WO2005063785A2 - Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung - Google Patents

Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2005063785A2
WO2005063785A2 PCT/EP2004/014319 EP2004014319W WO2005063785A2 WO 2005063785 A2 WO2005063785 A2 WO 2005063785A2 EP 2004014319 W EP2004014319 W EP 2004014319W WO 2005063785 A2 WO2005063785 A2 WO 2005063785A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
yloxy
hydrogen
group
general formula
Prior art date
Application number
PCT/EP2004/014319
Other languages
English (en)
French (fr)
Other versions
WO2005063785A3 (de
Inventor
Frank Himmelsbach
Peter Eickelmann
Edward Leon Barsoumian
Original Assignee
Boehringer Ingelheim International Gmbh
Boehringer Ingelheim Pharma Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh, Boehringer Ingelheim Pharma Gmbh & Co. Kg filed Critical Boehringer Ingelheim International Gmbh
Priority to EP04803932A priority Critical patent/EP1699807A2/de
Priority to CA002548353A priority patent/CA2548353A1/en
Priority to JP2006546000A priority patent/JP2007515441A/ja
Publication of WO2005063785A2 publication Critical patent/WO2005063785A2/de
Publication of WO2005063785A3 publication Critical patent/WO2005063785A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention relates to aromatics of the general formula I substituted with glucopyranosyloxy
  • radicals R 1 to R 6 and R 7a , R 7b and R 7c are defined below, including their tautomers, their stereoisomers, their mixtures and their salts.
  • Another object of this invention relates to medicaments containing a compound of formula I according to the invention and the use of a compound according to the invention for the manufacture of a medicament for the treatment of metabolic diseases.
  • methods for producing a medicament and a compound according to the invention are the subject of this invention.
  • the present invention is based on the object of demonstrating new glucopyranosyloxy-substituted aromatics, in particular those which have an activity with respect to the sodium-dependent glucose cotransporter SGLT, in particular SGLT2.
  • a further object of the present invention is to demonstrate glucopyranosyloxy-substituted aromatics which have an increased inhibitory effect on sodium-dependent glucose cotransporters SGLT2 in vitro and / or in vivo compared to known, structurally similar compounds and / or have improved pharmacological or pharmacokinetic properties.
  • Another object of this invention is to provide a process for the preparation of the compounds according to the invention.
  • a first object of the present invention are glucopyranosyloxy-substituted aromatics of the general formula I.
  • R 1 is C 2-6 alkynyl, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranyl-C ⁇ - 3 -alkyloxy or tetrahydropyranyl-C ⁇ - 3 -alkyloxy, or if R 3 is selected is from the group consisting of C 2-6 alkynyl, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranyl -CC.
  • R 1 can also hydrogen, fluorine, chlorine, bromine, iodine, C- ⁇ - 4 alkyl, a methyl group substituted by 1 to 3 fluorine atoms, one by 1 to 5 Fluorine atoms substituted ethyl group, C ⁇ - alkoxy, a methoxy group substituted by 1 to 3 fluorine atoms, an ethoxy group substituted by 1 to 5 fluorine atoms, a C ⁇ -4 alkyl group substituted by a hydroxy or C ⁇ - 3 alkoxy group, one by one hydroxy or C 1 -3 alkoxy substituted C 2 alkoxy, C 2 - 6 alkenyl, C.
  • R 2 is hydrogen, fluorine, chlorine, methyl, methyl or methoxy substituted by 1 to 3 fluorine atoms
  • R 3 C 2-6 alkynyl, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranyl-C ⁇ - 3 -alkyloxy or tetrahydropyranyl-C ⁇ _ 3 -alkyloxy, or if R 1 is selected from the group consisting of C 2 .
  • R 3 may additionally be hydrogen, fluorine, chlorine, bromine, iodine, C ⁇ -6 alkyl, C 2-6 alkenyl, C 3-6 cycloalkyl, C. 3 6- Cycloalkylidenmethyl, C ⁇ .
  • R 4 and R 5 which may be the same or different, are hydrogen, fluorine, chlorine, bromine, C 3 to 3 alkyl, C 3 to 3 alkoxy, methyl or methoxy substituted by 1 to 3 fluorine atoms, and
  • R 7b , R 7 ° independently of one another have a meaning selected from the group consisting of hydrogen, (-CC 8 -alkyl) carbonyl, (-CC 8 -alkyl) oxycarbonyl, arylcarbonyl and aryl- (C ⁇ . 3 -alkyl) -carbonyl,
  • aryl groups mentioned in the definition of the abovementioned radicals are to be understood as meaning phenyl or naphthyl groups which can be mono- or disubstituted independently of one another by R h , where the substituents can be identical or different and R h is a fluorine or chlorine , Bromine, iodine, C 1 -C 3 -alkyl, difluoromethyl, trifluoromethyl, C 1 -C 3 alkoxy, difluoromethoxy, trifluoromethoxy or cyan, among the heteroaryl groups mentioned in the definition of the abovementioned radicals is a pyrrolyl, furanyl, thienyl, imidazolyl, pyridyl, indolyl, benzofuranyl, benzothiophenyl, quinolinyl or isoquinolinyl group, or a pyrrolyl, Furanyl, thienyl, imidazolyl or pyr
  • alkyl groups mentioned above can be straight-chain or branched
  • the compounds of general formula I according to the invention and their physiologically tolerable salts have valuable pharmacological properties, in particular an inhibitory action on the sodium-dependent glucose cotransporter SGLT, in particular SGLT2. Furthermore, compounds according to the invention can have an inhibitory effect on the sodium-dependent glucose cotransporter SGLT1. Compared to a possible inhibitory effect on SGLT1, the compounds according to the invention preferably selectively inhibit SGLT2.
  • the present invention also relates to the physiologically tolerable salts of the compounds according to the invention with inorganic or organic acids. Therefore, the use of the compounds according to the invention, including the physiologically tolerable salts as medicaments, is also an object of this invention.
  • Another object of this invention are medicaments containing at least one compound according to the invention or a physiologically compatible salt according to the invention in addition to optionally one or more inert carriers and / or diluents.
  • the present invention also relates to the use of at least one compound according to the invention or a physiologically tolerable salt of such a compound for the production of a medicament which is suitable for the treatment or prophylaxis of diseases or conditions which can be influenced by inhibition of the sodium-dependent glucose cotransporter SGLT, in particular SGLT2 are.
  • Another object of this invention is the use of at least one compound according to the invention or one of its physiologically tolerable salts for the production of a medicament which is suitable for the treatment of metabolic diseases.
  • Another object of this invention is the use of at least one compound according to the invention or one of its physiologically tolerable salts for the production of a medicament for inhibiting the sodium-dependent glucose cotransporter SGLT, in particular SGLT2.
  • a method for producing a medicament according to the invention is the subject of this invention, characterized in that a compound according to the invention is incorporated into one or more inert carriers and / or diluents in a non-chemical way.
  • the present invention also relates to a process for the preparation of the compounds of the general formula I according to the invention, characterized in that a) for the preparation of compounds of the general formula I in which R 6 , R 7a , R 7b and R 7c are as previously defined , but not hydrogen, a compound of the general formula
  • R 6 and R 7a , R 7b , R 7c are as previously defined, but do not mean hydrogen, and Z 1 represents a leaving group, with a compound of the general formula
  • R 1 to R 5 have the meanings mentioned above, is implemented or
  • R 1 to R 6 and R 7a , R 7b , R 7c have the meanings given above and below.
  • aryl used above and below for example in the groups R 3 , R 6 , R 7a , R 7b , R 7c and R 7d , preferably denotes phenyl.
  • the aryl group in particular the phenyl group, can be substituted once or twice with identical or different R radicals.
  • heteroaryl used above and below, for example in the group R 3 preferably denotes pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, Oxadiazolyl, thiazolyl or thiadiazolyl.
  • the heteroaryl group can be substituted once or twice with identical or different radicals Rh.
  • radical R 1 preferred meanings of the radical R 1 are ethynyl, 2-propin-1-yl, 2-butyn-1-yl, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranylmethyloxy and
  • Tetrahydropyranylmethyloxy very particularly preferred meanings here are ethynyl, tetrahydrofuran-3-yloxy and tetrahydropyran-4-yloxy, in particular ethynyl.
  • radical R 3 preferred meanings of the radical R 3 are hydrogen, fluorine, chlorine, methyl, ethyl, isopropyl, tert-butyl, 2-cyano-2-propyl, difluoromethyl, trifluoromethyl, cyclopropyl, cyclobutyl, cyclopentyl, methoxy, ethoxy, isopropoxy , Difluoromethoxy, trifluoromethoxy, 1, 1,2,2-tetrafluoroethoxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, methylsulfanyl, 2-methyl-1-propen-1-yl, cyclopropylidenemethyl, ethynyl, tetrahydrofuran-3-yloxy, tetrahydropyran-3 yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranylmethyloxy, tetrahydropyranylmethyl
  • R 1 is hydrogen, fluorine, chlorine, bromine, iodine, C ⁇ . 4- alkyl, methyl substituted by 1 to 3 fluorine atoms, ethyl substituted by 1 to 5 fluorine atoms, CM alkoxy, methoxy substituted by 1 to 3 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, by a hydroxy or C 1 - 3 - Alkoxy group substituted -CC 4 alkyl, by a hydroxy or C 1 .
  • 3 -alkyloxy or tetrahydropyranyl-C ⁇ - 3 -Alkyloxy can mean, and
  • R 3 is selected from a group consisting of C 2 -6-alkynyl, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranyl-C ⁇ -3-alkyloxy and tetrahydropyranyl-C ⁇ -3 -alkyloxy, and
  • R 2 and R 4 to R 6 and R 7a , R 7b , R 7c have the meanings given above,
  • radical R 1 are hydrogen, fluorine, chlorine, methyl, difluoromethyl, trifluoromethyl, methoxy, Difluoromethoxy, trifluoromethoxy or cyano, particularly preferably hydrogen, fluorine, methyl or cyano, very particularly preferably hydrogen.
  • radical R 3 are ethynyl and tetrahydrofuran-3-yloxy.
  • radical R 4 are hydrogen and fluorine, in particular hydrogen.
  • Preferred compounds according to the present invention in particular according to the first and second embodiment, can be described by the following formulas (la), (Ib), (Ic) and (Id), in particular (la), (Ib) and (Ic) :
  • those compounds are also preferred in which the phenyl group which carries the substituent R 3 has at least one further substituent R 4 and / or R 5 which is different from hydrogen. According to these variants, those compounds are particularly preferred which have a substituent R 4 meaning fluorine.
  • the phenyl radical which carries the substituent R 3 is preferably fluorinated at most once.
  • radical R 5 are hydrogen and fluorine, in particular hydrogen.
  • radical R 2 are hydrogen, fluorine and methyl, in particular hydrogen and methyl.
  • the radical R 6 according to the invention is preferably hydrogen, (C 1-8 -alkyl) oxycarbonyl- or -C -8- alkylcarbonyl-, in particular hydrogen or (d. 6 -alkyl) oxycarbonyl, particularly preferably hydrogen, methoxycarbonyl or ethoxycarbonyl, very particularly preferably Hydrogen or methoxycarbonyl.
  • R 7a , R 7b , R 7c independently of one another are preferably hydrogen, (C 1-8 -alkyl) oxycarbonyl-, (C 1-18 -alkyl) carbonyl, benzoyl, in particular hydrogen or (C 1-6 -alkyl) oxycarbonyl-, (-C -8- alkyl) carbonyl, particularly preferably hydrogen, methoxycarbonyl, ethoxycarbonyl, methylcarbonyl or ethylcarbonyl.
  • R 7a , R 7b and R 7c are very particularly preferably hydrogen.
  • R 6 , R 7a , R 7 and R 7c have a meaning according to the invention other than hydrogen, for example C 8 alkylcarbonyl, are preferably suitable as intermediates in the synthesis of compounds of formula I in which R 7a , R 7b and R 7c are hydrogen.
  • Particularly preferred compounds of the general formula I are selected from the group:
  • R 6 has a meaning other than hydrogen, in particular R 6 is ethoxycarbonyl or methoxycarbonyl,
  • halogen denotes an atom selected from the group consisting of F, Cl, Br and I, in particular F, Cl and Br.
  • C ⁇ . n -Alkyl where n can have a value from 1 to 18, means a saturated, branched or unbranched hydrocarbon group with 1 to n carbon atoms.
  • examples of such groups include methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl, n-hexyl, iso-hexyl, etc.
  • C 2 - n -alkynyl where n has a value from 3 to 6, denotes a branched or unbranched hydrocarbon group with 2 to n C atoms and a C ⁇ C double bond.
  • groups include ethynyl, 1-propynyl, 2-propynyl, iso-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 2-methyl-1-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-2-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5 hexynyl etc.!
  • C ⁇ . n -AIkoxy denotes a C ⁇ . n -Alkyl-O group, wherein -CC n -alkyl is as defined above.
  • groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy, tert-pentoxy, n- Hexoxy, iso-hexoxy etc.
  • groups include methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, iso-propylcarbonyl, n-butylcarbonyl, iso-butylcarbonyl, sec-butylcarbonyl, tert-butylcarbonyl, n-pentylcarbonyl, iso-pentylcarbonyl, neo-pentylcarbonyl, tert-pentylcarbonyl, n- Hexylcarbonyl, iso- hexylcarbonyl, etc.
  • C 3 -n-cycloalkyl denotes a saturated mono-, bi-, tri- or spirocarbocyclic group with 3 to n carbon atoms.
  • groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclododecyl, bicyclo [3.2.1.] Octyl, spiro [4.5] decyl, norpinyl, norbonyl, Norcaryl, Adamantyl, etc.
  • the term includes C 3 . 7- Cycloalkyl saturated monocyclic groups.
  • C 3 -n-cycloalkylcarbonyl denotes a C 3 .
  • the compounds according to the invention can be obtained using synthesis processes which are known in principle.
  • the compounds are preferably obtained by the production processes according to the invention which are explained in more detail below.
  • R 6 and R 7a , R 7b , R 7c are defined as mentioned at the outset, but do not mean hydrogen
  • Z 1 is a leaving group such as a halogen atom, for example a fluorine, chlorine or bromine atom, or an acyloxy group, for example an acetyloxy group or trichloroacetimidoyloxy group, with a compound of the general formula
  • R 1 to R 5 have the meanings mentioned.
  • the reaction is advantageously carried out in a solvent such as, for example, methylene chloride, chloroform, acetonitrile, toluene, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide or N-methylpyrrolidinone, if appropriate in the presence of a base, such as, for example, potassium carbonate, cesium carbonate, sodium hydride or potassium tert-butoxide , or a silver compound such as silver (l) oxide, silver (l) carbonate or silver (l) trifluoroacetate or a catalyst such as boron trifluoride etherate at temperatures between -60 ° C and 120 ° C.
  • a base such as, for example, potassium carbonate, cesium carbonate, sodium hydride or potassium tert-butoxide
  • a silver compound such as silver (l) oxide, silver (l) carbonate or silver (l) trifluoroacetate or a catalyst such as boron trifluor
  • the reaction can also be carried out, for example, in a phase transfer system such as sodium hydroxide solution / methylene chloride / benzyl-triethylammonium bromide, it being possible for other protective groups, such as the trimethylsilyl group on an ethynyl group, to be eliminated.
  • a phase transfer system such as sodium hydroxide solution / methylene chloride / benzyl-triethylammonium bromide
  • R 6 , R 7a , R 7b and R 7c are defined as mentioned at the outset, but do not mean hydrogen, with water or a lower alcohol such as methanol or ethanol.
  • the reaction is advantageously carried out in water, a lower alcohol such as methanol or ethanol or an aqueous solvent mixture such as methanol / tetrahydrofuran in the presence of a base such as lithium hydroxide, sodium hydroxide, potassium carbonate or sodium methylate Temperatures between -20 ° C and 60 ° C.
  • a base such as lithium hydroxide, sodium hydroxide, potassium carbonate or sodium methylate
  • a compound of the general formula I in which R 6 represents a hydrogen atom is obtained according to the invention, it can be converted into a compound by means of acylation, for example by means of acylation in the presence of a base such as pyridine, collidine, triethylamine or N-ethyldiisopropylamine, in which R 6 represents a (-C 18 alkyl) carbonyl group, a (C 8 alkyl) oxycarbonyl group, an aryl carbonyl group or an aryl (C 3 alkyl) carbonyl group.
  • Suitable acylating agents are in particular the corresponding activated acyl derivatives such as acid chlorides or anhydrides.
  • any reactive groups present such as ethynyl, hydroxyl, amino, alkylamino or imino groups, can be protected during the reaction by customary protective groups, which are split off again after the reaction.
  • the trimethylsilyl group can be used as a protective radical for an ethynyl group.
  • the trimethylsilyl, acetyl, trityl, benzyl or tetrahydropyranyl group can be used as a protective radical for a hydroxyl group.
  • Protective residues for an amino, alkylamino or imino group are, for example, the formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl, benzyl, methoxybenzyl or 2,4-dimethoxybenzyl group.
  • the subsequent subsequent splitting off of a protective radical used takes place, for example, hydrolytically in an aqueous solvent, for example in water, isopropanol / water, acetic acid / water, tetrahydrofuran / water or dioxane / water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or Sulfuric acid or in the presence of an alkali base such as lithium hydroxide, sodium hydroxide or potassium hydroxide or aprotic, for example in the presence of iodotrimethylsilane, at temperatures between 0 and 120 ° C, preferably at temperatures between 10 and 100 ° C.
  • an aqueous solvent for example in water, isopropanol / water, acetic acid / water, tetrahydrofuran / water or dioxane / water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or Sulfuric acid or in the presence
  • a trimethylsilyl radical is split off, for example, in water, an aqueous solvent mixture or a lower alcohol such as methanol or ethanol in the presence of a base such as lithium hydroxide, sodium hydroxide, potassium carbonate or sodium methylate.
  • a benzyl, methoxybenzyl or benzyloxycarbonyl radical is advantageously split off hydrogenolytically, e.g. with hydrogen in the presence of a catalyst such as palladium / carbon in a suitable solvent such as methanol, ethanol, ethyl acetate or glacial acetic acid, optionally with the addition of an acid such as hydrochloric acid at temperatures between 0 and 100 ° C, but preferably at room temperatures between 20 and 60 ° C, and at a hydrogen pressure of 1 to 7 bar, but preferably from 3 to 5 bar.
  • a 2,4-dimethoxybenzyl radical is preferably cleaved in trifluoroacetic acid in the presence of anisole.
  • a tert-butyl or tert-butyloxycarbonyl radical is preferably cleaved off by treatment with an acid such as trifluoroacetic acid or hydrochloric acid or by treatment with iodotrimethylsilane, optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.
  • a trifluoroacetyl radical is preferably split off by treatment with an acid such as hydrochloric acid, if appropriate in the presence of a solvent such as acetic acid at temperatures between 50 and 120 ° C. or by treatment with sodium hydroxide solution optionally in the presence of a solvent such as tetrahydrofuran or methanol at temperatures between 0 and 50 ° C.
  • an acid such as hydrochloric acid
  • a solvent such as acetic acid at temperatures between 50 and 120 ° C.
  • sodium hydroxide solution optionally in the presence of a solvent such as tetrahydrofuran or methanol at temperatures between 0 and 50 ° C.
  • the compounds of general formula I obtained can be separated into their enantiomers and / or diastereomers.
  • cis / trans mixtures can be separated into their ice and trans isomers, and compounds with at least one optically active carbon atom can be separated into their enantiomers.
  • the cis / trans mixtures obtained can be chromatographed into their cis and trans isomers, the compounds of general formula I obtained which occur in racemates, according to methods known per se (see Allinger NL and Eliel EL in " Topics in Stereochemistry ", Vol. 6, Wiley Interscience, 1971)) in their optical antipodes and compounds of general formula I with at least 2 asymmetric carbon atoms due to their physico-chemical differences according to methods known per se, for example by chromatography and / or fractional crystallization, into their diastereomers, which, if they occur in racemic form, can then be separated into the enantiomers as mentioned above.
  • the separation of enantiomers is preferably carried out by column separation on chiral phases or by recrystallization from an optically active solvent or by reaction with a salt or derivative such as e.g. Optically active substance which forms esters or amides, in particular acids and their activated derivatives or alcohols, and separation of the diastereomeric salt mixture or derivative obtained in this way, e.g. due to different solubilities, it being possible for the free antipodes to be released from the pure diastereomeric salts or derivatives by the action of suitable agents.
  • a salt or derivative such as e.g. Optically active substance which forms esters or amides, in particular acids and their activated derivatives or alcohols
  • the D and L forms of tartaric acid or dibenzoyl tartaric acid, di-O-tolyltartaric acid, malic acid, mandelic acid, camphorsulfonic acid, glutamic acid, aspartic acid or quinic acid.
  • suitable optically active alcohol are (+) - or (-) - menthol
  • optically active acyl radicals in amides are, for example, (+) - or (-) - menthyloxycarbonyl.
  • the compounds of formula I obtained in their salts, in particular for pharmaceutical use in their physiologically compatible Salts with inorganic or organic acids.
  • suitable acids for this purpose are hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.
  • the compounds obtained can be converted into mixtures, for example in 1: 1 or 1: 2 mixtures with amino acids, in particular with alpha-amino acids such as proline or phenylalanine, which can have particularly favorable properties such as high crystallinity.
  • the compounds according to the invention can also advantageously be obtained by the processes described in the examples below, these also using the processes known to the person skilled in the art, for example from the literature, in particular those described in WO 01/68660, WO 01/74834, WO 02/28872, WO 02/44192, WO 02/64606, WO 03/11880 and WO 03/80635 can be combined.
  • the compounds of the general formula I according to the invention and their physiologically tolerable salts have valuable pharmacological properties, in particular an inhibitory action on the sodium-dependent glucose cotransporter SGLT, preferably SGLT2.
  • the biological properties of the new compounds can be checked as follows:
  • a CHO-K1 cell line ATCC No. CCL 61
  • a HEK293 cell line ATCC No. CRL-1573
  • Expression vector pZeoSV Invitrogen, EMBL accession number L36849
  • pZeoSV Invitrogen, EMBL accession number L36849
  • CHO-hSGLT2 or HEK-hSGLT2 transport sodium-dependent 14 C-labeled alpha-methyl-glucopyranoside ( 14 C-AMG, Amersham) into the cell interior.
  • the SGLT-2 assay is performed as follows:
  • CHO-hSGLT2 cells are cultivated in Ham's F12 medium (BioWhittaker) with 10% fetal calf serum and 250 ⁇ g / ml Zeocin (Invitrogen), HEK293-hSGLT2 cells in DMEM medium with 10% fetal calf serum and 250 ⁇ g / ml Zeocin (Invitrogen).
  • the cells are detached from the culture bottles by washing twice with PBS and then treating them with trypsin / EDTA. After adding cell culture medium, the cells are centrifuged off, resuspended in culture medium and counted in a casy-cell counter.
  • the reaction is started by adding 5 ⁇ l of 4 C-AMG (0.05 ⁇ Ci) to each hole. After a 2-hour incubation at 37 ° C., 5% CO 2 , the cells are washed again with 250 ⁇ l PBS (20 ° C.) and then lysed by adding 25 ⁇ l 0.1 N NaOH (5 minutes at 37 ° C.). 200 ⁇ l of MicroScint20 (Packard) are added to each hole and incubated at 37 C for a further 20 min. After this incubation, the radioactivity of the recorded 4 C-AMG is measured in a top count (Packard) using a 14 C scintillation program.
  • 4 C-AMG 0.05 ⁇ Ci
  • an analog test is set up in which the cDNA for hSGLTI (Genbank Acc. No. NM000343) is expressed in CHO-K1 or HEK293 cells instead of the hSGLT2 cDNA.
  • the compounds of general formula I according to the invention can have, for example, EC50 values below 1000 nM, in particular also below 50 nM.
  • the compounds of general formula I according to the invention and their corresponding pharmaceutically acceptable salts are in principle suitable for treating and / or preventing all those conditions or diseases which are caused by inhibiting SGLT activity , especially the SGLT-2 activity.
  • Compounds according to the invention are therefore, in particular for the prophylaxis or treatment of diseases, in particular metabolic diseases, or conditions such as type 1 and type 2 diabetes mellitus, diabetic complications (such as, for example, retinopathy, nephropathy or neuropathies, diabetic foot, ulcer, macroangiopathies), metabolic acidosis or ketosis, reactive hypoglycemia, hyperinsulinemia, glucose metabolism disorder, insulin resistance, metabolic syndrome, dyslipidemia of various origins, atherosclerosis and related diseases, obesity, hypertension, chronic heart failure, edema, hyperuricaemia are suitable.
  • these substances are suitable for beta-cell degeneration such as To prevent apoptosis or necrosis of pancreatic beta cells.
  • the substances are also suitable for improving or restoring the functionality of pancreatic cells, and also increasing the number and size of pancreatic beta cells.
  • the compounds according to the invention can also be used as diuretics or antihypertensives and are suitable for the prophylaxis and treatment of acute kidney failure.
  • the compounds according to the invention are very particularly suitable for the prophylaxis or treatment of diabetes, in particular type 1 and type 2 diabetes mellitus, and / or diabetic complications.
  • the dosage required to achieve a corresponding effect in treatment or prophylaxis usually depends on the compound to be administered, on the patient, on the type and severity of the disease or the condition and the The type and frequency of administration depends on the doctor to be treated.
  • the dosage for intravenous administration can range from 1 to 100 mg, preferably 1 to 30 mg, and for oral administration can range from 1 to 1000 mg, preferably 1 to 100 mg, 1 to 4 times a day.
  • the compounds of the formula I prepared according to the invention optionally in combination with other active substances, together with one or more inert customary carriers and / or diluents, for example with corn starch, lactose, cane sugar, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, Water, water / ethanol, water / glycerin, water / sorbitol, water / polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethyl cellulose or fatty substances such as hard fat or their suitable mixtures, in conventional pharmaceutical preparations such as tablets, dragées, capsules, powders, solutions, suspensions or Work in suppositories.
  • inert customary carriers and / or diluents for example with corn starch, lactose, cane sugar, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, Water, water
  • the compounds according to the invention can also be used in combination with other active substances, in particular for the treatment and / or prophylaxis of the diseases and conditions mentioned above.
  • further active substances are in particular those which, for example, increase the therapeutic effectiveness of an SGLT antagonist according to the invention with regard to one of the indications mentioned and / or allow a reduction in the dosage of an SGLT antagonist according to the invention.
  • Therapeutics suitable for such a combination include, for example, anti-diabetic agents such as metformin, sulfonylureas (e.g. glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinediones (e.g.
  • PPAR-gamma agonists e.g. Gl 262570
  • - Antagonists PPAR-gamma / alpha modulators
  • alpha-glucose inhibitors eg acarbose, Voglibose
  • DPPIV inhibitors eg LAF237, MK-431
  • alpha2-antagonists insulin and insulin analogues
  • GLP-1 and GLP -1 analogues e.g. exendin-4 or amylin.
  • inhibitors of protein tyrosinephosphatase 1 substances that affect deregulated glucose production in the liver, such as inhibitors' of the glucose-6-phosphatase, or fructose-1, 6-bisphosphatase, of glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvatcarboxykinase, glycogen synthase kinase or Pyruvatdehydrokinase, lipid lowering agents such as HMG-CoA reductase inhibitors (for example, simvastatin, atorvastatin), fibrates (eg bezafibrate, fenofibrate), nicotinic acid and derivatives thereof, PPAR-alpha agonists , PPAR-delta agonists, ACAT inhibitors (eg Avasimibe) or cholesterol absorption inhibitors such as ezetimibe, bile acid-binding substances such as colestyramine,
  • a combination with drugs to influence high blood pressure, chronic heart failure or atherosclerosis such as A-Il antagonists or ACE inhibitors, ECE inhibitors, diuretics, ⁇ -blockers, Ca antagonists, centrally acting antihypertensives, antagonists of the alpha-2 adrenergic receptor, inhibitors of neutral endopeptidase, platelet aggregation inhibitors and others or combinations thereof are suitable.
  • angiotensin II receptor antagonists examples include candesartan cilexetil, potassium losartan, eprosartan mesylate, valsartan, telmisartan, irbesartan, EXP-3174, L-158809, EXP-3312, olmesartan, medoxomil, tasosartan, KT-3-671, GA-0113 RU-64276, EMD-90423, BR-9701, etc.
  • Angiotensin II receptor antagonists are preferably used for the treatment or prophylaxis of hypertension and diabetic complications, often in combination with a diuretic such as hydrochlorothiazide.
  • a combination with uric acid synthesis inhibitors or uricosurics is suitable for the treatment or prophylaxis of gout.
  • a combination with GABA receptor antagonists, Na channel blockers, topiramate, protein kinase C Inhibitors, advanced glycation end product inhibitors or aldose reductase inhibitors For the treatment or prophylaxis of diabetic complications, a combination with GABA receptor antagonists, Na channel blockers, topiramate, protein kinase C Inhibitors, advanced glycation end product inhibitors or aldose reductase inhibitors.
  • the dose for the combination partners mentioned above is expediently 1/5 of the usually recommended lowest dose up to 1/1 of the normally recommended dose.
  • a further subject of this invention therefore relates to the use of a compound according to the invention or a physiologically tolerable salt of such a compound in combination with at least one of the active ingredients described above as a combination partner for the production of a medicament which is suitable for the treatment or prophylaxis of diseases or conditions which are caused by Inhibition of the sodium-dependent glucose cotransporter SGLT can be influenced.
  • This is preferably a metabolic disease, in particular one of the diseases or conditions mentioned above, very particularly diabetes or diabetic complications.
  • both active ingredients are administered to the patient together; in the case of staggered use, the two active substances are administered to the patient in succession in a period of less than or equal to 12, in particular less than or equal to 6 hours.
  • a further subject of this invention relates to a medicament which has a compound according to the invention or a physiologically tolerable salt of such a compound and at least one of the active ingredients described above as a combination partner in addition to optionally one or more inert carriers and / or diluents.
  • a medicament according to the invention has a combination of a compound according to the invention of the formula I or a physiologically tolerable salt of such a compound and at least one angiotensin II receptor antagonist in addition to, if appropriate, one or more inert carriers and / or diluents.
  • the compound according to the invention, or a physiologically compatible salt, and the further active ingredient to be combined therewith can be present together in one dosage form, for example a tablet or capsule, or separately in two identical or different dosage forms, for example as a so-called kit-of-parts.
  • Composition 1 tablet contains: Active ingredient 100.0 mg milk sugar 80.0 mg corn starch 34.0 mg polyvinylpyrrolidone 4.0 mg magnesium stearate 2.0 mg 220.0 mg
  • Active ingredient, milk sugar and starch are mixed and moistened evenly with an aqueous solution of the polyvinylpyrrolidone. After sieving the moist mass (2.0 mm mesh size) and drying in a rack drying cabinet at 50 ° C, sieving is again carried out (1.5 mm mesh size) and the lubricant is added. The ready-to-press mixture is processed into tablets.
  • Tablet weight 220 mg, diameter: 10 mm, biplane with double-sided facet and one-sided partial notch.
  • Composition 1 tablet contains: active substance 150.0 mg milk sugar powder. 89.0 mg corn starch 40.0 mg Colloidal silica 10.0 mg polyvinylpyrrolidone 10.0 mg magnesium stearate 1.0 mg 300.0 mg
  • the active substance mixed with milk sugar, corn starch and silica is moistened with a 20% aqueous polyvinylpyrrolidone solution and passed through a sieve with a 1.5 mm mesh size.
  • the granules dried at 45 ° C are rubbed through the same sieve again and mixed with the specified amount of magnesium stearate. The mixture becomes
  • Tablet weight 300 mg stamp: 10 mm, flat
  • 1 capsule contains: Active ingredient 150.0 mg corn starch dr. approx. 180.0 mg powdered milk sugar approx. 87.0 mg magnesium stearate 3.0 mg approx. 420.0 mg
  • the active ingredient is mixed with the excipients, passed through a sieve with a mesh size of 0.75 mm and mixed homogeneously in a suitable device.
  • the final mix is filled into size 1 hard gelatin capsules.
  • Composition 1 suppository contains: Active ingredient 150.0 mg polyethylene glycol 1500 550.0 mg polyethylene glycol 6000 460.0 mg polyoxyethylene sorbitan monostearate 840.0 mg 2000.0 mg
  • the active ingredient is homogeneously distributed therein and the melt is poured into pre-cooled molds.
  • composition active ingredient 10.0 mg 0.01 n hydrochloric acid s.q. Aqua bidest to 2.0 ml
  • Example F The active substance is dissolved in the required amount of 0.01N HCl, made isotonic with sodium chloride, sterile filtered and filled into 2 ml ampoules.
  • 0.01N HCl 0.01N HCl
  • composition active ingredient 50.0 mg 0.01 n hydrochloric acid s.q. Aqua bidest to 10.0 ml
  • the active substance is dissolved in the required amount of 0.01N HCl, made isotonic with sodium chloride, sterile filtered and filled into 10 ml ampoules.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft Glucopyranosyloxy-substituierte Aromaten der allgemeinen Formel (I), in der R1 bis R6 sowie R7a, R7b, R7c im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT2, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Stoffwechselerkrankungen wie Diabetes und deren Herstellung.

Description

Glucopyranosyloxy-substituierte Aromaten, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
Gegenstand der vorliegenden Erfindung sind Glucopyranosyloxy-substituierte Aromaten der allgemeinen Formel I
Figure imgf000003_0001
wobei die Reste R1 bis R6 und R7a, R7b und R7c nachfolgend definiert sind, einschließlich deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze. Ein weiterer Gegenstand dieser Erfindung betrifft Arzneimittel enthaltend eine erfindungsgemäße Verbindung der Formel I sowie die Verwendung einer erfindungsgemäßen Verbindung zur Herstellung eines Arzneimittels zur Behandlung von Stoffwechselerkrankungen. Darüber hinaus sind Verfahren zur Herstellung eines Arzneimittels sowie einer erfindungsgemäßen Verbindung Gegenstand dieser Erfindung.
In der Literatur werden Verbindungen, die eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT2 besitzen, zur Behandlung von Krankheiten, insbesondere von Diabetes vorgeschlagen.
Aus den internationalen Offenlegungsschriften WO 01/68660, WO 01/74834, WO 02/28872, WO 02/44192, WO 02/64606, WO 03/11880 sowie WO 03/80635 sind Glucopyranosyloxy-substituierte Aromaten sowie deren Herstellung und deren mögliche Aktivität als SGLT2-lnhibitoren bekannt. Aufgabe der Erfindung
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Glucopyranosyloxy- substituierte Aromaten aufzuzeigen, insbesondere solche, die eine Aktivität bezüglich des natriumabhängigen Glucose-Cotransporters SGLT, insbesondere SGLT2 besitzen. Eine weitere Aufgabe der vorliegenden Erfindung besteht im Aufzeigen von Glucopyranosyloxy-substituierten Aromaten, die in vitro und/oder in vivo im Vergleich mit bekannten, strukturähnlichen Verbindungen eine erhöhte Hemmwirkung bezüglich natriumabhängigen Glucose-Cotransporters SGLT2 besitzen und/oder verbesserte pharmakologische oder pharmakokinetische Eigenschaften aufweisen.
Ferner ist es eine Aufgabe der vorliegenden Erfindung, neue Arzneimittel bereit zu stellen, welche zur Prophylaxe und/oder Behandlung von Stoffwechselerkrankungen, insbesondere von Diabetes geeignet sind.
Ebenfalls eine Aufgabe dieser Erfindung ist es, ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen bereit zu stellen.
Weitere Aufgaben der vorliegenden Erfindung ergeben sich für den Fachmann unmittelbar aus den vorhergehenden und nachfolgenden Ausführungen.
Gegenstand der Erfindung
Ein erster Gegenstand der vorliegenden Erfindung sind Glucopyranosyloxy- substituierte Aromaten der allgemeinen Formel I
Figure imgf000004_0001
in denen
R1 C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy oder Tetrahydropyranyl-Cι-3-alkyloxy bedeutet, oder, falls R3 ausgewählt ist aus der Gruppe bestehend aus C2-6-Alkinyl, Tetrahydrofuran-3- yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl- Cι.3-alkyloxy und Tetrahydropyranyl-Cι-3-alkyloxy, dann kann R1 zusätzlich auch Wasserstoff, Fluor, Chlor, Brom, lod, C-ι-4-Alkyl, eine durch 1 bis 3 Fluoratome substituierte Methylgruppe, eine durch 1 bis 5 Fluoratome substituierte Ethylgruppe, Cι- -Alkoxy, eine durch 1 bis 3 Fluoratome substituierte Methoxygruppe, eine durch 1 bis 5 Fluoratome substituierte Ethoxygruppe, eine durch eine Hydroxy- oder Cι-3-Alkoxygruppe substituierte C-ι-4-Alkylgruppe, eine durch eine Hydroxy- oder C1-3- Alkoxygruppe substituierte C2- -Alkoxygruppe, C2-6-Alkenyl, C3.6-Cycloalkyl, C3-6-Cycloalkyl-Cι.3-alkyl, C3-6-Cycloalkoxy, C3-6-Cycloalkyl-C-ι-3-alkoxy, Hydroxy, Amino oder Cyano bedeuten, und
R2 Wasserstoff, Fluor, Chlor, Methyl, durch 1 bis 3 Fluoratome substituiertes Methyl oder Methoxy bedeutet, und
R3 C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy oder Tetrahydropyranyl-Cι_3-alkyloxy, oder, falls R1 ausgewählt ist aus der Gruppe bestehend aus C2.6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy und Tetrahydropyranyl-Cι-3-alkyloxy, dann kann R3 zusätzlich auch Wasserstoff, Fluor, Chlor, Brom, lod, Cι-6-Alkyl, C2-6-Alkenyl, C3-6-Cycloalkyl, C3.6-Cycloalkylidenmethyl, Cι.6-Alkoxy, C3-6- Cycloalkyl-oxy, Cs-e-Cycloalkyl-C-i-s-alkoxy, Aryl, Aryl-Cι-3-alkyl, Heteroaryl, Heteroaryl-C1-3-alkyl, Aryloxy, Aryl-Cι.3-alkyl-oxy, eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe, eine durch 1 bis 5 Fluoratome substituierte C2-4-Alkyl- oder C2-4-Alkoxygruppe, eine durch eine Cyangruppe substituierte C- -AIkylgruppe, eine durch eine Hydroxy- oder Cι_ 3-Alkyloxygruppe substituiertes Cι-4-Alkylgruppe, Cyano-, Carboxy-, C1-3- Alkoxycarbonyl-, Aminocarbonyl-, (Cι.3-Alkylamino)carbonyI-, Di-(Cι-3- alkyl)aminocarbonyl-, Pyrrolidin-1 -ylcarbonyl-, Piperidin-1 -ylcarbonyl-, Morpholin-4-ylcarbonyl-, Piperazin-1 -yl-carbonyl-, 4-(C-ι.3-Alkyl)-piperazin-1 - ylcarbonyl-, Nitro-, Amino-, Cι-3-Alkylamino-, Di-(Cι-3-alkyl)amino-, (Cι-4- Alkyl)carbonylamino-, Cι- -Alkylsulfonylamino, Arylsulfonylamino, A1 I-C1.3- alkylsulfonylamino, C- -Alkylsulfanyl-, Cι-4-Alkylsulfinyl-, Cι-4-AlkyIsulfonyl, Arylsulfenyl-, Arylsulfinyl- oder Arylsulfonyl- bedeuten,
R4 und R5, die gleich oder verschieden sein können, Wasserstoff, Fluor, Chlor, Brom, Cι-3-Alkyl, Cι-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy bedeuten, und
R6 , R7a,
R7b, R7° unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (Cι.ι8-Alkyl)carbonyl, (Cι. 8-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(Cι.3-alkyl)-carbonyl besitzen,
wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Aryl- gruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander durch Rh mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und Rh ein Fluor, Chlor, Brom, lod, C-ι-3-Alkyl, Difluormethyl, Trifluormethyl, C-ι-3-Alkoxy, Difluormethoxy, Trifluormethoxy oder Cyan bedeutet, unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroaryl- gruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Imidazolyl, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, oder eine Pyrrolyl-, Furanyl-, Thienyl-, Imidazolyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind, oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind, wobei die vorstehend erwähnten Heteroarylgruppen durch Rh mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und Rh wie vorstehend definiert ist,
wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,
deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf den natriumabhängigen Glucose- Cotransporter SGLT, insbesondere SGLT2. Ferner können erfindunsgemäße Verbindungen eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT1 aufweisen. Verglichen mit einer möglichen Hemmwirkung auf SGLT1 hemmen die erfindungsgemäßen Verbindungen vorzugsweise selektiv SGLT2.
Gegenstand der vorliegenden Erfindung sind auch die physiologisch verträglichen Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren. Daher ist die Verwendung der erfindungsgemäßen Verbindungen, einschließlich der physiologisch verträglichen Salze als Arzneimittel ebenfalls ein Gegenstand dieser Erfindung.
Ein weiterer Gegenstand dieser Erfindung sind Arzneimittel, enthaltend mindestens eine erfindungsgemäße Verbindung oder ein erfindungsgemäßes physiologisch verträgliches Salz neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
Ebenfalls ein Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung oder eines physiologisch verträglichen Salzes solch einer Verbindung zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT, insbesondere SGLT2 beeinflussbar sind.
Ein weiterer Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung oder eines seiner physiologisch verträglichen Salze zur Herstellung eines Arzneimittels, das zur Behandlung von Stoffwechselerkrankungen geeignet ist.
Ein weiterer Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung oder eines seiner physiologisch verträglichen Salze zur Herstellung eines Arzneimittels zur Inhibition des natriumabhängigen Glucose- Cotransporters SGLT, insbesondere SGLT2.
Ferner ist ein Verfahren zur Herstellung eines erfindungsgemäßen Arzneimittels Gegenstand dieser Erfindung, dadurch gekennzeichnet, dass auf nicht-chemischem Wege eine erfindungsgemäße Verbindung in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird. Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I, dadurch gekennzeichnet, dass a) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b und R7c wie zuvor definiert ist, jedoch nicht Wasserstoff bedeuten, eine Verbindung der allgemeinen Formel
Figure imgf000009_0001
in der
R6 sowie R7a, R7b, R7c wie zuvor definiert sind, jedoch nicht Wasserstoff bedeuten, und Z1 eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel
Figure imgf000009_0002
in der
R1 bis R5 die eingangs erwähnten Bedeutungen besitzen, umgesetzt wird oder
b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b und R7c Wasserstoff bedeuten,
eine Verbindung der allgemeinen Formel I, in der R6 sowie R7a, R7b, R7c wie zuvor definiert sind, jedoch nicht Wasserstoff bedeuten, hydrolysiert wird, und nach Durchführung des Schrittes b) gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I, in der R6 ein Wasserstoffatom darstellt, mittels Acylierung in eine entsprechende Acylverbindung der allgemeinen Formel I übergeführt wird, und/oder
erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder
gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder
eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführt wird.
Detailierte Beschreibung der Erfindung
Sofern nicht anders angegeben besitzen die Gruppen, Reste und Substituenten, insbesondere R1 bis R6 sowie R7a, R7b, R7c, die zuvor und nachfolgend angegebenen Bedeutungen.
Kommen Reste, Substituenten oder Gruppen in einer Verbindung mehrfach vor, so können diese eine gleiche oder verschiedene Bedeutungen aufweisen.
Die vorstehend und nachfolgend verwendete, beispielsweise in den Gruppen R3, R6, R7a, R7b, R7c und R7d vorkommende Bezeichnung Aryl bedeutet vorzugsweise Phenyl. Gemäß der allgemeinen Definition und sofern nichts anderes angegeben ist, kann die Aryl-Gruppe, insbesondere die Phenylgruppe, ein- oder zweifach mit gleichen oder verschiedenen Resten R substituiert sein.
Die vorstehend und nachfolgend verwendete, beispielsweise in der Gruppen R3 vorkommende Bezeichnung Heteroaryl bedeutet vorzugsweise Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Triazinyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, Oxazolyl, Oxadiazolyl, Thiazolyl oder Thiadiazolyl. Gemäß der allgemeinen Definition und sofern nichts anderes angegeben ist, kann die Heteroaryl-Gruppe ein- oder zweifach mit gleichen oder verschiedenen Resten Rh substituiert sein.
Erfindungsgemäße Verbindungen gemäß einer ersten Ausführungsform dieser Erfindung können beschrieben werden durch die allgemeine Formel I, in der R1 C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι.3-alkyloxy oder Tetrahydropyranyl-Cι_3-alkyloxy bedeutet und
die übrigen Reste R2 bis R6 sowie R7a, R7b, R7c wie zuvor definiert sind,
einschließlich deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests R1 sind Ethinyl, 2-Propin-1-yl, 2-Butin-1-yl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethyloxy und
Tetrahydropyranylmethyloxy. Ganz besonders bevorzugte Bedeutungen sind hierbei Ethinyl, Tetrahydrofuran-3-yloxy und Tetrahydropyran-4-yloxy, insbesondere Ethinyl.
Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests R3sind Wasserstoff, Fluor, Chlor, Methyl, Ethyl, Isopropyl, tert.-Butyl, 2-Cyan-2-propyl, Difluormethyl, Trifluormethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Methoxy, Ethoxy, Isopropoxy, Difluormethoxy, Trifluormethoxy, 1 ,1,2,2-Tetrafluorethoxy, Cylopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Methylsulfanyl, 2-Methyl-1-propen-1-yl, Cyclopropylidenmethyl-, Ethinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethyloxy, Tetrahydropyranylmethyloxy, Phenyl-, Fluorphenyl, Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, Oxazolyl, Oxadiazolyl, Thiazolyl oder Thiadiazolyl. Besonders bevorzugte Bedeutungen sind hierbei Ethinyl, Tetrahydrofuran-3-yloxy, Methyl, Ethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, insbesondere Ethinyl, Tetrahydrofuran-3-yloxy und Methoxy. Gemäß dieser ersten Ausführungsform bevorzugte Bedeutungen des Rests R4 sind Wasserstoff und Fluor, insbesondere Wasserstoff.
Erfindungsgemäße Verbindungen gemäß einer zweiten Ausführungsform dieser Erfindung können beschrieben werden durch die allgemeine Formel I, in der
R1 Wasserstoff, Fluor, Chlor, Brom, lod, Cι.4-Alkyl, durch 1 bis 3 Fluoratome substituiertes Methyl, durch 1 bis 5 Fluoratome substituiertes Ethyl, C-M- Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methoxy, durch 1 bis 5 Fluoratome substituiertes Ethoxy, durch eine Hydroxy- oder C1-3- Alkoxygruppe substituiertes Cι-4-Alkyl, durch eine Hydroxy- oder C1.3- Alkoxygruppe substituiertes C2-4-Alkoxy, C2-6-Alkenyl, C3-6-Cycloalkyl, C3-6- Cycloalkyl-Cι-3-alkyl, C3-6-Cycloalkoxy, C3-6-Cycloalkyl-C1-3-alkoxy, Hydroxy, Amino oder Cyano bedeutet, sowie ferner auch C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι.3-alkyloxy oder Tetrahydropyranyl-Cι-3-aIkyloxy bedeuten kann, und
R3 ausgewählt ist aus einer Gruppe bestehend aus C2-6-Alkinyl, Tetrahydrofuran- 3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy und Tetrahydropyranyl-Cι-3-alkyloxy, und
die übrigen Reste, insbesondere R2 und R4 bis R6 sowie R7a, R7b, R7c die zuvor angegebenen Bedeutungen besitzen,
einschließlich deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests R1 sind Wasserstoff, Fluor, Chlor, Methyl, Difluormethyl, Trifluormethyl, Methoxy, Difluormethoxy, Trifluormethoxy oder Cyano, besonders bevorzugt Wasserstoff, Fluor, Methyl oder Cyano, ganz besonders bevorzugt Wasserstoff.
Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests R3 sind Ethinyl und Tetrahydrofuran-3-yloxy.
Gemäß dieser zweiten Ausführungsform bevorzugte Bedeutungen des Rests R4 sind Wasserstoff und Fluor, insbesondere Wasserstoff.
Nachfolgende Ausführungen beziehen sich auf die Verbindungen der Formel I, insbesondere auf die zuvor angeführte erste und zweite Ausführungsform.
Bevorzugte Verbindungen gemäß der vorliegenden Erfindung, insbesondere gemäß der ersten und zweiten Ausführungsform, lassen sich durch folgende Formeln (la), (Ib), (Ic) und (Id), insbesondere (la), (Ib) und (Ic), beschreiben:
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0002
Gemäß einer Variante der zuvor angeführten Ausführungsformen sind diejenigen Verbindungen auch bevorzugt, in denen die Phenylgruppe, die den Substituenten R3 trägt, mindestens einen weiteren, von Wasserstoff verschiedenen Substituenten R4 und/oder R5 aufweist. Nach dieser Varianten sind diejenigen Verbindungen besonders bevorzugt, die einen Substituenten R4 in der Bedeutung Fluor aufweisen.
Der Phenylrest, der den Substituenten R3 trägt, ist vorzugsweise maximal einfach fluoriert.
Bevorzugte Bedeutungen des Rests R5 sind Wasserstoff und Fluor, insbesondere Wasserstoff.
Erfindungsgemäß bevorzugte Bedeutungen des Rests R2 sind Wasserstoff, Fluor und Methyl, insbesondere Wasserstoff und Methyl. Der Rest R6 bedeutet erfindungsgemäß vorzugsweise Wasserstoff, (C1-8- Alkyl)oxycarbonyl- oder Cι-8-Alkylcarbonyl-, insbesondere Wasserstoff oder (d.6- Alkyl)oxycarbonyl, besonders bevorzugt Wasserstoff, Methoxycarbonyl oder Ethoxycarbonyl, ganz besonders bevorzugt Wasserstoff oder Methoxycarbonyl.
Die Substituenten R7a, R7b, R7c bedeuten unabhängig voneinander vorzugsweise Wasserstoff, (C1-8-Alkyl)oxycarbonyl-, (C1-18-Älkyl)carbonyl, Benzoyl, insbesondere Wasserstoff oder (C1-6-AIkyl)oxycarbonyl-, (Cι-8-Alkyl)carbonyl, besonders bevorzugt Wasserstoff, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyl oder Ethylcarbonyl. Ganz besonders bevorzugt bedeuten R7a, R7b und R7c Wasserstoff.
Die Verbindungen der Formel I, in denen R6, R7a, R7 und R7c eine erfindungsgemäße, von Wasserstoff verschiedene Bedeutung aufweisen, beispielsweise Cι-8-Alkylcarbonyl, eignen sich bevorzugt als Zwischenprodukte bei der Synthese von Verbindungen der Formel I in denen R7a, R7b und R7c Wasserstoff bedeuten. .
Besonders bevorzugte Verbindungen der allgemeinen Formel I sind ausgewählt aus der Gruppe :
(a) 1-(ß-D-Glucopyranosyloxy)-2-t4-((R)-tetrahydrofuran-3-yloxy)benzyl]-benzol,
(b) 1-(ß-D-Glucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol,
sowie deren Derivate, in denen R6 eine erfindungsgemäße, von Wasserstoff verschiedene Bedeutung aufweist, insbesondere R6 Ethoxycarbonyl oder Methoxycarbonyl bedeutet,
einschließlich deren Stereoisomere und deren Gemische.
Im folgenden werden Begriffe, die zuvor und nachfolgend zur Beschreibung der erfindungsgemäßen Verbindungen verwendet werden, näher definiert. Die Bezeichnung Halogen bezeichnet ein Atom ausgewählt aus der Gruppe bestehend aus F, Cl, Br und I, insbesondere F, Cl und Br.
Die Bezeichnung Cι.n-Alkyl, wobei n einen Wert von 1 bis 18 besitzen kann, bedeutet eine gesättigte, verzweigte oder unverzweigte Kohlenwasserstoffgruppe mit 1 bis n C- Atomen. Beispiele solcher Gruppen umfassen Methyl, Ethyl, n-Propyl, iso-Propyl, Butyl, iso-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, iso-Pentyl, neo-Pentyl, tert-Pentyl, n- Hexyl, iso-Hexyl, etc..
Der Begriff C2-n-AIkinyl, wobei n einen Wert von 3 bis 6 besitzt, bezeichnet eine verzweigte oder unverzweigte Kohlenwasserstoffgruppe mit 2 bis n C-Atomen und einer C≡C-Doppelbindung. Beispiele solcher Gruppen umfassen Ethinyl, 1-Propinyl, 2-Propinyl, iso-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 2-Methyl-1-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-2-butinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl-, 5 HexinyI etc.!
Der Begriff Cι.n-AIkoxy bezeichnet eine Cι.n-Alkyl-O-Gruppe, worin Cι-n-Alkyl wie oben definiert ist. Beispiele solcher Gruppen umfassen Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy, sec-Butoxy, tert-Butoxy, n-Pentoxy, iso-Pentoxy, neo-Pentoxy, tert-Pentoxy, n-Hexoxy, iso-Hexoxy etc..
Der Begriff Cι-n~Alkylcarbonyl bezeichnet eine Cι-n-Alkyl-C(=0)-Gruppe, worin Cι-n- Alkyl wie oben definiert ist. Beispiele solcher Gruppen umfassen Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, n-Butylcarbonyl, iso- Butylcarbonyl, sec-Butylcarbonyl, tert-Butylcarbonyl, n-Pentylcarbonyl, iso- Pentylcarbonyl, neo-Pentylcarbonyl, tert-Pentylcarbonyl, n-Hexylcarbonyl, iso- Hexylcarbonyl, etc..
Der Begriff C3-n-Cycloalkyl bezeichnet eine gesättigte mono-, bi-, tri- oder spirocarbocyclische Gruppe mit 3 bis n C-Atomen. Beispiele solcher Gruppen umfassen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclododecyl, Bicyclo[3.2.1.]octyl, Spiro[4.5]decyl, Norpinyl, Norbonyl, Norcaryl, Adamantyl, etc.. Vorzugsweise umfasst der Begriff C3.7-Cycloalkyl gesättigte monocyciische Gruppen.
Der Begriff C3-n-Cycloalkylcarbonyl bezeichnet eine C3.n-Cycloalkyl-C(=O)-Gruppe, worin C3-n-CycloaIkyl wie oben definiert ist.
Die vorstehend und nachfolgend verwendete Schreibweise, bei der in einer Phenyl- gruppe eine Bindung eines Substituenten zur Mitte des Phenylrings hin dargestellt ist, bedeutet, sofern nicht anders angegeben, dass dieser Substituent an jede freie, ein . H-Atom tragende Position des Phenylrings gebunden sein kann.
Die erfindungsgemäßen Verbindungen sind unter Anwendung im Prinzip bekannter Syntheseverfahren erhältlich. Bevorzugt werden die Verbindungen nach den nachfolgend näher erläuterten erfindungsgemäßen Herstellungsverfahren erhalten.
a) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b, R7c wie eingangs erwähnt definiert sind, jedoch kein Wasserstoffatom darstellen:
Umsetzung einer Verbindung der allgemeinen Formel
Figure imgf000017_0001
in der
R6 sowie R7a, R7b, R7c wie eingangs erwähnt definiert sind, jedoch nicht Wasserstoff bedeuten, und Z1 eine Austrittsgruppe wie beispielsweise ein Halogenatom, z.B. ein Fluor-, Chlor- oder Bromatom, oder eine Acyloxygruppe, z.B. eine Acetyloxy- oder Trichloracetimidoyloxy-Gruppe darstellt, mit einer Verbindung der allgemeinen Formel
Figure imgf000018_0001
in der
R1 bis R5 erwähnten Bedeutungen besitzen.
Die Umsetzung erfolgt zweckmäßigerweise in einem Lösungsmittel, wie beispielsweise Methylenchlorid, Chloroform, Acetonitril, Toluol, Tetrahydrofuran, Dioxan, Dimethylformamid, Dimethylsulfoxid oder N-Methylpyrrolidinon, gegebenfalls in Gegenwart einer Base, wie beispielsweise Kaliumcarbonat, Cesiumcarbonat, Natriumhydrid oder Kalium-tert.-butylat, oder einer Silberverbindung wie Silber(l)oxid, Silber(l)carbonat oder Silber(l)trifluoracetat oder eines Katalysators wie beispielsweise Bortrifluorid-Etherat bei Temperaturen zwischen -60°C und 120°C. Die Umsetzung kann auch beispielsweise in einem Phasentransfersystem wie Natronlauge/Methylenchlorid/Benzyl-triethylammonium-bromid durchgeführt werden, wobei andere Schutzgruppen, wie die Trimethylsilyl-Gruppe an einer Ethinylgruppe, mit abgespalten werden können.
b) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b und R7° Wasserstoff darstellen:
Umsetzung einer Verbindung der allgemeinen Formel I, in der
R6, R7a, R7b und R7c wie eingangs erwähnt definiert sind, jedoch nicht Wasserstoff bedeuten, mit Wasser oder einem niederen Alkohol wie Methanol oder Ethanol.
Die Umsetzung erfolgt zweckmäßigerweise in Wasser, einem niederen Alkohol wie Methanol oder Ethanol oder einem wässerigen Lösemittelgemisch wie Methanol/Tetrahydrofuran, in Gegenwart einer Base, wie beispielsweise Lithiumhydroxid, Natriumhydroxid, Kaliumcarbonat oder Natriummethylat bei Temperaturen zwischen -20°C und 60°C. Bei dieser Umsetzung können andere Schutzgruppen, wie die Trimethylsilyl-Gruppe an einer Ethinylgruppe, mit abgespalten werden.
Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, in der R6 ein Wasserstoffatom darstellt, so kann diese mittels Acylierung, beispielsweise mittels Acylierung in Gegenwart einer Base wie Pyridin, Collidin, Triethylamin oder N-Ethyl- diisopropylamin, in eine Verbindung übergeführt werden, in der R6 eine (Cι.18- Alkyl)carbonylgruppe, eine (Cι-ι8-Alkyl)oxycarbonylgruppe, eine Arylcarbonylgruppe oder eine Aryl-(Cι_3-alkyl)-carbonylgruppe darstellt. Als Acylierungsmittel kommen insbesondere die entsprechenden aktivierten Acylderivate wie Säurechloride oder Anhydride in Betracht.
Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Ethinyl-, Hydroxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.
Beispielsweise kommen als Schutzrest für eine Ethinylgruppe die Trimethylsilyl- gruppe in Betracht.
Beispielsweise kommen als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe in Betracht.
Als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe kommen beispielsweise die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.- Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4- Dimethoxybenzylgruppe in Betracht.
Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofu ran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.
Die Abspaltung eines Trimethylsilylrestes erfolgt beispielsweise in Wasser einem wässerigen Lösemittelgemisch oder einem niederen Alkohol wie Methanol oder Ethanol in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid, Kaliumcarbonat oder Natriummethylat.
Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrest.es erfolgt jedoch vorteilhaft hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxy- benzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.
Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.
Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran oder Methanol bei Temperaturen zwischen 0 und 50°C. Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre eis- und trans-lsomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.
So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre eis- und trans-lsomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971)) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalischchemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.
Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-O-Tolylweinsäure, Äpfelsäure, Mandelsäure, Campher- sulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-MenthoI und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthyloxycarbonyl in Betracht.
Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.
Weiterhin können die erhaltenen Verbindungen in Gemische, beispielsweise in 1 :1 oder 1 :2 Gemische mit Aminosäuren, insbesondere mit alpha-Aminosäuren wie Prolin oder Phenylalanin, übergeführt werden, die besonders günstige Eigenschaften wie hohe Kristallinität aufweisen können.
Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis V sind teilweise literaturbekannt oder können nach an sich literaturbekannten Verfahren (siehe Beispiele I bis VI), gegebenenfalls unter zusätzlicher Einführung von Schutzresten, erhalten werden.
Die erfindungsgemäßen Verbindungen sind vorteilhaft auch nach den in den nachfolgenden Beispielen beschriebenen Verfahren zugänglich, wobei diese hierzu auch mit dem Fachmann beispielsweise aus der Literatur bekannten Verfahren, insbesondere den in den WO 01/68660, WO 01/74834, WO 02/28872, WO 02/44192, WO 02/64606, WO 03/11880 sowie WO 03/80635 beschriebenen Verfahren, kombiniert werden können.
Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT, vorzugsweise SGLT2.
Die biologischen Eigenschaften der neuen Verbindungen können wie folgt geprüft werden:
Die Fähigkeit der Substanzen die SGLT-2 Aktivität zu hemmen, kann in einem Versuchsaufbau gezeigt werden, in dem eine CHO-K1 Zelllinie (ATCC No. CCL 61) oder alternativ eine HEK293 Zelllinie (ATCC No. CRL-1573), die stabil mit einem Expressionsvektor pZeoSV (Invitrogen, EMBL accession number L36849) transfiziert ist, der die cDNA für die kodierende Sequenz des humanen Natrium Glucose Cotransporters 2 (Genbank Acc. No.NM_003041) enthält (CHO-hSGLT2 bzw. HEK- hSGLT2). Diese Zelllinien transportieren Natrium-abhängig 14C-markiertes alpha- Methyl-Glucopyranosid (14C-AMG, Amersham) in das Zellinnere.
Der SGLT-2 Assay wird wie folgt durchgeführt:
CHO-hSGLT2 Zellen werden in Ham's F12 Medium (BioWhittaker) mit 10% fötalem Kälberserum und 250 μg/ml Zeocin (Invitrogen), HEK293-hSGLT2 Zellen in DMEM Medium mit 10% fötalem Kälberserum und 250 μg/ml Zeocin (Invitrogen) kultiviert. Die Zellen werden von den Kulturflaschen durch zweimaliges Waschen mit PBS und anschließende Behandlung mit Trypsin/EDTA abgelöst. Nachzugabe von Zellkuiturmedium werden die Zellen abzentrifugiert, in Kulturmedium resuspendiert und in einem Casy-cell-counter gezählt. Anschließend werden 40.000 Zellen pro Loch in eine weiße, Poly-D-Lysin beschichtete 96-Loch Platte ausgesät und über Nacht bei 37°C, 5% CO2 inkubiert. Die Zellen werden zweimal mit 250μl Assaypuffer (Hanks Balanced Salt Solution, 137 mM NaCI, 5,4 mM KCI, 2,8 mM CaCI2, 1 ,2 mM MgS04 und 10 mM HEPES (pH7,4), 50μg/ml Gentamycin) gewaschen. In jedes Loch werden dann 250 μl Assaypuffer und 5 μl Testverbindung hinzugegeben und für weitere 15 Minuten im Brutschrank inkubiert. Als Negativkontrolle werden 5 μl 10% DMSO eingesetzt. Durch Zugabe von 5 μl 4C-AMG (0.05 μCi) in jedes Loch wird die Reaktion gestartet. Nach einer 2 stündigen Inkubation bei 37°C, 5% C02 werden die Zellen wiederum mit 250 μl PBS (20°C) gewaschen und anschließend durch Zugabe von 25 μl 0.1 N NaOH lysiert (5 min. bei 37°C). Pro Loch werden 200 μl MicroScint20 (Packard) hinzugefügt und für weitere 20 min bei 37CC inkubiert. Nach dieser Inkubation wird die Radioaktivität des aufgenommenen 4C-AMG in einem Topcount (Packard) mittels eines 14C-Szintillationsprogramms gemessen.
Zur Bestimmung der Selektivität gegenüber dem humanen SGLT1 wird ein analoger Test aufgebaut, in dem die cDNA für hSGLTI (Genbank Acc. No. NM000343) statt der hSGLT2 cDNA in CHO-K1 bzw. HEK293 Zellen exprimiert wird. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können beispielsweise EC50-Werte unter 1000 nM, insbesondere auch unter 50 nM aufweisen.
Im Hinblick auf die Fähigkeit, die SGLT Aktivität zu hemmen, sind die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre entsprechenden pharmazeutisch akzeptablen Salze prinzipiell geeignet, alle diejenigen Zustände oder Krankheiten zu behandeln und/oder vorbeugend zu behandeln, die durch eine Hemmung der SGLT Aktivität, insbesondere der SGLT-2 Aktivität beeinflusst werden können. Daher sind erfindungsgemäße Verbindungen insbesondere zur Prophylaxe oder Behandlung von Krankheiten, insbesondere Stoffwechselerkrankungen, oder Zuständen wie Diabetes mellitus Typ 1 und Typ 2, diabetische Komplikationen (wie z.B. Retinopathie, Nephropathie oder Neuropathien, diabetischer Fuß, Ulcus, Makroangiopathien), metabolische Azidose oder Ketose, reaktiver Hypoglykämie, Hyperinsulinämie, Glukosestoffwechselstörung, Insulinresistenz, Metabolischem Syndrom, Dyslipidämien unterschiedlichster Genese, Atherosklerose und verwandte Erkrankungen, Adipositas, Bluthochdruck, chronisches Herzversagen, Ödeme, Hyperurikämie geeignet. Darüber hinaus sind diese Substanzen geeignet, die beta- Zelldegeneration wie z.B. Apoptose oder Nekrose von pankreatischen beta-Zellen zu verhindern. Die Substanzen sind weiter geeignet, die Funktionalität von pankreatischen Zellen zu verbessern oder wiederherzustellen, daneben die Anzahl und Größe von pankreatischen beta-Zellen zu erhöhen. Die erfindungsgemäßen Verbindungen sind ebenfalls als Diuretika oder Antihypertensiva einsetzbar und zur Prophylaxe und Behandlung des akuten Nierenversagens geeignet.
Ganz besonders sind die erfindungsgemäßen Verbindungen, einschließlich deren physiologisch verträglichen Salze, zur Prophylaxe oder Behandlung von Diabetes, insbesondere Diabetes mellitus Typ 1 und Typ 2, und/oder diabetischen Komplikationen geeignet.
Die zur Erzielung einer entsprechenden Wirkung bei der Behandlung oder Prophylaxe erforderliche Dosierung hängt üblicherweise von der zu verabreichenden Verbindung, vom Patienten, von der Art und Schwere der Krankheit oder des Zustandes und der Art und Häufigkeit der Verabreichung ab und liegt im Ermessen des zu behandelnden Arztes. Zweckmäßigerweise kann die Dosierung bei intravenöser Gabe im Bereich von 1 bis 100 mg, vorzugsweise 1 bis 30 mg, und bei oraler Gabe im Bereich von 1 bis 1000 mg, vorzugsweise 1 bis 100 mg, jeweils 1 bis 4 x täglich, liegen. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragees, Kapseln, Pulver, Lösungen, Suspensionen oder Zäpfchen einarbeiten.
Die erfindungsgemäßen Verbindungen können auch in Kombination- mit anderen Wirkstoffen, insbesondere zur Behandlung und/oder Prophylaxe der zuvor angegebenen Krankheiten und Zustände verwendet werden. Für solche Kombinationen kommen als weitere Wirksubstanzen insbesondere solche in Betracht, die beispielsweise die therapeutische Wirksamkeit eines erfindungsgemäßen SGLT- Antagonisten im Hinblick auf eine der genannten Indikationen verstärken und/oder die eine Reduzierung der Dosierung eines erfindungsgemäßen SGLT-Antagonisten erlauben. Zu den zu einer solchen Kombination geeigneten Therapeutika gehören z.B. Antidiabetika, wie etwa Metformin, Sulfonylhamstoffe (z.B. Glibenclamid, Tolbutamid, Glimepiride), Nateglinide, Repaglinide, Thiazolidindione (z.B. Rosiglitazone, Pioglitazone), PPAR-gamma-Agonisten (z.B. Gl 262570) und -Antagonisten, PPAR-gamma/alpha Modulatoren (z.B. KRP 297), alpha-Glucosi- dasehemmer (z.B. Acarbose, Voglibose), DPPIV Inhibitoren (z.B. LAF237, MK-431 ), alpha2-Antagonisten, Insulin und Insulinanaloga, GLP-1 und GLP-1 Analoga (z.B. Exendin-4) oder Amylin. Daneben sind weitere als Kombinationspartner geeignete Wirkstoffe Inhibitoren der Proteintyrosinphosphatase 1, Substanzen, die eine deregulierte Glucoseproduktion in der Leber beeinflussen, wie z.B. Inhibitoren'der Glucose-6-phosphatase, oder der Fructose-1 ,6-bisphosphatase, der Glycogen- phosphorylase, Glucagonrezeptor Antagonisten und Inhibitoren der Phosphoenol- pyruvatcarboxykinase, der Glykogensynthasekinase oder der Pyruvatdehydrokinase, Lipidsenker, wie etwa HMG-CoA-Reduktasehemmer (z.B. Simvastatin, Atorvastatin), Fibrate (z.B. Bezafibrat, Fenofibrat), Nikotinsäure und deren Derivate, PPAR-alpha Agonisten, PPAR-delta Agonisten, ACAT Inhibitoren (z.B. Avasimibe) oder Cholesterolresorptionsinhibitoren wie zum Beispiel Ezetimibe, gallensäurebindende Substanzen wie zum Beispiel Colestyramin, Hemmstoffe des ilealen Gallensäuretransportes, HDL-erhöhende Verbindungen wie zum Beispiel Inhibitoren von CETP oder Regulatoren von ABC1 oder Wirkstoffe zur Behandlung von Obesitas, wie etwa Sibutramin oder Tetrahydrolipstatin, Dexfenfluramin, Axokine, Antagonisten des Cannabinoidl Rezeptors, MCH-1 Rezeptorantagonisten, MC4 Rezeptor Agonisten, NPY5 oder NPY2 Antagonisten oder ß3-Agonisten wie SB-418790 oder AD-9677 ebenso wie Agonisten des 5HT2c Rezeptors.
Daneben ist eine Kombination mit Medikamenten zur Beeinflussung des Bluthochdrucks, des chronischen Herzversagens oder der Atherosklerose wie z.B. A-Il Antagonisten oder ACE Inhibitoren, ECE-Inhibitoren, Diuretika, ß-Blocker, Ca- Antagonisten, zentral wirksamen Antihypertensiva, Antagonisten des alpha-2- adrenergen Rezeptors, Inhibitoren der neutralen Endopeptidase, Thrombozytenaggregationshemmer und anderen oder Kombinationen daraus geeignet. Beispiele von Angiotensin II Rezeptor Antagonisten sind Candesartan Cilexetil, Kalium Losartan, Eprosartan Mesylat, Valsartan, Telmisartan, Irbesartan, EXP-3174, L-158809, EXP-3312, Olmesartan, Medoxomil, Tasosartan, KT-3-671, GA-0113, RU-64276, EMD-90423, BR-9701, etc.. Angiotensin II Rezeptor Antagonisten werden vorzugsweise zur Behandlung oder Prophylaxe von Bluthochdruck und diabetischen Komplikationen verwendet, oft in Kombination mit einem Diuretikum wie Hydrochlorothiazide.
Zur Behandlung oder Prophylaxe der Gicht ist eine Kombination mit Harnsäuresynthese Inhibitoren oder Urikosurika geeignet.
Zur Behandlung oder Prophylaxe diabetischer Komplikationen kann eine Kombination mit GABA-Rezeptor-Antagonisten, Na-Kanal-Blockern, Topiramat, Protein-Kinase C Inhibitoren, advanced glycation endproduct Inhibitoren oder Aldose Reduktase Inhibitoren erfolgen.
Die Dosis für die zuvor angeführten Kombinationspartner beträgt hierbei zweckmäßigerweise 1/5 der üblicherweise empfohlenen niedrigsten Dosierung bis zu 1/1 der normalerweise empfohlenen Dosierung.
Daher betrifft ein weiterer Gegenstand dieser Erfindung die Verwendung einer erfindungsgemäßen Verbindung oder eines physiologisch verträglichen Salzes solch einer Verbindung in Kombination mit mindestens einem der zuvor als Kombinationspartner beschriebenen Wirkstoffe zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT beeinflussbar sind. Hierbei handelt es sich vorzugsweise um eine Stoffwechselerkrankung, insbesondere eine der zuvor angeführten Erkrankungen oder Zustände, ganz besonders Diabetes oder diabetischer Komplikationen.
Die Verwendung der erfindungsgemäßen Verbindung, oder eines physiologisch verträglichen Salzes hiervon, in Kombination mit einem weiteren Wirkstoff kann zeitgleich oder zeitlich versetzt, insbesondere aber zeitnah erfolgen. Bei einer zeitgleichen Verwendung werden beide Wirkstoffe dem Patienten zusammen verabreicht; bei einer zeitlich versetzten Verwendung werden beide Wirkstoffe dem Patienten in einem Zeitraum von kleiner gleich 12, insbesondere kleiner gleich 6 Stunden nacheinander verabreicht.
Folglich betrifft ein weiterer Gegenstand dieser Erfindung ein Arzneimittel, das eine erfindungsgemäße Verbindung oder ein physiologisch verträgliches Salz solch einer Verbindung sowie mindestens einen der zuvor als Kombinationspartner beschriebenen Wirkstoffe neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln aufweist. So weist beispielsweise ein erfindungsgemäßes Arzneimittel eine Kombination aus einer erfindungsgemäßen Verbindung der Formel I oder eines physiologisch verträglichen Salzes solch einer Verbindung sowie mindestens einem Angiotensin II Rezeptor Antagonisten neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln auf.
Die erfindungsgemäße Verbindung, oder eines physiologisch verträglichen Salzes, und der damit zu kombinierende weitere Wirkstoff können zusammen in einer Darreichungsform, beispielsweise einer Tablette oder Kapsel, oder getrennt in zwei gleichen oder verschiedenen Darreichungsformen, beispielsweise als sogenanntes kit-of-parts, vorliegen.
Vorstehend und nachfolgend werden in Strukturformeln H-Atome von Hydroxylgruppen nicht in jedem Fall explizit dargestellt. Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:
Herstellung der Ausgangsverbindungen:
Beispiel I
Figure imgf000028_0001
4-((R)-Tetrahydrofuran-3-yloxy)-brombenzol
hergestellt durch 32-stündiges Rühren von 10 g 4-Bromphenol mit 21 g p-
Toloulsulfonsäure-((S)-tetrahydrofuran-3-yl)ester in Gegenwart von 11.98 g
Kaliumcarbonat in 100 ml Dimethylformamid bei 60°C und anschließender Reinigung durch chromatographischer Reinigung.
Ausbeute: 13.7 g (97% der Theorie)
Rf-Wert: 0.80 (Aluminiumoxid; Cyclohexan/Essigester = 2:1)
Analog Beispiel I wird folgende Verbindung hergestellt: (1 ) 4-((S)-Tetrahydrofuran-3-yloxy)-brombenzol Massenspektrum: m/z = 242/244 [M+]
Figure imgf000029_0001
(2-Benzyloxy-phenyl)-[4-((R)-tetrahydrofuran-3-yloxy)phenyl]-methanol
Zu einer Lösung von 2.0 g 4-((R)-Tetrahydrofuran-3-yloxy)-brombenzol in 10 ml Tetrahydrofuran werden bei -78°C 5.17 ml eine 1.6 M Butyllithium-Lösung in Hexan zugetropft und noch eine Stunde bei -78°C gerührt. Anschließend werden 1.75 g 2- Benzyloxy-benzaldehyd, gelöst in 5 ml Tetrahydrofuran zugetropft und 2 Stunden bei -78°C gerührt. Nach Erwärmung auf Raumtemperatur wird 1 Stunde gerührt. Nach wässeriger Aufarbeitung und Extraktion mit Essigester wird die organische Phase getrocknet und eingeengt. Der Rückstand wird durch Chromatographie über eine Kieselgelsäule mit Cyclohexan/Essigester (8:2 bis 1:1) gereinigt.
Ausbeute: 2.6 g (84% der Theorie)
Rf-Wert: 0.25 (Kieselgel, Cyclohexan/Essigester = 3:1)
Analog Beispiel II werden folgende Verbindungen hergestellt:
(1) (2-Benzyloxy-phenyl)-[4-((S)-tetrahydrofuran-3-yloxy)phenyl]-methanol Massenspektrum (ESI+): m/z = 394 [M+NH ]+
(2) (2-Benzyloxy-4-fluor-phenyl)-[4-((R)-tetrahydrofuran-3-yloxy)phenyl]-methanol Massenspektrum (ESI+): m/z = 417 [M+Na]+ (3) (2-Benzyloxy-6-methoxy-phenyl)-[4-((R)-tetrahydrofuran-3-yloxy)phenyl]-methanol Massenspektrum (ESI+): m/z = 424 [M+NH4]+
Beispiel
Figure imgf000030_0001
2-[4-((R)-Tetrahydrofuran-3-yloxy)benzyl]-phenol
hergestellt aus 1.97 g der Verbindung des Beispiels II durch katalytische Hydrierung in Methanol in Gegenwart von 0.4 g Palladium auf Aktivkohle (10% Pd) bei
Raumtemperatur.
RrWert: 0.52 (Kieselgel, Cyclohexan/Essigester = 2:1 )
Massenspektrum (ESI"): m/z = 269 [M-H]"
Analog Beispiel III werden folgende Verbindungen hergestellt:
(1 ) 2-[4-((S)-Tetrahydrofuran-3-yloxy)benzyl]-phenol Massenspektrum (ESI+): m/z = 271 [M+H]+
(2) 2-[4-((R)-Tetrahydrofuran-3-yloxy)benzyl]-4-fluor-phenol Massenspektrum (ESP): m/z = 287 [M-H]"
(3) 2-[4-((R)-Tetrahydrofuran-3-yloxy)benzyl]-6-methoxy-phenol Massenspektrum (ESI+): m/z = 301 [M+H]+ Beispiel IV
Figure imgf000031_0001
1-(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3- yloxy)benzyl]-benzol
500 mg 2-[4-((R)-Tetrahydrofuran-3-yloxy)benzyl]-phenol, 820 mg 2,3,4,6-Tetra-O- acetyl-aipha-glucopyranosylbromid, 2 ml 1M Natronlauge und 5 ml Chloroform werden 16 Stunden bei Raumtemperatur gerührt. Es werden noch 400 mg 2,3,4,6- Tetra-O-acetyl-alpha-glucopyranosylbromid, 1 ml 1M Natronlauge und 5 ml Methylenchlorid zugesetzt und 2.5 Tage gerührt. Die organische Phase wird abgetrennt, mit Wasser gewaschen, getrocknet und eingeengt. Das Rohprodukt wird durch Chromatographie über eine Kieselgelsäule mit einem Cyclohexan/Essigester- Gradienten (7:3 bis 1 :1) gereinigt. Ausbeute: 440 mg (40% der Theorie) Rf-Wert: 0.10 (Kieselgel; Cyclohexan/Essigester = 2:1) Massenspektrum (ESI+): m/z = 618 [M+NH4]+
Analog Beispiel IV werden folgende Verbindungen erhalten:
(1 ) 1 -(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol
Figure imgf000032_0001
Umsetzung mit der Verbindung des Beispiels VI in Gegenwart von Benzyl- triethylammonium-bromid
Rf-Wert: 0.30 (Kieselgel; Cyclohexan/Essigester = 2:1)
Massenspektrum (ESI+): m/z = 556 [M+NH4]+
(2) 1-(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-[4-((S)-tetrahydrofuran-3- yloxy)benzyl]-benzol
Rf-Wert: 0.50 (Kieselgel; Cyclohexan/Essigester = 1:1) Massenspektrum (ESI+): m/z = 618 [M+NH4]+
(3) 1-(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3- yloxy)benzyl]-4-fluor-benzol
Massenspektrum (ESI+): m/z = 636 [M+NH4]+
(4) 1-(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3- yloxy)benzyl]-6-methoxy-benzol
Massenspektrum (ESI+): m/z = 648 [M+NH4]+
Beispiel V
Figure imgf000032_0002
2-(4-Brombenzyl)-phenol hergestellt durch Umsetzung von Natriumphenolat (aus 4.0 g Phenol und 1.7 g 60% Natriumhydrid in Parafinöl) mit 10.27 g 4-Brombenzylchlorid in Toluol unter Rückfluß und Reinigung des Reaktionsgemisches durch Chromatographie über eine
Kieselgelsäule mit Cyclohexan/Essigester (8:2 bis 1:1).
Ausbeute: 1.8 g (16% der Theorie)
Rf-Wert: 0.40 (Kieselgel; Cyclohexan/Essigester = 4:1)
Massenspektrum (ESI"): m/z = 261/263 [M-H]"
Beispiel VI
Figure imgf000033_0001
2-[4-(2-Trimethylsilyl-ethinyl)-benzyl]-phenol hergestellt durch Umsetzung von 1.6 g 2-(4-Brombenzyl)-phenol mit 1.03 ml Trimethylsilyl-acetylen in Gegenwart von 86 mg Bis(triphenylphosphin)-palladium(ll)- chlorid und 23 mg Kupfer-(l)-iodid in 5 ml Triethylamin bei 100°C im Mikrowellenofen und Reinigung des Reaktionsgemisches durch Chromatographie über eine Kieselgelsäule mit Cyclohexan/Essigester (9:1 bis 7:3) Rf-Wert: 0.62 (Kieselgel; Cyclohexan/Essigester = 4:1 ) Massenspektrum (ESI+): m/z = 281 [M+H]+
Herstellung der Endverbindungen:
Beispiel 1
Figure imgf000034_0001
1-(ß-D-Glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3-yloxy)benzyl]-benzol
Eine Lösung von 400 mg 1-(2,3,4,6-Tetra-0-acetyl-ß-D-glucopyranosyloxy)-2-[4-((R)- tetrahydrofuran-3-yloxy)benzyl]-benzol in einem Gemisch aus 2.5 ml Methanol und 5 ml Tetrahydrofuran wird im Eisbad abgekühlt und mit 3.02 ml einer 1 M wässrigen Lithiumhydroxid-Lösung versetzt und 1 Stunde gerührt. Das Reaktionsgemisch wird mit 5 ml Wasser versetzt und mit Essigester extrahiert. Die organische Phase wird abgetrennt, mit gesättigter Kochsalzlösung gewaschen, getrocknet und eingeengt. Ausbeute: 190 mg (65% der Theorie) Rf-Wert: 0.23 (Kieselgel; Methylenchlorid/Methanol = 9:1 ) Massenspektrum (ESI+): m/z = 433 [M+H]+
Analog Beispiel 1 werden folgende Verbindungen erhalten:
(1 ) 1 -(ß-D-Glucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol
Figure imgf000034_0002
Rf-Wert: 0.55 (Kieselgel, Methylenchlorid/Methanol = 6:1 ) Massenspektrum (ESI+): m/z = 388 [M+NH4] +
(2) 1-(ß-D-Glucopyranosyloxy)-2-[4-((S)-tetrahydrofuran-3-yloxy)benzyl]-benzol
Figure imgf000035_0001
Schmelzpunkt: 134-135 °C
(3) 1-(ß-D-Glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3-yloxy)benzyl]-4-fluor- benzol
Figure imgf000035_0002
Schmelzpunkt: 145-147 °C
(4) 1-(ß-D-GIucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3-yloxy)benzyl]-6-methoxy- benzol
Figure imgf000035_0003
Massenspektrum (ESI+): m/z = 480 [M+NH4] Beispiel 2
Figure imgf000036_0001
1-(6-O-Methoxycarbonyl-ß-D-gIucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol
100 mg 1-(ß-D-Glucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol in 0.5 ml 2,4,6-Collidin werden im Eisbad mit 0.026 ml Chlorameisensäuremethylester versetzt und anschließend 16 Stunden bei Raumtemperatur gerührt. Zum Reaktionsgemisch werden 5 ml 0.1 N Salzsäure gegeben und mit 10 ml Essigester ausgeschüttelt. Die organische Phase wird abgetrennt, mit gesättigter Kochsalzlösung gewaschen und eingeengt. Der Rückstand wird mit 8 ml Diethylether/Petrolether (1 :1) verrührt, der Feststoff wird abgesaugt und bei 40°C getrocknet. Ausbeute: 73.5 mg (63% der Theorie) Massenspektrum (ESI+): m/z = 429 [M+Hf
Analog Beispiel 2 werden folgende Verbindungen erhalten:
(1) 1 -(6-0-Methoxycarbonyl-ß-D-glucopyranosyloxy)-2-[4-((R)-tetrahydrofu ran-3- yloxy)benzyl]-benzol
Figure imgf000036_0002
Massenspektrum (ESl+): m/z = 508 [M+NH4] ' (2) 1-(6-0-Methoxycarbonyl-ß-D-glucopyranosyloxy)-2-[4-((S)-tetrahydrofuran-3 yIoxy)benzyl]-benzol
Figure imgf000037_0001
Schmelzpunkt: 149-150 °C
Analog den vorstehend genannten Beispielen und anderen literaturbekannten Verfahren werden auch folgende Verbindungen hergestellt:
Figure imgf000037_0002
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Beispiel A
Tabletten mit 100 mg Wirksubstanz
Zusammensetzung: 1 Tablette enthält: Wirksubstanz 100.0 mg Milchzucker 80.0 mg Maisstärke 34.0 mg Polyvinylpyrrolidon 4.0 mg Magnesiumstearat 2.0 mg 220.0 mg
Herstellunqverfahren:
Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2.0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1.5 mm-Maschenweite) und das Schmiermittel zugemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.
Tablettengewicht: 220 mg Durchmesser: 10 mm, biplan mit beidseitiger Facette und einseitiger Teilkerbe.
Beispiel B
Tabletten mit 150 mg Wirksubstanz
Zusammensetzung: 1 Tablette enthält: Wirksubstanz 150.0 mg Milchzucker pulv. 89.0 mg Maisstärke 40.0 mg Kolloide Kieselgelsäure 10.0 mg Polyvinylpyrrolidon 10.0 mg Magnesiumstearat 1.0 mg 300.0 mg
Herstellung: Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1.5 mm-Maschenweite geschlagen.
Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden
Tabletten gepreßt.
Tablettengewicht: 300 mg Stempel: 10 mm, flach
Beispiel C
Hartgelatine-Kapseln mit 150 mg Wirksubstanz
Zusammensetzung:
1 Kapsel enthält: Wirkstoff 150.0 mg Maisstärke getr. ca. 180.0 mg Milchzucker pulv. ca. 87.0 mg Magnesiumstearat 3.0 mg ca. 420.0 mg
Herstellung:
Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von 0.75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt. Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt. Kapselfüllung: ca. 320 mg Kapselhülle: Hartgelatine-Kapsel Größe 1.
Beispiel D
Suppositorien mit 150 mg Wirksubstanz
Zusammensetzung: 1 Zäpfchen enthält: Wirkstoff 150.0 mg Polyäthylenglykol 1500 550.0 mg Polyäthylenglykol 6000 460.0 mg Polyoxyäthylensorbitanmonostearat 840.0 mg 2000.0 mg
Herstellung:
Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.
Beispiel E
Ampullen mit 10 mg Wirksubstanz
Zusammensetzung: Wirkstoff 10.0 mg 0.01 n Salzsäure s.q. Aqua bidest ad 2.0 ml
Herstellung:
Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCI gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt. Beispiel F
Ampullen mit 50 mg Wirksubstanz
Zusammensetzung: Wirkstoff 50.0 mg 0.01 n Salzsäure s.q. Aqua bidest ad 10.0 ml
Herstellung:
Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCI gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Claims

Patentansprüche
1. Glucopyranosyloxy-substituierte Aromaten der allgemeinen Formel
Figure imgf000047_0001
in denen
R1 C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy oder Tetrahydropyranyl-Cι-3-alkyloxy bedeutet, oder, falls R3 ausgewählt ist aus der Gruppe bestehend aus C2.6-Alkinyl, Tetrahydrofuran-3- yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl- Cι-3-alkyloxy und Tetrahydropyranyl-Cι-3-alkyloxy, dann kann R1 zusätzlich auch Wasserstoff, Fluor, Chlor, Brom, lod, Cι_4-Alkyl, durch 1 bis 3 Fluoratome substituiertes Methyl, durch 1 bis 5 Fluoratome substituiertes Ethyl, Cι-4-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methoxy, durch 1 bis 5 Fluoratome substituiertes Ethoxy, durch eine Hydroxy- oder Cι-3-Alkoxygruppe substituiertes Cι-4-Alkyl, durch eine Hydroxy- oder Cι_ 3-Alkoxygruppe substituiertes C2-4-Alkoxy, C2.6-Alkenyl, C3-6-Cycloalkyl, C3-6- Cycloalkyl-Cι-3-alkyl, C3-6-Cycloalkoxy, C3.6-Cycloalkyl-C1-3-alkoxy, Hydroxy, Amino oder Cyano bedeuten, und R2 Wasserstoff, Fluor, Chlor, Methyl, durch 1 bis 3 Fluoratome substituiertes Methyl oder Methoxy bedeutet, und
R3 C2-6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι-3-alkyloxy oder Tetrahydropyranyl-Cι_3-alkyloxy, oder, falls R1 ausgewählt ist aus der Gruppe bestehend aus C2.6-Alkinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranyl-Cι.3-alkyloxy und Tetrahydropyranyl-Cι_3-alkyloxy, dann kann R3 zusätzlich auch Wasserstoff, Fluor, Chlor, Brom, lod, C-ι_6-Alkyl, C2-6-Alkenyl, C3-6-Cycloalkyl, C3-6-Cycloalkylidenmethyl, Cι-6-Alkoxy, C3-6- Cycloalkyl-oxy, C3.6-Cycloalkyl-Cι-3-alkoxy, Aryl, Aryl-Cι.3-alkyl, Heteroaryl, Heteroaryl-Cι-3-alkyl, Aryloxy, Aryl-Cι.3-alkyl-oxy, durch 1 bis 3 Fluoratome substituiertes Methyl oder Methoxy, durch 1 bis 5 Fluoratome substituiertes C2-4-Alkyl oder C2-4-Alkoxy, durch eine Cyangruppe substituiertes C-ι-4-Alkyl, durch eine Hydroxy- oder Cι-3-Alkyloxygruppe substituiertes C^-Alkyl, Cyano-, Carboxy-, Cι-3-Alkoxycarbonyl-, Aminocarbonyl-, (Cι-3- Alkylamino)carbonyl-, Di-(Cι.3-alkyl)aminocarbonyl-, Pyrrolidin-1 -ylcarbonyl-, Piperidin-1 -ylcarbonyl-, Morpholin-4-ylcarbonyl-, Piperazin-1-yl-carbonyl-, 4- (Cι-3-Alkyl)-piperazin-1 -ylcarbonyl-, Nitro-, Amino-, Cι-3-Alkylamino- oder Di- (Cι.3-alkyl)amino-, (Cι-4-Alkyl)carbonylamino-, C-M-Alkylsuϊfonylamino, Arylsulfonylamino, Aryl-Cι-3-alkylsulfonylamino, Cι_4-Alkylsulfanyl-, Cι-4- Alkylsulfinyl-, C-u-Alkylsulfonyl, Arylsulfenyl-, Arylsulfinyl-oder Arylsulfonyl- bedeuten,
R4 und R5, die gleich oder verschieden sein können, Wasserstoff, Fluor, Chlor, Brom, C-ι-3-Alkyl, C-ι-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy bedeuten, und
R6 , R7a, R7b, R7c unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (Cι.ι8-Alkyl)carbonyl, (Cι-ι8-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(Cι-3-alkyl)-carbonyl besitzen,
wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Aryl- gruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander durch Rh mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und Rh ein Fluor, Chlor, Brom, lod, Cι-3-Alkyl, Difluormethyl, Trifluormethyl, Cι-3-Alkoxy, Difluormethoxy, Trifluormethoxy oder Cyan bedeutet,
unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroaryl- gruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Imidazolyl, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist,
oder eine Pyrrolyl-, Furanyl-, Thienyl-, Imidazolyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind,
oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind, wobei die vorstehend erwähnten Heteroarylgruppen durch Rh mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und Rh wie vorstehend definiert ist,
wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,
deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
2. Glucopyranosyloxy-substituierte Aromaten der allgemeinen Formel I gemäß Anspruch 1 , in denen
R1 Ethinyl bedeutet, oder, falls R3 ausgewählt ist aus der Gruppe bestehend aus Ethinyl, Tetrahydrofuran-3- yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethyloxy und Tetrahydropyranylmethyloxy, dann kann R1 zusätzlich auch Wasserstoff, Fluor, Chlor, Methyl, Difluormethyl, Trifluormethyl, Methoxy, Difluormethoxy, Trifluormethoxy oder Cyano bedeuten, und
R2 Wasserstoff, Fluor oder Methyl bedeutet,
R3 Ethinyl, Tetrahydrofuran-3-yloxy, Tetrahydropyran-3-yloxy, Tetrahydropyran- 4-yloxy, Tetrahydrofuranylmethyloxy oder Tetrahydropyranylmethyloxy, oder, falls R1 Ethinyl bedeutet, dann kann R3 zusätzlich auch Wasserstoff, Fluor, Chlor, Methyl, Ethyl, Isopropyl, tert.-Butyl, 2-Cyan-2-propyl, Difluormethyl, Trifluormethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Methoxy, Ethoxy, Isopropoxy, Difluormethoxy, Trifluormethoxy, 1 ,1,2,2-Tetrafluorethoxy, Cylopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Methylsulfanyl, 2-Methyl-1-propen-1-yl, Cyclopropylidenmethyl-, Phenyl-, Fluorphenyl, Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, Oxazolyl, Oxadiazolyl, Thiazolyl oder Thiadiazolyl bedeuten, und
R4 Wasserstoff, Fluor oder Methyl, R5 Wasserstoff,
R6 , R7a,
R7b, R7c unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (Cι-ι8-Alkyl)carbonyl, (Cι_ι8-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(Cι-3-alkyl)-carbonyl besitzen,
deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
3. Glucopyranosyloxy-substituierte Aromaten der allgemeinen Formel I gemäß Anspruch 1, in denen
R1 Ethinyl oder, falls R3 ausgewählt ist aus der Gruppe bestehend aus Ethinyl und Tetrahydrofuran-3- yloxy, dann kann R1 zusätzlich auch Wasserstoff, Fluor, Methyl, Methoxy oder Cyano bedeuten,
R2 Wasserstoff oder Methyl,
R3 Ethinyl oder Tetrahydrofuran-3-yloxy oder, falls R1 Ethinyl bedeutet, dann kann R3 zusätzlich auch Methyl, Ethyl, Methoxy, Difluormethoxy oder Trifluormethoxy bedeuten, R4 Wasserstoff oder Fluor,
R5 Wasserstoff,
R6 , R7a, R7b, R7c unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (Cι.ι8-AIkyl)carbonyl, (C-Ms-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(Cι.3-alkyl)-carbonyl besitzen,
deren Stereoisomere und deren Gemische.
4. Verbindungen der allgemeinen Formel I gemäß Anspruch 1 ausgewählt aus der Gruppe bestehend aus
(a) 1-(ß-D-Glucopyranosyloxy)-2-[4-((R)-tetrahydrofuran-3-yloxy)benzyl]-benzol,
(b) 1 -(ß-D-Glucopyranosyloxy)-2-(4-ethinylbenzyl)-benzol,
sowie deren Derivate, in denen R6 eine erfindungsgemäße, von Wasserstoff verschiedene Bedeutung aufweist, insbesondere R6 Ethoxycarbonyl oder Methoxycarbonyl bedeutet,
einschließlich deren Tautomere, deren Stereoisomere und deren Gemische.
5. Physiologisch verträgliche Salze der Verbindungen nach mindestens einem der Ansprüche 1 bis 4 mit anorganischen oder organischen Säuren.
6. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder ein physiologisch verträgliches Salz gemäß Anspruch 5 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
7. Verwendung mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT beeinflussbar sind.
8. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Stoffwechselerkrankungen geeignet ist.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Stoffwechserkrankung ausgewählt ist aus der Gruppe bestehend aus Diabetes mellitus Typ 1 und Typ 2, diabetische Komplikationen, metabolische Azidose oder Ketose, reaktiver Hypoglykämie, Hyperinsulinämie, Glukosestoffwechselstörung, Insulinresistenz, Metabolischem Syndrom, Dyslipidämien unterschiedlichster Genese, Atherosklerose und verwandte Erkrankungen, Adipositas, Bluthochdruck, chronisches Herzversagen, Ödeme, Hyperurikämie.
10. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 zur Herstellung eines Arzneimittels zur Inhibition des natriumabhängigen Glucose- Cotransporters SGLT.
11. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 zur Herstellung eines Arzneimittels zum Verhindern der Degeneration von pankreatischen beta-Zellen und/oder zum Verbessern und/oder Wiederherstellen der Funktionalität von pankreatischen beta-Zellen.
12. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 zur Herstellung von Diuretika und/oder Antihypertensiva.
13. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 6, dadurch gekennzeichnet, dass auf nicht-chemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder eines physiologisch verträglichen Salzes gemäß Anspruch 5 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
14. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass
a) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b und R7c wie in Anspruch 1 definiert sind, jedoch nicht Wasserstoff bedeuten,
eine Verbindung der allgemeinen Formel
Figure imgf000054_0001
in der
R6 sowie R7a, R7b, R7c wie zuvor definiert sind, jedoch nicht Wasserstoff bedeuten, und Z1 eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel
Figure imgf000054_0002
in der
R1 bis R5 wie in Anspruch 1 definiert sind, umgesetzt wird oder b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R6, R7a, R7b und R7c Wasserstoff bedeuten,
eine Verbindung der allgemeinen Formel I, in der R6 sowie R7a, R7b, R7c wie zuvor definiert sind, jedoch nicht Wasserstoff bedeuten, hydrolysiert wird, upd
gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I, in der R6 ein Wasserstoffatom darstellt, mittels Acylierung in eine entsprechende Acylverbindung der allgemeinen Formel I übergeführt wird, und/oder
erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder
gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder
eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführt wird.
PCT/EP2004/014319 2003-12-22 2004-12-16 Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung WO2005063785A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04803932A EP1699807A2 (de) 2003-12-22 2004-12-16 Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
CA002548353A CA2548353A1 (en) 2003-12-22 2004-12-16 Glucopyranosyloxy-substituted aromates, medicaments containing said compounds, the use thereof, and methods for producing the same
JP2006546000A JP2007515441A (ja) 2003-12-22 2004-12-16 グルコピラノシロキシ置換芳香族化合物、前記化合物を含む医薬、それらの使用及びそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361133.9 2003-12-22
DE10361133A DE10361133A1 (de) 2003-12-22 2003-12-22 Glucopyranosyloxy-substituierte Aromaten, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

Publications (2)

Publication Number Publication Date
WO2005063785A2 true WO2005063785A2 (de) 2005-07-14
WO2005063785A3 WO2005063785A3 (de) 2006-04-13

Family

ID=34683870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014319 WO2005063785A2 (de) 2003-12-22 2004-12-16 Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung

Country Status (5)

Country Link
EP (1) EP1699807A2 (de)
JP (1) JP2007515441A (de)
CA (1) CA2548353A1 (de)
DE (1) DE10361133A1 (de)
WO (1) WO2005063785A2 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128761A2 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Verwendungen von dpp iv inhibitoren
US7767651B2 (en) 2005-01-28 2010-08-03 Chugai Seiyaku Kabushiki Kaisha Spiroketal derivatives and use thereof as diabetic medicine
US7838499B2 (en) 2007-08-23 2010-11-23 Theracos, Inc. Benzylbenzene derivatives and methods of use
US8129434B2 (en) 2007-12-13 2012-03-06 Theracos, Inc. Benzylphenyl cyclohexane derivatives and methods of use
US8283454B2 (en) 2008-08-22 2012-10-09 Theracos, Inc. Processes for the preparation of SGLT2 inhibitors
US8551957B2 (en) 2007-08-16 2013-10-08 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate
US8557782B2 (en) 2006-05-03 2013-10-15 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture
US8802842B2 (en) 2009-09-30 2014-08-12 Boehringer Ingelheim International Gmbh Method for the preparation of a crystalline form
US8987323B2 (en) 2010-06-12 2015-03-24 Theracos, Inc. Crystalline form of benzylbenzene SGLT2 inhibitor
US9024010B2 (en) 2009-09-30 2015-05-05 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives
US9061060B2 (en) 2008-07-15 2015-06-23 Theracos Inc. Deuterated benzylbenzene derivatives and methods of use
US9127034B2 (en) 2005-05-10 2015-09-08 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivates and intermediates therein
US9193751B2 (en) 2012-04-10 2015-11-24 Theracos, Inc. Process for the preparation of benzylbenzene SGLT2 inhibitors
US9192617B2 (en) 2012-03-20 2015-11-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US9464043B2 (en) 2013-10-12 2016-10-11 Theracos Sub, Llc Preparation of hydroxy-benzylbenzene derivatives
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9949997B2 (en) 2013-04-05 2018-04-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US9949998B2 (en) 2013-04-05 2018-04-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US20180185291A1 (en) 2011-03-07 2018-07-05 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US10406172B2 (en) 2009-02-13 2019-09-10 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US10610489B2 (en) 2009-10-02 2020-04-07 Boehringer Ingelheim International Gmbh Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof
US11666590B2 (en) 2013-04-18 2023-06-06 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11813275B2 (en) 2013-04-05 2023-11-14 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
WO2023222144A1 (zh) * 2022-05-18 2023-11-23 上海科利生物医药有限公司 一类硫代糖苷列净类似物及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014894A2 (en) * 2005-07-27 2007-02-08 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted ( (hetero) cycloalyklethynyl-benzyl) -benzene derivatives and use thereof as sodium-dependent glucose cotransporter (sglt) inhibitors
WO2009096503A1 (ja) * 2008-01-31 2009-08-06 Daiichi Sankyo Company, Limited ベンジルフェニルグルコピラノシド誘導体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074834A1 (en) * 2000-03-30 2001-10-11 Bristol-Myers Squibb Company O-aryl glucoside sglt2 inhibitors and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011880A1 (fr) * 2001-07-31 2003-02-13 Kissei Pharmaceutical Co., Ltd. Derive de glucopyranosyloxybenzylbenzene, composition medicinale contenant ce derive, usage medicinal de cette composition et produit intermediaire pour produire cette composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074834A1 (en) * 2000-03-30 2001-10-11 Bristol-Myers Squibb Company O-aryl glucoside sglt2 inhibitors and method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767651B2 (en) 2005-01-28 2010-08-03 Chugai Seiyaku Kabushiki Kaisha Spiroketal derivatives and use thereof as diabetic medicine
US10442795B2 (en) 2005-05-10 2019-10-15 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein
US9127034B2 (en) 2005-05-10 2015-09-08 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivates and intermediates therein
US8557782B2 (en) 2006-05-03 2013-10-15 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture
EP2351568A2 (de) 2006-05-04 2011-08-03 Boehringer Ingelheim International GmbH Verwendungen von dpp iv Inhibitoren
WO2007128761A2 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Verwendungen von dpp iv inhibitoren
US8551957B2 (en) 2007-08-16 2013-10-08 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate
US8802637B2 (en) 2007-08-23 2014-08-12 Theracos, Inc. Benzylbenzene derivatives and methods of use
US7838499B2 (en) 2007-08-23 2010-11-23 Theracos, Inc. Benzylbenzene derivatives and methods of use
US8575321B2 (en) 2007-08-23 2013-11-05 Theracos, Inc. Benzylbenzene derivatives and methods of use
US8106021B2 (en) 2007-08-23 2012-01-31 Theracos, Inc. Benzylbenzene derivatives and methods of use
US8129434B2 (en) 2007-12-13 2012-03-06 Theracos, Inc. Benzylphenyl cyclohexane derivatives and methods of use
US9061060B2 (en) 2008-07-15 2015-06-23 Theracos Inc. Deuterated benzylbenzene derivatives and methods of use
US9006403B2 (en) 2008-08-22 2015-04-14 Theracos, Inc. Processes for the preparation of SGLT2 inhibitors
US8283454B2 (en) 2008-08-22 2012-10-09 Theracos, Inc. Processes for the preparation of SGLT2 inhibitors
US10406172B2 (en) 2009-02-13 2019-09-10 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US8802842B2 (en) 2009-09-30 2014-08-12 Boehringer Ingelheim International Gmbh Method for the preparation of a crystalline form
US9024010B2 (en) 2009-09-30 2015-05-05 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives
US9873714B2 (en) 2009-09-30 2018-01-23 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives
US10610489B2 (en) 2009-10-02 2020-04-07 Boehringer Ingelheim International Gmbh Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof
US8987323B2 (en) 2010-06-12 2015-03-24 Theracos, Inc. Crystalline form of benzylbenzene SGLT2 inhibitor
US10533032B2 (en) 2010-06-12 2020-01-14 Theracos Sub, Llc Crystalline form of benzylbenzene SGLT2 inhibitor
US9834573B2 (en) 2010-06-12 2017-12-05 Theracos Sub, Llc Crystalline form of benzylbenzene SGLT2 inhibitor
US10981942B2 (en) 2010-06-12 2021-04-20 Theracos Sub, Llc Crystalline form of benzylbenzene SGLT2 inhibitor
US10596120B2 (en) 2011-03-07 2020-03-24 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US20180185291A1 (en) 2011-03-07 2018-07-05 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US11564886B2 (en) 2011-03-07 2023-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9192617B2 (en) 2012-03-20 2015-11-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US9193751B2 (en) 2012-04-10 2015-11-24 Theracos, Inc. Process for the preparation of benzylbenzene SGLT2 inhibitors
US9725478B2 (en) 2012-04-10 2017-08-08 Theracos Sub, Llc Process for the preparation of benzylbenzene SGLT2 inhibitors
US9949997B2 (en) 2013-04-05 2018-04-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US9949998B2 (en) 2013-04-05 2018-04-24 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US10258637B2 (en) 2013-04-05 2019-04-16 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11090323B2 (en) 2013-04-05 2021-08-17 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11813275B2 (en) 2013-04-05 2023-11-14 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11833166B2 (en) 2013-04-05 2023-12-05 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11918596B2 (en) 2013-04-05 2024-03-05 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11666590B2 (en) 2013-04-18 2023-06-06 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US9464043B2 (en) 2013-10-12 2016-10-11 Theracos Sub, Llc Preparation of hydroxy-benzylbenzene derivatives
US10093616B2 (en) 2013-10-12 2018-10-09 Theracos Sub, Llc Preparation of hydroxy-benzylbenzene derivatives
WO2023222144A1 (zh) * 2022-05-18 2023-11-23 上海科利生物医药有限公司 一类硫代糖苷列净类似物及其制备方法和应用

Also Published As

Publication number Publication date
WO2005063785A3 (de) 2006-04-13
CA2548353A1 (en) 2005-07-14
EP1699807A2 (de) 2006-09-13
DE10361133A1 (de) 2005-07-21
JP2007515441A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1797107B1 (de) D-pyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1765842B1 (de) D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1660509B1 (de) Glucopyranosyloxy-pyrazole, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1730131B1 (de) Glucopyranosyl-substituierte benzol-derivate, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
WO2005063785A2 (de) Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
WO2006018150A1 (de) D-xylopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1773800A1 (de) D-glucopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1828216B1 (de) Glucopyranosyl-substituierte benzen-derivate, medikamente mit solchen verbindungen, ihre verwendung und herstellungsverfahren dafür
JP5238492B2 (ja) Sgltインヒビターとしてのグルコピラノシル置換(ヘテロアリールオキシ−ベンジル)−ベンゼン誘導体
EP1771460A1 (de) Methyliden-d-xylopyranosyl- und oxo-d-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
DE102004012676A1 (de) Glucopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
JP2008535895A5 (de)
DE102004039096A1 (de) D-Xylopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004046583A1 (de) D-Xylopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004040168A1 (de) Glucopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004061145A1 (de) Glucopyranosyl-substituierte Benzol-Derivate, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004032823A1 (de) D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004054603A1 (de) D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004036314A1 (de) D-Glucopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004046012A1 (de) D-Glucopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE10339549A1 (de) Glucopyranosyloxy-Pyrazole, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE10359960A1 (de) Glucopyranosyloxy-pyrazole, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2548353

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004803932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006546000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004803932

Country of ref document: EP