WO2005064452A1 - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
WO2005064452A1
WO2005064452A1 PCT/JP2004/019804 JP2004019804W WO2005064452A1 WO 2005064452 A1 WO2005064452 A1 WO 2005064452A1 JP 2004019804 W JP2004019804 W JP 2004019804W WO 2005064452 A1 WO2005064452 A1 WO 2005064452A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
insulating base
base material
connector
movable
Prior art date
Application number
PCT/JP2004/019804
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Takahata
Yuichiro Takai
Original Assignee
Nissha Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co., Ltd. filed Critical Nissha Printing Co., Ltd.
Publication of WO2005064452A1 publication Critical patent/WO2005064452A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface

Definitions

  • the present invention relates to a touch panel arranged on the front of a display.
  • FIG. 8 is an exploded perspective view showing a general touch panel.
  • the touch panel includes a fixed insulating substrate 3 such as a glass plate and a movable insulating substrate 6 such as a polyester film below.
  • the fixed side insulating base material 3 On the upper side, these are opposed to each other, and the fixed side insulating base material 3 has a transparent fixed electrode 1 made of indium tin oxide (ITO) or the like on its upper surface and a silver paste or the like.
  • ITO indium tin oxide
  • a transparent movable electrode 4 made of ITO or the like and a lead wire 5 made of silver paste or the like are formed on the lower surface of the movable-side insulating base material 6.
  • the fixed electrode 1 and the movable electrode 4 have a structure separated by a spacer 7.
  • the end 8a of the heat seal connector 8 is inserted between the fixed insulating base material 3 and the movable insulating base material 6, whereby the output ends 9b, 9 of the lead wires 2, 5 are inserted.
  • a is connected to the connector terminals 12 b and 12 a of the heat seal connector 8.
  • the fixed-side insulating base material 3 and the movable-side insulating base material 6 are bonded together with a double-sided tape 10 or the like at the periphery except the insertion portion of the heat seal connector 8.
  • touch panels have begun to be used in devices such as mobile phones and car navigation systems.
  • the temperature inside the car is particularly high (eg, about 90 ° C), especially in summer. ), High heat resistance is also required for touch panels.
  • FIG. 9 is a cross-sectional view showing one end 8a of a heat seal connector used for a conventional touch panel, and shows a state before the touch panel is inserted into a touch panel main body 11.
  • FIG. 10 is a cross-sectional view when the end 8 a of the conventional heat seal connector 8 is inserted between the movable-side insulating base material 6 and the fixed-side insulating base material 3
  • FIG. 3 is a cross-sectional view showing a state where the pressure is applied by a thermocompression bonding machine 17.
  • FIG. 14 is an external perspective view for explaining a state of crimping by the thermocompression bonding machine. Further, FIG.
  • FIG. 12 is a cross-sectional view showing the conventional movable-side insulating base material 6—the one end 8a of the heat-seal connector and one fixed-side insulating base material 3 in a state of thermocompression bonding.
  • FIG. 9 is a cross-sectional view taken along the line AA in FIG. 8 in the direction of the arrow, and FIGS. 10 to 12 are cross-sectional views of the corresponding portions.
  • the end 8a of the heat seal connector is provided with two connector terminals 12a and 12b on the upper and lower surfaces of the base film 15 with two spaces between them. 15 and the connector terminals 12 a and 12 b are covered with an anisotropic conductive adhesive 14.
  • the end 8a of the heat seal connector 8 is inserted between the movable insulating base 6 and the fixed insulating base 3 so as to be connected to the output ends 9a and 9b of the lead wires 5 and 2.
  • Thermocompression bonding is performed.
  • the touch panel with the connector end 8a inserted in this way is placed on the mounting table 17b of the thermocompression bonding machine 17, and the heated rubber elastic body 17a (metal head 17c This is done by applying a pressing force from above with rubber (living body 17a attached to the tip of the heating) (Fig. 14 (arrow B)).
  • thermocompression bonding area portion where thermocompression bonding is performed with one end 8a of the heat seal connector sandwiched between the fixed insulating base material 3 and the movable insulating base material 6
  • FIG. 11 There are a portion where the connector terminals 12a and 12b in the one end portion 8a and the output terminals 9a and 9b of the touch panel body 11 overlap, and a portion where these do not exist.
  • thermocompression bonding is performed by the thermocompression bonding machine 17 in this state, the portion where the terminals 12a and 12b and the output ends 9a and 9b do not exist is located on the rubber elastic body 17a side.
  • the movable insulating substrate 6 is deformed (FIG. 11).
  • the connector terminals 12a and 12b of the heat seal connector 18 and the output end 9 of the touch panel body 11 are already hardened by heat or light curing so that the shape can be maintained. Therefore, the height of the portion where the connector terminal 12 and the output end 9 are present and the height of the portion where the connector terminal 12 and the output end 9 are not present are different even in the same thermocompression bonding area.
  • the relatively soft movable-side insulating base material 6 is deformed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a touch panel in which disconnection or poor connection is unlikely to occur at a connection portion of a heat seal connector even when exposed to a high temperature environment. Is to do.
  • the present invention which has achieved the above object, provides an end of a heat seal connector having a connector terminal between a fixed insulating base having an output end and a movable insulating base having an output end in a touch panel.
  • a touch panel with a heat seal connector formed by inserting a portion and performing thermocompression bonding via an anisotropic conductive adhesive, wherein the thermocompression bonding area between the fixed-side insulating base material and the movable-side insulating base material is provided.
  • the output terminal non-formation area on the output end formation plane and / or the connector terminal non-formation area on the connector terminal formation plane are provided with a heat or electromagnetic wave cured film deformation suppression layer.
  • the film deformation suppressing portion is provided at a portion other than the output end of the touch panel body or the portion where the connector terminal of the heat seal connector is present (a portion where the output end or the connector terminal is not present in plan view).
  • the film deformation suppressing layer is cured by heat or electromagnetic waves as described above, and one end of the heat seal connector is inserted between the fixed insulating base and the movable insulating base. If the film deformation suppressing layer is deformed by this thermocompression operation during the thermocompression bonding step, the above-described action of correcting the deformation of the movable insulating base material as described above becomes difficult to be exerted.
  • the electromagnetic waves include visible light, ultraviolet light, and the like.
  • the film deformation suppressing layer may be made of an electromagnetic wave curable resin (a synthetic resin that is cured by being irradiated with an electromagnetic wave) or a thermosetting resin (a heat-curable resin). (A synthetic resin that cures when cured).
  • the film deformation suppressing layer is made of a non-conductive material or an anisotropic conductive material.
  • the film deformation suppressing layer is formed of the above-mentioned output terminal or the above-mentioned one. Even if it protrudes so as to cover these surfaces without staying in the non-formation region of the connector terminal, it is more preferable because conduction between the output terminal and the connector terminal is not impaired.
  • the film deformation suppressing layer is formed at all of the four types.
  • the protrusion due to the presence of the output end and the connector terminal can be leveled evenly by the film deformation suppressing layer.
  • the protrusion is to some extent. Since the residual stress is reduced sufficiently to reduce the residual stress, there is substantially no fear of peeling at the connection portion of the heat seal connector, and good durability is exhibited.
  • the thickness of the film deformation suppressing layer is the same as (or almost the same as) the thickness of the output end.
  • the total thickness of the connector terminal facing the end may be the total thickness (that is, the thickness of the output terminal + the thickness of the connector terminal).
  • the movable-side insulating base material can be in a completely flat state.
  • the total thickness of the output terminal facing the connector terminal ie, the thickness of the output terminal + the thickness of the connector terminal
  • the movable-side insulating base material can be in a completely flat state.
  • the film deformation suppressing layer may be formed at only one of the above four types (only (1), only (2), only (3), or only (4)).
  • the thickness of the film deformation suppressing layer By adjusting the thickness of the film deformation suppressing layer, the effect of suppressing the deformation of the movable-side insulating substrate can be expected, and the risk of peeling at the connection portion of the heat seal connector can be reduced.
  • the film deformation suppressing layer is formed at least on one or both of the fixed insulating substrate side and the movable insulating substrate side.
  • the heat seal connector may have a structure in which the connector terminals are provided on upper and lower surfaces of a base film, and the heat seal connector may be formed in the non-forming region of the output end.
  • the layer may be formed at least on the upper, lower, or upper and lower surfaces of the base film in the non-connector terminal forming regions.
  • the touch panel of the present invention has the above-described configuration, the following effects can be obtained.
  • the touch panel according to the present invention suppresses deformation of the movable insulating base material and the like due to thermocompression bonding as described above, and reduces stress at the connection surface between the touch panel main body and the heat seal connector. Even when exposed to a high-temperature environment, such as in the use environment, disconnection and poor connection at the connection part of the heat seal connector are unlikely to occur. in addition Since the unevenness of the movable insulating substrate is almost eliminated at the thermocompression bonding part, the appearance is improved.
  • FIG. 1 is a partially enlarged side view showing the vicinity of an output end of a touch panel according to a first embodiment of the present invention before a heat seal connector is inserted.
  • FIG. 2 is a partially enlarged cross-sectional view showing a thermocompression bonding portion in the first embodiment of the touch panel according to the present invention.
  • FIG. 3 is a cross-sectional view showing an end portion of the heat seal connector before the touch panel according to the second embodiment of the present invention is inserted into the touch panel main body.
  • FIG. 4 is a partially enlarged cross-sectional view showing a thermocompression bonding portion of the touch panel according to the second embodiment of the present invention.
  • FIG. 5 is a partially enlarged cross-sectional view showing a thermocompression bonding portion in the third embodiment of the touch panel according to the present invention.
  • FIG. 6 is a cross-sectional view showing an end of the heat seal connector before being inserted into the touch panel main body in another embodiment of the touch panel according to the present invention.
  • FIG. 7 is a cross-sectional view showing an end of a heat seal connector before being inserted into a touch panel main body in still another embodiment of the touch panel according to the present invention.
  • FIG. 8 is an exploded perspective view showing an example of a general configuration of a touch panel.
  • FIG. 9 is a cross-sectional view showing one end of the heat seal connector before the touch panel according to the related art is inserted into the touch panel main body.
  • FIG. 10 is a partially enlarged cross-sectional view showing a thermocompression bonding step of a touch panel according to the related art.
  • FIG. 11 is a partially enlarged cross-sectional view showing a thermocompression bonding process of a touch panel according to the related art.
  • Figure 12 Partially enlarged section showing the thermocompression bonding process of a touch panel according to the prior art FIG.
  • FIG. 13 is a front view showing another example of the general configuration of the touch panel.
  • FIG. 14 is an external perspective view showing a state of thermocompression bonding by a thermocompression bonding machine.
  • FIG. 8 is a perspective exploded view showing an example of a general configuration of a touch panel
  • FIG. 13 is a front view showing a general touch panel according to another example.
  • the touch panel has a fixed-side insulating base material 3 and a movable-side insulating base material 6 opposed to each other, and has a wide rectangular fixed electrode 1 formed on the upper surface of the fixed-side insulating base material 3.
  • lead wires 2 are connected to two sides (sides along the Y direction) opposite to the fixed electrode 1 in the X direction, and a wide rectangular shape is formed on the lower surface of the movable-side insulating base material 6.
  • the movable electrode 4 is formed, and the lead wire 5 is connected to each of two sides (sides along the X direction) of the movable electrode 4 facing the Y direction, and the fixed electrode 1 and the movable electrode 4 are connected to each other.
  • the spacers are separated by spacers 7 formed on the fixed electrode 1.
  • the end 8 a of the heat seal connector 8 is inserted between the fixed insulating base 3 and the movable insulating base 6, and is connected to the output ends 9 b and 9 a of the leads 2 and 5.
  • the connector terminals 12b and 12a of one end 8a of the heat seal connector are connected.
  • the fixed-side insulating base material 3 and the movable-side insulating base material 6 are bonded together with a double-sided tape 10 on the periphery except for the inserted portion of the heat seal connector one end 8a.
  • thermocompression bonding machine 17 Fig. 14
  • Examples of the material of the fixed-side insulating base material 3 include glass plates such as soda glass, borosilicate glass, and tempered glass, and engineering materials such as polycarbonate-based, polyamide-based polyetherketone-based, norpolene-based, and polyolefin-based materials.
  • a flexible transparent film of a plastic such as a plastic, an atarinole type, a polyethylene terephthalate type, or a polybutylene terephthalate type can be used. Further, it may be a laminate of a transparent film and a glass plate, or a laminate of a transparent plastic.
  • Examples of the material of the fixed electrode 1 and the movable electrode 4 include metal oxide films such as tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, and indium tin oxide (ITO); A composite film mainly composed of an oxide, and a metal film of gold, silver, copper, tin, nickel, aluminum, palladium, and the like can be given.
  • the fixed-side insulating base material 3 is formed using a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like.
  • etching method A method of forming a conductive film on the entire surface and then removing unnecessary portions by etching.
  • a resist is formed on a portion to be left as an electrode by a photolithography method or a screen method, and then the resist is formed by dipping in an etching solution such as hydrochloric acid or spraying the etching solution.
  • an etching solution such as hydrochloric acid or spraying the etching solution.
  • the conductive coating is removed from the uncoated portion, and then the resist is swelled or dissolved by immersion in a solvent to remove the resist.
  • a material in which a conductive boiler is contained in a thermosetting resin such as an epoxy-based, phenol-based, melamine-based, or silicon-based resin can be used.
  • a resin in which a conductive filler is contained in a photocurable resin may be used.
  • an inorganic insulator such as alumina or glass, or an organic polymer such as polystyrene, polyethylene or dibutylbenzene is used as a core material, and the surface of the core material is formed of a conductive layer such as gold or nickel.
  • a coated product may be used.
  • Examples of a method for forming the lead wires 2 and 5 include a screen printing method and a dispensing method. After the lead wires 2 and 5 are formed by the screen printing method and the dispense method, they are heat- or electromagnetic-wave-hardened in advance before thermocompression bonding.
  • Examples of the material of the movable-side insulating base material 6 include engineering plastics such as polycarbonate, polyamide, polyetherketone, norpolene, and polyolefin, and acrylic, polyethylene terephthalate, and the like.
  • a flexible transparent film such as polybutylene terephthalate can be used.
  • the spacer 7 may be, for example, an acrylate resin such as a melamine acrylate resin, a urethane acrylate resin, an epoxy acrylate resin, a methacryl acrylate resin, an acryl acrylate resin, or a polyvinyl alcohol resin.
  • an acrylate resin such as a melamine acrylate resin, a urethane acrylate resin, an epoxy acrylate resin, a methacryl acrylate resin, an acryl acrylate resin, or a polyvinyl alcohol resin.
  • a photocurable resin can be obtained by forming a fine dot shape by a photo process.
  • the spacer 7 can be formed by forming many fine dots of a resin such as an epoxy resin, a polyester resin, and an acrylic acrylate resin by a printing method such as screen printing.
  • two connector terminals are provided at intervals on the upper and lower surfaces of the base film 15, and the base film 15 and the connector terminals 12 are anisotropically conductive adhesive. It has a structure covered by 14.
  • the anisotropic conductive adhesive 14 may not be provided on the heat seal connector 8 side, but may be provided on the touch panel main body 11 side.
  • the material of the base film 15 is polyimide, polyester, A flexible transparent film such as polyetherimide may be used.
  • As a material and a forming method of the connector terminal 12 it is preferable to appropriately select and use the materials described for the lead wires 2 and 5.
  • anisotropic conductive adhesive 14 examples include heat-sensitive adhesives such as polyamide-based, polyethylene-based, polystyrene-based, polyester-based, polyurethane-based, ethylene-vinyl acetate copolymer, and ethylene-acrylate copolymer. It is possible to use a thermoplastic resin, or an epoxy, phenol, melamine, or silicon-based uncured thermosetting resin containing a conductive filler.
  • conductive filler conductive metal powders such as gold, silver, copper, nickel, platinum, palladium, carbon, and graphite may be used, or inorganic insulators such as alumina and glass may be used as core materials.
  • an organic polymer such as polystyrene, polyethylene, or divinylbenzene or the like
  • a conductive layer such as gold or nickel.
  • Examples of the method of applying the anisotropic conductive adhesive 14 include screen printing, a roll coater method, and a dispenser method.
  • thermocompression bonding part between the fixed insulating base material 3 and the movable insulating base material 6, one end 8 a of the heat seal connector
  • FIG. 2 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to the first embodiment of the present invention.
  • FIG. 1 shows a movable-side insulating base material before inserting the heat seal connector end 8a in the first embodiment.
  • FIG. 6 is a cross-sectional view of a thermocompression bonding portion (the thermocompression bonding portion of the touch panel main body 11) representing 6 and the fixed-side insulating base material 3.
  • FIG. 2 is a cross-sectional view taken along the line DD shown in FIG.
  • the first embodiment is different from the first embodiment in that the output end on the plane on which the output end is formed is located on the upper surface side of the fixed-side insulating base material 3 and the lower side
  • a heat or electromagnetic wave cured film deformation suppressing layer (hereinafter, sometimes simply referred to as a film deformation suppressing layer) 16a, 16b is provided.
  • the film deformation suppressing layers 16a and 16b are formed to have the same thickness as the output terminals 9a and 9b.
  • the manufacturing method according to the first embodiment includes, as shown in FIG. 1, a region where the output terminals 9 a and 9 b are not formed on the movable-side insulating base material 6 and the fixed-side insulating base material 3.
  • the connector terminals 12a and 12b are also not formed in this area).
  • Heat or electromagnetic wave hardened film deformation suppression layers 16a and 16b are provided in advance.
  • One end 8a of the heat seal connector is inserted between the fixed-side insulating base material 3 and thermocompression bonding (see Fig. 14).
  • the film deformation suppressing layers 16a and 16b reduce the deformation of the movable-side insulating base material 6 caused by the conventional thermocompression bonding, and as shown in FIG. That is, the stress at the connection surface between the touch panel body 11 and the heat seal connector 8 is reduced.
  • the film deformation suppressing layers 16a and 16b are not limited to a single layer, and may be formed of a plurality of layers. Further, it is preferable that the film deformation suppressing layers 16a and 16b are formed without gaps in the output end non-forming area. Specifically, in the connector insertion width direction (output ends 9a, 9b, It is preferable that there is no gap in the connector terminals 12a and 12b arrangement direction: (1) direction shown in Fig. 2) and no gap in the connector insertion depth direction (F direction shown in Fig. 14). However, if the space is very small, there is almost no stress on the movable-side insulating base material 6, and there is no problem with the adhesiveness.
  • Examples of the material for the film deformation suppressing layers 16a and 16b include thermosetting resins such as epoxy, phenol, melamine, and silicon. Further, a resin in which a conductive filler is contained in an electromagnetic wave curable resin (light curable resin) may be used.
  • Examples of the method for forming the film deformation suppressing layers 16a and 16b include a screen printing method and a dispensing method.
  • the film deformation suppressing layers 16a and 16b of the present invention are formed by a screen printing method or a dispensing method, and then are subjected to thermosetting or electromagnetic wave curing (photo-hardening) before performing thermocompression bonding. ) Since the film deformation suppressing layers 16a and 16b are hardened before the thermocompression bonding as described above, the movable insulating substrate 6 disposed thereon is easily deformed during the thermocompression bonding.
  • the connector terminal 12 of the seal connector 8 and the output terminal 9 of the touch panel main body 11 are not significantly different from each other.
  • the material of the film deformation suppressing layers 16a and 16b is not limited to an insulating material.
  • a material using a thermosetting resin is appropriately selected and used, and after being formed by a screen printing method, a dispensing method, or the like, before forming by thermocompression bonding, It may be heat cured.
  • FIG. 4 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the second embodiment before being inserted between the movable-side insulating base 6 and the fixed-side insulating base 3.
  • FIG. 3 is a cross-sectional view showing one end 8a of the heat seal connector. 4 corresponds to a section taken along line D-D shown in FIG. 13, and FIG. 3 corresponds to a section taken along line A-A shown in FIG.
  • film deformation suppression is performed on the upper and lower surfaces of the base film of the end portion 8a of the heat seal connector in the thermocompression bonding region, in the non-connector terminal forming region on the plane where the connector terminals 12a and 12b are formed.
  • Layers 16a and 16b are provided.
  • the film deformation suppressing layers 16a and 16b have the same thickness as the connector terminals 12a and 12b.
  • thermocompression bonding a is inserted between the movable-side insulating base material 6 and the fixed-side insulating base material 3 to perform thermocompression bonding (see Fig. 14).
  • the film deformation suppressing layers 16a and 16b suppress the deformation of the movable-side insulating base material 6 which has conventionally been caused by thermocompression bonding.
  • the film deformation suppressing layers 16a and 16b are preferably provided directly on the base film 15. If it is provided on the base film 15 via the anisotropic conductive adhesive 14, the film deformation suppressing layers 16a and 16b are positioned at predetermined positions by the fluidity of the anisotropic conductive adhesive 14 during thermocompression bonding. This is because there is a risk that it cannot be fixed to
  • the material and forming method of the film deformation suppressing layers 16a and 16b of the second embodiment are the same as those of the first embodiment.
  • the film deformation suppressing layers 16a and 16b are not limited to a single layer. It may be composed of a plurality of layers.
  • it is preferable that the connector end is formed without a gap in the non-terminal forming area. However, if it is a small space, even if it is vacant, it does not affect the adhesiveness.
  • FIG. 5 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to Embodiment 3 of the present invention, and corresponds to a cross section taken along line DD shown in FIG.
  • the film is formed on the upper surface side of the fixed-side insulating base material 3 and the lower surface side of the movable-side insulating base material in the output end non-formation region and the connector terminal non-formation region on the upper and lower surfaces of the base film 15
  • Deformation suppression layers 16a and 16b are provided.
  • the manufacturing method according to the third embodiment is characterized in that the heat- or electromagnetic-wave-cured film deformation suppressing layer 1 is formed in a region where the output terminals 9 a and 9 b of the movable-side insulating base 6 and the fixed-side insulating base 3 are not formed.
  • 6a and 16b are provided (the same thickness as the output terminals 9a and 9b, respectively) (see Fig. 1) and attached to one end 8a of the heat seal connector.
  • the film deformation suppressing layers 16a and 16b are provided on the upper and lower surfaces of the base film 15 (the same thickness as the connector terminals 12a and 12b, respectively) (see Fig. 3).
  • one end 8a of the heat seal connector is inserted between the movable insulating base material 6 and the fixed insulating base material 3 to perform thermocompression bonding (see FIG. 14).
  • thermocompression bonding see FIG. 14
  • the material and the forming method of the film deformation suppressing layers 16a and 16b are the same as those of the first embodiment, and the film deformation suppressing layers 16a and 16b are a single layer.
  • the present invention is not limited to this, and may be composed of a plurality of layers.
  • the total thickness of the film deformation suppression layer 16a (the thickness of one film deformation suppression layer 16a in the first and second embodiments) is determined by the thickness of the output end 9a and the thickness of the output end 9a.
  • the total thickness of the connector terminals 12a to be connected approaches the total, and the total thickness of the film deformation suppressing layer 16b (in the first and second embodiments, the thickness of one film deformation suppressing layer 16b) is output.
  • the thickness approaches the sum of the thickness of the end 9b and the thickness of the connector terminal 12b connected thereto, the effect of suppressing the deformation of the movable-side insulating base material 6 due to the above-mentioned thermocompression bonding increases.
  • the total thickness of the film deformation suppressing layers 16a and 16b is the thickness of the output terminals 9a and 9b and the thickness of the connector terminals 12a and 12b connected to the output terminals 9a and 9b, respectively. More preferably, it is equal to or substantially equal to the sum.
  • the configuration of the touch panel according to the present invention has been described above, but is not limited to the above-described embodiment.
  • the output terminals 9a and 9b of the touch panel body 11 are not provided on the movable insulating base 6 and the fixed insulating base 3, respectively, but are provided on the movable insulating base 6 or the fixed insulating base. Material 3 on either side
  • FIG. 6 a cross-sectional view showing the end 8a of the heat seal connector before being inserted into the touch panel main body in the touch panel according to another embodiment of the present invention
  • the connector terminals 12 of the heat seal connector 8 corresponding to the ends 9a and 9b are provided collectively on one surface of the base film 15.
  • the base film 15 Four connector terminals 12a, 12b are provided on the upper and lower surfaces, and one terminal 12a, 12b used for connection is connected to one of the output terminals 9a, 9b of the touch panel body 11. May be appropriately selected according to the situation.
  • the connector terminals 12a and 12b not used for this connection are also called dummy terminals 13 in particular.
  • an adhesive made of an acrylic resin, an epoxy resin, a phenol resin, a bur resin, or the like may be used instead of the double-sided tape 10.
  • the fixed electrode 1 and / or the movable electrode 4 instead of etching away unnecessary portions after forming a conductive film as shown in FIG.
  • Unnecessary parts may be covered with an insulating layer.
  • Acryl acrylate resin is used as the insulating layer.
  • the insulating layer As a method of forming the insulating layer, there are a screen printing, a photo process and the like. Further, the insulating layer may also serve as an adhesive for bonding. Further, an unnecessary conductive film may be removed by laser etching instead of etching.
  • the fixed electrode 1 and the movable electrode 4 may be formed by pattern printing of a transparent conductive ink.
  • Example 1 A glass plate with a length of 85 mm, a width of 60 mm and a thickness of 1.1 mm was used as a fixed-side insulating substrate, and a 10-nm-thick ITO film was formed on the entire surface by sputtering, followed by an ITO film. By removing the peripheral part of the fixed electrode, a wide rectangular fixed electrode was obtained. First, an epoxy resin was used to form a 2-mm-wide lead wire composed of pass-pers disposed on two sides of the fixed electrode facing in the lateral direction and a routing circuit for outputting each of the bus bars to the outside.
  • a conductive paste containing a silver conductive filler is prepared in a binder made of, and the conductive paste is screen-printed at a predetermined lead line position with a thickness of 10 m, and thereafter, Drying was performed at 120 ° C. for 30 minutes.
  • a dot spacer made of acrylic urethane resin was formed on the fixed electrode by a photo process.
  • the thermocompression bonding area width 20 mm X depth
  • the entire surface of the non-formation area at the output end of the lead wire is screen-printed at 10 / m with an ink made of epoxy resin, and then dried at 120 ° C for 30 minutes.
  • a film deformation suppressing layer was formed.
  • a polyester resin film with a length of 85 mm and a width of 60 mm (length and width are the same dimensions as the above-mentioned fixed-side insulating base material) and a thickness of 188 ⁇ m is used as the movable-side insulating base material.
  • a 1-nm-thick ITO film was formed on the entire surface by sputtering, and the periphery of the ITO film was removed to form a wide rectangular movable electrode 4.
  • a lead wire having a width of 2 mm comprising a busper arranged on two sides of the movable electrode facing in the longitudinal direction and a routing circuit for outputting each from the pass bar to the outside
  • a conductive paste containing a silver conductive filler in a binder made of epoxy resin is prepared, and this conductive paste is screen-printed with a thickness of 10 jam, and then at 120 ° C and 30 ° C. A minute drying was performed.
  • thermocompression bonding area width 20 mm x depth 2.5 mm
  • an ink of epoxy resin is screen-printed to a thickness of 1 O ⁇ m over the entire non-forming area of the output end of the lead wire, Thereafter, drying is performed at 120 ° C. for 30 minutes, thereby forming a film deformation suppressing layer. It was.
  • the fixed-side insulating base material and the movable-side insulating base material are opposed to each other with a spacer so as to separate the fixed electrode and the movable electrode from each other, excluding the vicinity of the output end of the lead wire. Attached with double-sided tape at the periphery to make a touch panel body.
  • This heat seal connector has a strip-shaped polyimide film as a base film, and has a 1-m-wide connector terminal on upper and lower surfaces at an end portion which enters the touch panel body.
  • a lead wire is provided with the connector terminal as one end (the lead wire is formed by the same material and method as the lead wire of the touch panel body).
  • An anisotropic conductive adhesive is applied so as to cover the base film and the terminal of the connector. This anisotropic conductive adhesive is obtained by dispersing nickel metal powder in a binder made of chloroprene rubber. You.
  • thermocompression bonding using thermocompression bonding machine (1 2 0 ° C, 2 0 kg / cm 2, 2 0 sec), it was connected to the connector terminals of the heat seal connector one to the output terminal of Tatsuchipaneru body .
  • the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even under the high-temperature environment required for car navigation and the like, disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector.
  • Example 1 Instead of providing a film deformation suppressing layer on the fixed insulating base material side and the movable insulating base material side as in Example 1 above, a heat seal connector was used. An film deformation suppressing layer was formed, and the other conditions were the same as in Example 1.
  • a melamine-based resin is applied to the entire area of the area where the connector is not formed in the area of the thermocompression bonding before applying the anisotropic conductive adhesive.
  • the ink was screen-printed at a thickness of 10 / m, and then dried at 110 ° C for 90 minutes to form a film deformation suppressing layer.
  • the deformation of the movable insulating base material due to the thermocompression bonding was suppressed to be small, and the stress at the connection surface between the touch panel panel and the heat seal connector 1 was reduced. Therefore, even in the high-temperature environment required for car navigation, etc., disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector.
  • a film deformation suppressing layer was also formed on the heat seal connector. The same as above.
  • the film deformation suppressing layer of this heat seal connector is coated with a melamine-based resin over the entire area where the connector terminals are not formed in the thermocompression bonding area before the application of the anisotropic conductive adhesive, as in Example 2 above.
  • a melamine-based resin over the entire area where the connector terminals are not formed in the thermocompression bonding area before the application of the anisotropic conductive adhesive, as in Example 2 above.
  • Example 2 was formed by screen printing with a thickness of 10 ⁇ , followed by drying at 110 ° C for 90 minutes.
  • Example 1 was the same as Example 1 except that the method for forming the film deformation suppressing layer was as described below.
  • a method for forming the film deformation suppressing layer an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and the ink is screen-printed with a thickness of ⁇ ⁇ . Drying was performed at 20 ° (: 60 minutes), thereby forming a film deformation suppressing layer.
  • Example 2 was the same as Example 2 except that the method for forming the film deformation suppression layer was as described below.
  • a method for forming the film deformation suppressing layer an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and the ink is screen-printed with a thickness of 10 im. Drying was performed at 20 ° C. for 60 minutes to form a film deformation suppressing layer.
  • the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed to be small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation and the like, disconnection, poor connection, and the like are unlikely to occur at the connection portion of the heat seal connector.
  • Example 3 was the same as Example 3 except that the method for forming the film deformation suppression layer was as described below.
  • a method for forming the film deformation suppressing layer an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and this ink is screen-printed with a thickness of 10 ⁇ , and thereafter, 120 ° C, After drying for 60 minutes, a film deformation suppressing layer was formed.
  • the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation systems and the like, disconnection and poor connection at the connection portion of the heat seal connector are unlikely to occur.
  • Example 1 In the same manner as in Example 1 above, a fixed-side insulating base material provided with a film deformation suppressing layer and the movable-side insulating base material were prepared, and these were opposed to each other to obtain a touch panel body, and a heat seal connector was obtained. (Sample 1).
  • a touch panel body was obtained in the same manner as in Example 1 except that the fixed-side insulating base material and the movable-side insulating base material were prepared without forming the film deformation suppressing layer.
  • Samples 1 and 2 For each of Samples 1 and 2, insert the end of the heat seal connector between the fixed-side insulating base material and the movable-side insulating base material of the touch panel body, and then attach a silicon rubber head (2 mm wide). Thermocompression bonding was performed using a thermocompression bonding machine at a compression temperature of 130 ° C. for 10 seconds and a pressure of 30 kg / cm 2 .
  • the touch panel of Sample 1 having the film deformation suppressing layer exhibited good conduction even when exposed to high temperature and high humidity for as long as 500 hours. It can be seen that there is no disconnection or poor connection. On the other hand, in the touch panel of Sample 2 having no film deformation suppressing layer, conduction failure occurred in 300 hours.
  • Sample 1 is a type corresponding to the above-described first embodiment, and the movable-side insulating base material is slightly deformed (see FIG. 2). Therefore, in the case where the movable-side insulating base material has no deformation at all like the third embodiment (see FIG. 5), it is possible to exhibit even more excellent durability. is expected. In the type of the second embodiment, the movable-side insulating base material is also slightly deformed (see FIG. 4), but it is expected that the type of the first embodiment will exhibit the same excellent durability. Industrial potential
  • the present invention relates to a touch panel arranged in front of a display such as an LCD, an organic EL, a CRT, etc., and these CDs are widely used in products such as PDAs, mobile phones, personal computers, car navigations and the like. .
  • the touch panel of the present invention can be effectively used particularly for car navigation applications requiring high heat resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Push-Button Switches (AREA)
  • Manufacture Of Switches (AREA)
  • Position Input By Displaying (AREA)

Abstract

A touch panel where, even in a high temperature environment, wire breaking, connection failure, etc. are unlikely to occur at a section where a heat seal connector is connected. The touch panel has heat- or photo-cured film deformation restricting layers (16) in regions where output ends are not formed, the regions being on planes where output ends (9a, 9b) are formed, on the lower surface side of a movable side insulation base material (6) in a thermo compression bonding region and on the upper surface side of a fixed side insulation material (3).

Description

明細書  Specification
タツチパネノレ 技術分野  Technical field
本発明は、 ディスプレイの前面に配置されるタツチパネルに関する。 背景技術  The present invention relates to a touch panel arranged on the front of a display. Background art
図 8は、 一般的なタツチパネルを表す分解斜視図である。 タツチパネ ルは、 例えば登録実用新案第 3 0 1 8 7 8 0号公報に示されるように、 ガラス板などの固定側絶縁基材 3を下側に、 ポリエステルフィルムなど の可動側絶縁基材 6を上側にして、 これらが対向配置されたものであつ て、 上記固定側絶縁基材 3には、 その上面にインジウムチンオキサイ ド ( I T O ) 等からなる透明な固定電極 1 と、 銀ペース ト等からなるリー ド線 2が形成され、 上記可動側絶縁基材 6には、 その下面に I T O等か らなる透明な可動電極 4と、 銀ペース ト等からなるリード線 5が形成さ れており、 上記固定電極 1 と可動電極 4とがスぺーサー 7によって間が 隔てられた構造となっている。 固定側絶縁基材 3と可動側絶縁基材 6 と の間にはヒートシールコネクター 8の端部 8 aが揷入され、 これによつ て上記リード線 2 , 5の出力端 9 b, 9 aがヒー トシールコネクター 8 のコネクター端子 1 2 b, 1 2 aに接続される様になつている。 また固 定側絶縁基材 3と可動側絶縁基材 6とは、 上記ヒートシールコネクター 8の挿入部分を除く周縁で、 両面テープ 1 0などによって貼り合わせら れている。  FIG. 8 is an exploded perspective view showing a general touch panel. As shown in, for example, Japanese Utility Model Registration No. 3188780, the touch panel includes a fixed insulating substrate 3 such as a glass plate and a movable insulating substrate 6 such as a polyester film below. On the upper side, these are opposed to each other, and the fixed side insulating base material 3 has a transparent fixed electrode 1 made of indium tin oxide (ITO) or the like on its upper surface and a silver paste or the like. A transparent movable electrode 4 made of ITO or the like and a lead wire 5 made of silver paste or the like are formed on the lower surface of the movable-side insulating base material 6. The fixed electrode 1 and the movable electrode 4 have a structure separated by a spacer 7. The end 8a of the heat seal connector 8 is inserted between the fixed insulating base material 3 and the movable insulating base material 6, whereby the output ends 9b, 9 of the lead wires 2, 5 are inserted. a is connected to the connector terminals 12 b and 12 a of the heat seal connector 8. Further, the fixed-side insulating base material 3 and the movable-side insulating base material 6 are bonded together with a double-sided tape 10 or the like at the periphery except the insertion portion of the heat seal connector 8.
上記のような構成のヒー トシールコネクター付のタツチパネルを製造 するにあたっては、 まず固定側絶縁基材 3と可動側絶縁基材 2とを貼り 合わせ、 その後ヒートシールコネクター 8の端部 8 aを固定側絶縁基材 3と可動側絶縁基材 2との間に挿入し、 これらを熱圧着機により熱圧着 するという順序で行われる。 発明の開示 In manufacturing a touch panel with a heat seal connector having the above configuration, first, the fixed-side insulating base material 3 and the movable-side insulating base material 2 are bonded together, and then the end 8a of the heat seal connector 8 is fixed. Inserted between the side insulating base material 3 and the movable side insulating base material 2 It is done in the order of doing. Disclosure of the invention
ところで昨今、 携帯電話やカーナビゲーションといった機器にタツチ パネルが採用され始めているが、 例えば自動車内に設置されるカーナビ ゲーシヨ ンにあっては、 殊に夏場等では車内が高温 (例えば大凡 9 0 °C ) となることから、 タツチパネルに対しても高度な耐熱性が要望さ れている。  Recently, touch panels have begun to be used in devices such as mobile phones and car navigation systems. For example, in car navigation systems installed in cars, the temperature inside the car is particularly high (eg, about 90 ° C), especially in summer. ), High heat resistance is also required for touch panels.
しかしながら、 従来のタツチパネルでは、 高温環境下で使用すると、 ヒートシールコネクタ一 8のコネクタ一端子 1 2とタツチパネル本体 1 1の出力端 9 a, 9 bとの接続部分での接合力が損なわれて剥離を生じ、 ついには断線、 接続不良等の不具合を起こす虞がある。  However, in a conventional touch panel, when used in a high-temperature environment, the bonding force at the connection between the connector 12 of the heat seal connector 18 and the output terminals 9a and 9b of the touch panel body 11 is impaired. Peeling may occur, eventually leading to problems such as disconnection and poor connection.
以下に、 図 9〜1 2を用いてこの剥がれが生じる原理を説明する。 図 9は、 従来のタツチパネルに用いられるヒートシールコネクタ一端 部 8 aを示す断面図であり、 タツチパネル本体 1 1へ揷入する前のもの を表している。 また図 1 0は、 従来のヒートシールコネクター 8の端部 8 aを可動側絶縁基材 6 と固定側絶縁基材 3との間に挿入した時点の断 面図であり、 図 1 1は、 これを熱圧着機 1 7により加圧している様子を 表す断面図である。 また図 1 4は熱圧着機による圧着の様子を説明する 為の外観斜視図である。 更に図 1 2は、 熱圧着された状態の従来の可動 側絶縁基材 6—ヒートシールコネクタ一端部 8 a一固定側絶縁基材 3を 表す断面図である。 尚図 9は、 図 8における A— A断面を矢印の方向に 見たものであり、 図 1 0〜1 2はこれに相当する部分の断面である。 図 9に示す様に、 ヒートシールコネクター端部 8 aは、 ベースフィル ム 1 5の上下面にコネクター端子 1 2 a, 1 2 bがそれぞれ 2つずつ間 隔を開けて設けられ、 これらベースフィルム 1 5およびコネクター端子 1 2 a , 1 2 bを異方導電接着剤 1 4によって覆った構造になっている。 このヒートシールコネクター 8の端部 8 aは、 リード線 5, 2の出力 端 9 a, 9 bに接続するべく、 可動側絶縁基材 6 と固定側絶縁基材 3 と の間に挿入されて熱圧着が行われる。 熱圧着は、 この様にコネクタ一端 部 8 aを挿入した状態のタツチパネルを熱圧着機 1 7の載置台 1 7 bに 載せ、 加熱されたゴム弾性体 1 7 a (金属ヘッ ド 1 7 cを加熱すること によりその先端に取り付けられたゴム弹生体 1 7 aが加熱される) によ り上から押圧力を加えるという方法で行われる (図 1 4 (矢印 B ) ) 。 ところで当該熱圧着領域 (固定側絶縁基材 3 と可動側絶縁基材 6の間 にヒートシールコネクタ一端部 8 aを挟んで熱圧着する部分) では、 図 1 0に示す様に、 ヒートシールコネクタ一端部 8 a中のコネクター端子 1 2 a , 1 2 bとタツチパネル本体 1 1の出力端 9 a, 9 bが重なった 位置で存在する部分と、 これらが存在しない部分とがある。 そしてこの 状態で熱圧着機 1 7により熱圧着を行うと、 上記端子 1 2 a, 1 2 b と 出力端 9 a, 9 bの存在しない部分では、 ゴム弾性体 1 7 a側に位置す る可動側絶縁基材 6に変形を生じてしまう (図 1 1 ) 。 この理由は、 ヒ 一トシールコネクタ一 8のコネクタ一端子 1 2 a, 1 2 bやタツチパネ ル本体 1 1の出力端 9が、 形状維持可能なように既に熱又は光硬化され て硬くなっており、 この為に上記コネクター端子 1 2と出力端 9が存在 する部分と、 これらが存在しない部分とでは、 同じ熱圧着領域内であつ ても高さが異なることとなり、 その上に配置された比較的軟らかい可動 側絶縁基材 6が変形を起こすのである。 Hereinafter, the principle of occurrence of the peeling will be described with reference to FIGS. FIG. 9 is a cross-sectional view showing one end 8a of a heat seal connector used for a conventional touch panel, and shows a state before the touch panel is inserted into a touch panel main body 11. As shown in FIG. FIG. 10 is a cross-sectional view when the end 8 a of the conventional heat seal connector 8 is inserted between the movable-side insulating base material 6 and the fixed-side insulating base material 3, and FIG. FIG. 3 is a cross-sectional view showing a state where the pressure is applied by a thermocompression bonding machine 17. FIG. 14 is an external perspective view for explaining a state of crimping by the thermocompression bonding machine. Further, FIG. 12 is a cross-sectional view showing the conventional movable-side insulating base material 6—the one end 8a of the heat-seal connector and one fixed-side insulating base material 3 in a state of thermocompression bonding. FIG. 9 is a cross-sectional view taken along the line AA in FIG. 8 in the direction of the arrow, and FIGS. 10 to 12 are cross-sectional views of the corresponding portions. As shown in FIG. 9, the end 8a of the heat seal connector is provided with two connector terminals 12a and 12b on the upper and lower surfaces of the base film 15 with two spaces between them. 15 and the connector terminals 12 a and 12 b are covered with an anisotropic conductive adhesive 14. The end 8a of the heat seal connector 8 is inserted between the movable insulating base 6 and the fixed insulating base 3 so as to be connected to the output ends 9a and 9b of the lead wires 5 and 2. Thermocompression bonding is performed. In the thermocompression bonding, the touch panel with the connector end 8a inserted in this way is placed on the mounting table 17b of the thermocompression bonding machine 17, and the heated rubber elastic body 17a (metal head 17c This is done by applying a pressing force from above with rubber (living body 17a attached to the tip of the heating) (Fig. 14 (arrow B)). By the way, in the thermocompression bonding area (portion where thermocompression bonding is performed with one end 8a of the heat seal connector sandwiched between the fixed insulating base material 3 and the movable insulating base material 6), as shown in FIG. There are a portion where the connector terminals 12a and 12b in the one end portion 8a and the output terminals 9a and 9b of the touch panel body 11 overlap, and a portion where these do not exist. When thermocompression bonding is performed by the thermocompression bonding machine 17 in this state, the portion where the terminals 12a and 12b and the output ends 9a and 9b do not exist is located on the rubber elastic body 17a side. The movable insulating substrate 6 is deformed (FIG. 11). The reason is that the connector terminals 12a and 12b of the heat seal connector 18 and the output end 9 of the touch panel body 11 are already hardened by heat or light curing so that the shape can be maintained. Therefore, the height of the portion where the connector terminal 12 and the output end 9 are present and the height of the portion where the connector terminal 12 and the output end 9 are not present are different even in the same thermocompression bonding area. The relatively soft movable-side insulating base material 6 is deformed.
この様に変形して熱圧着され、 可動側絶縁基材 6の変形が熱圧着の後 においても残ると、 応力を発生し (図 1 2の矢印 C参照) 、 タツチパネ ル本体 1 1 とヒートシールコネクター 8との接続部分に常にス トレスが かかった状態となる。 この状態で、 温度の上昇 '下降によって可動側絶 縁基材 6の膨張 ·収縮が繰り返されると、 可動側絶縁基材 6の部分にお いて容易に剥がれが生じるのである。 本発明は以上の問題に鑑みてなされたものであり、 その目的は、 高温 環境下に曝されることがあっても、 ヒートシールコネクターの接続部分 で断線や接続不良等が起こり難いタツチパネルを提供することにある。 上記目的を達成した本発明は、 タツチパネルにおける、 出力端を備え た固定側絶縁基材と、 出力端を備えた可動側絶縁基材との間に、 コネク ター端子を備えたヒートシールコネクターの端部を挿入して、 異方導電 接着剤を介して熱圧着させてなるヒートシールコネクター付のタツチパ ネルであって、 前記固定側絶縁基材と前記可動側絶縁基材の間の上記熱 圧着領域における前記出力端の形成平面での出力端非形成領域、 および /または前記コネクター端子の形成平面でのコネクター端子非形成領域 に、 熱又は電磁波硬化されたフィルム変形抑制層を備えてなることを特 徴とする。 If the deformation of the movable-side insulating substrate 6 remains after the thermocompression bonding, stress is generated (see the arrow C in FIG. 12), and the touch panel body 11 is heat-sealed. The connection to connector 8 is always stressed. In this state, if the expansion and contraction of the movable-side insulating base material 6 is repeated due to the rise and fall of the temperature, the movable-side insulating base material 6 is easily peeled off. The present invention has been made in view of the above problems, and an object of the present invention is to provide a touch panel in which disconnection or poor connection is unlikely to occur at a connection portion of a heat seal connector even when exposed to a high temperature environment. Is to do. The present invention, which has achieved the above object, provides an end of a heat seal connector having a connector terminal between a fixed insulating base having an output end and a movable insulating base having an output end in a touch panel. A touch panel with a heat seal connector formed by inserting a portion and performing thermocompression bonding via an anisotropic conductive adhesive, wherein the thermocompression bonding area between the fixed-side insulating base material and the movable-side insulating base material is provided. And / or wherein the output terminal non-formation area on the output end formation plane and / or the connector terminal non-formation area on the connector terminal formation plane are provided with a heat or electromagnetic wave cured film deformation suppression layer. Sign.
本発明においては上述の様にタツチパネル本体の出力端やヒートシー ルコネクターのコネクター端子が存在する部分以外の部分 (平面的に見 て、 出力端やコネクター端子が存在しない部分) に、 上記フィルム変形 抑制層を設けることにより、 従来熱圧着により生じていた可動側絶縁基 材等の変形 (可動側絶縁基材表面の起伏) を少なく (或いは無しに) で き、 従って残存する変形の応力が低減されることとなる (或いは無くな る) 。  In the present invention, as described above, the film deformation suppressing portion is provided at a portion other than the output end of the touch panel body or the portion where the connector terminal of the heat seal connector is present (a portion where the output end or the connector terminal is not present in plan view). By providing the layer, the deformation (unevenness of the surface of the movable-side insulating base material) of the movable-side insulating base material, which has conventionally occurred by the thermocompression bonding, can be reduced (or eliminated), and the stress of the remaining deformation is reduced. (Or disappear).
上記フィルム変形抑制層としては、 上記の様に熱又は電磁波硬化され たものであることが必要であり、 固定側絶縁基材と可動側絶縁基材との 間にヒートシールコネクタ一端部を揷入して熱圧着する工程の際に、 フ イルム変形抑制層がこの熱圧着操作によって変形するものでは上述の様 な可動側絶縁基材変形是正作用が発揮され難くなるからである。  It is necessary that the film deformation suppressing layer is cured by heat or electromagnetic waves as described above, and one end of the heat seal connector is inserted between the fixed insulating base and the movable insulating base. If the film deformation suppressing layer is deformed by this thermocompression operation during the thermocompression bonding step, the above-described action of correcting the deformation of the movable insulating base material as described above becomes difficult to be exerted.
尚上記電磁波としては、 可視光や紫外線等が挙げられる。 また上記フ イルム変形抑制層としては、 電磁波硬化性樹脂 (電磁波が照射されるこ とによって硬化する合成樹脂) や、 熱硬化性樹脂 (加熱されることによ つて硬化する合成樹脂) が挙げられる。 特にフィルム変形抑制層が、 非 導電材料または異方導電材料からなることが好ましく、 なかでもフィル ム変形抑制層を異方導電材料で構成した場合には、 フィルム変形抑制層 が上記出力端や上記コネクター端子の非形成領域に留まらずに、 これら の表面を覆う様にはみ出た場合でも、 出力端とコネクター端子の導通が 損なわれないので、 より好ましい。 The electromagnetic waves include visible light, ultraviolet light, and the like. The film deformation suppressing layer may be made of an electromagnetic wave curable resin (a synthetic resin that is cured by being irradiated with an electromagnetic wave) or a thermosetting resin (a heat-curable resin). (A synthetic resin that cures when cured). In particular, it is preferable that the film deformation suppressing layer is made of a non-conductive material or an anisotropic conductive material. In particular, when the film deformation suppressing layer is made of an anisotropic conductive material, the film deformation suppressing layer is formed of the above-mentioned output terminal or the above-mentioned one. Even if it protrudes so as to cover these surfaces without staying in the non-formation region of the connector terminal, it is more preferable because conduction between the output terminal and the connector terminal is not impaired.
前記フィルム変形抑制層の形成箇所としては、 熱圧着領域における As a place where the film deformation suppressing layer is formed,
(1)前記固定側絶縁基材側での前記出力端非形成領域、 (2)前記可動側絶 縁基材側での前記出力端非形成領域、 (3)ベースフィルムの上下面に前 記コネクター端子が設けられた構造を呈するものにおける、 前記ベース フィルムの上面のコネクター端子非形成領域、 (4)該ベースフィルムの 下面のコネクタ一端子非形成領域が挙げられる。 (1) the output end non-formation area on the fixed insulating base material side, (2) the output end non-formation area on the movable insulation base material side, and (3) the upper and lower surfaces of the base film. In the structure having connector terminals, there are a connector-free area on the upper surface of the base film, and (4) a connector-free area on the lower surface of the base film.
この 4種類の箇所の全てに前記フィルム変形抑制層を形成した場合が 最も好ましく、 この場合は出力端, コネクター端子の存在による出っ張 りを、 フィルム変形抑制層によって平らに均すことができ、 可動側絶縁 基材を完全な平面状態にして変形応力を零にすることが可能である。 尤も上記(1)と(2)のみにフィルム変形抑制層を形成した場合や、 上記 (3)と(4)のみにフィルム変形抑制層を形成した場合であっても、 或る程 度出っ張りが低減されて十分に残存応力が小さくなるから、 実質的にヒ ートシールコネクターの接続部分での剥離の懸念が殆どなく、 良好な耐 久性を示す。  It is most preferable that the film deformation suppressing layer is formed at all of the four types. In this case, the protrusion due to the presence of the output end and the connector terminal can be leveled evenly by the film deformation suppressing layer. However, it is possible to bring the movable-side insulating base material into a completely planar state and reduce the deformation stress to zero. However, even when the film deformation suppressing layer is formed only in the above (1) and (2), or when the film deformation suppressing layer is formed only in the above (3) and (4), the protrusion is to some extent. Since the residual stress is reduced sufficiently to reduce the residual stress, there is substantially no fear of peeling at the connection portion of the heat seal connector, and good durability is exhibited.
また前記フィルム変形抑制層の厚みと して、 (1)と (2)のみにフィルム 変形抑制層を形成するにあたり、 出力端の厚みと同じ (或いはほぼ同 じ) にする場合の他、 この出力端と対向するコネクター端子の厚みを合 計した厚み (即ち出力端の厚み +コネクター端子の厚み) としても良く、 この場合は可動側絶縁基材を完全な平面状態にすることが可能である。 同様に、 (3)と(4)のみにフィルム変形抑制層を形成するにあたり、 コネ クタ一端子の厚みと同じ (或いはほぼ同じ) にする場合の他、 このコネ クタ一端子と対向する出力端の厚みを合計した厚み (即ち出力端の厚み +コネクター端子の厚み) としても良く、 この場合も可動側絶縁基材を 完全な平面状態にすることができる。 In addition, when forming the film deformation suppressing layer only in (1) and (2), the thickness of the film deformation suppressing layer is the same as (or almost the same as) the thickness of the output end. The total thickness of the connector terminal facing the end may be the total thickness (that is, the thickness of the output terminal + the thickness of the connector terminal). In this case, the movable-side insulating base material can be in a completely flat state. Similarly, in forming the film deformation suppressing layer only in (3) and (4), In addition to making the same (or almost the same) as the thickness of the connector terminal, the total thickness of the output terminal facing the connector terminal (ie, the thickness of the output terminal + the thickness of the connector terminal) may be used. Also in this case, the movable-side insulating base material can be in a completely flat state.
更に上記 4種類の箇所のうち 1つのみ ((1)のみ、 (2)のみ、 (3)のみ、 もしくは(4)のみ) に前記フィルム変形抑制層を形成する様にしても良 く、 該フィルム変形抑制層の厚みを調整することにより、 可動側絶縁基 材の変形抑制効果が期待でき、 ヒートシールコネクターの接続部分での 剥離の虞が低減され得る。  Further, the film deformation suppressing layer may be formed at only one of the above four types (only (1), only (2), only (3), or only (4)). By adjusting the thickness of the film deformation suppressing layer, the effect of suppressing the deformation of the movable-side insulating substrate can be expected, and the risk of peeling at the connection portion of the heat seal connector can be reduced.
以上の 4種類の箇所全てに形成しない場合について換言すると、 本発 明においては、 前記フィルム変形抑制層を、 少なく とも前記固定側絶縁 基材側または前記可動側絶縁基材側の一方或いは両方の前記出力端非形 成領域に形成したものであっても良く、 または前記ヒートシールコネク ターが、 ベ一スフイルムの上下面に前記コネクター端子を設けた構造を 呈するものであって、 前記フィルム変形抑制層を、 少なく とも前記べ一 スフイルムの上面, 下面或いは上下面の前記コネクター端子非形成領域 に形成したものであっても良い。 この様にフィルム変形抑制層の形成箇 所が少なくても、 上述の如く剥離防止効果が期待できることに加えて、 上記 4種類の箇所全てに形成する場合に比べて、 製造工程が簡略化され、 製造コス トの上昇を防ぐことができる。  In other words, in the present invention, the film deformation suppressing layer is formed at least on one or both of the fixed insulating substrate side and the movable insulating substrate side. The heat seal connector may have a structure in which the connector terminals are provided on upper and lower surfaces of a base film, and the heat seal connector may be formed in the non-forming region of the output end. The layer may be formed at least on the upper, lower, or upper and lower surfaces of the base film in the non-connector terminal forming regions. Even in the case where the film deformation suppressing layer is formed in a small number of places as described above, in addition to the fact that the peeling prevention effect can be expected as described above, the manufacturing process is simplified as compared with the case where the film deformation suppressing layer is formed in all of the four types of places, An increase in manufacturing costs can be prevented.
本発明のタツチパネルは、 上記した構成からなるので、 次の効果を奏 する。  Since the touch panel of the present invention has the above-described configuration, the following effects can be obtained.
すなわち、 本発明のタツチパネルは、 上述の如く熱圧着による可動側 絶縁基材等の変形が抑えられ、 タツチパネル本体とヒートシールコネク ターとの接続面におけるス トレスが軽減されるので、 たとえカーナビゲ ーション等の使用環境の様に高温環境下に曝されたとしても、 ヒートシ ールコネクターの接続部分での断線、 接続不良等が起こり難い。 加えて 熱圧着部分において可動側絶縁基材の凹凸がほとんどなくなる為、 外観 もよくなる。 図面の簡単な説明 That is, the touch panel according to the present invention suppresses deformation of the movable insulating base material and the like due to thermocompression bonding as described above, and reduces stress at the connection surface between the touch panel main body and the heat seal connector. Even when exposed to a high-temperature environment, such as in the use environment, disconnection and poor connection at the connection part of the heat seal connector are unlikely to occur. in addition Since the unevenness of the movable insulating substrate is almost eliminated at the thermocompression bonding part, the appearance is improved. Brief Description of Drawings
図 1 :本発明に係るタツチパネルの実施形態 1について、 ヒートシ一 ルコネクター挿入前の出力端付近を示す部分拡大側面図である。  FIG. 1 is a partially enlarged side view showing the vicinity of an output end of a touch panel according to a first embodiment of the present invention before a heat seal connector is inserted.
図 2 :本発明に係るタツチパネルの実施形態 1について、 熱圧着部分 を示す部分拡大断面図である。  FIG. 2 is a partially enlarged cross-sectional view showing a thermocompression bonding portion in the first embodiment of the touch panel according to the present invention.
図 3 :本発明に係るタツチパネルの実施形態 2について、 タツチパネ ル本体へ挿入前のヒートシールコネクターの端部を示す断面図である。 図 4 :本発明に係るタツチパネルの実施形態 2について、 熱圧着部分 を示す部分拡大断面図である。  FIG. 3 is a cross-sectional view showing an end portion of the heat seal connector before the touch panel according to the second embodiment of the present invention is inserted into the touch panel main body. FIG. 4 is a partially enlarged cross-sectional view showing a thermocompression bonding portion of the touch panel according to the second embodiment of the present invention.
図 5 :本発明に係るタツチパネルの実施形態 3について、 熱圧着部分 を示す部分拡大断面図である。  FIG. 5 is a partially enlarged cross-sectional view showing a thermocompression bonding portion in the third embodiment of the touch panel according to the present invention.
図 6 :本発明に係るタツチパネルの他の実施形態について、 タツチパ ネル本体へ挿入前のヒートシールコネクターの端部を示す断面図である。 図 7 :本発明に係るタツチパネルの更に他の実施形態について、 タツ チパネル本体へ揷入前のヒ一トシールコネクターの端部を示す断面図で ある。  FIG. 6 is a cross-sectional view showing an end of the heat seal connector before being inserted into the touch panel main body in another embodiment of the touch panel according to the present invention. FIG. 7 is a cross-sectional view showing an end of a heat seal connector before being inserted into a touch panel main body in still another embodiment of the touch panel according to the present invention.
図 8 : タツチパネルの一般的な構成の一例を示す斜視分解図である。 図 9 :従来技術に係るタツチパネルの一について、 タツチパネル本体 へ揷入前のヒートシールコネクターの端部を示す断面図である。  FIG. 8 is an exploded perspective view showing an example of a general configuration of a touch panel. FIG. 9 is a cross-sectional view showing one end of the heat seal connector before the touch panel according to the related art is inserted into the touch panel main body.
図 1 0 :従来技術に係るタツチパネルの熱圧着工程を示す部分拡大断 面図である。  FIG. 10 is a partially enlarged cross-sectional view showing a thermocompression bonding step of a touch panel according to the related art.
図 1 1 :従来技術に係るタツチパネルの熱圧着工程を示す部分拡大断 面図である。  FIG. 11 is a partially enlarged cross-sectional view showing a thermocompression bonding process of a touch panel according to the related art.
図 1 2 :従来技術に係るタツチパネルの熱圧着工程を示す部分拡大断 面図である。 Figure 12: Partially enlarged section showing the thermocompression bonding process of a touch panel according to the prior art FIG.
図 1 3 : タツチパネルの一般的な構成の他の例を示す正面図である。 図 1 4 :熱圧着機による熱圧着の様子を表す外観斜視図である。 発明を実施するための最良の形態  FIG. 13 is a front view showing another example of the general configuration of the touch panel. FIG. 14 is an external perspective view showing a state of thermocompression bonding by a thermocompression bonding machine. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 図を参照しながら本発明に係るタツチパネルを詳細に説明す る。  Hereinafter, the touch panel according to the present invention will be described in detail with reference to the drawings.
先ず本発明に係るタツチパネルの全体構成例について説明する。  First, an example of the entire configuration of the touch panel according to the present invention will be described.
図 8は、 タツチパネルの一般的な構成の一例を示す斜視分解図であり、 また図 1 3は他の例による一般的なタツチパネルを表す正面図である。 一般にタツチパネルは、 固定側絶縁基材 3と可動側絶縁基材 6とが対 向配置されたものであって、 固定側絶縁基材 3の上面に幅広の四角形状 をした固定電極 1が形成されると共に、 固定電極 1に対してその X方向 に対向する二辺 (Y方向に沿った辺) にリード線 2がそれぞれ接続され、 また可動側絶縁基材 6の下面に幅広の四角形状をした可動電極 4が形成 されると共に、 可動電極 4に対してその Y方向に対向する二辺 (X方向 に沿った辺) にリード線 5がそれぞれ接続され、 固定電極 1 と可動電極 4とが、 固定電極 1上に形成されたスぺーサー 7によって間が隔てられ たものである。 また固定側絶縁基材 3と可動側絶縁基材 6 との間にはヒ ートシールコネクター 8の端部 8 aが挿入されて、 リード線 2, 5の出 力端 9 b, 9 aにヒートシールコネクタ一端部 8 aのコネクター端子 1 2 b , 1 2 aが接続される様になつている。 また固定側絶縁基材 3と可 動側絶縁基材 6とは、 ヒートシールコネクタ一端部 8 aの揷入部分を除 く周縁で、 両面テープ 1 0により貼り合わされている。  FIG. 8 is a perspective exploded view showing an example of a general configuration of a touch panel, and FIG. 13 is a front view showing a general touch panel according to another example. In general, the touch panel has a fixed-side insulating base material 3 and a movable-side insulating base material 6 opposed to each other, and has a wide rectangular fixed electrode 1 formed on the upper surface of the fixed-side insulating base material 3. At the same time, lead wires 2 are connected to two sides (sides along the Y direction) opposite to the fixed electrode 1 in the X direction, and a wide rectangular shape is formed on the lower surface of the movable-side insulating base material 6. The movable electrode 4 is formed, and the lead wire 5 is connected to each of two sides (sides along the X direction) of the movable electrode 4 facing the Y direction, and the fixed electrode 1 and the movable electrode 4 are connected to each other. The spacers are separated by spacers 7 formed on the fixed electrode 1. The end 8 a of the heat seal connector 8 is inserted between the fixed insulating base 3 and the movable insulating base 6, and is connected to the output ends 9 b and 9 a of the leads 2 and 5. The connector terminals 12b and 12a of one end 8a of the heat seal connector are connected. In addition, the fixed-side insulating base material 3 and the movable-side insulating base material 6 are bonded together with a double-sided tape 10 on the periphery except for the inserted portion of the heat seal connector one end 8a.
以上のような構成のタツチパネルを製造する場合には、 まず固定側絶 縁基材 3と可動側絶縁基材 6 とを貼り合わせておき、 その後ヒートシ一 ルコネクター 8の端部 8 aを固定側絶縁基材 3 と可動側絶縁基材 6 との 間に挿入し、 熱圧着機 1 7により熱圧着するという順序で行われる (図 1 4 ) 。 When manufacturing the touch panel having the above configuration, first, the fixed-side insulating base material 3 and the movable-side insulating base material 6 are bonded together, and then the end 8a of the heat seal connector 8 is fixed to the fixed side. Between the insulating base material 3 and the movable side insulating base material 6 It is inserted in the middle, and thermocompression bonding is performed by thermocompression bonding machine 17 (Fig. 14).
上記固定側絶縁基材 3の材料としては、 ソーダガラス、 ホウケィ酸ガ ラス、 強化ガラス等のガラス板の他、 ポリカーボネート系、 ポリアミ ド 系ポリエーテルケトン系、 ノルポルネン系、 ポリオレフイ ン系などのェ ンジニアリ ングプラスチック、 アタ リノレ系、 ポリエチレンテレフタ レー ト系、 ポリプチレンテレフタレート系などの可撓性のある透明フィルム などを用いることができる。 また、 透明フィルムとガラス板との積層物、 或いは透明プラスチックとの積層物であってもよい。  Examples of the material of the fixed-side insulating base material 3 include glass plates such as soda glass, borosilicate glass, and tempered glass, and engineering materials such as polycarbonate-based, polyamide-based polyetherketone-based, norpolene-based, and polyolefin-based materials. For example, a flexible transparent film of a plastic such as a plastic, an atarinole type, a polyethylene terephthalate type, or a polybutylene terephthalate type can be used. Further, it may be a laminate of a transparent film and a glass plate, or a laminate of a transparent plastic.
上記固定電極 1や可動電極 4の材料としては、 酸化錫、 酸化インジゥ ム、 酸化アンチモン、 酸化亜鉛、 酸化カ ドミウム、 インジウムチンォキ サイ ド ( I T O ) などの金属酸化物膜、 またこれらの金属酸化物を主体 とする複合膜、 更に金、 銀、 銅、 錫、 ニッケル、 アルミユウム、 パラジ ゥムなどの金属膜が挙げられる。 固定電極 1 (或いは可動電極 4 ) の形 成方法としては、 先ず真空蒸着法、 スパッタリング法、 イオンプレーテ イング法、 C V D法などを用いて固定側絶縁基材 3 (或いは可動側絶縁 基材 6 ) 全面に導電性被膜を形成し、 その後、 不要な部分をエッチング 除去する方法が挙げられる。 上記エッチングの方法は、 電極として残し たい部分にフォ トリソ法ゃスクリーン法などにより レジス トを形成し、 次いで、 塩酸などのエッチング液に浸漬するか或いはエッチング液を噴 射して、 レジス トが形成されていない部分の導電性被膜を除去し、 その 後、 溶剤に浸漬することによってレジス トを膨潤または溶解させて除去 する方法が挙げられる。  Examples of the material of the fixed electrode 1 and the movable electrode 4 include metal oxide films such as tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, and indium tin oxide (ITO); A composite film mainly composed of an oxide, and a metal film of gold, silver, copper, tin, nickel, aluminum, palladium, and the like can be given. As a method for forming the fixed electrode 1 (or the movable electrode 4), first, the fixed-side insulating base material 3 (or the movable-side insulating base material 6) is formed using a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like. ) A method of forming a conductive film on the entire surface and then removing unnecessary portions by etching. In the above-mentioned etching method, a resist is formed on a portion to be left as an electrode by a photolithography method or a screen method, and then the resist is formed by dipping in an etching solution such as hydrochloric acid or spraying the etching solution. There is a method in which the conductive coating is removed from the uncoated portion, and then the resist is swelled or dissolved by immersion in a solvent to remove the resist.
上記リード線 2, 5の材料としては、 エポキシ系、 フエノール系、 メ ラミン系、 シリ コン系等の熱硬化性樹脂中に導電性ブイラ一を含有させ たものを用いることができる。 また、 光硬化樹脂中に導電性フィラーを 含有させたものを用いてもよい。 導電性フイラ一としては金、 銀、 銅、 ニッケル、 白金、 パラジウム、 カーボン、 グラフアイ トなどの導電性金 属粉末を用いると良い。 また導電性フィラーには、 核材と してアルミナ、 ガラス等の無機絶縁体や、 ポリスチレン、 ポリエチレン、 ジビュルベン ゼン等の有機高分子などを用い、 この核材表面を金、 ニッケル等の導電 層で被覆したものなどを用いてもよい。 リード線2, 5の形成方法と し ては、 スク リーン印刷法ゃデイスペンス法などが挙げられる。 なお、 リ ード線 2, 5は、 スクリーン印刷法ゃデイスペンス法などにより形成さ れた後、 熱圧着の前にあらかじめ熱又は電磁波硬化される。 As the material of the lead wires 2 and 5, a material in which a conductive boiler is contained in a thermosetting resin such as an epoxy-based, phenol-based, melamine-based, or silicon-based resin can be used. Further, a resin in which a conductive filler is contained in a photocurable resin may be used. Gold, silver, copper, It is preferable to use a conductive metal powder such as nickel, platinum, palladium, carbon, and graphite. As the conductive filler, an inorganic insulator such as alumina or glass, or an organic polymer such as polystyrene, polyethylene or dibutylbenzene is used as a core material, and the surface of the core material is formed of a conductive layer such as gold or nickel. A coated product may be used. Examples of a method for forming the lead wires 2 and 5 include a screen printing method and a dispensing method. After the lead wires 2 and 5 are formed by the screen printing method and the dispense method, they are heat- or electromagnetic-wave-hardened in advance before thermocompression bonding.
上記可動側絶縁基材 6の材料と しては、 ポリカーボネート系、 ポリア ミ ド系、 ポリエーテルケトン系、 ノルポルネン系、 ポリオレフイ ン系な どのエンジニアリ ングプラスチックや、 アク リル系、 ポリエチレンテレ フタレート系、 ポリプチレンテレフタレート系などの可撓性のある透明 フィルムなどを用いることができる。  Examples of the material of the movable-side insulating base material 6 include engineering plastics such as polycarbonate, polyamide, polyetherketone, norpolene, and polyolefin, and acrylic, polyethylene terephthalate, and the like. A flexible transparent film such as polybutylene terephthalate can be used.
上記スぺーサー 7は、 例えばメラミンアタ リ レ^ · ト樹脂、 ウレタンァ タリ レート樹脂、 エポキシアタ リ レート樹脂、 メタアクリルアタリ レー ト樹脂、 アク リルアタリ レート樹脂などのアタ リ レート樹脂や、 ポリ ビ ニールアルコール樹脂などの光硬化型樹脂を、 フォ トプロセスで微細な ドッ ト状に形成して得ることができる。 また、 エポキシ樹脂、 ポリエス テル樹脂、 アク リルアタリ レー ト樹脂などの樹脂を、 スク リーン印刷な どの印刷法により微細なドッ トを多数形成してスぺーサー 7とすること もできる。  The spacer 7 may be, for example, an acrylate resin such as a melamine acrylate resin, a urethane acrylate resin, an epoxy acrylate resin, a methacryl acrylate resin, an acryl acrylate resin, or a polyvinyl alcohol resin. Such a photocurable resin can be obtained by forming a fine dot shape by a photo process. In addition, the spacer 7 can be formed by forming many fine dots of a resin such as an epoxy resin, a polyester resin, and an acrylic acrylate resin by a printing method such as screen printing.
ヒー トシールコネクター 8の端部 8 aは、 ベースフィルム 1 5の上下 面にそれぞれ 2つずつコネクター端子が間隔を開けて設けられ、 これら ベースフィルム 1 5およびコネクター端子 1 2を異方導電接着剤 1 4が 覆った構造をしている。 尚上記異方導電接着剤 1 4を、 ヒートシールコ ネクター 8側に設けず、 タッチパネル本体 1 1側に設けておいてもよい。 上記べ一スフィルム 1 5の材料と しては、 ポリイミ ド、 ポリエステル、 ポリエーテルィミ ドなどの可撓性のある透明フィルムなどが挙げられる。 上記コネクター端子 1 2の材料および形成方法としては、 リード線 2 , 5で説明したものから適宜選択して使用すると良い。 At the end 8 a of the heat seal connector 8, two connector terminals are provided at intervals on the upper and lower surfaces of the base film 15, and the base film 15 and the connector terminals 12 are anisotropically conductive adhesive. It has a structure covered by 14. The anisotropic conductive adhesive 14 may not be provided on the heat seal connector 8 side, but may be provided on the touch panel main body 11 side. The material of the base film 15 is polyimide, polyester, A flexible transparent film such as polyetherimide may be used. As a material and a forming method of the connector terminal 12, it is preferable to appropriately select and use the materials described for the lead wires 2 and 5.
上記異方導電接着剤 1 4としては、 ポリアミ ド系、 ポリエチレン系、 ポリスチレン系、 ポリエステノレ系、 ポリ ウレタン系、 エチレン一酢酸ビ ニル共重合体、 エチレンーァクリル酸エステル共重合体等の熱可塑性樹 脂や、 エポキシ系、 フエノール系、 メラミン系、 シリ コン系の未硬化の 熱硬化性樹脂中に導電性フィラーを含有させたものを用いることができ る。 この導電性フィラーとしては、 金、 銀、 銅、 ニッケル、 白金、 パラ ジゥム、 カーボン、 グラフアイ トなどの導電性金属粉末を用いることが でき、 或いは核材としてアルミナ,ガラスなどの無機絶縁体ゃポリスチ レン、 ポリエチレン、 ジビニルベンゼン等の有機高分子などを用いて、 この核材表面を金、 二ッケルなどの導電層で被覆したものなどを用いる こともできる。 異方導電接着剤 1 4の塗布方法としては、 スクリーン印 刷、 ロールコーター法、 ディスペンサー法などが挙げられる。  Examples of the anisotropic conductive adhesive 14 include heat-sensitive adhesives such as polyamide-based, polyethylene-based, polystyrene-based, polyester-based, polyurethane-based, ethylene-vinyl acetate copolymer, and ethylene-acrylate copolymer. It is possible to use a thermoplastic resin, or an epoxy, phenol, melamine, or silicon-based uncured thermosetting resin containing a conductive filler. As the conductive filler, conductive metal powders such as gold, silver, copper, nickel, platinum, palladium, carbon, and graphite may be used, or inorganic insulators such as alumina and glass may be used as core materials. It is also possible to use an organic polymer such as polystyrene, polyethylene, or divinylbenzene or the like, and coat the surface of this core material with a conductive layer such as gold or nickel. Examples of the method of applying the anisotropic conductive adhesive 14 include screen printing, a roll coater method, and a dispenser method.
ヒートシールコネクタ一付のタッチパネルの全体構成は、 以上のよ う なものであり、 次に熱圧着部分 (固定側絶縁基材 3と可動側絶縁基材 6 の間にヒートシールコネクタ一端部 8 aを挟んだ部分) についての実施 態様を説明する。  The overall configuration of the touch panel with the heat seal connector is as described above. Next, the thermocompression bonding part (between the fixed insulating base material 3 and the movable insulating base material 6, one end 8 a of the heat seal connector) An embodiment will be described.
実施形態 1  Embodiment 1
図 2は、 本発明の実施形態 1に係るタツチパネルの熱圧着部分を示す 断面図であり、 図 1は、 この実施形態 1においてヒートシールコネクタ 一端部 8 aを挿入する前の可動側絶縁基材 6と固定側絶縁基材 3を表す 熱圧着部分 (タツチパネル本体 1 1の熱圧着部分) の断面図である。 尚 図 2は、 図 1 3に示す D— D線断面にあたる。  FIG. 2 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to the first embodiment of the present invention. FIG. 1 shows a movable-side insulating base material before inserting the heat seal connector end 8a in the first embodiment. FIG. 6 is a cross-sectional view of a thermocompression bonding portion (the thermocompression bonding portion of the touch panel main body 11) representing 6 and the fixed-side insulating base material 3. FIG. 2 is a cross-sectional view taken along the line DD shown in FIG.
本実施形態 1は、 熱圧着領域における固定側絶縁基材 3の上面側およ ぴ可動側絶縁基材 6の下面側において、 出力端の形成平面での出力端非  The first embodiment is different from the first embodiment in that the output end on the plane on which the output end is formed is located on the upper surface side of the fixed-side insulating base material 3 and the lower side
1 形成領域に、 熱又は電磁波硬化されたフィルム変形抑制層 (以下、 単に フィルム変形抑制層と称することがある) 1 6 a, 1 6 bを設けたもの である。 尚このフィルム変形抑制層 1 6 a, 1 6 bは出力端 9 a, 9 b と同じ厚みで形成されている。 1 In the formation area, a heat or electromagnetic wave cured film deformation suppressing layer (hereinafter, sometimes simply referred to as a film deformation suppressing layer) 16a, 16b is provided. The film deformation suppressing layers 16a and 16b are formed to have the same thickness as the output terminals 9a and 9b.
本実施形態 1の製造方法としては、 先ず図 1に示す様に、 可動側絶縁 基材 6 と固定側絶縁基材 3における出力端 9 a , 9 bが形成されていな い領域 (ここは同時にコネクター端子 1 2 a, 1 2 bが形成されていな い領域でもある) に、 熱又は電磁波硬化されたフィルム変形抑制層 1 6 a , 1 6 bを設けておき、 この可動側絶縁基材 6 と固定側絶縁基材 3の 間にヒー トシールコネクタ一端部 8 aを挿入して熱圧着を行う (図 1 4 参照) 。 このときフィルム変形抑制層 1 6 a, 1 6 bによって、 従来熱 圧着により生じていた可動側絶縁基材 6の変形が低減され、 図 2に示す 様に、 可動側絶縁基材の凹凸が緩やかなものとなり、 すなわち、 タツチ パネル本体 1 1 とヒー トシールコネクター 8との接続面におけるス トレ スが軽減される。  First, as shown in FIG. 1, the manufacturing method according to the first embodiment includes, as shown in FIG. 1, a region where the output terminals 9 a and 9 b are not formed on the movable-side insulating base material 6 and the fixed-side insulating base material 3. The connector terminals 12a and 12b are also not formed in this area). Heat or electromagnetic wave hardened film deformation suppression layers 16a and 16b are provided in advance. One end 8a of the heat seal connector is inserted between the fixed-side insulating base material 3 and thermocompression bonding (see Fig. 14). At this time, the film deformation suppressing layers 16a and 16b reduce the deformation of the movable-side insulating base material 6 caused by the conventional thermocompression bonding, and as shown in FIG. That is, the stress at the connection surface between the touch panel body 11 and the heat seal connector 8 is reduced.
上記フィルム変形抑制層 1 6 a, 1 6 bとしては、 単層に限らず、 複 数層で形成しても良い。 また上記フィルム変形抑制層 1 6 a, 1 6 bは、 上記出力端非形成領域に隙間なく形成されていることが好ましく、 具体 的にはコネクター揷入幅方向 (出力端 9 a, 9 b , コネクター端子 1 2 a , 1 2 bの並び方向 : 図 2に示す Ε方向) に隙間がなく、 コネクター 挿入奥行方向 (図 1 4に示す F方向) に隙間がないことが好ましい。 尤 も微小な空間であれば、 可動側絶縁基材 6へのス ト レスはほとんどなく、 接着性に支障をきたさない。  The film deformation suppressing layers 16a and 16b are not limited to a single layer, and may be formed of a plurality of layers. Further, it is preferable that the film deformation suppressing layers 16a and 16b are formed without gaps in the output end non-forming area. Specifically, in the connector insertion width direction (output ends 9a, 9b, It is preferable that there is no gap in the connector terminals 12a and 12b arrangement direction: (1) direction shown in Fig. 2) and no gap in the connector insertion depth direction (F direction shown in Fig. 14). However, if the space is very small, there is almost no stress on the movable-side insulating base material 6, and there is no problem with the adhesiveness.
次にフィルム変形抑制層 1 6 a, 1 6 bの材料及び形成方法について 説明する。  Next, the material and the forming method of the film deformation suppressing layers 16a and 16b will be described.
フィルム変形抑制層 1 6 a, 1 6 bの材料としては、 エポキシ系、 フ エノール系、 メラミン系、 シリ コン系等の熱硬化性樹脂が挙げられる。 また、 電磁波硬化樹脂 (光硬化樹脂) 中に導電性フィラーを含有させた ものを用いてもよい。 Examples of the material for the film deformation suppressing layers 16a and 16b include thermosetting resins such as epoxy, phenol, melamine, and silicon. Further, a resin in which a conductive filler is contained in an electromagnetic wave curable resin (light curable resin) may be used.
フィルム変形抑制層 1 6 a , 1 6 bの形成方法としては、 スク リ ーン 印刷法ゃデイスペンス法などが挙げられる。 なお、 本発明のフィルム変 形抑制層 1 6 a, 1 6 bは、 スク リーン印刷法ゃデイスペンス法などに より形成した後、 熱圧着を行う前に予め熱硬化又は電磁波硬化 (光硬 ィ匕) する。 この様にフィルム変形抑制層 1 6 a, 1 6 bが熱圧着前に硬 化していることにより、 熱圧着時に、 その上に配置された可動側絶縁基 材 6 の変形し易さが、 ヒートシールコネクター 8のコネクター端子 1 2 とタツチパネル本体 1 1 の出力端 9が存在する部分と比べて大きく異な らない。  Examples of the method for forming the film deformation suppressing layers 16a and 16b include a screen printing method and a dispensing method. The film deformation suppressing layers 16a and 16b of the present invention are formed by a screen printing method or a dispensing method, and then are subjected to thermosetting or electromagnetic wave curing (photo-hardening) before performing thermocompression bonding. ) Since the film deformation suppressing layers 16a and 16b are hardened before the thermocompression bonding as described above, the movable insulating substrate 6 disposed thereon is easily deformed during the thermocompression bonding. The connector terminal 12 of the seal connector 8 and the output terminal 9 of the touch panel main body 11 are not significantly different from each other.
また、 フィルム変形抑制層 1 6 a, 1 6 b の材料としては絶縁材料に 限らない。 例えば、 上記異方導電接着剤 1 4で説明した材料のうち熱硬 化性樹脂を用いた材料から適宜選択使用し、 スク リーン印刷法やディス ペンス法などにより形成した後、 熱圧着前にあらかじめ熱硬化するよう にしてもよレヽ。  Further, the material of the film deformation suppressing layers 16a and 16b is not limited to an insulating material. For example, of the materials described in the above anisotropic conductive adhesive 14, a material using a thermosetting resin is appropriately selected and used, and after being formed by a screen printing method, a dispensing method, or the like, before forming by thermocompression bonding, It may be heat cured.
実施形態 2  Embodiment 2
図 4は、 本発明の実施形態 2に係るタツチパネルの熱圧着部分を示す 断面図であり、 図 3は、 実施形態 2において可動側絶縁基材 6—固定側 絶縁基材 3間へ挿入する前のヒートシールコネクタ一端部 8 aを表す断 面図である。 尚図 4は、 図 1 3に示す D— D線断面にあたり、 図 3は図 8に示す A— A線断面にあたる。  FIG. 4 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to the second embodiment of the present invention. FIG. 3 is a cross-sectional view of the second embodiment before being inserted between the movable-side insulating base 6 and the fixed-side insulating base 3. FIG. 3 is a cross-sectional view showing one end 8a of the heat seal connector. 4 corresponds to a section taken along line D-D shown in FIG. 13, and FIG. 3 corresponds to a section taken along line A-A shown in FIG.
本実施形態 2は、 熱圧着領域におけるヒー トシールコネクタ一端部 8 a のベースフィルムの上下面において、 コネクター端子 1 2 a, 1 2 b の形成平面でのコネクター端子非形成領域に、 フィルム変形抑制層 1 6 a , 1 6 bを設けたものである。 尚このフィルム変形抑制層 1 6 a, 1 6 bはコネクター端子 1 2 a, 1 2 bと同じ厚みである。 本実施形態 2の製造方法は、 先ず図 3に示す様にベースフィルムの上 下面にフィルム変形抑制層 1 6 a, 1 6 bを設けたヒー トシールコネク ターを作製し、 このヒートシールコネクタ一端部 8 aを可動側絶縁基材 6 と固定側絶縁基材 3の間に挿入して熱圧着を行う (図 1 4参照) 。 こ の際、 フィルム変形抑制層 1 6 a, 1 6 bによって、 従来熱圧着により 生じていた可動側絶縁基材 6 の変形が抑えられる。 In the second embodiment, film deformation suppression is performed on the upper and lower surfaces of the base film of the end portion 8a of the heat seal connector in the thermocompression bonding region, in the non-connector terminal forming region on the plane where the connector terminals 12a and 12b are formed. Layers 16a and 16b are provided. The film deformation suppressing layers 16a and 16b have the same thickness as the connector terminals 12a and 12b. In the manufacturing method according to the second embodiment, first, as shown in FIG. 3, a heat seal connector having film deformation suppressing layers 16a and 16b provided on the upper and lower surfaces of a base film is manufactured. a is inserted between the movable-side insulating base material 6 and the fixed-side insulating base material 3 to perform thermocompression bonding (see Fig. 14). At this time, the film deformation suppressing layers 16a and 16b suppress the deformation of the movable-side insulating base material 6 which has conventionally been caused by thermocompression bonding.
なお、 フィルム変形抑制層 1 6 a, 1 6 bはベースフィルム 1 5上に 直接設けることが好ましい。 仮に異方導電接着剤 1 4を介してベースフ イルム 1 5上に設けると、 熱圧着時に異方導電接着剤 1 4の流動性によ つてフィルム変形抑制層 1 6 a, 1 6 bを所定位置に固定できなくなる 恐れがあるからである。  The film deformation suppressing layers 16a and 16b are preferably provided directly on the base film 15. If it is provided on the base film 15 via the anisotropic conductive adhesive 14, the film deformation suppressing layers 16a and 16b are positioned at predetermined positions by the fluidity of the anisotropic conductive adhesive 14 during thermocompression bonding. This is because there is a risk that it cannot be fixed to
また実施形態 2のフィルム変形抑制層 1 6 a, 1 6 bの材料及び形成 方法は、 上記実施形態 1 と同様であり、 該フィルム変形抑制層 1 6 a, 1 6 bは単層に限らず、 複数層で構成しても良い。 加えてコネクタ一端 子非形成領域に隙間なく形成されていることが好ましいが、 微小な空間 であれば、 空いていても接着性に支障をきたさない。  The material and forming method of the film deformation suppressing layers 16a and 16b of the second embodiment are the same as those of the first embodiment. The film deformation suppressing layers 16a and 16b are not limited to a single layer. It may be composed of a plurality of layers. In addition, it is preferable that the connector end is formed without a gap in the non-terminal forming area. However, if it is a small space, even if it is vacant, it does not affect the adhesiveness.
実施形態 3  Embodiment 3
図 5は、 本発明の実施形態 3に係るタツチパネルの熱圧着部分を示す 断面図であり、 図 1 3に示す D— D線断面にあたる。  FIG. 5 is a cross-sectional view showing a thermocompression bonding portion of the touch panel according to Embodiment 3 of the present invention, and corresponds to a cross section taken along line DD shown in FIG.
本実施形態 3は、 固定側絶縁基材 3の上面側及び可動側絶縁基材の下 面側における前記出力端非形成領域、 並びにベースフィルム 1 5の上下 面のコネクター端子非形成領域に、 フィルム変形抑制層 1 6 a, 1 6 b を設けたものである。  In the third embodiment, the film is formed on the upper surface side of the fixed-side insulating base material 3 and the lower surface side of the movable-side insulating base material in the output end non-formation region and the connector terminal non-formation region on the upper and lower surfaces of the base film 15 Deformation suppression layers 16a and 16b are provided.
本実施形態 3の製造方法は、 可動側絶縁基材 6 と固定側絶縁基材 3に おける出力端 9 a, 9 bが形成されていない領域に、 熱又は電磁波硬化 されたフィルム変形抑制層 1 6 a, 1 6 bを設け (それぞれ出力端 9 a , 9 bと同じ厚み) (図 1参照) 、 ヒー トシールコネクタ一端部 8 aにお けるベースフィルム 1 5の上下面にフィルム変形抑制層 1 6 a, 1 6 b を設ける (それぞれコネクター端子 1 2 a, 1 2 b と同じ厚み) (図 3 参照) 。 次に上記ヒー トシールコネクタ一端部 8 aを可動側絶縁基材 6 と固定側絶縁基材 3の間に挿入して熱圧着を行う (図 1 4参照) 。 これ により、 図 5に示す様に、 可動側絶縁基材 6に変形のないタツチパネル が得られる。 The manufacturing method according to the third embodiment is characterized in that the heat- or electromagnetic-wave-cured film deformation suppressing layer 1 is formed in a region where the output terminals 9 a and 9 b of the movable-side insulating base 6 and the fixed-side insulating base 3 are not formed. 6a and 16b are provided (the same thickness as the output terminals 9a and 9b, respectively) (see Fig. 1) and attached to one end 8a of the heat seal connector. The film deformation suppressing layers 16a and 16b are provided on the upper and lower surfaces of the base film 15 (the same thickness as the connector terminals 12a and 12b, respectively) (see Fig. 3). Next, one end 8a of the heat seal connector is inserted between the movable insulating base material 6 and the fixed insulating base material 3 to perform thermocompression bonding (see FIG. 14). Thereby, as shown in FIG. 5, a touch panel in which the movable-side insulating base material 6 has no deformation can be obtained.
この実施形態 3の場合も、 フィルム変形抑制層 1 6 a, 1 6 bの材料 及び形成方法は、 上記実施形態 1 と同様であり、 該フィルム変形抑制層 1 6 a , 1 6 bは単層に限らず、 複数層で構成しても良い。 加えて出力 端非形成領域やコネクター端子非形成領域に隙間なく形成されているこ とが好ましいが、 微小な空間であれば、 空いていても接着性に支障をき たさない。  Also in the case of the third embodiment, the material and the forming method of the film deformation suppressing layers 16a and 16b are the same as those of the first embodiment, and the film deformation suppressing layers 16a and 16b are a single layer. However, the present invention is not limited to this, and may be composed of a plurality of layers. In addition, it is preferable that no gap is formed in the area where the output terminal is not formed or the area where the connector terminal is not formed. However, if the space is very small, even if it is vacant, the adhesion will not be affected.
尚上記実施形態 1〜 3において、 フィルム変形抑制層 1 6 aの総厚み (実施形態 1, 2では 1つのフィルム変形抑制層 1 6 aの厚みとなる) が出力端 9 aの厚みとこれに接続されるコネクター端子 1 2 aの厚みの 合計に近づき、 フィルム変形抑制層 1 6 bの総厚み (実施形態 1, 2で は.1つのフィルム変形抑制層 1 6 bの厚みとなる) が出力端 9 bの厚み とこれに接続されるコネクター端子 1 2 bの厚みの合計に近づく もの程、 上述の熱圧着による可動側絶縁基材 6の変形を抑える効果が高くなる。 したがって、 フィルム変形抑制層 1 6 a, 1 6 bの総厚みとしては、 そ れぞれ出力端 9 a , 9 bの厚みとこれに接続されるコネクター端子 1 2 a , 1 2 bの厚みの合計と同じ或いは略同じにするのがより好ましい。 以上、 本発明のタツチパネルの構成について説明したが、 上記した態 様に限定されるものではない。  In the first to third embodiments, the total thickness of the film deformation suppression layer 16a (the thickness of one film deformation suppression layer 16a in the first and second embodiments) is determined by the thickness of the output end 9a and the thickness of the output end 9a. The total thickness of the connector terminals 12a to be connected approaches the total, and the total thickness of the film deformation suppressing layer 16b (in the first and second embodiments, the thickness of one film deformation suppressing layer 16b) is output. As the thickness approaches the sum of the thickness of the end 9b and the thickness of the connector terminal 12b connected thereto, the effect of suppressing the deformation of the movable-side insulating base material 6 due to the above-mentioned thermocompression bonding increases. Therefore, the total thickness of the film deformation suppressing layers 16a and 16b is the thickness of the output terminals 9a and 9b and the thickness of the connector terminals 12a and 12b connected to the output terminals 9a and 9b, respectively. More preferably, it is equal to or substantially equal to the sum. The configuration of the touch panel according to the present invention has been described above, but is not limited to the above-described embodiment.
たとえば、 タツチパネル本体 1 1 の出力端 9 a, 9 bを、 可動側絶縁 基材 6 と固定側絶縁基材 3のそれぞれに設けたものではなく、 可動側絶 縁基材 6或いは固定側絶縁基材 3のうちいずれか一方の側にまとめて設  For example, the output terminals 9a and 9b of the touch panel body 11 are not provided on the movable insulating base 6 and the fixed insulating base 3, respectively, but are provided on the movable insulating base 6 or the fixed insulating base. Material 3 on either side
5 けたものであっても良い (図示せず) 。 この場合、 図 6 (本発明の他の 実施形態に係るタツチパネルにおける、 タツチパネル本体へ揷入前のヒ ートシールコネクターの端部 8 aを示す断面図である) に示す様に、 上 記出力端 9 a, 9 bに対応するヒートシールコネクター 8のコネクター 端子 1 2はべ一スフイルム 1 5の一方の面にまとめて設けられることと なる。 そしてこの場合には、 ベースフィルム 1 5上のコネクター端子非 形成領域にフィルム変形抑制層 1 6を形成すると良い。 Five It may be a digit (not shown). In this case, as shown in FIG. 6 (a cross-sectional view showing the end 8a of the heat seal connector before being inserted into the touch panel main body in the touch panel according to another embodiment of the present invention), the above output is obtained. The connector terminals 12 of the heat seal connector 8 corresponding to the ends 9a and 9b are provided collectively on one surface of the base film 15. In this case, it is preferable to form the film deformation suppressing layer 16 on the base film 15 in the region where the connector terminals are not formed.
また、 図 7 (本発明の更に他の実施形態に係るタツチパネルにおける、 タツチパネル本体へ揷入前のヒートシールコネクターの端部 8 aを示す 断面図である) に示す様に、 ベースフィルム 1 5の上下面に 4つずっコ ネクター端子 1 2 a, 1 2 bを設け、 その中から接続に用いるコネクタ 一端子 1 2 a, 1 2 bをタツチパネル本体 1 1 の出力端 9 a, 9 bの仕 様に応じて適宜選択するようにしてもよい。 尚この接続に用いないコネ クタ一端子 1 2 a, 1 2 bは特にダミー端子 1 3とも呼ばれている。 また、 両面テープ 1 0の代わりに、 アクリル樹脂、 エポキシ樹脂、 フ ェノール樹脂、 ビュル樹脂などからなる接着剤を用いてもよい。  Also, as shown in FIG. 7 (a cross-sectional view showing the end 8a of the heat seal connector before being inserted into the touch panel body in the touch panel according to still another embodiment of the present invention), the base film 15 Four connector terminals 12a, 12b are provided on the upper and lower surfaces, and one terminal 12a, 12b used for connection is connected to one of the output terminals 9a, 9b of the touch panel body 11. May be appropriately selected according to the situation. The connector terminals 12a and 12b not used for this connection are also called dummy terminals 13 in particular. Further, instead of the double-sided tape 10, an adhesive made of an acrylic resin, an epoxy resin, a phenol resin, a bur resin, or the like may be used.
さらに、 固定電極 1 と可動電極 4の両方あるいはいずれか一方の形成 について、 図 8のように全面的に導電性被膜を形成した後に不要な部分 をエッチング除去するのではなく、 ェツチングをする代わりに不要な部 分を絶縁層で覆ってもよい。 絶縁層としては、 アク リルアタリ レー ト樹 脂などを用いる。 絶縁層の形成方法としては、 スク リーン印刷、 フォ ト プロセスなどがある。 また、 絶縁層が、 貼り合わせのための接着剤を兼 ねてもよい。 また、 エッチングをする代わりにレーザーエッチングによ り不要な導電性被膜を除去するようにしてもよい。 さらに、 透明な導電 性ィンキをパターン印刷することにより固定電極 1や可動電極 4を形成 してもよい。  Furthermore, for the formation of the fixed electrode 1 and / or the movable electrode 4, instead of etching away unnecessary portions after forming a conductive film as shown in FIG. Unnecessary parts may be covered with an insulating layer. Acryl acrylate resin is used as the insulating layer. As a method of forming the insulating layer, there are a screen printing, a photo process and the like. Further, the insulating layer may also serve as an adhesive for bonding. Further, an unnecessary conductive film may be removed by laser etching instead of etching. Further, the fixed electrode 1 and the movable electrode 4 may be formed by pattern printing of a transparent conductive ink.
<実施例 1 > 固定側絶縁基材として縦 8 5 mm X横 6 0 mm X厚み 1. 1 mmのガ ラス板を用い、 この上面に厚み 1 0 n mの I T O膜をスパッタリングに よって全面形成し、 次いで I TO膜の周縁部分を除去して幅広の四角形 状をした固定電極とした。 また、 固定電極の横方向に対向する二辺に配 置されるパスパーと該バスバーから各々外部に出力するための引き回し 回路とからなる幅 2 mmのリ一ド線を形成するべく、 先ずエポキシ樹脂 からなるバインダ一中に銀の導電フィラーを含有した導電性ペース トを 準備し、 この導電性ペース トを厚み 1 0 m で上記の所定のリ一ド線位 置にスク リーン印刷し、 その後、 1 2 0°C、 3 0分乾燥を行った。 また、 固定電極上に、 フォ トプロセスによりアクリルウレタン樹脂からなる ド ッ トスぺーサ一を形成した。 さらに、 熱圧着領域 (幅 2 0 mm X奥行き<Example 1> A glass plate with a length of 85 mm, a width of 60 mm and a thickness of 1.1 mm was used as a fixed-side insulating substrate, and a 10-nm-thick ITO film was formed on the entire surface by sputtering, followed by an ITO film. By removing the peripheral part of the fixed electrode, a wide rectangular fixed electrode was obtained. First, an epoxy resin was used to form a 2-mm-wide lead wire composed of pass-pers disposed on two sides of the fixed electrode facing in the lateral direction and a routing circuit for outputting each of the bus bars to the outside. A conductive paste containing a silver conductive filler is prepared in a binder made of, and the conductive paste is screen-printed at a predetermined lead line position with a thickness of 10 m, and thereafter, Drying was performed at 120 ° C. for 30 minutes. In addition, a dot spacer made of acrylic urethane resin was formed on the fixed electrode by a photo process. In addition, the thermocompression bonding area (width 20 mm X depth
2. 5 mm) のうち上記リード線の出力端の非形成領域全域に、 ェポキ シ樹脂からなるィンキを 1 0 / m でスク リーン印刷し、 その後、 1 2 0°C、 3 0分乾燥を行い、 これによりフィルム変形抑制層を形成した。 他方、 可動側絶緣基材として縦 8 5 mm X横 6 0 mm (縦横が上記固 定側絶縁基材と同寸法) で、 厚み 1 8 8 μ mのポリエステル樹脂フィル ムを用い、 その下面に厚み 1 O nmの I TO膜をスパッタリングにて全 面形成し、 I TO膜の周縁部分を除去して幅広の四角形状をした可動電 極 4とした。 また、 可動電極の縦方向に対向する二辺に配置されるバス パーと該パスバーから各々外部に出力するための引き回し回路とからな る幅 2 mmのリ一ド線を形成するべく、 上記と同様にエポキシ樹脂から なるパインダ一中に銀の導電フィラーを含有した導電性ペース トを準備 し、 この導電性ペース トを厚み 1 0 jam でスクリーン印刷し、 その後、 1 2 0°C、 3 0分乾燥を行った。 さらに、 熱圧着領域 (幅 2 0 mm X奥 行き 2. 5 mm) のうち上記リード線の出力端の非形成領域全域に、 ェ ポキシ樹脂からなるィンキを厚み 1 O ^m でスクリーン印刷し、 その後、 1 2 0°C、 3 0分乾燥を行い、 これによりフィルム変形抑制層を形成し た。 (2.5 mm), the entire surface of the non-formation area at the output end of the lead wire is screen-printed at 10 / m with an ink made of epoxy resin, and then dried at 120 ° C for 30 minutes. Thus, a film deformation suppressing layer was formed. On the other hand, a polyester resin film with a length of 85 mm and a width of 60 mm (length and width are the same dimensions as the above-mentioned fixed-side insulating base material) and a thickness of 188 μm is used as the movable-side insulating base material. A 1-nm-thick ITO film was formed on the entire surface by sputtering, and the periphery of the ITO film was removed to form a wide rectangular movable electrode 4. Further, in order to form a lead wire having a width of 2 mm comprising a busper arranged on two sides of the movable electrode facing in the longitudinal direction and a routing circuit for outputting each from the pass bar to the outside, Similarly, a conductive paste containing a silver conductive filler in a binder made of epoxy resin is prepared, and this conductive paste is screen-printed with a thickness of 10 jam, and then at 120 ° C and 30 ° C. A minute drying was performed. In addition, in a thermocompression bonding area (width 20 mm x depth 2.5 mm), an ink of epoxy resin is screen-printed to a thickness of 1 O ^ m over the entire non-forming area of the output end of the lead wire, Thereafter, drying is performed at 120 ° C. for 30 minutes, thereby forming a film deformation suppressing layer. It was.
次いで、 上記固定側絶縁基材と上記可動側絶縁基材を、 スぺーサ一に よって固定電極と可動電極との間を隔てるようにしつつ対向配置し、 リ 一ド線の出力端付近を除く周縁において両面テープによって貼り合わせ、 タツチパネル本体とした。  Next, the fixed-side insulating base material and the movable-side insulating base material are opposed to each other with a spacer so as to separate the fixed electrode and the movable electrode from each other, excluding the vicinity of the output end of the lead wire. Attached with double-sided tape at the periphery to make a touch panel body.
次に、 タツチパネル本体の固定側絶縁基材と可動側絶縁基材との間に、 ヒー トシールコネクターの端部を揷入した。  Next, the end of the heat seal connector was inserted between the fixed insulating base material and the movable insulating base material of the touch panel body.
なお、 このヒートシールコネクターは、 帯状のポリィミ ドフィルムを ベースフイルムとし、 タツチパネル本体に揷入する端部においてその上 下面に幅 1 m mコネクター端子を有するものである。 そしてこのコネク ター端子を一端としてリード線が設けられている (該リード線は上記タ ツチパネル本体のリ一ド線と同様の材料および方法により形成されたも のである) 。 また、 異方導電接着剤がベースフィルムおよびコネクタ^" 端子を覆うように塗布されている。 この異方導電接着剤は、 クロロプレ ンゴムからなるバインダ一中にニッケルの金属粉末を分散したものであ る。  This heat seal connector has a strip-shaped polyimide film as a base film, and has a 1-m-wide connector terminal on upper and lower surfaces at an end portion which enters the touch panel body. A lead wire is provided with the connector terminal as one end (the lead wire is formed by the same material and method as the lead wire of the touch panel body). An anisotropic conductive adhesive is applied so as to cover the base film and the terminal of the connector. This anisotropic conductive adhesive is obtained by dispersing nickel metal powder in a binder made of chloroprene rubber. You.
最後に、 熱圧着機 ( 1 2 0 °C、 2 0 k g / c m 2、 2 0秒) を用いて 熱圧着することにより、 タツチパネル本体の出力端にヒートシールコネ クタ一のコネクター端子を接続した。 Finally, by thermocompression bonding using thermocompression bonding machine (1 2 0 ° C, 2 0 kg / cm 2, 2 0 sec), it was connected to the connector terminals of the heat seal connector one to the output terminal of Tatsuchipaneru body .
この実施例 1 のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネル本体とヒートシールコネクターとの接 続面におけるス ト レスが軽減したものであった。 したがって、 カーナビ ゲーション等に要求される高温環境下においても、 ヒートシールコネク ターの接続部分で断線、 接続不良等の起こり難いものである。  In the touch panel of Example 1, the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even under the high-temperature environment required for car navigation and the like, disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector.
<実施例 2 >  <Example 2>
上記実施例 1 の如く固定側絶縁基材側と可動側絶縁基材側にフィルム 変形抑制層を設けることに代えて、 ヒートシールコネクターについてフ イルム変形抑制層を形成するものとし、 これ以外は実施例 1 と同様とし た。 Instead of providing a film deformation suppressing layer on the fixed insulating base material side and the movable insulating base material side as in Example 1 above, a heat seal connector was used. An film deformation suppressing layer was formed, and the other conditions were the same as in Example 1.
このヒートシールコネクターのフィルム変形抑制層の形成方法として は、 異方導電接着剤を塗布する前に、 熱圧着する領域のうちの上記コネ クタ一端子の非形成領域全域に、 メラミン系樹脂からなるインキを厚み 1 0 / m でスク リーン印刷し、 その後 1 1 0 °C、 9 0分乾燥を行い、 こ れによりフィルム変形抑制層を形成した。  As a method of forming the film deformation suppressing layer of the heat seal connector, a melamine-based resin is applied to the entire area of the area where the connector is not formed in the area of the thermocompression bonding before applying the anisotropic conductive adhesive. The ink was screen-printed at a thickness of 10 / m, and then dried at 110 ° C for 90 minutes to form a film deformation suppressing layer.
この実施例 2のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネノレ本体とヒートシールコネクタ一との接 続面におけるス ト レスが軽減されたものであった。 したがって、 カーナ ビゲーション等に要求される高温環境下においても、 ヒー トシールコネ クタ一の接続部分で断線、 接続不良等の起こり難いものである。  In the touch panel of Example 2, the deformation of the movable insulating base material due to the thermocompression bonding was suppressed to be small, and the stress at the connection surface between the touch panel panel and the heat seal connector 1 was reduced. Therefore, even in the high-temperature environment required for car navigation, etc., disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector.
ぐ実施例 3 >  Example 3>
上記実施例と同じく固定側絶縁基材側と可動側絶縁基材側にフィルム 変形抑制層を設けることに加えて、 ヒートシールコネクターについても フィルム変形抑制層を形成し、 これ以外については実施例 1 と同様とし た。  As in the above embodiment, in addition to the provision of the film deformation suppressing layer on the fixed insulating base material side and the movable insulating base material side, a film deformation suppressing layer was also formed on the heat seal connector. The same as above.
このヒー トシールコネクターのフィルム変形抑制層は、 上記実施例 2 と同様に、 異方導電接着剤を塗布する前に、 熱圧着する領域のうち上記 コネクター端子の非形成領域全域に、 メラミン系樹脂からなるインキを 厚み 1 0 μ πι でスク リーン印刷し、 その後 1 1 0 °C、 9 0分乾燥を行う ことにより形成した。  The film deformation suppressing layer of this heat seal connector is coated with a melamine-based resin over the entire area where the connector terminals are not formed in the thermocompression bonding area before the application of the anisotropic conductive adhesive, as in Example 2 above. Was formed by screen printing with a thickness of 10 μπι, followed by drying at 110 ° C for 90 minutes.
この実施例 3のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネル本体とヒー トシールコネクターとの接 続面におけるス ト レスが軽減したものであった。 したがって、 カーナビ ゲーショ ン等に要求される高温環境下においても、 ヒー トシールコネク ターの接続部分で断線、 接続不良等の起こり難いものである。 <実施例 4 > In the touch panel of Example 3, deformation of the movable-side insulating base material due to thermocompression was suppressed to be small, and stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation and the like, disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector. <Example 4>
フィルム変形抑制層の形成方法として下述の様に行った以外は、 実施 例 1 と同様とした。 該フィルム変形抑制層の形成方法としては、 フエノ ール系樹脂からなるバインダー中に銀の金属粉末を分散したィンキを用 い、 このィンキを厚み Ι Ο μ πι でスク リーン印刷し、 その後、 1 2 0 ° (:、 6 0分乾燥を行い、 これによりフィルム変形抑制層を形成した。  Example 1 was the same as Example 1 except that the method for forming the film deformation suppressing layer was as described below. As a method for forming the film deformation suppressing layer, an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and the ink is screen-printed with a thickness of Ι Ομπι. Drying was performed at 20 ° (: 60 minutes), thereby forming a film deformation suppressing layer.
この実施例 4のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネル本体とヒー トシールコネクターとの接 続面におけるス トレスが軽減したものであった。 したがって、 カーナビ ゲーシヨン等に要求される高温環境下においても、 ヒー トシールコネク ターの接続部分で断線、 接続不良等の起こりにくいものである。  In the touch panel of Example 4, deformation of the movable-side insulating base material due to thermocompression was suppressed to be small, and stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation, etc., disconnection and poor connection are unlikely to occur at the connection portion of the heat seal connector.
ぐ実施例 5 >  Example 5>
フィルム変形抑制層の形成方法として下述の様に行った以外は、 実施 例 2と同様とした。 該フィルム変形抑制層の形成方法としては、 フエノ ール系樹脂からなるバインダ一中に銀の金属粉末を分散したィンキを用 い、 このィンキを厚み 1 0 i m でスク リーン印刷し、 その後、 1 2 0 °C、 6 0分乾燥を行い、 これによりフィルム変形抑制層を形成した。  Example 2 was the same as Example 2 except that the method for forming the film deformation suppression layer was as described below. As a method for forming the film deformation suppressing layer, an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and the ink is screen-printed with a thickness of 10 im. Drying was performed at 20 ° C. for 60 minutes to form a film deformation suppressing layer.
この実施例 5のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネル本体とヒー トシールコネクターとの接 続面におけるス ト レスが軽減したものであった。 したがって、 カーナビ ゲーション等に要求される高温環境下においても、 ヒー トシールコネク ターの接続部分で断線、 接続不良等の起こりにくいものである。  In the touch panel of Example 5, the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed to be small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation and the like, disconnection, poor connection, and the like are unlikely to occur at the connection portion of the heat seal connector.
ぐ実施例 6 >  Example 6>
フィルム変形抑制層の形成方法として下述の様に行った以外は、 実施 例 3と同様とした。 該フィルム変形抑制層の形成方法としては、 フヱノ 一ル系榭脂からなるパインダ一中に銀の金属粉末を分散したィンキを用 い、 このインキを厚み 1 0 ιη でスク リーン印刷し、 その後、 1 2 0 °C、 6 0分乾燥を行い、 これとによりフィルム変形抑制層を形成した。 Example 3 was the same as Example 3 except that the method for forming the film deformation suppression layer was as described below. As a method for forming the film deformation suppressing layer, an ink in which silver metal powder is dispersed in a binder made of a phenolic resin is used, and this ink is screen-printed with a thickness of 10 ιη, and thereafter, 120 ° C, After drying for 60 minutes, a film deformation suppressing layer was formed.
この実施例 6 のタツチパネルは、 熱圧着による可動側絶縁基材の変形 が小さく抑えられ、 タツチパネル本体とヒー トシールコネクターとの接 続面におけるス ト レスが軽減したものであった。 したがって、 カーナビ ゲーシヨ ン等に要求される高温環境下においても、 ヒートシールコネク ターの接続部分で断線、 接続不良等の起こりにくいものである。  In the touch panel of Example 6, the deformation of the movable-side insulating base material due to the thermocompression bonding was suppressed small, and the stress at the connection surface between the touch panel main body and the heat seal connector was reduced. Therefore, even in the high-temperature environment required for car navigation systems and the like, disconnection and poor connection at the connection portion of the heat seal connector are unlikely to occur.
ぐ実験 >  Experiment>
上記実施例 1 と同様にして、 フィルム変形抑制層を備えた固定側絶縁 基材と上記可動側絶縁基材を作製し、 これらを対向配置してタツチパネ ル本体を得、 またヒートシールコネクターを得た (試料 1 ) 。  In the same manner as in Example 1 above, a fixed-side insulating base material provided with a film deformation suppressing layer and the movable-side insulating base material were prepared, and these were opposed to each other to obtain a touch panel body, and a heat seal connector was obtained. (Sample 1).
フィルム変形抑制層を形成せずに、 固定側絶縁基材と上記可動側絶縁 基材を作製した以外は上記実施例 1 と同様にしてタツチパネル本体を得、 また実施例と同様にしてヒートシールコネクターを得た (試料 2 ) 。 これら試料 1, 2について、 それぞれタツチパネル本体の固定側絶縁 基材と可動側絶縁基材との間に、 ヒー トシールコネクターの端部を揷入 し、 次いでシリ コンゴムヘッ ド (幅 2 mm) を取り付けた熱圧着機を用い て、 圧着温度 1 3 0 °C、 1 0秒、 圧力 3 0 kg/cm2で熱圧着を行った。 これらについて、 温度 8 5 °C、 湿度 8 5 %の高温高湿槽に放置し、 導 通が保たれているか否かについて 1 0 0時間毎にテスターで確認した (信頼性試験) 。 この試験結果を表 1に示す。 尚表中、 「〇」 は導通良 好であり、 「X」 は導通不良である。 A touch panel body was obtained in the same manner as in Example 1 except that the fixed-side insulating base material and the movable-side insulating base material were prepared without forming the film deformation suppressing layer. Was obtained (Sample 2). For each of Samples 1 and 2, insert the end of the heat seal connector between the fixed-side insulating base material and the movable-side insulating base material of the touch panel body, and then attach a silicon rubber head (2 mm wide). Thermocompression bonding was performed using a thermocompression bonding machine at a compression temperature of 130 ° C. for 10 seconds and a pressure of 30 kg / cm 2 . These were left in a high-temperature and high-humidity chamber at a temperature of 85 ° C and a humidity of 85%, and the conductivity was checked by a tester every 100 hours to determine whether or not conduction was maintained (reliability test). Table 1 shows the test results. In the table, “〇” indicates good conduction and “X” indicates poor conduction.
表 1
Figure imgf000023_0001
table 1
Figure imgf000023_0001
上記表 1より、 フィルム変形抑制層を備えた試料 1 のタツチパネルは、 5 0 0時間もの長時間、 高温高湿下に曝されても良好に導通が保たれ、 断線や接続不良が生じていないことが分かる。 一方フィルム変形抑制層 を有さない試料 2のタツチパネルにあっては、 3 0 0時間で導通不良と なった。 According to Table 1 above, the touch panel of Sample 1 having the film deformation suppressing layer exhibited good conduction even when exposed to high temperature and high humidity for as long as 500 hours. It can be seen that there is no disconnection or poor connection. On the other hand, in the touch panel of Sample 2 having no film deformation suppressing layer, conduction failure occurred in 300 hours.
試料 1は上述の実施形態 1に相当するタイプであって、 可動側絶縁基 材に多少変形の存在するものであるが (図 2参照) 、 この実施形態 1の タイプであっても上記の様に良好な耐久性を示していることから、 実施 形態 3の様に可動側絶縁基材に全く変形のないものにあっては (図 5参 照) 、 より一層優れた耐久性を示すことが予想される。 また実施形態 2 のタイプも可動側絶縁基材に多少変形の存在するものであるが (図 4参 照) 、 実施形態 1のタイプと同等に良好な耐久性を示すことが予想され る。 産業上の利用の可能性  Sample 1 is a type corresponding to the above-described first embodiment, and the movable-side insulating base material is slightly deformed (see FIG. 2). Therefore, in the case where the movable-side insulating base material has no deformation at all like the third embodiment (see FIG. 5), it is possible to exhibit even more excellent durability. is expected. In the type of the second embodiment, the movable-side insulating base material is also slightly deformed (see FIG. 4), but it is expected that the type of the first embodiment will exhibit the same excellent durability. Industrial potential
本発明は、 L C D、 有機 E L、 C R T等のディスプレイの前面に配置 されるタツチパネルに関するものであり、 これらし C D等は P D Aゃ携 帯電話、 パソコン、 カーナビゲーシヨン等の製品に広く用いられている。 そして本発明のタツチパネルは、 特に高耐熱性を要求されるカーナビゲ ーション用途等に有効に使用できる。  The present invention relates to a touch panel arranged in front of a display such as an LCD, an organic EL, a CRT, etc., and these CDs are widely used in products such as PDAs, mobile phones, personal computers, car navigations and the like. . In addition, the touch panel of the present invention can be effectively used particularly for car navigation applications requiring high heat resistance.

Claims

請求の範囲 The scope of the claims
1 . タツチパネルにおける、 出力端を備えた固定側絶縁基材と、 出力 端を備えた可動側絶縁基材との間に、 コネクター端子を備えたヒートシ ールコネクターの端部を挿入して、 異方導電接着剤を介して熱圧着させ てなるヒートシールコネクター付のタツチパネルにおいて、 1. Insert the end of the heat seal connector with the connector terminal between the fixed insulating base material with the output end and the movable insulating base material with the output end on the touch panel, and In a touch panel with a heat seal connector that is thermocompression bonded via an adhesive,
前記固定側絶縁基材と前記可動側絶縁基材の間の上記熱圧着領域にお ける、 前記出力端の形成平面での出力端非形成領域およびノまたは前記 コネクター端子の形成平面でのコネクター端子非形成領域に、 熱又は電 磁波硬化されたフィルム変形抑制層を備えてなることを特徴とするタッ チパネル。  In the thermocompression bonding region between the fixed-side insulating base material and the movable-side insulating base material, an output end non-formation area on the output end formation plane and a connector terminal on the output terminal formation plane or the connector terminal formation plane A touch panel comprising a heat or electromagnetic wave cured film deformation suppressing layer in a non-forming region.
2 . 前記フィルム変形抑制層を、 少なく とも前記固定側絶縁基材側ま たは前記可動側絶縁基材側の一方または両方の前記出力端非形成領域に 形成したものである請求項 1に記載のタッチパネル。  2. The film deformation suppressing layer is formed on at least one of or both the fixed-side insulating base material side and the movable-side insulating base material side or the output-end non-forming region. Touch panel.
3 . 前記ヒー トシールコネクターが、 ベースフィルムの上下面に前記 コネクター端子を設けた構造を呈するものであって、  3. The heat seal connector has a structure in which the connector terminals are provided on upper and lower surfaces of a base film,
前記フィルム変形抑制層を、 少なく とも前記ベースフィルムの上面, 下 面または上下面の前記コネクタ一端子非形成領域に形成したものである 請求項 1または 2に記載のタツチパネル。 3. The touch panel according to claim 1, wherein the film deformation suppressing layer is formed at least on an upper surface, a lower surface, or an upper and lower surface of the base film, where the one terminal of the connector is not formed.
4 . 前記フィルム変形抑制層が、 非導電材料または異方導電材料から なる請求項 1〜 3のいずれかに記載のタツチパネル。  4. The touch panel according to claim 1, wherein the film deformation suppressing layer is formed of a non-conductive material or an anisotropic conductive material.
PCT/JP2004/019804 2003-12-25 2004-12-27 Touch panel WO2005064452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003430767A JP2007072494A (en) 2003-12-25 2003-12-25 Touch panel
JP2003-430767 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005064452A1 true WO2005064452A1 (en) 2005-07-14

Family

ID=34736359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019804 WO2005064452A1 (en) 2003-12-25 2004-12-27 Touch panel

Country Status (3)

Country Link
JP (1) JP2007072494A (en)
TW (1) TW200529055A (en)
WO (1) WO2005064452A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0718394A2 (en) * 2006-11-02 2013-11-26 Nissha Printing EQUIPMENT PROTECTED PANEL WITH TOUCH INPUT FUNCTION FOR ELECTRONIC DEVICE DISPLAY WINDOW
JP4711149B2 (en) * 2008-06-18 2011-06-29 ソニー株式会社 Flexible printed wiring board, touch panel, display panel and display device
TWI403931B (en) * 2009-06-03 2013-08-01 Higgstec Inc Touch panel with matrix parallel electrode pattern and touch detecting method thereon
CN102902425B (en) * 2011-07-28 2016-06-08 宸鸿科技(厦门)有限公司 Capacitance type touch-control panel structure and manufacture method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421852A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Electron beam exposure system
JPH0318780A (en) * 1989-05-23 1991-01-28 Univ Rochester Measurement of electro-optic signal
JPH0661642A (en) * 1992-08-11 1994-03-04 Rohm Co Ltd Jointing method for flexible resin board
JPH0722478U (en) * 1993-09-30 1995-04-21 信越ポリマー株式会社 Heat seal connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421852A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Electron beam exposure system
JPH0318780A (en) * 1989-05-23 1991-01-28 Univ Rochester Measurement of electro-optic signal
JPH0661642A (en) * 1992-08-11 1994-03-04 Rohm Co Ltd Jointing method for flexible resin board
JPH0722478U (en) * 1993-09-30 1995-04-21 信越ポリマー株式会社 Heat seal connector

Also Published As

Publication number Publication date
TW200529055A (en) 2005-09-01
JP2007072494A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4346426B2 (en) Narrow frame touch panel
KR101153389B1 (en) Touch screen panel and touch screen assembly including the same
TWI428796B (en) Touch panel and manufacturing method thereof
JP4794392B2 (en) Touch panel with curved surface and method for manufacturing the same
JP2013122745A (en) Touch panel and manufacturing method thereof
WO2020000901A1 (en) Conductive laminated structure, preparation method thereof, and touch control display device
JP2009099498A (en) Touch panel and its manufacturing method
JP4550251B2 (en) Narrow frame touch panel
JP4356416B2 (en) Touch panel
JP2013074025A (en) Method for manufacturing conductive pattern formation substrate and conductive pattern formation substrate
JP2004146399A (en) Laminated wiring board, touch panel and their manufacturing methods
WO2005064452A1 (en) Touch panel
JP2008210199A (en) Touch panel, manufacturing method for it, and electronic apparatus
JP2005071123A (en) Touch panel and electronic equipment using the same
KR101272625B1 (en) Assembly of Pad for Touch Panel and Circuit Board
JP2004213187A (en) Touch panel with icon
KR20100114691A (en) Pad for preparing touch panel, method of preparing touch panel using the same and touch panel thereby
JP3532378B2 (en) Touch panel
TWI557614B (en) Touch module and manufacturing method thereof
JP2004240662A (en) Four-side narrow frame touch panel
JP2012138028A (en) Manufacturing method of touch panel member and touch panel member
KR20080087527A (en) Touch panel and manufacturing method thereof
KR100442336B1 (en) Touch panel and the manufacturing method the same
JP4310180B2 (en) Touch panel
JP2832557B2 (en) Analog touch panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase