.2
Bi2Pb0.2Cah8Eu0> 2CoL 9Ta0_ ^9 200 8.2 0.9 Bi 2 Pb 0. 2 Ca h8 Eu 0> 2 Co L 9 Ta 0 _ ^ 9 200 8.2 0.9
Bi2Pb0.2CaL8Gd0.2Co Ta0. 09 203 8.3 1.1 Bi 2 Pb 0. 2 Ca L8 Gd 0. 2 Co Ta 0. 0 9 203 8.3 1.1
Bi2Pb0 2Ca, 8Dya 2CoL 9Ta0 09 201 8.6 1.2Bi 2 Pb 0 2 Ca, 8 Dy a 2 Co L 9 Ta 0 0 9 201 8.6 1.2
Bi2Pb0.2CaL8Ho0.2CoL9Ta0, }09 208 8.7 0.9 Bi 2 Pb 0. 2 Ca L8 Ho 0. 2 Co L9 Ta 0,} 0 9 208 8.7 0.9
Bi2Pb0.2CaL 8Er0. oL 9Ta0_ 198 8.3 1.1 Bi 2 Pb 0. 2 Ca L 8 Er 0. O L 9 Ta 0 _ 198 8.3 1.1
199 9.0 1.2 199 9.0 1.2
Bi2Ba2Co1 9Ta0 ^9 203 8.1 0.8Bi 2 Ba 2 Co 1 9 Ta 0 ^ 9 203 8.1 0.8
Bi2Ba, 8Na0.2CoL 9Ta0 ^9 200 8.0 1.3 Bi 2 Ba, 8 Na 0. 2 Co L 9 Ta 0 ^ 9 200 8.0 1.3
BijBa! gKo 203 7.8 1.2BijBa! GKo 203 7.8 1.2
Bi2Ba1 8Li0.2Co,.9Ta0 ^Ο,, 201 7.2 1.1 Bi 2 Ba 1 8 Li 0. 2 Co ,. 9 Ta 0 ^ Ο ,, 201 7.2 1.1
Bi2B ! 8Ti0 2Co1 9Ta0 208 9.0 0.8Bi 2 B! 8 Ti 0 2 Co 19 Ta 0 208 9.0 0.8
Bi2BaL8V0,2Co1 9Ta0 A 198 7.8 0.7 80] Bi 2 Ba L8 V 0 , 2 Co 19 Ta 0 A 198 7.8 0.7 80]
Figure imgf000111_0001
81]
Figure imgf000111_0001
81]
Figure imgf000112_0001
[0280] 以上の結果から明らかなように、表 14一表 81に示された各酸ィ匕物は、 p型熱電変 換材料として優れた特性を有し、導電性も良好である。従って、実施例 1の熱電発電 装置における p型熱電変換材料に代えて、これらの酸ィ匕物を用いる場合にも、良好 な熱電発電性能が発揮されるものと考えられる。
Figure imgf000112_0001
[0280] As is clear from the above results, each of the oxides shown in Table 14-Table 81 has excellent properties as a p-type thermoelectric conversion material, and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited also when these oxides are used in place of the p-type thermoelectric conversion material in the thermoelectric power generator of Example 1.
[0281] 参考例 99  [0281] Reference Example 99
一般式: Ln R1 Ni R2 O又は一般式:(Ln R3 ) Ni R4 Oで表される n型熱電変 m n p q r s t 2 u v w 換材料としての特性を有する複合酸化物を下記の方法で作製した。 General formula: Ln R 1 Ni R 2 O or general formula: (Ln R 3 ) Ni R 4 O An n-type thermoelectric converter mnpqrst 2 uvw A composite oxide having properties as a replacement material is prepared by the following method. did.
[0282] 原料物質としては、目的とする複合酸化物の構成元素を含む硝酸塩を用い、表 82 一表 128に記載した各組成式と同じ元素比となる割合で、各原料物質を蒸留水に完 全に溶解し、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固し た。次いで、電気炉を用いて、析出物を空気中で 600°Cで 10時間焼成して、硝酸塩 を分解した。その後、焼成物を粉砕し、加圧成形後、 300mlZ分の酸素気流中で 20 時間焼成して複合酸化物を合成した。焼成温度及び焼成時間については、目的と する酸化物が生成するよう〖こ 700— 1100°Cの範囲で適宜変更した。 [0282] As a raw material, a nitrate containing a constituent element of a target composite oxide was used. After complete dissolution and thorough mixing in an alumina crucible, the water was evaporated to dryness. Next, the precipitate was calcined in an air at 600 ° C for 10 hours in air to decompose nitrate. Thereafter, the fired product was pulverized, pressed, and fired in an oxygen stream of 300 mlZ for 20 hours to synthesize a composite oxide. The firing temperature and firing time were appropriately changed within the range of 700-1100 ° C so that the target oxide was formed.
[0283] 下記表 82—表 128に、得られた各複合酸ィ匕物における元素比、 700°Cにおけるゼ 一ベック係数、 700°Cにおける電気抵抗率、及び 700°Cにおける熱伝導度を示す。 [0283] Tables 82 to 128 below show the element ratio, the Seebeck coefficient at 700 ° C, the electric resistivity at 700 ° C, and the thermal conductivity at 700 ° C in each of the obtained composite oxides. Show.
[0284] [表 82] [0284] [Table 82]
Figure imgf000114_0001
83]
Figure imgf000114_0001
83]
Figure imgf000115_0001
Figure imgf000115_0001
Enter
Figure imgf000116_0001
Figure imgf000116_0001
8挲] [9820]  8 挲] [9820]
Y(,\(,WVmidiliDA Pll 869^90/SOOi OAV
Figure imgf000117_0001
Y (, \ (, WVmidiliDA Pll 869 ^ 90 / SOOi OAV
Figure imgf000117_0001
[S8挲] [Ζ820] OOZdf/ェ:) d 911 8691790/S00Z OAV 86] [S8 挲] [Ζ820] OOZdf / e :) d 911 8691790 / S00Z OAV 86]
Figure imgf000118_0001
87]
Figure imgf000118_0001
87]
Figure imgf000119_0001
Figure imgf000119_0001
.
6 ¾6 ¾
Figure imgf000120_0001
Figure imgf000120_0001
[88挲] [0620] 10/ίΌ0Ζ«ΙΓ/Χ3«Ι 8 869^90/SOOi ΟΛ\
Figure imgf000121_0001
[88 挲] [0620] 10 / ίΌ0Ζ «ΙΓ / Χ3« Ι 8 869 ^ 90 / SOOi ΟΛ \
Figure imgf000121_0001
[68挲] [Ϊ620]  [68 挲] [Ϊ620]
l76l6lO/l700Zdf/X3d 6 869^90/S00Z ΟΛΧ
Figure imgf000122_0001
l76l6lO / l700Zdf / X3d 6 869 ^ 90 / S00Z ΟΛΧ
Figure imgf000122_0001
[06挲] [2620] [06 挲] [2620]
請 OOZdf/ェ:) d OZ l 8691790/S00Z OAV
Figure imgf000123_0001
OOZdf / e :) d OZ l 8691790 / S00Z OAV
Figure imgf000123_0001
[16挲] [S620] OOZdf/ェ:) d 1-31 8691790/S00Z OAV
Figure imgf000124_0001
[16 挲] [S620] OOZdf / e :) d 1-31 8691790 / S00Z OAV
Figure imgf000124_0001
[S6峯] [^620] Τ0/1-001ΛΓ/Χ3ί 331 869^ 90/S00Z O
Figure imgf000125_0001
[S6 Mine] [^ 620] Τ0 / 1-001ΛΓ / Χ3ί 331 869 ^ 90 / S00Z O
Figure imgf000125_0001
^6l6l0/1-00idf/X3d 831 869f 90/S001 OAV
Figure imgf000126_0001
^ 6l6l0 / 1-00idf / X3d 831 869f 90 / S001 OAV
Figure imgf000126_0001
^6ΐ6ΐ0/^00ΖΛΓ/Χ3Λ 1^1· 869^90/SOOZ OAV 95] ^ 6ΐ6ΐ0 / ^ 00ΖΛΓ / Χ3Λ 1 ^ 1869 ^ 90 / SOOZ OAV 95]
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000127_0001
Figure imgf000128_0001
[8620]  [8620]
f6l6l0/^00ZdT/X3d 931- 869^90/SOO OAV 97] f6l6l0 / ^ 00ZdT / X3d 931-869 ^ 90 / SOO OAV 97]
Figure imgf000129_0001
Figure imgf000130_0001
Figure imgf000129_0001
Figure imgf000130_0001
[86挲] [οοεο]  [86 挲] [οοεο]
請 OOZdf/ェ:) d 831- 869 0/S00Z OAV 99] OOZdf / e :) d 831-869 0 / S00Z OAV 99]
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000131_0001
Figure imgf000132_0001
[οο朗 κοεο]  [οο 朗 κοεο]
te lO/tOOZdf/lDd 081 869 90/S00Z OAV
Figure imgf000133_0001
te lO / tOOZdf / lDd 081 869 90 / S00Z OAV
Figure imgf000133_0001
[ [εοεο]  [[εοεο]
l76T6T0/tO0Zdf/X3d 1^ 1· 8691"90/S00Z O
Figure imgf000134_0001
l76T6T0 / tO0Zdf / X3d 1 ^ 1 8691 "90 / S00ZO
Figure imgf000134_0001
[soi挲] [κ)εο] 6l6l0^00idf/X3d 381 869 90/S00Z OAV
Figure imgf000135_0001
[soi 挲] [κ) εο] 6l6l0 ^ 00idf / X3d 381 869 90 / S00Z OAV
Figure imgf000135_0001
[εοι挲] [eoso] [εοι 挲] [eoso]
^6l6T0/1O0ldf/X3d EG I- 8691^90/SOOZ O 8 f 0 Έ 0C- ΐΝ 10ia6'0qA ι -f ΐ 'Ζ SS- εο' '°qN6'( ΐΝ 1 ■°ia6'°qA z -f ζτ 6ΐ- ε0Τ 0 6 ( 1 „入 ^ 6l6T0 / 1O0ldf / X3d EG I-8691 ^ 90 / SOOZO 8 f 0 Έ 0C- ΐΝ 10 ia 6 ' 0 qA ι -f ΐ' Ζ SS- ε ο '' ° qN 6 ' ( ΐΝ 1 ■ ° ia 6 ' ° qA z -f ζτ 6ΐ- ε 0 Τ 0 6 (1 purchase
S ΐ ·ε ΖΖ- ε0, °°Ψί6 IN 1 qS ΐ · ε ΖΖ- ε 0, °° Ψί 6 IN 1 q
6 <Ζ- ¾' °ηο6' IN ' '°Tg6'° A6 <Ζ- ¾ '° ηο 6 ' IN '' ° Tg 6 '° A
Z ' 8 ΖΖ- ¾' '0ο36' 'ΪΝ 1 Z '8 ΖΖ- ¾'' 0 ο3 6 ''ΪΝ 1
0' 6 τ 02- ε0' W 'ΐΝ ' '0 q入0 '6 τ 02- ε 0' W 'ΐΝ'' 0 q
Z'f ο ·ε 9ΐ- ¾' " ]i ' 'ΐΝ 1 ' g60q入 Z'f ο · ε 9ΐ- ¾ '"] i''ΐΝ 1 ' g 60 q
6Έ 8 τ Ζ- ¾Τ■。·!つ6' 'ΙΝ τ 6Έ 8 τ Ζ- ¾ Τ ■. ·! 6 '' ΙΝ τ
6 - Ζ- ε0Ι 0Λ6. 〕 Ν 1 W。q人 6-Ζ- ε 0 Ι 0 Λ 6. ] Ν 1 W. q people
Z'f ιτ Ζ- ¾, 0Τ16' 〕ΤΝ 1 •o 。 q入Z'f ιτ Ζ- ¾ , 0 Τ1 6 '] ΤΝ 1 • o. q on
Z' 8 'Ζ 61- ε0' 6' 〕ΐΝ 1 ' つ6'。 q人 Z '8' Ζ 61- ε 0 ' 6 '] ΐΝ 1 ' 6 '. q people
I -f 6 ·ΐ ζζ- ' '0q 6' 5ΙΝ 1 +W0q入I -f 6 ΐ ζζ- '' 0 q 6 ' 5 ΙΝ 1 + W 0 q
'f L τ ιζ- ε0''¾6' 5ΐΝ 1 + 0q入 ζ-f 8 ·ε LZ- 5ΙΝ ι ■W0q入 'f L τ ιζ- ε 0''¾ 6 ' 5 ΐΝ 1 + 0 q input ζ-f 8 ε LZ- 5入 ι ■ W 0 q input
ε0ι η3ε 0 ι η3 6
9 6 ·ε \Ζ- 3ΙΝ 1 '0B36'°q人 9 6 ε \ Ζ- 3 ΙΝ 1 ' 0 B3 6 ' ° q person
6'ε じ τ ζζ- 3ΤΝ ' -。 Bつ6'0 q入 ΐ -f 8 ζ- . 3ΐΝ ' ¾36'°q人 6'ε τ ζζ- 3 ΤΝ '-. B one 6 '0 q input ΐ -f 8 ζ-. 3 ΐΝ' ¾3 6 '° q People
9 Έ 9 'S 8ΐ- ε0' °UK6 ' 3ΐΝ τ ·。 '0 q入 9 Έ 9 'S 8ΐ- ε 0' ° U K 6 ' 3 τ τ ·. ' 0 q
6 ·ε ΐ τ ι\- 3ΙΝ 10q入 ο 6 ·ε 6Ζ- ε010Λ6' 3ΐΝ 10q入 6 · ε τ τ ι \ -3 ΙΝ 10 q input ο 6 · ε 6Ζ- ε 0 10 Λ 6 ' 3 ΐΝ 10 q input
■oBつ 6 'Oq入 ■ o B 6 'Oq
L ·ε \Ζ- 3ΐΝ ' L · ε \ Ζ- 3 ΐΝ '
ζζ- 3ΐΝ 1 '。 入 ζζ- 3 ΐΝ 1 '. Enter
6-C ο ·ε \ζ- ¾' ' 3ΐΝ 6-C ο · ε \ ζ- ¾ '' 3 ΐΝ
τ -f 6·2 6ΐ- ¾ oM6. 3ΐΝ 1 入 ζ - 8 'Ζ 82- w ' 3ΐΝ ' •。JS6'0q入 ε 'f fZ 92- ε0Ι 0η36' 3ΐΝ 1 。 。 q入 τ -f 6 · 2 6ΐ- ¾ o M 6 3 ΐΝ 1 input ζ -. 8 'Ζ 82- w ' 3 ΐΝ '•. J S 6'0q input ε 'f fZ 92- ε 0 Ι 0 η3 6 ' 3 ΐΝ 1 . . q on
' ε 'ο0 'ε' ο 0
9 ο'ε ΖΖ- つ 6■ 3ΐΝ 1 入 τ -f τ ·ε Ζ- °ΐ 1 0 '0 q入 9 ο'ε ΖΖ- one 6 ■ 3 ΐΝ 1 case τ -f ττε Ζ- ° ΐ 1 0 ' 0 q case
9■ Ζ'Ζ ζζ- °ΐΝ 1 S60q入 o ' 8 "2 ΟΖ- °ΐΝ 1 s60q入 9 ■ Ζ'Ζ ζζ- ° ΐΝ 1 S 60q input o '8 "2 ΟΖ- ° ΐΝ 1 s 60 q input
8 ·ε ο·ε 9ΐ- ¾10Λ6' °ΐΝ ' s6'0q人 τ 'f ΐ ·τ 32- ¾' 0ΐΙ6" °ΙΝ 1 Ss。q人 8 · ε ο · ε 9ΐ- ¾ 10 Λ 6 '° ΐΝ' s 6 ' 0 q people τ' f ΐ · τ 32- ¾ ' 0 ΐΙ 6 "° ΙΝ 1 S s.q people
L - τ τ 61- ¾'·。 '.0ίΝ L-τ τ 61- ¾ '·. '. 0 ίΝ
Z L 82- Z L 82-
S · 8 "2 8Τ- ¾ι οΜ Γ0ΐΝ S · 8 "2 8Τ- ¾ ι ο Μ Γ0 ΐΝ
9 'f 9 τ £Ζ-  9 'f 9 τ £ Ζ-
請 OOidf/IDd ?, 869^90/500^ OAV 105] OOidf / IDd?, 869 ^ 90/500 ^ OAV 105]
-a 組成 ゼーベック係数 電' 5¾抵抗率 熱伝導度-a Composition Seebeck coefficient Electric '5¾ resistivity Thermal conductivity
(LnsR3 t)2NiuR4 v0w V/K (700。C) mQcm (700°C) W/mK (700°C)(Ln s R 3 t ) 2 Ni u R 4 v 0 w V / K (700.C) mQcm (700 ° C) W / mK (700 ° C)
La2Ni04 -25 6.1 4.3La 2 Ni0 4 -25 6.1 4.3
Ce2Ni04 O -28 5.0 4.2Ce 2 Ni0 4 O -28 5.0 4.2
Pr2Ni04 -28 7.0 4.3Pr 2 Ni0 4 -28 7.0 4.3
Nd2Ni04 -22 4.9 4.5Nd 2 Ni0 4 -22 4.9 4.5
Sm2Ni04 -20 5.0 4.6Sm 2 Ni0 4 -20 5.0 4.6
Eu2Ni04 -25 6.0 4.7Eu 2 Ni0 4 -25 6.0 4.7
Gd2Ni04 -27 5.2 4.4Gd 2 Ni0 4 -27 5.2 4.4
Dy2Ni04 - 30 7.0 4.9Dy 2 Ni0 4 - 30 7.0 4.9
Ho2Ni04 -29 8.1 4.7Ho 2 Ni0 4 -29 8.1 4.7
Er2Ni04 -30 6.9 4.6Er 2 Ni0 4 -30 6.9 4.6
Yb2Ni04 -28 6.7 4.6 Yb 2 Ni0 4 -28 6.7 4.6
LaL8Na0.2NiO4 -25 6.9 4.2 La L8 Na 0. 2 NiO 4 -25 6.9 4.2
Lai.8K。.2Ni04 -18 5.9 4.7L ai . 8 K. . 2 Ni0 4 -18 5.9 4.7
La, 8Sr02Ni04 -22 6.3 4.8La, 8 Sr 02 Ni0 4 -22 6.3 4.8
Laj 8Ca02Ni04 -10 7.0 4.1Laj 8 Ca 02 Ni0 4 -10 7.0 4.1
La1.8Bi0.2Ni04 -26 7.1 3.8 La 1. 8 Bi 0. 2 Ni0 4 -26 7.1 3.8
CeL8Na0.2NiO4 -19 7.0 4.6 Ce L8 Na 0. 2 NiO 4 -19 7.0 4.6
Ce,8K0.2Ni04 -17 6.8 4.2 Ce, 8 K 0 .2Ni0 4 -17 6.8 4.2
Cet sSr0.2Ni04 -23 6.9 4.5 Ce ts Sr 0. 2 Ni0 4 -23 6.9 4.5
Ce18Ca02NiO4 -22 6.7 4.3Ce 18 Ca 02 NiO 4 -22 6.7 4.3
Cel 8Bi0.2NiO4 -18 7.1 4.1 Ce l 8 Bi 0. 2 NiO 4 -18 7.1 4.1
Pri.8Na0.2NiO4 -21 6.3 4.0 P ri. 8 Na 0. 2 NiO 4 -21 6.3 4.0
PrL8K0.2Ni04 -21 7.1 3.8 Pr L8 K 0. 2 Ni0 4 -21 7.1 3.8
-22 6.4 3.7 -22 6.4 3.7
Pr1.8Ca0.2NiO4 -18 5.9 4.0 Pr 1. 8 Ca 0. 2 NiO 4 -18 5.9 4.0
Pr,.sBi0.2NiO4 -25 6.4 3.9 Pr ,. s Bi 0. 2 NiO 4 -25 6.4 3.9
NdL8Na0.2NiO4 -28 7.0 4.1 Nd L8 Na 0. 2 NiO 4 -28 7.0 4.1
Nd'.sK0.2Ni04 -19 6.8 3.9 Nd '. S K 0. 2 Ni0 4 -19 6.8 3.9
NdL8Sr0.2NiO4 - 20 7.1 4.6 Nd L8 Sr 0 2 NiO 4 - . 20 7.1 4.6
NdL8Ca0.2NiO4 -26 6.8 4.3 Nd L8 Ca 0. 2 NiO 4 -26 6.8 4.3
Nd,.sBi0.2Ni04 -23 5.9 4.0
Figure imgf000138_0001
Nd ,. s Bi 0. 2 Ni0 4 -23 5.9 4.0
Figure imgf000138_0001
[90 ΐ挲] [80£0] OOZdf/ェ:) d 9£ l 8691790/S00Z OAV z -f 6·9 iz- ¾' °OK6'0TyI¾J [ [90 ΐ 挲] [80 £ 0] OOZdf / e :) d 9 £ l 8691790 / S00Z OAV z -f 6.9 iz- ¾ '° OK 6 ' 0 TyI¾J [
-f 8 "9 \Z- -f 8 "9 \ Z-
9 O' 02- *0I 0o36'0TNs¾ 9 O '02- * 0 I 0o 3 6 ' 0 TN s ¾
i -f Z 'L 8ΐ- ¾' °θΗ6'°ΐΝ5¾ i -f Z 'L 8ΐ- ¾' ° θ Η 6 '° ΐΝ 5 ¾
ΐ 'L ZZ- *Or0uN6'0TNSj:d ΐ 'L ZZ- * O r0u N 6 ' 0 TN Sj: d
z ^ 0 'L ZZ- z ^ 0 'L ZZ-
6'S ε·9 L\-6'S ε9 L \-
6'S 6T- *0Γ0ΐΙ6'αΐΝ¾ z -f Z 'Z 9S- W '。Β丄 6'。ΐΜ 3 6'S 6T- * 0 Γ0 ΐΙ 6 ' α ΐΝ¾ z -f Z' Z 9S- W '. Β 丄6 '. ΐΜ 3
L -f L "9 οτ- ¾ oqN6'°TN¾D L -f L "9 οτ- ¾ o qN 6 '° TN ¾ D
0 'f 6 '9 ZZ- e - ΐ ·8 81- 0 'f 6' 9 ZZ- e-ΐ8 81-
9 -f 0 Ί 92-9 -f 0 Ί 92-
6 '2 Z 'S LZ- ¾' °°06 '0ΐΝ¾3 6 '2 Z' S LZ- ¾ '°° 0 6 ' 0 ΐΝ ¾ 3
I - 0 ·9 82- I-0 82 9-
0 'S οε- ΐ -f 6 · ss-0 'S οε- ΐ -f 6
8 - 0 'L s- i -f 0 'S \z- s - g '9 fZ-8-0 'L s- i -f 0' S \ z- s-g '9 fZ-
9 -f 6 · 81-9 -f 6
L ' 8 '9 Ll- o -f T 'Z 6Z- *Ό5 'Ooj .1 L '8' 9 Ll- o -f T 'Z 6Z- * Ό 5 ' O oj. 1
8 ·ε 8 ·9 IZ- ¾z °n38 τΐΝΖεΤ 8 · ε 8 · 9 IZ- ¾ z ° n 3 8 τ ΐΝ Ζε Τ
T - 0 ·Ζ fZ- T-0
8^ ΐ 'L ZZ- z -f f9 \z- z -f 6'S 6ト 8 ^ ΐ 'L ZZ- z -f f9 \ z- z -f 6'S 6
s ' 9 82- s' 9 82-
9^ ΐ "Z 92- "0s '"II8'1!^^ 9 ^ ΐ "Z 92-" 0 s '"II 8 ' 1 ! ^^
0' 8"S fZ- TN5' a8.'q入 0 '8 "S fZ- TN 5 ' a 8 .'q
z -f 8·9 ZZ- 入  z -f 8.9 ZZ-
6Έ 0 'L 03- » ■。ュ ss'iq入 6Έ 0 'L 03- » ■. S s s ' iq
6 - 9 "9 9ΐ-  6-9 "9 9ΐ-
[ζοΐ挲] [6οεο] [ζοΐ 挲] [6οεο]
^6T6l0/ 00Zdf/X3d 8l 8691^90/SOOZ OAV S ^ 6T6l0 / 00Zdf / X3d 8l 8691 ^ 90 / SOOZ OAV S
Figure imgf000140_0001
Figure imgf000140_0001
[謝挲] [οτεο]  [Thank you] [οτεο]
l76T6l0/tO0ldf/X3d 8ε ΐ· 869f90/S00l OAV
Figure imgf000141_0001
l76T6l0 / tO0ldf / X3d 8ε 869f90 / S00l OAV
Figure imgf000141_0001
[60ΐ挲] [πεο]  [60ΐ 挲] [πεο]
t6l6l0/t00Zdf/13d 6ε ΐ· 869^90/≤001 OAV
Figure imgf000142_0001
t6l6l0 / t00Zdf / 13d 6ε 869869 ^ 90 / ≤001 OAV
Figure imgf000142_0001
[Οΐΐ挲] [ΖΙΖΟ 6l6l0/P00ldt/lDd OP I 869 SOOZ O 111] [Οΐΐ 挲] [ΖΙΖΟ 6l6l0 / P00ldt / lDd OP I 869 SOOZ O 111]
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000143_0001
Figure imgf000144_0001
zwm m  zwm m
^6l6l0/ 00Zdf/X3d i 8691^90/SOOr OAV 113] ^ 6l6l0 / 00Zdf / X3d i 8691 ^ 90 / SOOr OAV 113]
Figure imgf000145_0001
114]
Figure imgf000145_0001
114]
Figure imgf000146_0001
115]
Figure imgf000146_0001
115]
Figure imgf000147_0001
116]
Figure imgf000147_0001
116]
Figure imgf000148_0001
ε 6"S
Figure imgf000148_0001
ε 6 "S
9 'f 8 '9 8ΐ- ^O1 ' oつ6 '0iN o-iS8'lluS9 'f 8' 9 8ΐ- ^ O 1 'o 6 ' 0 iN o -iS 8 ' llu S
Z 'f ΐ "Z L\- ^O1'0^6'0!^'0^8'1^ Z 'f ΐ "ZL \-^ O 1 ' 0 ^ 6 ' 0 ! ^' 0 ^ 8 ' 1 ^
9 - 8 "9 62- 9-8 "9 62-
O'f 0 "Z 12-O'f 0 "Z 12-
8·ε "Z 8εεZ
τ '9 zz- τ '9 zz-
L ' 9 6ΐ- ¾T '0B丄 6 '0ΤΝ2'0¾8'¾8L '9 6ΐ- ¾ T ' 0 B 丄6 ' 0 ΤΝ 2 ' 0 ¾ 8 '¾8
Z ' ΐ 'L 8Z- ¾T '0qN6'°TN ¾8''uiS Z 'ΐ' L 8Z- ¾ T ' 0 qN 6 ' ° TN ¾ 8 '' uiS
3 -f 0 'L 92- , '0M6'0TN58'lmS3 -f 0 'L 92-,' 0 M 6 ' 0 TN 5 ' ¾ 8 ' lm S
9' ε ' SS-9 'ε' SS-
9't I 'L fZ- "O1.0nつ6'0 s'0 8' S i · ZZ- vo1,0°o6'0T e ' "1^ 9't I 'L fZ- "O 1 . 0 n one 6' 0 s '0 8' S i · ZZ- v o 1,0 ° o 6 '0 T e'" 1 ^
6· ε·9 OZ- ff 6'9 91- r0uW6 ΐΝδ °¾8 1mS6ε9 OZ- ff 6'9 91- r0u W 6 ΐΝ δ ° ¾ 8 1m S
I 'f 6 '9 92- ' '。Jつ6 '°TJ^s '^^ras I 'f 6' 9 92- ''. J one 6 '° TJ ^ s' ^^ ras
o  o
0 Z'L fZ- o  0 Z'L fZ- o
'f o o0''°A6'°TNs8'TaiS - Ζ,'9 6T- i '。 '。 ½S ΐ ·8 8ΐ- ΐ O'Z SS-'fo o0''° A 6 ' ° TN s8 ' Tai S-Ζ, '9 6T- i'. '. ½ S ΐ · 8 8ΐ- ΐ O'Z SS-
9·ε S 'S Ϊ2- ¾T'0 6'0TN''°GNs'luiS9εε S 'S Ϊ2- ¾ T ' 0 6 ' 0 TN''° G N s ' lui S
6 Έ 0 ·9 02- Q 6 Έ 0 · 9 02- Q
O'f 0 - ZZ- O'f 0-ZZ-
L Έ 6 · 02- 0T '0°D6'0TNs °BN8 lmSL Έ 6 ・ 02- 0 T ' 0 ° D 6 ' 0 TN s ° B N 8 lm S
8 Έ 0 Ί Ζΐ-8 Έ 0 Ί Ζΐ-
0 ' 0 'S 6ΐ- 】 0u ' Ns '°¾8 mS0 '0' S 6ΐ-】 0 u 'N s ' ° ¾ 8 m S
6·ε O- , 6 · ε O-,
ΐ -f S '9 es- z - 6'S 92- v01 ,0Tl6"0TNss 8'TmS s · ΐ 'L 6ΐ- z - 8 '9 82- ¾ oqN6'°TN5'°Ta8',PNΐ -f S '9 es- z - 6'S 92- v 0 1, 0 Tl 6 "0 TN s' ° s 8 'Tm S s · ΐ' L 6ΐ- z - 8 '9 82- ¾ o qN 6' ° TN 5 '° Ta 8 ' , PN
9'f O'i fZ-9'f O'i fZ-
0 f T 'L Z-0 f T 'L Z-
8 τ ' 9 Sト 8 τ '9 ST
請 OOZdf/ェ:) d IP 869^90/SOOZ OAV
Figure imgf000150_0001
OOZdf / e :) d IP 869 ^ 90 / SOOZ OAV
Figure imgf000150_0001
^6l6lO/^OOidf/X3d 8 869 90/S00i 6·ε 8 '9 02-^ 6l6lO / ^ OOidf / X3d 8 869 90 / S00i 6ε 8 '9 02-
6 · 0 "Z 9ΐ- ε -f S'9 Z- ζ -f 6 'S fZ- W '0o36'°iN5'0B38''ng ί ' 8·9 6ΐ- ' '0ad6'0xNi 0BD8'lri3 o' ΐ 'ί 82-6 0 `` Z 9ΐ- ε -f S'9 Z- ζ -f 6 'S fZ- W' 0 o3 6 '° iN 5 ' 0 B3 8 '' ng ί '8.96 ΐ-'' 0 ad 6 ' 0 xN i 0B D 8 ' lri 3 o 'ΐ' ί 82-
8 ·9 81-8 9 9-
9 ' 0"Ζ ZZ-9 '0 "Ζ ZZ-
6 ·ε Τ 'L \Z- 6 ε Τ 'L \ Z-
9·ε 6"S ZZ- 9 QZ- ο -f I L Ll- ι ·ε e "9 6ΐ- 1'。 op ' '°JS8 1nH 9 · ε 6 "S ZZ- 9 QZ- ο -f IL Ll- ι · ε e" 9 6ΐ- 1 '. op '' ° JS 8 1n H
8 "9 zz- ο ΐ ' zz- ¾1 0036'07^ '°-iS8'In38 "9 zz- ο ΐ 'zz- ¾ 1 00 3 6 ' 0 7 ^ '° -iS 8 ' In 3
6·ε i'9 92- τ -f 6 "9 02- V0T °U60ΐΝε '°-iS8 lnH6ε i'9 92- τ -f 6 "9 02- V 0 T ° U60 ΐΝ ε '° -iS 8 ln H
i'。j 。TNe -o -in3 ε ' 8·9 61- s · 0-Z 82- ζ -f Z 'L fZ- ο ' O'Z 8ΐ-i '. j. TN e -o -i n3 ε '8.9 61- s ・ 0-Z 82- ζ -f Z' L fZ- ο 'O'Z 8ΐ-
8 'ε ε·9 ZZ- ¾roqN6'°TNs '0¾ηΗ τ - 6"S iz-8 'ε ε9 ZZ- ¾ ro qN 6 ' ° TN s ' 0 ¾ ηΗ τ-6 "S iz-
8 ' 6 "9 iz- W'0 °¾8 1η38 '6 "9 iz- W' 0 ° ¾ 8 1 η3
L ' Z 'L oz-L'Z'L oz-
Ζ 'Ψ i'9 8ΐ-Ζ 'Ψ i'9 8ΐ-
S ' 6 '9 ZZ-S '6' 9 ZZ-
9 ' I '8 ZZ- 】.0uj '0 N 0 8.'n39 'I' 8 ZZ-]. 0 uj '0 N 0 8 .' N 3
9 ' O'Z 11- WW0 ΎΊη39 'O'Z 11- WW 0 Ύ Ί η3
1 ' Z ' 6T- ¾1'°Λ6'°ΐΝ''08'ΐπ31 'Z' 6T- ¾ 1 '° Λ 6 ' ° ΐΝ '' 0 ) Ι 8 ' ΐ π3
6 'f 0 ·9 02- 6 'f 0 9 02-
L 6 · 01-L 6 01-
9 - O'Z ZZ-9-O'Z ZZ-
9 - o -g 8ΐ - 9-o -g 8ΐ-
請 OOidf/IDd 6W 869^90/500^ OAV 120] OOidf / IDd 6W 869 ^ 90/500 ^ OAV 120]
Figure imgf000152_0001
121]
Figure imgf000152_0001
121]
Figure imgf000153_0001
122]
Figure imgf000153_0001
122]
Figure imgf000154_0001
Figure imgf000155_0001
Figure imgf000154_0001
Figure imgf000155_0001
_ZZ\W\ [S2S0]  _ZZ \ W \ [S2S0]
^6l6l0/t00Zdf/X3J SS I> 8691^90/SOOZ OAV
Figure imgf000156_0001
Figure imgf000156_0002
OAV 125]
^ 6l6l0 / t00Zdf / X3J SS I> 8691 ^ 90 / SOOZ OAV
Figure imgf000156_0001
Figure imgf000156_0002
OAV 125]
Figure imgf000157_0001
l ·9 Ll- VOup ' ΐ '。 bNTIc1A
Figure imgf000157_0001
l · 9 Ll-VOup 'ΐ'. b NT Ic 1A
8·ε 6 '9 62- 8ε 6 '9 62-
I f 8 '9 IZ-I f 8 '9 IZ-
8 - 0 "Z Z- 8-0 "Z Z-
Z ' ΐ 'L IZ-Z 'ΐ' L IZ-
S 0 'L 6ΐ-S 0 'L 6ΐ-
C "9 82-C "9 82-
9 6 "9 92- ¾l'0oHB'0i s'°Ta8'T-IH 9 6 "9 92- ¾ l ' 0 oH B' 0 i s '° Ta 8' T - I H
I 'f 6 ·9 £Z- 0 θΓΌ6.0ΐΜ5 '0 ' 3 I 'f 6 · 9 £ Z- 0 θΓ Ό 6. 0 ΐΜ 5' 0 '3
6 'f Z 'L fZ- ¾''°ο36'0ΐΝ5 '0 '1 ff L '9 ZZ-6 'f Z' L fZ- ¾ '' ° ο 3 6 ' 0 ΐΝ 5 ' 0 ' 1 ff L' 9 ZZ-
L -f 6 '9 OS-L -f 6 '9 OS-
9'f I '8 9ΐ- ¾''0-136'°1^ '0 ' 3 9'f I '8 9ΐ- ¾'' 0 -13 6 ' ° 1 ^ ' 0 ' 3
ν0,·οΛ6·οΐΝ3 οΐ9 ν 0, · ο Λ6 · ο ΐΝ 3 ο ΐ9 8 · 1¾
0"Z Z- ε -f Z "9 fZ- ε - O'L SZ- ro 6z ' )8'1 3 0 "Z Z- ε -f Z" 9 fZ- ε-O'L SZ- ro 6z ') 8 ' 1 3
0· C'Z 8ΐ- ν0ι·ο 6-οΐΝί·οΒ38¾ 0C'Z 8ΐ- ν 0 ι · ο 6-ο ΐΝ ίο Β38¾
8 'ε ΐ "Z ZZ- ΐ - 0 Ά IZ- 8 'ε ΐ "Z ZZ- ΐ-0 Ά IZ-
8· ε·9 02-8ε9 02-
L 6 '9 ZZ- "O1 '。。つ6'0L 6 '9 ZZ- "O 1 '. 6 ' 0 .
z f 6 '9 OZ- "θ''Η6'οΪΝζΒ3·Ι3 zf 6 '9 OZ- "θ''0θ Η 6' ο ΪΝ ζ '° Β 3 8Ί · Ι 3
9 f Z 'L Ll- "Ό1 '°uj¾6 '0 ·0Βつ8■'•ig 9 f Z 'L Ll- "Ό 1' ° uj¾ 6 '0 · 0 Β one 8 ■' • ig
9 'f '9 6ΐ- 9 'f' 9 6ΐ-
L f 6 '9 ZZ-L f 6 '9 ZZ-
0 f ΐ ·8 ZZ- ¾''。ΐ16'°ΐΝ2'°Β3 3 0 f ΐ · 8 ZZ- ¾ ''. ΐ1 6 '° ΐΝ 2 ' ° Β3 3
6·ε Z "9 OZ-6ε Z "9 OZ-
6· 0'9 6T- "0I'0qN6'0TNz'°-:tS8'I-;c3 6 0'9 6T- "0 I ' 0 qN 6 ' 0 TN z '°- : tS 8 ' I- ; c3
0'9 82- 0'9 82-
Z'f 6"^ Z- ' '°oj¾6 '。]: '0-is8'lja Z'f 6 "^ Z- '' ° oj¾ 6 '.]:' 0 -is 8 ' lj a
0 Ί Z- 0 Ί Z-
O'f O'S 81- ε· O'Z ZZ-O'f O'S 81- ε O'Z ZZ-
9 'f S ·9 IZ- 9 'f S9 IZ-
[92 ΐ¾ [82S0] [92 ΐ¾ [82S0]
OOZdf/ェ:) d 9 1 8691790/S00Z OAV 127] OOZdf / e :) d 9 1 8691790 / S00Z OAV 127]
Figure imgf000159_0001
[0330] [表 128]
Figure imgf000159_0001
[0330] [Table 128]
YbL8Ca0.2Ni -26 6.4 4.0 Yb L8 Ca 0. 2 Ni -26 6.4 4.0
YbLSCac ,:Ni sCu0 -22 5.9 3.9 Yb LS Ca c,: Ni sCu 0 -22 5.9 3.9
YbL8Ca02Ni 0.9Mo0.l04 -18 6.4 3.6 Yb L8 Ca 02 Ni 0. 9 Mo 0. L 0 4 -18 6.4 3.6
YbL8Ca0.2Ni 〕. A. A -25 7.1 3.8Yb L8 Ca 0. 2 Ni]. A. A -25 7.1 3.8
YbL8Ca02Ni 3美 A -24 7.0 3.7Yb L8 Ca 02 Ni 3 beauty A -24 7.0 3.7
Yb^Ca^Ni 丁¾ -28 6.8 4.0 Yb ^ Ca ^ Ni cho -28 6.8 4.0
Yb,.8Bic ,2Ni 丄。. i04 -20 6.8 3.6Yb ,. 8 Bi c , 2 Ni 丄. .i0 4 -20 6.8 3.6
Yb〖.8Bic .2Ni -26 5.9 4.1Yb 〖. 8 Bi c . 2 Ni -26 5.9 4.1
YbL8Bic .2Ni !)Cr0. |04 - 23 6.5 3.9 . Yb L8 Bi c 2 Ni) Cr 0 |!. 0 4 - 23 6.5 3.9
YbL8Bic .2Ni 09Mn0104 -22 7.0 4.6Yb L8 Bi c . 2 Ni 09 Mn 01 0 4 -22 7.0 4.6
Yb^Bic ,2Ni -19 6.8 4.3Yb ^ Bic, 2 Ni -19 6.8 4.3
YbL8Bic .2Ni 0.9CO0. 〇 -17 5.8 4.0Yb L8 Bi c . 2 Ni 0.9CO0.〇 -17 5.8 4.0
YbLgBic ,2Ni - 20 6.3 4.7Yb Lg Bi c , 2 Ni-20 6.3 4.7
Yb,.8Bi0 ,2Ni .9MO0. -22 7.1 4.2Yb ,. 8 Bi 0 , 2 Ni .9MO0. -22 7.1 4.2
Yb,8Bic .2Ni A - 20 6.4 4.3Yb, 8 Bi c . 2 Ni A-20 6.4 4.3
Ybl 8Bic ,2Ni ^bo. -21 5.9 4.9 Yb l 8 Bi c , 2 Ni ^ bo. -21 5.9 4.9
,2Ni -23 6.4 3.9 , 2 Ni -23 6.4 3.9
[0331] 以上の結果から明らかなように、表 82—表 128に示された各酸ィ匕物は、 n型熱電変 換材料として優れた特性を有し、導電性も良好である。従って、実施例 1の熱電発電 装置における n型熱電変換材料に代えて、これらの酸ィ匕物を用いる場合にも、良好 な熱電発電性能が発揮されるものと考えられる。 [0331] As is clear from the above results, each of the oxides shown in Table 82 to Table 128 has excellent characteristics as an n-type thermoelectric conversion material, and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited even when these oxides are used instead of the n-type thermoelectric conversion material in the thermoelectric power generator of Example 1.

Claims

請求の範囲 The scope of the claims
[1] p型熱電変換材料の一端と n型熱電変換材料の一端とを電気的に接続してなる熱 電変換素子を複数個用い、該熱電変換素子の p型熱電変換材料の未接合の一端を 、他の熱電変換素子の n型熱電変換材料の未接合の端部に接続する方法で複数の 熱電変換素子を直列に接続してなる熱電発電モジュールと、  [1] Using a plurality of thermoelectric conversion elements formed by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material, and using an unbonded p-type thermoelectric conversion material of the thermoelectric conversion element A thermoelectric power generation module in which a plurality of thermoelectric conversion elements are connected in series by connecting one end to an unbonded end of an n-type thermoelectric conversion material of another thermoelectric conversion element,
該熱電発電モジュールの一方の面を加熱するように配置された触媒燃焼式熱源と を  A catalytic combustion heat source arranged to heat one surface of the thermoelectric generation module.
備えてなる熱電発電装置。  Thermoelectric generator provided.
[2] 触媒燃焼式熱源が、触媒を充填してなる触媒燃焼室と、触媒燃焼室で発生した熱 エネルギーを熱電発電モジュールに伝えるための熱伝達部とを備えたものである請 求項 1に記載の熱電発電装置。 [2] Claim 1 wherein the catalytic combustion type heat source includes a catalytic combustion chamber filled with a catalyst and a heat transfer unit for transmitting thermal energy generated in the catalytic combustion chamber to a thermoelectric power generation module. A thermoelectric generator according to claim 1.
[3] 触媒燃焼式熱源が、更に、触媒燃焼室に供給する燃料を収容した燃料容器を備え たものである請求項 2に記載の熱電発電装置。 3. The thermoelectric generator according to claim 2, wherein the catalytic combustion heat source further comprises a fuel container containing fuel to be supplied to the catalytic combustion chamber.
[4] 触媒燃焼式熱源が、更に、予熱器を備えたものである請求項 2に記載の熱電発電 装置。 4. The thermoelectric generator according to claim 2, wherein the catalytic combustion heat source further includes a preheater.
[5] 触媒燃焼式熱源が、更に、予熱器を備えたものである請求項 3に記載の熱電発電 装置。  5. The thermoelectric generator according to claim 3, wherein the catalytic combustion heat source further comprises a preheater.
[6] 熱電発電モジュールで用いる p型熱電変換材料力 一般式: Ca A1 Co A2 O (式 [6] p-type thermoelectric conversion material power used in thermoelectric generation module General formula: Ca A 1 Co A 2 O (Formula
a b c d e 中、 A1は、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよび ランタノイドからなる群力も選択される一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群から選択される一種又は二 種以上の元素であり、 2.2≤a≤3.6 ;0≤b≤0.8 ;2.0≤c≤4.5 ;0≤d≤2.0 ;8≤e≤10 である。)で表される複合酸化物、及び一般式: Bi Pb M1 Co M20 (式中、 M1は、 In abcde, A 1 is a kind of which group force consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoid is selected A 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta 2.2≤a≤3.6; 0≤b≤0.8; 2.0≤c≤4.5; 0≤d≤2.0; 8≤e≤10. ) And a general formula: Bi Pb M 1 Co M 20 (where M 1 is
f g h i j k  f g h i j k
Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイド からなる群から選択される一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Ag、 Mo、 W、 Nb及び Taからなる群から選択される一種又は二種以上の 元素であり、 1.8≤f≤2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ; 1.6≤i≤2.2 ;0≤j≤0.5 ;8≤k≤ 10である。 )で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物 であり、 One or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and lanthanoids Yes, M 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta, and 1.8≤f≤ 2.2; 0≤g≤0.4; 1.8≤h≤2.2; 1.6≤i≤2.2; 0≤j≤0.5; 8≤k≤10. At least one oxide selected from the group consisting of composite oxides represented by And
n型熱電変換材料が、一般式: Ln R1 Ni R2 O (式中、 Lnはランタノイドカゝら選択さ m n p q r When the n-type thermoelectric conversion material has the general formula: Ln R 1 Ni R 2 O (where Ln is a lanthanoid selected from mnpqr
れる一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群力 選 択される一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu、 Mo、 W、 Nb及び Taからなる群力も選択される一種又は二種以上の元素であり、 0.5≤m≤ 1.7 ;0≤n≤0.5 ;0.5≤p≤1.2 ;0≤q≤0.5 ;2.7≤r≤3.3である。)で表される複合酸ィ匕 物、及び一般式: (Ln R3 ) Ni R4 O (式中、 Lnはランタノイドから選択される一種又 s t 2 u w R 1 is a group consisting of Na, K, Sr, Ca and Bi.One or more elements are selected.R 2 is Ti, V, The group force consisting of Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta is also one or more elements selected from the group consisting of 0.5≤m≤1.7; 0≤n≤0.5; 0.5≤p≤ 1.2; 0≤q≤0.5; 2.7≤r≤3.3. ), And a general formula: (Ln R 3 ) Ni R 4 O (where Ln is a member selected from lanthanoids or st 2 uw
は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選択される一 種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Cu、 Mo、 W、 Nb及び Taからなる群力 選択される一種又は二種以上の元素であり、 0.5≤s≤1.2 ;0≤t≤ 0.5 ;0.5≤u≤1.2 ;0≤v≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物からなる 群力 選ばれた少なくとも一種の酸ィ匕物である請求項 1に記載の熱電発電装置。 熱電発電モジュールで用いる p型熱電変換材料力 一般式: Ca A1 Co O (式中 a b 4 eIs two or more elements, R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and R 4 is Ti, V, Cr, Group force consisting of Mn, Fe, Co, Cu, Mo, W, Nb and Ta One or more elements selected from the group consisting of 0.5≤s≤1.2; 0≤t≤0.5; 0.5≤u≤1.2; 0≤v≤0.5; 3.6≤w≤4.4. 2. The thermoelectric generator according to claim 1, wherein the thermoelectric generator is at least one selected oxide selected from the group consisting of the complex oxides represented by: P-type thermoelectric conversion material power used in thermoelectric generation module General formula: Ca A 1 Co O (where ab 4 e
、 A1は、 Na、 K、 Li, Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y及びランタ ノイド力 なる群力 選択される一種又は二種以上の元素であり、 2.2≤a≤3.6 ;0≤b ≤0.8 ;8≤e≤10である。)で表される複合酸化物、及び一般式: Bi Pb M1 Co O ( f g h 2 k 式中、 M1は、 Sr、 Ca及び Baからなる群力も選択される一種又は二種以上の元素であ り、 1.8≤f≤2.2 ;0≤g≤0.4; 1.8≤h≤2.2 ;8≤k≤10である。)で表される複合酸化物 力 なる群力も選ばれた少なくとも一種の酸ィ匕物であり、 , A 1 is a group force selected from Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and a lanthanoid force. Two or more elements, 2.2≤a≤3.6; 0≤b≤0.8; 8≤e≤10. ) And a general formula: Bi Pb M 1 Co O (fgh 2 k, wherein M 1 is one or more elements selected from the group consisting of Sr, Ca and Ba. The complex oxide force represented by 1.8 ≤ f ≤ 2.2; 0 ≤ g ≤ 0.4; 1.8 ≤ h ≤ 2.2; 8 ≤ k ≤ 10. Thing
n型熱電変換材料が、一般式: La R1 NiO (式中、 R1は、 Na、 K、 Sr、 Ca及び Biから m n r The n-type thermoelectric conversion material has the general formula: La R 1 NiO (where R 1 is mnr from Na, K, Sr, Ca and Bi
なる群から選択される一種又は二種以上の元素であり、 0.5≤m≤1.2 ;0≤n≤0.5 ; 2.One or more elements selected from the group consisting of 0.5≤m≤1.2; 0≤n≤0.5; 2.
7≤r≤3.3である。)で表される複合酸化物、一般式:(La R3 ) NiO (式中、 R3は、 s t 2 w 7≤r≤3.3. ), A general formula: (La R 3 ) NiO (where R 3 is st 2 w
Na、 K、 Sr、 Ca及び Biからなる群から選択される一種又は二種以上の元素であり、 0.5 ≤s≤1.2 ;0≤t≤0.5 ;3.6≤w≤4.4である。)で表される複合酸化物、及び一般式: L a R5 Ni R6 O (式中、 R5は、 Na、 K、 Sr、 Ca、 Bi及び Ndからなる群から選択される少One or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and 0.5 ≤ s ≤ 1.2; 0 ≤ t ≤ 0.5; 3.6 ≤ w ≤ 4.4. Composite oxide represented by), and the general formula: L a R 5 Ni R 6 O ( wherein, R 5 is small is selected Na, K, Sr, Ca, from the group consisting of Bi, and Nd
X P q r X P q r
なくとも一種の元素であり、 R6は、 Ti、 V、 Cr、 Mn、 Fe、 Co及び Cuからなる群から選択 される少なくとも一種の元素であり、 0.5≤x≤ 1.2 ;0≤y≤0.5 ;0.5≤p≤ 1.2 ;0.01≤q ≤0.5 ;2.8≤r≤3.2である。)で表される複合酸化物からなる群から選ばれた少なくと も一種の酸ィヒ物である請求項 1に記載の熱電発電装置。 R 6 is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Cu; 0.5≤x≤1.2; 0≤y≤0.5 ; 0.5≤p≤ 1.2; 0.01≤q ≤0.5; 2.8≤r≤3.2. ) At least selected from the group consisting of composite oxides 2. The thermoelectric generator according to claim 1, wherein the thermoelectric generator is also a kind of acid.
[8] 熱電発電モジュールの加熱される面の反対側の面に、冷却手段を設けてなる請求 項 1一 7のいずれかに記載の熱電発電装置。 [8] The thermoelectric generator according to any one of [17] to [17], wherein cooling means is provided on a surface of the thermoelectric power module opposite to a surface to be heated.
PCT/JP2004/019194 2003-12-26 2004-12-22 Thermoelectric generator WO2005064698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516598A JP4595123B2 (en) 2003-12-26 2004-12-22 Thermoelectric generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003431705 2003-12-26
JP2003-431705 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064698A1 true WO2005064698A1 (en) 2005-07-14

Family

ID=34736446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019194 WO2005064698A1 (en) 2003-12-26 2004-12-22 Thermoelectric generator

Country Status (2)

Country Link
JP (1) JP4595123B2 (en)
WO (1) WO2005064698A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021009A2 (en) * 2004-08-19 2006-02-23 Ut-Battelle, Llc Nano-catalytic spontaneous ignition and method
JP2007053228A (en) * 2005-08-18 2007-03-01 Sumitomo Chemical Co Ltd Thermoelectric conversion material and its manufacturing method
JP2009196821A (en) * 2008-02-19 2009-09-03 Doshisha Perovskite-based oxide, its producing method and thermoelectric element using it
WO2012099089A1 (en) * 2011-01-21 2012-07-26 株式会社村田製作所 Semiconducting ceramic and semiconductor ceramic element
WO2015138583A3 (en) * 2014-03-11 2015-12-17 University Of Central Florida Research Foundation, Inc. Thermoelectric power generator and combustion apparatus
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978404A (en) * 2016-05-20 2016-09-28 梁山德圣新能设备制造有限公司 Semiconductor generator and generating device
CN109111222B (en) * 2018-09-30 2022-03-01 陕西科技大学 Co-doped multiferroic ceramic with Olivies structure and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150787A (en) * 1996-11-18 1998-06-02 Matsushita Electric Ind Co Ltd Thermoelectric generator for outdoor use
JP2001504980A (en) * 1996-12-02 2001-04-10 ハイドロジェニクス インコーポレイテッド Combined self-contained heating and power supply incorporating hydrogen fuel cell, thermal power generator and catalytic burner
JP2002110256A (en) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd Portable equipment
JP2003070275A (en) * 2001-08-22 2003-03-07 Hakukin Warmers Co Ltd Portable thermoelectric generator
JP2003152230A (en) * 2001-11-13 2003-05-23 National Institute Of Advanced Industrial & Technology Compound oxide having high thermoelectric conversion efficiency
JP2003246696A (en) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing compound oxide single crystal
JP2003246678A (en) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing compound oxide sintered compact
JP2003261387A (en) * 2002-03-07 2003-09-16 National Institute Of Advanced Industrial & Technology Method of producing metallic oxide sintered compact
JP2003282964A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP2003306381A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003306380A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150787A (en) * 1996-11-18 1998-06-02 Matsushita Electric Ind Co Ltd Thermoelectric generator for outdoor use
JP2001504980A (en) * 1996-12-02 2001-04-10 ハイドロジェニクス インコーポレイテッド Combined self-contained heating and power supply incorporating hydrogen fuel cell, thermal power generator and catalytic burner
JP2002110256A (en) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd Portable equipment
JP2003070275A (en) * 2001-08-22 2003-03-07 Hakukin Warmers Co Ltd Portable thermoelectric generator
JP2003152230A (en) * 2001-11-13 2003-05-23 National Institute Of Advanced Industrial & Technology Compound oxide having high thermoelectric conversion efficiency
JP2003246696A (en) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing compound oxide single crystal
JP2003246678A (en) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing compound oxide sintered compact
JP2003261387A (en) * 2002-03-07 2003-09-16 National Institute Of Advanced Industrial & Technology Method of producing metallic oxide sintered compact
JP2003282964A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP2003306381A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003306380A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021009A2 (en) * 2004-08-19 2006-02-23 Ut-Battelle, Llc Nano-catalytic spontaneous ignition and method
WO2006021009A3 (en) * 2004-08-19 2006-07-20 Ut Battelle Llc Nano-catalytic spontaneous ignition and method
JP2007053228A (en) * 2005-08-18 2007-03-01 Sumitomo Chemical Co Ltd Thermoelectric conversion material and its manufacturing method
JP2009196821A (en) * 2008-02-19 2009-09-03 Doshisha Perovskite-based oxide, its producing method and thermoelectric element using it
WO2012099089A1 (en) * 2011-01-21 2012-07-26 株式会社村田製作所 Semiconducting ceramic and semiconductor ceramic element
JP5737299B2 (en) * 2011-01-21 2015-06-17 株式会社村田製作所 Semiconductor ceramic and semiconductor ceramic element
WO2015138583A3 (en) * 2014-03-11 2015-12-17 University Of Central Florida Research Foundation, Inc. Thermoelectric power generator and combustion apparatus
US11362254B2 (en) 2014-03-11 2022-06-14 University Of Central Florida Research Foundation, Inc. Thermoelectric power generator and combustion apparatus
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module
EP4099411A4 (en) * 2020-01-31 2024-01-10 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion module

Also Published As

Publication number Publication date
JP4595123B2 (en) 2010-12-08
JPWO2005064698A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US20060118160A1 (en) Thermoelectric element and thermoelectric module
JP4797148B2 (en) Conductive paste for thermoelectric conversion material connection
WO2005093864A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6029256B2 (en) Magnesium-silicon composite material, manufacturing method thereof, thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module using the composite material
JP5042245B2 (en) Doped lead telluride for thermoelectric applications
WO2005064698A1 (en) Thermoelectric generator
JP4905877B2 (en) Cogeneration system and operation method thereof
JP2001223393A (en) Composite oxide with high seebeck factor and electric conductivity
WO2021153550A1 (en) Thermoelectric conversion module
EP1492171B1 (en) DOUBLE OXIDE WITH n TYPE THERMOELECTRIC CHARACTERISTICS
Börner et al. Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules
JPWO2010001822A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP3981716B2 (en) Metal oxide polycrystal, thermoelectric material, thermoelectric element and method for producing the same
Al-Yousef et al. Synthesis of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3 (BSCF) nanoceramic cathode powders by sol-gel process for solid oxide fuel cell (SOFC) application
JP4257419B2 (en) Composite oxide having n-type thermoelectric conversion characteristics
JP4221496B2 (en) Composite oxide having n-type thermoelectric properties
WO2008038519A1 (en) Thermoelectric conversion element, thermoelectric conversion module, and method for production of thermoelectric conversion element
JP4595071B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method
CA2979188A1 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
JP2008078334A (en) Thermoelectric device
JP2006351754A (en) Thermoelectric conversion material and thermoelectric converter using the same
WO2016148117A1 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
WO2023105992A1 (en) Thermoelectric generation device and method of using thermoelectric generation device
Shoji et al. Effect of Addition of Titanium Nitride on Thermoelectric Performance of Yttrium-Doped Strontium Titanate
JP3903172B2 (en) Method for producing metal oxide sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516598

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase