WO2023105992A1 - Thermoelectric generation device and method of using thermoelectric generation device - Google Patents

Thermoelectric generation device and method of using thermoelectric generation device Download PDF

Info

Publication number
WO2023105992A1
WO2023105992A1 PCT/JP2022/040670 JP2022040670W WO2023105992A1 WO 2023105992 A1 WO2023105992 A1 WO 2023105992A1 JP 2022040670 W JP2022040670 W JP 2022040670W WO 2023105992 A1 WO2023105992 A1 WO 2023105992A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric conversion
heat collecting
collecting member
conversion module
Prior art date
Application number
PCT/JP2022/040670
Other languages
French (fr)
Japanese (ja)
Inventor
良次 舟橋
友幸 浦田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023105992A1 publication Critical patent/WO2023105992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric generator and a method for using the same.
  • Patent Document 1 discloses an example of a thermoelectric generator.
  • This thermoelectric generator includes an exhaust pipe and a plurality of thermoelectric units that generate electricity using the heat of the exhaust gas flowing through the exhaust pipe.
  • the multiple thermoelectric units have heat exchangers, thermoelectric conversion modules attached to the heat exchangers, and cooling water cases attached to the thermoelectric conversion modules.
  • the heat exchanger has a plurality of heat exchange fins that recover heat from the exhaust gas flowing through the exhaust pipe.
  • the first surface of the thermoelectric conversion module that contacts the heat exchanger is heated by the heat recovered by the heat exchange fins, and the second surface to which the cooling water case is attached is cooled by the cooling water. be done. Since an electromotive force is generated by the Seebeck effect according to the temperature difference between the first surface and the second surface, the thermal energy of the exhaust gas flowing through the exhaust pipe can be converted into electrical energy.
  • thermoelectric generators it is preferable that the conversion rate from thermal energy of exhaust gas to electrical energy can be controlled according to the application. For example, if the heat of the exhaust gas is not utilized as thermal energy, it is preferable that more heat is recovered from the exhaust gas by the heat exchange fins. On the other hand, when using part of the heat of the exhaust gas as thermal energy, it is necessary to control the amount of heat recovered by the heat exchange fins. In the above thermoelectric generator, when controlling the conversion rate from thermal energy to electrical energy, it is necessary to change the shape and dimensions of the heat exchange fins, which is complicated. Such a problem also occurs in a thermoelectric generator that converts thermal energy of a liquid into electrical energy.
  • An object of the present invention is to provide a thermoelectric generator capable of easily controlling the conversion rate of fluid thermal energy to electrical energy, and a method of using the same.
  • thermoelectric power generator is a thermoelectric power generator comprising a pipe through which a fluid flows, and a thermoelectric unit connected to the pipe, wherein the thermoelectric unit includes a plurality of thermoelectric units through which the fluid passes.
  • a heat collecting member having a flow path, and a thermoelectric conversion module attached to a surface of the heat collecting member, the thermoelectric conversion module facing the surface of the heat collecting member and being heated by the fluid. and a second surface opposite the first surface, wherein a temperature difference is generated between the first surface and the second surface.
  • thermoelectric power generator is the thermoelectric power generator according to the first aspect, further comprising a cooling member configured to cool the thermoelectric conversion module from the second surface, the cooling member is connected with the heat collecting member.
  • thermoelectric power generator is the thermoelectric power generator according to the first aspect or the second aspect, wherein the heat collecting member has a prism shape.
  • thermoelectric power generating device is the thermoelectric power generating device according to any one of the first to third aspects, wherein a blockage that closes a part of the plurality of channels Equipped with members.
  • thermoelectric power generator is the thermoelectric power generator according to the fourth aspect, wherein the flow path includes an inlet for the fluid, an outlet for the fluid, and between the inlet and the outlet. and the closure member is configured to block at least one of the inlet, the outlet, and the intermediate section.
  • M is at least one element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are 0 ⁇ x ⁇ 0.1, It is a number that satisfies 2.8 ⁇ y ⁇ 3.2. ), or A a B b NiSn (4) (wherein A is Ti or Zr, and B is A is at least one of Hf and Zr when is Ti, at least one of Hf and Ti when A is Zr, and 0.5 ⁇ a ⁇ 1 and 0 ⁇ b ⁇ 0.5 ) is composed of a half-Heusler alloy that satisfies the composition formula represented by
  • thermoelectric power generating device is the thermoelectric power generating device according to any one of the third to seventh aspects citing the second aspect, wherein the cooling member is a liquid that circulates or stays including.
  • FIG. 1 is a perspective view of a combustion burner 500 including a thermoelectric generator 10 according to this embodiment.
  • the combustion burner 500 includes a combustion section 510 and the thermoelectric generator 10 .
  • the combustion unit 510 has a hollow box shape, and generates a high temperature gas of, for example, 80°C or higher by burning the supplied fuel.
  • the fuel for combustion burner 500 includes gaseous, liquid, or solid fuel.
  • a gaseous fuel is, for example, natural gas.
  • Liquid fuels are, for example, kerosene, diesel or gasoline.
  • Solid fuels are, for example, fossil fuels or biomass fuels.
  • a fossil fuel is, for example, coal.
  • Biomass fuels are rice husks, wheat waste, or waste wood.
  • the thermoelectric generator 10 converts thermal energy of high-temperature gas discharged from the combustion section 510 into electrical energy. Note that the high-temperature gas generated in the combustion section 510 may be simply referred to as a fluid hereinafter.
  • the upstream pipe 20 is arranged most upstream among the elements constituting the thermoelectric generator 10 in the fluid flow direction.
  • the upstream pipe 20 is connected to the combustion section 510 .
  • the shape of the upstream pipe 20 can be arbitrarily selected as long as the shape allows the fluid to flow.
  • the upstream pipe 20 is hollow and cylindrical.
  • thermoelectric unit 40 arranged downstream of the upstream connection part 30 in the fluid flow direction.
  • the downstream connection part 50 is arranged downstream of the thermoelectric unit 40 in the fluid flow direction.
  • the downstream connection part 50 connects the thermoelectric unit 40 and the downstream pipe 60 .
  • the downstream connecting portion 50 has two metal plates 51A, 51B and a flange 52 .
  • Metal plate 51A is welded to downstream pipe 60 .
  • the metal plate 51A is formed with through holes (not shown) through which fluid passes.
  • a through-hole of the metal plate 51A communicates with the end of the downstream pipe 60 .
  • Metal plate 51B is welded to flange 52 .
  • the metal plate 51B is formed with through-holes (not shown) through which fluid passes.
  • the through holes of the metal plate 51B communicate with the through holes of the metal plate 51A.
  • a plurality of bolts 53 connect the metal plate 51A and the metal plate 51B.
  • the flange 52 connects the metal plate 51B and the thermoelectric unit 40.
  • the flange 52 is made of, for example, a metal material.
  • the shape of the flange 52 is, for example, a hollow rectangular parallelepiped.
  • the flange 52 is connected to the rear surface 75 (see FIG. 3) of the heat collecting member 70 by screws.
  • the downstream pipe 60 is arranged furthest downstream among the elements constituting the thermoelectric generator 10 in the fluid flow direction. Downstream piping 60 is connected to, for example, a furnace.
  • the shape of the downstream pipe 60 can be arbitrarily selected as long as the shape allows the fluid to flow.
  • the downstream pipe 60 is hollow and cylindrical.
  • FIG. 2 is a front view of the thermoelectric unit 40.
  • FIG. FIG. 3 is a rear view of the thermoelectric unit 40.
  • FIG. FIG. 4 is a plan view of the thermoelectric unit 40.
  • FIG. FIG. 5 is a bottom view of the thermoelectric unit 40.
  • FIG. 6 is a right side view of the thermoelectric unit 40.
  • FIG. 7 is a left side view of the thermoelectric unit 40.
  • the thermoelectric unit 40 includes a heat collecting member 70 , a closing member 80 and three power generation units 90 .
  • Thermoelectric unit 40 is configured to generate a temperature difference between first surface 90A and second surface 90B of thermoelectric conversion module 100 of power generation unit 90 .
  • the shape of the heat collecting member 70 can be arbitrarily selected as long as it is a shape to which the power generation unit 90 can be attached.
  • the heat collecting member 70 preferably has three or more surfaces to which the power generating units 90 are attached.
  • the heat collecting member 70 is a quadrangular prism.
  • the heat collecting member 70 has a first side surface 71 , a second side surface 72 , a third side surface 73 , a front surface 74 , a rear surface 75 and a bottom surface 76 .
  • Power generation units 90 are attached to the first side surface 71, the second side surface 72, and the third side surface 73, respectively.
  • Front face 74 faces flange 32 of upstream connection 30 .
  • the lengths of the first side surface 71, the second side surface 72, and the third side surface 73 in the flow direction of the fluid can be arbitrarily selected as long as the length is enough to form the flow path 70A that can sufficiently absorb heat from the fluid.
  • the areas of the first side surface 71, the second side surface 72, and the third side surface 73 can be arbitrarily selected as long as they are areas in which the thermoelectric conversion modules 100 capable of obtaining the desired electric power can be attached. In this embodiment, the areas of the first side surface 71, the second side surface 72, and the third side surface 73 are large enough to accommodate four thermoelectric conversion modules 100, respectively.
  • the diameter of inlets 70X and 70Y of channel 70A is 10 mm.
  • the position where the flow path 70A is formed in the heat collecting member 70 can be arbitrarily selected.
  • the vertical distance between the centers of the entrance 70X and the exit 70Y on the front surface 74 and the rear surface 75 is 20 mm, and the diagonal distance is 12.5 mm.
  • thermoelectric generator 10 it is preferable that the conversion rate of the thermal energy of the fluid into electrical energy can be controlled according to the application. For example, when the heat of the fluid is not used as thermal energy, it is preferable that the thermoelectric conversion module 100 recover more heat from the fluid. On the other hand, when using part of the heat of the fluid as thermal energy, it is necessary to control the amount of heat recovered by the thermoelectric conversion module 100 .
  • the thermoelectric generator 10 of the present embodiment is configured such that the conversion rate of the fluid from thermal energy to electrical energy can be easily controlled by closing some of the plurality of flow paths 70A with the closing member 80. There is The closing member 80 is arranged to close an inlet 70X, an outlet 70Y, or an intermediate portion 70Z between the inlet 70X and the outlet 70Y of the channel 70A.
  • FIG. 8 is a schematic diagram showing an example in which a closing member 80 is arranged so as to close an inlet 70X of the flow path 70A.
  • the closure member 80 is a screw.
  • the closing member 80 is inserted into the channel 70A from the inlet 70X of the channel 70A.
  • FIG. 11 is a schematic diagram showing an example in which the closing member 80 is arranged so as to close the intermediate portion 70Z of the flow path 70A.
  • the occlusive member 80 is clay.
  • the blocking member is placed in the intermediate portion 70Z by, for example, being inserted into the channel 70A from the inlet 70X or the outlet 70Y and pushed to the intermediate portion 70Z.
  • the heat collecting member 70 can control the location and flow rate of the fluid flowing through the heat collecting member 70 by closing part of the plurality of flow paths 70A with the blocking member 80 . Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy.
  • the power generation unit 90 includes a thermoelectric conversion module 100 and a cooling member 200 .
  • the power generation unit 90 is configured to generate a temperature difference between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 .
  • the number of power generation units 90 included in the thermoelectric unit 40 can be arbitrarily selected.
  • the thermoelectric unit 40 has a first power generation unit 91 , a second power generation unit 92 and a third power generation unit 93 . That is, in this embodiment, the thermoelectric unit 40 has three power generation units 91 , 92 , 93 .
  • Thermoelectric unit 40 may have one, two, four or more power generation units 90 .
  • the first power generation unit 91 is attached to the first side surface 71 of the heat collecting member 70 .
  • the second power generation unit 92 is attached to the second side surface 72 of the heat collecting member 70 .
  • the third power generation unit 93 is attached to the third side surface 73 of the heat collecting member 70 . Since the configurations of the first power generation unit 91, the second power generation unit 92, and the third power generation unit 93 are the same, hereinafter, they may be simply referred to as the power generation unit 90 when they are not particularly distinguished.
  • FIG. 12 is a front view of the thermoelectric conversion module 100.
  • FIG. FIG. 13 is a plan view of the thermoelectric conversion module 100 viewed from above.
  • 14 is a right side view of the thermoelectric conversion module 100.
  • FIG. 15 is a left side view of the thermoelectric conversion module 100.
  • the substrate 110 preferably has a shape corresponding to the surface shapes of the first side surface 71 , the second side surface 72 , and the third side surface 73 of the heat collecting member 70 .
  • the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 are flat, so the substrate 110 does not require flexibility. Therefore, as a material for forming the substrate 110, an inorganic material such as alumina, zirconia, titania, or silicon nitride having high thermal conductivity and electrical insulation can be used.
  • the material forming the substrate 110 may be a resin film such as polyethylene terephthalate (PET) and polyimide (Kapton).
  • the electrical insulating film can be formed by applying a paint containing insulating resin and pigment, for example.
  • the electrical insulating film can be formed, for example, by forming a thin film by sputtering oxides such as titania, alumina, and zirconia, and by forming a thick film by thermal spraying. Even if the thermoelectric conversion module 100 does not have the substrate 110, in order to efficiently transmit the heat from the heat collecting member 70 to the thermoelectric conversion module 100, electrical insulation between the heat collecting member 70 and the lower surface electrode 120 is provided. It is preferable that the thickness of the electrical insulating film is thin as long as it can be maintained.
  • the lower surface electrode 120 is joined to the first surface 100A of the thermoelectric conversion element 140 via the joint portion 161 .
  • the upper electrode 150 is joined to the second surface 100B of the thermoelectric conversion element 140 via the joint 162 .
  • the material forming the joints 161 and 162 is preferably a material that can be joined with low electric resistance. Materials forming the joints 161 and 162 are, for example, solder and silver solder. However, as will be described later, since the material constituting the thermoelectric conversion element of the present embodiment is an oxide or a half-Heusler alloy, solder and silver brazing have weak bonding strength and may not provide good durability. In addition, the electric resistance (joint resistance) between the lower surface electrode 120 and the upper surface electrode 150 and the thermoelectric conversion element 140 may also increase.
  • the material forming the joints 161 and 162 is preferably a conductive metal paste such as silver, gold, platinum, or copper.
  • the metal paste can obtain good bonding strength with the thermoelectric conversion element of the present embodiment.
  • the thermoelectric conversion element and the lower electrode 120 and the upper electrode 150 can be formed by using a silver paste as a material for forming the joints 161 and 162.
  • the bonding strength with is sufficiently increased.
  • a predetermined amount of a specific additive such as an oxide or silver oxide
  • FIG. 16 is a plan view of the substrate surface of the thermoelectric conversion module 100 with the thermoelectric conversion elements 140, the upper surface electrodes 150, and the joints 162 omitted.
  • FIG. 17 is a plan view of the thermoelectric conversion module 100 with the top electrodes 150 and the joints 162 omitted.
  • the shape of the thermoelectric conversion module 100 can be arbitrarily selected. In order to bring the thermoelectric conversion module 100 into close contact with the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70, the thermoelectric conversion module 100 is preferably plate-shaped as a whole. From the viewpoint of easily manufacturing the thermoelectric conversion module 100, the thermoelectric conversion module 100 preferably has a square or rectangular flat plate shape in plan view.
  • the thermoelectric conversion elements 140 include p-type thermoelectric conversion elements 140P and n-type thermoelectric conversion elements 140N.
  • the p-type thermoelectric conversion elements 140P and the n-type thermoelectric conversion elements 140N are alternately arranged.
  • the p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N are connected in series.
  • One of the two current lead wires 130 is electrically connected to the p-type thermoelectric conversion element 140P.
  • the other of the two current lead wires 130 is electrically connected to the n-type thermoelectric conversion element 140N.
  • the thermoelectric conversion module 100 of this embodiment is composed of 64 pairs of elements. Each element pair is composed of an element pair of two p-type thermoelectric conversion elements 140P and an element pair of two n-type thermoelectric conversion elements 140N.
  • the material forming the thermoelectric conversion element 140 can be arbitrarily selected.
  • the material constituting the thermoelectric conversion element 140 is, for example, the temperature of the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 (hereinafter referred to as "the temperature of the outer peripheral surface of the heat collecting member 70"). ) is preferably determined based on If the temperature of the outer peripheral surface of the heat collecting member 70 is about 200° C. or less, a Bi 2 Te 3 conversion element is used. C. or higher, a thermoelectric conversion element using a metal oxide thermoelectric material can be used.
  • thermoelectric conversion element 140 When the material constituting the thermoelectric conversion element 140 is determined based on the viewpoint of safety such as durability and the absence of toxic elements regardless of the temperature of the outer peripheral surface of the heat collecting member 70, metal oxide or half-Heusler It is preferable to use a thermoelectric conversion element made of an alloy.
  • the material constituting the p-type thermoelectric conversion element 140P of this embodiment is composed of a layered cobalt-based oxide that satisfies the composition formula represented by formula (1) or formula (2).
  • the material constituting the n-type thermoelectric conversion element 140N of the present embodiment is a perovskite-type calcium-manganese-based oxide that satisfies the composition formula represented by formula (3), or a half-Heusler alloy formed by formula (4). Configured.
  • M is at least one element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are 0 ⁇ x ⁇ 0.1, 2.8 ⁇ y A number that satisfies ⁇ 3.2.
  • the composite oxides represented by the composition formulas Ca 3-p Bi p Co 4 O q and Bi 2 Sr 2-r Car Co 2 O t used as the p-type thermoelectric conversion element 140P are respectively (Ca, Bi) 2 CoO
  • the oxide used as the n-type thermoelectric conversion element 140N whose composition formula is represented by CaMn 1-x M x O y has a perovskite structure. 8 Ca are located. Furthermore, Mn or M is the center, and six O are located around it so as to form a face-centered cubic lattice structure.
  • the n-type thermoelectric conversion element 140N exhibits a negative Seebeck coefficient at room temperature or higher and has good electrical conductivity.
  • the half-Heusler alloy which is used as the n-type thermoelectric conversion element 140N and whose composition formula is represented by A a B b NiSn, has a basic structure of a body-centered cubic lattice structure in which A (or B) and Sn are located at the vertices around Ni. , eight body-centered cubic lattices constitute a cube, and four body-centered cubic lattices among them have a structure in which Ni is deficient.
  • Half-Heusler alloys with this composition formula exhibit a negative Seebeck coefficient and good electrical conductivity at temperatures above room temperature.
  • the composite oxides whose compositional formulas are represented by (1), (2) and (3) are manufactured by known methods such as single crystal manufacturing method, powder manufacturing method and thin film manufacturing method.
  • the single crystal manufacturing method includes, for example, a flux method, a zone melt method, a pulling method, and a glass annealing method via a glass precursor.
  • powder manufacturing methods include a solid-phase reaction method and a sol-gel method.
  • thin film manufacturing methods include the sputtering method, the laser ablation method, the chemical vapor deposition method, and the like.
  • the oxides represented by the formulas (1), (2) and (3) are produced by mixing the raw materials so that the elemental component ratio is the same as the metal elemental ratio of the target oxide, and firing the mixture. be done.
  • the sintering temperature and sintering time are not particularly limited as long as they are conditions under which the desired oxide is formed.
  • Alkoxide compounds can be used as the Ca source and the Co source.
  • Alkoxide compounds as Ca sources include calcium oxide (CaO), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), calcium nitrate (Ca(NO 3 ) 2 ), and calcium hydroxide (Ca(OH) 2 ). , dimethoxy calcium (Ca(OCH 3 ) 2 ), diethoxy calcium (Ca(OC 2 H 5 ) 2 ), dipropoxy calcium (Ca(OC 3 H 7 ) 2 ), and the like.
  • Alkoxide compounds as Co sources include cobalt oxide (CoO, Co2O3 , Co3O4 ), cobalt chloride (CoCl2), cobalt carbonate (CoCO3 ) , cobalt nitrate (Co( NO3 ) 2 ), Cobalt hydroxide (Co(OH) 2 ) and dipropoxy cobalt (Co(OC 3 H 7 ) 2 ).
  • Manganese oxides (MnO, MnO 2 , Mn 3 O 4 ), manganese chloride (MnCl 2 ), manganese carbonate (MnCO 3 ), manganese nitrate (Mn(NO 3 ) 2 .6H 2 O) and manganese nitrate (Mn(NO 3 ) 2 .6H 2 O) and and isopropoxy manganese (Mn[OCH( CH3 ) 2 ] 2 ).
  • a carbonate, an organic compound, or the like is used as a raw material, it is preferable to calcine in advance to decompose the raw material before sintering, and then sinter to form the desired oxide.
  • a carbonate when used as a raw material, it may be calcined at about 700 to 900° C. for about 10 hours and then fired under the above conditions.
  • the firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be used.
  • the sintering atmosphere is usually an oxidizing atmosphere.
  • the oxidizing atmosphere includes, for example, an oxygen stream and air. If the source material contains sufficient oxygen, it can be fired in an inert atmosphere such as nitrogen or argon.
  • the amount of oxygen in the oxide to be produced can be controlled by the oxygen partial pressure at the time of firing, the firing temperature, the firing time, and the like. Oxygen ratio can be increased.
  • thermoelectric conversion element 140 In order to produce the desired oxide by the solid-phase reaction method, it is preferable to sinter the raw material powder as a press-molded body in order to allow the solid-phase reaction to proceed efficiently. Then, the obtained sintered body is cut, ground, and polished to be processed and molded into the thermoelectric conversion element 140 to be provided for the thermoelectric conversion module 100 .
  • the dimensions of the thermoelectric conversion element 140 may be determined according to the dimensions of the thermoelectric conversion module 100 and the required amount of power generation, etc. Generally, one side of the cross section is about 0.5 to 10 mm and parallel to the direction in which the temperature difference is generated.
  • a square column with a length of about 0.5 to 50 mm, or a cylinder with a diameter of about 0.5 to 10 mm and a length of about 0.5 to 50 mm may be used.
  • the powder before sintering is pre-molded into a shape and dimensions that will give the desired material after sintering. , may be sintered.
  • Other elements of the oxide thermoelectric conversion elements of the formulas (1), (2) and (3) are similarly elemental simple substances, oxides, chlorides, carbonates, nitrates, hydroxides, and alkoxide compounds. etc. can be used.
  • a compound containing two or more constituent elements of the composite oxide that constitutes the thermoelectric conversion element 140 may be used.
  • the method for producing the alloy having the half-Heusler structure of formula (4) is not particularly limited. are melted at a high temperature, allowed to react, and then cooled.
  • the raw material is not particularly limited as long as it can form an alloy having a half-Heusler structure of formula (4) by firing, and a simple metal or a compound containing two or more constituent elements may be used.
  • the method of melting the raw material there is no particular limitation on the method of melting the raw material, but for example, arc melting or induction heating may be applied to heat the raw material to a temperature above the melting point of the raw material.
  • the atmosphere during melting is preferably an inert gas atmosphere such as helium or argon, or a non-oxidizing atmosphere such as a reduced pressure atmosphere or vacuum.
  • the obtained alloy having a half-Heusler structure can be heat-treated to make the alloy more homogeneous, and the performance as a thermoelectric conversion material can be improved.
  • the heat treatment conditions are not particularly limited, and vary depending on the type and amount of the metal element contained.
  • the molten alloy is pulverized and mixed, and the powder is processed into a plate of any shape such as a disk by pressure molding, and then fired, to promote the solid phase reaction and make the alloy more homogeneous.
  • a sintered body can be obtained in a short time.
  • a sintered body with high sintering density can be obtained by applying uniaxial pressure during heating, such as hot pressing during firing or electrical sintering (so-called SPS sintering), so it has low electrical resistivity and high breaking strength.
  • a high sintered body can be obtained.
  • the atmosphere during the heat treatment it is preferable to use a non-oxidizing atmosphere as in the case of melting in order to avoid oxidation of the alloy having the half-Heusler structure.
  • thermoelectric conversion element 140 The obtained melt-solidified material or sintered body is cut, ground, and polished to form the thermoelectric conversion element 140 to be provided for the thermoelectric conversion module 100 .
  • the size of the thermoelectric conversion element 140 is determined based on the size of the thermoelectric conversion module 100, the power generation amount, and the like.
  • the dimensions of the thermoelectric conversion element 140 are determined based on the dimensions of the thermoelectric conversion module 100, the required power generation amount, and the like.
  • the dimensions of the thermoelectric conversion element 140 are, for example, a quadrangular prism with a cross-sectional side of about 0.5 to 10 mm and a length of about 0.5 to 50 mm, or a diameter of about 0.5 to 10 mm and a length of 0.5 mm to 0.5 mm.
  • the powder before sintering is pressure-molded, and the powder is pre-molded into a shape and dimensions that can obtain an element shape after sintering, and then sintered.
  • the p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N do not need to have the same dimensions, but the lengths are the same from the viewpoint of suitable adhesion to the heat collecting member 70 and the cooling member 200. is preferred.
  • the cross-sectional dimensions are determined based on electrical resistivity and thermal conductivity so as to obtain desired power output, current and voltage values.
  • a specific method for electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is not particularly limited. and preferably have a low electrical resistance.
  • a method of electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is, for example, using a bonding material. to a conductive material (electrode).
  • Another example of a method for electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is to directly or A method of crimping or sintering via a conductive material can be used.
  • Still another example of the method of electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is to connect the p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N using a conductive material. and a method of electrically contacting them.
  • thermoelectric conversion modules 100 included in one power generation unit 90 can be arbitrarily selected. In this embodiment, one power generation unit 90 has four thermoelectric conversion modules 100 . The number of thermoelectric conversion modules 100 included in one power generation unit 90 may be one to three, or five or more.
  • FIG. 18 is a schematic diagram showing an example in which four thermoelectric conversion modules 100 in one power generation unit 90 are connected in series.
  • illustration of the upper surface electrodes 150 and the joints 162 of the four thermoelectric conversion modules is omitted.
  • the current lead wires 130 of adjacent thermoelectric conversion modules 100 alternately connect the p-type thermoelectric conversion elements 140P and the n-type thermoelectric conversion elements 140N.
  • the voltage obtained is the sum of the voltages of the four thermoelectric conversion modules 100 . Therefore, a high voltage and low current output can be obtained.
  • FIG. 19 is a schematic diagram showing an example in which four thermoelectric conversion modules 100 in one power generation unit 90 are connected in parallel.
  • illustration of the upper surface electrodes 150 and the joints 162 of the four thermoelectric conversion modules is omitted.
  • the current lead wires 130 connect the adjacent p-type thermoelectric conversion elements 140P and the adjacent n-type thermoelectric conversion elements 140N.
  • the current obtained is the total sum from the four thermoelectric conversion modules 100, so a high current output can be obtained at a low voltage.
  • Cooling Member> 20 is a plan view of the cooling member 200.
  • FIG. 21 is a side view of cooling member 200.
  • the cooling member 200 cools the thermoelectric conversion module 100 from the second surface 100B.
  • the cooling member 200 is connected with the heat collecting member 70 by any connecting means.
  • the cooling member 200 is structurally connected with the heat collecting member 70 via the connecting means.
  • the thermoelectric generator 10 is large.
  • the cooling member 200 and the heat collecting member 70 are connected via connecting means such as screws.
  • the cooling member 200 includes a water tank 210 and a liquid (not shown) circulating within the water tank 210 .
  • the liquid is, for example, cooling water.
  • a material forming the water tank 210 is, for example, an aluminum alloy.
  • one power generation unit 90 has one cooling member 200 .
  • one cooling member 200 cools four thermoelectric conversion modules 100 .
  • the water tank 210 is formed with a cooling surface 211 , holes 212 , a cooling water inlet 213 and a cooling water outlet 214 .
  • the cooling surface 211 is in direct or indirect contact with the thermoelectric conversion module 100 .
  • a heat conductive sheet (not shown) made of a material having electrical insulation and high thermal conductivity is arranged between the cooling surface 211 and the thermoelectric conversion module 100.
  • the thickness of the heat conductive sheet is, for example, 1.0 mm. Screws are inserted into the holes 212 as connection means for fixing to the heat collecting member 70 .
  • thermoelectric generator Some of the plurality of channels 70A of the heat collecting member 70 are closed by the closing member 80 according to the desired conversion rate from thermal energy to electrical energy.
  • the upstream pipe 20 and the downstream pipe 60 are connected via the upstream connection part 30 and the downstream connection part 50 to the thermoelectric unit 40 in which some of the plurality of flow paths 70A are closed.
  • the high-temperature fluid discharged from the combustion section 510 passes through the upstream pipe 20 and the flange 52 of the upstream connecting section 30 in order, and reaches the inlet 70X of the flow path 70A of the heat collecting member 70 .
  • the fluid reaching the inlet 70X passes through the flow path 70A that is not closed by the closing member 80.
  • the heat collecting member 70 absorbs the heat of the fluid passing through the flow path 70A, and heats the thermoelectric conversion modules 100 of the power generation units 90 attached to the first side surface 71, the second side surface 72, and the third side surface 73. Therefore, the temperature of the first surface 100A of the thermoelectric conversion module 100 rises.
  • thermoelectric conversion module 100 is cooled by the cooling member 200. As shown in FIG. Therefore, a temperature difference is generated between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 . Since an electromotive force is generated by the Seebeck effect in the thermoelectric conversion module 100, thermal energy of the fluid is converted into electrical energy. It should be noted that by attaching a lead wire to the thermoelectric conversion module 100 and connecting an external resistor to the lead wire, current flows, so that the converted electric energy can be taken out.
  • thermoelectric generator 10 of the present embodiment the closing member 80 can partially close the flow paths 70A. Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy without performing complicated work such as replacement of the heat collecting fins.
  • thermoelectric conversion module 100 and the thermoelectric power generation device 10 of the present embodiment are suitable for cryogenic power generation using a low-temperature fluid such as liquefied gas by appropriately selecting the heat collecting member 70 and the thermoelectric conversion element 140 to be used. can also be applied.
  • the cooling member 200 of the present embodiment is selected as a heating member, and the cooling liquid is selected as a heating liquid.
  • thermoelectric generators of Examples 1 to 3 and Comparative Example 1 manufactured the thermoelectric generators of Examples 1 to 3 and Comparative Example 1, and conducted tests to confirm the conversion rate of fluid thermal energy to electrical energy.
  • the same elements as in the first embodiment are given the same reference numerals as in the first embodiment. It is attached and explained.
  • thermoelectric conversion modules 100 of Examples 1 to 3 were manufactured as follows.
  • Each element pair of the thermoelectric conversion module 100 is composed of two p-type thermoelectric conversion elements 140P and two n-type thermoelectric conversion elements 140N. bottom.
  • an alumina plate of 65 ⁇ 65 mm and 0.8 mm thick was used, and as shown in FIG. ), seven lower surface electrodes 120 (silver electrodes) of 15.5 ⁇ 3.5 mm and a thickness of 0.1 mm, and a current lead wire 130 of 7.5 ⁇ 150 mm and a thickness of 0.1 mm (silver current Lead wires) were arranged so that the interval between them was 0.5 mm.
  • a silver paste is applied to the electrode surface of the thermoelectric conversion element 140, and as shown in FIG. arranged to Further, as shown in FIG.
  • thermoelectric conversion element 140 coated with the silver paste for p-type thermoelectric conversion.
  • the conversion elements 140P and the n-type thermoelectric conversion elements 140N were placed so as to be alternately connected in series.
  • the precursor of the thermoelectric conversion module 100 manufactured in this way is placed in a hot press furnace, a pressure of 1.6 MPa is applied perpendicularly to the electrode surface, the temperature is raised to 200° C. in 1 hour, and the temperature is increased to 200° C. for 1 hour. held. After that, the pressure was increased to 3.2 MPa, the temperature was raised to 450° C.
  • thermoelectric conversion module 100 was manufactured by naturally cooling in the furnace. All firings were performed in air. A total of 12 thermoelectric conversion modules 100 were manufactured under the same method and conditions.
  • thermoelectric conversion modules 100 are mounted on the first side 71, the second side 72, and the third side 73 of the heat collecting member 70 made of SS400 steel so that the substrates 110 are in contact with the heat collecting member 70. placed. None is inserted between the substrate 110 and the heat collecting member 70 .
  • An electrically insulating heat transfer film (lambda gel COH-4000LVC) of 65 ⁇ 65 mm and 1 mm in thickness is placed on the electrode surface of each thermoelectric conversion module 100, and the cooling member 200 is stacked thereon. Fixed at 70. High potential ends and low potential ends of four adjacent thermoelectric conversion modules 100 in each power generation unit 90 were alternately connected in series.
  • thermoelectric generators 10 of Examples 1 to 3 differ in the position and number of the flow paths 70A closed by the closing member 80, and are otherwise the same in configuration.
  • Closing member 80 is a screw. A portion of the channel 70A to which the closing member 80 is attached is an inlet 70X. The dimensions of the screw are 11.5 mm for the head, 6 mm for the outer diameter of the thread, and 20 mm for the length of the thread.
  • FIG. 22 is a front view of the thermoelectric generator 10 of Example 1.
  • the channel 70A is not closed by the closing member 80 . That is, in the thermoelectric generator 10 of Example 1, the fluid flows through all the flow paths 70A.
  • FIG. 23 is a front view of the thermoelectric generator 10 of Example 2.
  • FIG. 23 In the thermoelectric generator 10 of Example 2, 27 flow paths 70A near the bottom surface 76 are closed by closing members 80 .
  • thermoelectric generator 10 of Example 3 39 flow paths 70A near the bottom surface 76 and near the first side surface 71 are closed by closing members 80 . 23 and 24, the portion of the inlet 70X of the channel 70A that is blacked out is the channel 70A that is closed by the closing member 80. As shown in FIG.
  • Thermoelectric generator of Comparative Example 1> 25 is a front view of a thermoelectric unit 440 included in the thermoelectric generator of Comparative Example 1.
  • FIG. FIG. 26 is a plan view of the thermoelectric unit 440.
  • the thermoelectric unit 440 has two power generation units 90 and a fin-shaped heat collecting member 470 made of SS400 steel.
  • the thermoelectric unit 440 is formed by attaching the substrates 110 of the same four thermoelectric conversion modules 100 manufactured in Examples 1 to 3 to the heat collecting member 470 . None is inserted between the substrate 110 and the heat collecting member 470 .
  • thermoelectric conversion module 100 An electrically insulating heat transfer film (lambda gel COH-4000LVC) of 65 ⁇ 65 mm and 1 mm thick is placed on the other electrode surface of the thermoelectric conversion module 100, the cooling member 200 is stacked, and is attached to the heat collecting member 470 with five screws.
  • a thermoelectric unit 440 having a fixed heat collecting member 470 was manufactured. High potential ends and low potential ends of four adjacent thermoelectric conversion modules 100 in each power generation unit 90 are alternately connected in series.
  • a flange 480 was attached to the two power generation units 90 and connected to the combustion portion 510 of the combustion burner 500 in the same manner as in Examples 1-3.
  • thermoelectric generators 10 of Examples 1 to 3 and Comparative Example 1 were connected to the combustion section 510 of the combustion burner 500 .
  • the fuel of the combustion burner 500 is kerosene.
  • the temperature of the fluid just before passing through the heat collecting member 70 is about 830.degree. C. to 840.degree.
  • Cooling water having a temperature of about 75° C. to 77° C. just before the inlet 213 of the cooling member 200 was supplied using a water pump.
  • the cooling water flow rate is 6.2 L/min.
  • cooling water was flowed through the first power generation unit 91, the second power generation unit 92, and the third power generation unit 93 in this order.
  • thermoelectric generator 10 of Examples 1 to 3 and Comparative Example 1 cooling water was supplied to the power generation unit 91 and the power generation unit 92 in this order.
  • the temperature of the fluid after passing through the heat collecting member 70, the temperature of the cooling water near the outlet 214, and the power generated by the power generation unit 90 were measured. bottom.
  • the power output was measured for each power generation unit 90 in which four thermoelectric conversion modules 100 were connected in series, and the maximum values were added.
  • the current lead wires 130 at both terminals of the four thermoelectric conversion modules 100 connected in series with the voltage and current terminals of the electronic load device and scanning the load resistance value in the electronic load device the current value and the The voltage value was measured, and the power output was obtained by multiplying the current and voltage.
  • FIG. 27 is a table showing test results.
  • the thermoelectric generator of Comparative Example 1 only two heat-receiving surfaces are formed due to the spatial interference of the fins. It is less than when the heat collecting member 70 of the example is used.
  • the thermoelectric generator 10 of Comparative Example 1 had a lower maximum output than the thermoelectric generators 10 of Examples 1-3. From this, it can be understood that the block-shaped heat collecting member 70 used in the thermoelectric generators 10 of Examples 1 to 3 is effective in increasing the power generation output.
  • thermoelectric generators 10 of Examples 1 to 3 the power generation output, the temperature of the fluid, and the temperature of the cooling water can be freely controlled by changing the locations and the number of the flow paths 70A that are blocked. can be grasped. If the flow path 70A is also formed near the bottom surface 76 of the heat collecting member 70 to which the power generating unit 90 is not attached, heat is released from the bottom surface 76 . By blocking the flow path 70A around the bottom surface 76 with the blocking member 80, the heat flows to the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 to which the power generation unit 90 is attached. distributed. Therefore, in the thermoelectric power generators 10 of Examples 2 and 3, the amount of heat passing through the thermoelectric conversion module 100 is higher than that of the thermoelectric power generator 10 of Example 1, the power generation output is high, and the temperature change of the cooling water is large. Become.
  • thermoelectric power generator 10 of Example 3 the first side surface 71, in other words, the flow path 70A near the first power generation unit 91 is blocked by the blocking member 80, so that the power output from the first power generation unit 91 is The overall power generation output was lower than that of the thermoelectric generators 10 of Examples 1 and 2.
  • the temperature change of the fluid and cooling water was smaller than those of the thermoelectric power generators 10 of Examples 1 and 2 because the amount of heat passing through the power generation unit 90 was reduced.
  • thermoelectric generator 300 of the second embodiment A hot water circulator 600 including the thermoelectric generator 300 of the second embodiment will be described with reference to FIGS. 28 to 30.
  • FIG. 1 A hot water circulator 600 including the thermoelectric generator 300 of the second embodiment will be described with reference to FIGS. 28 to 30.
  • FIG. 28 is a perspective view of the hot water circulation device 600.
  • the hot water circulation device 600 includes a device main body 610 , a pipe 620 and a thermoelectric generator 300 .
  • Device body 610 includes, for example, a heater and a pump.
  • the device main body 610 sends hot water to the thermoelectric generator 300 and heats the cooling water from which heat is taken by the thermoelectric generator 300 .
  • the hot water sent to the thermoelectric generator 300 by the device main body 610 may simply be referred to as fluid.
  • a pipe 620 connects the device main body 610 and the thermoelectric generator 300 .
  • Pipe 620 includes a first pipe 621 and a second pipe 622 .
  • the first pipe 621 connects the device body 61 and the upstream side of the thermoelectric generator 300 .
  • the second pipe 622 connects the device body 610 and the downstream side of the thermoelectric generator 300 .
  • the thermoelectric generator 300 includes an upstream pipe 310 , a thermoelectric unit 320 and a downstream pipe 330 .
  • the upstream pipe 310 connects the first pipe 621 and the thermoelectric unit 320 .
  • the downstream pipe 330 connects the thermoelectric unit 320 and the second pipe 622 .
  • a basic configuration of the thermoelectric unit 320 is similar to that of the thermoelectric unit 40 of the first embodiment.
  • the thermoelectric unit 320 will be described below, focusing on differences from the thermoelectric unit 40 of the first embodiment.
  • FIG. 29 is a side view of the thermoelectric generator 300.
  • FIG. FIG. 30 is a front view of the thermoelectric generator 300 on the upstream side.
  • FIG. 31 is a rear view of the downstream side of the thermoelectric generator 300.
  • illustration of the upstream pipe 310 is omitted, and in FIG. 31, illustration of the downstream pipe 330 is omitted.
  • the thermoelectric unit 320 includes a heat collecting member 340 and three power generation units 350.
  • the three power generation units 350 differ from the power generation unit 90 of the first embodiment in the number of p-type thermoelectric conversion elements 140P and n-type thermoelectric conversion elements 140N, etc., and the configuration of the cooling member 370. is the same as the power generation unit 90 of .
  • the heat collecting member 340 absorbs heat from a fluid of 80° C. or higher, and heats the thermoelectric conversion module 100 of the power generation unit 350 attached to the outer peripheral surface.
  • the heat collecting member 340 has a plurality of flow paths 340A through which fluid passes.
  • a plurality of flow paths 340 ⁇ /b>A pass through the heat collecting member 340 .
  • the heat collecting member 340 is formed with 21 flow paths 340A.
  • the heat collecting member 340 has a first side surface 341 , a second side surface 342 , a third side surface 343 , a front surface 344 , a rear surface 345 and a bottom surface 346 .
  • Power generation units 350 are attached to the first side surface 341, the second side surface 342, and the third side surface 343, respectively.
  • Front face 344 is attached to upstream pipe 310 via, for example, screws.
  • Inlets 340X of a plurality of flow paths 340A are formed on the front face 344.
  • Outlets 340Y of a plurality of flow paths 340A are formed on the back surface 345 .
  • a plurality of flow paths 340A are formed so as to penetrate through a front surface 344 and a rear surface 345 of the heat collecting member 340 .
  • the closing member 80 of the first embodiment can be attached to the inlet 340X, the outlet 340Y of the plurality of flow paths 340A, or an intermediate portion (not shown) between the inlet 340X and the outlet 340Y.
  • the power generation unit 350 includes a thermoelectric conversion module 100 and a cooling member 370 .
  • the power generation unit 350 is configured to generate a temperature difference between the first surface 100A (see FIG. 12) and the second surface 100B (see FIG. 12) of the thermoelectric conversion module 100.
  • FIG. The number of power generation units 350 included in the thermoelectric unit 320 can be arbitrarily selected.
  • the thermoelectric unit 320 has a first power generation unit 351 , a second power generation unit 352 and a third power generation unit 353 . That is, in this embodiment, the thermoelectric unit 320 has three power generation units 351 , 352 and 353 .
  • a thermoelectric unit 320 may have one, two, four or more power generation units 350 .
  • the first power generation unit 351 is attached to the first side surface 341 of the heat collecting member 340 .
  • the second power generation unit 352 is attached to the second side surface 342 of the heat collecting member 340 .
  • the third power generation unit 353 is attached to the third side surface 343 of the heat collecting member 340 . Since the first power generation unit 351, the second power generation unit 352, and the third power generation unit 353 have the same configuration, they may be simply referred to as the power generation unit 350 below when they are not distinguished from each other.
  • the cooling member 370 is a heat pipe that cools by the latent heat of working liquid (not shown).
  • the cooling member 370 has an evaporating portion 371 in which the working liquid evaporates, a condensing portion 372 in which the working liquid condenses, and heat radiation fins 373 attached to the condensing portion 372 .
  • cooling member 370 is arranged such that condensation section 372 is located above evaporation section 371 .
  • thermoelectric generator Some of the plurality of channels 340A of the heat collecting member 340 are closed by the closing member 80 according to the desired conversion rate from thermal energy to electrical energy.
  • the upstream pipe 310 and the downstream pipe 330 are connected to the thermoelectric unit 320 in which some of the plurality of channels 340A are closed.
  • the high-temperature fluid sent from the device main body 610 passes through the first pipe 621 and the upstream pipe 310 in order, and reaches the inlet 340X of the flow path 340A of the heat collecting member 340 .
  • the fluid that reaches inlet 340X passes through channel 340A that is not closed by blocking member 80 .
  • the heat collecting member 340 absorbs the heat of the fluid passing through the flow path 340A, and heats the thermoelectric conversion modules 100 of the power generation units 350 attached to the first side 341, the second side 342, and the third side 343. Therefore, the temperature of the first surface 100A of the thermoelectric conversion module 100 rises.
  • thermoelectric conversion module 100 is cooled by the cooling member 370. As shown in FIG. Therefore, a temperature difference is generated between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 . Since an electromotive force is generated by the Seebeck effect in the thermoelectric conversion module 100, thermal energy of the fluid is converted into electrical energy. It should be noted that since electric current flows by attaching a lead wire to the thermoelectric conversion module 100 and connecting an external resistor to the lead wire, the converted electrical energy can be taken out.
  • thermoelectric generator 300 of the present embodiment the closing member 80 can partially close the flow paths 340A. Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy without performing complicated work such as replacement of the heat collecting fins.
  • thermoelectric generators of Examples 4 to 7 and Comparative Example 2 The inventors (or others) of the present application manufactured the thermoelectric generators of Examples 4 to 7 and Comparative Example 2, and conducted tests to confirm the conversion rate of the fluid from thermal energy to electrical energy.
  • the same elements as in the second embodiment are given the same reference numerals as in the second embodiment. It is attached and explained.
  • thermoelectric conversion modules 100 of Examples 4 to 7 were manufactured as follows.
  • 112 pieces of each thermoelectric conversion element 140N were manufactured.
  • Each element pair of the thermoelectric conversion module 100 is composed of one p-type thermoelectric conversion element 140P and one n-type thermoelectric conversion element 140N.
  • 111 pieces of lower surface electrodes 120 (silver electrodes) of 2.0 ⁇ 4.5 mm and 0.1 mm thickness are placed on a PET film having a length of 60 mm, a width of 20 mm and a thickness of 0.8 mm.
  • two current lead wires 130 (silver current lead wires) with a thickness of 0.1 mm are arranged so that the distance between them is 0.5 mm, and a p-type thermoelectric conversion element 140P and an n-type thermoelectric conversion element are placed thereon. 140N are alternately connected in series.
  • thermoelectric conversion element 140 coated with the silver paste
  • 112 upper surface electrodes 150 (silver electrodes) of 2.0 x 4.5 mm and a thickness of 0.1 mm are provided as p-type thermoelectric conversion elements 140P. and n-type thermoelectric conversion elements 140N were alternately connected in series.
  • the precursor of the thermoelectric conversion module 100 manufactured in this way is placed in a hot press furnace, a pressure of 1.6 MPa is applied perpendicularly to the electrode surface, the temperature is raised to 200° C. in 1 hour, and the temperature is increased to 200° C. for 1 hour. held. After that, the pressure was increased to 3.2 MPa, the temperature was raised to 450° C. in 1 hour, and the temperature was maintained at 450° C.
  • thermoelectric conversion module 100 was manufactured by naturally cooling in the furnace. All firings were performed in air. A total of three thermoelectric conversion modules 100 were manufactured under the same method and conditions.
  • thermoelectric conversion module 100 was arranged on each of the first side surface 341 , the second side surface 342 , and the third side surface 343 of the heat collecting member 340 so that the substrate 110 was in contact with the heat collecting member 340 .
  • An electrically insulating heat transfer film of 60 ⁇ 20 mm and 0.5 mm thick was inserted between the substrate 110 and the heat collecting member 340 .
  • An electrically insulating heat transfer film of 60 ⁇ 20 mm and 0.5 mm thick was placed on the electrode surface of each thermoelectric conversion module 100, and the cooling member 370 was stacked thereon and fixed to the heat collecting member 340 with six screws. .
  • thermoelectric generators 300 of Examples 4 to 7 differ in the position and number of the flow paths 340A closed by the closing member 80, and are otherwise the same in configuration.
  • Closing member 80 is a screw.
  • a portion of the channel 70A to which the closing member 80 is attached is the outlet 340Y.
  • the outlet 340Y is formed with a female thread that meshes with the screw. The threads are M2.5.
  • FIG. 32 is a rear view of the thermoelectric generator 300 of Example 4.
  • the channel 340A is not closed by the closing member 80 . That is, in the thermoelectric generator 300 of Example 4, the fluid flows through all the flow paths 340A. 32 to 36, illustration of the power generation unit 350 is omitted.
  • thermoelectric generator 300 of Example 5 is a rear view of the thermoelectric generator 300 of Example 5.
  • FIG. 34 is a rear view of the thermoelectric generator 300 of Example 6.
  • FIG. 34 nine flow paths 340A near the bottom surface 346 and near the third side surface 343 are closed by closing members 80 .
  • FIG. 35 is a rear view of the thermoelectric generator 300 of Example 7.
  • the eight flow paths 340A near the bottom surface 346 and near the second side surface 342 are closed by the closing member 80 .
  • 33, 34, and 35 the portion of the outlet 340Y of the channel 340A that is blacked out is the channel 340A closed by the closing member 80. As shown in FIG.
  • thermoelectric generator of Comparative Example 2> 36 is a rear view of the thermoelectric generator 300 of Comparative Example 2.
  • thermoelectric generators 300 of Examples 4 to 7 and Comparative Example 2 were connected to the device main body 610 .
  • the temperature of the fluid just before passing through the heat collecting member 340 is approximately 80°C.
  • the flow rate of fluid sent by device body 610 is 4.8 L/min.
  • the thermoelectric generators 300 of Examples 4 to 7 and Comparative Example 2 the temperature of the fluid after passing through the heat collecting member 340 and the power generated by the power generation unit 350 were measured. The power output was measured for each power generation unit 350 and their maximum values were added.
  • thermoelectric conversion module 100 By connecting the current lead wires 130 at both terminals of the thermoelectric conversion module 100 to the voltage and current terminals of the electronic load device and scanning the load resistance value in the electronic load device, the current value and the voltage value are measured, and the current and the voltage to obtain the power output.
  • FIG. 37 is a table showing test results.
  • the thermoelectric power generator 300 of Comparative Example 2 had lower power output than the thermoelectric power generators 300 of Examples 4-6. This is because the amount of heat flowing from the hot water to the thermoelectric conversion module 100 is less than in the case of passing through the flow path 340A. Also, the temperature change of the fluid in the thermoelectric power generator 300 of Comparative Example 2 was smaller than that of the thermoelectric power generators 300 of Examples 4-7. In the thermoelectric generators 300 of Examples 4 to 7, which have the flow path 340A through which the fluid flows, the flow path 340A is closed by the closing member 80, so that the flow of heat to the outer peripheral surface of the heat collecting member 340 around it is blocked. , the power generation amount from the power generation unit 350 and the temperature change of the hot water can be arbitrarily controlled.
  • thermoelectric generator and the thermoelectric generator according to the present invention can take forms different from those illustrated in each embodiment.
  • One example is a form in which a part of the configuration of each embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to each embodiment.
  • thermoelectric power generator 10 is applied to the combustion burner 500
  • thermoelectric power generator 10 can be used to convert the heat contained in exhaust gases from industrial furnaces, incinerators, or automobile exhaust gases into electricity.
  • thermoelectric power generator 300 is applied to the hot water circulation system 600
  • thermoelectric power generator 300 can be used to convert heat contained in hot water discharged from a heat exchanger into electricity.
  • the cooling member 200 is configured to circulate the cooling water in the water tank 210 , but the cooling water may stay in the water tank 210 .
  • a heat pipe can also be used like the cooling member 370 of the second embodiment.
  • FIGS. 38 to 40 are diagrams showing the arrangement state of the cooling member 370 of a modified example when the thermoelectric conversion module 100 is attached to the second side surface 72 of the heat collecting member 70.
  • FIG. FIG. 41 is a diagram showing the arrangement state of the cooling member 370 of a modified example when the thermoelectric conversion module 100 is attached to the bottom surface 76 of the heat collecting member 70 .
  • FIGS. 44 to 46 are diagrams showing the arrangement state of the cooling member 370 of the modified example when the surface of the heat collecting member 70 on which the thermoelectric conversion module 100 is attached is inclined.
  • cooling member 370 is arranged such that condensation portion 372 of cooling member 370 is located above evaporation portion 371 .
  • Thermoelectric generator 20 Upstream piping (piping) 40: thermoelectric unit 60: downstream piping (piping) 70: Heat collecting member 70A: Flow path 70X: Inlet 70Y: Outlet 70Z: Intermediate part 80: Closing member 90: Power generation unit 100: Thermoelectric conversion module 100A: First surface 100B: Second surface 140: Thermoelectric conversion element 140P: p Type thermoelectric conversion element 140N: n-type thermoelectric conversion element 200: cooling member 300: thermoelectric generator 310: upstream pipe 320: thermoelectric unit 330: downstream pipe 340: heat collecting member 340A: flow path 340X: inlet 340Y: outlet 350: power generation Unit 360: Thermoelectric conversion module 370: Cooling member 371: Evaporator 372: Condenser 373: Radiation fin

Abstract

Provided is a thermoelectric generation device comprising piping through which a fluid flows and a thermoelectric unit connected to the piping, the thermoelectric unit comprising a heat collection member having a plurality of flow channels through which the fluid passes, and a thermoelectric conversion module attached to a surface of the heat collection member, the thermoelectric conversion module facing the surface of the heat collection member and including a first surface heated by the fluid, and a second surface on the opposite side from the first surface, and the thermoelectric conversion module being configured so that a temperature difference occurs between the first surface and the second surface.

Description

熱電発電装置、熱電発電装置の使用方法Thermoelectric generator, usage of thermoelectric generator
 本発明は、熱電発電装置、および、その使用方法に関する。 The present invention relates to a thermoelectric generator and a method for using the same.
 特許文献1は、熱電発電装置の一例を開示している。この熱電発電装置は、排気管と、排気管を流れる排気ガスの熱を利用して発電を行う複数の熱電ユニットと、を備える。複数の熱電ユニットは、熱交換器と、熱交換器に取り付けられる熱電変換モジュールと、熱電変換モジュールに取り付けられる冷却水ケースと、を有する。熱交換器は、排気管を流れる排気ガスの熱を回収する複数の熱交換フィンを有する。この熱電発電装置では、熱電変換モジュールのうちの熱交換器と接触する第1面が、熱交換フィンによって回収された熱によって加熱され、冷却水ケースが取り付けられる第2面が、冷却水によって冷却される。第1面と第2面との間に温度差に応じてゼーベック効果による起電力が発生するため、排気管を流れる排気ガスの熱エネルギーを電気エネルギーに変換できる。 Patent Document 1 discloses an example of a thermoelectric generator. This thermoelectric generator includes an exhaust pipe and a plurality of thermoelectric units that generate electricity using the heat of the exhaust gas flowing through the exhaust pipe. The multiple thermoelectric units have heat exchangers, thermoelectric conversion modules attached to the heat exchangers, and cooling water cases attached to the thermoelectric conversion modules. The heat exchanger has a plurality of heat exchange fins that recover heat from the exhaust gas flowing through the exhaust pipe. In this thermoelectric generator, the first surface of the thermoelectric conversion module that contacts the heat exchanger is heated by the heat recovered by the heat exchange fins, and the second surface to which the cooling water case is attached is cooled by the cooling water. be done. Since an electromotive force is generated by the Seebeck effect according to the temperature difference between the first surface and the second surface, the thermal energy of the exhaust gas flowing through the exhaust pipe can be converted into electrical energy.
特開2006-214350号公報Japanese Patent Application Laid-Open No. 2006-214350
 熱電発電装置では、排気ガスの熱エネルギーから電気エネルギーへの変換率を用途に応じて制御できることが好ましい。例えば、排気ガスの熱を熱エネルギーとして利用しない場合、熱交換フィンによって排気ガスからより多くの熱が回収されることが好ましい。一方、排気ガスの熱の一部を熱エネルギーとして利用する場合、熱交換フィンによって回収される熱の量を制御する必要がある。上記熱電発電装置では、熱エネルギーから電気エネルギーへの変換率を制御する場合、熱交換フィンの形状および寸法等を変更する必要があるため、煩雑である。なお、このような課題は、液体の熱エネルギーを電気エネルギーに変換する熱電発電装置においても場合にも同様に生じる。 In thermoelectric generators, it is preferable that the conversion rate from thermal energy of exhaust gas to electrical energy can be controlled according to the application. For example, if the heat of the exhaust gas is not utilized as thermal energy, it is preferable that more heat is recovered from the exhaust gas by the heat exchange fins. On the other hand, when using part of the heat of the exhaust gas as thermal energy, it is necessary to control the amount of heat recovered by the heat exchange fins. In the above thermoelectric generator, when controlling the conversion rate from thermal energy to electrical energy, it is necessary to change the shape and dimensions of the heat exchange fins, which is complicated. Such a problem also occurs in a thermoelectric generator that converts thermal energy of a liquid into electrical energy.
 本発明は、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できる熱電発電装置、および、その使用方法を提供することを目的とする。 An object of the present invention is to provide a thermoelectric generator capable of easily controlling the conversion rate of fluid thermal energy to electrical energy, and a method of using the same.
 本発明の第1観点に係る熱電発電装置は、流体が流れる配管と、前記配管と接続される熱電ユニットと、を備える熱電発電装置であって、前記熱電ユニットは、前記流体が通過する複数の流路を有する集熱部材と、前記集熱部材の表面に取り付けられる熱電変換モジュールと、を備え、前記熱電変換モジュールは、前記集熱部材の前記表面に面し、前記流体によって加熱される第1面と、前記第1面と反対側の第2面と、を含み、前記第1面と前記第2面との間で温度差が発生するように構成される。 A thermoelectric power generator according to a first aspect of the present invention is a thermoelectric power generator comprising a pipe through which a fluid flows, and a thermoelectric unit connected to the pipe, wherein the thermoelectric unit includes a plurality of thermoelectric units through which the fluid passes. A heat collecting member having a flow path, and a thermoelectric conversion module attached to a surface of the heat collecting member, the thermoelectric conversion module facing the surface of the heat collecting member and being heated by the fluid. and a second surface opposite the first surface, wherein a temperature difference is generated between the first surface and the second surface.
 本発明の第2観点に係る熱電発電装置は、第1観点に係る熱電発電装置であって、前記熱電変換モジュールを前記第2面から冷却するように構成される冷却部材を備え、前記冷却部材は、前記集熱部材と接続される。 A thermoelectric power generator according to a second aspect of the present invention is the thermoelectric power generator according to the first aspect, further comprising a cooling member configured to cool the thermoelectric conversion module from the second surface, the cooling member is connected with the heat collecting member.
 本発明の第3観点に係る熱電発電装置は、第1観点または第2観点に係る熱電発電装置であって、前記集熱部材は、角柱状である。 A thermoelectric power generator according to a third aspect of the present invention is the thermoelectric power generator according to the first aspect or the second aspect, wherein the heat collecting member has a prism shape.
 本発明の第4観点に係る熱電発電装置は、第1観点~第3観点のいずれか1つに係る熱電発電装置であって、前記複数の流路のうちの一部の流路を閉じる閉塞部材を備える。 A thermoelectric power generating device according to a fourth aspect of the present invention is the thermoelectric power generating device according to any one of the first to third aspects, wherein a blockage that closes a part of the plurality of channels Equipped with members.
 本発明の第5観点に係る熱電発電装置は、第4観点に係る熱電発電装置であって、前記流路は、前記流体の入口、前記流体の出口、および、前記入口と前記出口との間の中間部を有し、前記閉塞部材は、前記入口、前記出口、および、前記中間部の少なくとも1つを閉塞するように構成される。 A thermoelectric power generator according to a fifth aspect of the present invention is the thermoelectric power generator according to the fourth aspect, wherein the flow path includes an inlet for the fluid, an outlet for the fluid, and between the inlet and the outlet. and the closure member is configured to block at least one of the inlet, the outlet, and the intermediate section.
 本発明の第6観点に係る熱電発電装置は、第1観点から第5観点のいずれか1つに係る熱電発電装置であって、前記熱電変換モジュールは、p型熱電変換素子およびn型熱電変換素子を含み、前記p型熱電変換素子は、Ca3-pBipCo4q・・・(1)(式(1)中、p、qは、0≦p≦1、8.5≦q≦10を満たす数である。)または、 Bi2Sr2-rCarCo2t・・・(2)(式(2)中、r、tは、0.0≦r≦2.0、8.5≦t≦10を満たす数である。)で表される組成式を満たす層状コバルト系酸化物によって構成され、前記n型熱電変換素子は、CaMn1-Xxy・・・(3)式(3)中、Mは、Nb、Ta、Mo、および、Wからなる群から選ばれた少なくとも一種の元素であり、x、yは、0≦x≦0.1、2.8≦y≦3.2を満たす数である。)で表される組成式を満たすペロブスカイト型カルシウムマンガン系酸化物、または、AabNiSn・・・(4)(式(4)中、Aは、TiまたはZrであり、Bは、AがTiであるとき、Hf,Zrの少なくとも1つであり、AがZrであるとき、Hf,Tiの少なくとも1つであり、0.5≦a≦1、0≦b≦0.5である。)で表される組成式を満たすハーフホイスラー合金によって構成される。 A thermoelectric generator according to a sixth aspect of the present invention is the thermoelectric generator according to any one of the first aspect to the fifth aspect, wherein the thermoelectric conversion module includes a p-type thermoelectric conversion element and an n-type thermoelectric conversion element. and the p-type thermoelectric conversion element is Ca 3-p Bi p Co 4 O q (1) (where p and q are 0≦p≦1 and 8.5≦ A number that satisfies q≦10.) or Bi 2 Sr 2-r Car Co 2 O t (2) (in formula (2), r and t are 0.0≦r≦2. 0, a number that satisfies 8.5 ≦t≦10. (3) In formula (3), M is at least one element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are 0≦x≦0.1, It is a number that satisfies 2.8≦y≦3.2. ), or A a B b NiSn (4) (wherein A is Ti or Zr, and B is A is at least one of Hf and Zr when is Ti, at least one of Hf and Ti when A is Zr, and 0.5 ≤ a ≤ 1 and 0 ≤ b ≤ 0.5 ) is composed of a half-Heusler alloy that satisfies the composition formula represented by
 本発明の第7観点に係る熱電発電装置は、第2観点を引用する第3観点~第6観点のいずれか1つに係る熱電発電装置であって、前記冷却部材は、放熱フィンを含む。 A thermoelectric power generator according to a seventh aspect of the present invention is the thermoelectric power generator according to any one of the third to sixth aspects that quote the second aspect, wherein the cooling member includes heat radiation fins.
 本発明の第8観点に係る熱電発電装置は、第2観点を引用する第3観点~第7観点のいずれか1つに係る熱電発電装置であって、前記冷却部材は、循環または滞留する液体を含む。 A thermoelectric power generating device according to an eighth aspect of the present invention is the thermoelectric power generating device according to any one of the third to seventh aspects citing the second aspect, wherein the cooling member is a liquid that circulates or stays including.
 本発明の第9観点に係る熱電発電装置は、第8観点に係る熱電発電装置であって、前記液体は、冷却水である。 A thermoelectric power generator according to a ninth aspect of the present invention is the thermoelectric power generator according to the eighth aspect, wherein the liquid is cooling water.
 本発明の第10観点に係る熱電発電装置は、第2観点を引用する第3観点~第9観点のいずれか1つに係る熱電発電装置であって、前記冷却部材は、作動液体の潜熱によって冷却するヒートパイプを含む。 A thermoelectric power generator according to a tenth aspect of the present invention is the thermoelectric power generator according to any one of the third aspect to the ninth aspect citing the second aspect, wherein the cooling member is cooled by the latent heat of the working liquid. Includes heat pipes for cooling.
 本発明の第11観点に係る熱電発電装置の使用方法は、流体が流れる配管と、前記配管と接続される熱電ユニットと、を備える熱電発電装置の使用方法であって、前記熱電ユニットは、前記流体が通過する複数の流路を有する集熱部材と、前記集熱部材の表面に取り付けられる熱電変換モジュールと、を備え、前記熱電変換モジュールは、前記集熱部材の前記表面に面し、前記流体によって加熱される第1面と、前記第1面と反対側の第2面と、を含み、前記第1面と前記第2面との間で温度差が発生するように構成され、熱エネルギーから電気エネルギーへの所望の変換率に応じて、閉塞部材によって、前記複数の流路のうちの一部の流路を閉じるステップを含む。 A method of using a thermoelectric power generator according to an eleventh aspect of the present invention is a method of using a thermoelectric power generator including a pipe through which a fluid flows, and a thermoelectric unit connected to the pipe, wherein the thermoelectric unit includes the A heat collecting member having a plurality of flow paths through which a fluid passes; and a thermoelectric conversion module attached to a surface of the heat collecting member, wherein the thermoelectric conversion module faces the surface of the heat collecting member and the a first surface heated by a fluid and a second surface opposite the first surface, wherein a temperature difference is generated between the first surface and the second surface; closing a portion of the plurality of flow paths with a closure member according to a desired conversion rate of energy to electrical energy.
 本発明に関する熱電発電装置によれば、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できる。 According to the thermoelectric generator of the present invention, it is possible to easily control the conversion rate of fluid thermal energy to electrical energy.
第1実施形態の熱電発電装置を備える燃焼バーナーの斜視図。1 is a perspective view of a combustion burner equipped with the thermoelectric generator of the first embodiment; FIG. 図1の熱電ユニットの正面図。2 is a front view of the thermoelectric unit of FIG. 1; FIG. 図1の熱電ユニットの背面図。FIG. 2 is a rear view of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの平面図。FIG. 2 is a plan view of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの底面図。2 is a bottom view of the thermoelectric unit of FIG. 1; FIG. 図1の熱電ユニットの左側面図。FIG. 2 is a left side view of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの右側面図。FIG. 2 is a right side view of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの集熱部材に閉塞部材を取り付ける例を示す図。FIG. 2 is a diagram showing an example of attaching a closing member to the heat collecting member of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの集熱部材に閉塞部材を取り付ける別の例を示す図。FIG. 4 is a diagram showing another example of attaching a closing member to the heat collecting member of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの集熱部材に閉塞部材を取り付ける別の例を示す図。FIG. 4 is a diagram showing another example of attaching a closing member to the heat collecting member of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの集熱部材に閉塞部材を取り付ける別の例を示す図。FIG. 4 is a diagram showing another example of attaching a closing member to the heat collecting member of the thermoelectric unit of FIG. 1; 図1の熱電ユニットの熱電変換モジュールの正面図。FIG. 2 is a front view of a thermoelectric conversion module of the thermoelectric unit in FIG. 1; 図12の熱電変換モジュールを上から視た平面図。The top view which looked at the thermoelectric conversion module of FIG. 12 from the top. 図12の熱電変換モジュールの右側面図。FIG. 13 is a right side view of the thermoelectric conversion module of FIG. 12; 図12の熱電変換モジュールの左側面図。FIG. 13 is a left side view of the thermoelectric conversion module of FIG. 12; 図12の熱電変換モジュールのうちの熱電変換素子および上面電極を省略した状態の平面図。FIG. 13 is a plan view of the thermoelectric conversion module in FIG. 12 with the thermoelectric conversion elements and upper electrodes omitted; 図12の熱電変換モジュールのうちの上面電極を省略した状態の平面図。FIG. 13 is a plan view of the thermoelectric conversion module in FIG. 12 with the top electrodes omitted; 図12の熱電変換モジュールを直列接続した状態を示す平面図。The top view which shows the state which connected the thermoelectric conversion module of FIG. 12 in series. 図12の熱電変換モジュールを並列接続した状態を示す平面図。The top view which shows the state which connected the thermoelectric conversion module of FIG. 12 in parallel. 図1の熱電ユニットの冷却部材の平面図。FIG. 2 is a plan view of a cooling member of the thermoelectric unit of FIG. 1; 図20の冷却部材の右側面図。21 is a right side view of the cooling member of FIG. 20; FIG. 実施例1の熱電発電装置が備える熱電ユニットの正面図。FIG. 2 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 1; 実施例2の熱電発電装置が備える熱電ユニットの正面図。FIG. 10 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 2; 実施例3の熱電発電装置が備える熱電ユニットの正面図。FIG. 11 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 3; 比較例1の熱電発電装置が備える熱電ユニットの正面図。4 is a front view of a thermoelectric unit included in the thermoelectric generator of Comparative Example 1. FIG. 図25の熱電ユニットの平面図。FIG. 26 is a plan view of the thermoelectric unit of FIG. 25; 実施例1~3、および、比較例1の熱電発電ユニットの試験結果に関する表。Table relating to the test results of the thermoelectric generator units of Examples 1-3 and Comparative Example 1. 第2実施形態の熱電発電装置を備える温水循環装置の斜視図。The perspective view of the warm water circulation apparatus provided with the thermoelectric generator of 2nd Embodiment. 図28の熱電ユニットの左側面図。Fig. 29 is a left side view of the thermoelectric unit of Fig. 28; 図29の熱電ユニットの正面図。FIG. 30 is a front view of the thermoelectric unit of FIG. 29; 図29の熱電ユニットの背面図。FIG. 30 is a rear view of the thermoelectric unit of FIG. 29; 実施例4の熱電発電装置が備える熱電ユニットの正面図。FIG. 11 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 4; 実施例5の熱電発電装置が備える熱電ユニットの正面図。FIG. 11 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 5; 実施例6の熱電発電装置が備える熱電ユニットの正面図。FIG. 11 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 6; 実施例7の熱電発電装置が備える熱電ユニットの正面図。FIG. 11 is a front view of a thermoelectric unit included in the thermoelectric generator of Example 7; 比較例2の熱電発電装置が備える熱電ユニットの正面図。FIG. 8 is a front view of a thermoelectric unit included in the thermoelectric generator of Comparative Example 2; 実施例4~7、および、比較例2の熱電発電ユニットの試験結果に関する表。Table relating to the test results of the thermoelectric generator units of Examples 4-7 and Comparative Example 2. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided. 第1実施形態の変形例の熱電発電装置が備える冷却部材の配置を示す図。The figure which shows arrangement|positioning of the cooling member with which the thermoelectric generator of the modification of 1st Embodiment is provided.
 以下、図面を参照しつつ、本発明の一実施形態に係る熱電発電装置を備える燃焼バーナーについて説明する。 A combustion burner equipped with a thermoelectric generator according to one embodiment of the present invention will be described below with reference to the drawings.
 <第1実施形態>
 <1.燃焼バーナーの全体構成>
 図1は、本実施形態に係る熱電発電装置10を備える燃焼バーナー500の斜視図である。燃焼バーナー500は、燃焼部510と、熱電発電装置10と、を備える。
<First Embodiment>
<1. Overall configuration of combustion burner>
FIG. 1 is a perspective view of a combustion burner 500 including a thermoelectric generator 10 according to this embodiment. The combustion burner 500 includes a combustion section 510 and the thermoelectric generator 10 .
 燃焼部510は、中空の箱状であり、供給される燃料を燃焼することによって、例えば、80℃以上の高温の気体を発生させる。燃焼バーナー500の燃料は、気体燃料、液体燃料、または、固体燃料を含む。気体燃料は、例えば、天然ガスである。液体燃料は、例えば、灯油、軽油、または、ガソリンである。固体燃料は、例えば、化石燃料またはバイオマス燃料である。化石燃料は、例えば、石炭である。バイオマス燃料は、稲のもみ殻、小麦くず、または、廃木材である。熱電発電装置10は、燃焼部510から排出される高温の気体の熱エネルギーを電気エネルギーに変換する。なお、以下では、燃焼部510で発生した高温の気体を単に流体と称する場合がある。 The combustion unit 510 has a hollow box shape, and generates a high temperature gas of, for example, 80°C or higher by burning the supplied fuel. The fuel for combustion burner 500 includes gaseous, liquid, or solid fuel. A gaseous fuel is, for example, natural gas. Liquid fuels are, for example, kerosene, diesel or gasoline. Solid fuels are, for example, fossil fuels or biomass fuels. A fossil fuel is, for example, coal. Biomass fuels are rice husks, wheat waste, or waste wood. The thermoelectric generator 10 converts thermal energy of high-temperature gas discharged from the combustion section 510 into electrical energy. Note that the high-temperature gas generated in the combustion section 510 may be simply referred to as a fluid hereinafter.
 <2.熱電発電装置の構成>
 熱電発電装置10は、燃焼部510に連結される。熱電発電装置10は、上流配管20と、上流連結部30と、熱電ユニット40と、下流連結部50と、下流配管60とを備える。流体は、上流配管20、上流連結部30、熱電ユニット40、下流連結部50、および、下流配管60の順に流れ、例えば、炉に供給される。
<2. Configuration of Thermoelectric Generator>
The thermoelectric generator 10 is connected to the combustion section 510 . The thermoelectric generator 10 includes an upstream pipe 20 , an upstream connection portion 30 , a thermoelectric unit 40 , a downstream connection portion 50 and a downstream pipe 60 . Fluid flows in the order of upstream pipe 20, upstream connection 30, thermoelectric unit 40, downstream connection 50, and downstream pipe 60, and is supplied to, for example, a furnace.
 上流配管20は、流体の流れ方向において、熱電発電装置10を構成する要素のうち、最も上流に配置される。上流配管20は、燃焼部510に接続される。上流配管20の形状は、流体が流れる形状であれば、任意に選択可能である。本実施形態では、上流配管20は、中空の円柱形である。 The upstream pipe 20 is arranged most upstream among the elements constituting the thermoelectric generator 10 in the fluid flow direction. The upstream pipe 20 is connected to the combustion section 510 . The shape of the upstream pipe 20 can be arbitrarily selected as long as the shape allows the fluid to flow. In this embodiment, the upstream pipe 20 is hollow and cylindrical.
 上流連結部30は、流体の流れ方向において、上流配管20よりも下流に配置される。上流連結部30は、上流配管20と熱電ユニット40とを連結する。上流連結部30は、2枚の金属プレート31A、31B、および、フランジ32を有する。金属プレート31Aは、上流配管20に溶接される。金属プレート31Aは、流体が通過する貫通孔(図示略)が形成される。金属プレート31Aの貫通孔は、上流配管20の端部と連通する。金属プレート31Bは、フランジ32と溶接される。金属プレート31Bは、流体が貫通する貫通孔(図示略)が形成される。金属プレート31Bの貫通孔は、金属プレート31Aの貫通孔と連通する。金属プレート31Aと金属プレート31Bとは、複数のボルト33によって接続される。 The upstream connecting part 30 is arranged downstream of the upstream pipe 20 in the fluid flow direction. The upstream connecting part 30 connects the upstream pipe 20 and the thermoelectric unit 40 . The upstream connecting portion 30 has two metal plates 31A, 31B and a flange 32. As shown in FIG. The metal plate 31A is welded to the upstream pipe 20. As shown in FIG. The metal plate 31A is formed with through holes (not shown) through which fluid passes. A through-hole of the metal plate 31A communicates with the end of the upstream pipe 20 . Metal plate 31B is welded to flange 32 . The metal plate 31B is formed with through-holes (not shown) through which fluid passes. The through holes of the metal plate 31B communicate with the through holes of the metal plate 31A. A plurality of bolts 33 connect the metal plate 31A and the metal plate 31B.
 フランジ32は、金属プレート31Bと熱電ユニット40とを連結する。フランジ32は、例えば、金属材料によって構成される。フランジ32の形状は、例えば、中空の直方体である。フランジ32は、ねじによって、集熱部材70の正面74(図2参照)と接続される。 The flange 32 connects the metal plate 31B and the thermoelectric unit 40. The flange 32 is made of, for example, a metal material. The shape of the flange 32 is, for example, a hollow rectangular parallelepiped. The flange 32 is connected by screws to the front face 74 (see FIG. 2) of the heat collecting member 70 .
 熱電ユニット40は、流体の流れ方向において、上流連結部30よりも下流に配置される熱電ユニット40の詳細な構成については、後述する。 The detailed configuration of the thermoelectric unit 40 arranged downstream of the upstream connection part 30 in the fluid flow direction will be described later.
 下流連結部50は、流体の流れ方向において、熱電ユニット40よりも下流に配置される。下流連結部50は、熱電ユニット40と下流配管60とを連結する。下流連結部50は、2枚の金属プレート51A、51B、および、フランジ52を有する。金属プレート51Aは、下流配管60に溶接される。金属プレート51Aは、流体が通過する貫通孔(図示略)が形成される。金属プレート51Aの貫通孔は、下流配管60の端部と連通する。金属プレート51Bは、フランジ52と溶接される。金属プレート51Bは、流体が貫通する貫通孔(図示略)が形成される。金属プレート51Bの貫通孔は、金属プレート51Aの貫通孔と連通する。金属プレート51Aと金属プレート51Bとは、複数のボルト53によって接続される。 The downstream connection part 50 is arranged downstream of the thermoelectric unit 40 in the fluid flow direction. The downstream connection part 50 connects the thermoelectric unit 40 and the downstream pipe 60 . The downstream connecting portion 50 has two metal plates 51A, 51B and a flange 52 . Metal plate 51A is welded to downstream pipe 60 . The metal plate 51A is formed with through holes (not shown) through which fluid passes. A through-hole of the metal plate 51A communicates with the end of the downstream pipe 60 . Metal plate 51B is welded to flange 52 . The metal plate 51B is formed with through-holes (not shown) through which fluid passes. The through holes of the metal plate 51B communicate with the through holes of the metal plate 51A. A plurality of bolts 53 connect the metal plate 51A and the metal plate 51B.
 フランジ52は、金属プレート51Bと熱電ユニット40とを連結する。フランジ52は、例えば、金属材料によって構成される。フランジ52の形状は、例えば、中空の直方体である。フランジ52は、ねじによって、集熱部材70の背面75(図3参照)と接続される。 The flange 52 connects the metal plate 51B and the thermoelectric unit 40. The flange 52 is made of, for example, a metal material. The shape of the flange 52 is, for example, a hollow rectangular parallelepiped. The flange 52 is connected to the rear surface 75 (see FIG. 3) of the heat collecting member 70 by screws.
 下流配管60は、流体の流れ方向において、熱電発電装置10を構成する要素のうち、最も下流に配置される。下流配管60は、例えば、炉に接続される。下流配管60の形状は、流体が流れる形状であれば、任意に選択可能である。本実施形態では、下流配管60は、中空の円柱形である。 The downstream pipe 60 is arranged furthest downstream among the elements constituting the thermoelectric generator 10 in the fluid flow direction. Downstream piping 60 is connected to, for example, a furnace. The shape of the downstream pipe 60 can be arbitrarily selected as long as the shape allows the fluid to flow. In this embodiment, the downstream pipe 60 is hollow and cylindrical.
 <3.熱電ユニットの構成>
 図2は、熱電ユニット40の正面図である。図3は、熱電ユニット40の背面図である。図4は、熱電ユニット40の平面図である。図5は、熱電ユニット40の底面図である。図6は、熱電ユニット40の右側面図である。図7は、熱電ユニット40の左側面図である。熱電ユニット40は、集熱部材70と、閉塞部材80と、3つの発電ユニット90とを備える。熱電ユニット40は、発電ユニット90の熱電変換モジュール100の第1面90Aと第2面90Bとの間に温度差が発生するように構成される。
<3. Configuration of Thermoelectric Unit>
FIG. 2 is a front view of the thermoelectric unit 40. FIG. FIG. 3 is a rear view of the thermoelectric unit 40. FIG. FIG. 4 is a plan view of the thermoelectric unit 40. FIG. FIG. 5 is a bottom view of the thermoelectric unit 40. FIG. 6 is a right side view of the thermoelectric unit 40. FIG. 7 is a left side view of the thermoelectric unit 40. FIG. The thermoelectric unit 40 includes a heat collecting member 70 , a closing member 80 and three power generation units 90 . Thermoelectric unit 40 is configured to generate a temperature difference between first surface 90A and second surface 90B of thermoelectric conversion module 100 of power generation unit 90 .
 <4.集熱部材の構成>
 集熱部材70は、例えば、80℃以上の流体から熱を吸収し、外周面に取り付けられる発電ユニット90の熱電変換モジュール100を加熱する。集熱部材70は、流体が通過する複数の流路70Aを有する。複数の流路70Aは、集熱部材70を貫通する。
<4. Configuration of Heat Collecting Member>
The heat collecting member 70, for example, absorbs heat from a fluid of 80° C. or higher, and heats the thermoelectric conversion module 100 of the power generation unit 90 attached to the outer peripheral surface. The heat collecting member 70 has a plurality of flow paths 70A through which fluid passes. A plurality of flow paths 70</b>A pass through the heat collecting member 70 .
 集熱部材70を構成する材料は、流体の温度でも熔解や変形が無く、流体に含まれる成分と反応、(例えば酸素と反応して酸化)することによって、熱吸収および熱電変換モジュール100への熱伝達を大きく損なわない材料が好ましい。集熱部材70を構成する材料は、流体から吸収した熱を熱電変換モジュール100に輸送しやすくするために熱伝導度の高い材料であることが好ましい。このような観点から、集熱部材70を構成する材料は、例えば、銅、アルミニウム、鉄、それらを含む合金、ステンレス等の金属、アルミナ、ジルコニア、窒化ケイ素等のセラミックスであることが好ましい。複数の流路70Aを形成するため、加工性の観点から、集熱部材70を構成する材料は、セラミックスよりも加工性の高い金属が好ましい。 The material constituting the heat collecting member 70 does not melt or deform even at the temperature of the fluid, and reacts with components contained in the fluid (for example, reacts with oxygen and oxidizes), thereby absorbing heat and transferring the heat to the thermoelectric conversion module 100. Materials that do not significantly impair heat transfer are preferred. The material forming the heat collecting member 70 is preferably a material with high thermal conductivity in order to easily transport the heat absorbed from the fluid to the thermoelectric conversion module 100 . From this point of view, it is preferable that the material forming the heat collecting member 70 is, for example, copper, aluminum, iron, an alloy containing them, a metal such as stainless steel, or a ceramic such as alumina, zirconia, or silicon nitride. In order to form a plurality of flow paths 70A, the material forming the heat collecting member 70 is preferably metal, which is more workable than ceramics, from the viewpoint of workability.
 集熱部材70の形状は、発電ユニット90を取り付けることができる形状であれば任意に選択可能である。集熱部材70は、好ましくは、発電ユニット90を取り付ける面を3面以上備えることが好ましい。本実施形態では、集熱部材70は、四角柱である。集熱部材70は、第1側面71、第2側面72、第3側面73、正面74、背面75、および、底面76を有する。第1側面71、第2側面72、および、第3側面73には、それぞれ、発電ユニット90が取り付けられる。正面74は、上流連結部30のフランジ32と面する。正面74には、フランジ32と連結するためのねじが挿入される孔74A、および、複数の流路70Aの入口70Xが形成される。背面75は、下流連結部50のフランジ52と面する。背面75には、フランジ52と連結するためのねじが挿入される孔75A、および、複数の流路70Aの出口70Yが形成される。複数の流路70Aは、集熱部材70の正面74と背面75とを貫通するように形成される。正面74の面積は、フランジ32によって全ての流路70Aの入口70Xを密閉できる大きさであれば、上流配管20の開口の面積よりも大きくてもよく、小さくてもよい。背面75の面積は、フランジ52によって全ての流路70Aの出口70Yを密閉できる大きさであれば、下流配管60の開口の面積よりも大きくてもよく、小さくてもよい。 The shape of the heat collecting member 70 can be arbitrarily selected as long as it is a shape to which the power generation unit 90 can be attached. The heat collecting member 70 preferably has three or more surfaces to which the power generating units 90 are attached. In this embodiment, the heat collecting member 70 is a quadrangular prism. The heat collecting member 70 has a first side surface 71 , a second side surface 72 , a third side surface 73 , a front surface 74 , a rear surface 75 and a bottom surface 76 . Power generation units 90 are attached to the first side surface 71, the second side surface 72, and the third side surface 73, respectively. Front face 74 faces flange 32 of upstream connection 30 . The front face 74 is formed with holes 74A into which screws for coupling with the flange 32 are inserted, and inlets 70X of the plurality of flow paths 70A. Back surface 75 faces flange 52 of downstream connection 50 . The rear surface 75 is formed with holes 75A into which screws for connecting with the flange 52 are inserted, and outlets 70Y of the plurality of channels 70A. A plurality of flow paths 70</b>A are formed so as to penetrate through a front surface 74 and a rear surface 75 of the heat collecting member 70 . The area of the front surface 74 may be larger or smaller than the area of the opening of the upstream pipe 20 as long as the flange 32 can seal the inlets 70X of all the flow paths 70A. The area of the back surface 75 may be larger or smaller than the area of the opening of the downstream pipe 60 as long as the flange 52 can seal the outlets 70Y of all the flow paths 70A.
 流体の流れ方向における第1側面71、第2側面72、および、第3側面73の長さは、流体から熱吸収を十分できる程度の流路70Aを形成できる長さであれば任意に選択可能である。第1側面71、第2側面72、および、第3側面73の面積は、所望の電力を得られるだけの熱電変換モジュール100を取り付けることのできる面積であれば任意に選択可能である。本実施形態では、第1側面71、第2側面72、第3側面73の面積は、それぞれ、4つの熱電変換モジュール100を取り付けることができる大きさである。 The lengths of the first side surface 71, the second side surface 72, and the third side surface 73 in the flow direction of the fluid can be arbitrarily selected as long as the length is enough to form the flow path 70A that can sufficiently absorb heat from the fluid. is. The areas of the first side surface 71, the second side surface 72, and the third side surface 73 can be arbitrarily selected as long as they are areas in which the thermoelectric conversion modules 100 capable of obtaining the desired electric power can be attached. In this embodiment, the areas of the first side surface 71, the second side surface 72, and the third side surface 73 are large enough to accommodate four thermoelectric conversion modules 100, respectively.
 正面視における複数の流路70Aの流体の流れ方向と直交する断面形状(以下では、「流路70Aの断面形状」という。)は、任意に選択可能である。流路70Aの断面形状は、例えば、円、楕円、三角形、または、四角形以上の多角形である。流路70Aを容易に加工する観点から、流路70Aの断面形状は、円または楕円であることが好ましい。本実施形態では、流路70Aの断面形状は、円である。流路70Aの入口70Xおよび出口70Yの大きさは、任意に選択可能である。本実施形態では、流路70Aの入口70Xおよび70Yの直径は、10mmである。集熱部材70において、流路70Aが形成される位置は、任意に選択可能である。本実施形態では、正面74および背面75において、入口70Xおよび出口70Yの中心間の上下方向の距離は、20mmであり、斜め方向の距離は、12.5mmである。 The cross-sectional shape (hereinafter referred to as "cross-sectional shape of the flow paths 70A") perpendicular to the fluid flow direction of the plurality of flow paths 70A in front view can be arbitrarily selected. The cross-sectional shape of the flow path 70A is, for example, a circle, an ellipse, a triangle, or a polygon with a quadrangle or more. From the viewpoint of facilitating processing of the channel 70A, the cross-sectional shape of the channel 70A is preferably circular or elliptical. In this embodiment, the cross-sectional shape of 70 A of flow paths is a circle. The size of the inlet 70X and the outlet 70Y of the channel 70A can be arbitrarily selected. In this embodiment, the diameter of inlets 70X and 70Y of channel 70A is 10 mm. The position where the flow path 70A is formed in the heat collecting member 70 can be arbitrarily selected. In this embodiment, the vertical distance between the centers of the entrance 70X and the exit 70Y on the front surface 74 and the rear surface 75 is 20 mm, and the diagonal distance is 12.5 mm.
 集熱部材70に形成される流路70Aの数、および、流路70Aの長さは、流体と接触する熱伝達面積、熱電変換モジュール100を十分に加熱しうるだけの蓄熱が可能であり、集熱部材70の形状を維持する強度を満たす構造を有すれば特に限定されない。本実施形態では、集熱部材70には、91個の流路70Aが形成される。 The number of channels 70A formed in the heat collecting member 70 and the length of the channels 70A are such that the heat transfer area in contact with the fluid and the heat storage that can sufficiently heat the thermoelectric conversion module 100 are possible. There is no particular limitation as long as it has a structure that satisfies the strength for maintaining the shape of the heat collecting member 70 . In this embodiment, the heat collecting member 70 is formed with 91 flow paths 70A.
 熱電発電装置10では、流体の熱エネルギーから電気エネルギーへの変換率を用途に応じて制御できることが好ましい。例えば、流体の熱を熱エネルギーとして利用しない場合、熱電変換モジュール100によって流体からより多くの熱が回収されることが好ましい。一方、流体の熱の一部を熱エネルギーとして利用する場合、熱電変換モジュール100によって回収される熱の量を制御する必要がある。本実施形態の熱電発電装置10は、複数の流路70Aのうちの一部を閉塞部材80によって閉じることによって、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できるように構成されている。閉塞部材80は、流路70Aのうちの入口70X、出口70Y、または、入口70Xと出口70Yとの間の中間部70Zを閉じるように配置される。 In the thermoelectric generator 10, it is preferable that the conversion rate of the thermal energy of the fluid into electrical energy can be controlled according to the application. For example, when the heat of the fluid is not used as thermal energy, it is preferable that the thermoelectric conversion module 100 recover more heat from the fluid. On the other hand, when using part of the heat of the fluid as thermal energy, it is necessary to control the amount of heat recovered by the thermoelectric conversion module 100 . The thermoelectric generator 10 of the present embodiment is configured such that the conversion rate of the fluid from thermal energy to electrical energy can be easily controlled by closing some of the plurality of flow paths 70A with the closing member 80. there is The closing member 80 is arranged to close an inlet 70X, an outlet 70Y, or an intermediate portion 70Z between the inlet 70X and the outlet 70Y of the channel 70A.
 <5.閉塞部材の構成>
 図8は、流路70Aのうちの入口70Xを閉じるように閉塞部材80が配置される例を示す模式図である。図8に示される例では、閉塞部材80は、ねじである。閉塞部材80は、流路70Aの入口70Xから流路70A内に挿入される。
<5. Configuration of Closing Member>
FIG. 8 is a schematic diagram showing an example in which a closing member 80 is arranged so as to close an inlet 70X of the flow path 70A. In the example shown in Figure 8, the closure member 80 is a screw. The closing member 80 is inserted into the channel 70A from the inlet 70X of the channel 70A.
 図9は、流路70Aのうちの出口70Yを閉じるように閉塞部材80が配置される例を示す模式図である。図9に示される例では、閉塞部材80は、ねじである。出口70Yに閉塞部材80が配置される場合、出口70Yから閉塞部材80が外れないように流路70Aのうちの出口70Yの近傍に閉塞部材80と噛み合う雌ねじ70YAが形成されることが好ましい。 FIG. 9 is a schematic diagram showing an example in which the closing member 80 is arranged so as to close the outlet 70Y of the channel 70A. In the example shown in Figure 9, the closure member 80 is a screw. When the closing member 80 is arranged at the outlet 70Y, it is preferable that a female thread 70YA that meshes with the closing member 80 is formed near the outlet 70Y of the channel 70A so that the closing member 80 does not come off from the outlet 70Y.
 図10は、流路70Aのうちの入口70Xを閉じるように閉塞部材80が配置される例を示す模式図である。図10に示される例では、閉塞部材80は、金属箔である。閉塞部材80は、流路70Aの入口70Xを閉じるように集熱部材70の正面74に接着される。 FIG. 10 is a schematic diagram showing an example in which the closing member 80 is arranged so as to close the inlet 70X of the channel 70A. In the example shown in Figure 10, the closure member 80 is a metal foil. A closing member 80 is adhered to the front face 74 of the heat collecting member 70 so as to close the inlet 70X of the flow path 70A.
 図11は、流路70Aのうちの中間部70Zを閉じるように閉塞部材80が配置される例を示す模式図である。図11に示される例では、閉塞部材80は、粘土である。閉塞部材は、例えば、入口70Xまたは出口70Yから流路70A内に挿入され、中間部70Zまで押し込まれることによって、中間部70Zに配置される。 FIG. 11 is a schematic diagram showing an example in which the closing member 80 is arranged so as to close the intermediate portion 70Z of the flow path 70A. In the example shown in Figure 11, the occlusive member 80 is clay. The blocking member is placed in the intermediate portion 70Z by, for example, being inserted into the channel 70A from the inlet 70X or the outlet 70Y and pushed to the intermediate portion 70Z.
 集熱部材70は、複数の流路70Aのうちの一部を閉塞部材80によって閉じることによって、集熱部材70を流れる流体の場所、および、流量を制御できる。このため、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できる。 The heat collecting member 70 can control the location and flow rate of the fluid flowing through the heat collecting member 70 by closing part of the plurality of flow paths 70A with the blocking member 80 . Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy.
 <6.発電ユニットの構成>
 発電ユニット90は、熱電変換モジュール100と、冷却部材200とを備える。発電ユニット90は、熱電変換モジュール100の第1面100Aと第2面100Bとの間に温度差が発生するように構成される。熱電ユニット40が有する発電ユニット90の数は、任意に選択可能である。本実施形態では、熱電ユニット40は、第1発電ユニット91、第2発電ユニット92、および、第3発電ユニット93を有する。すなわち、本実施形態では、熱電ユニット40は、3つの発電ユニット91、92、93を有する。熱電ユニット40は、1つ、2つ、または、4つ以上の発電ユニット90を有していてもよい。第1発電ユニット91は、集熱部材70の第1側面71に取り付けられる。第2発電ユニット92は、集熱部材70の第2側面72に取り付けられる。第3発電ユニット93は、集熱部材70の第3側面73に取り付けられる。なお、第1発電ユニット91、第2発電ユニット92、および、第3発電ユニット93の構成は、同じであるため、以下では、これらを特に区別しない場合、単に発電ユニット90と称する場合がある。
<6. Configuration of power generation unit>
The power generation unit 90 includes a thermoelectric conversion module 100 and a cooling member 200 . The power generation unit 90 is configured to generate a temperature difference between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 . The number of power generation units 90 included in the thermoelectric unit 40 can be arbitrarily selected. In this embodiment, the thermoelectric unit 40 has a first power generation unit 91 , a second power generation unit 92 and a third power generation unit 93 . That is, in this embodiment, the thermoelectric unit 40 has three power generation units 91 , 92 , 93 . Thermoelectric unit 40 may have one, two, four or more power generation units 90 . The first power generation unit 91 is attached to the first side surface 71 of the heat collecting member 70 . The second power generation unit 92 is attached to the second side surface 72 of the heat collecting member 70 . The third power generation unit 93 is attached to the third side surface 73 of the heat collecting member 70 . Since the configurations of the first power generation unit 91, the second power generation unit 92, and the third power generation unit 93 are the same, hereinafter, they may be simply referred to as the power generation unit 90 when they are not particularly distinguished.
 <7.熱電変換モジュールの構成>
 図12は、熱電変換モジュール100の正面図である。図13は、熱電変換モジュール100を上から視た平面図である。図14は、熱電変換モジュール100の右側面図である。図15は、熱電変換モジュール100の左側面図である。
<7. Configuration of thermoelectric conversion module>
FIG. 12 is a front view of the thermoelectric conversion module 100. FIG. FIG. 13 is a plan view of the thermoelectric conversion module 100 viewed from above. 14 is a right side view of the thermoelectric conversion module 100. FIG. 15 is a left side view of the thermoelectric conversion module 100. FIG.
 熱電変換モジュール100は、流体の熱エネルギーを電気エネルギーに変換する。熱電変換モジュール100は、基板110、下面電極120、電流リード線130、熱電変換素子140、および、上面電極150を有する。 The thermoelectric conversion module 100 converts thermal energy of fluid into electrical energy. The thermoelectric conversion module 100 has a substrate 110 , lower electrodes 120 , current lead wires 130 , thermoelectric conversion elements 140 and upper electrodes 150 .
 基板110は、例えば、集熱部材70が金属によって構成される場合に、下面電極120と集熱部材70とを絶縁するために配置される。基板110は、熱電変換モジュール100の形状を安定させる機能も有する。基板110は、表面110Aおよび裏面110Bを有する。表面110Aは、集熱部材70の第1側面71、第2側面72、および、第3側面73と接触する。裏面110Bは、下面電極120が配置される。基板110を構成する材料、および、寸法等は任意に選択可能である。基板110は、集熱部材70との熱伝達を高めるように、集熱部材70の表面に密着して取り付けることが好ましい。このため、基板110は、集熱部材70の第1側面71、第2側面72、および、第3側面73の表面形状に対応した形状であることが好ましい。例えば、本実施形態では、集熱部材70の第1側面71、第2側面72、および、第3側面73は、平面であるため、基板110は屈曲性を必要としない。このため、基板110を構成する材料は、熱伝導性が高く、かつ、電気絶縁性を有するアルミナ、ジルコニア、チタニア、または、窒化ケイ素等無機材料を用いることができる。基板110を構成する材料は、ポリエチレンテレフタレート(PET)、および、ポリイミド(カプトン)などの樹脂フィルムであってもよい。基板110の厚さは、熱伝達を好適にする観点から薄い方が好ましい。基板110は、例えば、1mm以下、好ましくは0.8mm以下、より好ましくは0.1mm以下である。集熱部材70の第1側面71、第2側面72、および、第3側面73に接触する表面110Aは、平滑度が高い方が好ましいが、高い熱伝達性を維持するために、表面110Aに伝熱性グリースを塗布し、平滑度を高めてもよい。 The substrate 110 is arranged to insulate the lower surface electrode 120 and the heat collecting member 70, for example, when the heat collecting member 70 is made of metal. The substrate 110 also has a function of stabilizing the shape of the thermoelectric conversion module 100 . Substrate 110 has a front surface 110A and a back surface 110B. 110 A of surfaces contact the 1st side 71, the 2nd side 72, and the 3rd side 73 of the heat collection member 70. As shown in FIG. A lower surface electrode 120 is arranged on the back surface 110B. The material, dimensions, and the like constituting the substrate 110 can be arbitrarily selected. The substrate 110 is preferably attached in close contact with the surface of the heat collecting member 70 so as to enhance heat transfer with the heat collecting member 70 . Therefore, the substrate 110 preferably has a shape corresponding to the surface shapes of the first side surface 71 , the second side surface 72 , and the third side surface 73 of the heat collecting member 70 . For example, in the present embodiment, the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 are flat, so the substrate 110 does not require flexibility. Therefore, as a material for forming the substrate 110, an inorganic material such as alumina, zirconia, titania, or silicon nitride having high thermal conductivity and electrical insulation can be used. The material forming the substrate 110 may be a resin film such as polyethylene terephthalate (PET) and polyimide (Kapton). The thickness of the substrate 110 is preferably thin from the viewpoint of favorable heat transfer. The substrate 110 is, for example, 1 mm or less, preferably 0.8 mm or less, more preferably 0.1 mm or less. The surface 110A in contact with the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 preferably has a high degree of smoothness. Heat conductive grease may be applied to increase smoothness.
 集熱部材70の表面に電気絶縁膜を形成する場合、基板110は不要である。電気絶縁膜は、例えば、絶縁性の樹脂および顔料を含む塗料を塗布することによって形成できる。電気絶縁膜は、例えば、チタニア、アルミナ、および、ジルコニア等酸化物のスパッタリング等によって薄膜を形成すること、ならびに、溶射によって厚膜を形成することによって形成できる。熱電変換モジュール100が基板110を有さない場合であっても、集熱部材70からの熱を熱電変換モジュール100に効率よく伝達するため、集熱部材70と下面電極120と間の電気絶縁を維持できる範囲において、電気絶縁膜の厚さは薄い方が好ましい。 When forming an electrical insulating film on the surface of the heat collecting member 70, the substrate 110 is unnecessary. The electrical insulating film can be formed by applying a paint containing insulating resin and pigment, for example. The electrical insulating film can be formed, for example, by forming a thin film by sputtering oxides such as titania, alumina, and zirconia, and by forming a thick film by thermal spraying. Even if the thermoelectric conversion module 100 does not have the substrate 110, in order to efficiently transmit the heat from the heat collecting member 70 to the thermoelectric conversion module 100, electrical insulation between the heat collecting member 70 and the lower surface electrode 120 is provided. It is preferable that the thickness of the electrical insulating film is thin as long as it can be maintained.
 下面電極120および上面電極150は、熱電変換素子140のp型熱電変換素子140Pとn型熱電変換素子140Nとを電気的に接続する。下面電極120および上面電極150を構成する材料は、導電性を有する材料であれば、任意に選択可能である。熱伝導度の高さ、電気伝導度の高さ、および、加工のしやすさの観点から、下面電極120および上面電極150を構成する材料は、屈曲性があり、割れにくい材料であるシート状金属であることが好ましい。シート状金属は、例えば、銅、銀、金、または、白金である。価格の安さ、熱伝導度の高さ、および、電気伝導性の高さの観点から、シート状金属は、銅または銀が好ましく、さらに耐久性の高さの観点から、銀が最も好ましい。下面電極120および上面電極150の長さ、幅、ならびに、厚さ等の寸法は、熱電変換素子140の大きさ、電気抵抗率、および、熱伝導度等に応じて決められる。熱電変換素子140の高温部に集熱部材70からの熱を効率よく伝え、さらに、低温部から熱を効率よく放散するためには、熱伝導が高いことが必要である。このため、下面電極120および上面電極150の厚さは、できるだけ薄いことが好ましい。下面電極120および上面電極150の厚さは、例えば、0.01~3mmである。 The lower surface electrode 120 and the upper surface electrode 150 electrically connect the p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N of the thermoelectric conversion element 140. The material forming the lower electrode 120 and the upper electrode 150 can be arbitrarily selected as long as it is a conductive material. From the viewpoints of high thermal conductivity, high electrical conductivity, and ease of processing, the material forming the lower surface electrode 120 and the upper surface electrode 150 is a sheet-like material that is flexible and hard to break. Metal is preferred. Sheet metals are, for example, copper, silver, gold or platinum. The sheet metal is preferably copper or silver from the viewpoint of low cost, high thermal conductivity, and high electrical conductivity, and most preferably silver from the viewpoint of high durability. Dimensions such as the length, width, and thickness of the lower electrode 120 and the upper electrode 150 are determined according to the size, electrical resistivity, thermal conductivity, and the like of the thermoelectric conversion element 140 . In order to efficiently transfer the heat from the heat collecting member 70 to the high temperature portion of the thermoelectric conversion element 140 and to efficiently dissipate the heat from the low temperature portion, high heat conductivity is required. Therefore, it is preferable that the thicknesses of the lower electrode 120 and the upper electrode 150 are as thin as possible. The thickness of the lower electrode 120 and the upper electrode 150 is, for example, 0.01 to 3 mm.
 下面電極120は、接合部161を介して熱電変換素子140の第1面100Aと接合される。上面電極150は、接合部162を介して熱電変換素子140の第2面100Bと接合される。接合部161、162を構成する材料は、低い電気抵抗で接合できる材料であることが好ましい。接合部161、162を構成する材料は、例えば、はんだおよび銀ろうである。ただし、後述するように、本実施形態の熱電変換素子を構成する材料は、酸化物またはハーフホイスラー合金であるため、はんだおよび銀ろうは、接合力が弱く、良好な耐久性が得られないおそれがあり、さらには、下面電極120および上面電極150と熱電変換素子140との間の電気抵抗(接合抵抗)も高くなるおそれがある。このため、接合部161、162を構成する材料は、例えば、銀、金、白金、または、銅等の導電性金属ペーストが好ましい。金属ペーストは、本実施形態の熱電変換素子と良好な接合強度が得られる。例えば、下面電極120および上面電極150を構成する材料として、銀シートを用いた場合、接合部161、162を構成する材料として銀ペーストを用いることによって、熱電変換素子と下面電極120および上面電極150との接合強度が十分に高められる。また、接合部161、162を構成する材料の銀ペーストに酸化物または酸化銀等の特定の添加物を所定量加えることによって、熱電変換モジュール100の耐久性および接合抵抗が良好となる。 The lower surface electrode 120 is joined to the first surface 100A of the thermoelectric conversion element 140 via the joint portion 161 . The upper electrode 150 is joined to the second surface 100B of the thermoelectric conversion element 140 via the joint 162 . The material forming the joints 161 and 162 is preferably a material that can be joined with low electric resistance. Materials forming the joints 161 and 162 are, for example, solder and silver solder. However, as will be described later, since the material constituting the thermoelectric conversion element of the present embodiment is an oxide or a half-Heusler alloy, solder and silver brazing have weak bonding strength and may not provide good durability. In addition, the electric resistance (joint resistance) between the lower surface electrode 120 and the upper surface electrode 150 and the thermoelectric conversion element 140 may also increase. Therefore, the material forming the joints 161 and 162 is preferably a conductive metal paste such as silver, gold, platinum, or copper. The metal paste can obtain good bonding strength with the thermoelectric conversion element of the present embodiment. For example, when a silver sheet is used as a material for forming the lower electrode 120 and the upper electrode 150, the thermoelectric conversion element and the lower electrode 120 and the upper electrode 150 can be formed by using a silver paste as a material for forming the joints 161 and 162. The bonding strength with is sufficiently increased. Further, by adding a predetermined amount of a specific additive such as an oxide or silver oxide to the silver paste of the material forming the joints 161 and 162, the durability and joint resistance of the thermoelectric conversion module 100 are improved.
 図16は、熱電変換モジュール100のうちの熱電変換素子140、上面電極150、および、接合部162を省略した状態の基板面上の平面図である。図17は、熱電変換モジュール100のうちの上面電極150および接合部162を省略した状態の平面図である。熱電変換モジュール100の形状は、任意に選択可能である。熱電変換モジュール100を集熱部材70の第1側面71、第2側面72、および、第3側面73に密着させるためには、熱電変換モジュール100は、全体として板状であることが好ましい。熱電変換モジュール100を容易に製造する観点から、熱電変換モジュール100は、平面視において、正方形または長方形の平板形状であることが好ましい。 FIG. 16 is a plan view of the substrate surface of the thermoelectric conversion module 100 with the thermoelectric conversion elements 140, the upper surface electrodes 150, and the joints 162 omitted. FIG. 17 is a plan view of the thermoelectric conversion module 100 with the top electrodes 150 and the joints 162 omitted. The shape of the thermoelectric conversion module 100 can be arbitrarily selected. In order to bring the thermoelectric conversion module 100 into close contact with the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70, the thermoelectric conversion module 100 is preferably plate-shaped as a whole. From the viewpoint of easily manufacturing the thermoelectric conversion module 100, the thermoelectric conversion module 100 preferably has a square or rectangular flat plate shape in plan view.
 熱電変換モジュール100は、熱電変換素子140は、p型熱電変換素子140Pおよびn型熱電変換素子140Nを含む。p型熱電変換素子140Pとn型熱電変換素子140Nは、交互に配置される。p型熱電変換素子140Pとn型熱電変換素子140Nは、直列に接続される。2つの電流リード線130のうちの一方は、p型熱電変換素子140Pと電気的に接続される。2つの電流リード線130のうちの他方は、n型熱電変換素子140Nと電気的に接続される。本実施形態の熱電変換モジュール100は、64対の素子数から構成される。各素子対は、2本のp型熱電変換素子140Pの素子対、および、2本のn型熱電変換素子140Nの素子対によって構成される。 In the thermoelectric conversion module 100, the thermoelectric conversion elements 140 include p-type thermoelectric conversion elements 140P and n-type thermoelectric conversion elements 140N. The p-type thermoelectric conversion elements 140P and the n-type thermoelectric conversion elements 140N are alternately arranged. The p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N are connected in series. One of the two current lead wires 130 is electrically connected to the p-type thermoelectric conversion element 140P. The other of the two current lead wires 130 is electrically connected to the n-type thermoelectric conversion element 140N. The thermoelectric conversion module 100 of this embodiment is composed of 64 pairs of elements. Each element pair is composed of an element pair of two p-type thermoelectric conversion elements 140P and an element pair of two n-type thermoelectric conversion elements 140N.
 熱電変換素子140を構成する材料は、任意に選択できる。熱電変換素子140を構成する材料は、例えば、集熱部材70の第1側面71、第2側面72、および、第3側面73の温度(以下では、「集熱部材70の外周面の温度」という。)に基づいて決められることが好ましい。集熱部材70の外周面の温度が200℃程度以下であれば、Bi2Te3系の変換素子、400℃程度以下であれば、スクッテルダイト、ハーフホイスラー合金、シリサイド系の変換素子、400℃程度以上であれば、金属酸化物熱電材料を用いた熱電変換素子を用いることができる。熱電変換素子140を構成する材料として、集熱部材70の外周面の温度によらずに、耐久性、毒性元素を含まないなどの安全性の観点に基づいて決める場合、金属酸化物またはハーフホイスラー合金で構成される熱電変換素子を用いることが好ましい。 The material forming the thermoelectric conversion element 140 can be arbitrarily selected. The material constituting the thermoelectric conversion element 140 is, for example, the temperature of the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 (hereinafter referred to as "the temperature of the outer peripheral surface of the heat collecting member 70"). ) is preferably determined based on If the temperature of the outer peripheral surface of the heat collecting member 70 is about 200° C. or less, a Bi 2 Te 3 conversion element is used. C. or higher, a thermoelectric conversion element using a metal oxide thermoelectric material can be used. When the material constituting the thermoelectric conversion element 140 is determined based on the viewpoint of safety such as durability and the absence of toxic elements regardless of the temperature of the outer peripheral surface of the heat collecting member 70, metal oxide or half-Heusler It is preferable to use a thermoelectric conversion element made of an alloy.
 本実施形態のp型熱電変換素子140Pを構成する材料は、式(1)または式(2)で表される組成式を満たす層状コバルト系酸化物によって構成される。 The material constituting the p-type thermoelectric conversion element 140P of this embodiment is composed of a layered cobalt-based oxide that satisfies the composition formula represented by formula (1) or formula (2).
 Ca3-pBipCo4q・・・(1)
 式(1)中、p、qは、0≦p≦1、8.5≦q≦10を満たす数である。
 Bi2Sr2-rCarCo2t・・・(2)
 式(2)中、r、tは、0.0≦r≦2.0、8.5≦t≦10を満たす数である。
Ca3 - pBipCo4Oq ( 1 )
In formula (1), p and q are numbers satisfying 0≦p≦1 and 8.5≦q≦10.
Bi2Sr2 -rCarCo2Ot ( 2 )
In formula (2), r and t are numbers satisfying 0.0≦r≦2.0 and 8.5≦t≦10.
 本実施形態のn型熱電変換素子140Nを構成する材料は、式(3)で表される組成式を満たすペロブスカイト型カルシウムマンガン系酸化物、または、式(4)によって構成されるハーフホイスラー合金によって構成される。 The material constituting the n-type thermoelectric conversion element 140N of the present embodiment is a perovskite-type calcium-manganese-based oxide that satisfies the composition formula represented by formula (3), or a half-Heusler alloy formed by formula (4). Configured.
 CaMn1-Xxy・・・(3)
 式(3)中、Mは、Nb、Ta、Mo、および、Wからなる群から選ばれた少なくとも一種の元素であり、x、yは、0≦x≦0.1、2.8≦y≦3.2を満たす数である。
CaMn1 -xMxOy ( 3 )
In formula (3), M is at least one element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are 0 ≤ x ≤ 0.1, 2.8 ≤ y A number that satisfies ≦3.2.
 AabNiSn・・・(4)
 式(4)中、Aは、TiまたはZrであり、Bは、AがTiであるとき、Hf,Zrの少なくとも1つであり、AがZrであるとき、Hf,Tiの少なくとも1つであり、0.5≦a≦1、0≦b≦0.5である。
A a B b NiSn (4)
In formula (4), A is Ti or Zr, B is at least one of Hf and Zr when A is Ti, and at least one of Hf and Ti when A is Zr Yes, 0.5≦a≦1 and 0≦b≦0.5.
 p型熱電変換素子140Pとして用いる組成式がCa3-pBipCo4qおよびBi2Sr2-rCarCo2t表される複合酸化物は、それぞれ(Ca,Bi)2CoO3とBi2(Sr, Ca)24いう組成比の岩塩型構造を有する層と、六つのOが一つのCoに八面体配位し、その八面体がお互いに辺を共有するように二次元的に配列したCoO2層が交互に積層した構造を有するものであり、p型熱電変換素子として高いゼーベック係数を有し、かつ、電気伝導性も良好である。 The composite oxides represented by the composition formulas Ca 3-p Bi p Co 4 O q and Bi 2 Sr 2-r Car Co 2 O t used as the p-type thermoelectric conversion element 140P are respectively (Ca, Bi) 2 CoO A layer having a rock salt structure with a composition ratio of 3 and Bi 2 (Sr, Ca) 2 O 4 , and a layer in which six O are octahedrally coordinated to one Co and the octahedra share sides with each other. It has a structure in which two-dimensionally arranged CoO 2 layers are alternately laminated, and as a p-type thermoelectric conversion element, it has a high Seebeck coefficient and good electrical conductivity.
 n型熱電変換素子140Nとして用いる組成式が、CaMn1-xxyで表される酸化物はペロブスカイト構造を有し、体心立方格子構造の中心にMnあるいはMが位置し、頂点に8個のCaが位置する。さらにMnあるいはMが中心となり、その周辺に6個のOが面心立方格子構造となるように位置している。n型熱電変換素子140Nとして室温以上の温度で負のゼーベック係数を示し、良好な電気伝導性を有する。 The oxide used as the n-type thermoelectric conversion element 140N whose composition formula is represented by CaMn 1-x M x O y has a perovskite structure. 8 Ca are located. Furthermore, Mn or M is the center, and six O are located around it so as to form a face-centered cubic lattice structure. The n-type thermoelectric conversion element 140N exhibits a negative Seebeck coefficient at room temperature or higher and has good electrical conductivity.
 n型熱電変換素子140Nとして用いる組成式がAabNiSnで表されるハーフホイスラー合金は、Niを中心にA(あるいはB)とSnが頂点に位置する体心立方格子構造を基本構造として、八個の体心立方が立方体を構成し、その内の四個の体心立方格子のNiが欠損した構造を有する。この組成式で構成されるハーフホイスラー合金は室温以上の温度で負のゼーベック係数と良好な電気伝導性を示す。 The half-Heusler alloy, which is used as the n-type thermoelectric conversion element 140N and whose composition formula is represented by A a B b NiSn, has a basic structure of a body-centered cubic lattice structure in which A (or B) and Sn are located at the vertices around Ni. , eight body-centered cubic lattices constitute a cube, and four body-centered cubic lattices among them have a structure in which Ni is deficient. Half-Heusler alloys with this composition formula exhibit a negative Seebeck coefficient and good electrical conductivity at temperatures above room temperature.
 組成式が(1)、(2)および(3)で表される複合酸化物は、単結晶製造法、粉末製造法および薄膜製造法等の公知の方法によって製造される。単結晶製造法としては、例えば、フラックス法、ゾーンメルト法、引き上げ法、ガラス前駆体を経由するガラスアニール法等である。また、粉末製造法としては、固相反応法およびゾルゲル法等である。さらに、薄膜製造法としては、スパッタリング法、レーザーアブレーション法およびケミカル・べーパー・デポジション法等である。 The composite oxides whose compositional formulas are represented by (1), (2) and (3) are manufactured by known methods such as single crystal manufacturing method, powder manufacturing method and thin film manufacturing method. The single crystal manufacturing method includes, for example, a flux method, a zone melt method, a pulling method, and a glass annealing method via a glass precursor. Examples of powder manufacturing methods include a solid-phase reaction method and a sol-gel method. Furthermore, thin film manufacturing methods include the sputtering method, the laser ablation method, the chemical vapor deposition method, and the like.
 これらの製造方法のうちで、固相反応法による酸化物の製造方法について、より詳細に説明する。式(1)、(2)および(3)によって表される酸化物は、目的とする酸化物の金属元素比率と同様の元素成分比率となるように原料物質を混合し、焼成することによって製造される。焼成温度および焼成時間については、目的とする酸化物が形成される条件とすれば良く、特に限定されないが、例えば、700~1300℃程度の温度範囲において、10~40時間程度焼成すれば良い。 Among these production methods, the method for producing oxides by the solid-phase reaction method will be described in more detail. The oxides represented by the formulas (1), (2) and (3) are produced by mixing the raw materials so that the elemental component ratio is the same as the metal elemental ratio of the target oxide, and firing the mixture. be done. The sintering temperature and sintering time are not particularly limited as long as they are conditions under which the desired oxide is formed.
 なお、原料物質としては、焼成によって酸化物を形成し得るものであれば特に限定されず、金属単体、酸化物、各種化合物(炭酸塩等)等を使用できる。Ca源およびCo源としては、アルコキシド化合物を用いることができる。Ca源としてのアルコキシド化合物としては、酸化カルシウム(CaO)、塩化カルシウム(CaCl2)、炭酸カルシウム(CaCO3)、硝酸カルシウム(Ca(NO32)、水酸化カルシウム(Ca(OH)2)、ジメトキシカルシウム(Ca(OCH32)、ジエトキシカルシウム(Ca(OC252)、ジプロポキシカルシウム(Ca(OC372)等である。 The raw material is not particularly limited as long as it can form an oxide by firing, and simple metals, oxides, various compounds (such as carbonates), and the like can be used. Alkoxide compounds can be used as the Ca source and the Co source. Alkoxide compounds as Ca sources include calcium oxide (CaO), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), calcium nitrate (Ca(NO 3 ) 2 ), and calcium hydroxide (Ca(OH) 2 ). , dimethoxy calcium (Ca(OCH 3 ) 2 ), diethoxy calcium (Ca(OC 2 H 5 ) 2 ), dipropoxy calcium (Ca(OC 3 H 7 ) 2 ), and the like.
 Co源としてのアルコキシド化合物としては、酸化コバルト(CoO,Co23,Co34)、塩化コバルト(CoCl2)、炭酸コバルト(CoCO3)、硝酸コバルト(Co(NO32)、水酸化コバルト(Co(OH)2)およびジプロポキシコバルト(Co(OC372)等である。Mn源としても同様に酸化マンガン(MnO、MnO2、Mn34)、塩化マンガン(MnCl2)、炭酸マンガン(MnCO3)、硝酸マンガン(Mn(NO32・6H2O)およびジイソプロポキシマンガン(Mn[OCH(CH322)等である。 Alkoxide compounds as Co sources include cobalt oxide (CoO, Co2O3 , Co3O4 ), cobalt chloride (CoCl2), cobalt carbonate (CoCO3 ) , cobalt nitrate (Co( NO3 ) 2 ), Cobalt hydroxide (Co(OH) 2 ) and dipropoxy cobalt (Co(OC 3 H 7 ) 2 ). Manganese oxides (MnO, MnO 2 , Mn 3 O 4 ), manganese chloride (MnCl 2 ), manganese carbonate (MnCO 3 ), manganese nitrate (Mn(NO 3 ) 2 .6H 2 O) and manganese nitrate (Mn(NO 3 ) 2 .6H 2 O) and and isopropoxy manganese (Mn[OCH( CH3 ) 2 ] 2 ).
 原料物質として炭酸塩または有機化合物等を用いる場合には、焼成する前に予め仮焼きして原料物質を分解させた後に、焼成して目的とする酸化物を形成することが好ましい。例えば、原料物質として炭酸塩を用いる場合には、700~900℃程度で10時間程度の仮焼きを行った後に、上記の条件で焼成すればよい。 When a carbonate, an organic compound, or the like is used as a raw material, it is preferable to calcine in advance to decompose the raw material before sintering, and then sinter to form the desired oxide. For example, when a carbonate is used as a raw material, it may be calcined at about 700 to 900° C. for about 10 hours and then fired under the above conditions.
 焼成手段としては、特に限定されず、電気加熱炉およびガス加熱炉等の任意の手段を用いることができる。焼成雰囲気としては、通常、酸化性雰囲気中とすればよい。酸化性雰囲気としては、例えば、酸素気流中および空気中等である。原料物質が十分量の酸素を含む場合は、例えば窒素やアルゴン等の不活性雰囲気中で焼成することができる。生成する酸化物中の酸素量は、焼成時の酸素分圧、焼成温度および焼成時間等により制御することができ、酸素分圧が高いほど、式(1)、(2)および(3)における酸素比率を高くすることができる。 The firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be used. The sintering atmosphere is usually an oxidizing atmosphere. The oxidizing atmosphere includes, for example, an oxygen stream and air. If the source material contains sufficient oxygen, it can be fired in an inert atmosphere such as nitrogen or argon. The amount of oxygen in the oxide to be produced can be controlled by the oxygen partial pressure at the time of firing, the firing temperature, the firing time, and the like. Oxygen ratio can be increased.
 固相反応法で目的とする酸化物を作製するには、固相反応を効率よく進行させるために、原料粉末を加圧成形体として焼成することが好ましい。そして、得られた焼結体を切断、研削および研磨して熱電変換モジュール100に供する熱電変換素子140に加工成形する。熱電変換素子140の寸法は、熱電変換モジュール100の寸法および必要発電量等によって決めれば良いが、一般的には、断面の一辺が0.5~10mm程度、温度差をつける方向に平行である長さが0.5~50mm程度の四角柱、または直径が0.5~10mm程度、長さが0.5~50mm程度の円柱であればよい。また、焼成後、加工成形を経ずに必要な形状を得るために、焼結前の粉末を加圧成形する段階で、焼結後に所望の材料が得られるような形状および寸法に予め成形し、焼結してもよい。式(1)、(2)および(3)の酸化物熱電変換素子のその他の元素についても、同様に、元素単体、酸化物、塩化物、炭酸塩、硝酸塩、水酸化物、および、アルコキシド化合物等を用いることができる。 In order to produce the desired oxide by the solid-phase reaction method, it is preferable to sinter the raw material powder as a press-molded body in order to allow the solid-phase reaction to proceed efficiently. Then, the obtained sintered body is cut, ground, and polished to be processed and molded into the thermoelectric conversion element 140 to be provided for the thermoelectric conversion module 100 . The dimensions of the thermoelectric conversion element 140 may be determined according to the dimensions of the thermoelectric conversion module 100 and the required amount of power generation, etc. Generally, one side of the cross section is about 0.5 to 10 mm and parallel to the direction in which the temperature difference is generated. A square column with a length of about 0.5 to 50 mm, or a cylinder with a diameter of about 0.5 to 10 mm and a length of about 0.5 to 50 mm may be used. In addition, in order to obtain a desired shape without processing and molding after sintering, the powder before sintering is pre-molded into a shape and dimensions that will give the desired material after sintering. , may be sintered. Other elements of the oxide thermoelectric conversion elements of the formulas (1), (2) and (3) are similarly elemental simple substances, oxides, chlorides, carbonates, nitrates, hydroxides, and alkoxide compounds. etc. can be used.
 熱電変換素子140を構成する複合酸化物の構成元素を二種以上含む化合物を用いてもよい。式(4)のハーフホイスラー構造を有する合金を製造する方法については、特に限定はないが、例えば、まず、目的とする合金の元素比と同一の元素比となるように原料を配合し、これを高温で熔融し、反応させた後、冷却する。原料物質としては、式(4)のハーフホイスラー構造を有する合金を焼成によって形成し得るものであれば特に限定されず、金属単体や二種類以上の構成元素を含む化合物を用いればよい。 A compound containing two or more constituent elements of the composite oxide that constitutes the thermoelectric conversion element 140 may be used. The method for producing the alloy having the half-Heusler structure of formula (4) is not particularly limited. are melted at a high temperature, allowed to react, and then cooled. The raw material is not particularly limited as long as it can form an alloy having a half-Heusler structure of formula (4) by firing, and a simple metal or a compound containing two or more constituent elements may be used.
 原料の熔融方法についても特に限定は無いが、例えば、アーク熔解や誘導加熱などの方法を適用して、原料の融点を上回る温度まで加熱すればよい。熔融時の雰囲気については、酸化を避けるために、ヘリウムやアルゴンなどの不活性ガス雰囲気、あるいは減圧雰囲気、真空などの非酸化性雰囲気とすることが好ましい。また、必要に応じて、得られたハーフホイスラー構造を有する合金に対して熱処理を施すことによって、より均質な合金とすることができ、熱電変換材料としての性能を向上させることができる。熱処理条件については特に限定はなく、含まれる金属元素の種類、量などによって異なるが、例えば、1000~1300℃程度の温度で熱処理することが好ましい。さらにより好ましくは、熱処理前に、熔融した合金を粉砕混合し、粉末を加圧成形により円板など任意の形状の板状に加工した後に焼成すれば、固相反応が促進され、より均質な焼結体が短時間で得られる。さらに、焼成時にホットプレスや、通電焼結(いわゆるSPS焼結)等、加熱中に一軸加圧することで、焼結密度の高い焼結体が得られるため、電気抵抗率が低く、破壊強度の高い焼結体を得ることができる。熱処理中の雰囲気については、ハーフホイスラー構造を有する合金の酸化を避けるために、熔融時と同様に非酸化性雰囲気とすることが好ましい。 There is no particular limitation on the method of melting the raw material, but for example, arc melting or induction heating may be applied to heat the raw material to a temperature above the melting point of the raw material. In order to avoid oxidation, the atmosphere during melting is preferably an inert gas atmosphere such as helium or argon, or a non-oxidizing atmosphere such as a reduced pressure atmosphere or vacuum. If necessary, the obtained alloy having a half-Heusler structure can be heat-treated to make the alloy more homogeneous, and the performance as a thermoelectric conversion material can be improved. The heat treatment conditions are not particularly limited, and vary depending on the type and amount of the metal element contained. Even more preferably, before the heat treatment, the molten alloy is pulverized and mixed, and the powder is processed into a plate of any shape such as a disk by pressure molding, and then fired, to promote the solid phase reaction and make the alloy more homogeneous. A sintered body can be obtained in a short time. Furthermore, a sintered body with high sintering density can be obtained by applying uniaxial pressure during heating, such as hot pressing during firing or electrical sintering (so-called SPS sintering), so it has low electrical resistivity and high breaking strength. A high sintered body can be obtained. As for the atmosphere during the heat treatment, it is preferable to use a non-oxidizing atmosphere as in the case of melting in order to avoid oxidation of the alloy having the half-Heusler structure.
 得られた熔融固化物あるいは焼結体を切断、研削、研磨により熱電変換モジュール100に供する熱電変換素子140に加工成形する。熱電変換素子140のサイズは、熱電変換モジュール100のサイズ、および、発電量等に基づいて決められる。熱電変換素子140の寸法は、熱電変換モジュール100の寸法、および、必要発電量等に基づいて決められる。熱電変換素子140の寸法は、例えば、断面の一辺が0.5~10mm程度、長さが0.5~50mm程度の四角柱、または、直径が0.5~10mm程度、長さが0.5~50mm程度の円柱であることが好ましい。また、焼成後、加工成形を経ず、所望の形状を得るため、焼結前の粉末を加圧成形する段階で、焼結後に素子形状を得られる形状、寸法に予め成形し、焼結してもよい。 The obtained melt-solidified material or sintered body is cut, ground, and polished to form the thermoelectric conversion element 140 to be provided for the thermoelectric conversion module 100 . The size of the thermoelectric conversion element 140 is determined based on the size of the thermoelectric conversion module 100, the power generation amount, and the like. The dimensions of the thermoelectric conversion element 140 are determined based on the dimensions of the thermoelectric conversion module 100, the required power generation amount, and the like. The dimensions of the thermoelectric conversion element 140 are, for example, a quadrangular prism with a cross-sectional side of about 0.5 to 10 mm and a length of about 0.5 to 50 mm, or a diameter of about 0.5 to 10 mm and a length of 0.5 mm to 0.5 mm. It is preferably a cylinder of about 5 to 50 mm. In addition, in order to obtain a desired shape without processing and molding after firing, the powder before sintering is pressure-molded, and the powder is pre-molded into a shape and dimensions that can obtain an element shape after sintering, and then sintered. may
 p型熱電変換素子140Pとn型熱電変換素子140Nは同一の寸法である必要はないが、長さについては、集熱部材70および冷却部材200と好適に密着させる観点から、同じ長さであることが好ましい。断面の寸法は、所望の発電出力、電流、および、電圧値が得られるよう、電気抵抗率や熱伝導度に基づいて決められる。 The p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N do not need to have the same dimensions, but the lengths are the same from the viewpoint of suitable adhesion to the heat collecting member 70 and the cooling member 200. is preferred. The cross-sectional dimensions are determined based on electrical resistivity and thermal conductivity so as to obtain desired power output, current and voltage values.
 p型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を電気的に接続するための具体的な方法については特に限定されないが、接合した際に良好な熱起電力を得ることができ、かつ、電気抵抗が低いことが好ましい。p型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を電気的に接続する方法は、例えば、接合材料を用いてp型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を導電性材料(電極)に接着する方法が挙げられる。p型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を電気的に接続する方法の別の例は、p型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を直接または導電性材料を介して圧着、または、焼結させる方法が挙げられる。p型熱電変換素子140Pの一端とn型熱電変換素子140Nの一端を電気的に接続する方法のさらに別の例は、導体性材料を用いてp型熱電変換素子140Pとn型熱電変換素子140Nとを電気的に接触させる方法が挙げられる。 A specific method for electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is not particularly limited. and preferably have a low electrical resistance. A method of electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is, for example, using a bonding material. to a conductive material (electrode). Another example of a method for electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is to directly or A method of crimping or sintering via a conductive material can be used. Still another example of the method of electrically connecting one end of the p-type thermoelectric conversion element 140P and one end of the n-type thermoelectric conversion element 140N is to connect the p-type thermoelectric conversion element 140P and the n-type thermoelectric conversion element 140N using a conductive material. and a method of electrically contacting them.
 1つの発電ユニット90が有する熱電変換モジュール100の数は、任意に選択可能である。本実施形態では、1つの発電ユニット90は、4つの熱電変換モジュール100を有する。1つの発電ユニット90が有する熱電変換モジュール100の数は、1つ~3つ、または、5つ以上であってもよい。 The number of thermoelectric conversion modules 100 included in one power generation unit 90 can be arbitrarily selected. In this embodiment, one power generation unit 90 has four thermoelectric conversion modules 100 . The number of thermoelectric conversion modules 100 included in one power generation unit 90 may be one to three, or five or more.
 図18は、1つの発電ユニット90における4つの熱電変換モジュール100を直列接続した例を示す模式図である。図18においては、4つの熱電変換モジュールのうちの上面電極150および接合部162の図示を省略している。4つの熱電変換モジュール100を直列接続する場合、隣り合う熱電変換モジュール100の電流リード線130はp型熱電変換素子140Pとn型熱電変換素子140Nとを交互に接続する。4つの熱電変換モジュール100を直列接続する場合、得られる電圧は4つの熱電変換モジュール100の電圧の総和となる。このため、高電圧で低電流の出力が得られる。 FIG. 18 is a schematic diagram showing an example in which four thermoelectric conversion modules 100 in one power generation unit 90 are connected in series. In FIG. 18, illustration of the upper surface electrodes 150 and the joints 162 of the four thermoelectric conversion modules is omitted. When connecting four thermoelectric conversion modules 100 in series, the current lead wires 130 of adjacent thermoelectric conversion modules 100 alternately connect the p-type thermoelectric conversion elements 140P and the n-type thermoelectric conversion elements 140N. When connecting four thermoelectric conversion modules 100 in series, the voltage obtained is the sum of the voltages of the four thermoelectric conversion modules 100 . Therefore, a high voltage and low current output can be obtained.
 図19は、1つの発電ユニット90における4つの熱電変換モジュール100を並列接続した例を示す模式図である。図19においては、4つの熱電変換モジュールのうちの上面電極150および接合部162の図示を省略している。4つの熱電変換モジュール100を並列接続する場合、電流リード線130によって隣り合うp型熱電変換素子140P同士が接続され、隣り合うn型熱電変換素子140N同士が接続される。4つの熱電変換モジュール100を並列接続する場合、得られる電流は4つの熱電変換モジュール100からの総和となるため低電圧で高電流の出力が得られる。 FIG. 19 is a schematic diagram showing an example in which four thermoelectric conversion modules 100 in one power generation unit 90 are connected in parallel. In FIG. 19, illustration of the upper surface electrodes 150 and the joints 162 of the four thermoelectric conversion modules is omitted. When four thermoelectric conversion modules 100 are connected in parallel, the current lead wires 130 connect the adjacent p-type thermoelectric conversion elements 140P and the adjacent n-type thermoelectric conversion elements 140N. When four thermoelectric conversion modules 100 are connected in parallel, the current obtained is the total sum from the four thermoelectric conversion modules 100, so a high current output can be obtained at a low voltage.
 <8.冷却部材の構成>
 図20は、冷却部材200の平面図である。図21は、冷却部材200の側面図である。冷却部材200は、熱電変換モジュール100を第2面100Bから冷却する。冷却部材200は、任意の接続手段によって、集熱部材70と接続される。換言すれば、冷却部材200は、接続手段を介して集熱部材70と構造的に繋がる。例えば、重り、または、ばね等を用いた外力によって、冷却部材200の上面から冷却部材200を熱電変換モジュール100を介して集熱部材70に押し付けるような構成の場合、熱電発電装置10が大型となる。本実施形態では、例えば、ねじ等の接続手段を介して冷却部材200と集熱部材70とが接続されるため、熱電発電装置10の大型化を抑制しつつ、冷却部材200を集熱部材70の任意の面、特に第1側面71および第3側面73に容易に取り付けることができる。冷却部材200の具体的な構成は、熱電変換モジュール100を冷却できる構成であれば任意に選択可能である。本実施形態では、冷却部材200は、水槽210、および、水槽210内を循環する液体(図示略)を含む。液体は、例えば、冷却水である。水槽210を構成する材料は、例えば、アルミニウム合金である。本実施形態では、1つの発電ユニット90は、1つの冷却部材200を有する。換言すれば、1つの冷却部材200によって、4つの熱電変換モジュール100が冷却される。水槽210は、冷却面211、孔212、冷却水の入口213、および、冷却水の出口214が形成される。冷却面211は、熱電変換モジュール100と直接的または間接的に接触する。本実施形態では、冷却面211と熱電変換モジュール100との間には、電気絶縁性、および、高い熱伝導性を有する材料によって構成される伝熱性シート(図示略)が配置される。伝熱性シートの厚さは、例えば、1.0mmである。孔212には、集熱部材70と固定するための接続手段としてのねじが挿入される。
<8. Configuration of Cooling Member>
20 is a plan view of the cooling member 200. FIG. 21 is a side view of cooling member 200. FIG. The cooling member 200 cools the thermoelectric conversion module 100 from the second surface 100B. The cooling member 200 is connected with the heat collecting member 70 by any connecting means. In other words, the cooling member 200 is structurally connected with the heat collecting member 70 via the connecting means. For example, in the case of a configuration in which the cooling member 200 is pressed against the heat collecting member 70 via the thermoelectric conversion module 100 from the upper surface of the cooling member 200 by an external force using a weight or a spring, the thermoelectric generator 10 is large. Become. In this embodiment, for example, the cooling member 200 and the heat collecting member 70 are connected via connecting means such as screws. , particularly the first side 71 and the third side 73. A specific configuration of the cooling member 200 can be arbitrarily selected as long as the configuration can cool the thermoelectric conversion module 100 . In this embodiment, the cooling member 200 includes a water tank 210 and a liquid (not shown) circulating within the water tank 210 . The liquid is, for example, cooling water. A material forming the water tank 210 is, for example, an aluminum alloy. In this embodiment, one power generation unit 90 has one cooling member 200 . In other words, one cooling member 200 cools four thermoelectric conversion modules 100 . The water tank 210 is formed with a cooling surface 211 , holes 212 , a cooling water inlet 213 and a cooling water outlet 214 . The cooling surface 211 is in direct or indirect contact with the thermoelectric conversion module 100 . In this embodiment, between the cooling surface 211 and the thermoelectric conversion module 100, a heat conductive sheet (not shown) made of a material having electrical insulation and high thermal conductivity is arranged. The thickness of the heat conductive sheet is, for example, 1.0 mm. Screws are inserted into the holes 212 as connection means for fixing to the heat collecting member 70 .
 <9.熱電発電装置の使用方法>
 熱エネルギーから電気エネルギーへの所望の変換率に応じて、閉塞部材80によって、集熱部材70の複数の流路70Aのうちの一部の流路が閉じられる。複数の流路70Aのうちの一部の流路が閉じられた熱電ユニット40に上流配管20および下流配管60が上流連結部30および下流連結部50を介して連結される。
<9. How to use the thermoelectric generator>
Some of the plurality of channels 70A of the heat collecting member 70 are closed by the closing member 80 according to the desired conversion rate from thermal energy to electrical energy. The upstream pipe 20 and the downstream pipe 60 are connected via the upstream connection part 30 and the downstream connection part 50 to the thermoelectric unit 40 in which some of the plurality of flow paths 70A are closed.
 <10.熱電発電装置の作用>
 燃焼部510から排出される高温の流体は、上流配管20、および、上流連結部30のフランジ52の順に通過して、集熱部材70の流路70Aの入口70Xに到達する。入口70Xに到達した流体は、閉塞部材80によって閉じられていない流路70Aを通過する。集熱部材70は、流路70Aを通過する流体の熱を吸収し、第1側面71、第2側面72、および、第3側面73に取り付けられる発電ユニット90の熱電変換モジュール100を加熱する。このため、熱電変換モジュール100の第1面100Aの温度が上昇する。一方、熱電変換モジュール100の第2面100Bは、冷却部材200によって冷却されている。このため、熱電変換モジュール100の第1面100Aと第2面100Bとに温度差が生じる。熱電変換モジュール100にゼーベック効果による起電力が発生するため、流体の熱エネルギーが電気エネルギーに変換される。なお、熱電変換モジュール100に取り出し線をつけ、取り出し線に外部抵抗を接続することによって電流が流れるため、変換された電気エネルギーを取り出すことができる。
<10. Action of Thermoelectric Generator>
The high-temperature fluid discharged from the combustion section 510 passes through the upstream pipe 20 and the flange 52 of the upstream connecting section 30 in order, and reaches the inlet 70X of the flow path 70A of the heat collecting member 70 . The fluid reaching the inlet 70X passes through the flow path 70A that is not closed by the closing member 80. As shown in FIG. The heat collecting member 70 absorbs the heat of the fluid passing through the flow path 70A, and heats the thermoelectric conversion modules 100 of the power generation units 90 attached to the first side surface 71, the second side surface 72, and the third side surface 73. Therefore, the temperature of the first surface 100A of the thermoelectric conversion module 100 rises. On the other hand, the second surface 100B of the thermoelectric conversion module 100 is cooled by the cooling member 200. As shown in FIG. Therefore, a temperature difference is generated between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 . Since an electromotive force is generated by the Seebeck effect in the thermoelectric conversion module 100, thermal energy of the fluid is converted into electrical energy. It should be noted that by attaching a lead wire to the thermoelectric conversion module 100 and connecting an external resistor to the lead wire, current flows, so that the converted electric energy can be taken out.
 <11.熱電発電装置の特徴>
 本実施形態の熱電発電装置10では、閉塞部材80によって複数の流路70Aの一部を閉じることができる。このため、集熱フィンの取り換え等の煩雑な作業をすることなく、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できる。
<11. Features of Thermoelectric Generator>
In the thermoelectric generator 10 of the present embodiment, the closing member 80 can partially close the flow paths 70A. Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy without performing complicated work such as replacement of the heat collecting fins.
 <12.冷熱への応用>
 本実施形態の熱電変換モジュール100、および、熱電発電装置10は、集熱部材70、ならびに、使用する熱電変換素子140を適切に選択することによって、液化ガス等の低温流体を利用した冷熱発電にも応用できる。なお、その際には、本実施形態の冷却部材200は加熱部材として、また、冷却用の液体は加熱用の液体として適切なものが選択される。
<12. Application to cold heat>
The thermoelectric conversion module 100 and the thermoelectric power generation device 10 of the present embodiment are suitable for cryogenic power generation using a low-temperature fluid such as liquefied gas by appropriately selecting the heat collecting member 70 and the thermoelectric conversion element 140 to be used. can also be applied. In this case, the cooling member 200 of the present embodiment is selected as a heating member, and the cooling liquid is selected as a heating liquid.
 <13.実施例>
 本願発明者(ら)は、実施例1~3、および、比較例1の熱電発電装置を製造し、流体の熱エネルギーから電気エネルギーへの変換率を確認する試験を実施した。なお、以下では、説明の便宜上、実施例1~3、および、比較例1の熱電発電装置を構成する要素のうち、第1実施形態と同じ要素には、第1実施形態と同様の符号を付して説明する。
<13. Example>
The inventors (or others) of the present application manufactured the thermoelectric generators of Examples 1 to 3 and Comparative Example 1, and conducted tests to confirm the conversion rate of fluid thermal energy to electrical energy. In the following, for convenience of explanation, among the elements constituting the thermoelectric generators of Examples 1 to 3 and Comparative Example 1, the same elements as in the first embodiment are given the same reference numerals as in the first embodiment. It is attached and explained.
 <13-1.実施例1~3の熱電変換モジュールの製造>
 実施例1~3の熱電変換モジュール100を次のように製造した。
 断面3.5×3.5mm、高さ5mmの角柱状のCa2.7Bi0.3Co49焼結体からなるp型熱電変換素子140Pと、CaMn0.98Mo0.023焼結体からなるn型熱電変換素子140Nをそれぞれ128本ずつ製造した。熱電変換モジュール100の各素子対は2本ずつのp型熱電変換素子140Pおよびn型熱電変換素子140Nで構成され、万一、1本が破損しても、電気伝導が完全に遮断しないようにした。
<13-1. Production of Thermoelectric Conversion Modules of Examples 1 to 3>
Thermoelectric conversion modules 100 of Examples 1 to 3 were manufactured as follows.
A p-type thermoelectric conversion element 140P made of a Ca2.7Bi0.3Co4O9 sintered body having a cross section of 3.5×3.5 mm and a height of 5 mm, and an n-type made of a CaMn0.98Mo0.02O3 sintered body . 128 pieces of each thermoelectric conversion element 140N were manufactured. Each element pair of the thermoelectric conversion module 100 is composed of two p-type thermoelectric conversion elements 140P and two n-type thermoelectric conversion elements 140N. bottom.
 基板110として、65×65mm、厚さ0.8mmのアルミナ板を用い、その上に図13に示されるように、7.5×7.5mm、厚さ0.1mmの下面電極120(銀電極)を56枚、15.5×3.5mm、厚さ0.1mmの下面電極120(銀電極)を7枚、さらに7.5×150mm、厚さ0.1mmの電流リード線130(銀電流リード線)2枚を、それぞれの間隔が0.5mmとなるように配列した。熱電変換素子140の電極面に銀ペーストを塗布し、図17に示されるように、基板110上の下面電極120に、p型熱電変換素子140Pとn型熱電変換素子140Nとが交互に直列接続するように配列した。さらに、図13に示されるように、銀ペーストを塗布した熱電変換素子140のもう一方の電極面に64枚の7×7mm、厚さ0.1mmの上面電極150(銀電極)をp型熱電変換素子140Pとn型熱電変換素子140Nとが交互に直列接続するように載せた。このように製造された熱電変換モジュール100の前駆体をホットプレス炉に入れ、1.6MPaの圧力を電極面に垂直になるようにかけ、200℃まで1時間で昇温し、200℃で1時間保持した。その後、加圧を3.2MPaまで上げ、1時間で450℃まで昇温し、450℃で1時間保持した。その後、2時間で860℃まで昇温するが、昇温から1時間後に圧力を6.4MPaまで上げた。860℃でさらに6時間加熱し、その後自然放冷で炉内で冷却して熱電変換モジュール100を製造した。すべての焼成は大気中で行った。同じ方法、条件で合計12枚の熱電変換モジュール100を製造した。 As the substrate 110, an alumina plate of 65×65 mm and 0.8 mm thick was used, and as shown in FIG. ), seven lower surface electrodes 120 (silver electrodes) of 15.5×3.5 mm and a thickness of 0.1 mm, and a current lead wire 130 of 7.5×150 mm and a thickness of 0.1 mm (silver current Lead wires) were arranged so that the interval between them was 0.5 mm. A silver paste is applied to the electrode surface of the thermoelectric conversion element 140, and as shown in FIG. arranged to Further, as shown in FIG. 13, 64 upper surface electrodes 150 (silver electrodes) of 7×7 mm and 0.1 mm in thickness were placed on the other electrode surface of the thermoelectric conversion element 140 coated with the silver paste for p-type thermoelectric conversion. The conversion elements 140P and the n-type thermoelectric conversion elements 140N were placed so as to be alternately connected in series. The precursor of the thermoelectric conversion module 100 manufactured in this way is placed in a hot press furnace, a pressure of 1.6 MPa is applied perpendicularly to the electrode surface, the temperature is raised to 200° C. in 1 hour, and the temperature is increased to 200° C. for 1 hour. held. After that, the pressure was increased to 3.2 MPa, the temperature was raised to 450° C. in 1 hour, and the temperature was maintained at 450° C. for 1 hour. After that, the temperature was raised to 860° C. in 2 hours, and the pressure was raised to 6.4 MPa 1 hour after the temperature was raised. After further heating at 860° C. for 6 hours, the thermoelectric conversion module 100 was manufactured by naturally cooling in the furnace. All firings were performed in air. A total of 12 thermoelectric conversion modules 100 were manufactured under the same method and conditions.
 <13-2.実施例1~3の熱電発電装置の製造>
 SS400鋼材で作成した集熱部材70の第1側面71、第2側面72、および、第3側面73に、一面当たり4枚ずつの熱電変換モジュール100を基板110が集熱部材70と接するように配置した。基板110と集熱部材70との間には何も挿入していない。各熱電変換モジュール100の電極面に65×65mm、厚さ1mmの電気絶縁性の伝熱フィルム(ラムダゲルCOH-4000LVC)を載せ、その上に冷却部材200を積み重ね、5本のねじにより集熱部材70に固定した。各発電ユニット90ユニット内の4枚の隣り合う熱電変換モジュール100の高電位端と低電位端を交互に直列接続した。
<13-2. Manufacture of Thermoelectric Generators of Examples 1 to 3>
Four thermoelectric conversion modules 100 are mounted on the first side 71, the second side 72, and the third side 73 of the heat collecting member 70 made of SS400 steel so that the substrates 110 are in contact with the heat collecting member 70. placed. Nothing is inserted between the substrate 110 and the heat collecting member 70 . An electrically insulating heat transfer film (lambda gel COH-4000LVC) of 65×65 mm and 1 mm in thickness is placed on the electrode surface of each thermoelectric conversion module 100, and the cooling member 200 is stacked thereon. Fixed at 70. High potential ends and low potential ends of four adjacent thermoelectric conversion modules 100 in each power generation unit 90 were alternately connected in series.
 <13-3.実施例1~3の熱電発電装置の流路の閉鎖>
 実施例1~3の熱電発電装置10は、閉塞部材80によって閉じられている流路70Aの位置、および、数が異なり、その他の構成は同じである。閉塞部材80は、ねじである。流路70Aのうちの閉塞部材80が取り付けられる部分は、入口70Xである。ねじの寸法は、頭部が11.5mm、ねじ部の外径が6mm、ねじ部の長さが20mmである。
<13-3. Closure of Flow Paths of Thermoelectric Generators of Examples 1 to 3>
The thermoelectric generators 10 of Examples 1 to 3 differ in the position and number of the flow paths 70A closed by the closing member 80, and are otherwise the same in configuration. Closing member 80 is a screw. A portion of the channel 70A to which the closing member 80 is attached is an inlet 70X. The dimensions of the screw are 11.5 mm for the head, 6 mm for the outer diameter of the thread, and 20 mm for the length of the thread.
 図22は、実施例1の熱電発電装置10の正面図である。実施例1の熱電発電装置10は、流路70Aが閉塞部材80によって閉じられていない。すなわち、実施例1の熱電発電装置10は、全ての流路70Aに流体が流れる。 FIG. 22 is a front view of the thermoelectric generator 10 of Example 1. FIG. In the thermoelectric generator 10 of Example 1, the channel 70A is not closed by the closing member 80 . That is, in the thermoelectric generator 10 of Example 1, the fluid flows through all the flow paths 70A.
 図23は、実施例2の熱電発電装置10の正面図である。実施例2の熱電発電装置10は、底面76付近の27個の流路70Aが閉塞部材80によって閉じられている。 FIG. 23 is a front view of the thermoelectric generator 10 of Example 2. FIG. In the thermoelectric generator 10 of Example 2, 27 flow paths 70A near the bottom surface 76 are closed by closing members 80 .
 図24は、実施例3の熱電発電装置10の正面図である。実施例3の熱電発電装置10は、底面76付近、および、第1側面71付近の39個の流路70Aが閉塞部材80によって閉じられている。なお、図23および図24において、流路70Aの入口70Xのうちの黒く塗りつぶされている部分が、閉塞部材80によって閉じられている流路70Aである。 24 is a front view of the thermoelectric generator 10 of Example 3. FIG. In the thermoelectric generator 10 of Example 3, 39 flow paths 70A near the bottom surface 76 and near the first side surface 71 are closed by closing members 80 . 23 and 24, the portion of the inlet 70X of the channel 70A that is blacked out is the channel 70A that is closed by the closing member 80. As shown in FIG.
 <13-4.比較例1の熱電発電装置>
 図25は、比較例1の熱電発電装置が備える熱電ユニット440の正面図である。図26は、熱電ユニット440の平面図である。熱電ユニット440は、2つの発電ユニット90、および、SS400鋼材で作成したフィン形状の集熱部材470を有する。熱電ユニット440は、実施例1~3で製造したものと同じ4枚の熱電変換モジュール100の基板110を集熱部材470と密着させた。基板110と集熱部材470との間には何も挿入していない。熱電変換モジュール100の他方の電極面に65×65mm、厚さ1mmの電気絶縁性の伝熱フィルム(ラムダゲルCOH-4000LVC)を載せ、冷却部材200を積み重ね、5本のねじにより集熱部材470に固定し、集熱部材470を有する熱電ユニット440を製造した。各発電ユニット90内の4枚の隣り合う熱電変換モジュール100の高電位端と低電位端を交互に直列接続した。2つの発電ユニット90にフランジ480を取り付け、実施例1~3と同様に燃焼バーナー500の燃焼部510に接続した。
<13-4. Thermoelectric generator of Comparative Example 1>
25 is a front view of a thermoelectric unit 440 included in the thermoelectric generator of Comparative Example 1. FIG. FIG. 26 is a plan view of the thermoelectric unit 440. FIG. The thermoelectric unit 440 has two power generation units 90 and a fin-shaped heat collecting member 470 made of SS400 steel. The thermoelectric unit 440 is formed by attaching the substrates 110 of the same four thermoelectric conversion modules 100 manufactured in Examples 1 to 3 to the heat collecting member 470 . Nothing is inserted between the substrate 110 and the heat collecting member 470 . An electrically insulating heat transfer film (lambda gel COH-4000LVC) of 65 × 65 mm and 1 mm thick is placed on the other electrode surface of the thermoelectric conversion module 100, the cooling member 200 is stacked, and is attached to the heat collecting member 470 with five screws. A thermoelectric unit 440 having a fixed heat collecting member 470 was manufactured. High potential ends and low potential ends of four adjacent thermoelectric conversion modules 100 in each power generation unit 90 are alternately connected in series. A flange 480 was attached to the two power generation units 90 and connected to the combustion portion 510 of the combustion burner 500 in the same manner as in Examples 1-3.
 <13-5.試験方法および条件>
 実施例1~3、および、比較例1の熱電発電装置10を燃焼バーナー500の燃焼部510に接続した。燃焼バーナー500の燃料は、灯油である。集熱部材70を通過する直前の流体の温度は、約830℃~840℃である。送水ポンプを用いて、冷却部材200の入口213直前の温度で約75℃~77℃の冷却水を流した。冷却水の流量は、6.2L/minである。実施例1~3では、第1発電ユニット91、第2発電ユニット92、および、第3発電ユニット93の順に冷却水を流した。比較例1では、発電ユニット91および発電ユニット92の順に冷却水を流した。
 実施例1~3、および、比較例1の熱電発電装置10について、集熱部材70を通過した後の流体の温度、出口214付近の冷却水の温度、および、発電ユニット90の発電電力を計測した。発電出力は、4枚の熱電変換モジュール100が直列接続した各発電ユニット90毎に測定し、それらの最大値を加算した。4枚の直列接続された熱電変換モジュール100の両端末の電流リード線130と電子負荷装置の電圧と電流端子とを接続し、電子負荷装置内の負荷抵抗値を走査することで、電流値と電圧値を計測し、電流と電圧を乗じて発電出力を得た。
<13-5. Test method and conditions>
The thermoelectric generators 10 of Examples 1 to 3 and Comparative Example 1 were connected to the combustion section 510 of the combustion burner 500 . The fuel of the combustion burner 500 is kerosene. The temperature of the fluid just before passing through the heat collecting member 70 is about 830.degree. C. to 840.degree. Cooling water having a temperature of about 75° C. to 77° C. just before the inlet 213 of the cooling member 200 was supplied using a water pump. The cooling water flow rate is 6.2 L/min. In Examples 1 to 3, cooling water was flowed through the first power generation unit 91, the second power generation unit 92, and the third power generation unit 93 in this order. In Comparative Example 1, cooling water was supplied to the power generation unit 91 and the power generation unit 92 in this order.
For the thermoelectric generator 10 of Examples 1 to 3 and Comparative Example 1, the temperature of the fluid after passing through the heat collecting member 70, the temperature of the cooling water near the outlet 214, and the power generated by the power generation unit 90 were measured. bottom. The power output was measured for each power generation unit 90 in which four thermoelectric conversion modules 100 were connected in series, and the maximum values were added. By connecting the current lead wires 130 at both terminals of the four thermoelectric conversion modules 100 connected in series with the voltage and current terminals of the electronic load device and scanning the load resistance value in the electronic load device, the current value and the The voltage value was measured, and the power output was obtained by multiplying the current and voltage.
 <13-6.試験結果>
 図27は、試験結果を示す表である。比較例1の熱電発電装置では、フィンの空間的な干渉によって受熱面が2面しか形成されず、流体が通過する開口部が同じ面積でも、熱電変換モジュール100を効率よく加熱する場所が、実施例の集熱部材70を用いる場合よりも少ない。また、上流配管20および下流配管60の通過前後の流体の温度変化が小さく、冷却水の温度変化も小さいことから、熱電変換モジュール100に流れる熱量が少ないことが把握できる。その結果、比較例1の熱電発電装置10は、実施例1~3の熱電発電装置10よりも最大出力は低くなった。このことより、実施例1~3の熱電発電装置10に用いられるブロック型の集熱部材70は、発電出力を高めるために有効であることが把握できる。
<13-6. Test result>
FIG. 27 is a table showing test results. In the thermoelectric generator of Comparative Example 1, only two heat-receiving surfaces are formed due to the spatial interference of the fins. It is less than when the heat collecting member 70 of the example is used. In addition, since the temperature change of the fluid before and after passing through the upstream pipe 20 and the downstream pipe 60 is small, and the temperature change of the cooling water is also small, it can be understood that the amount of heat flowing through the thermoelectric conversion module 100 is small. As a result, the thermoelectric generator 10 of Comparative Example 1 had a lower maximum output than the thermoelectric generators 10 of Examples 1-3. From this, it can be understood that the block-shaped heat collecting member 70 used in the thermoelectric generators 10 of Examples 1 to 3 is effective in increasing the power generation output.
 実施例1~3の熱電発電装置10では、流路70Aを閉塞する場所、および、数の変化させることによって、発電出力、流体の温度、および、冷却水の温度を自在に制御可能であることが把握できる。集熱部材70のうちの発電ユニット90が取り付けられていない底面76付近にも流路70Aが形成されていると、底面76からの熱放出が起こる。底面76周辺の流路70Aを閉塞部材80によって閉塞することで、集熱部材70のうちの発電ユニット90が取り付けられた第1側面71、第2側面72、および、第3側面73に熱流が分配される。このため、実施例2、3の熱電発電装置10では、熱電変換モジュール100を通過する熱量が実施例1の熱電発電装置10よりも高くなり、発電出力が高くなり、冷却水の温度変化も大きくなる。 In the thermoelectric generators 10 of Examples 1 to 3, the power generation output, the temperature of the fluid, and the temperature of the cooling water can be freely controlled by changing the locations and the number of the flow paths 70A that are blocked. can be grasped. If the flow path 70A is also formed near the bottom surface 76 of the heat collecting member 70 to which the power generating unit 90 is not attached, heat is released from the bottom surface 76 . By blocking the flow path 70A around the bottom surface 76 with the blocking member 80, the heat flows to the first side surface 71, the second side surface 72, and the third side surface 73 of the heat collecting member 70 to which the power generation unit 90 is attached. distributed. Therefore, in the thermoelectric power generators 10 of Examples 2 and 3, the amount of heat passing through the thermoelectric conversion module 100 is higher than that of the thermoelectric power generator 10 of Example 1, the power generation output is high, and the temperature change of the cooling water is large. Become.
 実施例3の熱電発電装置10では、第1側面71、換言すれば、第1発電ユニット91付近の流路70Aが閉塞部材80によって閉塞されているため、第1発電ユニット91からの発電出力が低下し、全体の発電出力は実施例1、2の熱電発電装置10よりも低くなった。一方、実施例3の熱電発電装置10では、流体および冷却水の温度変化は、発電ユニット90を通過する熱量が減るため、実施例1、2の熱電発電装置10よりも小さくなった。 In the thermoelectric power generator 10 of Example 3, the first side surface 71, in other words, the flow path 70A near the first power generation unit 91 is blocked by the blocking member 80, so that the power output from the first power generation unit 91 is The overall power generation output was lower than that of the thermoelectric generators 10 of Examples 1 and 2. On the other hand, in the thermoelectric power generator 10 of Example 3, the temperature change of the fluid and cooling water was smaller than those of the thermoelectric power generators 10 of Examples 1 and 2 because the amount of heat passing through the power generation unit 90 was reduced.
 <第2実施形態>
 図28~図30を参照して、第2実施形態の熱電発電装置300を備える温水循環装置600について説明する。
<Second embodiment>
A hot water circulator 600 including the thermoelectric generator 300 of the second embodiment will be described with reference to FIGS. 28 to 30. FIG.
 <14.温水循環装置の全体構成>
 図28は、温水循環装置600の斜視図である。温水循環装置600は、装置本体610と、配管620と、熱電発電装置300と、を備える。装置本体610は、例えば、ヒーターおよびポンプ等を含む。装置本体610は、温水を熱電発電装置300に送る一方、熱電発電装置300によって熱を奪われた冷却水を加熱する。以下では、装置本体610によって熱電発電装置300に送られる温水を単に流体と称する場合がある。配管620は、装置本体610と熱電発電装置300とを連結する。配管620は、第1配管621および第2配管622を含む。第1配管621は、装置本体61と熱電発電装置300の上流側とを連結する。第2配管622は、装置本体610と熱電発電装置300の下流側とを連結する。
<14. Overall Configuration of Hot Water Circulator>
FIG. 28 is a perspective view of the hot water circulation device 600. FIG. The hot water circulation device 600 includes a device main body 610 , a pipe 620 and a thermoelectric generator 300 . Device body 610 includes, for example, a heater and a pump. The device main body 610 sends hot water to the thermoelectric generator 300 and heats the cooling water from which heat is taken by the thermoelectric generator 300 . Hereinafter, the hot water sent to the thermoelectric generator 300 by the device main body 610 may simply be referred to as fluid. A pipe 620 connects the device main body 610 and the thermoelectric generator 300 . Pipe 620 includes a first pipe 621 and a second pipe 622 . The first pipe 621 connects the device body 61 and the upstream side of the thermoelectric generator 300 . The second pipe 622 connects the device body 610 and the downstream side of the thermoelectric generator 300 .
 <15.熱電発電装置の構成>
 熱電発電装置300は、上流配管310と、熱電ユニット320と、下流配管330とを備える。上流配管310は、第1配管621と熱電ユニット320とを連結する。下流配管330は、熱電ユニット320と第2配管622とを連結する。熱電ユニット320の基本的な構成は、第1実施形態の熱電ユニット40と同様である。以下、熱電ユニット320について、第1実施形態の熱電ユニット40との相違点を中心に説明する。
<15. Configuration of Thermoelectric Generator>
The thermoelectric generator 300 includes an upstream pipe 310 , a thermoelectric unit 320 and a downstream pipe 330 . The upstream pipe 310 connects the first pipe 621 and the thermoelectric unit 320 . The downstream pipe 330 connects the thermoelectric unit 320 and the second pipe 622 . A basic configuration of the thermoelectric unit 320 is similar to that of the thermoelectric unit 40 of the first embodiment. The thermoelectric unit 320 will be described below, focusing on differences from the thermoelectric unit 40 of the first embodiment.
 <16.熱電ユニットの構成>
 図29は、熱電発電装置300の側面図である。図30は、熱電発電装置300の上流側の正面図である。図31は、熱電発電装置300の下流側の背面図である。なお、図30では、上流配管310の図示を省略し、図31では、下流配管330の図示を省略している。
<16. Configuration of Thermoelectric Unit>
FIG. 29 is a side view of the thermoelectric generator 300. FIG. FIG. 30 is a front view of the thermoelectric generator 300 on the upstream side. FIG. 31 is a rear view of the downstream side of the thermoelectric generator 300. FIG. In FIG. 30, illustration of the upstream pipe 310 is omitted, and in FIG. 31, illustration of the downstream pipe 330 is omitted.
 熱電ユニット320は、集熱部材340と、3つの発電ユニット350とを備える。3つの発電ユニット350は、p型熱電変換素子140Pおよびn型熱電変換素子140Nの数等が第1実施形態の発電ユニット90と異なること、ならびに、冷却部材370の構成以外は、第1実施形態の発電ユニット90と同じである。 The thermoelectric unit 320 includes a heat collecting member 340 and three power generation units 350. The three power generation units 350 differ from the power generation unit 90 of the first embodiment in the number of p-type thermoelectric conversion elements 140P and n-type thermoelectric conversion elements 140N, etc., and the configuration of the cooling member 370. is the same as the power generation unit 90 of .
 <17.集熱部材の構成>
 集熱部材340は、例えば、80℃以上の流体から熱を吸収し、外周面に取り付けられる発電ユニット350の熱電変換モジュール100を加熱する。集熱部材340は、流体が通過する複数の流路340Aを有する。複数の流路340Aは、集熱部材340を貫通する。本実施形態では、集熱部材340には、21個の流路340Aが形成される。
<17. Configuration of Heat Collecting Member>
The heat collecting member 340, for example, absorbs heat from a fluid of 80° C. or higher, and heats the thermoelectric conversion module 100 of the power generation unit 350 attached to the outer peripheral surface. The heat collecting member 340 has a plurality of flow paths 340A through which fluid passes. A plurality of flow paths 340</b>A pass through the heat collecting member 340 . In this embodiment, the heat collecting member 340 is formed with 21 flow paths 340A.
 集熱部材340は、第1側面341、第2側面342、第3側面343、正面344、背面345、および、底面346を有する。第1側面341、第2側面342、および、第3側面343には、それぞれ、発電ユニット350が取り付けられる。正面344は、上流配管310が例えば、ねじを介して取り付けられる。正面344には、複数の流路340Aの入口340Xが形成される。背面345には、複数の流路340Aの出口340Yが形成される。複数の流路340Aは、集熱部材340の正面344と背面345とを貫通するように形成される。複数の流路340Aのうちの入口340X、出口340Y、または、入口340Xと出口340Yとの間の中間部(図示略)には、第1実施形態の閉塞部材80を取り付けることができる。 The heat collecting member 340 has a first side surface 341 , a second side surface 342 , a third side surface 343 , a front surface 344 , a rear surface 345 and a bottom surface 346 . Power generation units 350 are attached to the first side surface 341, the second side surface 342, and the third side surface 343, respectively. Front face 344 is attached to upstream pipe 310 via, for example, screws. Inlets 340X of a plurality of flow paths 340A are formed on the front face 344. As shown in FIG. Outlets 340Y of a plurality of flow paths 340A are formed on the back surface 345 . A plurality of flow paths 340A are formed so as to penetrate through a front surface 344 and a rear surface 345 of the heat collecting member 340 . The closing member 80 of the first embodiment can be attached to the inlet 340X, the outlet 340Y of the plurality of flow paths 340A, or an intermediate portion (not shown) between the inlet 340X and the outlet 340Y.
 <18.発電ユニットの構成>
 発電ユニット350は、熱電変換モジュール100と、冷却部材370とを備える。発電ユニット350は、熱電変換モジュール100の第1面100A(図12参照)と第2面100B(図12参照)との間に温度差が発生するように構成される。熱電ユニット320が有する発電ユニット350の数は、任意に選択可能である。本実施形態では、熱電ユニット320は、第1発電ユニット351、第2発電ユニット352、および、第3発電ユニット353を有する。すなわち、本実施形態では、熱電ユニット320は、3つの発電ユニット351、352、353を有する。熱電ユニット320は、1つ、2つ、または、4つ以上の発電ユニット350を有していてもよい。第1発電ユニット351は、集熱部材340の第1側面341に取り付けられる。第2発電ユニット352は、集熱部材340の第2側面342に取り付けられる。第3発電ユニット353は、集熱部材340の第3側面343に取り付けられる。なお、第1発電ユニット351、第2発電ユニット352、および、第3発電ユニット353の構成は、同じであるため、以下では、これらを特に区別しない場合、単に発電ユニット350と称する場合がある。
<18. Configuration of power generation unit>
The power generation unit 350 includes a thermoelectric conversion module 100 and a cooling member 370 . The power generation unit 350 is configured to generate a temperature difference between the first surface 100A (see FIG. 12) and the second surface 100B (see FIG. 12) of the thermoelectric conversion module 100. FIG. The number of power generation units 350 included in the thermoelectric unit 320 can be arbitrarily selected. In this embodiment, the thermoelectric unit 320 has a first power generation unit 351 , a second power generation unit 352 and a third power generation unit 353 . That is, in this embodiment, the thermoelectric unit 320 has three power generation units 351 , 352 and 353 . A thermoelectric unit 320 may have one, two, four or more power generation units 350 . The first power generation unit 351 is attached to the first side surface 341 of the heat collecting member 340 . The second power generation unit 352 is attached to the second side surface 342 of the heat collecting member 340 . The third power generation unit 353 is attached to the third side surface 343 of the heat collecting member 340 . Since the first power generation unit 351, the second power generation unit 352, and the third power generation unit 353 have the same configuration, they may be simply referred to as the power generation unit 350 below when they are not distinguished from each other.
 <19.冷却部材の構成>
 冷却部材370は、作動液体(図示略)の潜熱によって冷却するヒートパイプである。冷却部材370は、作動液体が蒸発する蒸発部371、作動液体が凝縮する凝縮部372、および、凝縮部372に取り付けられる放熱フィン373を有する。発電ユニット350においては、蒸発部371よりも凝縮部372が上方に位置するように冷却部材370が配置されている。
<19. Configuration of Cooling Member>
The cooling member 370 is a heat pipe that cools by the latent heat of working liquid (not shown). The cooling member 370 has an evaporating portion 371 in which the working liquid evaporates, a condensing portion 372 in which the working liquid condenses, and heat radiation fins 373 attached to the condensing portion 372 . In power generation unit 350 , cooling member 370 is arranged such that condensation section 372 is located above evaporation section 371 .
 <20.熱電発電装置の使用方法>
 熱エネルギーから電気エネルギーへの所望の変換率に応じて、閉塞部材80によって、集熱部材340の複数の流路340Aのうちの一部の流路が閉じられる。複数の流路340Aのうちの一部の流路が閉じられた熱電ユニット320に上流配管310および下流配管330が連結される。
<20. How to use the thermoelectric generator>
Some of the plurality of channels 340A of the heat collecting member 340 are closed by the closing member 80 according to the desired conversion rate from thermal energy to electrical energy. The upstream pipe 310 and the downstream pipe 330 are connected to the thermoelectric unit 320 in which some of the plurality of channels 340A are closed.
 <21.熱電発電装置の作用>
 装置本体610から送られる高温の流体は、第1配管621、および、上流配管310の順に通過して、集熱部材340の流路340Aの入口340Xに到達する。入口340Xに到達した流体は、閉塞部材80によって閉じられていない流路340Aを通過する。集熱部材340は、流路340Aを通過する流体の熱を吸収し、第1側面341、第2側面342、および、第3側面343に取り付けられる発電ユニット350の熱電変換モジュール100を加熱する。このため、熱電変換モジュール100の第1面100Aの温度が上昇する。一方、熱電変換モジュール100の第2面100Bは、冷却部材370によって冷却されている。このため、熱電変換モジュール100の第1面100Aと第2面100Bとに温度差が生じる。熱電変換モジュール100にゼーベック効果による起電力が発生するため、流体の熱エネルギーが電気エネルギーに変換される。なお、熱電変換モジュール100に取り出し線をつけ、取り出し線に外部抵抗を接続することによって電流が流れるため、変換された電気エネルギーを取り出すことができる。
<21. Action of Thermoelectric Generator>
The high-temperature fluid sent from the device main body 610 passes through the first pipe 621 and the upstream pipe 310 in order, and reaches the inlet 340X of the flow path 340A of the heat collecting member 340 . The fluid that reaches inlet 340X passes through channel 340A that is not closed by blocking member 80 . The heat collecting member 340 absorbs the heat of the fluid passing through the flow path 340A, and heats the thermoelectric conversion modules 100 of the power generation units 350 attached to the first side 341, the second side 342, and the third side 343. Therefore, the temperature of the first surface 100A of the thermoelectric conversion module 100 rises. On the other hand, the second surface 100B of the thermoelectric conversion module 100 is cooled by the cooling member 370. As shown in FIG. Therefore, a temperature difference is generated between the first surface 100A and the second surface 100B of the thermoelectric conversion module 100 . Since an electromotive force is generated by the Seebeck effect in the thermoelectric conversion module 100, thermal energy of the fluid is converted into electrical energy. It should be noted that since electric current flows by attaching a lead wire to the thermoelectric conversion module 100 and connecting an external resistor to the lead wire, the converted electrical energy can be taken out.
 <22.熱電発電装置の特徴>
 本実施形態の熱電発電装置300では、閉塞部材80によって複数の流路340Aの一部を閉じることができる。このため、集熱フィンの取り換え等の煩雑な作業をすることなく、流体の熱エネルギーから電気エネルギーへの変換率を容易に制御できる。
<22. Features of Thermoelectric Generator>
In the thermoelectric generator 300 of the present embodiment, the closing member 80 can partially close the flow paths 340A. Therefore, it is possible to easily control the conversion rate of the fluid from thermal energy to electrical energy without performing complicated work such as replacement of the heat collecting fins.
 <23.実施例>
 本願発明者(ら)は、実施例4~7、および、比較例2の熱電発電装置を製造し、流体の熱エネルギーから電気エネルギーへの変換率を確認する試験を実施した。なお、以下では、説明の便宜上、実施例4~7、および、比較例2の熱電発電装置を構成する要素のうち、第2実施形態と同じ要素には、第2実施形態と同様の符号を付して説明する。
<23. Example>
The inventors (or others) of the present application manufactured the thermoelectric generators of Examples 4 to 7 and Comparative Example 2, and conducted tests to confirm the conversion rate of the fluid from thermal energy to electrical energy. In the following, for convenience of explanation, among the elements constituting the thermoelectric generators of Examples 4 to 7 and Comparative Example 2, the same elements as in the second embodiment are given the same reference numerals as in the second embodiment. It is attached and explained.
 <23-1.実施例4~7の熱電変換モジュールの製造>
 実施例4~7の熱電変換モジュール100を次のように製造した。
 断面2.0×2.0mm、高さ5mmの角柱状のCa2.7Bi0.3Co49焼結体からなるp型熱電変換素子140Pと、CaMn0.98Mo0.023焼結体からなるn型熱電変換素子140Nをそれぞれ112本ずつ製造した。熱電変換モジュール100の各素子対は1本ずつのp型熱電変換素子140Pおよびn型熱電変換素子140Nで構成されている。
<23-1. Production of Thermoelectric Conversion Modules of Examples 4 to 7>
Thermoelectric conversion modules 100 of Examples 4 to 7 were manufactured as follows.
A p-type thermoelectric conversion element 140P made of a Ca2.7Bi0.3Co4O9 sintered body having a cross section of 2.0 × 2.0 mm and a height of 5 mm, and an n-type made of a CaMn0.98Mo0.02O3 sintered body . 112 pieces of each thermoelectric conversion element 140N were manufactured. Each element pair of the thermoelectric conversion module 100 is composed of one p-type thermoelectric conversion element 140P and one n-type thermoelectric conversion element 140N.
 基板110として長さ60mm、幅20mm、厚さ0.8mmのPETフィルム上に2.0×4.5mm、厚さ0.1mmの下面電極120(銀電極)を111枚、2.0×28mm、厚さ0.1mmの電流リード線130(銀電流リード線)2枚を、それぞれの間隔が0.5mmとなるように配列し、その上にp型熱電変換素子140Pとn型熱電変換素子140Nとが交互に直列接続するように配列した。さらに、銀ペーストを塗布した熱電変換素子140のもう一方の電極面上に112枚の2.0×4.5mm、厚さ0.1mmの上面電極150(銀電極)をp型熱電変換素子140Pとn型熱電変換素子140Nとが交互に直列接続するように載せた。このように製造された熱電変換モジュール100の前駆体をホットプレス炉に入れ、1.6MPaの圧力を電極面に垂直になるようにかけ、200℃まで1時間で昇温し、200℃で1時間保持した。その後、加圧を3.2MPaまで上げ、1時間で450℃まで昇温し、450℃で1時間保持した。その後、2時間で860℃まで昇温するが、昇温から1時間後に圧力を6.4MPaまで上げた。860℃でさらに6時間加熱し、その後自然放冷で炉内で冷却して熱電変換モジュール100を製造した。すべての焼成は大気中で行った。同じ方法、条件で合計3枚の熱電変換モジュール100を製造した。 As the substrate 110, 111 pieces of lower surface electrodes 120 (silver electrodes) of 2.0×4.5 mm and 0.1 mm thickness are placed on a PET film having a length of 60 mm, a width of 20 mm and a thickness of 0.8 mm. , two current lead wires 130 (silver current lead wires) with a thickness of 0.1 mm are arranged so that the distance between them is 0.5 mm, and a p-type thermoelectric conversion element 140P and an n-type thermoelectric conversion element are placed thereon. 140N are alternately connected in series. Furthermore, on the other electrode surface of the thermoelectric conversion element 140 coated with the silver paste, 112 upper surface electrodes 150 (silver electrodes) of 2.0 x 4.5 mm and a thickness of 0.1 mm are provided as p-type thermoelectric conversion elements 140P. and n-type thermoelectric conversion elements 140N were alternately connected in series. The precursor of the thermoelectric conversion module 100 manufactured in this way is placed in a hot press furnace, a pressure of 1.6 MPa is applied perpendicularly to the electrode surface, the temperature is raised to 200° C. in 1 hour, and the temperature is increased to 200° C. for 1 hour. held. After that, the pressure was increased to 3.2 MPa, the temperature was raised to 450° C. in 1 hour, and the temperature was maintained at 450° C. for 1 hour. After that, the temperature was raised to 860° C. in 2 hours, and the pressure was raised to 6.4 MPa 1 hour after the temperature was raised. After further heating at 860° C. for 6 hours, the thermoelectric conversion module 100 was manufactured by naturally cooling in the furnace. All firings were performed in air. A total of three thermoelectric conversion modules 100 were manufactured under the same method and conditions.
 <23-2.実施例4~7の熱電発電装置の製造>
 集熱部材340の第1側面341、第2側面342、および、第3側面343に、一面当たり1枚ずつの熱電変換モジュール100を基板110が集熱部材340と接するように配置した。基板110と集熱部材340との間には、60×20mm、厚さ0.5mmの電気絶縁性の伝熱フィルムを挿入した。各熱電変換モジュール100の電極面に60×20mm、厚さ0.5mmの電気絶縁性の伝熱フィルムを載せ、その上に冷却部材370を積み重ね、6本のねじにより集熱部材340に固定した。
<23-2. Production of Thermoelectric Generators of Examples 4 to 7>
One thermoelectric conversion module 100 was arranged on each of the first side surface 341 , the second side surface 342 , and the third side surface 343 of the heat collecting member 340 so that the substrate 110 was in contact with the heat collecting member 340 . An electrically insulating heat transfer film of 60×20 mm and 0.5 mm thick was inserted between the substrate 110 and the heat collecting member 340 . An electrically insulating heat transfer film of 60×20 mm and 0.5 mm thick was placed on the electrode surface of each thermoelectric conversion module 100, and the cooling member 370 was stacked thereon and fixed to the heat collecting member 340 with six screws. .
 <23-3.実施例4~7の熱電発電装置の流路の閉鎖>
 実施例4~7の熱電発電装置300は、閉塞部材80によって閉じられている流路340Aの位置、および、数が異なり、その他の構成は同じである。閉塞部材80は、ねじである。流路70Aのうちの閉塞部材80が取り付けられる部分は、出口340Yである。出口340Yには、ねじと噛み合う雌ねじが形成されている。ねじは、M2.5である。
<23-3. Closure of Flow Channels of Thermoelectric Generators of Examples 4 to 7>
The thermoelectric generators 300 of Examples 4 to 7 differ in the position and number of the flow paths 340A closed by the closing member 80, and are otherwise the same in configuration. Closing member 80 is a screw. A portion of the channel 70A to which the closing member 80 is attached is the outlet 340Y. The outlet 340Y is formed with a female thread that meshes with the screw. The threads are M2.5.
 図32は、実施例4の熱電発電装置300の背面図である。実施例4の熱電発電装置300は、流路340Aが閉塞部材80によって閉じられていない。すなわち、実施例4の熱電発電装置300は、全ての流路340Aに流体が流れる。なお、図32~図36においては、発電ユニット350の図示を省略している。 FIG. 32 is a rear view of the thermoelectric generator 300 of Example 4. FIG. In the thermoelectric generator 300 of Example 4, the channel 340A is not closed by the closing member 80 . That is, in the thermoelectric generator 300 of Example 4, the fluid flows through all the flow paths 340A. 32 to 36, illustration of the power generation unit 350 is omitted.
 図33は、実施例5の熱電発電装置300の背面図である。実施例5の熱電発電装置300は、底面346付近の4個の流路340Aが閉塞部材80によって閉じられている。 33 is a rear view of the thermoelectric generator 300 of Example 5. FIG. In the thermoelectric generator 300 of Example 5, the four flow paths 340A near the bottom surface 346 are closed by the closing members 80 .
 図34は、実施例6の熱電発電装置300の背面図である。実施例6の熱電発電装置300は、底面346付近、および、第3側面343付近の9個の流路340Aが閉塞部材80によって閉じられている。 FIG. 34 is a rear view of the thermoelectric generator 300 of Example 6. FIG. In the thermoelectric generator 300 of Example 6, nine flow paths 340A near the bottom surface 346 and near the third side surface 343 are closed by closing members 80 .
 図35は、実施例7の熱電発電装置300の背面図である。実施例7の熱電発電装置300は、底面346付近、および、第2側面342付近の8個の流路340Aが閉塞部材80によって閉じられている。なお、図33、図34、図35において、流路340Aの出口340Yのうちの黒く塗りつぶされている部分が、閉塞部材80によって閉じられている流路340Aである。 FIG. 35 is a rear view of the thermoelectric generator 300 of Example 7. FIG. In the thermoelectric generator 300 of Example 7, the eight flow paths 340A near the bottom surface 346 and near the second side surface 342 are closed by the closing member 80 . 33, 34, and 35, the portion of the outlet 340Y of the channel 340A that is blacked out is the channel 340A closed by the closing member 80. As shown in FIG.
 <23-4.比較例2の熱電発電装置>
 図36は、比較例2の熱電発電装置300の背面図である。比較例2の熱電発電装置では、集熱部材340の流路340Aが1つである。換言すれば、比較例2の熱電発電装置300は、集熱部材340の内部が空洞である。
<23-4. Thermoelectric generator of Comparative Example 2>
36 is a rear view of the thermoelectric generator 300 of Comparative Example 2. FIG. In the thermoelectric generator of Comparative Example 2, the heat collecting member 340 has one flow path 340A. In other words, in the thermoelectric generator 300 of Comparative Example 2, the inside of the heat collecting member 340 is hollow.
 <23-5.試験方法および条件>
 実施例4~7、および、比較例2の熱電発電装置300を装置本体610に接続した。集熱部材340を通過する直前の流体の温度は、約80℃である。装置本体610によって送られる流体の流量は、4.8L/minである。実施例4~7、および、比較例2の熱電発電装置300について、集熱部材340を通過した後の流体の温度、および、発電ユニット350の発電電力を計測した。発電出力は、発電ユニット350毎に測定し、それらの最大値を加算した。熱電変換モジュール100の両端末の電流リード線130と電子負荷装置の電圧と電流端子とを接続し、電子負荷装置内の負荷抵抗値を走査することで、電流値と電圧値を計測し、電流と電圧を乗じて発電出力を得た。
<23-5. Test method and conditions>
The thermoelectric generators 300 of Examples 4 to 7 and Comparative Example 2 were connected to the device main body 610 . The temperature of the fluid just before passing through the heat collecting member 340 is approximately 80°C. The flow rate of fluid sent by device body 610 is 4.8 L/min. For the thermoelectric generators 300 of Examples 4 to 7 and Comparative Example 2, the temperature of the fluid after passing through the heat collecting member 340 and the power generated by the power generation unit 350 were measured. The power output was measured for each power generation unit 350 and their maximum values were added. By connecting the current lead wires 130 at both terminals of the thermoelectric conversion module 100 to the voltage and current terminals of the electronic load device and scanning the load resistance value in the electronic load device, the current value and the voltage value are measured, and the current and the voltage to obtain the power output.
 <23-6.試験結果>
 図37は、試験結果を示す表である。比較例2の熱電発電装置300は、実施例4~6の熱電発電装置300よりも、発電出力が低くなった。これは、温水から熱電変換モジュール100へ流れる熱量が流路340Aを通過させる場合よりも少なくなったためである。また、比較例2の熱電発電装置300の流体の温度変化も実施例4~7の熱電発電装置300と比べ小さかった。流体が流れる流路340Aを有する実施例4~7の熱電発電装置300は、流路340Aを閉塞部材80によって閉じることで、その周辺の集熱部材340の外周面への熱の流れが遮断され、発電ユニット350からの発電量および温水の温度変化を任意に制御できることが把握できる。
<23-6. Test result>
FIG. 37 is a table showing test results. The thermoelectric power generator 300 of Comparative Example 2 had lower power output than the thermoelectric power generators 300 of Examples 4-6. This is because the amount of heat flowing from the hot water to the thermoelectric conversion module 100 is less than in the case of passing through the flow path 340A. Also, the temperature change of the fluid in the thermoelectric power generator 300 of Comparative Example 2 was smaller than that of the thermoelectric power generators 300 of Examples 4-7. In the thermoelectric generators 300 of Examples 4 to 7, which have the flow path 340A through which the fluid flows, the flow path 340A is closed by the closing member 80, so that the flow of heat to the outer peripheral surface of the heat collecting member 340 around it is blocked. , the power generation amount from the power generation unit 350 and the temperature change of the hot water can be arbitrarily controlled.
 <24.変形例>
 上記各実施形態は本発明に関する熱電発電装置、および、熱電発電装置の使用方法が取り得る形態の例示であり、その形態を制限することを意図していない。本発明に関する熱電発電装置、および、熱電発電装置は、各実施形態に例示された形態とは異なる形態を取り得る。その一例は、各実施形態の構成の一部を置換、変更、もしくは、省略した形態、または、各実施形態に新たな構成を付加した形態である。以下に各実施形態の変形例の幾つかの例を示す。なお、以下の変形例は、技術的に矛盾しない限り組み合わせることが出きる。
<24. Variation>
Each of the above-described embodiments is an example of the possible forms of the thermoelectric generator and the method of using the thermoelectric generator according to the present invention, and is not intended to limit the form. The thermoelectric generator and the thermoelectric generator according to the present invention can take forms different from those illustrated in each embodiment. One example is a form in which a part of the configuration of each embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to each embodiment. Some examples of modifications of each embodiment are shown below. It should be noted that the following modified examples can be combined as long as there is no technical contradiction.
 <24-1>
 上記第1実施形態では、熱電発電装置10を燃焼バーナー500に適用する例について、説明したが、熱電発電装置10が適用される例は、これに限定されない。例えば、熱電発電装置10を工業炉、焼却炉から排出されるガス、または、自動車の排気ガスに含まれる熱を電気に変換するために用いることもできる。
<24-1>
In the first embodiment described above, an example in which the thermoelectric power generator 10 is applied to the combustion burner 500 has been described, but an example in which the thermoelectric power generator 10 is applied is not limited to this. For example, the thermoelectric generator 10 can be used to convert the heat contained in exhaust gases from industrial furnaces, incinerators, or automobile exhaust gases into electricity.
 <24-2>
 上記第2実施形態では、熱電発電装置300を温水循環装置600に適用する例について、説明したが、熱電発電装置300が適用される例は、これに限定されない。例えば、熱電発電装置300を熱交換器から排出される温水に含まれる熱を電気に変換するために用いることもできる。
<24-2>
In the above-described second embodiment, an example in which the thermoelectric power generator 300 is applied to the hot water circulation system 600 has been described, but an example in which the thermoelectric power generator 300 is applied is not limited to this. For example, thermoelectric generator 300 can be used to convert heat contained in hot water discharged from a heat exchanger into electricity.
 <24-3>
 上記第1実施形態では、冷却部材200は、水槽210内の冷却水を循環させる構成であったが、冷却水は、水槽210内に滞留していてもよい。また、冷却部材200としては、第2実施形態の冷却部材370のように、ヒートパイプを用いることもできる。図38~図40は、熱電変換モジュール100を集熱部材70の第2側面72に取り付ける場合の変形例の冷却部材370の配置状態を示す図である。図41は、熱電変換モジュール100を集熱部材70の底面76に取り付ける場合の変形例の冷却部材370の配置状態を示す図である。図42は、熱電変換モジュール100を集熱部材70の第1側面71または第3側面73に取り付ける場合の変形例の冷却部材370の配置状態を示す図である。図44~図46は、集熱部材70の熱電変換モジュール100を取り付ける面が傾斜している場合の変形例の冷却部材370の配置状態を示す図である。いずれの変形例においても、冷却部材370の凝縮部372が、蒸発部371よりも上方に位置するように冷却部材370が配置される。
<24-3>
In the first embodiment, the cooling member 200 is configured to circulate the cooling water in the water tank 210 , but the cooling water may stay in the water tank 210 . As the cooling member 200, a heat pipe can also be used like the cooling member 370 of the second embodiment. FIGS. 38 to 40 are diagrams showing the arrangement state of the cooling member 370 of a modified example when the thermoelectric conversion module 100 is attached to the second side surface 72 of the heat collecting member 70. FIG. FIG. 41 is a diagram showing the arrangement state of the cooling member 370 of a modified example when the thermoelectric conversion module 100 is attached to the bottom surface 76 of the heat collecting member 70 . FIG. 42 is a diagram showing the arrangement state of the cooling member 370 of a modified example when the thermoelectric conversion module 100 is attached to the first side surface 71 or the third side surface 73 of the heat collecting member 70 . FIGS. 44 to 46 are diagrams showing the arrangement state of the cooling member 370 of the modified example when the surface of the heat collecting member 70 on which the thermoelectric conversion module 100 is attached is inclined. In any modification, cooling member 370 is arranged such that condensation portion 372 of cooling member 370 is located above evaporation portion 371 .
 10  :熱電発電装置
 20  :上流配管(配管)
 40  :熱電ユニット
 60  :下流配管(配管)
 70  :集熱部材
 70A :流路
 70X :入口
 70Y :出口
 70Z :中間部
 80  :閉塞部材
 90  :発電ユニット
 100 :熱電変換モジュール
 100A:第1面
 100B:第2面
 140 :熱電変換素子
 140P:p型熱電変換素子
 140N:n型熱電変換素子
 200 :冷却部材
 300 :熱電発電装置
 310 :上流配管
 320 :熱電ユニット
 330 :下流配管
 340 :集熱部材
 340A:流路
 340X:入口
 340Y:出口
 350 :発電ユニット
 360 :熱電変換モジュール
 370 :冷却部材
 371 :蒸発部
 372 :凝縮部
 373 :放熱フィン
10: Thermoelectric generator 20: Upstream piping (piping)
40: thermoelectric unit 60: downstream piping (piping)
70: Heat collecting member 70A: Flow path 70X: Inlet 70Y: Outlet 70Z: Intermediate part 80: Closing member 90: Power generation unit 100: Thermoelectric conversion module 100A: First surface 100B: Second surface 140: Thermoelectric conversion element 140P: p Type thermoelectric conversion element 140N: n-type thermoelectric conversion element 200: cooling member 300: thermoelectric generator 310: upstream pipe 320: thermoelectric unit 330: downstream pipe 340: heat collecting member 340A: flow path 340X: inlet 340Y: outlet 350: power generation Unit 360: Thermoelectric conversion module 370: Cooling member 371: Evaporator 372: Condenser 373: Radiation fin

Claims (11)

  1.  流体が流れる配管と、前記配管と接続される熱電ユニットと、を備える熱電発電装置であって、
     前記熱電ユニットは、
     前記流体が通過する複数の流路を有する集熱部材と、
     前記集熱部材の表面に取り付けられる熱電変換モジュールと、を備え、
     前記熱電変換モジュールは、前記集熱部材の前記表面に面し、前記流体によって加熱される第1面と、前記第1面と反対側の第2面と、を含み、
     前記第1面と前記第2面との間で温度差が発生するように構成される
     熱電発電装置。
    A thermoelectric generator comprising a pipe through which a fluid flows and a thermoelectric unit connected to the pipe,
    The thermoelectric unit is
    a heat collecting member having a plurality of flow paths through which the fluid passes;
    a thermoelectric conversion module attached to the surface of the heat collecting member,
    The thermoelectric conversion module includes a first surface facing the surface of the heat collecting member and heated by the fluid, and a second surface opposite to the first surface,
    A thermoelectric generator configured to generate a temperature difference between the first surface and the second surface.
  2.  前記熱電変換モジュールを前記第2面から冷却するように構成される冷却部材を備え、
     前記冷却部材は、前記集熱部材と接続される
     請求項1に記載の熱電発電装置。
    a cooling member configured to cool the thermoelectric conversion module from the second surface;
    The thermoelectric generator according to claim 1, wherein the cooling member is connected to the heat collecting member.
  3.  前記集熱部材は、角柱状である
     請求項1または2に記載の熱電発電装置。
    The thermoelectric generator according to claim 1 or 2, wherein the heat collecting member has a prism shape.
  4.  前記複数の流路のうちの一部の流路を閉じる閉塞部材を備える
     請求項1~3のいずれか一項に記載の熱電発電装置。
    The thermoelectric generator according to any one of claims 1 to 3, further comprising a closing member that closes some of the plurality of flow paths.
  5.  前記流路は、前記流体の入口、前記流体の出口、および、前記入口と前記出口との間の中間部を有し、
     前記閉塞部材は、前記入口、前記出口、および、前記中間部の少なくとも1つを閉塞するように構成される
     請求項4に記載の熱電発電装置。
    the flow path has an inlet for the fluid, an outlet for the fluid, and an intermediate portion between the inlet and the outlet;
    5. The thermoelectric generator of Claim 4, wherein the closure member is configured to block at least one of the inlet, the outlet, and the intermediate section.
  6.  前記熱電変換モジュールは、p型熱電変換素子およびn型熱電変換素子を含み、
     前記p型熱電変換素子は、
     Ca3-pBipCo4q・・・(1)
    (式(1)中、p、qは、0≦p≦1、8.5≦q≦10を満たす数である。)または、
     Bi2Sr2-rCarCo2t・・・(2)
    (式(2)中、r、tは、0.0≦r≦2.0、8.5≦t≦10を満たす数である。)で表される組成式を満たす層状コバルト系酸化物によって構成され、
     前記n型熱電変換素子は、
     CaMn1-Xxy・・・(3)
    (式(3)中、Mは、Nb、Ta、Mo、および、Wからなる群から選ばれた少なくとも一種の元素であり、x、yは、0≦x≦0.1、2.8≦y≦3.2を満たす数である。)
    で表される組成式を満たすペロブスカイト型カルシウムマンガン系酸化物、または、
     AabNiSn・・・(4)
    (式(4)中、Aは、TiまたはZrであり、Bは、AがTiであるとき、Hf,Zrの少なくとも1つであり、AがZrであるとき、Hf,Tiの少なくとも1つであり、0.5≦a≦1、0≦b≦0.5である。)
     で表される組成式を満たすハーフホイスラー合金によって構成される
     請求項1~4のいずれか一項に記載の熱電発電装置。
    The thermoelectric conversion module includes a p-type thermoelectric conversion element and an n-type thermoelectric conversion element,
    The p-type thermoelectric conversion element is
    Ca3 - pBipCo4Oq ( 1 )
    (In formula (1), p and q are numbers that satisfy 0 ≤ p ≤ 1 and 8.5 ≤ q ≤ 10.) or
    Bi2Sr2 -rCarCo2Ot ( 2 )
    (In formula (2), r and t are numbers that satisfy 0.0 ≤ r ≤ 2.0 and 8.5 ≤ t ≤ 10.) configured,
    The n-type thermoelectric conversion element is
    CaMn1 -xMxOy ( 3 )
    (In formula (3), M is at least one element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are 0 ≤ x ≤ 0.1, 2.8 ≤ y is a number that satisfies 3.2.)
    Perovskite-type calcium manganese oxide satisfying the composition formula represented by, or
    A a B b NiSn (4)
    (In formula (4), A is Ti or Zr, B is at least one of Hf and Zr when A is Ti, and at least one of Hf and Ti when A is Zr. , and 0.5 ≤ a ≤ 1 and 0 ≤ b ≤ 0.5.)
    The thermoelectric generator according to any one of claims 1 to 4, which is composed of a half-Heusler alloy that satisfies the composition formula represented by:
  7.  前記冷却部材は、放熱フィンを含む
     請求項2を引用する請求項3~6のいずれか一項に記載の熱電発電装置。
    The thermoelectric generator according to any one of claims 3 to 6 citing claim 2, wherein the cooling member includes heat radiating fins.
  8.  前記冷却部材は、循環または滞留する液体を含む
     請求項2を引用する請求項3~7のいずれか一項に記載の熱電発電装置。
    The thermoelectric generator according to any one of claims 3 to 7 citing claim 2, wherein the cooling member includes a circulating or stagnant liquid.
  9.  前記液体は、冷却水である
     請求項8に記載の熱電発電装置。
    The thermoelectric generator according to claim 8, wherein the liquid is cooling water.
  10.  前記冷却部材は、作動液体の潜熱によって冷却するヒートパイプを含む
     請求項2を引用する請求項3~9のいずれか一項に記載の熱電発電装置。
    The thermoelectric generator according to any one of claims 3 to 9, citing claim 2, wherein the cooling member includes a heat pipe that cools by the latent heat of the working liquid.
  11.  流体が流れる配管と、前記配管と接続される熱電ユニットと、を備える熱電発電装置の使用方法であって、
     前記熱電ユニットは、
     前記流体が通過する複数の流路を有する集熱部材と、
     前記集熱部材の表面に取り付けられる熱電変換モジュールと、を備え、
     前記熱電変換モジュールは、前記集熱部材の前記表面に面し、前記流体によって加熱される第1面と、前記第1面と反対側の第2面と、を含み、
     前記第1面と前記第2面との間で温度差が発生するように構成され、
     熱エネルギーから電気エネルギーへの所望の変換率に応じて、閉塞部材によって、前記複数の流路のうちの一部の流路を閉じるステップを含む
     熱電発電装置の使用方法。
    A method of using a thermoelectric generator comprising a pipe through which a fluid flows and a thermoelectric unit connected to the pipe,
    The thermoelectric unit is
    a heat collecting member having a plurality of flow paths through which the fluid passes;
    a thermoelectric conversion module attached to the surface of the heat collecting member,
    The thermoelectric conversion module includes a first surface facing the surface of the heat collecting member and heated by the fluid, and a second surface opposite to the first surface,
    configured to generate a temperature difference between the first surface and the second surface;
    A method of using a thermoelectric generator, comprising closing a portion of the plurality of flow paths with a closure member according to a desired conversion rate of thermal energy to electrical energy.
PCT/JP2022/040670 2021-12-06 2022-10-31 Thermoelectric generation device and method of using thermoelectric generation device WO2023105992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198119 2021-12-06
JP2021198119 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023105992A1 true WO2023105992A1 (en) 2023-06-15

Family

ID=86730188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040670 WO2023105992A1 (en) 2021-12-06 2022-10-31 Thermoelectric generation device and method of using thermoelectric generation device

Country Status (1)

Country Link
WO (1) WO2023105992A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238272A (en) * 2001-02-06 2002-08-23 Tokyo Gas Co Ltd Generating station utilizing high-temperature exhaust heat
JP2014037796A (en) * 2012-08-15 2014-02-27 Toyota Motor Corp Thermoelectric generator
US20180187587A1 (en) * 2016-12-29 2018-07-05 Hyundai Motor Company Thermoelectric generating apparatus of vehicle and method for controlling the same
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238272A (en) * 2001-02-06 2002-08-23 Tokyo Gas Co Ltd Generating station utilizing high-temperature exhaust heat
JP2014037796A (en) * 2012-08-15 2014-02-27 Toyota Motor Corp Thermoelectric generator
US20180187587A1 (en) * 2016-12-29 2018-07-05 Hyundai Motor Company Thermoelectric generating apparatus of vehicle and method for controlling the same
WO2021153550A1 (en) * 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
CN103959493B (en) The integrated package of micro- heat exchanger and electrothermal module
JP4446064B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP4905877B2 (en) Cogeneration system and operation method thereof
WO2017136793A1 (en) Electrode structure for magnesium silicide-based bulk materials to prevent elemental migration for long term reliability
JP4797148B2 (en) Conductive paste for thermoelectric conversion material connection
US9476617B2 (en) Thermoelectric modules for an exhaust system
JP3472813B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
CN103238227B (en) For the electrothermal module of gas extraction system
JP2006278997A (en) Compound thermoelectric module
WO2023105992A1 (en) Thermoelectric generation device and method of using thermoelectric generation device
JP2003282964A (en) COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP6152262B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP4457215B2 (en) Tube material with thermoelectric power generation function
JP4595123B2 (en) Thermoelectric generator
JP4257419B2 (en) Composite oxide having n-type thermoelectric conversion characteristics
US6806218B2 (en) Grain oriented ceramics, thermoelectric conversion element and production process thereof
JP4883846B2 (en) Thermoelectric conversion module for high temperature
JP2005268240A (en) Thermoelectric module
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
JP2002141562A (en) Composite oxide excellent for thermoelectric conversion
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP4595071B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method
JP2010228927A (en) Cobalt-manganese compound oxide
KR20230064547A (en) Flat type thermoelectric element for cooling of battery cell
WO2008038519A1 (en) Thermoelectric conversion element, thermoelectric conversion module, and method for production of thermoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903924

Country of ref document: EP

Kind code of ref document: A1