WO2005061648A1 - Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive type optical film, and image display - Google Patents

Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive type optical film, and image display Download PDF

Info

Publication number
WO2005061648A1
WO2005061648A1 PCT/JP2004/017871 JP2004017871W WO2005061648A1 WO 2005061648 A1 WO2005061648 A1 WO 2005061648A1 JP 2004017871 W JP2004017871 W JP 2004017871W WO 2005061648 A1 WO2005061648 A1 WO 2005061648A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
sensitive adhesive
pressure
film
polymer
Prior art date
Application number
PCT/JP2004/017871
Other languages
French (fr)
Japanese (ja)
Inventor
Yuusuke Toyama
Masayuki Satake
Akiko Ogasawara
Fumiaki Shirafuji
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2005061648A1 publication Critical patent/WO2005061648A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer

Definitions

  • Pressure-sensitive adhesive composition for optical film pressure-sensitive adhesive layer for optical film, pressure-sensitive optical film and image display device
  • the present invention relates to a pressure-sensitive adhesive composition for an optical film.
  • the present invention also relates to a pressure-sensitive adhesive layer for an optical film formed from the pressure-sensitive adhesive composition for an optical film.
  • the present invention relates to an adhesive optical film having the adhesive layer, and further to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the adhesive optical film.
  • the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a film in which these are laminated.
  • An optical film used for a liquid crystal display device or the like for example, a polarizing plate or a retardation plate, is attached to a liquid crystal cell using an adhesive.
  • the material used for such an optical film has a large expansion and contraction under heating or humidification conditions, so that it tends to float or peel off after the application. Therefore, adhesives for optical films are required to have durability that can be used under heating conditions and humidification conditions.
  • pressure-sensitive adhesives for optical films are required to uniformly relieve stresses caused by dimensional changes of optical films such as polarizing plates under heating or humidifying conditions.
  • stress relaxation property is poor, residual stress remains in an optical film such as a polarizing plate, and adverse effects such as polarization loss (light leakage) occur.
  • Patent Document 1 discloses a pressure-sensitive adhesive composition having a crosslinked structure obtained by mixing 20 to 200 parts by weight of a low molecular weight polymer having a weight average molecular weight of 30,000 or less with 100 parts by weight of a high molecular weight polymer having a high functional group ratio.
  • the three-dimensional structure of the high molecular weight component prevents foaming and peeling under high temperature and high humidity, and prevents internal It is disclosed that stress can be absorbed by low molecular weight polymer components.
  • Patent Document 2 proposes a pressure-sensitive adhesive composition in which a low molecular weight polymer having a weight average molecular weight of 500,000 or less is blended with a high molecular weight polymer. According to the disclosed pressure-sensitive adhesive composition, it is disclosed that stress concentration is relieved, white spots in the liquid crystal cell are suppressed, and no adhesive residue or fogging occurs in the liquid crystal cell after peeling.
  • Patent Document 3 1 to 50 parts by weight of a low molecular weight polymer having a weight average molecular weight of 5,000 to less than 500,000 is blended with 100 parts by weight of a high molecular weight polymer, and one of the high molecular weight polymer and the low molecular weight polymer is mixed.
  • a pressure-sensitive adhesive composition containing a nitrogen-containing functional group has been proposed. According to the powerful pressure-sensitive adhesive composition, it is disclosed that the strength of the bond between the nitrogen-containing functional group and the adherend is excellent, the durability is excellent, and the white drop can be suppressed by following the expansion and contraction of the polarizing plate. ing.
  • Patent Document 4 proposes a pressure-sensitive adhesive composition comprising 100 parts by weight of a high-molecular-weight polymer, 5 to 100 parts by weight of an acrylic oligomer having a weight average molecular weight of 1,000 to 10,000, and a bifunctional crosslinking agent. I have. It is disclosed that such a pressure-sensitive adhesive composition has excellent adhesion to an adherend and has good stress relaxation properties so that durability and white spots can be suppressed.
  • Patent Document 5 discloses that 100 to 100 parts by weight of a high molecular weight polymer is mixed with 10 to 100 parts by weight of a low molecular weight polymer having a glass transition point of 0 to 80 ° C and a low molecular weight of 3 to 100,000, Has been proposed. It is disclosed that such an adhesive composition can cope with peeling, foaming, and white drop phenomenon.
  • liquid crystal display devices are often used under severer high-temperature conditions, such as for use in vehicles, and further higher durability is desired.
  • the optical film affixed to a substrate such as glass undergoes oxidative degradation at the outside where it is exposed to the atmosphere.
  • the so-called “window frame-like unevenness phenomenon” occurs because the polarization loss (light leakage) differs between inside and outside There is a tendency.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-279907
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-109771
  • Patent Document 3 JP 2000-89731 A
  • Patent Document 4 JP 2001-335767 A
  • Patent Document 5 JP-A-2002-121521
  • Patent Document 6 JP-A-2003-49143
  • Patent Document 7 JP-A-2002-30264
  • An object of the present invention is to provide a pressure-sensitive adhesive composition for an optical film that can effectively suppress light leakage and window frame-like unevenness even under a high temperature condition of about 120 ° C.
  • Another object of the present invention is to provide a pressure-sensitive adhesive layer for an optical film formed from the pressure-sensitive adhesive composition for an optical film.
  • Still another object of the present invention is to provide an adhesive optical film and an image display device having the adhesive layer.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by the following adhesive composition for an optical film, and have completed the present invention.
  • the present invention provides a (meth) acrylate polymer having a weight-average molecular weight of 500,000 to 2.5 million, a weight-average molecular weight of 1000-1 polymerized using a chain transfer agent having a reactive carbon-carbon double bond.
  • a pressure-sensitive adhesive composition containing 10,000 (meth) acrylate copolymers and a cross-linking agent, and a chain transfer agent content in the composition, an absorbance ratio [(780 ⁇ 20c
  • a pressure-sensitive adhesive composition for an optical film is 0.3 or less.
  • the cause of the window frame-like unevenness phenomenon caused by the deterioration of the outside of the optical film under a high temperature or high temperature and high humidity is a reactive carbon-carbon double bond contained in the pressure-sensitive adhesive composition.
  • the content of the reactive carbon double bond in the pressure-sensitive adhesive composition largely contributes to additives such as a polymerization initiator and a chain transfer agent.
  • a window frame is formed due to degradation of a chain transfer agent having a reactive carbon-carbon double bond, such as ⁇ -methylstyrene dimer, which is used in a large amount to control the molecular weight of the oligomer during oligomer production. It is considered that the mull phenomenon occurs.
  • the chain transfer agent there is a chain transfer agent having no reactive carbon-carbon double bond, such as dodecyl mercaptan, mercaptoethyl alcohol, mercaptosuccinic acid, and thioglycolic acid. It is difficult to use viewpoints such as gender (for example, smell). Therefore, even when a chain transfer agent having a reactive carbon-carbon double bond is used during the production of an oligomer, it is important how to suppress light leakage and window frame-like unevenness.
  • the chain transfer agent is at least one selected from the group consisting of a-methylstyrene, ⁇ -methylstyrene dimer, and ⁇ -methylstyrene trimer. Is preferable. In particular, it is preferable that the chain transfer agent is an ⁇ -methylstyrene dimer.
  • the pressure-sensitive adhesive layer for an optical film of the present invention is formed by crosslinking the pressure-sensitive adhesive composition for an optical film.
  • the gel fraction of the crosslinked pressure-sensitive adhesive layer for an optical film is preferably 30 to 80% by weight.
  • the pressure-sensitive adhesive layer formed by the pressure-sensitive adhesive composition can be set to have the predetermined gel fraction by using a cross-linking agent. Even after a long period of time, such as going through various processes after sticking to the liquid crystal cell, or being stored in a high-temperature, high-humidity state, it does not peel, float, or foam in the bonded state, improving durability. It comes out.
  • the pressure-sensitive adhesive optical film of the present invention is obtained by forming the pressure-sensitive adhesive layer for an optical film on one or both surfaces of the optical film.
  • the present invention also relates to an image display device using at least one of the pressure-sensitive adhesive optical films.
  • the (meth) acrylic polymer refers to an acrylic polymer and a Z or methacrylic polymer, and has the same meaning as (meth) in the present invention.
  • the (meth) acrylic polymer is obtained by copolymerizing at least the (meth) acrylic ester and a monomer having a crosslinkable functional group, with the (meth) acrylic ester as a main component as a monomer component.
  • Can be The copolymer form is not particularly limited, and may be any of random, block, or graft.
  • the (meth) acrylic acid ester constituting the main skeleton of the (meth) acrylic polymer is not particularly limited, but may be methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, or n-butyl.
  • Examples of the monomer having a crosslinkable functional group include, for example, carboxyls such as (meth) acrylic acid, ⁇ -carpoxyshethyl (meth) atalylate, itaconic acid, crotonic acid, maleic acid, fumaric acid, and maleic anhydride.
  • carboxyls such as (meth) acrylic acid, ⁇ -carpoxyshethyl (meth) atalylate, itaconic acid, crotonic acid, maleic acid, fumaric acid, and maleic anhydride.
  • Group-containing monomer 2-hydroxyethyl (meth) atalylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and aryl Hydroxyl group-containing monomers such as alcohols, epoxy group-containing monomers such as glycidyl (meth) acrylate, and amino group-containing monomers such as aminomethyl (meth) acrylate and dimethylaminoethyl (meth) acrylate ) Acrylamide, methylol (meth) acrylamide And methemoglobin Kishechiru (meth) amide group-containing monomers such as acrylamide, Bulle trimethoxysilane,
  • acetoacetyl-group-containing monomers such as acetoacetoxityl (meth) acrylate. These can be used alone or in combination.
  • the monomer having a crosslinkable functional group is added in an amount of 0 based on 100 parts by weight of the (meth) acrylate.
  • aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and vinyl toluene, vinyl acetate, vinyl chloride, (meth) acrylonitrile and the like may be used alone or in combination.
  • the other monomer is preferably used in an amount of 100 parts by weight or less, more preferably 50 parts by weight or less, based on 100 parts by weight of the (meth) acrylate.
  • the weight average molecular weight of the (meth) acrylic polymer is from 500,000 to 250,000, preferably from 1,000,000 to 2,000,000.
  • the weight average molecular weight is less than 500,000, the adhesion to the adherend and the durability tend to be insufficient, and when the weight average molecular weight exceeds 2.5 million, the stress relaxation property against the expansion and contraction of the optical film decreases. There is a tendency.
  • the (meth) acrylic polymer can be produced by various known methods.
  • a radical polymerization method such as a barta polymerization method, a solution polymerization method, and a suspension polymerization method can be appropriately selected.
  • Examples of the polymerization initiator include peroxides such as hydrogen peroxide, benzoyl peroxide, and t-butyl peroxide. It is desirable to use it alone, but in combination with a reducing agent Can also be used as a redox polymerization initiator.
  • Examples of the reducing agent include ionic sulfites, bisulfites, salts of ions such as iron, copper, and cobalt salts, amines such as triethanolamine, and reducing sugars such as aldose and ketose. .
  • azoi conjugates are also preferred polymerization initiators, such as 2,2'-azobis 2-methylpropioamidine, 2,2'-azobis-2,4-dimethylvaleronitrile, and 2,2'-azobis Use N, N'-dimethylene isobutylamidate, 2,2, -azobisisobutymouth-tolyl, 2,2, -azobis-2-methyl-N- (2-hydroxyethyl) propionamide, etc. be able to. It is also possible to use two or more of the above polymerization initiators in combination.
  • the reaction temperature is usually about 50 to 85 ° C, and the reaction time is about 118 hours.
  • a solvent for the (meth) acrylic polymer which is preferably a solution polymerization method, is generally a polar solvent such as ethyl acetate and toluene.
  • the solution concentration is usually about 20-80% by weight.
  • the (meth) acrylic oligomer can be produced by the same method as described above, using the (meth) acrylic acid ester as a monomer component.
  • the weight average molecular weight of the (meth) acrylic oligomer is from 1,000 to 10,000, preferably from 2,000 to 10,000. If the weight average molecular weight is less than 1000, durability may be reduced, or the oligomer may bleed out and contaminate the adherend when the adhesive optical film is peeled off. On the other hand, if the weight average molecular weight exceeds 10,000, it is not preferable because the stress relaxation property against the expansion and contraction of the optical film decreases and the adhesive strength to the adherend increases.
  • the weight average molecular weight of the (meth) acrylic oligomer can be adjusted by using a large amount of a polymerization initiator or using a chain transfer agent.
  • a polymerization initiator the same one as described above can be used.
  • a chain transfer agent having a reactive carbon-carbon double bond is used for adjusting the weight average molecular weight of the (meth) acrylic oligomer.
  • chain transfer agent having a reactive carbon-carbon double bond examples include styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene dimer, and ⁇ -methylstyrene trimer; and 2,4-diphenyl-4-methyl- (1) Alkenes such as pentene; rosin esters having a conjugated double bond with a hydroxyl group; These may be used alone or in combination of two or more. Can be used together.
  • the chain transfer agent is used for 100 parts by weight of the raw material monomer of the (meth) acrylic oligomer. It is preferable to use the agent in an amount of 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 1 part by weight or less.
  • the amount of the (meth) acrylic oligomer to be added is not particularly limited, but is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, per 100 parts by weight of the (meth) acrylic polymer. Parts by weight, particularly preferably 10 to 20 parts by weight. If the amount of the (meth) acrylic oligomer exceeds 100 parts by weight, the durability is adversely affected, and it is difficult to control the absorbance ratio to 0.3 or less. On the other hand, if the amount is less than 5 parts by weight, the adhesion to the adherend (liquid crystal cell) increases, which is not preferable.
  • the crosslinking agent is a polyfunctional compound capable of forming a crosslinked structure by reacting with a functional group of a (meth) acrylic polymer.
  • a crosslinking agent that forms a crosslinked structure with the hydroxyl group is used.
  • isocyanate-based cross-linking agent examples include tolylene diisocyanate, chlorobenzene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, and xylylene diisoate.
  • urethane prepolymer-type isocyanates obtained by subjecting these diisocyanate conjugates to an addition reaction with polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, and the like.
  • epoxy-based cross-linking agent examples include ethylene glycol glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,3-bis (N, N-diglycidylaminomethyl) cyclo Hexane, N, N, ⁇ ', ⁇ , 1-tetraglycidyl m-xylylenediamine, N, N, ⁇ ', ⁇ -tetraglycidylaminophenol methane, triglycidyl isocyanurate, m— ⁇ , N—Diglycidide Laminophenol-glycidyl ether, N, N-diglycidyl toluidine, N, N-diglycidyl dilin and the like.
  • aziridine-based crosslinking agent examples include diphenylmethane 4,4'bis (1 aziridinecarboxamide), trimethylolpropanetri-18-aziridyl-propionate, tetramethylolmethanetri-aziridyl-propionate, and toluene 2,4.
  • crosslinking agents examples include melamine conjugates, metal salts, and metal chelate conjugates.
  • an isocyanate-based crosslinking agent is preferably used.
  • a crosslinking agent is used. It is preferable to form a crosslinked structure of a (meth) acrylic polymer or the like by using an isocyanate compound.
  • the blending of the crosslinking agent is not particularly limited, but it is preferable to blend the crosslinking agent so that the gel fraction of the crosslinked pressure-sensitive adhesive layer is 30 to 80% by weight. Further, it is preferable to adjust the amount of the crosslinking agent to be 40 to 60% by weight. When the gel fraction is less than 30% by weight, the adhesive layer does not have sufficient durability, the cohesive strength is low, and foaming tends to occur under high temperature conditions. On the other hand, when the gel fraction exceeds 80% by weight, the stress relaxation property is poor, and peeling, light leakage, and window frame-like unevenness tend to occur easily under high temperature, high temperature and high humidity conditions. In order to adjust the gel fraction in this manner, the force varies depending on the material used. Generally, the compounding amount of the crosslinking agent is 0.001 to 5 parts by weight, and more preferably 0. 01-2 parts by weight are preferred.
  • the pressure-sensitive adhesive composition for an optical film of the present invention contains a silane coupling agent.
  • a silane coupling agent a conventionally known one can be used without any particular limitation.
  • epoxy group-containing silane couplings such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyljetoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane Agent: 3-aminopropyltrimethoxysilane, N Amino group-containing silane coupling agents such as -2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl N- (1,3-dimethylbutylidene) propylamine; 3-attaryloxypropyltriamine (Meth) acrylic group-containing silane coupling agents such as methoxysilane and 3-methacryloxypropyltriethoxy
  • the amount of the silane coupling agent is not particularly limited, but is preferably 0.01 to 1 part by weight, more preferably 0.02 to 100 parts by weight of the (meth) acrylic polymer. 0.6 parts by weight. If the amount of the silane coupling agent exceeds 1 part by weight, the adhesive strength to the adherend (liquid crystal cell) tends to increase, and if the amount is less than 0.01 part by weight, the durability of the pressure-sensitive adhesive layer tends to decrease. It is in.
  • the pressure-sensitive adhesive composition for an optical film of the present invention may optionally contain an ultraviolet absorber, an aging inhibitor, a softener, a dye, a pigment, a filler, and the like.
  • the pressure-sensitive adhesive composition for an optical film of the present invention prepared as described above has a content of the chain transfer agent in the composition of 0.3 or less, preferably 0.15 or less, according to the absorbance ratio. It is as follows. If the absorbance ratio exceeds 0.3, light leakage and window frame-shaped unevenness are likely to occur under high temperature or high temperature and high humidity conditions of about 120 ° C.
  • the pressure-sensitive adhesive optical film of the present invention is obtained by forming a pressure-sensitive adhesive layer on one or both surfaces of the optical film with the pressure-sensitive adhesive composition for optical films.
  • the method for forming the pressure-sensitive adhesive layer on the optical film is not particularly limited, and the pressure-sensitive adhesive composition is applied to a support (release sheet) that has been subjected to a release treatment, dried, and crosslinked to form a pressure-sensitive adhesive layer.
  • a method of transferring this to an optical film a method of directly applying a pressure-sensitive adhesive composition to the optical film, drying and crosslinking to form a pressure-sensitive adhesive layer can be used.
  • an arbitrary application method such as a Rhono coater such as a line coater or a gravure coater, a curtain coater, a lip coater, or a die coater can be employed.
  • the thickness of the pressure-sensitive adhesive layer after drying is preferably from 2 to 500 ⁇ m, more preferably from 5 to 100 ⁇ m.
  • the surface of the pressure-sensitive adhesive layer may be protected with a protective sheet until it is practically used.
  • the protective sheet may be made of paper, synthetic resin film such as polyethylene, polypropylene, polyethylene terephthalate, rubber sheet, paper, cloth, nonwoven fabric, net, foam sheet, or the like. Suitable thin leaf bodies such as metal foils and laminates thereof are exemplified.
  • the surface of the protective sheet is subjected to a release treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment as necessary to enhance the releasability of the adhesive layer strength! .
  • an optical film a film used for forming a liquid crystal display device or the like is used, and the type is not particularly limited.
  • an optical film includes a polarizing plate.
  • a polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used.
  • the polarizer is not particularly limited, and various types can be used.
  • the polarizer include a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / butyl acetate copolymer-based partially modified film, and iodine and a dichroic dye.
  • polyene-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • a polybutyl alcohol-based film and a polarizer having a dichroic substance such as iodine are preferable.
  • the thickness of these polarizers is not particularly limited. Generally, the thickness is about 5 to 80 m.
  • a polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching the film to 3 to 7 times its original length.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with iodine. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a material for forming the transparent protective film provided on one or both surfaces of the polarizer a material excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy, and the like is preferable.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorellose polymers such as diacetinoresenorelose and triacetinoresenorelose, acrylic polymers such as polymethyl methacrylate, polystyrene and Atari mouth-tri- Styrene-based polymers such as styrene copolymer (AS resin) and polycarbonate-based polymers.
  • the transparent protective film can also be formed as a cured layer of a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy, or silicone resin.
  • a polymer film described in JP-A-2001-343529 for example, (A) a thermoplastic resin having a substituted or Z or non-amide group in a side chain; A resin composition containing a thermoplastic resin having a substituted and Z-unsubstituted file and a -tolyl group in the chain is exemplified.
  • a specific example is a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile-styrene copolymer.
  • a film such as a mixed extruded resin composition can be used.
  • the thickness of the protective film can be determined as appropriate, but is generally about 11500 / zm in terms of workability such as strength and handleability, and thinness. In particular, one 300 / z m is preferred, and 5-200 / z m is more preferred.
  • a protective film having a retardation value in the thickness direction of 90 nm- + 75 nm is preferably used.
  • Such thickness direction By using a retardation value (Rth) of 90 nm- + 75 nm, the coloring (optical coloring) of the polarizing plate due to the protective film can be almost eliminated.
  • the thickness direction retardation value (Rth) is more preferably -80 nm- "h60 nm, particularly -70 nm-" h45 nm.
  • a cellulosic polymer such as triacetyl cellulose is preferred from the viewpoints of polarization characteristics and durability. Particularly, a triacetyl cellulose film is preferable.
  • a protective film is provided on both sides of the polarizer, a protective film having the same polymer material strength may be used on the front and back sides, or a protective film having a different polymer material strength may be used.
  • the polarizer and the protective film are usually in close contact with each other via an aqueous pressure-sensitive adhesive or the like.
  • water-based adhesive examples include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex-based, a water-based polyurethane, and a water-based polyester.
  • the surface of the transparent protective film on which the polarizer is not bonded may be subjected to a hard coat layer, an antireflection treatment, a treatment for preventing sticking, or a treatment for diffusion or antiglare.
  • the hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched, and is, for example, a cure that is excellent in hardness, slip characteristics, and the like by an appropriate ultraviolet-curable resin such as an acrylic or silicone resin.
  • the film can be formed by a method of adding a film to the surface of the transparent protective film.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion to the adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate.
  • a sand blasting method and a boss processing method are used.
  • the transparent protective film can be formed by imparting a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • the fine particles to be included in the formation of the surface fine unevenness include silica, alumina, titania, zircon, tin oxide, indium oxide, cadmium oxide, and acid having an average particle size of 0.5 to 50 ⁇ m.
  • Inorganic fine particles that may also be conductive such as antimony, crosslinked or Transparent fine particles such as organic fine particles having the same strength as an uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight, and 5 to 25 parts by weight based on 100 parts by weight of the transparent resin forming the fine surface uneven structure. Is preferred.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
  • the anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, and can be provided separately as an optical layer separately from the transparent protective film. It can also be provided.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate such as 1Z2 or 1Z4), a viewing angle compensation film, and a brightness enhancement film is formed.
  • an optical layer that may be used for the above. These can be used alone as the optical film of the present invention, or can be used as a single layer or two or more layers laminated on the above-mentioned polarizing plate in practical use.
  • a polarizing plate, a wide viewing angle polarizing plate in which a viewing angle compensation film is further laminated on a polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on a polarizing plate, are preferable.
  • the reflective polarizing plate is provided with a reflective layer on the polarizing plate, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side).
  • a built-in light source such as a backlight can be omitted, and the liquid crystal display device can be easily made thin.
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a strength such as a metal is provided on one surface of the polarizing plate via a transparent protective layer or the like as necessary.
  • a specific example of the reflective polarizing plate is a transparent protective film that has been matt-treated as necessary and has a reflective layer formed by attaching a foil made of a reflective metal such as aluminum or the like to a vapor-deposited film. And so on. Further, there may be mentioned, for example, a transparent protective film in which fine particles are contained to form a fine surface unevenness structure and a reflective layer having a fine unevenness structure formed thereon.
  • the reflective layer having the fine uneven structure described above diffuses incident light by irregular reflection, thereby increasing directivity. This has the advantage that the appearance can be prevented and the unevenness of light and dark can be suppressed.
  • the transparent protective film containing fine particles has an advantage that the incident light and its reflected light are diffused when passing through the transparent light-shielding film, so that uneven brightness can be further suppressed.
  • the reflective layer having a fine irregular structure reflecting the fine irregular structure on the surface of the transparent protective film is formed by, for example, depositing a metal by an appropriate method such as a vapor deposition method such as a vacuum deposition method, an ion plating method, or a sputtering method or a plating method. It can be carried out by a method of directly attaching to the surface of the transparent protective layer.
  • the reflective plate can also be used as a reflective sheet in which a reflective layer is provided on an appropriate film according to the transparent film. Since the reflective layer is usually made of a metallic material, its use in a state where the reflective surface is covered with a transparent protective film, a polarizing plate, or the like is intended to prevent a decrease in the reflectance due to oxidation and, as a result, a long-term increase in the initial reflectance. It is more preferable in terms of sustainability and avoidance of separate protective layer.
  • the transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light on the reflective layer.
  • Transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light on the reflective layer.
  • liquid crystal display device or the like when the liquid crystal display device or the like is used in a relatively bright atmosphere, the image is displayed by reflecting the incident light from the viewing side (display side), and relatively Depending on the atmosphere, a liquid crystal display device or the like that is built in the back side of a transflective polarizing plate and displays an image using a built-in light source such as a backlight can be formed.
  • a transflective polarizing plate can save energy for using a light source such as a knock light in a bright atmosphere, and can be used with a built-in light source even in a relatively small atmosphere. It is useful for forming.
  • a phase difference plate or the like is used.
  • a so-called 1Z4 wavelength plate (also referred to as a ⁇ plate) is used as a phase difference plate for changing linearly polarized light to circularly polarized light or for converting circularly polarized light to linearly polarized light.
  • a 1Z2 wavelength plate (also referred to as ⁇ 2 plate) is usually used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate is a birefringent liquid crystal layer of a super twisted nematic (STN) type liquid crystal display device. Coloring (blue or yellow) caused by folding is compensated (prevented), and is effectively used in the case of the above-mentioned coloring and black-and-white display. Further, a device in which a three-dimensional refractive index is controlled is preferable because coloring (coloring) generated when the screen of the liquid crystal display device is viewed from an oblique direction can be compensated (prevented).
  • the circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflection type liquid crystal display device that displays an image in color, and also has an antireflection function.
  • the retardation plate examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and an alignment layer of a liquid crystal polymer supported by a film.
  • the thickness of the retardation plate is not particularly limited, it is generally about 20 to 150 / zm.
  • polymer material examples include polybutyl alcohol, polybutyral, polymethylvinylinoleether, polyhydroxyethynoleatalylate, hydroxyethynolecellulose, hydroxypropylcellulose, methinoresenolylose, polycarbonate, and polybutylene.
  • Arylate polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyethenoresulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyvinyl alcohol, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose-based polymer, Examples include norbornene-based resins, and various binary and ternary copolymers thereof, graph copolymers, and blends thereof. These polymer materials become oriented materials (stretched films) by stretching or the like.
  • liquid crystal polymer for example, a conjugated linear atomic group imparting liquid crystal orientation is used.
  • main chain and side chain types in which (mesogen) is introduced into the main chain and side chain of the polymer.
  • the main chain type liquid crystal polymer include a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility, for example, a nematic alignment polyester liquid crystal polymer, a discotic polymer, and a cholesteric polymer. can give.
  • the side-chain type liquid crystalline polymer include polysiloxane, polyatalylate, polymethacrylate or polymalonate having a main chain skeleton, and a nematic alignment imparted through a spacer portion comprising a conjugated atomic group as a side chain.
  • liquid crystalline polymers are, for example, those obtained by rubbing the surface of a thin film of polyimide or polyvinyl alcohol formed on a glass plate, This is carried out by spreading a solution of a liquid crystalline polymer on an alignment treatment surface such as one obliquely deposited with silicon and subjecting it to heat treatment.
  • the retardation plate may be one having an appropriate retardation in accordance with the intended use, such as, for example, various wavelength plates or ones for the purpose of compensating coloring or viewing angle due to birefringence of the liquid crystal layer.
  • a device in which optical characteristics such as phase difference are controlled by laminating more than two kinds of phase difference plates may be used.
  • the elliptically polarizing plate and the reflection type elliptically polarizing plate are obtained by laminating a polarizing plate or a reflection type polarizing plate and a retardation plate in an appropriate combination.
  • a strong elliptically polarizing plate or the like can also be formed by sequentially and separately laminating a (reflection type) polarizing plate and a retardation plate in the manufacturing process of a liquid crystal display device so as to form a combination.
  • An optical film such as an elliptically polarizing plate as described above is advantageous in that it has excellent quality stability and laminating workability, and can improve the production efficiency of a liquid crystal display device and the like.
  • the viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a direction not perpendicular to the screen but slightly oblique.
  • a viewing angle compensating retardation plate for example, a retardation plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent base material can be used.
  • a common retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is biaxially stretched in the plane direction.
  • Biaxially oriented polymer film with birefringence and biaxial stretching such as birefringent polymer or tilted oriented film, which is uniaxially stretched in the force and plane directions and also stretched in the thickness direction and has a controlled refractive index in the thickness direction.
  • a film or the like is used.
  • the obliquely oriented film include a film obtained by bonding a heat shrink film to a polymer film and subjecting the polymer film to a stretching treatment or a Z-shrink treatment under the action of the shrinkage force caused by heating, or a film obtained by obliquely orienting a liquid crystal polymer. And the like.
  • the same polymer as that described for the retardation plate is used to prevent coloring and the like due to a change in the viewing angle based on the phase difference by the liquid crystal cell, and to improve the viewing angle for good visibility.
  • Appropriate ones for the purpose of enlargement etc. can be used.
  • the alignment layer of liquid crystal polymer particularly An optically compensatory retardation plate in which an optically anisotropic layer composed of a tilted alignment layer of a scotic liquid crystal polymer is supported by a triacetyl cellulose film can be preferably used.
  • the polarizing plate obtained by laminating the polarizing plate and the brightness enhancement film is usually provided on the back side of the liquid crystal cell and used.
  • Brightness-enhancing films exhibit the property of reflecting linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light enters due to reflection from the backlight or the back side of a liquid crystal display device, etc., and transmitting other light.
  • the polarizing plate in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light of a predetermined polarization state and reflects light other than the predetermined polarization state without transmitting the light. Is done.
  • the light reflected on the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side thereof and re-entered on the brightness enhancement film, and a part or all of the light is transmitted as light of a predetermined polarization state.
  • the brightness can be improved. is there.
  • the brightness enhancement film reflects light having a polarization direction that is absorbed by the polarizer on the brightness enhancement film without being incident on the polarizer, and further through a reflection layer or the like provided on the rear side thereof. Repeated inversion and re-injection into the brightness enhancement film, and only the polarized light whose polarization direction is reflected and inverted between the two so that it can pass through the polarizer is used as the brightness enhancement film. Since the light is transmitted to the polarizer and supplied to the polarizer, light from a backlight or the like can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.
  • a diffusion plate may be provided between the brightness enhancement film and the above-mentioned reflection layer or the like.
  • the light in the polarization state reflected by the brightness enhancement film goes to the reflection layer and the like, but the diffuser provided uniformly diffuses the passing light and at the same time eliminates the polarization state and becomes a non-polarized state. That is, the diffuser returns the polarized light to the original natural light state.
  • This unpolarized state The light in a natural light state is repeatedly directed to the reflection layer and the like, reflected through the reflection layer and the like, again passed through the diffusion plate and re-incident on the brightness enhancement film.
  • the brightness of the display screen is maintained while the brightness unevenness of the display screen is reduced. It can provide a uniform and bright screen. It is probable that by providing a powerful diffuser, the number of repetitions of the first incident light was increased moderately, and it was possible to provide a uniform bright display screen in combination with the diffuser function of the diffuser. .
  • Examples of the brightness enhancing film include a multilayer thin film of a dielectric and a multilayer laminate of thin films having different refractive index anisotropies. Reflects either left-handed or right-handed circularly polarized light, and transmits other light, such as those exhibiting reflective characteristics, such as an alignment film of cholesteric liquid crystal polymer and an alignment liquid crystal layer supported on a film substrate. Any suitable material such as one exhibiting the characteristic described above can be used.
  • the transmitted light is directly incident on the polarization plate with the polarization axis aligned, whereby absorption loss due to the polarization plate is suppressed. While allowing the light to pass through efficiently.
  • a brightness enhancement film that emits circularly polarized light such as a cholesteric liquid crystal layer, can be directly incident on a polarizer.However, in order to suppress absorption loss, the circularly polarized light is linearly polarized through a phase difference plate. It is preferable that the light is converted into a polarizing plate. By using a 1Z4 wavelength plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
  • a retardation plate functioning as a 1Z4 wavelength plate in a wide wavelength range such as a visible light region has, for example, a retardation layer functioning as a 1Z4 wavelength plate for light-colored light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by, for example, a method of superimposing a retardation layer shown, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have one or more retardation layer strengths.
  • the cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light region by using a combination of two or more layers having different reflection wavelengths and having an arrangement structure in which two or more layers are overlapped. And a circularly polarized light having a wide wavelength range can be obtained.
  • the polarizing plate may be formed by laminating a polarizing plate and two or three or more optical layers as in the above-mentioned polarized light separating type polarizing plate. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, transflective polarizing plate and retardation plate may be used.
  • An optical film in which the optical layer is laminated on a polarizing plate can be formed by a method in which the optical film is laminated in advance in a manufacturing process of a liquid crystal display device or the like.
  • it has the advantage of being superior in quality stability and assembling work, and can improve the manufacturing process of a liquid crystal display device and the like.
  • Appropriate bonding means such as an adhesive layer can be used for lamination.
  • their optical axes can be set at an appropriate angle depending on the intended retardation characteristics and the like.
  • Each layer of the pressure-sensitive adhesive optical film of the present invention includes, for example, a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt. It may have ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbing agent such as a compound.
  • the adhesive optical film of the present invention can be preferably used for forming various image display devices such as a liquid crystal display device.
  • the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device generally has a force formed by appropriately assembling components such as a liquid crystal cell, an adhesive optical film, and an illumination system as necessary and incorporating a drive circuit. Except for using the optical film according to the present invention, the present invention can conform to the conventional method without any particular limitation.
  • the liquid crystal cell any type such as TN type, STN type and ⁇ type can be used.
  • a suitable liquid crystal display device such as a liquid crystal display device having an adhesive optical film disposed on one or both sides of a liquid crystal cell, or a device having a backlight or a reflector in a lighting system can be formed.
  • the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell.
  • optical films are provided on both sides, they may be the same or different.
  • a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array One or two or more layers of appropriate parts such as light sheets, light diffusion plates, and backlights can be placed at appropriate positions.
  • organic electroluminescence device organic EL display device
  • a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially stacked on a transparent substrate to form a light emitting body (organic electroluminescent light emitting body).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer of a fluorescent organic solid force such as anthracene, or A structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer having a perylene derivative or a hole injection layer, a light-emitting layer, and an electron injection layer. Is known.
  • an organic EL display device holes and electrons are injected into an organic light emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is generated. Emits light on the principle that it excites a fluorescent substance and emits light when the excited fluorescent substance returns to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and the emission intensity show a strong ⁇ non-linearity with rectification to the applied voltage.
  • At least one electrode must be transparent in order to extract light emitted from the organic light emitting layer, and is usually formed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent electrode is used as the anode.
  • metal electrodes such as Mg Ag and A1-Li are usually used.
  • the organic light emitting layer is formed of a very thin film when the thickness is about lOnm. Therefore, the organic light emitting layer transmits light almost completely, similarly to the transparent electrode. As a result, when the light is not emitted, the light enters the surface of the transparent substrate, passes through the transparent electrode and the organic light-emitting layer, and is reflected by the metal electrode. When viewed, the display surface of the OLED display looks like a mirror.
  • An organic electroluminescent luminous body comprising a transparent electrode on the front side of an organic luminescent layer that emits light by applying a voltage and a metal electrode on the back side of the organic luminescent layer is provided.
  • a polarizing plate can be provided on the surface side of the transparent electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the polarizing effect has an effect of preventing a mirror surface of the metal electrode from being visually recognized from the outside. is there.
  • the phase difference plate is formed of a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the phase difference plate is adjusted to ⁇ ⁇ 4, the mirror surface of the metal electrode can be completely shielded.
  • linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate.
  • This linearly polarized light is generally converted into elliptically polarized light by the phase difference plate, but becomes circularly polarized light when the phase difference plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarization plate and the phase difference plate is ⁇ / 4. .
  • the circularly polarized light transmits through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and is again converted into linearly polarized light by the retardation plate. Become. Since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot pass through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • the weight-average molecular weights of the prepared polymers and oligomers were measured by GPC (gel permeation chromatography) and converted by standard polystyrene.
  • GPC device TOSOH, HLC-8120GPC
  • the absorbance based on the C C vibration of the chain transfer agent in the range of 780 ⁇ 20 cm- 1 of the pressure-sensitive adhesive composition for optical film prepared, and 740 ⁇
  • the absorbance based on the CH vibration of the polymer and oligomer in the range of 20 cm- 1 was measured.
  • the absorbance ratio was calculated by the following equation.
  • Z (Absorbance based on CH vibration of polymer and oligomer in the range of 740 ⁇ 20 cm- 1 )
  • the gel fraction (% by weight) of the pressure-sensitive adhesive layer was determined by the following equation.
  • An optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 5 parts of the acrylic oligomer (B).
  • An adhesive composition was prepared.
  • Example 3 An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used.
  • the gel fraction of the pressure-sensitive adhesive layer was 55% by weight.
  • An optical film for an optical film was prepared in the same manner as in Example 1, except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 10 parts of the acrylic oligomer (B).
  • An adhesive composition was prepared.
  • An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned pressure-sensitive adhesive composition for an optical film was used.
  • the gel fraction of the pressure-sensitive adhesive layer was 53% by weight.
  • An optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 20 parts of the acrylic oligomer (A).
  • An adhesive composition was prepared.
  • An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used.
  • the gel fraction of the pressure-sensitive adhesive layer was 50% by weight.
  • An optical film for an optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 50 parts of the acrylic oligomer (B).
  • An adhesive composition was prepared.
  • An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used.
  • the gel fraction of the pressure-sensitive adhesive layer was 47% by weight.
  • An optical film for an optical film was prepared in the same manner as in Example 1, except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 100 parts of the acrylic oligomer (B).
  • An adhesive composition was prepared.
  • An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used.
  • the gel fraction of the pressure-sensitive adhesive layer was 45% by weight.
  • the produced pressure-sensitive adhesive optical film was adhered to both sides of an alkali-free glass plate (0.7 mm thick) so as to be in a crossed Nicols state.
  • the sample was subjected to autoclave treatment at 50 ° C and 5 atm for 15 minutes, and the sample was completely adhered to obtain a sample. Thereafter, the sample was left for 1) at 120 or 2) at 80 ° C and 90% RH for 500 hours. Then, the occurrence state of the window frame-shaped unevenness of the polarizing plate was visually observed on a 10,000-power Nendera backlight, and evaluated according to the following criteria. ⁇ : No problem in practical use.
  • the prepared pressure-sensitive adhesive optical film was adhered to both sides of a non-alkali glass plate (0.7 mm thick) so as to be in a crossed Nicols state.
  • the sample was subjected to autoclave treatment at 50 ° C and 5 atm for 15 minutes, and the sample was completely adhered to obtain a sample. Thereafter, the sample was left for 1) at 120 or 2) at 80 ° C and 90% RH for 500 hours.
  • the occurrence of light leakage from the polarizing plate was visually observed on a 10,000 vender Ndera backlight, and evaluated according to the following criteria.
  • the pressure-sensitive adhesive optical film using the pressure-sensitive adhesive composition having an absorbance ratio of 0.3 or less was subjected to long-term severe environmental conditions (120 ° C 80 ° C 90% RH). ), There is no adverse effect on the liquid crystal display state, which does not cause window frame-shaped unevenness or light leakage on the optical film (polarizing plate).
  • the viscosity using an adhesive composition having an absorbance ratio exceeding 0.3 The wearable optical film (Comparative Examples 13) has window frame-shaped unevenness due to long-term severe environmental conditions (120 ° C for 500 hours), which adversely affects the liquid crystal display.
  • the present invention relates to a pressure-sensitive adhesive composition for an optical film and a pressure-sensitive adhesive layer for an optical film formed by the pressure-sensitive adhesive composition for an optical film.
  • the present invention also relates to an adhesive optical film having the adhesive layer, and to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the adhesive optical film.
  • the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a laminate of these.

Abstract

A pressure-sensitive adhesive composition for optical films which can effectively inhibit light leakage and window-frame-pattern unevenness even under the high-temperature conditions of about 120°C. The pressure-sensitive adhesive composition for optical films comprises: a (meth)acrylate polymer having a weight-average molecular weight of 500,000 to 2,500,000; a (meth)acrylate oligomer having a weight-average molecular weight of 1,000 to 10,000 obtained by polymerization with a chain transfer agent having a reactive carbon-carbon double bond; and a crosslinking agent. It is characterized in that the content of the chain transfer agent in the composition is 0.3 or lower in terms of absorbance ratio [(absorbance assignable to C=C vibration in the chain transfer agent in 780±20 cm-1 region)/(absorbance assignable to C-H vibration in the polymer and oligomer in 740±20 cm-1 region)].

Description

明 細 書  Specification
光学フィルム用粘着剤組成物、光学フィルム用粘着剤層、粘着型光学フ イルムおよび画像表示装置  Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive optical film and image display device
技術分野  Technical field
[0001] 本発明は、光学フィルム用粘着剤組成物に関する。また本発明は当該光学フィル ム用粘着剤組成物により形成される光学フィルム用粘着剤層に関する。さら〖こは本発 明は、当該粘着剤層を有する粘着型光学フィルム、さらには前記粘着型光学フィル ムを用いた液晶表示装置、有機 EL表示装置、 PDP等の画像表示装置に関する。前 記光学フィルムとしては、偏光板、位相差板、光学補償フィルム、輝度向上フィルム、 さらにはこれらが積層されているものなどがあげられる。  The present invention relates to a pressure-sensitive adhesive composition for an optical film. The present invention also relates to a pressure-sensitive adhesive layer for an optical film formed from the pressure-sensitive adhesive composition for an optical film. Furthermore, the present invention relates to an adhesive optical film having the adhesive layer, and further to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the adhesive optical film. Examples of the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a film in which these are laminated.
背景技術  Background art
[0002] 液晶表示装置等に用いる光学フィルム、例えば偏光板や位相差板などは、液晶セ ルに粘着剤を用いて貼り付けられる。このような光学フィルムに用いられる材料は、加 熱条件下や加湿条件下では伸縮が大きいため、貼り付け後には、それに伴う浮きや 剥がれが生じやすい。そのため、光学フィルム用粘着剤には、加熱条件下や加湿条 件下においても対応できる耐久性が要求される。  [0002] An optical film used for a liquid crystal display device or the like, for example, a polarizing plate or a retardation plate, is attached to a liquid crystal cell using an adhesive. The material used for such an optical film has a large expansion and contraction under heating or humidification conditions, so that it tends to float or peel off after the application. Therefore, adhesives for optical films are required to have durability that can be used under heating conditions and humidification conditions.
[0003] また、光学フィルム用粘着剤には、加熱条件下や加湿条件下にお!/、て、偏光板な どの光学フィルムの寸歩変化に起因する応力を均一に緩和することが求められる。か 力る応力緩和性に劣る場合には、偏光板などの光学フィルムに残留応力が残存して しまい、偏光ヌケ (光漏れ)などの悪影響が起こる。  [0003] In addition, pressure-sensitive adhesives for optical films are required to uniformly relieve stresses caused by dimensional changes of optical films such as polarizing plates under heating or humidifying conditions. . When the stress relaxation property is poor, residual stress remains in an optical film such as a polarizing plate, and adverse effects such as polarization loss (light leakage) occur.
[0004] このような光学フィルムに使用される粘着剤としては、各種の材料が提案されている 。たとえば、高分子量ポリマーに低分子量ポリマーをブレンドして、粘着剤の応力緩 和性を向上させる試みが行われて!/ヽる(特許文献 1一 5)。  [0004] Various materials have been proposed as adhesives used for such optical films. For example, attempts have been made to blend a high molecular weight polymer with a low molecular weight polymer to improve the stress relaxation of the pressure-sensitive adhesive!
[0005] 特許文献 1では、官能基比率が高い高分子量ポリマー 100重量部に、重量平均分 子量 3万以下の低分子量ポリマーを 20— 200重量部配合して架橋構造を採る粘着 剤組成物が提案されている。カゝかる粘着剤組成物によれば、高分子量成分による 3 次元構造で高温高湿下での発泡や剥がれを防止し、偏光板の寸法変化に伴う内部 応力を低分子量ポリマー成分で吸収できることが開示されている。 [0005] Patent Document 1 discloses a pressure-sensitive adhesive composition having a crosslinked structure obtained by mixing 20 to 200 parts by weight of a low molecular weight polymer having a weight average molecular weight of 30,000 or less with 100 parts by weight of a high molecular weight polymer having a high functional group ratio. Has been proposed. According to the pressure-sensitive adhesive composition, the three-dimensional structure of the high molecular weight component prevents foaming and peeling under high temperature and high humidity, and prevents internal It is disclosed that stress can be absorbed by low molecular weight polymer components.
[0006] 特許文献 2では、高分子量ポリマーに、重量平均分子量 50万以下の低分子量ポリ マーを配合した粘着剤組成物が提案されている。力かる粘着剤組成物によれば、応 力集中を緩和して、液晶セルの白ヌケを抑制するとともに、剥離後に液晶セルに糊 残りや曇りを生じな 、ことが開示して 、る。  [0006] Patent Document 2 proposes a pressure-sensitive adhesive composition in which a low molecular weight polymer having a weight average molecular weight of 500,000 or less is blended with a high molecular weight polymer. According to the disclosed pressure-sensitive adhesive composition, it is disclosed that stress concentration is relieved, white spots in the liquid crystal cell are suppressed, and no adhesive residue or fogging occurs in the liquid crystal cell after peeling.
[0007] 特許文献 3では、高分子量ポリマー 100重量部に、重量平均分子量 5000以上 50 万未満の低分子量ポリマーを 1一 50重量部配合し、かつ高分子量ポリマーまたは低 分子量ポリマーのいずれかに一方に窒素含有官能基を含む粘着剤組成物が提案さ れている。力かる粘着剤組成物によれば、窒素含有官能基の被着体との結合性の強 さで、耐久性に優れ、かつ偏光板の伸縮に追随して白ヌケを抑制できることが開示さ れている。  [0007] In Patent Document 3, 1 to 50 parts by weight of a low molecular weight polymer having a weight average molecular weight of 5,000 to less than 500,000 is blended with 100 parts by weight of a high molecular weight polymer, and one of the high molecular weight polymer and the low molecular weight polymer is mixed. A pressure-sensitive adhesive composition containing a nitrogen-containing functional group has been proposed. According to the powerful pressure-sensitive adhesive composition, it is disclosed that the strength of the bond between the nitrogen-containing functional group and the adherend is excellent, the durability is excellent, and the white drop can be suppressed by following the expansion and contraction of the polarizing plate. ing.
[0008] 特許文献 4では、高分子量ポリマー 100重量部に、重量平均分子量が 1000— 10 000のアクリル系オリゴマーを 5— 100重量部および 2官能架橋剤を配合した粘着剤 組成物が提案されている。かかる粘着剤組成物によれば、被着体との密着性に優れ るとともに、良好な応力緩和性を有することで耐久性と白ヌケを抑制できることが開示 されている。  [0008] Patent Document 4 proposes a pressure-sensitive adhesive composition comprising 100 parts by weight of a high-molecular-weight polymer, 5 to 100 parts by weight of an acrylic oligomer having a weight average molecular weight of 1,000 to 10,000, and a bifunctional crosslinking agent. I have. It is disclosed that such a pressure-sensitive adhesive composition has excellent adhesion to an adherend and has good stress relaxation properties so that durability and white spots can be suppressed.
[0009] 特許文献 5では、高分子量ポリマー 100重量部に、ガラス転移点が 0—— 80°Cの重 量平均分子量 3— 10万の低分子量ポリマーを 10— 100重量部および多官能化合 物を配合した粘着剤組成物が提案されている。かかる粘着剤組成物は、剥がれや発 泡や白ヌケ現象に対応できることが開示されて 、る。  [0009] Patent Document 5 discloses that 100 to 100 parts by weight of a high molecular weight polymer is mixed with 10 to 100 parts by weight of a low molecular weight polymer having a glass transition point of 0 to 80 ° C and a low molecular weight of 3 to 100,000, Has been proposed. It is disclosed that such an adhesive composition can cope with peeling, foaming, and white drop phenomenon.
[0010] 前記のような粘着剤組成物を用いることにより、光学フィルムの寸法変化に起因す る応力をある程度緩和することができ、高温化での偏光ヌケ (光漏れ)をある程度防 止することができる。  [0010] By using the above-mentioned pressure-sensitive adhesive composition, it is possible to alleviate the stress caused by the dimensional change of the optical film to some extent, and to prevent the loss of polarization (light leakage) at a high temperature. Can be.
[0011] しかし、近年、液晶表示装置は車載用等のさらに過酷な高温条件下で使用される 場合が多くなつており、さらなる高耐久性が望まれている。そのような高温条件下にお いては、ガラス等の基材に貼付された光学フィルムの大気に接する外部において酸 化劣化が激しぐ光学フィルムの応力緩和性が内部と外部とで大きく異なってくるた め、内部と外部とで偏光ヌケ (光漏れ)が異なる、いわゆる「窓枠状ムラ現象」が生じる 傾向にある。 However, in recent years, liquid crystal display devices are often used under severer high-temperature conditions, such as for use in vehicles, and further higher durability is desired. Under such high-temperature conditions, the optical film affixed to a substrate such as glass undergoes oxidative degradation at the outside where it is exposed to the atmosphere. The so-called “window frame-like unevenness phenomenon” occurs because the polarization loss (light leakage) differs between inside and outside There is a tendency.
[0012] 該問題を解決するために、粘着剤に酸化防止剤と架橋剤を添加することにより光漏 れゃ額縁現象を抑制する技術が開示されている (特許文献 6)。また、粘着組成物に 架橋剤とラジカル捕捉剤を添加することにより加水分解による粘着剤の劣化を抑制 する技術が開示されている (特許文献 7)。  [0012] In order to solve the above problem, a technique has been disclosed in which an antioxidant and a cross-linking agent are added to an adhesive to suppress the light leakage and the frame phenomenon (Patent Document 6). In addition, a technique has been disclosed in which a crosslinking agent and a radical scavenger are added to an adhesive composition to suppress degradation of the adhesive due to hydrolysis (Patent Document 7).
[0013] しかしながら、 120°C以上の高温条件下においては、上記のような添加剤を配合し ても偏光ヌケ (光漏れ)や窓枠状ムラ現象を効果的に抑制することができな!/、。 However, under high-temperature conditions of 120 ° C. or higher, even if the above-mentioned additives are blended, it is not possible to effectively suppress the polarization omission (light leakage) and the window frame-like unevenness! /.
特許文献 1:特開平 10— 279907号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 10-279907
特許文献 2:特開 2000— 109771号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2000-109771
特許文献 3 :特開 2000 - 89731号公報  Patent Document 3: JP 2000-89731 A
特許文献 4:特開 2001— 335767号公報  Patent Document 4: JP 2001-335767 A
特許文献 5:特開 2002— 121521号公報  Patent Document 5: JP-A-2002-121521
特許文献 6:特開 2003-49143号公報  Patent Document 6: JP-A-2003-49143
特許文献 7:特開 2002-30264号公報  Patent Document 7: JP-A-2002-30264
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明は、 120°C程度の高温条件下においても光漏れや窓枠状ムラを効果的に 抑制することができる光学フィルム用粘着剤組成物を提供することを目的とする。また 本発明は当該光学フィルム用粘着剤組成物により形成される光学フィルム用粘着剤 層を提供することを目的とする。さらには本発明は、当該粘着剤層を有する粘着型光 学フィルムや画像表示装置を提供することを目的とする。 課題を解決するための手段 An object of the present invention is to provide a pressure-sensitive adhesive composition for an optical film that can effectively suppress light leakage and window frame-like unevenness even under a high temperature condition of about 120 ° C. Another object of the present invention is to provide a pressure-sensitive adhesive layer for an optical film formed from the pressure-sensitive adhesive composition for an optical film. Still another object of the present invention is to provide an adhesive optical film and an image display device having the adhesive layer. Means for solving the problem
[0015] 本発明者らは、上記課題を達成すべく鋭意検討した結果、下記光学フィルム用粘 着剤組成物により上記目的を達成できることを見出し、本発明を完成するに至った。  [0015] The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by the following adhesive composition for an optical film, and have completed the present invention.
[0016] すなわち本発明は、重量平均分子量 50万一 250万の(メタ)アタリレート系ポリマー 、反応性炭素 -炭素二重結合を有する連鎖移動剤を用いて重合した重量平均分子 量 1000— 1万の (メタ)アタリレート系オリゴマー、及び架橋剤を含有する粘着剤組成 物であり、かつ該組成物中における連鎖移動剤の含有率力 吸光度比〔(780±20c π 1の範囲における前記連鎖移動剤の C = C振動に基づく吸光度) Z (740士 20cm —1の範囲における前記ポリマー及びオリゴマーの C H振動に基づく吸光度)〕により 0. 3以下であることを特徴とする光学フィルム用粘着剤組成物に関する。 That is, the present invention provides a (meth) acrylate polymer having a weight-average molecular weight of 500,000 to 2.5 million, a weight-average molecular weight of 1000-1 polymerized using a chain transfer agent having a reactive carbon-carbon double bond. A pressure-sensitive adhesive composition containing 10,000 (meth) acrylate copolymers and a cross-linking agent, and a chain transfer agent content in the composition, an absorbance ratio [(780 ± 20c The absorbance based on the C = C vibration of the chain transfer agent in the range of π 1 ) Z (absorbance based on the CH vibration of the polymer and oligomer in the range of 740 × 20 cm- 1 ) is 0.3 or less. And a pressure-sensitive adhesive composition for an optical film.
[0017] 本発明者らは、高温又は高温高湿下での光学フィルム外部の劣化によって起こる 窓枠状ムラ現象の発生原因が、粘着剤組成物中の反応性炭素 炭素二重結合の含 有率に起因すると考え、該組成物中における反応性炭素 炭素二重結合を有する 連鎖移動剤の含有率を、吸光度比〔(780 ± 20cm— 1の範囲における前記連鎖移動 剤の C = C振動に基づく吸光度) Z (740 ± 20cm— 1の範囲における前記ポリマー及 びオリゴマーの C H振動に基づく吸光度)〕により 0. 3以下にすることにより効果的 に光漏れや窓枠状ムラ現象を抑制できることを見出した。 The present inventors have found that the cause of the window frame-like unevenness phenomenon caused by the deterioration of the outside of the optical film under a high temperature or high temperature and high humidity is a reactive carbon-carbon double bond contained in the pressure-sensitive adhesive composition. Rate of the chain transfer agent having a reactive carbon-carbon double bond in the composition, the absorbance ratio [(C = C vibration of the chain transfer agent in the range of (780 ± 20 cm- 1 ) Absorbance based on Z) (absorbance based on CH vibration of the polymer and oligomer in the range of 740 ± 20 cm- 1 )] of 0.3 or less ensures that light leakage and window frame-like unevenness can be effectively suppressed. I found it.
[0018] 粘着剤組成物中の反応性炭素 炭素二重結合の含有率は、重合開始剤や連鎖移 動剤などの添加剤に寄与するところが大きい。その中でも、オリゴマーの製造時にォ リゴマーの分子量を制御するために多量に使用される α—メチルスチレンダイマーな どの反応性炭素 炭素二重結合を有する連鎖移動剤の酸ィ匕劣化等により窓枠状ム ラ現象が発生すると考えられる。連鎖移動剤としては、ドデシルメルカブタン、メルカ プトエチルアルコール、メルカプトコハク酸、及びチォグリコール酸などの反応性炭素 炭素二重結合を有しな 、連鎖移動剤もあるが、製造プロセスゃノ、ンドリング性 (例 えば、匂いなど)等の観点力も使用し難い。そのため、オリゴマーの製造時に反応性 炭素 炭素二重結合を有する連鎖移動剤を使用した場合であっても、如何に光漏れ や窓枠状ムラ現象を抑制するかが重要となるのである。 [0018] The content of the reactive carbon double bond in the pressure-sensitive adhesive composition largely contributes to additives such as a polymerization initiator and a chain transfer agent. Among them, a window frame is formed due to degradation of a chain transfer agent having a reactive carbon-carbon double bond, such as α -methylstyrene dimer, which is used in a large amount to control the molecular weight of the oligomer during oligomer production. It is considered that the mull phenomenon occurs. As the chain transfer agent, there is a chain transfer agent having no reactive carbon-carbon double bond, such as dodecyl mercaptan, mercaptoethyl alcohol, mercaptosuccinic acid, and thioglycolic acid. It is difficult to use viewpoints such as gender (for example, smell). Therefore, even when a chain transfer agent having a reactive carbon-carbon double bond is used during the production of an oligomer, it is important how to suppress light leakage and window frame-like unevenness.
[0019] 本発明にお 、ては、ハンドリング性等の観点から、前記連鎖移動剤が、 a メチル スチレン、 α—メチルスチレンダイマー、及び α—メチルスチレントリマーからなる群より 選択される少なくとも 1種のスチレン系連鎖移動剤であることが好ましい。特に、前記 連鎖移動剤が、 αーメチルスチレンダイマーであることが好まし 、。 [0019] In the present invention, from the viewpoint of handling properties and the like, the chain transfer agent is at least one selected from the group consisting of a-methylstyrene, α-methylstyrene dimer, and α-methylstyrene trimer. Is preferable. In particular, it is preferable that the chain transfer agent is an α -methylstyrene dimer.
[0020] 本発明の光学フィルム用粘着剤層は、前記光学フィルム用粘着剤組成物を架橋す ることにより形成される。架橋された光学フィルム用粘着剤層のゲル分率は 30— 80 重量%であることが好ましい。前記粘着剤組成物により形成される粘着剤層は、架橋 剤を使用するにより上記所定のゲル分率になるように設定可能であり、光学フィルム を液晶セルに貼付け後、各種の工程を経るなどの長時間を経過したり、高温高湿状 態に保存されても接着状態では剥がれ、浮き、発泡などが発生せず、耐久性を向上 させることがでさる。 The pressure-sensitive adhesive layer for an optical film of the present invention is formed by crosslinking the pressure-sensitive adhesive composition for an optical film. The gel fraction of the crosslinked pressure-sensitive adhesive layer for an optical film is preferably 30 to 80% by weight. The pressure-sensitive adhesive layer formed by the pressure-sensitive adhesive composition can be set to have the predetermined gel fraction by using a cross-linking agent. Even after a long period of time, such as going through various processes after sticking to the liquid crystal cell, or being stored in a high-temperature, high-humidity state, it does not peel, float, or foam in the bonded state, improving durability. It comes out.
[0021] 本発明の粘着型光学フィルムは、光学フィルムの片面または両面に、前記光学フィ ルム用粘着剤層が形成されて ヽるものである。  The pressure-sensitive adhesive optical film of the present invention is obtained by forming the pressure-sensitive adhesive layer for an optical film on one or both surfaces of the optical film.
[0022] また本発明は、前記粘着型光学フィルムを少なくとも 1つ用いた画像表示装置に関 する。 The present invention also relates to an image display device using at least one of the pressure-sensitive adhesive optical films.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の光学フィルム用粘着剤組成物は、重量平均分子量 50万一 250万の (メタ )アタリレート系ポリマー、反応性炭素 炭素二重結合を有する連鎖移動剤を用いて 重合した重量平均分子量 1000— 1万の (メタ)アタリレート系オリゴマー、及び架橋剤 を含有する粘着剤組成物であり、かつ該組成物中における連鎖移動剤の含有率が、 吸光度比〔(780士 20cm— 1の範囲における前記連鎖移動剤の C = C振動に基づく吸 光度) Z (740 ± 20cm— 1の範囲における前記ポリマー及びオリゴマーの C H振動に 基づく吸光度)〕により 0. 3以下であることを特徴とする。なお、(メタ)アクリル系ポリマ 一は、アクリル系ポリマーおよび Zまたはメタクリル系ポリマーをいい、本発明の (メタ) とは同様の意味である。 The pressure-sensitive adhesive composition for an optical film of the present invention is obtained by polymerizing a (meth) acrylate polymer having a weight average molecular weight of 500,000 to 2.5 million and a chain transfer agent having a reactive carbon-carbon double bond. It is a pressure-sensitive adhesive composition containing a (meth) acrylate copolymer having an average molecular weight of 1,000 to 10,000 and a crosslinking agent, and the content of the chain transfer agent in the composition is determined by the absorbance ratio [(780 cm 20 cm— The absorbance based on the C = C vibration of the chain transfer agent in the range of 1 ) Z (absorbance based on the CH vibration of the polymer and the oligomer in the range of 740 ± 20 cm- 1 )] is 0.3 or less. And The (meth) acrylic polymer refers to an acrylic polymer and a Z or methacrylic polymer, and has the same meaning as (meth) in the present invention.
[0024] 前記 (メタ)アクリル系ポリマーは、モノマー成分として (メタ)アクリル酸エステルを主 成分とし、少なくとも該 (メタ)アクリル酸エステルと架橋性官能基を有するモノマーとを 共重合することにより得られる。共重合形態については特に制限されず、ランダム、ブ ロック、又はグラフトのいずれであってもよい。  The (meth) acrylic polymer is obtained by copolymerizing at least the (meth) acrylic ester and a monomer having a crosslinkable functional group, with the (meth) acrylic ester as a main component as a monomer component. Can be The copolymer form is not particularly limited, and may be any of random, block, or graft.
[0025] (メタ)アクリル系ポリマーの主骨格を構成する (メタ)アクリル酸エステルは特に制限 されないが、メチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピル (メタ)アタリ レート、 n ブチル(メタ)アタリレート、 iso ブチル(メタ)アタリレート、 2—ェチルへキシ ル (メタ)アタリレート、 n-ォクチル (メタ)アタリレート、 iso-ォクチル (メタ)アタリレート、 ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレート、シクロへキシル (メタ)アタリレ ート、ベンジル (メタ)アタリレート、メトキシェチル (メタ)アタリレート、エトキシメチル (メ タ)アタリレート、及びフエノキシェチル (メタ)アタリレートなどが挙げられる。これらは 単独または組み合わせて使用できる。 [0025] The (meth) acrylic acid ester constituting the main skeleton of the (meth) acrylic polymer is not particularly limited, but may be methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, or n-butyl. (Meth) acrylate, iso-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, iso-octyl (meth) acrylate, lauryl (meth) acrylate , Stearyl (meth) atalylate, cyclohexyl (meth) atalylate, benzyl (meth) atalylate, methoxyethyl (meth) atalylate, ethoxymethyl (meth) atalylate, and phenoxicetyl (meth) atalylate No. They are They can be used alone or in combination.
[0026] 架橋性官能基を有するモノマーとしては、例えば、(メタ)アクリル酸、 β—カルポキ シェチル (メタ)アタリレート、ィタコン酸、クロトン酸、マレイン酸、フマル酸、及び無水 マレイン酸などのカルボキシル基含有モノマー、 2—ヒドロキシェチル (メタ)アタリレー ト、 4—ヒドロキシブチル (メタ)アタリレート、 3 クロ口一 2—ヒドロキシプロピル (メタ)アタリ レート、ジエチレングリコールモノ(メタ)アタリレート、及びァリルアルコールなどのヒド 口キシル基含有モノマー、グリシジル (メタ)アタリレートなどのエポキシ基含有モノマ 一、アミノメチル (メタ)アタリレート、及びジメチルアミノエチル (メタ)アタリレートなどの アミノ基含有モノマー、 (メタ)アクリルアミド、メチロール (メタ)アクリルアミド、及びメト キシェチル (メタ)アクリルアミドなどのアミド基含有モノマー、ビュルトリメトキシシラン、  [0026] Examples of the monomer having a crosslinkable functional group include, for example, carboxyls such as (meth) acrylic acid, β-carpoxyshethyl (meth) atalylate, itaconic acid, crotonic acid, maleic acid, fumaric acid, and maleic anhydride. Group-containing monomer, 2-hydroxyethyl (meth) atalylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and aryl Hydroxyl group-containing monomers such as alcohols, epoxy group-containing monomers such as glycidyl (meth) acrylate, and amino group-containing monomers such as aminomethyl (meth) acrylate and dimethylaminoethyl (meth) acrylate ) Acrylamide, methylol (meth) acrylamide And methemoglobin Kishechiru (meth) amide group-containing monomers such as acrylamide, Bulle trimethoxysilane,
素含有モノマー、ァセトァセトキシェチル (メタ)アタリレートなどのァセトァセチル基含 有モノマーなどが挙げられる。これらは単独または組み合わせて使用できる。 And acetoacetyl-group-containing monomers such as acetoacetoxityl (meth) acrylate. These can be used alone or in combination.
[0027] 架橋性官能基を有するモノマーは、(メタ)アクリル酸エステル 100重量部に対して 0[0027] The monomer having a crosslinkable functional group is added in an amount of 0 based on 100 parts by weight of the (meth) acrylate.
. 01— 25重量部用いることが好ましぐさらに好ましくは 0. 05— 15重量部である。 It is preferable to use from 01 to 25 parts by weight, more preferably from 0.05 to 15 parts by weight.
[0028] さらに、その他のモノマーとして、スチレン、 α—メチルスチレン、及びビュルトルエン などの芳香族ビュルモノマー、酢酸ビニル、塩化ビニル、(メタ)アクリロニトリルなどを 単独または組み合わせて使用してもょ 、。 Further, as other monomers, aromatic vinyl monomers such as styrene, α-methylstyrene and vinyl toluene, vinyl acetate, vinyl chloride, (meth) acrylonitrile and the like may be used alone or in combination.
[0029] 前記その他のモノマーは、(メタ)アクリル酸エステル 100重量部に対して 100重量 部以下使用することが好ましぐさらに好ましくは 50重量部以下である。 [0029] The other monomer is preferably used in an amount of 100 parts by weight or less, more preferably 50 parts by weight or less, based on 100 parts by weight of the (meth) acrylate.
[0030] 前記 (メタ)アクリル系ポリマーの重量平均分子量は 50万一 250万であり、好ましく は 100万一 200万である。重量平均分子量が 50万未満の場合には、被着体との密 着性や耐久性が不十分になる傾向にあり、 250万を超える場合には光学フィルムの 伸縮に対する応力緩和性が低下する傾向にある。 [0030] The weight average molecular weight of the (meth) acrylic polymer is from 500,000 to 250,000, preferably from 1,000,000 to 2,000,000. When the weight average molecular weight is less than 500,000, the adhesion to the adherend and the durability tend to be insufficient, and when the weight average molecular weight exceeds 2.5 million, the stress relaxation property against the expansion and contraction of the optical film decreases. There is a tendency.
[0031] 前記 (メタ)アクリル系ポリマーの製造は、各種公知の方法により製造でき、たとえば[0031] The (meth) acrylic polymer can be produced by various known methods.
、バルタ重合法、溶液重合法、懸濁重合法等のラジカル重合法を適宜選択できる。 , A radical polymerization method such as a barta polymerization method, a solution polymerization method, and a suspension polymerization method can be appropriately selected.
[0032] 重合開始剤としては、過酸化水素、過酸化べンゾィル、 t ブチルパーオキサイドな どの過酸ィ匕物系が挙げられる。単独で用いるのが望ましいが、還元剤と組み合わせ てレドックス系重合開始剤として使用することもできる。還元剤としては、例えば、亜硫 酸塩、亜硫酸水素塩、鉄、銅、コバルト塩などのイオンィ匕の塩、トリエタノールアミン等 のァミン類、アルドース、ケトース等の還元糖などを挙げることができる。また、ァゾィ匕 合物も好ましい重合開始剤であり、 2, 2'—ァゾビス 2—メチルプロピオアミジン酸塩、 2, 2'—ァゾビス— 2, 4—ジメチルバレロニトリル、 2, 2'—ァゾビス N, N'—ジメチレン イソブチルアミジン酸塩、 2, 2,ーァゾビスイソブチ口-トリル、 2, 2,ーァゾビス— 2—メチ ルー N— (2—ヒドロキシェチル)プロピオンアミド等を使用することができる。また、上記 重合開始剤を 2種以上併用して使用することも可能である。 [0032] Examples of the polymerization initiator include peroxides such as hydrogen peroxide, benzoyl peroxide, and t-butyl peroxide. It is desirable to use it alone, but in combination with a reducing agent Can also be used as a redox polymerization initiator. Examples of the reducing agent include ionic sulfites, bisulfites, salts of ions such as iron, copper, and cobalt salts, amines such as triethanolamine, and reducing sugars such as aldose and ketose. . Further, azoi conjugates are also preferred polymerization initiators, such as 2,2'-azobis 2-methylpropioamidine, 2,2'-azobis-2,4-dimethylvaleronitrile, and 2,2'-azobis Use N, N'-dimethylene isobutylamidate, 2,2, -azobisisobutymouth-tolyl, 2,2, -azobis-2-methyl-N- (2-hydroxyethyl) propionamide, etc. be able to. It is also possible to use two or more of the above polymerization initiators in combination.
[0033] 反応温度は通常 50— 85°C程度、反応時間は 1一 8時間程度とされる。また、前記 製造法のなかでも溶液重合法が好ましぐ(メタ)アクリル系ポリマーの溶媒としては一 般に酢酸ェチル、トルエン等の極性溶剤が用いられる。溶液濃度は通常 20— 80重 量%程度とされる。 [0033] The reaction temperature is usually about 50 to 85 ° C, and the reaction time is about 118 hours. Among the above-mentioned production methods, a solvent for the (meth) acrylic polymer, which is preferably a solution polymerization method, is generally a polar solvent such as ethyl acetate and toluene. The solution concentration is usually about 20-80% by weight.
[0034] 前記 (メタ)アクリル系オリゴマーは、前記 (メタ)アクリル酸エステルをモノマー成分と して用い、前記と同様の方法で製造することができる。  [0034] The (meth) acrylic oligomer can be produced by the same method as described above, using the (meth) acrylic acid ester as a monomer component.
[0035] (メタ)アクリル系オリゴマーの重量平均分子量は 1000— 1万であり、好ましくは 200 0— 1万である。重量平均分子量が 1000未満の場合には、耐久性が低下したり、該 オリゴマーがブリードアウトして粘着型光学フィルムを被着体力 剥離した際に、被着 体を汚染する恐れがある。一方、重量平均分子量が 1万を超える場合には、光学フィ ルムの伸縮に対する応力緩和性が低下したり、被着体への接着力が増大するため 好ましくない。  [0035] The weight average molecular weight of the (meth) acrylic oligomer is from 1,000 to 10,000, preferably from 2,000 to 10,000. If the weight average molecular weight is less than 1000, durability may be reduced, or the oligomer may bleed out and contaminate the adherend when the adhesive optical film is peeled off. On the other hand, if the weight average molecular weight exceeds 10,000, it is not preferable because the stress relaxation property against the expansion and contraction of the optical film decreases and the adhesive strength to the adherend increases.
[0036] (メタ)アクリル系オリゴマーの重量平均分子量は、大量の重合開始剤を使用したり 、連鎖移動剤を使用することにより調整できる。重合開始剤としては前記と同様のも のを使用することができる。本発明において、(メタ)アクリル系オリゴマーの重量平均 分子量の調整には反応性炭素 -炭素二重結合を有する連鎖移動剤を使用する。  [0036] The weight average molecular weight of the (meth) acrylic oligomer can be adjusted by using a large amount of a polymerization initiator or using a chain transfer agent. As the polymerization initiator, the same one as described above can be used. In the present invention, a chain transfer agent having a reactive carbon-carbon double bond is used for adjusting the weight average molecular weight of the (meth) acrylic oligomer.
[0037] 反応性炭素 炭素二重結合を有する連鎖移動剤としては、例えば、 α—メチルスチ レン、 α—メチルスチレンダイマー、及び α—メチルスチレントリマーなどのスチレン類 、 2, 4ージフエ-ルー 4ーメチルー 1 ペンテンなどのアルケン類、水酸基と共役二重結 合を有するロジンエステル類などが挙げられる。これらは単独または 2種以上を組み 合わせて使用できる。 Examples of the chain transfer agent having a reactive carbon-carbon double bond include styrenes such as α-methylstyrene, α-methylstyrene dimer, and α-methylstyrene trimer; and 2,4-diphenyl-4-methyl- (1) Alkenes such as pentene; rosin esters having a conjugated double bond with a hydroxyl group; These may be used alone or in combination of two or more. Can be used together.
[0038] 粘着剤組成物中の連鎖移動剤の含有率を、前記吸光度比により 0. 3以下に制御 するためには、(メタ)アクリル系オリゴマーの原料モノマー 100重量部に対して前記 連鎖移動剤を 10重量部以下で使用することが好ましぐさらに好ましくは 5重量部以 下、特に好ましくは 1重量部以下である。  [0038] In order to control the content of the chain transfer agent in the pressure-sensitive adhesive composition to 0.3 or less by the absorbance ratio, the chain transfer agent is used for 100 parts by weight of the raw material monomer of the (meth) acrylic oligomer. It is preferable to use the agent in an amount of 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 1 part by weight or less.
[0039] 前記 (メタ)アクリル系オリゴマーの添加量は特に制限されないが、(メタ)アクリル系 ポリマー 100重量部に対して 5— 100重量部であることが好ましぐさらに好ましくは 1 0— 50重量部、特に好ましくは 10— 20重量部である。(メタ)アクリル系オリゴマーの 添加量が、 100重量部を超えると耐久性に悪影響があり、また吸光度比を 0. 3以下 に制御することが難しくなるため好ましくない。一方、 5重量部未満では被着体 (液晶 セル)への接着力が増大するので好ましくない。  [0039] The amount of the (meth) acrylic oligomer to be added is not particularly limited, but is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, per 100 parts by weight of the (meth) acrylic polymer. Parts by weight, particularly preferably 10 to 20 parts by weight. If the amount of the (meth) acrylic oligomer exceeds 100 parts by weight, the durability is adversely affected, and it is difficult to control the absorbance ratio to 0.3 or less. On the other hand, if the amount is less than 5 parts by weight, the adhesion to the adherend (liquid crystal cell) increases, which is not preferable.
[0040] 前記架橋剤としては、(メタ)アクリル系ポリマーの官能基と反応して架橋構造を形 成できる多官能化合物である。例えば、前記ポリマーの官能基として水酸基を導入し た場合には、水酸基と架橋構造を形成する架橋剤を用いる。  [0040] The crosslinking agent is a polyfunctional compound capable of forming a crosslinked structure by reacting with a functional group of a (meth) acrylic polymer. For example, when a hydroxyl group is introduced as a functional group of the polymer, a crosslinking agent that forms a crosslinked structure with the hydroxyl group is used.
[0041] イソシァネート系架橋剤としては、例えば、トリレンジイソシァネート、クロ口フエ-レン ジイソシァネート、へキサメチレンジイソシァネート、テトラメチレンジイソシァネート、ィ ソホロンジイソシァネート、キシリレンジイソシァネート、ジフエニルメタンジイソシァネ ート、水添されたジフエ-ルメタンジイソシァネート、これらジイソシァネートイ匕合物をト リメチロールプロパンなどに付カ卩したポリイソシァネートイ匕合物、イソシァヌレートイ匕物 Examples of the isocyanate-based cross-linking agent include tolylene diisocyanate, chlorobenzene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, and xylylene diisoate. Cyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and polyisocyanate obtained by adding these diisocyanate conjugates to trimethylolpropane or the like I-Shadow, Isocyanurate
、ビュレット型化合物、これらジイソシァネートイ匕合物をポリエーテルポリオール、ポリ エステルポリオール、アクリルポリオール、ポリブタジエンポリオール、及びポリイソプ レンポリオールなどに付加反応させたウレタンプレポリマー型イソシァネートなどが挙 げられる。 And urethane prepolymer-type isocyanates obtained by subjecting these diisocyanate conjugates to an addition reaction with polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, and the like.
[0042] エポキシ系架橋剤としては、例えば、エチレングリコールグリシジルエーテル、ポリ エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリ ントリグリシジルエーテル、 1, 3—ビス(N, N—ジグリシジルアミノメチル)シクロへキサ ン、 N, N, Ν' , Ν,一テトラグリシジルー m—キシリレンジァミン、 N, N, Ν' , Ν,ーテトラ グリシジルァミノフエ-ルメタン、トリグリシジルイソシァヌレート、 m— Ν, N—ジグリシジ ルァミノフエ-ルグリシジルエーテル、 N, N—ジグリシジルトルイジン、及び N, N—ジ グリシジルァ二リンなどが挙げられる。 Examples of the epoxy-based cross-linking agent include ethylene glycol glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,3-bis (N, N-diglycidylaminomethyl) cyclo Hexane, N, N, Ν ', Ν, 1-tetraglycidyl m-xylylenediamine, N, N, Ν', Ν-tetraglycidylaminophenol methane, triglycidyl isocyanurate, m— Ν , N—Diglycidide Laminophenol-glycidyl ether, N, N-diglycidyl toluidine, N, N-diglycidyl dilin and the like.
[0043] アジリジン系架橋剤としては、例えば、ジフエ-ルメタン 4, 4' ビス(1 アジリジン カルボキサミド)、トリメチロールプロパントリ— 18—アジリジ -ルプロピオネート、テトラメ チロールメタントリ— アジリジ-ルプロピオネート、トルエン 2, 4 ビス(1 アジリジ ンカルボキサミド)、トリエチレンメラミン、ビスイソフタロイルー 1— (2—メチルアジリジン) 、トリス— 1— (2—メチルアジリジン)フォスフィン、及びトリメチロールプロパントリ—j8— ( 2—メチルアジリジン)プロピオネートなどが挙げられる。  [0043] Examples of the aziridine-based crosslinking agent include diphenylmethane 4,4'bis (1 aziridinecarboxamide), trimethylolpropanetri-18-aziridyl-propionate, tetramethylolmethanetri-aziridyl-propionate, and toluene 2,4. Bis (1-aziridincarboxamide), triethylenemelamine, bisisophthaloyl-1- (2-methylaziridine), tris-1- (2-methylaziridine) phosphine, and trimethylolpropanetri-j8- (2-methylaziridine ) Propionate and the like.
[0044] その他の架橋剤としては、メラミンィ匕合物、金属塩、金属キレートイ匕合物などがあげ られる。これらのなかでも、イソシァネート系架橋剤が好ましく用いられる。特に、(メタ )アクリル系ポリマー等の製造時に、 2—ヒドロキシェチルアタリレートなどの水酸基含 有モノマーを共重合して、(メタ)アクリル系ポリマー等に水酸基を導入した場合には 、架橋剤としてイソシァネートイ匕合物を使用して、(メタ)アクリル系ポリマー等の架橋 構造を形成するのが好適である。  [0044] Examples of other crosslinking agents include melamine conjugates, metal salts, and metal chelate conjugates. Among these, an isocyanate-based crosslinking agent is preferably used. In particular, when a hydroxyl group is introduced into a (meth) acrylic polymer or the like when a hydroxyl group-containing monomer such as 2-hydroxyethyl acrylate is copolymerized during the production of the (meth) acrylic polymer or the like, a crosslinking agent is used. It is preferable to form a crosslinked structure of a (meth) acrylic polymer or the like by using an isocyanate compound.
[0045] 架橋剤の配合は特に制限されないが、架橋された粘着剤層のゲル分率が、 30— 8 0重量%になるように配合するのが好ましい。さらには 40— 60重量%になるように架 橋剤の配合量を調整するのが好ましい。ゲル分率が 30重量%未満の場合には、粘 着剤層の耐久性が十分でなぐまた凝集力が低くなり、高温条件下で発泡を生じや すくなる傾向にある。一方、ゲル分率が 80重量%を超える場合には、応力緩和性に 劣り、高温や高温高湿条件下で剥がれや光漏れや窓枠状ムラが生じやすくなる傾向 にある。このようにゲル分率を調整するには、使用する材料によっても異なる力 通常 、架橋剤の配合量を (メタ)アクリル系ポリマー 100重量部に対して 0. 001— 5重量部 、さらには 0. 01— 2重量部とするのが好ましい。  [0045] The blending of the crosslinking agent is not particularly limited, but it is preferable to blend the crosslinking agent so that the gel fraction of the crosslinked pressure-sensitive adhesive layer is 30 to 80% by weight. Further, it is preferable to adjust the amount of the crosslinking agent to be 40 to 60% by weight. When the gel fraction is less than 30% by weight, the adhesive layer does not have sufficient durability, the cohesive strength is low, and foaming tends to occur under high temperature conditions. On the other hand, when the gel fraction exceeds 80% by weight, the stress relaxation property is poor, and peeling, light leakage, and window frame-like unevenness tend to occur easily under high temperature, high temperature and high humidity conditions. In order to adjust the gel fraction in this manner, the force varies depending on the material used. Generally, the compounding amount of the crosslinking agent is 0.001 to 5 parts by weight, and more preferably 0. 01-2 parts by weight are preferred.
[0046] 本発明の光学フィルム用粘着剤組成物には、シランカップリング剤を配合すること が好ましい。シランカップリング剤としては、従来より知られているものを特に制限なく 使用できる。例えば、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプロピ ルメチルジェトキシシラン、 2—(3, 4—エポキシシクロへキシル)ェチルトリメトキシシラ ンなどのエポキシ基含有シランカップリング剤; 3—ァミノプロピルトリメトキシシラン、 N -2- (アミノエチル)—3—ァミノプロピルメチルジメトキシシラン、 3—トリエトキシシリル N—( 1 , 3—ジメチルブチリデン)プロピルァミンなどのアミノ基含有シランカップリング 剤; 3—アタリロキシプロピルトリメトキシシラン、 3—メタクリロキシプロピルトリエトキシシ ランなどの(メタ)アクリル基含有シランカップリング剤; 3—イソシァネートプロピルトリエ トキシシランなどのイソシァネート基含有シランカップリング剤などがあげられる。 It is preferable that the pressure-sensitive adhesive composition for an optical film of the present invention contains a silane coupling agent. As the silane coupling agent, a conventionally known one can be used without any particular limitation. For example, epoxy group-containing silane couplings such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyljetoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane Agent: 3-aminopropyltrimethoxysilane, N Amino group-containing silane coupling agents such as -2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl N- (1,3-dimethylbutylidene) propylamine; 3-attaryloxypropyltriamine (Meth) acrylic group-containing silane coupling agents such as methoxysilane and 3-methacryloxypropyltriethoxysilane; and isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltriethoxysilane.
[0047] シランカップリング剤の配合量は特に制限されないが、(メタ)アクリル系ポリマー 10 0重量部に対して 0. 01— 1重量部であることが好ましぐさらに好ましくは 0. 02-0. 6重量部である。シランカップリング剤の配合量が 1重量部を超えると被着体 (液晶セ ル)への接着力が増大する傾向にあり、 0. 01重量部未満では粘着剤層の耐久性が 低下する傾向にある。 The amount of the silane coupling agent is not particularly limited, but is preferably 0.01 to 1 part by weight, more preferably 0.02 to 100 parts by weight of the (meth) acrylic polymer. 0.6 parts by weight. If the amount of the silane coupling agent exceeds 1 part by weight, the adhesive strength to the adherend (liquid crystal cell) tends to increase, and if the amount is less than 0.01 part by weight, the durability of the pressure-sensitive adhesive layer tends to decrease. It is in.
[0048] 本発明の光学フィルム用粘着剤組成物は、必要に応じて、紫外線吸収剤、老化防 止剤、軟化剤、染料、顔料、及び充填剤などを配合することができる。  [0048] The pressure-sensitive adhesive composition for an optical film of the present invention may optionally contain an ultraviolet absorber, an aging inhibitor, a softener, a dye, a pigment, a filler, and the like.
[0049] このようにして調製された本発明の光学フィルム用粘着剤組成物は、該組成物中に おける連鎖移動剤の含有率力 吸光度比により 0. 3以下であり、好ましくは 0. 15以 下である。前記吸光度比が 0. 3を超える場合には、 120°C程度の高温または高温高 湿条件下において光漏れや窓枠状ムラが生じやすくなる。  [0049] The pressure-sensitive adhesive composition for an optical film of the present invention prepared as described above has a content of the chain transfer agent in the composition of 0.3 or less, preferably 0.15 or less, according to the absorbance ratio. It is as follows. If the absorbance ratio exceeds 0.3, light leakage and window frame-shaped unevenness are likely to occur under high temperature or high temperature and high humidity conditions of about 120 ° C.
[0050] 本発明の粘着型光学フィルムは、光学フィルムの片面または両面に、前記光学フィ ルム用粘着剤組成物により粘着剤層を形成することにより得られる。  [0050] The pressure-sensitive adhesive optical film of the present invention is obtained by forming a pressure-sensitive adhesive layer on one or both surfaces of the optical film with the pressure-sensitive adhesive composition for optical films.
[0051] 光学フィルムへの粘着剤層の形成方法は特に制限されず、前記粘着剤組成物を 剥離処理した支持体 (剥離シート)に塗布、乾燥、架橋処理して粘着剤層を形成し、 これを光学フィルムに転写する方法、光学フィルムに直接粘着剤組成物を塗布、乾 燥、架橋処理して粘着剤層を形成する方法等があげられる。塗布の方法としては、リ ノ ースコーターやグラビアコーターなどのローノレコーター、カーテンコーターやリップ コ一ター、ダイコーターなど任意の塗布方法を採用できる。通常、乾燥後の粘着剤層 の厚さは 2— 500 μ mであることが好ましぐさらに好ましくは 5— 100 μ mである。  [0051] The method for forming the pressure-sensitive adhesive layer on the optical film is not particularly limited, and the pressure-sensitive adhesive composition is applied to a support (release sheet) that has been subjected to a release treatment, dried, and crosslinked to form a pressure-sensitive adhesive layer. A method of transferring this to an optical film, a method of directly applying a pressure-sensitive adhesive composition to the optical film, drying and crosslinking to form a pressure-sensitive adhesive layer can be used. As an application method, an arbitrary application method such as a Rhono coater such as a line coater or a gravure coater, a curtain coater, a lip coater, or a die coater can be employed. Usually, the thickness of the pressure-sensitive adhesive layer after drying is preferably from 2 to 500 μm, more preferably from 5 to 100 μm.
[0052] 粘着剤層の表面は、実用に供されるまで保護シートで保護されて 、てもよ 、。なお 、保護シートの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレ フタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや 金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。保護シートの表面 には、粘着剤層力 の剥離性を高めるために必要に応じてシリコーン処理、長鎖ァ ルキル処理、又はフッ素処理などの剥離処理が施されて!/、ても良!、。 [0052] The surface of the pressure-sensitive adhesive layer may be protected with a protective sheet until it is practically used. The protective sheet may be made of paper, synthetic resin film such as polyethylene, polypropylene, polyethylene terephthalate, rubber sheet, paper, cloth, nonwoven fabric, net, foam sheet, or the like. Suitable thin leaf bodies such as metal foils and laminates thereof are exemplified. The surface of the protective sheet is subjected to a release treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment as necessary to enhance the releasability of the adhesive layer strength! .
[0053] 光学フィルムとしては液晶表示装置等の形成に用いられるものが使用され、その種 類は特に制限されない。たとえば、光学フィルムとしては偏光板があげられる。偏光 板は偏光子の片面または両面には透明保護フィルムを有するものが一般に用いられ る。 As the optical film, a film used for forming a liquid crystal display device or the like is used, and the type is not particularly limited. For example, an optical film includes a polarizing plate. A polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used.
[0054] 偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、 ポリビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系フィル ム、エチレン ·酢酸ビュル共重合体系部分ケンィ匕フィルム等の親水性高分子フィルム に、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニル アルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン系配向フィル ム等があげられる。これらのなかでもポリビュルアルコール系フィルムとヨウ素などの 二色性物質力もなる偏光子が好適である。これら偏光子の厚さは特に制限されない 力 一般的に、 5— 80 m程度である。  The polarizer is not particularly limited, and various types can be used. Examples of the polarizer include a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / butyl acetate copolymer-based partially modified film, and iodine and a dichroic dye. And uniaxially stretched by adsorbing the dichroic substance of the above, polyene-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. Among these, a polybutyl alcohol-based film and a polarizer having a dichroic substance such as iodine are preferable. The thickness of these polarizers is not particularly limited. Generally, the thickness is about 5 to 80 m.
[0055] ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば 、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3— 7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩ィ匕 亜鉛等を含んでいてもよいヨウ化カリウムなどの水溶液に浸漬することもできる。さら に必要に応じて染色の前にポリビュルアルコール系フィルムを水に浸漬して水洗して もよ 、。ポリビュルアルコール系フィルムを水洗することでポリビュルアルコール系フィ ルム表面の汚れやブロッキング防止剤を洗浄することができるほ力に、ポリビニルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もあ る。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよいし、ま た延伸して力 ヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水 浴中でも延伸することができる。 [0055] A polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching the film to 3 to 7 times its original length. Can be. If necessary, it can be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride, or the like. Further, if necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. By washing the polyvinyl alcohol-based film with water, dirt on the surface of the polyvinyl alcohol-based film and the antiblocking agent can be washed away, and swelling of the polyvinyl alcohol-based film reduces unevenness such as uneven dyeing. It also has the effect of preventing it. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with iodine. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
[0056] 前記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料とし ては、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好 ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエス テノレ系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系 ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアタリ口-トリ ル 'スチレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリカーボネート系ポリマ 一などがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネ ン構造を有するポリオレフイン、エチレン ·プロピレン共重合体の如きポリオレフイン系 ポリマー、塩ィ匕ビュル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、 イミド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン系ポリマー、ポリエーテ ノレエーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビニルアルコール 系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、ァリレート系ポ リマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブ レンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明 保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン 系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。 [0056] As a material for forming the transparent protective film provided on one or both surfaces of the polarizer, a material excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy, and the like is preferable. Good. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorellose polymers such as diacetinoresenorelose and triacetinoresenorelose, acrylic polymers such as polymethyl methacrylate, polystyrene and Atari mouth-tri- Styrene-based polymers such as styrene copolymer (AS resin) and polycarbonate-based polymers. Further, polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, polyolefin-based polymer such as ethylene-propylene copolymer, salt-dominated polymer, amide-based polymer such as nylon or aromatic polyamide, imide-based polymer, Sunolefon polymer, polyethenoresnolefon polymer, polyethenolethenoleketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene Polymers, epoxy polymers, blends of the above polymers, and the like are also examples of the polymer forming the transparent protective film. The transparent protective film can also be formed as a cured layer of a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy, or silicone resin.
[0057] また、特開 2001— 343529号公報(WO01Z37007)に記載のポリマーフィルム、 たとえば、(A)側鎖に置換および Zまたは非置^ミド基を有する熱可塑性榭脂と、 (B)側鎖に置換および Z非置換フエ-ルならびに-トリル基を有する熱可塑性榭脂 を含有する榭脂組成物があげられる。具体例としてはイソブチレンと N—メチルマレイ ミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する榭脂組成 物のフィルムがあげられる。フィルムは榭脂組成物の混合押出品などカゝらなるフィル ムを用いることができる。  [0057] Also, a polymer film described in JP-A-2001-343529 (WO01Z37007), for example, (A) a thermoplastic resin having a substituted or Z or non-amide group in a side chain; A resin composition containing a thermoplastic resin having a substituted and Z-unsubstituted file and a -tolyl group in the chain is exemplified. A specific example is a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile-styrene copolymer. As the film, a film such as a mixed extruded resin composition can be used.
[0058] 保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、 薄層性などの点より 1一 500 /z m程度である。特に 1一 300 /z mが好ましぐ 5— 200 /z mがより好ましい。  [0058] The thickness of the protective film can be determined as appropriate, but is generally about 11500 / zm in terms of workability such as strength and handleability, and thinness. In particular, one 300 / z m is preferred, and 5-200 / z m is more preferred.
[0059] また、保護フィルムは、できるだけ色付きがな 、ことが好まし 、。したがって、 Rth=  [0059] Further, it is preferable that the protective film is as colored as possible. Therefore, Rth =
[ (nx+ny) /2-nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィル ム厚方向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差 値カ 90nm— + 75nmである保護フィルムが好ましく用いられる。かかる厚み方向 の位相差値 (Rth)カ 90nm— + 75nmのものを使用することにより、保護フィルムに 起因する偏光板の着色 (光学的な着色)をほぼ解消することができる。厚み方向位相 差値 (Rth)は、さらに好ましくは— 80nm—" h60nm、特に— 70nm—" h45nmが好ま しい。 [(nx + ny) / 2-nz]. d (where nx and ny are the main refractive index in the plane of the film, nz is the refractive index in the film thickness direction, and d is the film thickness) A protective film having a retardation value in the thickness direction of 90 nm- + 75 nm is preferably used. Such thickness direction By using a retardation value (Rth) of 90 nm- + 75 nm, the coloring (optical coloring) of the polarizing plate due to the protective film can be almost eliminated. The thickness direction retardation value (Rth) is more preferably -80 nm- "h60 nm, particularly -70 nm-" h45 nm.
[0060] 保護フィルムとしては、偏光特性や耐久性などの点より、トリァセチルセルロース等 のセルロース系ポリマーが好まし 、。特にトリァセチルセルロースフィルムが好適であ る。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料 力もなる保護フィルムを用いてもよぐ異なるポリマー材料等力もなる保護フィルムを 用いてもよい。前記偏光子と保護フィルムとは通常、水系粘着剤等を介して密着して いる。水系接着剤としては、イソシァネート系接着剤、ポリビニルアルコール系接着剤 、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を 例示できる。  As the protective film, a cellulosic polymer such as triacetyl cellulose is preferred from the viewpoints of polarization characteristics and durability. Particularly, a triacetyl cellulose film is preferable. When a protective film is provided on both sides of the polarizer, a protective film having the same polymer material strength may be used on the front and back sides, or a protective film having a different polymer material strength may be used. The polarizer and the protective film are usually in close contact with each other via an aqueous pressure-sensitive adhesive or the like. Examples of the water-based adhesive include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex-based, a water-based polyurethane, and a water-based polyester.
[0061] 前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防 止処理、ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を施したも のであってもよい。  [0061] The surface of the transparent protective film on which the polarizer is not bonded may be subjected to a hard coat layer, an antireflection treatment, a treatment for preventing sticking, or a treatment for diffusion or antiglare.
[0062] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性 等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成するこ とができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるもの であり、従来に準じた反射防止膜などの形成により達成することができる。また、ステ イツキング防止処理は隣接層との密着防止を目的に施される。  [0062] The hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched, and is, for example, a cure that is excellent in hardness, slip characteristics, and the like by an appropriate ultraviolet-curable resin such as an acrylic or silicone resin. The film can be formed by a method of adding a film to the surface of the transparent protective film. The anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art. The anti-sticking treatment is performed for the purpose of preventing adhesion to the adjacent layer.
[0063] またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透 明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒子径が 0 . 5— 50 μ mのシリカ、アルミナ、チタ二了、ジルコ -ァ、酸化錫、酸化インジウム、酸 化カドミウム、酸ィ匕アンチモン等力もなる導電性のこともある無機系微粒子、架橋又は 未架橋のポリマー等力 なる有機系微粒子などの透明微粒子が用いられる。表面微 細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透 明榭脂 100重量部に対して一般的に 2— 50重量部程度であり、 5— 25重量部が好 ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散 層 (視角拡大機能など)を兼ねるものであってもよい。 The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate. For example, a sand blasting method and a boss processing method are used. The transparent protective film can be formed by imparting a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine unevenness include silica, alumina, titania, zircon, tin oxide, indium oxide, cadmium oxide, and acid having an average particle size of 0.5 to 50 μm. Inorganic fine particles that may also be conductive such as antimony, crosslinked or Transparent fine particles such as organic fine particles having the same strength as an uncrosslinked polymer are used. When forming the fine surface uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, and 5 to 25 parts by weight based on 100 parts by weight of the transparent resin forming the fine surface uneven structure. Is preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
[0064] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、透 明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィル ムとは別体のものとして設けることもできる。  The anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, and can be provided separately as an optical layer separately from the transparent protective film. It can also be provided.
[0065] また本発明の光学フィルムとしては、例えば反射板や半透過板、位相差板(1Z2 や 1Z4等の波長板を含む)、視角補償フィルム、輝度向上フィルムなどの液晶表示 装置等の形成に用いられることのある光学層となるものがあげられる。これらは単独 で本発明の光学フィルムとして用いることができる他、前記偏光板に、実用に際して 積層して、 1層または 2層以上用いることができる。  As the optical film of the present invention, for example, a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate such as 1Z2 or 1Z4), a viewing angle compensation film, and a brightness enhancement film is formed. And an optical layer that may be used for the above. These can be used alone as the optical film of the present invention, or can be used as a single layer or two or more layers laminated on the above-mentioned polarizing plate in practical use.
[0066] 特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板 または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板また は円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あ るいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。  In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflecting plate or a transflective reflecting plate is further laminated on a polarizing plate, or an elliptically polarizing plate or a circle in which a retardation plate is further laminated on a polarizing plate. A polarizing plate, a wide viewing angle polarizing plate in which a viewing angle compensation film is further laminated on a polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on a polarizing plate, are preferable.
[0067] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利 点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の 片面に金属等力 なる反射層を付設する方式などの適宜な方式にて行うことができ る。  [0067] The reflective polarizing plate is provided with a reflective layer on the polarizing plate, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side). In addition, there is an advantage that a built-in light source such as a backlight can be omitted, and the liquid crystal display device can be easily made thin. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a strength such as a metal is provided on one surface of the polarizing plate via a transparent protective layer or the like as necessary.
[0068] 反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片 面に、アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を形成し たものなどがあげられる。また前記透明保護フィルムに微粒子を含有させて表面微細 凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記 した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性ゃギラギラ した見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の 透明保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗 ムラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を 反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレー ティング方式、スパッタリング方式等の蒸着方式ゃメツキ方式などの適宜な方式で金 属を透明保護層の表面に直接付設する方法などにより行うことができる。 [0068] A specific example of the reflective polarizing plate is a transparent protective film that has been matt-treated as necessary and has a reflective layer formed by attaching a foil made of a reflective metal such as aluminum or the like to a vapor-deposited film. And so on. Further, there may be mentioned, for example, a transparent protective film in which fine particles are contained to form a fine surface unevenness structure and a reflective layer having a fine unevenness structure formed thereon. The reflective layer having the fine uneven structure described above diffuses incident light by irregular reflection, thereby increasing directivity. This has the advantage that the appearance can be prevented and the unevenness of light and dark can be suppressed. Further, the transparent protective film containing fine particles has an advantage that the incident light and its reflected light are diffused when passing through the transparent light-shielding film, so that uneven brightness can be further suppressed. The reflective layer having a fine irregular structure reflecting the fine irregular structure on the surface of the transparent protective film is formed by, for example, depositing a metal by an appropriate method such as a vapor deposition method such as a vacuum deposition method, an ion plating method, or a sputtering method or a plating method. It can be carried out by a method of directly attaching to the surface of the transparent protective layer.
[0069] 反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透 明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いる こともできる。なお反射層は、通常、金属力 なるので、その反射面が透明保護フィル ムゃ偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひ いては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ま しい。  [0069] Instead of the method in which the reflective plate is directly applied to the transparent protective film of the polarizing plate, the reflective plate can also be used as a reflective sheet in which a reflective layer is provided on an appropriate film according to the transparent film. Since the reflective layer is usually made of a metallic material, its use in a state where the reflective surface is covered with a transparent protective film, a polarizing plate, or the like is intended to prevent a decrease in the reflectance due to oxidation and, as a result, a long-term increase in the initial reflectance. It is more preferable in terms of sustainability and avoidance of separate protective layer.
[0070] なお、半透過型偏光板は、上記にお!、て反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は [0070] The transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light on the reflective layer. Transflective polarizing plate
、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 喑 、雰囲気にぉ 、ては、半透過型偏光板のバックサイドに内蔵されて 、るバックライ ト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できるUsually, it is provided on the back side of the liquid crystal cell, and when the liquid crystal display device or the like is used in a relatively bright atmosphere, the image is displayed by reflecting the incident light from the viewing side (display side), and relatively Depending on the atmosphere, a liquid crystal display device or the like that is built in the back side of a transflective polarizing plate and displays an image using a built-in light source such as a backlight can be formed.
。すなわち、半透過型偏光板は、明るい雰囲気下では、ノ ックライト等の光源使用の エネルギーを節約でき、比較的喑 、雰囲気下にお ヽても内蔵光源を用いて使用でき るタイプの液晶表示装置などの形成に有用である。 . That is, a transflective polarizing plate can save energy for using a light source such as a knock light in a bright atmosphere, and can be used with a built-in light source even in a relatively small atmosphere. It is useful for forming.
[0071] 偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説 明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直 線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが 用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相 差板としては、いわゆる 1Z4波長板(λ Ζ4板とも言う)が用いられる。 1Z2波長板( λ Ζ2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。  An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. When changing linearly polarized light to elliptically or circularly polarized light, elliptically or circularly polarized light to linearly polarized light, or changing the polarization direction of linearly polarized light, a phase difference plate or the like is used. In particular, a so-called 1Z4 wavelength plate (also referred to as a λΖ plate) is used as a phase difference plate for changing linearly polarized light to circularly polarized light or for converting circularly polarized light to linearly polarized light. A 1Z2 wavelength plate (also referred to as λΖ2 plate) is usually used to change the polarization direction of linearly polarized light.
[0072] 楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈 折により生じた着色 (青又は黄)を補償 (防止)して、前記着色のな!、白黒表示する場 合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装 置の画面を斜め方向から見た際に生じる着色も補償 (防止)することができて好まし い。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色 調を整える場合などに有効に用いられ、また、反射防止の機能も有する。 [0072] The elliptically polarizing plate is a birefringent liquid crystal layer of a super twisted nematic (STN) type liquid crystal display device. Coloring (blue or yellow) caused by folding is compensated (prevented), and is effectively used in the case of the above-mentioned coloring and black-and-white display. Further, a device in which a three-dimensional refractive index is controlled is preferable because coloring (coloring) generated when the screen of the liquid crystal display device is viewed from an oblique direction can be compensated (prevented). The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflection type liquid crystal display device that displays an image in color, and also has an antireflection function.
[0073] 位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィ ルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したも のなどがあげられる。位相差板の厚さも特に制限されないが、 20— 150 /z m程度が 一般的である。  Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and an alignment layer of a liquid crystal polymer supported by a film. Can be Although the thickness of the retardation plate is not particularly limited, it is generally about 20 to 150 / zm.
[0074] 高分子素材としては、たとえば、ポリビュルアルコール、ポリビュルブチラール、ポリ メチルビ二ノレエーテル、ポリヒドロキシェチノレアタリレート、ヒドロキシェチノレセルロース 、ヒドロキシプロピルセルロース、メチノレセノレロース、ポリカーボネート、ポリアリレート、 ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテノレス ルホン、ポリフエ-レンスルファイド、ポリフエ-レンオキサイド、ポリアリルスルホン、ポ リビニルアルコール、ポリアミド、ポリイミド、ポリオレフイン、ポリ塩化ビニル、セルロー ス系重合体、ノルボルネン系榭脂、またはこれらの二元系、三元系各種共重合体、グ ラフト共重合体、ブレンド物などがあげられる。これら高分子素材は延伸等により配向 物 (延伸フィルム)となる。  [0074] Examples of the polymer material include polybutyl alcohol, polybutyral, polymethylvinylinoleether, polyhydroxyethynoleatalylate, hydroxyethynolecellulose, hydroxypropylcellulose, methinoresenolylose, polycarbonate, and polybutylene. Arylate, polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyethenoresulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyvinyl alcohol, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose-based polymer, Examples include norbornene-based resins, and various binary and ternary copolymers thereof, graph copolymers, and blends thereof. These polymer materials become oriented materials (stretched films) by stretching or the like.
[0075] 液晶性ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団  As the liquid crystal polymer, for example, a conjugated linear atomic group imparting liquid crystal orientation is used.
(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなど があげられる。主鎖型の液晶性ポリマーの具体例としては、屈曲性を付与するスぺー サ部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶 性ポリマー、ディスコティックポリマーゃコレステリックポリマーなどがあげられる。側鎖 型の液晶性ポリマーの具体例としては、ポリシロキサン、ポリアタリレート、ポリメタタリ レート又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスぺー サ部を介してネマチック配向付与性のパラ置換環状ィ匕合物単位力 なるメソゲン部を 有するものなどがあげられる。これら液晶性ポリマーは、たとえば、ガラス板上に形成 したポリイミドゃポリビュルアルコール等の薄膜の表面をラビング処理したもの、酸ィ匕 珪素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して熱 処理することにより行われる。 There are various main chain and side chain types in which (mesogen) is introduced into the main chain and side chain of the polymer. Specific examples of the main chain type liquid crystal polymer include a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility, for example, a nematic alignment polyester liquid crystal polymer, a discotic polymer, and a cholesteric polymer. can give. Specific examples of the side-chain type liquid crystalline polymer include polysiloxane, polyatalylate, polymethacrylate or polymalonate having a main chain skeleton, and a nematic alignment imparted through a spacer portion comprising a conjugated atomic group as a side chain. And the like having a mesogenic moiety which is a unitary force of the para-substituted cyclic compound. These liquid crystalline polymers are, for example, those obtained by rubbing the surface of a thin film of polyimide or polyvinyl alcohol formed on a glass plate, This is carried out by spreading a solution of a liquid crystalline polymer on an alignment treatment surface such as one obliquely deposited with silicon and subjecting it to heat treatment.
[0076] 位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を 目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよぐ 2 種以上の位相差板を積層して位相差等の光学特性を制御したものなどであってもよ い。  The retardation plate may be one having an appropriate retardation in accordance with the intended use, such as, for example, various wavelength plates or ones for the purpose of compensating coloring or viewing angle due to birefringence of the liquid crystal layer. A device in which optical characteristics such as phase difference are controlled by laminating more than two kinds of phase difference plates may be used.
[0077] また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相 差板を適宜な組み合わせで積層したものである。力かる楕円偏光板等は、(反射型) 偏光板と位相差板の組み合わせとなるようにそれらを液晶表示装置の製造過程で順 次別個に積層することによつても形成しうるが、前記の如く予め楕円偏光板等の光学 フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの 製造効率を向上させうる利点がある。  [0077] The elliptically polarizing plate and the reflection type elliptically polarizing plate are obtained by laminating a polarizing plate or a reflection type polarizing plate and a retardation plate in an appropriate combination. A strong elliptically polarizing plate or the like can also be formed by sequentially and separately laminating a (reflection type) polarizing plate and a retardation plate in the manufacturing process of a liquid crystal display device so as to form a combination. An optical film such as an elliptically polarizing plate as described above is advantageous in that it has excellent quality stability and laminating workability, and can improve the production efficiency of a liquid crystal display device and the like.
[0078] 視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向 力 見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルム である。このような視角補償位相差板としては、例えば位相差板、液晶ポリマー等の 配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなど力もなる。 通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィル ムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向 に二軸に延伸された複屈折を有するポリマーフィルムと力、面方向に一軸に延伸され 厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾 斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとし ては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の 作用下にポリマーフィルムを延伸処理又は Z及び収縮処理したものや、液晶ポリマ 一を斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の 位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基 づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適 宜なものを用いうる。  [0078] The viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a direction not perpendicular to the screen but slightly oblique. As such a viewing angle compensating retardation plate, for example, a retardation plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent base material can be used. A common retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is biaxially stretched in the plane direction. Biaxially oriented polymer film with birefringence and biaxial stretching such as birefringent polymer or tilted oriented film, which is uniaxially stretched in the force and plane directions and also stretched in the thickness direction and has a controlled refractive index in the thickness direction. A film or the like is used. Examples of the obliquely oriented film include a film obtained by bonding a heat shrink film to a polymer film and subjecting the polymer film to a stretching treatment or a Z-shrink treatment under the action of the shrinkage force caused by heating, or a film obtained by obliquely orienting a liquid crystal polymer. And the like. As the raw material polymer for the retardation plate, the same polymer as that described for the retardation plate is used to prevent coloring and the like due to a change in the viewing angle based on the phase difference by the liquid crystal cell, and to improve the viewing angle for good visibility. Appropriate ones for the purpose of enlargement etc. can be used.
[0079] また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディ スコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用いうる。 [0079] In addition, the alignment layer of liquid crystal polymer, particularly An optically compensatory retardation plate in which an optically anisotropic layer composed of a tilted alignment layer of a scotic liquid crystal polymer is supported by a triacetyl cellulose film can be preferably used.
[0080] 偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに 設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光 板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の 透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝 度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転 させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光とし て透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収さ せにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることに より輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バッ クライトなどで液晶セルの裏側カゝら偏光子を通して光を入射した場合には、偏光子の 偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしま い、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、 およそ 50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しう る光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏 光方向を有する光を偏光子に入射させずに輝度向上フィルムでー且反射させ、更に その後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射さ せることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過 し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に 供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用 でき、画面を明るくすることができる。  [0080] The polarizing plate obtained by laminating the polarizing plate and the brightness enhancement film is usually provided on the back side of the liquid crystal cell and used. Brightness-enhancing films exhibit the property of reflecting linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light enters due to reflection from the backlight or the back side of a liquid crystal display device, etc., and transmitting other light. The polarizing plate in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light of a predetermined polarization state and reflects light other than the predetermined polarization state without transmitting the light. Is done. The light reflected on the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side thereof and re-entered on the brightness enhancement film, and a part or all of the light is transmitted as light of a predetermined polarization state. In addition to increasing the amount of light that passes through the brightness enhancement film by increasing the amount of light that can be used for liquid crystal display image display and the like by supplying polarized light that is difficult to absorb to the polarizer, the brightness can be improved. is there. That is, when light is incident through a polarizer on the back side of a liquid crystal cell with a backlight or the like without using a brightness enhancement film, light having a polarization direction that does not match the polarization axis of the polarizer is It is almost absorbed by the polarizer and does not pass through the polarizer. That is, although it varies depending on the characteristics of the polarizer used, about 50% of the light is absorbed by the polarizer, and the amount of light used for liquid crystal image display and the like is reduced, and the image becomes darker. The brightness enhancement film reflects light having a polarization direction that is absorbed by the polarizer on the brightness enhancement film without being incident on the polarizer, and further through a reflection layer or the like provided on the rear side thereof. Repeated inversion and re-injection into the brightness enhancement film, and only the polarized light whose polarization direction is reflected and inverted between the two so that it can pass through the polarizer is used as the brightness enhancement film. Since the light is transmitted to the polarizer and supplied to the polarizer, light from a backlight or the like can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.
[0081] 輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フ イルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散 板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。 すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自 然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過 して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上 記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示 画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明る い画面を提供することができる。力かる拡散板を設けることにより、初回の入射光は反 射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示 画面を提供することができたものと考えられる。 [0081] A diffusion plate may be provided between the brightness enhancement film and the above-mentioned reflection layer or the like. The light in the polarization state reflected by the brightness enhancement film goes to the reflection layer and the like, but the diffuser provided uniformly diffuses the passing light and at the same time eliminates the polarization state and becomes a non-polarized state. That is, the diffuser returns the polarized light to the original natural light state. This unpolarized state, The light in a natural light state is repeatedly directed to the reflection layer and the like, reflected through the reflection layer and the like, again passed through the diffusion plate and re-incident on the brightness enhancement film. By providing a diffuser between the brightness enhancement film and the reflective layer, etc., which returns the polarized light to the original natural light state, the brightness of the display screen is maintained while the brightness unevenness of the display screen is reduced. It can provide a uniform and bright screen. It is probable that by providing a powerful diffuser, the number of repetitions of the first incident light was increased moderately, and it was possible to provide a uniform bright display screen in combination with the diffuser function of the diffuser. .
[0082] 前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相 違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光 は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向 液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方 の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。  [0082] Examples of the brightness enhancing film include a multilayer thin film of a dielectric and a multilayer laminate of thin films having different refractive index anisotropies. Reflects either left-handed or right-handed circularly polarized light, and transmits other light, such as those exhibiting reflective characteristics, such as an alignment film of cholesteric liquid crystal polymer and an alignment liquid crystal layer supported on a film substrate. Any suitable material such as one exhibiting the characteristic described above can be used.
[0083] 従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムで は、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板に よる吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶 層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射さ せることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏 光化して偏光板に入射させることが好ましい。なお、その位相差板として 1Z4波長板 を用いることにより、円偏光を直線偏光に変換することができる。  Therefore, in the above-described brightness enhancement film that transmits linearly polarized light having a predetermined polarization axis, the transmitted light is directly incident on the polarization plate with the polarization axis aligned, whereby absorption loss due to the polarization plate is suppressed. While allowing the light to pass through efficiently. On the other hand, a brightness enhancement film that emits circularly polarized light, such as a cholesteric liquid crystal layer, can be directly incident on a polarizer.However, in order to suppress absorption loss, the circularly polarized light is linearly polarized through a phase difference plate. It is preferable that the light is converted into a polarizing plate. By using a 1Z4 wavelength plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
[0084] 可視光域等の広い波長範囲で 1Z4波長板として機能する位相差板は、例えば波 長 550nmの淡色光に対して 1Z4波長板として機能する位相差層と他の位相差特 性を示す位相差層、例えば 1Z2波長板として機能する位相差層とを重畳する方式 などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相 差板は、 1層又は 2層以上の位相差層力もなるものであってよい。  [0084] A retardation plate functioning as a 1Z4 wavelength plate in a wide wavelength range such as a visible light region has, for example, a retardation layer functioning as a 1Z4 wavelength plate for light-colored light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by, for example, a method of superimposing a retardation layer shown, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have one or more retardation layer strengths.
[0085] なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせに して 2層又は 3層以上重畳した配置構造とすることにより、可視光領域等の広い波長 範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透 過円偏光を得ることができる。 [0086] また、偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層又は 3層以上の光 学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過 型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板な どであってもよい。 [0085] The cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light region by using a combination of two or more layers having different reflection wavelengths and having an arrangement structure in which two or more layers are overlapped. And a circularly polarized light having a wide wavelength range can be obtained. [0086] Further, the polarizing plate may be formed by laminating a polarizing plate and two or three or more optical layers as in the above-mentioned polarized light separating type polarizing plate. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, transflective polarizing plate and retardation plate may be used.
[0087] 偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で 順次別個に積層する方式にても形成することができる力 予め積層して光学フィルム としたのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製 造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。 前記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差特 性などに応じて適宜な配置角度とすることができる。  [0087] An optical film in which the optical layer is laminated on a polarizing plate can be formed by a method in which the optical film is laminated in advance in a manufacturing process of a liquid crystal display device or the like. In addition, it has the advantage of being superior in quality stability and assembling work, and can improve the manufacturing process of a liquid crystal display device and the like. Appropriate bonding means such as an adhesive layer can be used for lamination. In bonding the above-mentioned polarizing plate and other optical layers, their optical axes can be set at an appropriate angle depending on the intended retardation characteristics and the like.
[0088] なお、本発明の粘着型光学フィルムの光学フィルムや粘着剤層などの各層には、 例えばサリチル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリァゾー ル系化合物ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収 剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい  [0088] Each layer of the pressure-sensitive adhesive optical film of the present invention, such as the optical film and the pressure-sensitive adhesive layer, includes, for example, a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt. It may have ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbing agent such as a compound.
[0089] 本発明の粘着型光学フィルムは液晶表示装置等の各種画像表示装置の形成など に好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すな わち液晶表示装置は一般に、液晶セルと粘着型光学フィルム、及び必要に応じての 照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成 される力 本発明にお 、ては本発明による光学フィルムを用いる点を除 、て特に限 定はなぐ従来に準じうる。液晶セルについても、例えば TN型や STN型、 π型など の任意なタイプのものを用いうる。 The adhesive optical film of the present invention can be preferably used for forming various image display devices such as a liquid crystal display device. The formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device generally has a force formed by appropriately assembling components such as a liquid crystal cell, an adhesive optical film, and an illumination system as necessary and incorporating a drive circuit. Except for using the optical film according to the present invention, the present invention can conform to the conventional method without any particular limitation. As for the liquid crystal cell, any type such as TN type, STN type and π type can be used.
[0090] 液晶セルの片側又は両側に粘着型光学フィルムを配置した液晶表示装置や、照 明システムにバックライトある 、は反射板を用いたものなどの適宜な液晶表示装置を 形成することができる。その場合、本発明による光学フィルムは液晶セルの片側又は 両側に設置することができる。両側に光学フィルムを設ける場合、それらは同じもので あってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては 、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズァレ ィシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に 1層又は 2層以上 酉己置することができる。 [0090] A suitable liquid crystal display device such as a liquid crystal display device having an adhesive optical film disposed on one or both sides of a liquid crystal cell, or a device having a backlight or a reflector in a lighting system can be formed. . In that case, the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell. When optical films are provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array One or two or more layers of appropriate parts such as light sheets, light diffusion plates, and backlights can be placed at appropriate positions.
[0091] 次 、で有機エレクトロルミネセンス装置 (有機 EL表示装置)につ 、て説明する。一 般に、有機 EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順 に積層して発光体 (有機エレクトロルミネセンス発光体)を形成している。ここで、有機 発光層は、種々の有機薄膜の積層体であり、例えばトリフ ニルァミン誘導体等から なる正孔注入層と、アントラセン等の蛍光性の有機固体力 なる発光層との積層体や 、あるいはこのような発光層とペリレン誘導体等力 なる電子注入層の積層体や、ま たあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組 み合わせをもった構成が知られて 、る。  [0091] Next, an organic electroluminescence device (organic EL display device) will be described. In general, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially stacked on a transparent substrate to form a light emitting body (organic electroluminescent light emitting body). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer of a fluorescent organic solid force such as anthracene, or A structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer having a perylene derivative or a hole injection layer, a light-emitting layer, and an electron injection layer. Is known.
[0092] 有機 EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機 発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネ ルギ一が蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射 する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと 同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整 流性を伴う強!ゝ非線形性を示す。  [0092] In an organic EL display device, holes and electrons are injected into an organic light emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is generated. Emits light on the principle that it excites a fluorescent substance and emits light when the excited fluorescent substance returns to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and the emission intensity show a strong ゝ non-linearity with rectification to the applied voltage.
[0093] 有機 EL表示装置においては、有機発光層での発光を取り出すために、少なくとも 一方の電極が透明でなくてはならず、通常酸化インジウムスズ (ITO)などの透明導 電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発 光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常 Mg Ag、 A1— Liなどの金属電極を用いている。  [0093] In an organic EL display device, at least one electrode must be transparent in order to extract light emitted from the organic light emitting layer, and is usually formed of a transparent conductor such as indium tin oxide (ITO). A transparent electrode is used as the anode. On the other hand, it is important to use a material with a small work function for the cathode in order to facilitate electron injection and increase the light emission efficiency, and metal electrodes such as Mg Ag and A1-Li are usually used.
[0094] このような構成の有機 EL表示装置において、有機発光層は、厚さ lOnm程度とき わめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ 完全に透過する。その結果、非発光時に透明基板の表面カゝら入射し、透明電極と有 機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るた め、外部から視認したとき、有機 EL表示装置の表示面が鏡面のように見える。  [0094] In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film when the thickness is about lOnm. Therefore, the organic light emitting layer transmits light almost completely, similarly to the transparent electrode. As a result, when the light is not emitted, the light enters the surface of the transparent substrate, passes through the transparent electrode and the organic light-emitting layer, and is reflected by the metal electrode. When viewed, the display surface of the OLED display looks like a mirror.
[0095] 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を 含む有機 EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これ ら透明電極と偏光板との間に位相差板を設けることができる。 [0095] An organic electroluminescent luminous body comprising a transparent electrode on the front side of an organic luminescent layer that emits light by applying a voltage and a metal electrode on the back side of the organic luminescent layer is provided. In an organic EL display device including the same, a polarizing plate can be provided on the surface side of the transparent electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
[0096] 位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光す る作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させな いという効果がある。特に、位相差板を 1Z4 波長板で構成し、かつ偏光板と位相差 板との偏光方向のなす角を π Ζ4 に調整すれば、金属電極の鏡面を完全に遮蔽 することができる。 [0096] Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, the polarizing effect has an effect of preventing a mirror surface of the metal electrode from being visually recognized from the outside. is there. In particular, if the phase difference plate is formed of a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the phase difference plate is adjusted to π Ζ4, the mirror surface of the metal electrode can be completely shielded.
[0097] すなわち、この有機 EL表示装置に入射する外部光は、偏光板により直線偏光成分 のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とく〖こ位 相差板が 1Z4 波長板でしかも偏光板と位相差板との偏光方向のなす角が π /4 のときには円偏光となる。  That is, only linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate. This linearly polarized light is generally converted into elliptically polarized light by the phase difference plate, but becomes circularly polarized light when the phase difference plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarization plate and the phase difference plate is π / 4. .
[0098] この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再 び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そ して、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できな い。その結果、金属電極の鏡面を完全に遮蔽することができる。  [0098] The circularly polarized light transmits through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and is again converted into linearly polarized light by the retardation plate. Become. Since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot pass through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
実施例  Example
[0099] 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例に よって限定されるものではない。なお、各例中の部および%はいずれも重量基準で ある。重量平均分子量、吸光度、及びゲル分率の測定方法は以下の通りである。  [0099] Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. All parts and percentages in each example are based on weight. The methods for measuring the weight average molecular weight, absorbance, and gel fraction are as follows.
[0100] 〔重量平均分子量の測定〕  [0100] [Measurement of weight average molecular weight]
調製したポリマー及びオリゴマーの重量平均分子量は、 GPC (ゲル.パーミエーショ ン.クロマトグラフィ)にて測定し、標準ポリスチレンにより換算した。  The weight-average molecular weights of the prepared polymers and oligomers were measured by GPC (gel permeation chromatography) and converted by standard polystyrene.
GPC装置: TOSOH製、 HLC— 8120GPC  GPC device: TOSOH, HLC-8120GPC
カラム: Mw50万までは、(GMHHR— H)と(GMHHR— H)と(G2000HHR)とを連 結して用いた。 Mw50万以上は、(G7000HXL)と(GMHXL)と(GMHXL)とを連 結して用いた。  Column: Up to 500,000 Mw, (GMHHR-H), (GMHHR-H) and (G2000HHR) were used in combination. For Mw 500,000 or more, (G7000HXL), (GMHXL) and (GMHXL) were used in combination.
流量: 0. 8ml/ mm  Flow rate: 0.8ml / mm
濃度: 1. Og/1 注入量: 100 1 Concentration: 1. Og / 1 Injection volume: 100 1
カラム温度: 40°C Column temperature: 40 ° C
溶離液: THF Eluent: THF
〔吸光度の測定、吸光度比の算出〕  [Measurement of absorbance, calculation of absorbance ratio]
赤外分光光度計 (パーキンエルマ一社製、 SPECTRUM2000)を用い、調製した 光学フィルム用粘着剤組成物の 780士 20cm— 1の範囲における連鎖移動剤の C = C 振動に基づく吸光度、及び 740 ± 20cm— 1の範囲におけるポリマー及びオリゴマーの C H振動に基づく吸光度を測定した。吸光度比は下記式により算出した。 Using an infrared spectrophotometer (PerkinElmer KK, SPECTRUM2000), the absorbance based on the C = C vibration of the chain transfer agent in the range of 780 × 20 cm- 1 of the pressure-sensitive adhesive composition for optical film prepared, and 740 ± The absorbance based on the CH vibration of the polymer and oligomer in the range of 20 cm- 1 was measured. The absorbance ratio was calculated by the following equation.
吸光度比 = (780士 20cm— 1の範囲における連鎖移動剤の C = C振動に基づく吸光 度) Z (740 ± 20cm— 1の範囲におけるポリマー及びオリゴマーの C H振動に基づく 吸光度) Absorbance ratio = (Absorbance based on C = C vibration of chain transfer agent in the range of 780 × 20 cm- 1 ) Z (Absorbance based on CH vibration of polymer and oligomer in the range of 740 ± 20 cm- 1 )
〔ゲル分率の測定〕  (Measurement of gel fraction)
架橋処理した粘着剤層を約 0. lgをとり、これを秤量して重量 (W )を測定した。次 いで、これを微孔性テトラフルォロエチレン膜 (膜重量 W )に包んで、約 50mlの酢酸  About 0.1 lg of the cross-linked pressure-sensitive adhesive layer was taken, weighed, and measured for weight (W). Next, wrap this in a microporous tetrafluoroethylene membrane (membrane weight W) and add about 50 ml of acetic acid.
2  2
ェチルに 2日間浸漬したのち、可溶分を抽出した。これを乾燥し、全体の重量 (W ) After immersion in ethyl for 2 days, the soluble matter was extracted. Dry this and the total weight (W)
3 を測定した。これらの測定値から、下記式により粘着剤層のゲル分率 (重量%)を求 めた。  3 was measured. From these measured values, the gel fraction (% by weight) of the pressure-sensitive adhesive layer was determined by the following equation.
ゲル分率(重量%) = { (W -W ) /W } X 100 Gel fraction (% by weight) = {(W-W) / W} X100
3 2 1 実施例 1  3 2 1 Example 1
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
窒素導入管、冷却管を備えた 4つ口フラスコに、ブチルアタリレート 97部、アクリル 酸 3部、 2, 2—ァゾビスイソブチ口-トリル 0. 2部、及び酢酸ェチル 100部を投入し、 1 時間窒素置換した後、窒素気流下で撹拌しながら 60°Cで 7時間重合反応を行い、重 量平均分子量 150万のアクリル系ポリマーの溶液を得た。  97 parts of butyl acrylate, 3 parts of acrylic acid, 0.2 parts of 2,2-azobisisobutyrate-tolyl, and 100 parts of ethyl acetate were charged into a four-necked flask equipped with a nitrogen inlet tube and a condenser tube for 1 hour. After purging with nitrogen, a polymerization reaction was carried out at 60 ° C. for 7 hours while stirring under a nitrogen stream to obtain a solution of an acrylic polymer having a weight average molecular weight of 1.5 million.
(アクリル系オリゴマーの調製) (Preparation of acrylic oligomer)
窒素導入管、冷却管を備えた 4つ口フラスコに、ブチルアタリレート 100部、 ひ-メチ ルスチレンダイマー 1部、 2, 2—ァゾビスイソブチ口-トリル 10部、及び酢酸ェチル 10 0部を投入し、 1時間窒素置換した後、窒素気流下で撹拌しながら 70°Cで 3時間重 合反応を行 ヽ、重量平均分子量 5000のアクリル系オリゴマー (A)の溶液を得た。 ( 光学フィルム用粘着剤組成物の調製) In a four-necked flask equipped with a nitrogen inlet tube and a condenser tube, 100 parts of butyl acrylate, 1 part of methyl styrene dimer, 10 parts of 2,2-azobisisobutyral-tolyl, and 10 parts of ethyl acetate After introducing 0 parts and purging with nitrogen for 1 hour, a polymerization reaction was carried out at 70 ° C. for 3 hours while stirring under a nitrogen stream to obtain a solution of an acrylic oligomer (A) having a weight average molecular weight of 5000. (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系ポリマー 100部を含む量の前記溶液、アクリル系オリゴマー (A) 20部を 含む量の前記溶液、架橋剤としてイソシァネート系架橋剤 (三井武田ケミカル (株)製 、タケネート D110N) 0. 07部、及びシランカップリング剤として A— 100 (信越化学( 株) ) 0. 02部を均一に混合して光学フィルム用粘着剤組成物を調製した。  0.07 parts of the solution containing 100 parts of an acrylic polymer, the solution containing 20 parts of an acrylic oligomer (A), and an isocyanate-based crosslinking agent (Takenate D110N, manufactured by Mitsui Takeda Chemical Co., Ltd.) as a crosslinking agent And 0.02 parts of A-100 (Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent were uniformly mixed to prepare a pressure-sensitive adhesive composition for an optical film.
(粘着型光学フィルムの作成) (Preparation of adhesive optical film)
調製した粘着剤組成物を、シリコーン剥離処理した厚さ 38 mのポリエチレンテレ フタレートフィルムに、粘着剤層の乾燥後の厚さが 20 /z mになるように塗布し、 110 °Cで 5分間乾燥'架橋を行い粘着剤層を形成した。当該粘着剤層を偏光板に転写し 、室温(23°C)で 5日間エージング処理して粘着型光学フィルムを得た。粘着剤層の ゲル分率は 50重量%であった。  Apply the prepared pressure-sensitive adhesive composition to a 38 m-thick polyethylene terephthalate film that has been subjected to silicone release treatment so that the dried pressure-sensitive adhesive layer has a thickness of 20 / zm, and dry at 110 ° C for 5 minutes. 'Cross-linking was performed to form an adhesive layer. The pressure-sensitive adhesive layer was transferred to a polarizing plate and aged at room temperature (23 ° C.) for 5 days to obtain a pressure-sensitive adhesive optical film. The gel fraction of the pressure-sensitive adhesive layer was 50% by weight.
実施例 2  Example 2
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
実施例 1と同様の方法でアクリル系ポリマーの溶液を得た。  A solution of an acrylic polymer was obtained in the same manner as in Example 1.
(アクリル系オリゴマーの調製) (Preparation of acrylic oligomer)
窒素導入管、冷却管を備えた 4つ口フラスコに、ブチルアタリレート 100部、 ひ-メチ ルスチレンダイマー 10部、 2, 2—ァゾビスイソブチ口-トリル 1部、及び酢酸ェチル 10 0部を投入し、 1時間窒素置換した後、窒素気流下で撹拌しながら 70°Cで 3時間重 合反応を行 ヽ、重量平均分子量 5000のアクリル系オリゴマー(B)の溶液を得た。 ( 光学フィルム用粘着剤組成物の調製)  In a four-necked flask equipped with a nitrogen inlet tube and a condenser tube, 100 parts of butyl acrylate, 10 parts of methyl styrene dimer, 1 part of 2,2-azobisisobuty-tolyl, and 100 parts of ethyl acetate were charged. After replacing with nitrogen for 1 hour, a polymerization reaction was carried out at 70 ° C. for 3 hours while stirring under a nitrogen stream to obtain a solution of an acrylic oligomer (B) having a weight average molecular weight of 5000. (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系オリゴマー (A) 20部を含む量の前記溶液の代わりに、アクリル系オリゴマ 一 (B) 5部を含む量の前記溶液を用いた以外は実施例 1と同様の方法で光学フィル ム用粘着剤組成物を調製した。  An optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 5 parts of the acrylic oligomer (B). An adhesive composition was prepared.
(粘着型光学フィルムの作成) (Preparation of adhesive optical film)
上記光学フィルム用粘着剤組成物を用 、た以外は実施例 1と同様の方法で粘着型 光学フィルムを得た。粘着剤層のゲル分率は 55重量%であった。 [0102] 実施例 3 An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used. The gel fraction of the pressure-sensitive adhesive layer was 55% by weight. [0102] Example 3
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
実施例 1と同様の方法でアクリル系ポリマーの溶液を得た。  A solution of an acrylic polymer was obtained in the same manner as in Example 1.
(アクリル系オリゴマーの調製)  (Preparation of acrylic oligomer)
実施例 2と同様の方法でアクリル系オリゴマー(B)の溶液を得た。  A solution of the acrylic oligomer (B) was obtained in the same manner as in Example 2.
(光学フィルム用粘着剤組成物の調製)  (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系オリゴマー (A) 20部を含む量の前記溶液の代わりに、アクリル系オリゴマ 一 (B) 10部を含む量の前記溶液を用いた以外は実施例 1と同様の方法で光学フィ ルム用粘着剤組成物を調製した。  An optical film for an optical film was prepared in the same manner as in Example 1, except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 10 parts of the acrylic oligomer (B). An adhesive composition was prepared.
(粘着型光学フィルムの作成)  (Preparation of adhesive optical film)
上記光学フィルム用粘着剤組成物を用 、た以外は実施例 1と同様の方法で粘着型 光学フィルムを得た。粘着剤層のゲル分率は 53重量%であった。  An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned pressure-sensitive adhesive composition for an optical film was used. The gel fraction of the pressure-sensitive adhesive layer was 53% by weight.
[0103] 比較例 1 [0103] Comparative Example 1
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
実施例 1と同様の方法でアクリル系ポリマーの溶液を得た。  A solution of an acrylic polymer was obtained in the same manner as in Example 1.
(アクリル系オリゴマーの調製)  (Preparation of acrylic oligomer)
実施例 2と同様の方法でアクリル系オリゴマー(B)の溶液を得た。  A solution of the acrylic oligomer (B) was obtained in the same manner as in Example 2.
(光学フィルム用粘着剤組成物の調製)  (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系オリゴマー (A) 20部を含む量の前記溶液の代わりに、アクリル系オリゴマ 一 (B) 20部を含む量の前記溶液を用いた以外は実施例 1と同様の方法で光学フィ ルム用粘着剤組成物を調製した。  An optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 20 parts of the acrylic oligomer (A). An adhesive composition was prepared.
(粘着型光学フィルムの作成)  (Preparation of adhesive optical film)
上記光学フィルム用粘着剤組成物を用 、た以外は実施例 1と同様の方法で粘着型 光学フィルムを得た。粘着剤層のゲル分率は 50重量%であった。  An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used. The gel fraction of the pressure-sensitive adhesive layer was 50% by weight.
[0104] 比較例 2 [0104] Comparative Example 2
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
実施例 1と同様の方法でアクリル系ポリマーの溶液を得た。  A solution of an acrylic polymer was obtained in the same manner as in Example 1.
(アクリル系オリゴマーの調製) 実施例 2と同様の方法でアクリル系オリゴマー(B)の溶液を得た。 (Preparation of acrylic oligomer) A solution of the acrylic oligomer (B) was obtained in the same manner as in Example 2.
(光学フィルム用粘着剤組成物の調製)  (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系オリゴマー (A) 20部を含む量の前記溶液の代わりに、アクリル系オリゴマ 一 (B) 50部を含む量の前記溶液を用いた以外は実施例 1と同様の方法で光学フィ ルム用粘着剤組成物を調製した。  An optical film for an optical film was prepared in the same manner as in Example 1 except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 50 parts of the acrylic oligomer (B). An adhesive composition was prepared.
(粘着型光学フィルムの作成)  (Preparation of adhesive optical film)
上記光学フィルム用粘着剤組成物を用 、た以外は実施例 1と同様の方法で粘着型 光学フィルムを得た。粘着剤層のゲル分率は 47重量%であった。  An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used. The gel fraction of the pressure-sensitive adhesive layer was 47% by weight.
[0105] 比較例 3 [0105] Comparative Example 3
(アクリル系ポリマーの調製)  (Preparation of acrylic polymer)
実施例 1と同様の方法でアクリル系ポリマーの溶液を得た。  A solution of an acrylic polymer was obtained in the same manner as in Example 1.
(アクリル系オリゴマーの調製)  (Preparation of acrylic oligomer)
実施例 2と同様の方法でアクリル系オリゴマー(B)の溶液を得た。  A solution of the acrylic oligomer (B) was obtained in the same manner as in Example 2.
(光学フィルム用粘着剤組成物の調製)  (Preparation of pressure-sensitive adhesive composition for optical film)
アクリル系オリゴマー (A) 20部を含む量の前記溶液の代わりに、アクリル系オリゴマ 一 (B) 100部を含む量の前記溶液を用いた以外は実施例 1と同様の方法で光学フィ ルム用粘着剤組成物を調製した。  An optical film for an optical film was prepared in the same manner as in Example 1, except that the solution containing 20 parts of the acrylic oligomer (A) was replaced with the solution containing 100 parts of the acrylic oligomer (B). An adhesive composition was prepared.
(粘着型光学フィルムの作成)  (Preparation of adhesive optical film)
上記光学フィルム用粘着剤組成物を用 、た以外は実施例 1と同様の方法で粘着型 光学フィルムを得た。粘着剤層のゲル分率は 45重量%であった。  An adhesive optical film was obtained in the same manner as in Example 1 except that the above-mentioned adhesive composition for optical films was used. The gel fraction of the pressure-sensitive adhesive layer was 45% by weight.
[0106] 実施例および比較例で得られた粘着型光学フィルム (偏光板)につ 、て、下記評価 を行った。結果を表 1に示す。 The following evaluations were performed on the pressure-sensitive adhesive optical films (polarizing plates) obtained in Examples and Comparative Examples. The results are shown in Table 1.
[0107] <窓枠状ムラの評価 > <Evaluation of window frame-shaped unevenness>
作製した粘着型光学フィルムを無アルカリガラス板 (厚さ 0. 7mm)の両面にクロス ニコル状態になるように貼着した。次に、 50°C、 5atmで 15分間オートクレープ処理 を施し、完全に密着させてサンプルを得た。その後、サンプルを 1) 120で又は2) 80 °C90%RHの条件下で 500時間放置した。そして、偏光板の窓枠状ムラの発生状況 を 1万力ンデラバックライト上で目視により観察し、以下の基準で評価した。 〇:実用上全く問題なし。 The produced pressure-sensitive adhesive optical film was adhered to both sides of an alkali-free glass plate (0.7 mm thick) so as to be in a crossed Nicols state. Next, the sample was subjected to autoclave treatment at 50 ° C and 5 atm for 15 minutes, and the sample was completely adhered to obtain a sample. Thereafter, the sample was left for 1) at 120 or 2) at 80 ° C and 90% RH for 500 hours. Then, the occurrence state of the window frame-shaped unevenness of the polarizing plate was visually observed on a 10,000-power Nendera backlight, and evaluated according to the following criteria. 〇: No problem in practical use.
△:実用上問題とならな 、が、わずかに窓枠状ムラが発生して 、る。  Δ: This is not a problem in practical use, but slightly generates window frame-like unevenness.
X:実用上問題となり、窓枠状ムラが発生している。  X: Practically problematic, and window frame-like unevenness has occurred.
[0108] <光漏れ性の評価 > [0108] <Evaluation of light leakage>
作製した粘着型光学フィルムを無アルカリガラス板 (厚さ 0. 7mm)の両面にクロス ニコル状態になるように貼着した。次に、 50°C、 5atmで 15分間オートクレープ処理 を施し、完全に密着させてサンプルを得た。その後、サンプルを 1) 120で又は2) 80 °C90%RHの条件下で 500時間放置した。そして、偏光板の光漏れの発生状況を 1 万力ンデラバックライト上で目視により観察し、以下の基準で評価した。  The prepared pressure-sensitive adhesive optical film was adhered to both sides of a non-alkali glass plate (0.7 mm thick) so as to be in a crossed Nicols state. Next, the sample was subjected to autoclave treatment at 50 ° C and 5 atm for 15 minutes, and the sample was completely adhered to obtain a sample. Thereafter, the sample was left for 1) at 120 or 2) at 80 ° C and 90% RH for 500 hours. The occurrence of light leakage from the polarizing plate was visually observed on a 10,000 vender Ndera backlight, and evaluated according to the following criteria.
〇:実用上全く問題なし。  〇: No problem in practical use.
△:実用上問題とならな 、が、わずかに光漏れが発生して 、る。  Δ: Not a problem in practical use, but slight light leakage occurs.
X:実用上問題となり、光漏れが発生している。  X: A problem in practical use, and light leakage has occurred.
[0109] [表 1] [0109] [Table 1]
時間時間ゴゴ度光オオ() ()吸比91200リリ 800%000CRH 5C 5AB X Xママーー Time Time Gogo Degree () () Absorption ratio 91200 Lily 800% 000CRH 5C 5AB X X
〇 〇 〇 〇 〇 〇  〇 〇 〇 〇 〇 〇
窓枠状部部光れ性窓枠状光れ性重重量漏漏量 ()ムム ()ララ  Window frame-shaped part shining Window frame-shaped shining heavy weight leakage () Mum () Lara
実施例 1  Example 1
実施例 2  Example 2
実施例 3 <l  Example 3 <l
〇 〇 〇較例比 < 1 I <l  〇 比 Comparative ratio <1 I <l
X  X
較例比 2  Comparative ratio 2
較例比 3  Comparative ratio 3
〇 1 〇 〇 〇  〇 1 〇 〇 〇
〇 〇 〇 X X X 〇 〇 〇 X X X
o o
I o o o o  I o o o o
o I 1 1 I I o I 1 1 I I
m σ m σ
o o o o o o  o o o o o o
表 1から明らかなように、吸光度比が 0. 3以下である粘着剤組成物を用いた粘着型 光学フィルム(実施例 1 3)は、長期の過酷環境条件(120°C 80°C90%RH)にお いても光学フィルム (偏光板)に窓枠状ムラや光漏れが発生することがなぐ液晶表示 状態への悪影響もない。一方、吸光度比が 0. 3を超える粘着剤組成物を用いた粘 着型光学フィルム (比較例 1一 3)は、長期の過酷環境条件(120°C X 500時間)によ り窓枠状ムラが発生し、液晶表示に悪影響を与える。 As is clear from Table 1, the pressure-sensitive adhesive optical film using the pressure-sensitive adhesive composition having an absorbance ratio of 0.3 or less (Example 13) was subjected to long-term severe environmental conditions (120 ° C 80 ° C 90% RH). ), There is no adverse effect on the liquid crystal display state, which does not cause window frame-shaped unevenness or light leakage on the optical film (polarizing plate). On the other hand, the viscosity using an adhesive composition having an absorbance ratio exceeding 0.3 The wearable optical film (Comparative Examples 13) has window frame-shaped unevenness due to long-term severe environmental conditions (120 ° C for 500 hours), which adversely affects the liquid crystal display.
産業上の利用可能性  Industrial applicability
本発明は、光学フィルム用粘着剤組成物、当該光学フィルム用粘着剤組成物によ り形成される光学フィルム用粘着剤層に関する。また本発明は、当該粘着剤層を有 する粘着型光学フィルム、さらには前記粘着型光学フィルムを用いた液晶表示装置 、有機 EL表示装置、 PDP等の画像表示装置に関する。前記光学フィルムとしては、 偏光板、位相差板、光学補償フィルム、輝度向上フィルム、さら〖こはこれらが積層さ れて 、るものなどがあげられる。  The present invention relates to a pressure-sensitive adhesive composition for an optical film and a pressure-sensitive adhesive layer for an optical film formed by the pressure-sensitive adhesive composition for an optical film. The present invention also relates to an adhesive optical film having the adhesive layer, and to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the adhesive optical film. Examples of the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a laminate of these.

Claims

請求の範囲 The scope of the claims
[1] 重量平均分子量 50万一 250万の (メタ)アタリレート系ポリマー、反応性炭素 炭素 二重結合を有する連鎖移動剤を用いて重合した重量平均分子量 1000— 1万の (メ タ)アタリレート系オリゴマー、及び架橋剤を含有する粘着剤組成物であり、かつ該組 成物中における連鎖移動剤の含有率が、吸光度比〔(780士 20cm— 1の範囲におけ る前記連鎖移動剤の C = C振動に基づく吸光度) Z (740士 20cm— 1の範囲における 前記ポリマー及びオリゴマーの C H振動に基づく吸光度)〕により 0. 3以下であるこ とを特徴とする光学フィルム用粘着剤組成物。 [1] Weight-average molecular weight 500,000 (Meth) atarylate polymer having a molecular weight of 2.5 million, reactive carbon carbon (meta) atali having a weight-average molecular weight of 1,000 to 10,000 polymerized using a chain transfer agent having a double bond A pressure-sensitive adhesive composition containing a rate-based oligomer and a cross-linking agent, and wherein the content of the chain transfer agent in the composition is an absorbance ratio [(780 to 20 cm- 1 ). C = absorbance based on C vibration) Z (absorbance based on CH vibration of the polymer and oligomer in the range of 740 × 20 cm- 1 )]] of 0.3 or less. .
[2] 前記連鎖移動剤が、 α—メチルスチレン、 α—メチルスチレンダイマー、及び α—メチ ルスチレントリマー力もなる群より選択される少なくとも 1種のスチレン系連鎖移動剤で ある請求項 1記載の光学フィルム用粘着剤組成物。  [2] The chain transfer agent according to claim 1, wherein the chain transfer agent is at least one styrene-based chain transfer agent selected from the group consisting of α-methylstyrene, α-methylstyrene dimer, and α-methylstyrene trimer. An adhesive composition for an optical film.
[3] 請求項 1又は 2記載の光学フィルム用粘着剤組成物を架橋することにより形成された 光学フィルム用粘着剤層。  [3] An adhesive layer for an optical film formed by crosslinking the adhesive composition for an optical film according to claim 1 or 2.
[4] ゲル分率が 30— 80重量%である請求項 3記載の光学フィルム用粘着剤層。  4. The pressure-sensitive adhesive layer for an optical film according to claim 3, wherein the gel fraction is 30 to 80% by weight.
[5] 光学フィルムの片面または両面に、請求項 3又は 4記載の光学フィルム用粘着剤層 が形成されて 、る粘着型光学フィルム。  [5] An adhesive optical film, wherein the optical film adhesive layer according to claim 3 or 4 is formed on one or both surfaces of the optical film.
[6] 請求項 5記載の粘着型光学フィルムを少なくとも 1つ用!ヽた画像表示装置。 [6] An image display device using at least one pressure-sensitive adhesive optical film according to claim 5.
PCT/JP2004/017871 2003-12-18 2004-12-01 Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive type optical film, and image display WO2005061648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-420993 2003-12-18
JP2003420993A JP2005179467A (en) 2003-12-18 2003-12-18 Adhesive composition for optical film, adhesive layer for optical film, adherent type optical film and image display device

Publications (1)

Publication Number Publication Date
WO2005061648A1 true WO2005061648A1 (en) 2005-07-07

Family

ID=34708711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017871 WO2005061648A1 (en) 2003-12-18 2004-12-01 Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive type optical film, and image display

Country Status (3)

Country Link
JP (1) JP2005179467A (en)
TW (1) TW200531828A (en)
WO (1) WO2005061648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507255A (en) * 2005-09-05 2009-02-19 エルジー・ケム・リミテッド Acrylic adhesive composition for polarizing plate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931744B1 (en) 2005-09-05 2016-05-04 LG Chem, Ltd. Acrylic pressure-sensitive adhesive composition for polarizing film
JP4673344B2 (en) * 2007-06-07 2011-04-20 日東電工株式会社 Method for producing pressure-sensitive adhesive sheet for optical film
JP2011090312A (en) * 2010-11-09 2011-05-06 Nitto Denko Corp Adhesive sheet for optical film of image display device, adhesive optical film, and the image display device
JP5968175B2 (en) * 2012-09-20 2016-08-10 リンテック株式会社 Double-sided adhesive sheet for electronic parts
JP6122337B2 (en) 2013-04-26 2017-04-26 日東電工株式会社 Polarizing film and method for manufacturing the same, optical film and image display device
JP2015205974A (en) * 2014-04-18 2015-11-19 綜研化学株式会社 Adhesive composition for polarizing plate, adhesive sheet, polarizing plate with adhesive layer, and laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279907A (en) * 1997-04-09 1998-10-20 Soken Chem & Eng Co Ltd Pressure sensitive adhesive composition for polarizing plate and polarizing plate
JP2000109771A (en) * 1998-10-07 2000-04-18 Lintec Corp Adhesive sheet
JP2001335767A (en) * 2000-05-30 2001-12-04 Lintec Corp Self-adhesive composition, self-adhesive sheet obtained by using the same and self-adhesive optical member
JP2002030264A (en) * 2000-07-18 2002-01-31 Lintec Corp Tacky agent composition and tacky optical member using the same
JP2002121521A (en) * 2000-10-13 2002-04-26 Nippon Carbide Ind Co Inc Pressure-sensitive adhesive composition for polarizing film and polarizing film
JP2003049143A (en) * 2001-05-31 2003-02-21 Soken Chem & Eng Co Ltd Adhesive for optical film and optical film using the adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279907A (en) * 1997-04-09 1998-10-20 Soken Chem & Eng Co Ltd Pressure sensitive adhesive composition for polarizing plate and polarizing plate
JP2000109771A (en) * 1998-10-07 2000-04-18 Lintec Corp Adhesive sheet
JP2001335767A (en) * 2000-05-30 2001-12-04 Lintec Corp Self-adhesive composition, self-adhesive sheet obtained by using the same and self-adhesive optical member
JP2002030264A (en) * 2000-07-18 2002-01-31 Lintec Corp Tacky agent composition and tacky optical member using the same
JP2002121521A (en) * 2000-10-13 2002-04-26 Nippon Carbide Ind Co Inc Pressure-sensitive adhesive composition for polarizing film and polarizing film
JP2003049143A (en) * 2001-05-31 2003-02-21 Soken Chem & Eng Co Ltd Adhesive for optical film and optical film using the adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507255A (en) * 2005-09-05 2009-02-19 エルジー・ケム・リミテッド Acrylic adhesive composition for polarizing plate

Also Published As

Publication number Publication date
JP2005179467A (en) 2005-07-07
TW200531828A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
JP4805240B2 (en) Adhesive optical film and image display device
JP3916638B2 (en) Adhesive optical film and image display device
JP4800722B2 (en) Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive layer, optical member with a pressure-sensitive adhesive layer, method for producing the same, and image display device
JP4780766B2 (en) Optical adhesive, optical film with adhesive, and image display device
KR100959048B1 (en) Polarization plate with pressure-sensitive adhesive type optical compensation layer and image display
JP4800673B2 (en) Adhesive composition, adhesive layer, adhesive member, adhesive optical member, and image display device
WO2003107049A1 (en) Polarization plate with optical compensation layer and image display device
US8372492B2 (en) Pressure-sensitive adhesive optical film and image display
JP4780647B2 (en) Optical film pressure-sensitive adhesive, optical film pressure-sensitive adhesive layer and production method thereof, pressure-sensitive adhesive optical film, and image display device
JP5694972B2 (en) Optical film adhesive, optical film adhesive layer, adhesive optical film, and image display device
JP2003329838A (en) Pressure-sensitive adhesive optical film, pressure- sensitive adhesive composition for optical film and image display device
JP4215124B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member and method for producing the same, and image display device
JP2003307624A (en) Self-adhesive optical film and image display device
JP2004323543A (en) Pressure-sensitive adhesive composition for optical member, pressure-sensitive adhesive layer for optical member, adherent optical member and image display device
JP4727238B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member, and image display device
JP4849625B2 (en) Method for producing pressure-sensitive adhesive layer for optical film and method for producing pressure-sensitive adhesive optical film
JP4798752B2 (en) Optical adhesive, optical film with adhesive, and image display device
JP2003327926A (en) Pressure sensitive adhesive type optical film, pressure sensitive adhesive composition for optical film and image- displaying device
WO2005061648A1 (en) Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive type optical film, and image display
JP2005048003A (en) Adhesive composition for optical member, adhesive layer for optical member, adhesive optical member and method for producing the same, image display device, and method for producing adhesive optical member
JP2009008859A (en) Adhesive optical film and image display device
TWI384043B (en) An adhesive composition, a method for producing the same, and a use thereof
JP5202795B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer and production method thereof, pressure-sensitive adhesive optical member, and image display device
JP2003262729A (en) Adhesive optical film and image display device
JP5341146B2 (en) Optical film with adhesive and image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase