WO2005064170A1 - Working vehicle and restart controlling method for working vehicle engine - Google Patents

Working vehicle and restart controlling method for working vehicle engine Download PDF

Info

Publication number
WO2005064170A1
WO2005064170A1 PCT/JP2004/019351 JP2004019351W WO2005064170A1 WO 2005064170 A1 WO2005064170 A1 WO 2005064170A1 JP 2004019351 W JP2004019351 W JP 2004019351W WO 2005064170 A1 WO2005064170 A1 WO 2005064170A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hydraulic circuit
hydraulic
control
lock
Prior art date
Application number
PCT/JP2004/019351
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Naruse
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to KR1020067012825A priority Critical patent/KR100934686B1/en
Priority to JP2005516644A priority patent/JP4271685B2/en
Priority to GB0612133A priority patent/GB2425368B/en
Publication of WO2005064170A1 publication Critical patent/WO2005064170A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a work vehicle having an idling stop function and an engine restart function, and an engine restart control method for such a work vehicle.
  • the idling stop control function is a function to automatically stop the engine when the idle state of the work vehicle, that is, a state in which the work vehicle waits while the engine is running.
  • Work vehicles having an idling stop function are disclosed in Patent Documents 1 and 2, for example.
  • Patent Document 1 JP-A-2003-65097
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-96627
  • the construction machine disclosed in Patent Document 2 has an operation lever for commanding a hydraulic circuit to operate the construction machine, a lock position for inhibiting operation of the hydraulic circuit, and an operation of the hydraulic circuit. And a lock lever for switching between a lock release position and a lock release position.
  • an object of the present invention is to provide a work vehicle having an idling stop control function to prevent the work vehicle from unexpectedly starting when the engine is restarted after the engine is automatically stopped by the idling stop control. Is to do.
  • a work vehicle includes an engine, a hydraulic circuit driven by the engine, a hydraulic operating unit driven by the hydraulic circuit, and an operation of outputting an operation command signal for moving the hydraulic operating unit.
  • the engine, the engine, the hydraulic circuit, and the operating device the engine is stopped by an idling stop control for stopping the engine when the engine is in an idling operation state, and the idling stop control.
  • the control device sets the hydraulic circuit to an inoperable state before restarting the engine.
  • the engine is restarted in response to a predetermined trigger signal, and after the engine is restarted, when the operation command signal is not input from the operating device, the Restore circuit to operational condition.
  • the work machine is provided with a lock device that outputs a lock instruction signal and a lock release instruction signal for the hydraulic circuit. Then, after stopping the engine by the idling stop control, the control device restarts the engine. Before starting, the hydraulic circuit is made inoperable in response to the lock instruction signal from the lock device. Further, after the engine is restarted, when the operation command signal is not input from the operating device, the control device responds to the lock release instruction signal from the lock device and controls the hydraulic circuit. Return to an operable state. Therefore, after the engine is stopped, the engine is not restarted unless the hydraulic circuit is locked by the lock device to render the operation inoperative. Also, after the engine restarts, the hydraulic circuit will be in an operable state even if the lock is instructed to be unlocked by the lock device, as long as some operation command signal for moving the hydraulic actuator is also output. Does not return.
  • a predetermined operation command signal from the operating device is used as the predetermined trigger signal. Therefore, when a predetermined operation command signal is output from the operating device after the engine is stopped, the engine is automatically restarted.
  • the work vehicle includes a pilot pressure control device that controls a pressure of pilot pressure oil for controlling the hydraulic circuit. Then, the control device controls the pilot pressure control device to lower the pressure of the pilot pressure oil below a predetermined operation threshold, thereby disabling the hydraulic circuit, and controlling the pressure of the pilot pressure oil.
  • the hydraulic circuit is returned to an operable state by increasing the force above the operation threshold. Further, when returning the hydraulic circuit to an operable state, the control device gradually increases the pressure of the pilot pressure oil. With this gradual pressure increase control, when the hydraulic circuit returns to an operable state, it is possible to prevent the hydraulic operating section from suddenly starting to operate.
  • the work vehicle is provided with an alarm device that outputs a warning sound or an alarm to the outside of the work vehicle.
  • the control device When receiving the trigger signal while the hydraulic circuit is inoperable, the control device restarts the engine after a warning sound or a warning is output from the warning device. Therefore, it is possible to inform people outside the work vehicle that the engine is restarting as much as this, and alert them to ensure safety.
  • FIG. 1 is a side view of a hydraulic shovel according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an overall schematic configuration of a drive control system of the hydraulic shovel according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a processing procedure of idling stop control and engine restart control according to the first embodiment.
  • FIG. 4 is a view showing a pressure rise curve of a pilot source pressure immediately after the engine is restarted in the first embodiment.
  • FIG. 5 is a diagram showing an overall schematic configuration of a drive control system for a hydraulic shovel according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a processing procedure of idling stop control and engine restart control according to the second embodiment.
  • FIG. 7 is a diagram showing a pressure rise curve of a pilot source pressure immediately after an engine restart in a second embodiment.
  • the present embodiment is an example in which the present invention is applied to a hydraulic excavator as a working vehicle
  • the present invention can be applied to various other working vehicles, for example, a bulldozer, a dump truck, a crane, a forklift, and the like. Needless to say.
  • FIG. 1 shows a side view of a hydraulic shovel according to a first embodiment of the present invention.
  • FIG. 2 shows an overall schematic configuration of the drive control system of the excavator.
  • the hydraulic excavator 1 of the present embodiment includes a lower traveling body 2 having a traveling device 2b driven by a traveling hydraulic motor 2a, and a swing driven by a swing hydraulic motor 3a.
  • Device 3 and an upper swing provided on the lower traveling body 2 via the swing device 3
  • the vehicle includes a body 4, a work implement 5 attached to a central position in the front of the upper swing body 4, and a driver's cab 6 provided at a front left position of the upper swing body 4.
  • the working machine 5 includes a boom 7 that is swingably connected to the upper swing body 4, an arm 8 that is swingably connected to the boom 7, and a packet that is swingably connected to the arm 8.
  • Has 9 Work implement 5 further includes hydraulic cylinders for moving boom 7, arm 8 and packet 9, ie, boom cylinder 10, arm cylinder 11 and bucket cylinder 12. Also, on both sides of a driver's seat (not shown) in the operator's cab 6, work implement operation levers 13, 14 for operating the swinging operation of the upper revolving superstructure 4 and the bending and stretching and lifting and lowering of the work implement 5 (see FIG. 2). A pair of traveling operation levers 15 and 15 (see FIG. 2) for operating the traveling operation of the lower traveling unit 2 are disposed in front of the driver's seat.
  • the drive control system of the excavator 1 has a hydraulic circuit 20 in which hydraulic oil discharged from a hydraulic pump 17 driven by an engine 16 is operated by an operating valve. It is supplied to the hydraulic operating section 19 through the assembly 18.
  • the hydraulic operating section 19 is a block diagram of various hydraulic actuators such as the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, the traveling hydraulic motor 2a, and the turning hydraulic motor 3a. It was done.
  • the operating valve assembly 18 is an assembly of hydraulic pilot operated directional control valves 34,..., 34 corresponding to the hydraulic actuators.
  • the drive control system has a controller 21.
  • the controller 21 is, for example, a computer, and executes a predetermined control program (not shown) to execute idling stop control, engine restart control, and the like.
  • a central processing unit for performing arithmetic processing for the control a storage device for storing the control program, various tables and setting condition data used for the arithmetic processing, and input / output of various signals described below. It has an input / output device.
  • the engine 16 is, for example, a diesel engine.
  • the engine 16 is provided with a fuel injection pump 22 and a governor 23.
  • the governor 23 has a fuel control lever 23a driven by a governor drive motor 24.
  • Fuel control lever 23a Is detected by the potentiometer 25, and the detection signal is input to the controller 21.
  • a fuel dial (not shown) is provided to set the throttle position (engine speed) of the engine 16.
  • a throttle signal (set speed signal) from a potentiometer (not shown) attached to the fuel dial is provided. Is input to the controller 21.
  • the actual rotation speed of the engine 16 is detected by a rotation speed sensor 26, and the detection signal is also input to the controller 21.
  • an engine control device 27 mainly includes a controller 21, a governor 23, a governor drive motor 24, a potentiometer 25, and a fuel dial.
  • the controller 21 determines a difference between a throttle signal (set rotation speed signal) input from the fuel dial and an actual rotation speed signal of the engine 16 detected by the rotation speed sensor 26.
  • a drive signal having a voltage level that satisfies a predetermined functional relationship with respect to the difference signal is generated, and the governor drive motor 24 is driven based on the drive signal.
  • the throttle signal output from the potentiometer attached to the fuel dial indicates the maximum set rotation speed.
  • the controller 21 applies a motor drive signal corresponding to the maximum set number of revolutions to the governor drive motor 24.
  • the governor drive motor 24 operates the fuel control lever 23a so that the highest speed regulation line is set, and as a result, the output horsepower and the engine speed of the engine 16 are automatically set.
  • a motor drive signal corresponding to an engine stop command is applied from the controller 21 to the governor drive motor 24, the governor drive motor 24 operates so that the fuel injection by the fuel injection pump 22 becomes non-injection. Then, the fuel control lever 23a is operated, whereby the operation of the engine 16 is stopped.
  • the engine 16 is provided with an engine starting device 28 for starting the engine 16.
  • the engine starter 28 also includes a starter 29, a starter switch 30, a battery 31, a battery relay 32, and wiring for connecting these devices.
  • the operator operates the starter switch 30 When this is set to the start position, the start signal flows to the starter 29, and the electric power from the notch 31 is supplied to the starter 29 via the battery relay 32, whereby the starter 29 drives the engine 16 to drive the engine 16 Is started.
  • a start signal flows from the controller 21 to the starter 29, the starter 29 drives the engine 16 to start the engine 16! /.
  • the hydraulic pump 17 is, for example, a variable displacement hydraulic pump.
  • the hydraulic pump 17 includes a pilot pump (pilot pressure oil generating device) 33 that is driven by the engine 16 and discharges pilot pressure oil. It is installed continuously.
  • the operating valve assembly 18 includes various hydraulic actuators (the traveling hydraulic motor 2 a, the swing hydraulic motor 3 a, the boom cylinder 10, the arm cylinder 11, and the bucket) included in the hydraulic operating section 19.
  • a set of hydraulic pilot operated directional control valves 34 By supplying various pilot pressure oils output from pressure reducing valves 37, 38, and 40, which will be described later, to the directional control valves, the work implement 5, the upper revolving unit 4, and the lower traveling unit.
  • Various oil path switching operations for moving the motor 2 are performed.
  • the work implement operation levers 13, 14 are provided with pressure reducing valves (pilot pressure oil pressure output devices) 37, 38 via operation units 35, 36 that output various operation commands corresponding to various lever operations. It is attached.
  • the traveling operation levers 15 and 15 are provided with a pressure reducing valve (pilot pressure oil pressure output device) 40 via an operation unit 39 that outputs various operation commands corresponding to various lever operations.
  • the pilot pressure oil discharged from the pilot pump 33 is supplied to the pressure reducing valves 37, 38, and 40 via an electromagnetic proportional pressure control valve 46 described later.
  • the pressure-reducing valves 37, 38, and 40 regulate the pressure of the supplied pilot pressure oil based on various operation commands from the operation units 35, 36, 15, and 15, and use the regulated pilot pressure oil to operate the valve assembly.
  • the controller 21 has, as one function, a first lever operation determination unit 21a.
  • the first lever operation determination unit 21a determines which lever operation is being performed based on the input operation signals (1) and (12). While the engine 16 is operating, the controller 21 uses the first lever operation determination unit 21a to determine whether or not there is any lever operation.
  • the controller 21 has a timer 21b that counts a predetermined time length as another function. The length of time counted by the timer 21b can be set by the operator from a control panel (not shown) arranged in the cab. In the idling stop control, the controller 21 counts the predetermined time length by the timer 21b while the engine 16 is in the idling operation state.
  • the operation unit 35 coupled to the work implement operation lever 13 indicates whether or not a specific lever operation, such as a boom raising operation, of various lever operations of the work implement operation lever 13 is performed.
  • a potentiometer 42 for outputting an electric signal, that is, a boom raising operation signal, is provided.
  • the boom raising operation signal from the potentiometer 42 is input to the controller 21.
  • the controller 21 has, as another function, a second lever operation determining section 21c, which determines whether or not the boom raising operation is performed based on a boom raising operation signal input from the potentiometer 42. Is determined.
  • the controller 21 determines the presence or absence of the boom raising operation by the second lever operation determination unit 21c.
  • the force in which “boom raising operation” is employed as the specific lever operation. This is only an example, and a lever operation other than “boom raising operation” may be employed.
  • a lock lever 43 for switching between a lock position where the operation of the hydraulic circuit 20 is prohibited and a lock release position where the operation of the hydraulic circuit 20 is permitted is provided.
  • an ON signal (lock release position signal) from the limit switch 44 pushed by the lock lever 43 is input to the 1S controller 21.
  • the controller 21 further has a lock lever operation position determination unit 21d as another function.
  • the lock lever operation position determination unit 21d determines whether the lock lever 44 is in the lock position or the unlock position based on the lock release position signal input from the limit switch 44. Is determined. In the engine restart control after the engine 16 is stopped by the idling stop control, the controller 21 determines the position of the lock lever 44 by the lock lever operation position determination unit 21d.
  • An electromagnetic proportional pressure control valve (pressure control device) 46 is provided in a pilot pressure oil supply pipe line 45 connecting the above-mentioned pilot pump 33 and the pressure reducing valves 37, 38, 40.
  • the pressure of the pilot pressure oil supplied from the pilot pump 33 to each of the pressure reducing valves 37, 38, and 40 is also controlled in proportion to the magnitude of the control current input to the electromagnetic proportional pressure control valve 46.
  • the pressure sensor 47 detects the discharge pressure of the hydraulic pump 17.
  • the pressure detection signal from the pressure sensor 47 is input to the controller 21.
  • the pressure sensor 48 detects the pressure of the pilot pressure oil supplied to the pressure reducing valves 37, 38, 40 via the electromagnetic proportional pressure control valve 46.
  • a pressure detection signal from the pressure sensor 48 is input to the controller 21 and is output to a pilot It is used as a feedback signal in controlling the source pressure.
  • control in steps S1 to S4 corresponds to idling stop control
  • control in steps S5 to S11 corresponds to engine restart control.
  • step S1 the controller 21 determines whether or not the engine 16 is in an idling operation state. That is, when any one of the operation signals (1) and (12) is input to the controller 21, that is, when one of the work implement 5, the upper revolving unit 4, and the lower traveling unit 2 operates, If so, the controller 21 determines that the engine 16 is not in the idling operation state, and continues the operation of the engine 16 (step S2). On the other hand, when neither! / Nor the deviation of the operation signals (1) and (12) is input to the controller 21, that is, all of the work implement 5, the upper revolving unit 4, and the lower traveling unit 2 When not operating, it is determined that the engine 16 is in the idling operation state.
  • step S1 when it is determined that the engine 16 has entered the idling operation state, the controller 21 starts counting for a predetermined time (for example, about several tens of seconds) by the timer 21b. It is determined whether or not has been continued for the predetermined time (S3). As a result, when the duration of the idling operation state reaches the predetermined time, the controller 21 transmits a motor drive signal corresponding to the engine stop command to the governor drive motor 24 to stop the engine 16. (S4).
  • a predetermined time for example, about several tens of seconds
  • step S5 the controller 21 uses the lock lever operation position determining unit 21d to determine whether the lock release position signal is input from the limit switch 44 or not. It is determined whether the position is at the lock position or the unlock position (S5). When it is determined in step S5 that the position of the lock lever 43 is at the unlock position, the controller 21 waits. On the other hand, if it is determined in step S5 that the position of the lock lever 43 is at the lock position, the controller 21 determines whether the pilot pressure supplied to the pressure reducing valves 37, 38, 40 through the electromagnetic proportional pressure control valve 46 is satisfied.
  • Oil pressure hereinafter referred to as “pilot source pressure”
  • operation threshold value of the operation valve assembly 18
  • Pt The control current is output to the electromagnetic proportional pressure control valve 46 so that the predetermined value (Pa) becomes smaller than the predetermined value (Pa) (S6).
  • the value (Pa) of the pilot source pressure (Pc) at this time is determined by the minimum hydraulic pressure (hereinafter, hydraulic pressure) that can operate the hydraulic switches 41, ..., 41 connected to the outputs of the pressure reducing valves 37, 38, 40. (Referred to as the "operation threshold value" of the switches 41, 41), (Ps), and therefore, various operations performed on the operating levers 13, 14, 1 and 5 are performed by the hydraulic switches 41, Are detected by the controller 41 and recognized by the controller 21.
  • hydraulic pressure the minimum hydraulic pressure
  • step S7 the controller 21 performs a specific lever operation, that is, a lever operation related to the boom raising operation, based on the boom raising operation signal from the potentiometer 42 by the second lever operation determination 21c. It is determined whether or not there is (S7). If it is determined in step S7 that the specific lever operation is being performed, the controller 21 transmits a start signal to the starter 29 to start the engine 16 (S8). As described above, when the engine 16 is restarted in response to the specific lever operation, the operation of the hydraulic circuit 20 is already prohibited by the above-described step S6 (Pc ⁇ Pt).
  • the controller 21 The portion 21a can determine the presence or absence of various lever operations after the engine is started.
  • the controller 21 uses the first lever operation determination unit 21a to output the (1)-(12) from the hydraulic switches 41,. Based on the presence or absence of the operation signal, it is determined whether or not all the operation levers 13, 14, 15, and 15 are in the -Eutral position (no operation of the lever for moving the excavator 1 is performed). It is determined (S9). In step S9, any of the operation levers 13, 14, 15, and 15 is not in the -Eutral position (some lever operation for moving the excavator 1 is performed. ), The controller 21 waits.
  • step S9 if it is determined in step S9 that all of the operation levers 13, 14, 15, and 15 are at the -Eutral position, the controller 21 uses the lock lever operation position determination unit 21d to perform the limit switch 4 operation. It is determined whether the lock lever 43 is at the lock position or the unlock position based on the presence or absence of the input of the unlock position signal from 4 (S10). If it is determined in step S10 that the lock lever 43 is at the lock position, the control by the controller 21 returns to step S9. On the other hand, if it is determined in step S10 that the lock lever 43 is at the unlock position, the controller 21 outputs a control current to the electromagnetic proportional pressure control valve 46 (SI 1), The pressure (Pc) is increased in a curve as shown in FIG.
  • SI 1 electromagnetic proportional pressure control valve 46
  • the pilot source pressure (Pc) rapidly rises from the predetermined value (Pa) to the operation threshold (Pt) of the operation valve assembly 18, and thereafter, the operation threshold (Pc) t) Gradually increase gradually to the maximum set pressure value (Pe) higher than.
  • the operation of increasing the pilot source pressure (Pc) is performed in a state where the rotation speed of the engine 16 is equal to or higher than a certain rotation speed and the discharge pressure of the pilot pump 33 has risen to a necessary and sufficient level.
  • the state of the operation valve assembly 18 shifts to a state in which the oil passage switching operation can be performed (that is, the state of the hydraulic circuit 20 becomes operable). Transition) . Therefore, when the operation levers 13, 14, 15, and 15 are operated, the operation of the excavator 1 (the hydraulic operating section 19) starts.
  • the controller 21 locks only when all the operating levers are in the -Eutral position (that is, when no lever operation is performed to move the excavator 1).
  • the pilot pressure (Pc) is increased to the maximum set pressure value (Pe) higher than the operation threshold value (Pt) of the operation valve assembly 18 and the hydraulic circuit 20 is activated. Move to a possible state. Therefore, when the engine 16 restarts in response to a specific lever operation, the hydraulic excavator 1 (the hydraulic operating section 19) does not suddenly start moving.
  • FIG. 5 shows an overall schematic configuration of a drive control system for a hydraulic shovel according to a second embodiment of the present invention. Note that, in the present embodiment, the same or similar elements as those in the first embodiment are denoted by the same reference numerals, and redundant description thereof will be omitted. The different parts will be mainly described.
  • the basic configuration of the excavator is as described above with reference to FIG.
  • the operating units 55 and 56 use the potentiometers 51, 52, 53 and 54 to transmit various operation commands corresponding to various lever operations of the work implement operation levers 13 and 14, using electric signals (operations). Signal), and outputs it to the controller.
  • the operation unit 59 converts various operation commands corresponding to various lever operations of the traveling operation levers 15 and 15 into electric signals (operation signals) by potentiometers 57 and 58 and outputs the signals to the controller 21.
  • the controller 21 has a lever operation determination unit 60, which determines whether or not a force is exerted for performing various lever operations based on various input operation signals.
  • the types of operation signals input to the controller 21 include, for example, the above-described (1) and (12) operation signals.
  • the operation valve assembly 61 controls the supply of the hydraulic oil discharged from the hydraulic pump 17 to the hydraulic operating section 19.
  • An operating valve assembly 61 is provided corresponding to each hydraulic actuator (hydraulic motor 2a, swing hydraulic motor 3a, boom cylinder 10, arm cylinder 11, bucket cylinder 12) of the hydraulic operating section 19. It is an aggregate of a plurality of electromagnetic hydraulic pilot operated directional control valves 62.
  • Each electromagnetic and hydraulic pilot operated directional control valve 62 includes a proportional electromagnetic operating part 62a and a hydraulic pilot operating part 62b.
  • the controller 21 determines whether or not the engine 16 is in the idling operation state based on the presence or absence of the (1)-(12) various operation signals. .
  • the controller 21 determines that the engine 16 is not in the idling operation state, and continues the operation of the engine 16 in step R2.
  • the controller 21 determines that the engine 16 is in the idling operation state.
  • step R1 when the engine 16 enters the idling operation state, the controller 21 starts powering for a predetermined time (for example, about several tens of seconds) by the timer 21b in step R3. It is determined whether the idling operation state has continued for a predetermined time. If the count value of the timer 21b has not exceeded the predetermined time, the controller 21 continues the operation of the engine 16 (R2). On the other hand, when the count value of the timer 21b reaches the predetermined time, the controller 21 transmits a motor drive signal corresponding to the engine stop command to the governor drive motor 24 in step R4, and stops the engine 16.
  • a predetermined time for example, about several tens of seconds
  • the controller 21 controls the lock lever 43 based on the input of the lock release position signal from the limit switch 44 by the lock lever operation position determination unit 21d. It is determined whether is in the lock position or the unlock position (R5). If it is determined in step R5 that the lock lever 43 is at the unlock position, the controller 21 waits. On the other hand, if it is determined in step R5 that the lock lever 43 is in the lock position, the controller 21 sets the value of the control current output to the electromagnetic proportional pressure control valve 46 to zero (R6).
  • step R6 the pressure of the pilot pressure oil (hereinafter referred to as “pilot source pressure”) (Pc) supplied from the pilot pump 33 to each electromagnetic and hydraulic pilot operated directional control valve 62 through the electromagnetic proportional pressure control valve 46 is reduced.
  • Pc pilot source pressure
  • the controller 21 determines whether any of various lever operations for moving the excavator 1 is performed based on the presence or absence of a potentiometer 51, 52, 53, 54, 57, 58 force operation signal. It is determined whether or not the operation has been performed (R7). If it is determined in step R7 that any lever operation has been performed, the controller 21 transmits a start signal to the starter 29 to start the engine 16 (R8). As described above, after the engine 16 is automatically stopped by the idling stop control, if any operation is performed on the work implement operation levers 13, 14 or the travel operation levers 15, 15, the engine is automatically restarted.
  • the pilot source pressure (Pc) is already controlled to zero by the above-described step R6, so that the oil passage switching operation of the operation valve assembly 61 cannot be performed. Therefore, even if the engine 16 is restarted, there is no possibility that the hydraulic shovel 1 (the hydraulic operating section 19) starts to move suddenly.
  • the controller 21 receives the operation signals (1) and (12) from the potentiometers 51, 52, 53, 54, 57, and 58. Based on the presence / absence, whether all of the work implement operation levers 13 and 14 and the travel operation levers 15 and 15 are in the -Eutral position (that is, no lever operation for moving the excavator 1 is performed) IJ ⁇ IJ (R9). If it is determined in step R9 that any of the operating levers 13, 14, 15, and 15 is not at the -Eutral position (that is, some lever operation for moving the excavator 1 is being performed), the controller 21 waits.
  • step R9 if it is determined that all the operation levers 13, 14, 15, and 15 are in the -Eutral position, the controller 21 determines whether the lock release position signal is input from the limit switch 44 or not.
  • the lever operation position determination section 21d determines whether the lock lever 43 is at the lock position or the unlock position (R10). If it is determined in step RIO that the lock lever 43 is at the lock position, the control by the controller 21 returns to step R9. On the other hand, in step R10, it is determined that the lock lever 43 is in the unlock position.
  • the controller 21 If separated, the controller 21 outputs a control current to the electromagnetic proportional pressure control valve 46 so that the pilot source pressure (Pc) increases along the curve shown in FIG. 7 (R11).
  • the pilot pressure (Pc) is reduced from zero to the minimum oil pressure at which the oil passage switching operation of the operation valve assembly 18 can be performed (hereinafter referred to as the “operation threshold” of the operation valve assembly 18).
  • (Pt) in a short time, and then gradually increase to a maximum set pressure value (P e) higher than its operating threshold (Pt).
  • the operation of increasing the pilot source pressure is performed in a state where the number of revolutions of the engine 16 is equal to or higher than a certain number of revolutions and the discharge pressure of the pilot pump has risen to a necessary and sufficient level.
  • the pilot base pressure (Pc) the oil path switching operation of the operation valve assembly 61 can be performed, and therefore, the hydraulic excavator 1 (the hydraulic operating section 19) can move.
  • the pilot base pressure (Pc) also gradually increases the operation threshold value (Pt) force to the maximum set pressure value (Pe), so that no matter what lever operation is performed immediately after unlocking, the hydraulic pressure
  • the excavator 1 (the hydraulic operating section 19) starts operating at a low speed, and a sharp high-speed operation at the start of the operation is avoided. No matter how the operating levers 13, 14, 15, and 15 are operated, the hydraulic operating section 19 starts operating at a low speed, and a rapid high-speed operation at the start of the operation is avoided.
  • a step of checking whether or not the operator has sounded the horn of the hydraulic shovel 1 (not shown) is performed, and the horn sounds in advance. Otherwise, the engine 16 may be controlled so as not to be restarted. Alternatively, or by automatically sounding a beep before restarting the engine, or by using other appropriate alarming methods, people who are outside the excavator 1 or to the excavator 1 The operator on board may be automatically notified that the engine restart operation will be performed.
  • a warning or an alarm is output inside and outside the excavator 1 immediately before restarting the engine, so that people near the excavator 1 or an operator who is on the excavator 1 can be notified. It can call attention to safety in preparation for the engine restart.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

In a working vehicle, in response to the operation of an operating lever by an operator after idling stop of the engine, control is effected to automatically restart the engine in such a manner that the working vehicle will not unexpectedly move. After the idling stop (S4) of the engine, when a lock lever is brought to a lock position (S5, YES), a hydraulic circuit is controlled to cause the working vehicle to enter in its inoperable state in which the working vehicle will not move (S6). Thereafter, when a particular operation is applied to the operating lever (S7, YES), the engine (16) is restarted (S8). After restarting of the engine, only when all operating levers are in the neutral position (S9, YES), the lock lever is released from its locked state (S10, YES). Whereupon the hydraulic circuit is gradually restored to its normal operable state, the working vehicle can move (S11).

Description

明 細 書  Specification
作業車両及び作業車両のエンジン再始動制御方法  Work vehicle and engine restart control method for work vehicle
技術分野  Technical field
[0001] 本発明は、アイドリングストップ機能とエンジン再始動機能とを備える作業車両、及 びそのような作業車両におけるエンジン再始動制御方法に関する。  The present invention relates to a work vehicle having an idling stop function and an engine restart function, and an engine restart control method for such a work vehicle.
背景技術  Background art
[0002] 最近、省エネルギーや環境保護のために、作業車両のような作業車両にアイドリン グストップ制御機能を搭載することが要求されて!、る。アイドリングストップ制御機能と は、作業車両のアイドル状態、すなわちエンジンが作動したままで作業車両が待機 する状態、が発生したとき、自動的にエンジンを停止させる機能である。アイドリング ストップ機能を備える作業車両が例えば特許文献 1及び 2に開示されている。  [0002] Recently, it has been required to mount an idling stop control function on a work vehicle such as a work vehicle for energy saving and environmental protection! The idling stop control function is a function to automatically stop the engine when the idle state of the work vehicle, that is, a state in which the work vehicle waits while the engine is running. Work vehicles having an idling stop function are disclosed in Patent Documents 1 and 2, for example.
[0003] 特許文献 1 :特開 2003-65097号公報  [0003] Patent Document 1: JP-A-2003-65097
特許文献 2:特開 2000— 96627号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2000-96627
[0004] 特許文献 1に開示された作業車両では、操作レバーの操作されな!ヽ状態が設定時 間を超えたとき、もしくは操作レバーに付設のスィッチが ON操作されたときに、ェン ジンのアイドリング運転が自動的に停止される。このエンジン自動停止の後に操作レ バーが操作されると、エンジンが自動的に始動される。  [0004] In the work vehicle disclosed in Patent Document 1, when the operation lever is not operated, the state of the operation lever exceeds the set time, or when the switch attached to the operation lever is turned ON, the engine is operated. Idling operation is automatically stopped. When the operation lever is operated after the automatic engine stop, the engine is automatically started.
[0005] 特許文献 2に開示された建設機械は、油圧回路に指令して建設機械を操作するた めの操作レバーの他に、油圧回路の作動を禁止するロック位置と前記油圧回路の作 動を許可するロック解除位置とを切り換えるロックレバーを備える。そのロックレバー 力 ック位置に切り換えられた時点から所定時間経過したときに、エンジンの運転が 自動的に停止される。このエンジン自動停止の後に、前記ロックレバーがロック解除 位置に切り換えられると、油圧回路が作動可能な状態になるとともに、エンジンが自 動的に始動される。  [0005] The construction machine disclosed in Patent Document 2 has an operation lever for commanding a hydraulic circuit to operate the construction machine, a lock position for inhibiting operation of the hydraulic circuit, and an operation of the hydraulic circuit. And a lock lever for switching between a lock release position and a lock release position. When a predetermined time has elapsed from the time when the lock lever is switched to the lock position, the operation of the engine is automatically stopped. After the automatic stop of the engine, when the lock lever is switched to the unlocked position, the hydraulic circuit becomes operable and the engine is started automatically.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、特許文献 1に開示された作業車両では、操作レバーの操作でェンジ ンが自動的に再始動した時、その操作レバーに応答して作業車両が不意に動きだ す虞があるという問題点がある。特許文献 2に開示された建設機械では、オペレータ が操作レバーを操作しながらロックレバーのロック解除操作を行った場合、ロック解除 操作によりエンジンが再始動したとき、同時に油圧回路が作動を開始して、操作レバ 一に応答して建設機械を不意に動かす虞があるという問題点がある。 [0006] In the work vehicle disclosed in Patent Document 1, the engine is operated by operating the operation lever. When the vehicle restarts automatically, there is a problem that the work vehicle may suddenly move in response to the operation lever. In the construction machine disclosed in Patent Document 2, when the operator performs an unlock operation of the lock lever while operating the operation lever, when the engine is restarted by the unlock operation, the hydraulic circuit simultaneously starts operating. However, there is a problem that the construction machine may be unexpectedly moved in response to the operation lever.
[0007] 従って、本発明の目的は、アイドリングストップ制御機能を備える作業車両にお!、て 、アイドリングストップ制御によるエンジン自動停止の後にエンジンを再始動する際、 作業車両が不意に動きだすことを防止することにある。 [0007] Accordingly, an object of the present invention is to provide a work vehicle having an idling stop control function to prevent the work vehicle from unexpectedly starting when the engine is restarted after the engine is automatically stopped by the idling stop control. Is to do.
課題を解決するための手段  Means for solving the problem
[0008] 本発明に従う作業車両は、エンジンと、前記エンジンにより駆動される油圧回路と、 前記油圧回路により駆動される油圧作動部と、前記油圧作動部を動かすための操作 指令信号を出力する操作装置と、前記エンジン、前記油圧回路及び前記操作装置 に接続され、前記エンジンがアイドリング運転状態にあるときに前記エンジンを停止さ せるアイドリングストップ制御と、前記アイドリングストップ制御により前記エンジンを停 止させた後に前記エンジンを再始動するエンジン再始動制御とを行う制御装置とを 備える。前記制御装置は、前記アイドリングストップ制御により前記エンジンを停止さ せた後に前記エンジン再始動制御を行う場合、前記エンジンを再始動する前に前記 油圧回路を作動不能な状態にし、その後、前記油圧回路が作動不能な状態にあると き、所定のトリガ信号を受けて前記エンジンを再始動し、前記エンジンを再始動した 後、前記操作装置から前記操作指令信号が入力されていないときに、前記油圧回路 を作動可能な状態に復帰させる。  [0008] A work vehicle according to the present invention includes an engine, a hydraulic circuit driven by the engine, a hydraulic operating unit driven by the hydraulic circuit, and an operation of outputting an operation command signal for moving the hydraulic operating unit. The engine, the engine, the hydraulic circuit, and the operating device, the engine is stopped by an idling stop control for stopping the engine when the engine is in an idling operation state, and the idling stop control. A control device for performing engine restart control for restarting the engine later. When performing the engine restart control after stopping the engine by the idling stop control, the control device sets the hydraulic circuit to an inoperable state before restarting the engine. When the engine is inoperable, the engine is restarted in response to a predetermined trigger signal, and after the engine is restarted, when the operation command signal is not input from the operating device, the Restore circuit to operational condition.
[0009] エンジンが停止した後、油圧回路が作動不能な状態にされ、その後にエンジンが 再始動され、その後に油圧回路が作動可能な状態に回復される。そのため、ェンジ ンが再始動されるときには、油圧回路は作動不能であり、油圧作動部が動くことがで きないから、作業機械の不意に動き出す虞がない。  [0009] After the engine stops, the hydraulic circuit is made inoperable, the engine is restarted thereafter, and then the hydraulic circuit is restored to an operable state. Therefore, when the engine is restarted, the hydraulic circuit is inoperable and the hydraulic operating unit cannot move, so that there is no possibility that the work machine suddenly starts moving.
[0010] 好適な実施形態では、作業機械には、前記油圧回路についてのロック指示信号と ロック解除指示信号を出力するロック装置が設けられる。そして、前記制御装置は、 前記アイドリングストップ制御により前記エンジンを停止させた後、前記エンジンを再 始動する前に、前記ロック装置からの前記ロック指示信号に応答して前記油圧回路 を作動不能な状態にする。また、前記制御装置は、前記エンジンを再始動した後、前 記操作装置から前記操作指令信号が入力されていないときに、前記ロック装置から の前記ロック解除指示信号に応答して前記油圧回路の作動可能な状態に復帰させ る。したがって、エンジンが停止した後、ロック装置により油圧回路をロックして作動不 能状態にしない限り、エンジンの再始動が行われない。また、エンジンが再始動した 後は、油圧作動部を動かすための何らかの操作指令信号が操作装置力も出力され ている限り、ロック装置でロック解除を指示しても、油圧回路は作動可能な状態に復 帰しない。 In a preferred embodiment, the work machine is provided with a lock device that outputs a lock instruction signal and a lock release instruction signal for the hydraulic circuit. Then, after stopping the engine by the idling stop control, the control device restarts the engine. Before starting, the hydraulic circuit is made inoperable in response to the lock instruction signal from the lock device. Further, after the engine is restarted, when the operation command signal is not input from the operating device, the control device responds to the lock release instruction signal from the lock device and controls the hydraulic circuit. Return to an operable state. Therefore, after the engine is stopped, the engine is not restarted unless the hydraulic circuit is locked by the lock device to render the operation inoperative. Also, after the engine restarts, the hydraulic circuit will be in an operable state even if the lock is instructed to be unlocked by the lock device, as long as some operation command signal for moving the hydraulic actuator is also output. Does not return.
[0011] 好適な実施形態では、前記所定のトリガ信号として、前記操作装置からの所定の操 作指令信号が用いられる。したがって、前記エンジンを停止した後、操作装置からの 所定の操作指令信号が出力されると、エンジンが自動的に再起動する。  [0011] In a preferred embodiment, a predetermined operation command signal from the operating device is used as the predetermined trigger signal. Therefore, when a predetermined operation command signal is output from the operating device after the engine is stopped, the engine is automatically restarted.
[0012] 好適な実施形態では、作業車両は、前記油圧回路を制御するためのパイロット圧 油の圧力を制御するパイロット圧制御装置を備える。そして、前記制御装置は、前記 パイロット圧制御装置を制御して、前記パイロット圧油の圧力を所定の作動閾値より 下げることにより前記油圧回路を作動不能な状態にし、また、前記パイロット圧油の圧 力を前記作動閾値より上げることにより前記油圧回路を作動可能な状態に復帰させ る。さらに、前記制御装置は、前記油圧回路を作動可能な状態に復帰させる場合に は、前記パイロット圧油の圧力を漸次に上昇させる。この漸次の増圧制御により、前 記油圧回路が作動可能な状態に復帰するとき、油圧作動部が急激に動作を開始す ることが回避される。  In a preferred embodiment, the work vehicle includes a pilot pressure control device that controls a pressure of pilot pressure oil for controlling the hydraulic circuit. Then, the control device controls the pilot pressure control device to lower the pressure of the pilot pressure oil below a predetermined operation threshold, thereby disabling the hydraulic circuit, and controlling the pressure of the pilot pressure oil. The hydraulic circuit is returned to an operable state by increasing the force above the operation threshold. Further, when returning the hydraulic circuit to an operable state, the control device gradually increases the pressure of the pilot pressure oil. With this gradual pressure increase control, when the hydraulic circuit returns to an operable state, it is possible to prevent the hydraulic operating section from suddenly starting to operate.
[0013] 好適な実施形態では、作業車両には、警音又は警報を前記作業車両の外部へ出 力する警報装置が備えられる。そして、前記制御装置は、前記油圧回路が作動不能 な状態にあるときに前記トリガ信号を受けた場合、前記警報装置から警音又は警報 が出力された後に、前記エンジンを再始動する。したがって、エンジンがこれ力も再 始動することを、作業車両の外部の人々に知らせて、それらの人々に安全確保のた めの注意を喚起することができる。  [0013] In a preferred embodiment, the work vehicle is provided with an alarm device that outputs a warning sound or an alarm to the outside of the work vehicle. When receiving the trigger signal while the hydraulic circuit is inoperable, the control device restarts the engine after a warning sound or a warning is output from the warning device. Therefore, it is possible to inform people outside the work vehicle that the engine is restarting as much as this, and alert them to ensure safety.
発明の効果 [0014] 本発明によれば、アイドリングストップ制御によるエンジン自動停止の後にエンジン を再始動する際、作業車両が不意に動きだすことが防止される。 The invention's effect According to the present invention, when the engine is restarted after the engine is automatically stopped by the idling stop control, the work vehicle is prevented from suddenly starting to move.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の第 1の実施形態に係る油圧ショベルの側面図。 FIG. 1 is a side view of a hydraulic shovel according to a first embodiment of the present invention.
[図 2]第 1の実施形態に係る油圧ショベルの駆動制御システムの全体的な概略構成 を示す図。  FIG. 2 is a diagram showing an overall schematic configuration of a drive control system of the hydraulic shovel according to the first embodiment.
[図 3]第 1の実施形態におけるアイドリングストップ制御とエンジン再始動制御の処理 手順を説明するフローチャート。  FIG. 3 is a flowchart illustrating a processing procedure of idling stop control and engine restart control according to the first embodiment.
[図 4]第 1の実施形態におけるエンジン再起動直後のパイロット元圧の昇圧カーブを 示す図。  FIG. 4 is a view showing a pressure rise curve of a pilot source pressure immediately after the engine is restarted in the first embodiment.
[図 5]本発明の第 2の実施形態に係る油圧ショベルの駆動制御システムの全体的な 概略構成を示す図。  FIG. 5 is a diagram showing an overall schematic configuration of a drive control system for a hydraulic shovel according to a second embodiment of the present invention.
[図 6]第 2の実施形態におけるアイドリングストップ制御とエンジン再始動制御の処理 手順を説明するフローチャート。  FIG. 6 is a flowchart illustrating a processing procedure of idling stop control and engine restart control according to the second embodiment.
[図 7]第 2の実施形態におけるエンジン再起動直後のパイロット元圧の昇圧カーブを 示す図。  FIG. 7 is a diagram showing a pressure rise curve of a pilot source pressure immediately after an engine restart in a second embodiment.
符号の説明  Explanation of symbols
[0016] 1 油 jEhショべノレ  [0016] 1 Oil jEh Shobenore
2a 走行用油圧モータ  2a Travel hydraulic motor
3a 旋回用油圧モータ  3a Hydraulic motor for turning
10 ブームシリンダ  10 Boom cylinder
11 アームシリンダ  11 Arm cylinder
12 バケツトシリンダ  12 bucket cylinder
13, 14 作業機操作レバー  13, 14 Work implement control lever
15 走行操作レバー  15 Travel control lever
16 エンジン  16 Engine
17 油圧ポンプ  17 Hydraulic pump
18, 61 操作弁集合体 19 油圧作動部 18, 61 Operating valve assembly 19 Hydraulic actuator
20 油圧回路  20 Hydraulic circuit
21 コントローラ  21 Controller
21a 第 1のレバー操作判別部  21a First lever operation discriminator
21c 第 2のレバー操作判別部  21c Second lever operation determination section
21d ロックレバー操作位置判別部  21d Lock lever operation position discriminator
27 エンジン制御装置  27 Engine control unit
28 エンジン始動装置  28 Engine starter
33 パイロットポンプ  33 Pilot pump
35, 36, 39, 55, 56, 59 操作部  35, 36, 39, 55, 56, 59
37, 38, 40 減圧弁  37, 38, 40 Regulator
42, 51, 52, 53, 54, 57, 58 ポテンショメータ  42, 51, 52, 53, 54, 57, 58 Potentiometer
43 ロックレノ一  43 Rock Reno
46 電磁比例圧力制御弁  46 Electromagnetic proportional pressure control valve
60 レバー操作判別部  60 Lever operation discrimination section
62a 比例電磁操作部  62a Proportional electromagnetic operation unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に、本発明による作業車両の具体的な実施の形態について、図面を参照しつつ 説明する。なお、本実施形態は、作業車両として油圧ショベルに本発明が適用され た例であるが、本発明が他の種々の作業車両、例えばブルドーザ、ダンプトラック、ク レーン、フォークリフトなどにも適用できることは言うまでもない。  Next, specific embodiments of the work vehicle according to the present invention will be described with reference to the drawings. Although the present embodiment is an example in which the present invention is applied to a hydraulic excavator as a working vehicle, the present invention can be applied to various other working vehicles, for example, a bulldozer, a dump truck, a crane, a forklift, and the like. Needless to say.
[0018] 〔第 1の実施形態〕  [First Embodiment]
図 1には、本発明の第 1の実施形態に係る油圧ショベルの側面図が示されている。 また、図 2には、この油圧ショベルの駆動制御システムの全体的な概略構成が示され ている。  FIG. 1 shows a side view of a hydraulic shovel according to a first embodiment of the present invention. FIG. 2 shows an overall schematic configuration of the drive control system of the excavator.
[0019] 本実施形態の油圧ショベル 1は、図 1に示されるように、走行用油圧モータ 2aにより 駆動される走行装置 2bを有する下部走行体 2と、旋回用油圧モータ 3aにより駆動さ れる旋回装置 3と、この旋回装置 3を介して前記下部走行体 2上に配される上部旋回 体 4と、この上部旋回体 4の前部中央位置に取着される作業機 5と、その上部旋回体 4の前部左方位置に設けられる運転室 6を備える。ここで、作業機 5は、上部旋回体 4 に揺動可能に連結されたブーム 7、ブーム 7に揺動可能に連結されたアーム 8、およ びアーム 8に揺動可能に連結されたパケット 9を有する。作業機 5は、さらに、ブーム 7 、アーム 8およびパケット 9をそれぞれ動かすための油圧シリンダ、すなわちブームシ リンダ 10、アームシリンダ 11およびバケツトシリンダ 12を有する。また、運転室 6内の 運転席(図示省略)の両側には、上部旋回体 4の旋回動作および作業機 5の屈伸及 び上げ下げ動作を操作する作業機操作レバー 13, 14 (図 2参照)が配置されるととも に、同運転席の前方には、下部走行体 2の走行動作を操作する一対の走行操作レ バー 15, 15 (図 2参照)が配置されている。 As shown in FIG. 1, the hydraulic excavator 1 of the present embodiment includes a lower traveling body 2 having a traveling device 2b driven by a traveling hydraulic motor 2a, and a swing driven by a swing hydraulic motor 3a. Device 3 and an upper swing provided on the lower traveling body 2 via the swing device 3 The vehicle includes a body 4, a work implement 5 attached to a central position in the front of the upper swing body 4, and a driver's cab 6 provided at a front left position of the upper swing body 4. Here, the working machine 5 includes a boom 7 that is swingably connected to the upper swing body 4, an arm 8 that is swingably connected to the boom 7, and a packet that is swingably connected to the arm 8. Has 9 Work implement 5 further includes hydraulic cylinders for moving boom 7, arm 8 and packet 9, ie, boom cylinder 10, arm cylinder 11 and bucket cylinder 12. Also, on both sides of a driver's seat (not shown) in the operator's cab 6, work implement operation levers 13, 14 for operating the swinging operation of the upper revolving superstructure 4 and the bending and stretching and lifting and lowering of the work implement 5 (see FIG. 2). A pair of traveling operation levers 15 and 15 (see FIG. 2) for operating the traveling operation of the lower traveling unit 2 are disposed in front of the driver's seat.
[0020] この油圧ショベル 1の駆動制御システムは、図 2に示されるように、油圧回路 20を有 し、そこでは、エンジン 16により駆動される油圧ポンプ 17から吐出される作動圧油が 操作弁集合体 18を通じて油圧作動部 19に供給される。ここで、油圧作動部 19は、 上述したブームシリンダ 10、アームシリンダ 11、バケツトシリンダ 12、走行用油圧モー タ 2a及び旋回用油圧モータ 3aなどの各種の油圧ァクチユエータを、纏めて 1ブロック で図示したものである。操作弁集合体 18は、それら油圧ァクチユエータにそれぞれ 対応した油圧ノ ィロット操作式方向制御弁 34, · · , 34の集合体である。この油圧回 路 20が作動することにより、作業機 5の屈伸及び上げ下げ動作、上部旋回体 4の旋 回動作、および下部走行体 2の走行動作がそれぞれ行われるようになつている。また 、この駆動制御システムは、コントローラ 21を有し、このコントローラ 21は例えばコンビ ユータであって、図示は省略する力 所定の制御プログラムを実行することによりアイ ドリングストップ制御やエンジン再始動制御やその他の制御のための演算処理を行う 中央演算処理部、前記制御プログラム並びに演算処理に使用される各種テーブル や設定条件データ等を記憶する記憶装置、及び以下に説明される各種の信号を入 出力する入出力装置などを有する。  As shown in FIG. 2, the drive control system of the excavator 1 has a hydraulic circuit 20 in which hydraulic oil discharged from a hydraulic pump 17 driven by an engine 16 is operated by an operating valve. It is supplied to the hydraulic operating section 19 through the assembly 18. Here, the hydraulic operating section 19 is a block diagram of various hydraulic actuators such as the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, the traveling hydraulic motor 2a, and the turning hydraulic motor 3a. It was done. The operating valve assembly 18 is an assembly of hydraulic pilot operated directional control valves 34,..., 34 corresponding to the hydraulic actuators. By operating the hydraulic circuit 20, the bending and stretching and raising / lowering operations of the work implement 5, the turning operation of the upper revolving unit 4, and the traveling operation of the lower traveling unit 2 are performed. The drive control system has a controller 21. The controller 21 is, for example, a computer, and executes a predetermined control program (not shown) to execute idling stop control, engine restart control, and the like. A central processing unit for performing arithmetic processing for the control, a storage device for storing the control program, various tables and setting condition data used for the arithmetic processing, and input / output of various signals described below. It has an input / output device.
[0021] エンジン 16は例えばディーゼル式のエンジンであり、このエンジン 16には、燃料噴 射ポンプ 22とガバナ 23とが併設される。ガバナ 23の燃料コントロールレバー 23aが、 ガバナ駆動モータ 24にて駆動されるようになっている。燃料コントロールレバー 23a の駆動位置は、ポテンショメータ 25により検出され、その検出信号がコントローラ 21 に入力されるようになっている。さらに、エンジン 16のスロットル位置(エンジン回転数 )を設定するために図示省略される燃料ダイヤルが設けられ、この燃料ダイヤルに付 設されるポテンショメータ(図示省略)からのスロットル信号 (設定回転数信号)が、コ ントローラ 21に入力されるようになっている。また、エンジン 16の実回転数は回転数 センサ 26にて検出され、その検出信号もコントローラ 21に入力されるようになって ヽ る。 The engine 16 is, for example, a diesel engine. The engine 16 is provided with a fuel injection pump 22 and a governor 23. The governor 23 has a fuel control lever 23a driven by a governor drive motor 24. Fuel control lever 23a Is detected by the potentiometer 25, and the detection signal is input to the controller 21. Further, a fuel dial (not shown) is provided to set the throttle position (engine speed) of the engine 16. A throttle signal (set speed signal) from a potentiometer (not shown) attached to the fuel dial is provided. Is input to the controller 21. The actual rotation speed of the engine 16 is detected by a rotation speed sensor 26, and the detection signal is also input to the controller 21.
[0022] 本実施形態においては、主にコントローラ 21、ガバナ 23、ガバナ駆動モータ 24、ポ テンショメータ 25および燃料ダイヤルから、エンジン制御装置 27が構成されて 、る。 このエンジン制御装置 27において、コントローラ 21は、上述した燃料ダイヤルにより 入力されるスロットル信号 (設定回転数信号)と、回転数センサ 26にて検出されるェ ンジン 16の実際の回転数信号との間の偏差信号を生成し、その偏差信号に対し所 定の関数関係を満足する電圧レベルをもつ駆動信号を発生し、この駆動信号に基 づきガバナ駆動モータ 24を駆動する。  In the present embodiment, an engine control device 27 mainly includes a controller 21, a governor 23, a governor drive motor 24, a potentiometer 25, and a fuel dial. In the engine control device 27, the controller 21 determines a difference between a throttle signal (set rotation speed signal) input from the fuel dial and an actual rotation speed signal of the engine 16 detected by the rotation speed sensor 26. A drive signal having a voltage level that satisfies a predetermined functional relationship with respect to the difference signal is generated, and the governor drive motor 24 is driven based on the drive signal.
[0023] ここで、一例として、燃料ダイヤルが最大位置 (FULL位置)にセットされて ヽるとす ると、その燃料ダイヤルに付設のポテンショメータから出力されるスロットル信号は最 大設定回転数を示しており、コントローラ 21はその最大設定回転数に対応するモー タ駆動信号をガバナ駆動モータ 24に加える。これにより、ガバナ駆動モータ 24は、 最高速レギュレーションラインが設定されるように燃料コントロールレバー 23aを作動 させ、その結果、エンジン 16の出力馬力およびエンジン回転数が自動設定される。 別の例として、コントローラ 21からガバナ駆動モータ 24に対してエンジン停止指令に 対応するモータ駆動信号が加えられたとすると、ガバナ駆動モータ 24は、燃料噴射 ポンプ 22による燃料噴射が無噴射となるように、燃料コントロールレバー 23aを作動 させ、これによりエンジン 16の運転が停止される。  Here, as an example, if the fuel dial is set to the maximum position (FULL position), the throttle signal output from the potentiometer attached to the fuel dial indicates the maximum set rotation speed. The controller 21 applies a motor drive signal corresponding to the maximum set number of revolutions to the governor drive motor 24. As a result, the governor drive motor 24 operates the fuel control lever 23a so that the highest speed regulation line is set, and as a result, the output horsepower and the engine speed of the engine 16 are automatically set. As another example, assuming that a motor drive signal corresponding to an engine stop command is applied from the controller 21 to the governor drive motor 24, the governor drive motor 24 operates so that the fuel injection by the fuel injection pump 22 becomes non-injection. Then, the fuel control lever 23a is operated, whereby the operation of the engine 16 is stopped.
[0024] さらに、エンジン 16には、そのエンジン 16を始動するためのエンジン始動装置 28 が付設されている。このエンジン始動装置 28は、スタータ 29、スタータスイッチ 30、 バッテリ 31、ノ ッテリリレー 32、それら機器を接続する配線等を力も構成されている。 このエンジン始動装置 28においては、オペレータがスタータスイッチ 30を操作してこ れを始動位置にすると、スタータ 29へ始動信号が流れるとともに、ノ ッテリ 31からの 電力がバッテリリレー 32を介してスタータ 29に供給され、これによりスタータ 29がェン ジン 16を駆動してエンジン 16が始動されるようになっている。また、コントローラ 21か らスタータ 29へ向けて始動信号が流れた場合にも同様に、スタータ 29がエンジン 16 を駆動してエンジン 16が始動されるようになって!/、る。 Further, the engine 16 is provided with an engine starting device 28 for starting the engine 16. The engine starter 28 also includes a starter 29, a starter switch 30, a battery 31, a battery relay 32, and wiring for connecting these devices. In this engine starter 28, the operator operates the starter switch 30 When this is set to the start position, the start signal flows to the starter 29, and the electric power from the notch 31 is supplied to the starter 29 via the battery relay 32, whereby the starter 29 drives the engine 16 to drive the engine 16 Is started. Similarly, when a start signal flows from the controller 21 to the starter 29, the starter 29 drives the engine 16 to start the engine 16! /.
[0025] 前記油圧ポンプ 17は例えば可変容量型の油圧ポンプであり、この油圧ポンプ 17に は、前記エンジン 16により駆動されてパイロット圧油を吐出するパイロットポンプ (パイ ロット圧油発生装置) 33が連設されている。一方、前記操作弁集合体 18は、前記し たように、油圧作動部 19に含まれる種々の油圧ァクチユエータ(走行用油圧モータ 2 a、旋回用油圧モータ 3a、ブームシリンダ 10、アームシリンダ 11及びバケツトシリンダ 12など)に対応して設けられる油圧パイロット操作式方向制御弁 34, · · ·, 34の集合 体である。後述する減圧弁 37, 38, 40から出力される種々のパイロット圧油が上記 方向制御弁 34, · · ·, 34へ供給されることにより、作業機 5、上部旋回体 4及び下部走 行体 2を動かすための各種の油路切換動作が行われるようになつている。  The hydraulic pump 17 is, for example, a variable displacement hydraulic pump. The hydraulic pump 17 includes a pilot pump (pilot pressure oil generating device) 33 that is driven by the engine 16 and discharges pilot pressure oil. It is installed continuously. On the other hand, as described above, the operating valve assembly 18 includes various hydraulic actuators (the traveling hydraulic motor 2 a, the swing hydraulic motor 3 a, the boom cylinder 10, the arm cylinder 11, and the bucket) included in the hydraulic operating section 19. A set of hydraulic pilot operated directional control valves 34,. By supplying various pilot pressure oils output from pressure reducing valves 37, 38, and 40, which will be described later, to the directional control valves,, the work implement 5, the upper revolving unit 4, and the lower traveling unit. Various oil path switching operations for moving the motor 2 are performed.
[0026] 前記作業機操作レバー 13, 14には、各種レバー操作に対応する各種操作指令を 出力する操作部 35, 36を介して、減圧弁 (パイロット圧油調圧出力装置) 37, 38が 付設されている。前記走行操作レバー 15, 15にも同様に、各種レバー操作に対応 する各種操作指令を出力する操作部 39を介して、減圧弁 (パイロット圧油調圧出力 装置) 40が付設されている。減圧弁 37, 38, 40には、前記パイロットポンプ 33から吐 出されるパイロット圧油が、後述する電磁比例圧力制御弁 46を介して供給される。減 圧弁 37, 38, 40は、供給されたパイロット圧油を操作部 35, 36, 15, 15からの各種 操作指令に基づいて調圧し、調圧された各種のパイロット圧油を操作弁集合体 18〖こ 向けて出力する。そして、減圧弁 37, 38, 40から出力された各種のパイロット圧油は 、前記操作弁集合体 18における対応するパイロット圧油入力ポートに入力され、これ によって、上述した各種の油路切換動作が行われる。その結果、作業機操作レバー 13, 14の操作により、上部旋回体 4の旋回動作と作業機 5の屈伸及び上げ下げ動作 とが行われ、また、走行操作レバー 15, 15の操作により、下部走行体 2の走行動作 が行われることになる。 [0027] また、作業機操作レバー 13, 14および走行操作レバー 15, 15のそれぞれの操作 状態を示す操作信号が、減圧弁 37, 38, 40に付設される油圧スィッチ 41, · · · , 41 を介して、コントローラ 21に入力されるようになっている。本実施形態において、コント ローラ 21に入力される上記操作信号には、例えば以下に述べる 12種類がある。[0026] The work implement operation levers 13, 14 are provided with pressure reducing valves (pilot pressure oil pressure output devices) 37, 38 via operation units 35, 36 that output various operation commands corresponding to various lever operations. It is attached. Similarly, the traveling operation levers 15 and 15 are provided with a pressure reducing valve (pilot pressure oil pressure output device) 40 via an operation unit 39 that outputs various operation commands corresponding to various lever operations. The pilot pressure oil discharged from the pilot pump 33 is supplied to the pressure reducing valves 37, 38, and 40 via an electromagnetic proportional pressure control valve 46 described later. The pressure-reducing valves 37, 38, and 40 regulate the pressure of the supplied pilot pressure oil based on various operation commands from the operation units 35, 36, 15, and 15, and use the regulated pilot pressure oil to operate the valve assembly. Output for 18 mm. The various pilot pressure oils output from the pressure reducing valves 37, 38, and 40 are input to the corresponding pilot pressure oil input ports in the operation valve assembly 18, whereby the various oil path switching operations described above are performed. Done. As a result, the turning operation of the upper rotating body 4 and the bending and stretching and raising / lowering operations of the working machine 5 are performed by operating the work implement operating levers 13 and 14, and the lower traveling body is operated by operating the travel operating levers 15 and 15. The traveling operation of 2 will be performed. [0027] In addition, operation signals indicating the respective operating states of the work implement operation levers 13, 14 and the travel operation levers 15, 15 are transmitted to hydraulic switches 41, ..., 41 attached to the pressure reducing valves 37, 38, 40. Is input to the controller 21 via the. In the present embodiment, the operation signals input to the controller 21 include, for example, the following twelve types.
(1)上部旋回体 4の右旋回動作に対応する右旋回操作信号 (1) Right turning operation signal corresponding to right turning operation of upper revolving superstructure 4
(2)上部旋回体 4の左旋回動作に対応する左旋回操作信号  (2) Left turning operation signal corresponding to left turning operation of upper revolving unit 4
(3)ブーム 7の上げ動作に対応するブーム上げ操作信号  (3) Boom raising operation signal corresponding to the raising operation of boom 7
(4)ブーム 7の下げ動作に対応するブーム下げ操作信号  (4) Boom lowering operation signal corresponding to the lowering operation of boom 7
(5)アーム 8を前方に送り出す動作に対応するアームダンプ操作信号  (5) Arm dump operation signal corresponding to the operation of sending arm 8 forward
(6)アーム 8を手前に引き込む動作に対応するアーム掘削操作信号  (6) Arm excavation operation signal corresponding to the operation of pulling arm 8 forward
(7)パケット 9を前方に送り出す動作に対応するパケットダンプ操作信号  (7) Packet dump operation signal corresponding to the operation of sending packet 9 forward
(8)パケット 9を手前に引き込む動作に対応するパケット掘削操作信号  (8) Packet excavation operation signal corresponding to the operation of pulling packet 9 forward
(9)下部走行体 2の右前進走行動作に対応する右前進走行操作信号  (9) Right forward traveling operation signal corresponding to the right forward traveling operation of the lower traveling unit 2
(10)下部走行体 2の右後進走行動作に対応する右後進走行操作信号  (10) Right reverse traveling operation signal corresponding to right reverse traveling operation of lower traveling unit 2
(11)下部走行体 2の左前進走行動作に対応する左前進走行操作信号  (11) Left forward traveling operation signal corresponding to left forward traveling operation of lower traveling unit 2
(12)下部走行体 2の左後進走行動作に対応する左後進走行操作信号  (12) Left reverse traveling operation signal corresponding to left reverse traveling operation of lower traveling unit 2
[0028] コントローラ 21は、一つの機能として、第 1のレバー操作判別部 21aを有する。第 1 のレバー操作判別部 21aは、入力された上記(1)一(12)の操作信号に基づいて、ど のレバー操作が行われているかを判別する。コントローラ 21は、エンジン 16が動作し ている間、第 1のレバー操作判別部 21aにより、何らかのレバー操作の有無を判別す る。コントローラ 21は、別の機能として、所定の時間長をカウントするタイマー 21bを 有する。タイマー 21bによってカウントされる時間長には、運転室内に配置されたコン トロールパネル(図示省略)から、オペレータが任意の時間長を設定することができる ようになつている。コントローラ 21は、アイドリングストップ制御において、エンジン 16 がアイドリング運転状態にある間、タイマー 21bにより上記所定時間長をカウントする  [0028] The controller 21 has, as one function, a first lever operation determination unit 21a. The first lever operation determination unit 21a determines which lever operation is being performed based on the input operation signals (1) and (12). While the engine 16 is operating, the controller 21 uses the first lever operation determination unit 21a to determine whether or not there is any lever operation. The controller 21 has a timer 21b that counts a predetermined time length as another function. The length of time counted by the timer 21b can be set by the operator from a control panel (not shown) arranged in the cab. In the idling stop control, the controller 21 counts the predetermined time length by the timer 21b while the engine 16 is in the idling operation state.
[0029] 作業機操作レバー 13に結合された操作部 35には、作業機操作レバー 13の各種レ バー操作のうち特定のレバー操作、例えばブーム上げ操作、が行われた力否かを示 す電気信号つまりブーム上げ操作信号を出力するポテンショメータ 42が付設されて いる。このポテンショメータ 42からのブーム上げ操作信号がコントローラ 21に入力さ れる。コントローラ 21は、また別の機能として、第 2のレバー操作判別部 21cを有し、 これは、ポテンショメータ 42から入力されるブーム上げ操作信号に基づいて、ブーム 上げ操作が行われている力否かを判別する。コントローラ 21は、アイドリングストップ 制御によりエンジン 16が停止された後のエンジン再始動制御において、第 2のレバ 一操作判別部 21cにより、ブーム上げ操作の有無を判別する。なお、本実施形態で は、「ブーム上げ操作」が前記特定のレバー操作として採用されている力 これは単 なる例示であり、「ブーム上げ操作」以外のレバー操作が採用されても良 、。 [0029] The operation unit 35 coupled to the work implement operation lever 13 indicates whether or not a specific lever operation, such as a boom raising operation, of various lever operations of the work implement operation lever 13 is performed. A potentiometer 42 for outputting an electric signal, that is, a boom raising operation signal, is provided. The boom raising operation signal from the potentiometer 42 is input to the controller 21. The controller 21 has, as another function, a second lever operation determining section 21c, which determines whether or not the boom raising operation is performed based on a boom raising operation signal input from the potentiometer 42. Is determined. In the engine restart control after the engine 16 is stopped by the idling stop control, the controller 21 determines the presence or absence of the boom raising operation by the second lever operation determination unit 21c. In the present embodiment, the force in which “boom raising operation” is employed as the specific lever operation. This is only an example, and a lever operation other than “boom raising operation” may be employed.
[0030] 運転室 6内には、油圧回路 20の作動を禁止するロック位置と油圧回路 20の作動を 許可するロック解除位置とを切り換えるロックレバー 43が設けられて!/、る。ロックレバ 一 43がロック解除位置にあるとき、ロックレバー 43により押されるリミットスィッチ 44か らの ON信号(ロック解除位置信号) 1S コントローラ 21に入力されるようになって 、る 。コントローラ 21は、さらにまた別の機能として、ロックレバー操作位置判別部 21dを 有し、これは、リミットスィッチ 44から入力されるロック解除位置信号に基づいて、ロッ クレバー 44がロック位置又はロック解除位置のいずれにあるかを判別する。コント口 ーラ 21は、アイドリングストップ制御によりエンジン 16が停止された後のエンジン再始 動制御において、ロックレバー操作位置判別部 21dにより、ロックレバー 44の位置を 判別する。 [0030] In the cab 6, a lock lever 43 for switching between a lock position where the operation of the hydraulic circuit 20 is prohibited and a lock release position where the operation of the hydraulic circuit 20 is permitted is provided. When the lock lever 43 is in the lock release position, an ON signal (lock release position signal) from the limit switch 44 pushed by the lock lever 43 is input to the 1S controller 21. The controller 21 further has a lock lever operation position determination unit 21d as another function. The lock lever operation position determination unit 21d determines whether the lock lever 44 is in the lock position or the unlock position based on the lock release position signal input from the limit switch 44. Is determined. In the engine restart control after the engine 16 is stopped by the idling stop control, the controller 21 determines the position of the lock lever 44 by the lock lever operation position determination unit 21d.
[0031] 前記ノ ィロットポンプ 33と減圧弁 37, 38, 40とを接続するパイロット圧油供給管路 45には、電磁比例圧力制御弁 (圧力制御装置) 46が設けられている。コントローラ 2 1力も電磁比例圧力制御弁 46に入力される制御電流の大きさに比例して、パイロット ポンプ 33から各減圧弁 37, 38, 40に供給されるパイロット圧油の圧力が制御される  [0031] An electromagnetic proportional pressure control valve (pressure control device) 46 is provided in a pilot pressure oil supply pipe line 45 connecting the above-mentioned pilot pump 33 and the pressure reducing valves 37, 38, 40. The pressure of the pilot pressure oil supplied from the pilot pump 33 to each of the pressure reducing valves 37, 38, and 40 is also controlled in proportion to the magnitude of the control current input to the electromagnetic proportional pressure control valve 46.
[0032] 圧力センサ 47が油圧ポンプ 17の吐出圧を検出する。圧力センサ 47からの圧力検 出信号は、コントローラ 21に入力される。また、圧力センサ 48が、電磁比例圧力制御 弁 46を経て減圧弁 37, 38, 40に供給されるパイロット圧油の圧力を検出する。圧力 センサ 48からの圧力検出信号は、コントローラ 21に入力されて、後述されるパイロット 元圧の制御にお 、てフィードバック信号として用いられる。 [0032] The pressure sensor 47 detects the discharge pressure of the hydraulic pump 17. The pressure detection signal from the pressure sensor 47 is input to the controller 21. Further, the pressure sensor 48 detects the pressure of the pilot pressure oil supplied to the pressure reducing valves 37, 38, 40 via the electromagnetic proportional pressure control valve 46. A pressure detection signal from the pressure sensor 48 is input to the controller 21 and is output to a pilot It is used as a feedback signal in controlling the source pressure.
[0033] 次に、コントローラ 21が制御プログラムを実行されることにより行なう、アイドリングス トップ制御とエンジン再始動制御の処理手順について、図 3のフローチャートを参照 しつつ以下に説明する。図 3において、ステップ S 1— S4の制御はアイドリングストツ プ制御に相当し、ステップ S 5— S 11の制御はエンジン再始動制御に対応する。  Next, a processing procedure of the idling stop control and the engine restart control performed by the controller 21 executing the control program will be described below with reference to a flowchart of FIG. In FIG. 3, the control in steps S1 to S4 corresponds to idling stop control, and the control in steps S5 to S11 corresponds to engine restart control.
[0034] 図 3に示すように、ステップ S 1で、コントローラ 21は、エンジン 16がアイドリング運転 状態であるか否かを判断する。すなわち、コントローラ 21に対して前記(1)一(12)の 操作信号のいずれかが入力されているとき、すなわち、作業機 5、上部旋回体 4及び 下部走行体 2のいずれかが動作しているときには、コントローラ 21は、エンジン 16が アイドリング運転状態でないと判断し、エンジン 16の運転を継続する (ステップ S2)。 一方、コントローラ 21に対して前記( 1)一( 12)の操作信号の!/、ずれもが入力されて いないとき、すなわち、作業機 5、上部旋回体 4及び下部走行体 2のいずれもが動作 していないときには、エンジン 16がアイドリング運転状態にあると判断される。  [0034] As shown in FIG. 3, in step S1, the controller 21 determines whether or not the engine 16 is in an idling operation state. That is, when any one of the operation signals (1) and (12) is input to the controller 21, that is, when one of the work implement 5, the upper revolving unit 4, and the lower traveling unit 2 operates, If so, the controller 21 determines that the engine 16 is not in the idling operation state, and continues the operation of the engine 16 (step S2). On the other hand, when neither! / Nor the deviation of the operation signals (1) and (12) is input to the controller 21, that is, all of the work implement 5, the upper revolving unit 4, and the lower traveling unit 2 When not operating, it is determined that the engine 16 is in the idling operation state.
[0035] 前記ステップ S 1において、エンジン 16がアイドリング運転状態に入った判断したと き、コントローラ 21は、タイマー 21bによる所定時間(例えば数十秒程度)のカウントを 開始し、以後、アイドリング運転状態が上記所定時間にわたり継続したか否かを判断 する(S3)。その結果、アイドリング運転状態の継続時間が前記所定時間に達した場 合、コントローラ 21は、ガバナ駆動モータ 24に対しエンジン停止指令に対応するモ ータ駆動信号を送信して、エンジン 16を停止させる(S4)。  [0035] In step S1, when it is determined that the engine 16 has entered the idling operation state, the controller 21 starts counting for a predetermined time (for example, about several tens of seconds) by the timer 21b. It is determined whether or not has been continued for the predetermined time (S3). As a result, when the duration of the idling operation state reaches the predetermined time, the controller 21 transmits a motor drive signal corresponding to the engine stop command to the governor drive motor 24 to stop the engine 16. (S4).
[0036] 前記ステップ S4にてエンジン 16が停止された後、コントローラ 21は、ロックレバー 操作位置判別部 21dにより、リミットスィッチ 44からのロック解除位置信号の入力の有 無に基づいて、ロックレバー 43の位置がロック位置又はロック解除位置のいずれにあ るかを判別する(S5)。ステップ S5において、ロックレバー 43の位置がロック解除位 置にあると判別された場合には、コントローラ 21は待機する。他方、ステップ S5にお いて、ロックレバー 43の位置がロック位置にあると判別された場合には、コントローラ 21は、電磁比例圧力制御弁 46を通じて減圧弁 37, 38, 40に供給されるパイロット 圧油の圧力(以下、「パイロット元圧」という) (Pc) 操作弁集合体 18で各種の油路 切換動作が行われ得る最低油圧 (以下、操作弁集合体 18の「作動閾値」という) (Pt) よりも小さい所定値 (Pa)になるように、電磁比例圧力制御弁 46に制御電流を出力す る(S6)。その結果、操作レバー 13, 14, 15が操作されても作業機 5、上部旋回体 4 及び下部走行体 2が駆動されなくなる。換言すれば、油圧回路 20の作動が禁止され る。ただし、このときのパイロット元圧(Pc)の値(Pa)は、減圧弁 37, 38, 40の出力に 接続された油圧スィッチ 41, · ··, 41が作動可能な最低油圧 (以下、油圧スィッチ 41, · ··, 41の「作動閾値」という) (Ps)よりも高い値であり、よって、操作レバー 13, 14, 1 5に対して行われる各種操作は、油圧スィッチ 41, · ··, 41により検出されてコントロー ラ 21に認識される。 [0036] After the engine 16 is stopped in step S4, the controller 21 uses the lock lever operation position determining unit 21d to determine whether the lock release position signal is input from the limit switch 44 or not. It is determined whether the position is at the lock position or the unlock position (S5). When it is determined in step S5 that the position of the lock lever 43 is at the unlock position, the controller 21 waits. On the other hand, if it is determined in step S5 that the position of the lock lever 43 is at the lock position, the controller 21 determines whether the pilot pressure supplied to the pressure reducing valves 37, 38, 40 through the electromagnetic proportional pressure control valve 46 is satisfied. Oil pressure (hereinafter referred to as “pilot source pressure”) (Pc) Minimum oil pressure at which various oil path switching operations can be performed by the operation valve assembly 18 (hereinafter referred to as “operation threshold value” of the operation valve assembly 18) ( Pt) The control current is output to the electromagnetic proportional pressure control valve 46 so that the predetermined value (Pa) becomes smaller than the predetermined value (Pa) (S6). As a result, even when the operating levers 13, 14, 15 are operated, the work implement 5, the upper swing body 4, and the lower traveling body 2 are not driven. In other words, the operation of the hydraulic circuit 20 is prohibited. However, the value (Pa) of the pilot source pressure (Pc) at this time is determined by the minimum hydraulic pressure (hereinafter, hydraulic pressure) that can operate the hydraulic switches 41, ..., 41 connected to the outputs of the pressure reducing valves 37, 38, 40. (Referred to as the "operation threshold value" of the switches 41, 41), (Ps), and therefore, various operations performed on the operating levers 13, 14, 1 and 5 are performed by the hydraulic switches 41, Are detected by the controller 41 and recognized by the controller 21.
[0037] 上述したステップ S5及び S6でロックレバー 43のロック位置に応答して油圧回路 20 の作動が禁止された場合にのみ、制御はステップ S7へ進む。ステップ S7で、コント口 ーラ 21は、第 2のレバー操作判別 21cにより、ポテンショメータ 42からのブーム上げ 操作信号に基づいて、特定のレバー操作、すなわちブーム上げ操作に関わるレバー 操作、が行われているか否かを判別する(S 7)。ステップ S7において、その特定のレ バー操作が行われていると判別された場合には、コントローラ 21は、スタータ 29に対 し始動信号を送信してエンジン 16を始動させる(S8)。このように特定のレバー操作 に応答してエンジン 16が再始動されるとき、上述したステップ S6により既に油圧回路 20の作動が禁止されている(Pcく Pt)ので、特定のレバー操作に応答して操作弁集 合体 18で対応する油路切換動作が行われることはない。したがって、エンジン再始 動の際に油圧ショベル 1が不意に動きだす虞がない。また、このとき、パイロット元圧( Pc)は油圧スィッチ 41, · ··, 41の作動閾値(Ps)よりは高い(Pc = Pa>Ps)ので、コ ントローラ 21は、第 1のレバー操作判別部 21aにより、エンジン始動後における各種 のレバー操作の有無を判別することができる。  Only when the operation of the hydraulic circuit 20 is prohibited in response to the lock position of the lock lever 43 in steps S5 and S6 described above, control proceeds to step S7. In step S7, the controller 21 performs a specific lever operation, that is, a lever operation related to the boom raising operation, based on the boom raising operation signal from the potentiometer 42 by the second lever operation determination 21c. It is determined whether or not there is (S7). If it is determined in step S7 that the specific lever operation is being performed, the controller 21 transmits a start signal to the starter 29 to start the engine 16 (S8). As described above, when the engine 16 is restarted in response to the specific lever operation, the operation of the hydraulic circuit 20 is already prohibited by the above-described step S6 (Pc <Pt). Accordingly, the corresponding oil passage switching operation is not performed by the operation valve assembly 18. Therefore, there is no possibility that the excavator 1 may suddenly start when the engine is restarted. At this time, since the pilot source pressure (Pc) is higher than the operation threshold (Ps) of the hydraulic switches 41,..., 41 (Pc = Pa> Ps), the controller 21 The portion 21a can determine the presence or absence of various lever operations after the engine is started.
[0038] 前記ステップ S8にてエンジン 16を再始動した後、コントローラ 21は、第 1のレバー 操作判別部 21aにより、油圧スィッチ 41, · ··, 41からの前記(1)一(12)の操作信号 の有無に基づいて、全ての操作レバー 13, 14, 15, 15が-ユートラルの位置にある (油圧ショベル 1を動かすためのレバー操作は何も行われて ヽな 、)か否かを判別す る(S9)。ステップ S9において、いずれかの操作レバー 13, 14, 15, 15が-ユートラ ルの位置にない(油圧ショベル 1を動かすための何らかのレバー操作が行われている )ことが判別された場合には、コントローラ 21は待機する。他方、ステップ S9において 、全ての操作レバー 13, 14, 15, 15が-ユートラルの位置にあることが判別された場 合には、コントローラ 21は、ロックレバー操作位置判別部 21dにより、リミットスィッチ 4 4からのロック解除位置信号の入力の有無に基づいて、ロックレバー 43がロック位置 又はロック解除位置のいずれにあるかを判別する(S 10)。ステップ S 10において、口 ックレバー 43がロック位置にあると判別された場合には、コントローラ 21による制御は ステップ S9へ戻る。他方、ステップ S 10において、ロックレバー 43がロック解除位置 にあると判別された場合には、コントローラ 21は、電磁比例圧力制御弁 46に対して 制御電流を出力して(SI 1)、パイロット元圧 (Pc)を図 4に示されるようなカーブで上 昇させる。これにより、図 4に示されるように、パイロット元圧 (Pc)は、上記所定値 (Pa )から操作弁集合体 18の作動閾値 (Pt)にまで急上昇し、しかる後、その作動閾値 (P t)より高い最大設定圧値 (Pe)にまでゆっくり漸次に上昇する。なお、このパイロット元 圧(Pc)の昇圧動作は、エンジン 16の回転数が一定回転数以上で、かつパイロットポ ンプ 33の吐出圧が必要十分なレベルまで立ち上がった状態で行われる。このような ノ ィロット元圧 (Pc)の上昇に伴い、操作弁集合体 18の状態は油路切換動作を行な い得る状態に移行する(つまり、油圧回路 20の状態が作動可能な状態に移行する) 。よって、操作レバー 13, 14, 15, 15が操作されると、油圧ショベル 1 (油圧作動部 1 9)の動作が開始する。 [0038] After restarting the engine 16 in step S8, the controller 21 uses the first lever operation determination unit 21a to output the (1)-(12) from the hydraulic switches 41,. Based on the presence or absence of the operation signal, it is determined whether or not all the operation levers 13, 14, 15, and 15 are in the -Eutral position (no operation of the lever for moving the excavator 1 is performed). It is determined (S9). In step S9, any of the operation levers 13, 14, 15, and 15 is not in the -Eutral position (some lever operation for moving the excavator 1 is performed. ), The controller 21 waits. On the other hand, if it is determined in step S9 that all of the operation levers 13, 14, 15, and 15 are at the -Eutral position, the controller 21 uses the lock lever operation position determination unit 21d to perform the limit switch 4 operation. It is determined whether the lock lever 43 is at the lock position or the unlock position based on the presence or absence of the input of the unlock position signal from 4 (S10). If it is determined in step S10 that the lock lever 43 is at the lock position, the control by the controller 21 returns to step S9. On the other hand, if it is determined in step S10 that the lock lever 43 is at the unlock position, the controller 21 outputs a control current to the electromagnetic proportional pressure control valve 46 (SI 1), The pressure (Pc) is increased in a curve as shown in FIG. As a result, as shown in FIG. 4, the pilot source pressure (Pc) rapidly rises from the predetermined value (Pa) to the operation threshold (Pt) of the operation valve assembly 18, and thereafter, the operation threshold (Pc) t) Gradually increase gradually to the maximum set pressure value (Pe) higher than. The operation of increasing the pilot source pressure (Pc) is performed in a state where the rotation speed of the engine 16 is equal to or higher than a certain rotation speed and the discharge pressure of the pilot pump 33 has risen to a necessary and sufficient level. With such an increase in the pilot pressure (Pc), the state of the operation valve assembly 18 shifts to a state in which the oil passage switching operation can be performed (that is, the state of the hydraulic circuit 20 becomes operable). Transition) . Therefore, when the operation levers 13, 14, 15, and 15 are operated, the operation of the excavator 1 (the hydraulic operating section 19) starts.
このように、エンジン再始動後は、全ての操作レバーが-ユートラル位置にある(つ まり、油圧ショベル 1を動かすためのレバー操作は何も行われていない)場合にのみ 、コントローラ 21は、ロックレバー 43のロック解除に応答して、パイロット元圧(Pc)を 操作弁集合体 18の作動閾値 (Pt)よりも高い最大設定圧値 (Pe)にまで昇圧して、油 圧回路 20を作動可能な状態に移行させる。従って、特定のレバー操作に応答してェ ンジン 16が再始動する時に油圧ショベル 1 (油圧作動部 19)が不意に動きだす虡は ない。また、パイロット元圧 (Pc)の前記作動閾値 (Pt)力も最大設定圧値 までの 昇圧はゆっくり漸次に行われるので、ロック解除直後にどのようなレバー操作が行わ れても、油圧ショベル 1 (油圧作動部 19)は低速に動作を開始することになり、動作開 始時における急激な高速動作が回避される。 [0040] 〔第 2の実施形態〕 In this way, after the engine restarts, the controller 21 locks only when all the operating levers are in the -Eutral position (that is, when no lever operation is performed to move the excavator 1). In response to the unlocking of the lever 43, the pilot pressure (Pc) is increased to the maximum set pressure value (Pe) higher than the operation threshold value (Pt) of the operation valve assembly 18 and the hydraulic circuit 20 is activated. Move to a possible state. Therefore, when the engine 16 restarts in response to a specific lever operation, the hydraulic excavator 1 (the hydraulic operating section 19) does not suddenly start moving. In addition, since the operating threshold (Pt) force of the pilot source pressure (Pc) is gradually increased gradually to the maximum set pressure value, even if any lever operation is performed immediately after the lock is released, the hydraulic excavator 1 ( The hydraulic operating section 19) starts operating at a low speed, and a sharp high-speed operation at the start of the operation is avoided. [Second Embodiment]
図 5には、本発明の第 2の実施形態に係る油圧ショベルの駆動制御システムの全 体的な概略構成が示されている。なお、本実施形態において、第 1の実施形態と同 一または同様の要素については同一参照符号を付して、それについての重複した説 明を省略し、以下においては、第 1の実施形態と異なる部分を中心に説明する。油圧 ショベルの基本構成は、図 1を参照して既に説明したとおりである。  FIG. 5 shows an overall schematic configuration of a drive control system for a hydraulic shovel according to a second embodiment of the present invention. Note that, in the present embodiment, the same or similar elements as those in the first embodiment are denoted by the same reference numerals, and redundant description thereof will be omitted. The different parts will be mainly described. The basic configuration of the excavator is as described above with reference to FIG.
[0041] 本実施形態においては、操作部 55、 56が、作業機操作レバー 13, 14の各種レバ 一操作に対応する各種操作指令を、ポテンショメータ 51, 52, 53, 54により電気信 号 (操作信号)に変換して、コントローラ 21〖こ出力する。また、操作部 59が、走行操 作レバー 15、 15の各種レバー操作に対応する各種操作指令を、ポテンショメータ 57 、 58により電気信号 (操作信号)に変換して、コントローラ 21〖こ出力する。コントローラ 21は、レバー操作判別部 60を有し、これは、入力された各種の操作信号に基づい て、各種レバー操作が行われている力否かを判別する。コントローラ 21に入力される 操作信号の種類としては、例えば上述した(1)一(12)の操作信号がある。  In the present embodiment, the operating units 55 and 56 use the potentiometers 51, 52, 53 and 54 to transmit various operation commands corresponding to various lever operations of the work implement operation levers 13 and 14, using electric signals (operations). Signal), and outputs it to the controller. The operation unit 59 converts various operation commands corresponding to various lever operations of the traveling operation levers 15 and 15 into electric signals (operation signals) by potentiometers 57 and 58 and outputs the signals to the controller 21. The controller 21 has a lever operation determination unit 60, which determines whether or not a force is exerted for performing various lever operations based on various input operation signals. The types of operation signals input to the controller 21 include, for example, the above-described (1) and (12) operation signals.
[0042] また、操作弁集合体 61が、油圧ポンプ 17から吐出される作動圧油の油圧作動部 1 9への供給を制御する。操作弁集合体 61が、油圧作動部 19のそれぞれの油圧ァク チユエータ(走行用油圧モータ 2a、旋回用油圧モータ 3a、ブームシリンダ 10、アーム シリンダ 11、バケツトシリンダ 12)に対応して設けられる複数の電磁'油圧パイロット操 作式方向制御弁 62の集合体である。各電磁,油圧パイロット操作式方向制御弁 62 は、比例電磁操作部 62aと油圧パイロット操作部 62bとを備える。上述したポテンショ メータ 51, 52, 53, 54, 57, 58力らの何れ力の操作信号力 Sコントローラ 21に人力さ れたとき、コントローラ 21は、その入力された操作信号に基づく操作用電流を、対応 する方向制御弁 62の比例電磁操作部 62aに出力する。また、各操作弁 62では、比 例電磁操作部 62aが、パイロットポンプ 33から供給されるパイロット圧油をコントロー ラ 21からの操作用電流に比例して調圧し、調圧されたノィロット圧油が油圧パイロッ ト操作部 62bに出力され、そして、その油圧パイロット操作部 62bに出力されたるパイ ロット圧油に応じて、対応する油圧ァクチユエータを制御するための所定の油路切換 動作が行われる。 [0043] 次に、コントローラ 21により行われるアイドリングストップ制御とエンジン再始動制御 の処理手順について、図 6のフローチャートを参照しつつ説明する。図 6において、ス テツプ R1— R4がアイドリングストップ制御に相当し、ステップ R5— R11がエンジン再 始動制御に相当する。 The operation valve assembly 61 controls the supply of the hydraulic oil discharged from the hydraulic pump 17 to the hydraulic operating section 19. An operating valve assembly 61 is provided corresponding to each hydraulic actuator (hydraulic motor 2a, swing hydraulic motor 3a, boom cylinder 10, arm cylinder 11, bucket cylinder 12) of the hydraulic operating section 19. It is an aggregate of a plurality of electromagnetic hydraulic pilot operated directional control valves 62. Each electromagnetic and hydraulic pilot operated directional control valve 62 includes a proportional electromagnetic operating part 62a and a hydraulic pilot operating part 62b. When any of the above-described potentiometers 51, 52, 53, 54, 57, and 58 is operated by the S controller 21, the controller 21 generates an operation current based on the input operation signal. , And output to the proportional electromagnetic operating section 62a of the corresponding directional control valve 62. In each operating valve 62, the proportional electromagnetic operating section 62a regulates the pilot pressure oil supplied from the pilot pump 33 in proportion to the operating current from the controller 21, and the regulated pilot oil is According to the pilot pressure oil output to the hydraulic pilot operation unit 62b and output to the hydraulic pilot operation unit 62b, a predetermined oil path switching operation for controlling the corresponding hydraulic actuator is performed. Next, a processing procedure of the idling stop control and the engine restart control performed by the controller 21 will be described with reference to a flowchart of FIG. In FIG. 6, steps R1 to R4 correspond to idling stop control, and steps R5 to R11 correspond to engine restart control.
[0044] 図 6に示すように、ステップので、コントローラ 21は、前記(1)一(12)の各種操作 信号の有無に基づいて、エンジン 16がアイドリング運転状態である力否かを判断す る。コントローラ 21は、前記(1)一(12)の各種操作信号のいずれかが入力されてい るときには、エンジン 16がアイドリング運転状態にないと判断し、ステップ R2でェンジ ン 16の運転を継続する。一方、コントローラ 21は、前記(1)一(12)の各種操作信号 のいずれもが入力されていないときには、エンジン 16がアイドリング運転状態にあると 判断する。  As shown in FIG. 6, in the step, the controller 21 determines whether or not the engine 16 is in the idling operation state based on the presence or absence of the (1)-(12) various operation signals. . When any one of the various operation signals (1) and (12) is input, the controller 21 determines that the engine 16 is not in the idling operation state, and continues the operation of the engine 16 in step R2. On the other hand, when none of the various operation signals (1) and (12) is input, the controller 21 determines that the engine 16 is in the idling operation state.
[0045] 前記ステップ R1において、エンジン 16がアイドリング運転状態に入ったとき、コント ローラ 21は、ステップ R3で、タイマー 21bにより所定時間(例えば数十秒程度)の力 ゥントを開始して、以後、アイドリング運転状態が所定時間にわたり «続したたか否か を判断する。タイマー 21bによるカウント値が前記所定時間を超えていない場合には 、コントローラ 21は、エンジン 16の運転を継続する(R2)。一方、タイマー 21bによる カウント値前記所定時間に達したとき、コントローラ 21は、ステップ R4で、ガバナ駆動 モータ 24に対しエンジン停止指令に対応するモータ駆動信号を送信し、エンジン 16 を停止させる。  In step R1, when the engine 16 enters the idling operation state, the controller 21 starts powering for a predetermined time (for example, about several tens of seconds) by the timer 21b in step R3. It is determined whether the idling operation state has continued for a predetermined time. If the count value of the timer 21b has not exceeded the predetermined time, the controller 21 continues the operation of the engine 16 (R2). On the other hand, when the count value of the timer 21b reaches the predetermined time, the controller 21 transmits a motor drive signal corresponding to the engine stop command to the governor drive motor 24 in step R4, and stops the engine 16.
[0046] 前記ステップ R4にてエンジン 16が停止された後、コントローラ 21は、ロックレバー 操作位置判別部 21dにより、リミットスィッチ 44からのロック解除位置信号の入力の有 無に基づいて、ロックレバー 43がロック位置又はロック解除位置のいずれにあるかを 判別する(R5)。ステップ R5において、ロックレバー 43がロック解除位置にあると判別 された場合には、コントローラ 21は待機する。他方、ステップ R5において、ロックレバ 一 43がロック位置にあると判別された場合には、コントローラ 21は、電磁比例圧力制 御弁 46に出力される制御電流の値をゼロにする (R6)。ステップ R6により、パイロット ポンプ 33から電磁比例圧力制御弁 46を通じて各電磁 ·油圧パイロット操作式方向制 御弁 62に供給されるパイロット圧油の圧力(以下、「パイロット元圧」という)(Pc)がゼ 口になり、よって、油圧回路 20は油圧作動部 19のいずれの油圧ァクチユエ一タも駆 動することができなくなる。 After the engine 16 is stopped in step R4, the controller 21 controls the lock lever 43 based on the input of the lock release position signal from the limit switch 44 by the lock lever operation position determination unit 21d. It is determined whether is in the lock position or the unlock position (R5). If it is determined in step R5 that the lock lever 43 is at the unlock position, the controller 21 waits. On the other hand, if it is determined in step R5 that the lock lever 43 is in the lock position, the controller 21 sets the value of the control current output to the electromagnetic proportional pressure control valve 46 to zero (R6). In step R6, the pressure of the pilot pressure oil (hereinafter referred to as “pilot source pressure”) (Pc) supplied from the pilot pump 33 to each electromagnetic and hydraulic pilot operated directional control valve 62 through the electromagnetic proportional pressure control valve 46 is reduced. Ze As a result, the hydraulic circuit 20 cannot drive any of the hydraulic actuators of the hydraulic operating section 19.
[0047] その後、コントローラ 21は、ポテンショメータ 51, 52, 53, 54, 57, 58力もの操作信 号の有無に基づいて、油圧ショベル 1を動かすための各種レバー操作のうちのいず れかが行われているか否かを判別する(R7)。ステップ R7において、いずれかのレバ 一操作が行われていると判別された場合には、コントローラ 21は、スタータ 29に対し 始動信号を送信してエンジン 16を始動させる (R8)。このように、アイドリングストップ 制御によりエンジン 16が自動的に停止した後、作業機操作レバー 13, 14又は走行 操作レバー 15、 15に何らかの操作が行われると、エンジンが自動的に再始動される 。しかし、このとき前述のステップ R6により既に、パイロット元圧(Pc)がゼロに制御さ れて、操作弁集合体 61の油路切換動作が行ない得ないようになつている。したがつ て、エンジン 16が再始動しても、油圧ショベル 1 (油圧作動部 19)が不意に動きだす 虞がない。 [0047] Thereafter, the controller 21 determines whether any of various lever operations for moving the excavator 1 is performed based on the presence or absence of a potentiometer 51, 52, 53, 54, 57, 58 force operation signal. It is determined whether or not the operation has been performed (R7). If it is determined in step R7 that any lever operation has been performed, the controller 21 transmits a start signal to the starter 29 to start the engine 16 (R8). As described above, after the engine 16 is automatically stopped by the idling stop control, if any operation is performed on the work implement operation levers 13, 14 or the travel operation levers 15, 15, the engine is automatically restarted. However, at this time, the pilot source pressure (Pc) is already controlled to zero by the above-described step R6, so that the oil passage switching operation of the operation valve assembly 61 cannot be performed. Therefore, even if the engine 16 is restarted, there is no possibility that the hydraulic shovel 1 (the hydraulic operating section 19) starts to move suddenly.
[0048] 前記ステップ R8にてエンジン 16が再始動された後、コントローラ 21は、ポテンショメ ータ 51, 52, 53, 54, 57, 58からの前記(1)一(12)の操作信号の有無に基づいて 、作業機操作レバー 13, 14及び走行操作レバー 15、 15の全てが-ユートラル位置 にある(つまり、油圧ショベル 1を動かすためのレバー操作は何も行われていない)か 否力を半 IJ另 IJする(R9)。ステップ R9において、操作レノ一 13, 14, 15、 15の何れ力 が-ユートラル位置にない(つまり、油圧ショベル 1を動かすための何らかのレバー操 作が行われている)と判別された場合、コントローラ 21は待機する。このとき、上述し たとおり、パイロット元圧(Pc)がゼロに制御されているので、如何なるレバー操作が 行われても油圧ショベル 1は静止したままである。ステップ R9において、全ての操作 レバー 13, 14, 15、 15が-ユートラル位置にあることが判別された場合、コントローラ 21は、リミットスィッチ 44からのロック解除位置信号の入力の有無に基づいて、ロック レバー操作位置判別部 21dにより、ロックレバー 43がロック位置又はロック解除位置 のいずれにあるかを判別する(R10)。ステップ RIOにおいて、ロックレバー 43がロッ ク位置にあると判別された場合には、コントローラ 21による制御はステップ R9へ戻る 。他方、ステップ R10において、ロックレバー 43がロック解除位置の状態にあると判 別された場合には、コントローラ 21は、パイロット元圧 (Pc)が図 7に示されるカーブに 沿って上昇するよう、制御電流を電磁比例圧力制御弁 46に対して出力する (Rl l)。 これにより、図 7に示すように、ノ ィロット元圧 (Pc)はゼロから、操作弁集合体 18の油 路切換動作が行われ得る最低油圧 (以下、操作弁集合体 18の「作動閾値」という) ( Pt)にまで短時間で上昇し、しかる後その作動閾値 (Pt)よりも高い最大設定圧値 (P e)にまでゆっくり漸増する。なお、このパイロット元圧の昇圧動作は、エンジン 16の回 転数が一定回転数以上で、かつパイロットポンプの吐出圧が必要十分に立ち上がつ た状態で行われる。このパイロット元圧 (Pc)の上昇の結果、操作弁集合体 61の油路 切換動作が行われ得るようになり、よって、油圧ショベル 1 (油圧作動部 19)が動くこと ができるようになる。 [0048] After the engine 16 is restarted in step R8, the controller 21 receives the operation signals (1) and (12) from the potentiometers 51, 52, 53, 54, 57, and 58. Based on the presence / absence, whether all of the work implement operation levers 13 and 14 and the travel operation levers 15 and 15 are in the -Eutral position (that is, no lever operation for moving the excavator 1 is performed) IJ 另 IJ (R9). If it is determined in step R9 that any of the operating levers 13, 14, 15, and 15 is not at the -Eutral position (that is, some lever operation for moving the excavator 1 is being performed), the controller 21 waits. At this time, as described above, since the pilot source pressure (Pc) is controlled to zero, the excavator 1 remains stationary regardless of any lever operation. In step R9, if it is determined that all the operation levers 13, 14, 15, and 15 are in the -Eutral position, the controller 21 determines whether the lock release position signal is input from the limit switch 44 or not. The lever operation position determination section 21d determines whether the lock lever 43 is at the lock position or the unlock position (R10). If it is determined in step RIO that the lock lever 43 is at the lock position, the control by the controller 21 returns to step R9. On the other hand, in step R10, it is determined that the lock lever 43 is in the unlock position. If separated, the controller 21 outputs a control current to the electromagnetic proportional pressure control valve 46 so that the pilot source pressure (Pc) increases along the curve shown in FIG. 7 (R11). As a result, as shown in FIG. 7, the pilot pressure (Pc) is reduced from zero to the minimum oil pressure at which the oil passage switching operation of the operation valve assembly 18 can be performed (hereinafter referred to as the “operation threshold” of the operation valve assembly 18). (Pt) in a short time, and then gradually increase to a maximum set pressure value (P e) higher than its operating threshold (Pt). The operation of increasing the pilot source pressure is performed in a state where the number of revolutions of the engine 16 is equal to or higher than a certain number of revolutions and the discharge pressure of the pilot pump has risen to a necessary and sufficient level. As a result of the rise of the pilot base pressure (Pc), the oil path switching operation of the operation valve assembly 61 can be performed, and therefore, the hydraulic excavator 1 (the hydraulic operating section 19) can move.
[0049] このように、エンジン再始動後は、全ての操作レバー 13, 14, 15、 15が-ユートラ ル位置操作にある(つまり、油圧ショベル 1を動かすためのレバー操作が全く行われ ていない)場合にのみ、コントローラ 21は、ロックレバー 43のロック解除操作に応答し て、油圧回路 20を作動不能な状態から作動可能な状態へ移行させる。したがって、 ロック解除操作により油圧回路 20が作動可能状態になったとき、油圧ショベル 1 (油 圧作動部 19)が不意に動きだす虞がない。また、パイロット元圧 (Pc)は前記作動閾 値 (Pt)力も最大設定圧値 (Pe)にまでゆっくり漸次に昇圧されるので、ロック解除直 後にどのようなレバー操作が行われても、油圧ショベル 1 (油圧作動部 19)は低速に 動作を開始することになり、動作開始時における急激な高速動作が回避される。操作 レバー 13, 14, 15、 15がどのように操作されても、油圧作動部 19は低速で動作を開 始し、動作開始時における急激な高速動作が回避される。  [0049] As described above, after the engine is restarted, all the operation levers 13, 14, 15, and 15 are in the -Eutral position operation (that is, the lever operation for moving the excavator 1 is not performed at all). Only in this case, the controller 21 changes the hydraulic circuit 20 from the inoperable state to the operable state in response to the unlocking operation of the lock lever 43. Therefore, when the hydraulic circuit 20 becomes operable by the unlocking operation, there is no possibility that the hydraulic excavator 1 (the hydraulic pressure operating section 19) starts to move suddenly. In addition, the pilot base pressure (Pc) also gradually increases the operation threshold value (Pt) force to the maximum set pressure value (Pe), so that no matter what lever operation is performed immediately after unlocking, the hydraulic pressure The excavator 1 (the hydraulic operating section 19) starts operating at a low speed, and a sharp high-speed operation at the start of the operation is avoided. No matter how the operating levers 13, 14, 15, and 15 are operated, the hydraulic operating section 19 starts operating at a low speed, and a rapid high-speed operation at the start of the operation is avoided.
[0050] なお、変形例として、前述の第 1の実施形態において、図 3のフローチャートに示さ れるステップ S6とステップ S7との間に、或いは、上述の第 2の実施形態において、図 6のフローチャートに示されるステップ R6とステップ R7との間に、オペレータが油圧シ ョベル 1の警音器(図示せず)を鳴らした力否かをチェックするステップを行な 、、警 音器が事前に鳴らされな 、限りエンジン 16を再始動しな 、ように制御してもよ 、。或 いは、別法として、エンジン再始動前に自動的に警音器を鳴らすか又はその他の適 当な警報方法を用いて、油圧ショベル 1の外部の近くに居る人々や油圧ショベル 1に 搭乗して ヽるオペレータに、これからエンジン再始動動作が行われることを自動的に 通知するようにしてもよい。これらの変形例によれば、エンジン再起動の直前に油圧 ショベル 1の内外に警音又は警報を出力することで、油圧ショベル 1の近くに居る人 々又は油圧ショベル 1に搭乗しているオペレータにエンジン再起動に備えて安全確 保のための注意を喚起することができる。 As a modified example, in the first embodiment described above, between steps S6 and S7 shown in the flowchart of FIG. 3, or in the second embodiment, the flowchart of FIG. Between the step R6 and the step R7 shown in the above, a step of checking whether or not the operator has sounded the horn of the hydraulic shovel 1 (not shown) is performed, and the horn sounds in advance. Otherwise, the engine 16 may be controlled so as not to be restarted. Alternatively, or by automatically sounding a beep before restarting the engine, or by using other appropriate alarming methods, people who are outside the excavator 1 or to the excavator 1 The operator on board may be automatically notified that the engine restart operation will be performed. According to these modifications, a warning or an alarm is output inside and outside the excavator 1 immediately before restarting the engine, so that people near the excavator 1 or an operator who is on the excavator 1 can be notified. It can call attention to safety in preparation for the engine restart.
以上、本発明の実施形態を説明したが、この実施形態は本発明の説明のための例 示にすぎず、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明 は、その要旨を逸脱することなぐその他の様々な態様でも実施することができる。  Although the embodiment of the present invention has been described above, this embodiment is merely an example for describing the present invention, and is not intended to limit the scope of the present invention to only this embodiment. The present invention can be implemented in various other modes without departing from the gist thereof.

Claims

請求の範囲 The scope of the claims
[1] エンジン(17)と、前記エンジンにより駆動される油圧回路(20)と、前記油圧回路に より駆動される油圧作動部(19)と、前記油圧作動部を動かすための操作指令信号 を出力する操作装置(13, 14, 15)と、前記エンジン、前記油圧回路及び前記操作 装置に接続され、前記エンジンがアイドリング運転状態にあるときに前記エンジンを 停止させるアイドリングストップ制御と、前記アイドリングストップ制御により前記ェンジ ンを停止させた後に前記エンジンを再始動するエンジン再始動制御とを行う制御装 置 (21)とを備えた作業車両にぉ 、て、  [1] An engine (17), a hydraulic circuit (20) driven by the engine, a hydraulic operating unit (19) driven by the hydraulic circuit, and an operation command signal for moving the hydraulic operating unit An operation device (13, 14, 15) for outputting, an idling stop control connected to the engine, the hydraulic circuit, and the operation device for stopping the engine when the engine is in an idling operation state; and the idling stop. A control device (21) for performing an engine restart control for restarting the engine after the engine is stopped by control;
前記制御装置は、前記アイドリングストップ制御により前記エンジンを停止させた後 に前記エンジン再始動制御を行う場合、  When the control device performs the engine restart control after stopping the engine by the idling stop control,
前記エンジンを再始動する前に前記油圧回路を作動不能な状態にし (S6, R6)、 前記油圧回路が作動不能な状態にあるとき、所定のトリガ信号を受けて前記ェン ジンを再始動し(S7, S8, R7, R8)、  Before the engine is restarted, the hydraulic circuit is made inoperable (S6, R6) .When the hydraulic circuit is inoperable, the engine is restarted in response to a predetermined trigger signal. (S7, S8, R7, R8),
前記エンジンを再始動した後、前記操作装置から前記操作指令信号が入力され ていないときに、前記油圧回路を作動可能な状態に復帰させる(S9、 Sl l, R9, R1 1)ことを特徴とする作業車両。  After the engine is restarted, when the operation command signal is not input from the operation device, the hydraulic circuit is returned to an operable state (S9, Sl1, R9, R11). Working vehicle.
[2] 前記油圧回路についてのロック指示信号とロック解除指示信号を出力するロック装置 [2] A lock device that outputs a lock instruction signal and an unlock instruction signal for the hydraulic circuit
(43)を更に備え、  (43) is further provided,
前記制御装置は、  The control device includes:
前記アイドリングストップ制御により前記エンジンを停止させた後、前記エンジンを 再始動する前に、前記ロック装置 (43)からの前記ロック指示信号に応答して前記油 圧回路を作動不能な状態にし (S5, S6, R5, R6)、  After stopping the engine by the idling stop control and before restarting the engine, the hydraulic circuit is made inoperable in response to the lock instruction signal from the lock device (43) (S5 , S6, R5, R6),
前記エンジンを再始動した後、前記操作装置から前記操作指令信号が入力され て!、な!/、ときに、前記ロック装置 (43)からの前記ロック解除指示信号に応答して前記 油圧回路の作動可能な状態に復帰させる(S9、 S10, Sl l, R9, RIO, R11)ことを 特徴とする請求項 1記載の作業車両。  After the engine is restarted, the operation command signal is input from the operation device, and the operation of the hydraulic circuit is performed in response to the lock release instruction signal from the lock device (43). 2. The work vehicle according to claim 1, wherein the work vehicle is returned to an operable state (S9, S10, Sl1, R9, RIO, R11).
[3] 前記所定のトリガ信号が、前記操作装置からの所定の操作指令信号であることを特 徴とする請求項 1記載の作業車両。 [4] 前記油圧回路を制御するためのパイロット圧油の圧力を制御するパイロット圧制御装 置 (46)を更に備え、 3. The work vehicle according to claim 1, wherein the predetermined trigger signal is a predetermined operation command signal from the operation device. [4] a pilot pressure control device (46) for controlling the pressure of pilot pressure oil for controlling the hydraulic circuit,
前記制御装置は、前記パイロット圧制御装置 (46)を制御して、前記パイロット圧油 の圧力を所定の作動閾値より下げることにより前記油圧回路を作動不能な状態にし、 前記パイロット圧油の圧力を前記作動閾値より上げることにより前記油圧回路を作動 可能な状態に復帰させることを特徴とする請求項 1記載の作業車両。  The control device controls the pilot pressure control device (46) to make the hydraulic circuit inoperable by lowering the pressure of the pilot pressure oil below a predetermined operation threshold, and to reduce the pressure of the pilot pressure oil. 2. The work vehicle according to claim 1, wherein the hydraulic circuit is returned to an operable state by increasing the operation threshold.
[5] 前記制御装置は、前記油圧回路を作動可能な状態に復帰させる場合、前記パイロッ ト圧油の圧力を漸次に上昇させることを特徴とする請求項 4記載の作業車両。  5. The work vehicle according to claim 4, wherein the control device gradually increases the pressure of the pilot pressure oil when returning the hydraulic circuit to an operable state.
[6] 警音又は警報を出力する警報装置を更に備え、  [6] further comprising an alarm device for outputting a warning sound or an alarm,
前記制御装置は、前記油圧回路が作動不能な状態にあるときに前記トリガ信号を 受けた場合、前記警報装置から前記警音又は警報が出力された後に、前記エンジン を再始動することを特徴とする請求項 1記載の作業車両。  When receiving the trigger signal while the hydraulic circuit is inoperable, the control device restarts the engine after the alarm device outputs the audible alarm or the alarm. The work vehicle according to claim 1, wherein
[7] エンジン(17)と、前記エンジンにより駆動される油圧回路(20)と、前記油圧回路に より駆動される油圧作動部(19)と、前記油圧作動部を動かすための操作指令信号 を出力する操作装置(13, 14, 15)と備えた作業車両において、アイドリングストップ 制御により前記エンジンを停止させた後に前記エンジンを再始動するための制御方 法において、  [7] An engine (17), a hydraulic circuit (20) driven by the engine, a hydraulic operating unit (19) driven by the hydraulic circuit, and an operation command signal for moving the hydraulic operating unit A control method for restarting the engine after the engine is stopped by idling stop control in a working vehicle provided with an operating device (13, 14, 15) for outputting an output,
前記エンジンを再始動する前に前記油圧回路を作動不能な状態にするステップ (S 6, R6)と、  Disabling the hydraulic circuit before restarting the engine (S6, R6);
前記油圧回路が作動不能な状態にあるとき、所定のトリガ信号を受けて前記ェンジ ンを再始動するステップ(S7, S8, R7, R8)と、  Restarting the engine in response to a predetermined trigger signal when the hydraulic circuit is inoperable (S7, S8, R7, R8);
前記エンジンを再始動した後、前記操作装置力 何の操作指令信号も入力されて いないときに、前記油圧回路を作動可能な状態に復帰させるステップ (S9、 Sl l, R 9, R11)と  (S9, Sll, R9, R11) returning the hydraulic circuit to an operable state when no operation command signal has been input after the engine has been restarted.
を有することを特徴とするエンジン再始動制御方法。  An engine restart control method comprising:
PCT/JP2004/019351 2003-12-26 2004-12-24 Working vehicle and restart controlling method for working vehicle engine WO2005064170A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067012825A KR100934686B1 (en) 2003-12-26 2004-12-24 How to control engine restart of working vehicle and working vehicle
JP2005516644A JP4271685B2 (en) 2003-12-26 2004-12-24 Work vehicle and engine restart control method for work vehicle
GB0612133A GB2425368B (en) 2003-12-26 2004-12-24 Working vehicle and restart controlling method for working vehicle engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-432422 2003-12-26
JP2003432422 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064170A1 true WO2005064170A1 (en) 2005-07-14

Family

ID=34736476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019351 WO2005064170A1 (en) 2003-12-26 2004-12-24 Working vehicle and restart controlling method for working vehicle engine

Country Status (4)

Country Link
JP (1) JP4271685B2 (en)
KR (1) KR100934686B1 (en)
GB (1) GB2425368B (en)
WO (1) WO2005064170A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018667A1 (en) * 2005-07-21 2007-02-15 Caterpillar Inc. Method and apparatus for starting a work machine
JP2010084475A (en) * 2008-10-02 2010-04-15 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine
JP2010250459A (en) * 2009-04-14 2010-11-04 Caterpillar Sarl Malfunction preventive device in construction machine
JP2012021394A (en) * 2011-08-25 2012-02-02 Komatsu Ltd Working machine
JP2012237161A (en) * 2011-05-12 2012-12-06 Hitachi Constr Mach Co Ltd Control device for working machine
JP2013139738A (en) * 2011-12-28 2013-07-18 Takakyu Agency:Kk Idling stop device
JP5526299B1 (en) * 2013-11-26 2014-06-18 株式会社小松製作所 Work vehicle
JP2015078703A (en) * 2015-01-28 2015-04-23 ニチユ三菱フォークリフト株式会社 Vehicle and its control method
JP2020100940A (en) * 2018-12-19 2020-07-02 株式会社クボタ Work machine and driving method of work machine
US20240068200A1 (en) * 2022-08-26 2024-02-29 Caterpillar Sarl System, method, and machine for engine restarting by joystick operation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628861B1 (en) * 2010-10-13 2019-02-27 Takeuchi Mfg. Co., Ltd. Control device for working machine
JP2017082734A (en) * 2015-10-30 2017-05-18 株式会社タダノ Work vehicle
JP2017082733A (en) * 2015-10-30 2017-05-18 株式会社タダノ Work machine and engine stop control device
KR102681136B1 (en) * 2019-09-25 2024-07-04 가부시키가이샤 히다치 겡키 티에라 construction machinery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141402A (en) * 1980-04-03 1981-11-05 Hitachi Constr Mach Co Ltd Control method for hydraulic system
JPS60135363U (en) * 1984-02-17 1985-09-09 住友重機械工業株式会社 Hydraulic excavator safety device
JPS6260656U (en) * 1985-09-30 1987-04-15
JPH0544517A (en) * 1991-08-08 1993-02-23 Hitachi Constr Mach Co Ltd Working machine stop device
JPH08175219A (en) * 1994-12-22 1996-07-09 Komatsu Ltd Steering control method and device
JPH08177810A (en) * 1994-12-28 1996-07-12 Yutani Heavy Ind Ltd Control device for actuator
JP2000096627A (en) * 1998-09-22 2000-04-04 Hitachi Constr Mach Co Ltd Engine control device for construction equipment
JP2003307142A (en) * 2002-04-15 2003-10-31 Kobelco Contstruction Machinery Ltd Construction machine and engine control method therefor
JP2004263573A (en) * 2003-02-07 2004-09-24 Kobelco Contstruction Machinery Ltd Control device of construction machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240107A (en) * 1999-02-19 2000-09-05 Hitachi Constr Mach Co Ltd Alarm system of construction machinery
JP2002327469A (en) * 2001-05-02 2002-11-15 Komatsu Ltd Device for safening peripery of construction machinery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141402A (en) * 1980-04-03 1981-11-05 Hitachi Constr Mach Co Ltd Control method for hydraulic system
JPS60135363U (en) * 1984-02-17 1985-09-09 住友重機械工業株式会社 Hydraulic excavator safety device
JPS6260656U (en) * 1985-09-30 1987-04-15
JPH0544517A (en) * 1991-08-08 1993-02-23 Hitachi Constr Mach Co Ltd Working machine stop device
JPH08175219A (en) * 1994-12-22 1996-07-09 Komatsu Ltd Steering control method and device
JPH08177810A (en) * 1994-12-28 1996-07-12 Yutani Heavy Ind Ltd Control device for actuator
JP2000096627A (en) * 1998-09-22 2000-04-04 Hitachi Constr Mach Co Ltd Engine control device for construction equipment
JP2003307142A (en) * 2002-04-15 2003-10-31 Kobelco Contstruction Machinery Ltd Construction machine and engine control method therefor
JP2004263573A (en) * 2003-02-07 2004-09-24 Kobelco Contstruction Machinery Ltd Control device of construction machine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018667A1 (en) * 2005-07-21 2007-02-15 Caterpillar Inc. Method and apparatus for starting a work machine
JP2010084475A (en) * 2008-10-02 2010-04-15 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine
JP2010250459A (en) * 2009-04-14 2010-11-04 Caterpillar Sarl Malfunction preventive device in construction machine
JP2012237161A (en) * 2011-05-12 2012-12-06 Hitachi Constr Mach Co Ltd Control device for working machine
JP2012021394A (en) * 2011-08-25 2012-02-02 Komatsu Ltd Working machine
JP2013139738A (en) * 2011-12-28 2013-07-18 Takakyu Agency:Kk Idling stop device
CN104395588A (en) * 2013-11-26 2015-03-04 株式会社小松制作所 Utility vehicle
WO2014184978A1 (en) * 2013-11-26 2014-11-20 株式会社小松製作所 Utility vehicle
JP5526299B1 (en) * 2013-11-26 2014-06-18 株式会社小松製作所 Work vehicle
DE112013000251B3 (en) * 2013-11-26 2015-08-20 Komatsu Ltd. working vehicle
CN104395588B (en) * 2013-11-26 2015-11-25 株式会社小松制作所 Working truck
US9315969B2 (en) 2013-11-26 2016-04-19 Komatsu Ltd. Work vehicle
JP2015078703A (en) * 2015-01-28 2015-04-23 ニチユ三菱フォークリフト株式会社 Vehicle and its control method
JP2020100940A (en) * 2018-12-19 2020-07-02 株式会社クボタ Work machine and driving method of work machine
JP7004419B2 (en) 2018-12-19 2022-01-21 株式会社クボタ Work equipment and how to drive the work equipment
US20240068200A1 (en) * 2022-08-26 2024-02-29 Caterpillar Sarl System, method, and machine for engine restarting by joystick operation

Also Published As

Publication number Publication date
GB2425368A (en) 2006-10-25
GB0612133D0 (en) 2006-07-26
KR20060105032A (en) 2006-10-09
GB2425368B (en) 2008-06-11
JP4271685B2 (en) 2009-06-03
JPWO2005064170A1 (en) 2007-12-20
KR100934686B1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
US8607558B2 (en) Work machine
JP2004263573A (en) Control device of construction machine
US9644345B2 (en) System and method for controlling a drive unit of a work machine during an idle state
WO2005064170A1 (en) Working vehicle and restart controlling method for working vehicle engine
KR100926477B1 (en) Construction machine
JP2008255839A (en) Work machine
JP2008057468A (en) Engine control device of work machine
JP2008057469A (en) Engine control device of work machine
JP4488993B2 (en) Anti-theft device for construction equipment
JP5185559B2 (en) Work machine
JP2012097751A (en) Working machine
JP4975674B2 (en) Work machine
JP4063097B2 (en) Engine control device for construction machinery
JP5518040B2 (en) Idling stop device
JP2020100940A (en) Work machine and driving method of work machine
CN113454297B (en) Working machine
JP4372073B2 (en) Anti-theft device for construction equipment
KR101861438B1 (en) Apparatus for controlling auto srart of construction machinary using starter switch
JP7556812B2 (en) Construction Machinery
JP2001316078A (en) Control circuit for working vehicle with hydraulic power unit
JP2000064363A (en) Burglarproof device for construction machine
JP5688991B2 (en) Work machine
JP2022151543A (en) Shovel
JP3860523B2 (en) Anti-theft device for work equipment
JP3860524B2 (en) Anti-theft device for work equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516644

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 0612133.9

Country of ref document: GB

Ref document number: 0612133

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1020067012825

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067012825

Country of ref document: KR

122 Ep: pct application non-entry in european phase