WO2005059588A1 - Radar - Google Patents

Radar Download PDF

Info

Publication number
WO2005059588A1
WO2005059588A1 PCT/JP2004/015903 JP2004015903W WO2005059588A1 WO 2005059588 A1 WO2005059588 A1 WO 2005059588A1 JP 2004015903 W JP2004015903 W JP 2004015903W WO 2005059588 A1 WO2005059588 A1 WO 2005059588A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
frequency
threshold value
value
target
Prior art date
Application number
PCT/JP2004/015903
Other languages
French (fr)
Japanese (ja)
Inventor
Motoi Nakanishi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/581,091 priority Critical patent/US7339517B2/en
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112004002458T priority patent/DE112004002458T5/en
Priority to JP2005516274A priority patent/JP4120679B2/en
Publication of WO2005059588A1 publication Critical patent/WO2005059588A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the present invention relates to a device for detecting a target using radio waves, and more particularly to a radar for detecting a target based on a frequency spectrum of a beat signal of a transmission signal and a reception signal.
  • an FM-CW radar using millimeter wave radio waves has been developed as an on-vehicle radar. That is, FM modulation is performed in a predetermined frequency range around a predetermined frequency to take a beat between the transmission signal and the reception signal, and the beat frequency and the transmission signal frequency decrease while the transmission signal frequency of the beat signal increases.
  • the distance to the target and the relative speed to the target are determined by identifying the beat frequency during the movement.
  • the frequency spectrum of the beat signal is obtained, and a predetermined threshold value is set to separate the signal component and the noise component.
  • Patent Literature 1 discloses a vehicle that determines the vehicle type of a vehicle that is a detection target and sets a threshold value according to the vehicle type!
  • Patent Document 2 is disclosed.
  • Patent Literature 3 discloses setting a threshold based on the power of a plurality of peaks in response to the peak becoming smaller in accordance with the distance to the target.
  • Patent Document 4 discloses an apparatus that removes a peak of a virtual image by increasing a threshold value at a frequency of the virtual image generated by a harmonic, a switching frequency, or the like.
  • Patent Document 1 JP-A-6-214015
  • Patent document 2 JP-A-7-311260
  • Patent Document 3 Japanese Patent Application Laid-Open No. Hei 4 318700
  • Patent Document 4 JP-A-11-344560
  • the radar disclosed in Patent Document 4 has a problem that only noise that can be assumed at an appearance position can be removed in advance.
  • an object of the present invention is to detect a spectrum peak caused by a reflected wave of a target force contained in a frequency spectrum based on a frequency spectrum of a beat signal, thereby more reliably detecting the spectrum peak.
  • An object of the present invention is to provide a radar with improved target detection accuracy.
  • the present invention provides a means for transmitting a frequency-modulated transmission signal and generating a beat signal including a frequency component of a difference between a frequency of a reflection signal from a target of the transmission signal and a frequency of the transmission signal.
  • a radar for obtaining a frequency spectrum of the beat signal; and a means for obtaining a peak frequency of a peak appearing in the frequency spectrum, wherein the radar is configured to detect a target based on the peak frequency.
  • determining the first threshold value and the first threshold value that appears in the frequency spectrum Based on the background noise intensity or the reflected signal intensity of a target with a predetermined reflection cross section, determine the first threshold value and the first threshold value that appears in the frequency spectrum. Means for determining a second threshold value in the vicinity of a predetermined frequency of each peak in accordance with the intensity of each peak, and extracting peaks exceeding the second threshold value. It is characterized by that.
  • the present invention is characterized in that the second threshold value is increased in a predetermined band of a foot portion according to the spread of a peak generated by multiplying a beat signal by a window function in the frequency axis direction.
  • the present invention is characterized in that the value of the second threshold is increased in a predetermined band in accordance with the spread of a peak generated by the CZN characteristic of the oscillator that generates the transmission signal in the frequency axis direction.
  • the present invention is characterized in that the second threshold value is set so as to gradually decrease in accordance with the intensity of the peak in a vertical direction with the frequency of the peak as a center. .
  • the present invention is characterized in that the second threshold value is set so as to exceed the intensity of a side band that appears together with a peak due to a modulation component superimposed on a beat signal.
  • the means for extracting the peaks determines the second threshold value in the descending order of the peak value among the plurality of peaks exceeding the first threshold value
  • the second feature of the present invention is to extract peaks exceeding all values.
  • a protrusion (hereinafter simply referred to as “peak”) based on a signal component appearing in the frequency spectrum is centered on the frequency of the peak (hereinafter referred to as “peak frequency”). And spreads in the frequency axis direction.
  • the first threshold is determined based on the intensity of knock ground noise or the reflected signal intensity of a target having a predetermined reflection cross-section, and the first threshold appearing in the frequency spectrum is determined.
  • the second threshold value whose value is high at frequencies near the peak and low at frequencies near the peak, is set. Can be removed by a second threshold value, and a peak appears, and noise in the frequency domain can be removed by a first threshold value. In this way, only the original peak (hereinafter, referred to as “target peak”) that occurs in the frequency spectrum of the beat signal due to the reflected wave from the target can be correctly detected.
  • the window function is applied if the value is increased in a predetermined band of the tail portion in accordance with the spread of the peak in the frequency axis direction caused by multiplying the beat signal by the window function.
  • a peak generated by the CZN characteristic of the oscillator that generates the transmission signal is used. If the value is increased in a predetermined band according to the spread of the peak in the frequency axis direction, a peak that appears due to random noise superimposed on the base of the original peak due to the application of the window function may be erroneously detected. Absent.
  • the second threshold value is determined so as to gradually decrease in a vertical direction with the frequency of the peak as a center in accordance with the intensity of the peak, the frequency becomes closer to the original peak.
  • the signal intensity is high, it is possible to reliably detect only the original peak without detecting the peak caused by the random noise superimposed thereon according to the shape of the frequency spectrum.
  • the second threshold value is set so as to exceed the intensity of the side band appearing together with the peak due to the modulation component superimposed on the beat signal, the side band of the original peak is erroneously detected as the peak. I can't.
  • the second threshold value is determined in order from the one having the largest peak value, and the second threshold value of each peak is determined.
  • FIG. 1 is a block diagram showing a configuration of a radar according to a first embodiment.
  • FIG. 2 is a diagram illustrating an example of a frequency change of a transmission signal and a reception signal that changes depending on a distance to a target of the radar and a relative speed of the target.
  • FIG. 3 is a flowchart showing a processing procedure for detecting a distance and a relative speed.
  • FIG. 4 is a diagram showing the relationship between the frequency spectrum of the window function and the spread of the tail of the peak.
  • FIG. 5 is a diagram showing a relationship between knock ground noise and a threshold value determined thereby, and a relationship between a reflection signal intensity of a target having a predetermined reflection cross-sectional area and a threshold value determined based thereon.
  • FIG. 6 is a diagram illustrating an example of a noise peak generated by superposition of noise in a foot portion near a peak.
  • FIG. 7 is a diagram showing an example of a threshold value set in a foot portion near a peak.
  • FIG. 8 is a diagram showing a relationship between a threshold determined based on knock ground noise and a detected peak.
  • FIG. 9 is a diagram showing an example of a finally determined threshold line.
  • FIG. 10 is a flowchart showing a processing procedure for peak frequency detection.
  • FIG. 11 is a diagram illustrating an example of a noise peak generated in a foot portion near a peak due to the CZN characteristic of the oscillator in the radar according to the second embodiment.
  • FIG. 12 is a diagram showing a setting example of threshold values in the radar.
  • FIG. 13 is a diagram showing a setting example of a threshold value in the radar according to the third embodiment.
  • FIG. 14 is a diagram showing an example of a spectrum when an AM modulation component is present in a beat signal in the radar according to the fourth embodiment.
  • FIG. 15 is a diagram showing an example of a threshold value set according to sideband noise included in the beat signal.
  • FIG. 1 is a block diagram showing the overall configuration of the radar.
  • the transmission wave modulator 16 sequentially outputs digital data of the modulation signal to the DA converter 14.
  • VCOl changes the oscillation frequency according to the control voltage output from the DA converter 14.
  • the oscillation frequency of the VC Ol is FM modulated continuously in a triangular waveform.
  • the isolator 2 transmits the oscillating signal of the VCOl to the force bra 3 and prevents the reflected signal from entering the VCOl.
  • the coupler 3 transmits the signal that has passed through the isolator 2 to the circulator 4 and also provides a part of the transmission signal to the mixer 6 as a local signal Lo at a predetermined distribution ratio.
  • Circuit circulator 4 transmits a transmission signal to antenna 5 side and supplies a reception signal from antenna 5 to mixer 6.
  • Antenna 5 transmits VCOl FM modulated continuous wave transmit signal Then, a reflected signal from the same direction is received. In addition, the direction of the beam is periodically changed over the detection angle range.
  • the mixer 6 mixes the local signal Lo from the coupler 3 and the received signal from the circulator 4, and outputs an intermediate frequency signal IF.
  • IF amplifier circuit 7 amplifies the intermediate frequency signal with a predetermined amplification factor according to the frequency determined by the distance.
  • the AD converter 8 converts the voltage signal into a sampling data sequence and supplies the same to the DSP 17.
  • the DSP 17 temporarily accumulates the digital data converted by the AD converter 8 for at least one scan (for a plurality of beam scans within a predetermined detection angle range), and executes a process described later to set a target around the antenna. The direction of the target, the distance to the target, and the relative speed of the target to the antenna are calculated.
  • the DC removing unit 9 obtains an average value of a predetermined sampling section to be processed by the subsequent FFT in the sampling data sequence obtained by the AD converter 8. Since this average value is equal to the DC component obtained by FFT (Fast Fourier Transform), the arithmetic process of subtracting the average value from each data of all sampling intervals is performed before the FFT operation process. DC component is removed.
  • FFT Fast Fourier Transform
  • the window function processing unit 15 cuts out data from the data from which the DC component has been removed by the DC removing unit 9 using a window function having a predetermined shape. With this window function extraction, errors due to the truncation that occur when the time waveform is extracted into a finite sampling section and the FFT operation is performed are suppressed. For example, window function processing such as a Nodjung window 'Humming window' Blackman-Harris window is performed.
  • the FFT operation unit 11 analyzes the frequency component of the data of the sampling section to which the window function has been applied.
  • the peak detection unit 12 detects, as a peak frequency, a frequency of a signal having an intensity exceeding a predetermined threshold value in the frequency spectrum.
  • the distance / speed calculating unit 13 calculates the distance from the detected peak frequency to the target and the relative speed.
  • FIG. 2 shows an example of a shift in frequency change between the transmission signal TXS and the reception signal RXS due to the distance to the target and the relative speed.
  • Transmission signal TXS is centered on center frequency fo Is a signal frequency-modulated in a triangular wave.
  • the frequency difference between the transmission signal TXS and the reception signal RXS when the frequency of the transmission signal TXS rises is the upbeat frequency fBU, and the frequency difference between the transmission signal TXS and the reception signal RXS when the frequency of the transmission signal TXS falls is down.
  • Beat frequency fBD Beat frequency fBD.
  • the time axis difference (time difference) between the triangular wave of the transmission signal TXS and the reception signal RXS corresponds to the round trip time of the radio wave to the antenna target.
  • the shift on the frequency axis between the transmission signal TXS and the reception signal RXS is the Doppler shift amount, which is caused by the relative speed of the target with respect to the antenna.
  • the value of the upbeat fBU and the value of the downbeat fBD change depending on the time difference and the amount of the Dobler shift. Conversely, by detecting the frequency of the upbeat and the downbeat, the distance from the radar to the target and the relative speed of the target to the radar are calculated.
  • FIG. 3 is a flowchart showing a processing procedure of the DSP 17. First, AD converter
  • the above processing is performed in order for the uplink modulation section and the downlink modulation section of the transmission frequency. Also, a combination (pairing) of the peak frequencies of the plurality of protrusions extracted in the up-modulation section and the peak frequencies of the plurality of protrusions extracted in the down-modulation section is performed (S6). That is, the peak frequencies of the protruding portions caused by the same target are paired. Then, the relative distance and the relative speed of the peak frequency target are calculated (S7).
  • FIG. 4 is a diagram illustrating an example of signal processing by which a window function is multiplied and the resulting frequency spectrum.
  • (A) shows a data sequence from which the DC removal has been performed in a time waveform.
  • a predetermined window function shown in (B) By applying a predetermined window function shown in (B) to this data sequence, a data sequence of a fixed number of data (for example, 1024 data) is obtained as shown in (C).
  • a discrete frequency spectrum as shown in (D) is obtained.
  • circles indicate signal strength (power) at each discrete frequency.
  • the solid line is a continuous spectrum of the window function shown in FIG.
  • the frequency spectrum of the beat signal to which the window function has been applied in this way is a convolution of the beat signal and the window function
  • the spectrum expands in the frequency axis direction according to the spectrum of the window function, and a tail portion is formed in the spectrum.
  • FIG. 5 shows two examples of setting a threshold to extract the frequency spectrum force target peak of the beat signal! /.
  • Fig. 5 (A) is based on background noise! / ⁇ When setting the value, it shows the relationship between the knock ground noise and the threshold value set based on it. When the value is set based on the background noise in this way, the value is determined so that the probability that the knock ground noise exceeds the threshold value! / ⁇ becomes sufficiently small. This probability is determined by the average value of the background noise and its variance.
  • BN indicates the instantaneous value of the background noise
  • BNm indicates the average value of the background noise
  • TH1 indicates the threshold value.
  • the horizontal axis is time (elapsed time) and the vertical axis is signal strength.
  • FIG. 5B shows a case where the threshold value is set based on the reflection signal intensity of a target having a predetermined reflection cross section, and the reflection signal intensity of a target having a predetermined reflection cross section is set. And the thresholds set based on them.
  • the horizontal axis is the distance [m] to the target, and the vertical axis is the received signal strength (log memory) with the peak value being OdB.
  • S is the theoretical value of the signal intensity of lOdBsm (received signal intensity when the reflected signal intensity is 0 when the object force of the radar reflection cross section is 10m2), and THO is based on this theoretical value.
  • the threshold is lowered by a level that takes into account scintillation. In this way, the received signal strength decreases as the signal is reflected from a distance, and the value is changed accordingly.
  • the base of the peak is reflected by the target having the above-mentioned threshold value TH1 determined based on the knock ground noise or the predetermined reflection cross-sectional area.
  • the above threshold value THO which is set based on the signal strength, may exceed the threshold value THO. Peaks (hereinafter referred to as “noise peaks”) may be erroneously detected as peaks due to force signals.
  • the spread of the peak by the window function and the upper and lower limits of the fluctuation of the noise intensity assumed from the variance of the knock ground noise are obtained. If the vertical width exceeds a predetermined amount of change in intensity change defined as a condition for peak (projection) detection, a projection due to noise may be detected as a peak.
  • the intensity of a certain range bin is the upper limit of the upper and lower widths, and If the intensity of the adjacent range bins on both sides is the lower limit of the vertical width, the certain range bin is erroneously detected as a small but peak.
  • the peak of the intensity does not exceed the upper limit of the sum of the swelling of the peak of the window function due to the window function and the noise intensity. Process as if it were not considered a signal.
  • a value exceeding the upper limit of the sum of the noise and the window function spectrum is set, and a value TH2 is set. Those that exceed the target are detected as reflected signals of the target force.
  • FIG. 6 shows the spectrum tail by the window function, in particular, the appearance of noise peaks caused by the addition of noise to this spectrum! /.
  • FIG. 6A shows the shape of the spread of the tail near the peak by the window function.
  • (B) shows the spectrum that appears as a result of combining the noise with the spread of the tail near the peak by this window function.
  • the spectrum SPO with a backslash indicates that the target peak position of the frequency spectrum coincides with the position of the FFT range bin.
  • SP1 shows the case where it is shifted by a half range.
  • P is the target peak
  • NP is the noise peak. If these noise peaks NP exceed the threshold value TH1 determined based on the background noise, these noise peaks NP are erroneously detected as target peaks.
  • a threshold value different from the above threshold value (first threshold value) TH1 is determined for the tail portion of the peak.
  • Fig. 7 shows an example of the fluctuation width of the noise intensity near the peak due to the spread of the window function spectrum and the inclusion of noise.
  • C is the theoretical value
  • U is the upper limit level due to noise contamination
  • D is the lower limit level due to noise contamination. Therefore, as shown in Fig. 7 (B), the second threshold TH2, which is a value higher than the upper limit level considering noise contamination, is set.
  • FIG. 8 shows an example of a frequency spectrum including a plurality of peaks.
  • the waveform SP is a frequency spectrum
  • the straight line TH1 is a threshold value set based on the average and variance of the background noise of the spectrum.
  • This background noise is a knock ground noise included in the beat signal in a state where the reflected signal from the target is not received.
  • the threshold value TH1 is determined in advance so that the probability that the noise is greater than the value is a sufficiently small probability.
  • circled positions indicate peak positions where the change in signal intensity with respect to the frequency change forms a mountain shape in a range exceeding the threshold value TH1. If all the peak positions within the range exceeding the threshold value TH1 are regarded as true peaks, the peak indicated by the circle is also detected as a target peak. Therefore, a plurality of peaks exceeding the threshold value TH1 are detected, and the threshold value TH2 is set in descending order of the peak value.
  • FIG. 9 shows an example of this.
  • the value TH1 is a threshold based on the background noise described above!
  • Value TH22 is a threshold (threshold line) determined based on the peak value of peak P2, and TH21 is a threshold determined based on the peak value of peak P1. Similarly, TH23 is a threshold value determined based on the peak value of the peak P3.
  • the threshold value line shown by the solid line in FIG. 9 is determined by using the side of the plurality of threshold values having the larger value. Therefore, a peak exceeding this threshold line is detected as a target peak.
  • FIG. 10 shows a processing procedure of peak frequency detection corresponding to step S5 in FIG.
  • a threshold value TH1 is obtained from the average value and variance of the knock ground noise, and a peak exceeding the value TH1 is extracted from a plurality of already detected peaks (SI1 ⁇ S12). Subsequently, a peak having the maximum peak value is detected from the peaks, and a threshold value (TH22 in the example of FIG. 9) is set based on the peak value (S13). Then, the presence or absence of a peak exceeding the threshold value (TH22) is determined. (In the example of Fig. 9, TH21)
  • threshold values are set for all peaks exceeding a plurality of threshold values sequentially determined (S14 ⁇ S15 ⁇ S13 ⁇ .- ⁇ ) ⁇ Peaks exceeding multiple thresholds (PI, ⁇ 2, ⁇ 3 in the example shown in Fig. 9) are regarded as target peaks (S16).
  • the above-described processing is based on the threshold value ⁇ 2 set at each foot portion based on the peak value of each peak and the threshold value TH1 obtained from the average value and variance of the background noise. This is equivalent to adopting a value higher or lower than the value in the range bin as a value, and processing the peak as a noise peak. However, as described above, it is more efficient to set the threshold value in the tail part in the descending order of the peak value, so that the noise peak can be eliminated efficiently.
  • the threshold value set based on the peak value of the detected peak and the value ⁇ ⁇ ⁇ ⁇ 2 and the threshold value TH1 obtained from the average value and the variance of the knock ground noise are used as shown in FIG. 5 ( ⁇ ).
  • the threshold value ⁇ ⁇ set based on the reflection intensity from the target having the predetermined reflection cross section is Of these, the range of the value may be determined in each range bin, and a process for adopting the value may be performed.
  • the area near the peak appearing in the frequency spectrum of the beat signal expands accordingly.
  • the noise component included in the oscillation signal increases, the base of the peak expands in the frequency axis direction. Due to this effect, a number of small peaks due to noise appear near a peak having a large peak value, which may be erroneously recognized as a target peak.
  • a level exceeding the maximum value of the level obtained by synthesizing the level of the foot portion near the peak due to the CZN characteristic and the random noise (the threshold value of the noise is a predetermined value) If the probability exceeds, set the value.
  • Fig. 11 shows a state of a frequency spectrum generated by combining a spectrum spread of a foot portion near a peak due to the CZN characteristic of the oscillator and a knock ground noise.
  • a peak is detected based on only the value TH1 based on the background noise shown in FIG. 11, a plurality of peaks indicated by a plurality of circles included in a portion surrounded by a broken line A in FIG. It is erroneously detected as one get peak.
  • the value TH3 is determined based on the peak value of the peak P and the CZN characteristic of the oscillator, and the value TH3 is determined based on the background noise.
  • High! ⁇ is used as the overall threshold. In this way, it is possible to prevent a peak caused by random noise from being superimposed on the foot near the peak due to the noise superimposed on the oscillation signal from being erroneously detected as the target peak.
  • such setting of the threshold value first detects a plurality of peaks exceeding a threshold value TH1 determined based on the background noise, and sets a plurality of peaks.
  • the peak value of the peak and the power of the peak are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.
  • the IF amplifier 7 shown in Fig. 1 is determined according to the distance of the beat signal to the target. It has the characteristic of changing the degree of amplification depending on the complete frequency.
  • the IF amplifier circuit 7 increases the degree of amplification of the received signal as the signal is reflected from a distance, that is, as the frequency is higher. Therefore, the knock ground noise tends to increase as the frequency increases.
  • FIG. 13 shows an example of a frequency spectrum in that case.
  • a peak P occurs in the range bin 31, and at the lower end, the base portion attenuates relatively sharply! /, And at the higher end, high-noise noise appears. Therefore, the threshold value determined based on the peak value of the peak P is set to be relatively abruptly attenuated on the low frequency side as shown by the threshold line T H2L in consideration of the characteristics of the distance attenuation correction described above.
  • the threshold line TH2H the attenuation is moderate on the high frequency side.
  • the threshold line TH2H on the high frequency side is approximately constant (slope 0).
  • a plurality of peaks exceeding a threshold value TH1 determined based on the background noise are detected, and the plurality of peaks are detected.
  • the peak value of the peaks and the power of the peaks are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.
  • the beat signal contains FM or AM modulation components in addition to the original beat signal components of the reflected wave of the target and the transmission signal, and the side band components appear as spurious components in the beat signal. If the peak value of the original target peak is high !, the peak of the sideband will be a threshold even if the FM or AM modulation component is suppressed to a level that is smaller than the level of the original beat signal. And it may be erroneously detected as a target peak.
  • FIGS. 14A and 14B show the case where an AM modulation component is present in the beat signal
  • FIG. 14A shows the case where the SZN ratio is relatively small and the peak value of the target peak is relatively small.
  • (B) is the case where the SZN ratio is relatively large and the peak value of the target peak is relatively large
  • the threshold value TH1 determined based on the background noise is high, and the sideband component is low.
  • the peak due to the side band does not exceed the threshold TH1, but as shown in (B), the peak values of the target peaks PI and P2 are high, and the intensity of the knock ground noise is low.
  • a peak due to a side band indicated by a circle exceeding the threshold TH1 is erroneously detected in a portion indicated by A near the target peak.
  • (A) is an example in which the threshold value of the frequency range in which a side band near the peak occurs is increased. That is, an intensity higher than the predicted sideband intensity according to the peak value of the detected peak P1 is set as the threshold TH41. Similarly, an intensity that is higher than the predicted sideband intensity according to the peak value of the peak P2 is set as the threshold TH42.
  • FIG. 15B shows an example in which the threshold value is increased only at the predicted sideband noise position.
  • such a threshold value is set by first detecting a plurality of peaks exceeding a threshold value TH1 determined based on the background noise, and setting the plurality of peaks.
  • the peak value of the peak and the power of the peak are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.

Abstract

A radar, wherein a first threshold (TH1) is determined by the intensity of background noise, thresholds (TH21), (TH22), and (TH23) are set in specified frequency zones near peak positions in the skirt portions of peaks (P1), (P2), and (P3), the higher value of these thresholds is adopted as a final threshold for each FET bin, and a peak exceeding that threshold is regarded as a target peak and detected. Thus, target detecting accuracy can be increased by securely detecting the target peak resulting from a reflected wave from a target included in the frequency spectrum of beat signals.

Description

明 細 書  Specification
レーダ  Radar
技術分野  Technical field
[0001] この発明は、電波を用いて物標の探知を行う装置に関し、特に送信信号と受信信 号のビート信号の周波数スペクトルを基に探知を行うレーダに関するものである。 背景技術  The present invention relates to a device for detecting a target using radio waves, and more particularly to a radar for detecting a target based on a frequency spectrum of a beat signal of a transmission signal and a reception signal. Background art
[0002] 従来、車載用レーダとしてミリ波帯の電波を用いる FM— CW方式のレーダが開発さ れている。すなわち所定周波数を中心として所定周波数範囲で FM変調し、送信信 号と受信信号とのビートをとり、そのビート信号の送信信号の周波数が上昇している 間のビート周波数と送信信号の周波数が降下している間のビート周波数を同定する ことによって物標までの距離と物標との相対速度を求める。  Conventionally, an FM-CW radar using millimeter wave radio waves has been developed as an on-vehicle radar. That is, FM modulation is performed in a predetermined frequency range around a predetermined frequency to take a beat between the transmission signal and the reception signal, and the beat frequency and the transmission signal frequency decrease while the transmission signal frequency of the beat signal increases. The distance to the target and the relative speed to the target are determined by identifying the beat frequency during the movement.
[0003] 上記アップビート信号とダウンビート信号の同定を行うために、ビート信号の周波数 スペクトルを求め、所定のしきい値を設定して信号成分とノイズ成分とを分離するよう にしている。  [0003] In order to identify the upbeat signal and the downbeat signal, the frequency spectrum of the beat signal is obtained, and a predetermined threshold value is set to separate the signal component and the noise component.
[0004] ところが、周波数スペクトルに現れるビート信号のピークは、様々な要因により変化 するため、単純に一定のしきい値を定めただけでは信号とノイズの分離が上手くいか ない。そのため、例えば探知物標である車両の車種を判別して、車種に応じたしきい 値を設定するものが特許文献 1に開示されて!、る。  However, since the peak of the beat signal appearing in the frequency spectrum changes due to various factors, simply setting a certain threshold value does not make it possible to separate the signal and the noise. Therefore, for example, Patent Literature 1 discloses a vehicle that determines the vehicle type of a vehicle that is a detection target and sets a threshold value according to the vehicle type!
[0005] また、後方の車両が自車の前方に急激に現れた際に周波数スペクトルの最大パヮ 一が変化するのに応じて、その最大パワーを持つピークを基にしきい値を設定するも のとして特許文献 2が開示されている。 [0005] Further, when the rearmost vehicle suddenly appears in front of the own vehicle, the threshold is set based on the peak having the maximum power in response to a change in the maximum power of the frequency spectrum. Patent Document 2 is disclosed.
[0006] また、物標までの距離に応じてピークが小さくなることに対応して、複数個のピーク のパワーを基にしてしきい値を設定するものが特許文献 3に開示されている。 [0006] Patent Literature 3 discloses setting a threshold based on the power of a plurality of peaks in response to the peak becoming smaller in accordance with the distance to the target.
[0007] さらに高調波やスイッチング周波数などによって生じる虚像の周波数でしきい値を 上げることによって虚像のピークを除去するものが特許文献 4に開示されている。 特許文献 1:特開平 6- 214015号公報 [0007] Patent Document 4 discloses an apparatus that removes a peak of a virtual image by increasing a threshold value at a frequency of the virtual image generated by a harmonic, a switching frequency, or the like. Patent Document 1: JP-A-6-214015
特許文献 2:特開平 7-311260号公報 特許文献 3:特開平 4 318700号公報 Patent document 2: JP-A-7-311260 Patent Document 3: Japanese Patent Application Laid-Open No. Hei 4 318700
特許文献 4:特開平 11—344560号公報  Patent Document 4: JP-A-11-344560
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 特許文献 1に示されているレーダでは、車種の判別ができても実際の信号強度は 状況に応じて変化するため、精度よくノイズを除去することができない。 [0008] In the radar disclosed in Patent Document 1, even if the vehicle type can be determined, the actual signal strength changes according to the situation, and therefore, the noise cannot be accurately removed.
[0009] また特許文献 2, 3に示されているレーダでは、それぞれのピークに応じた値'周波 数範囲にしきい値を設定しなければ、本来検出できる答の小さな物標を見失うことに なる。 [0009] In the radars disclosed in Patent Documents 2 and 3, unless a threshold value is set in a value 'frequency range corresponding to each peak, a target with a small answer that can be originally detected will be lost. .
[0010] さらに特許文献 4に示されているレーダでは、予め出現位置の想定できるノイズしか 除去できな 、と 、う問題があった。  [0010] Furthermore, the radar disclosed in Patent Document 4 has a problem that only noise that can be assumed at an appearance position can be removed in advance.
[0011] そこでこの発明の目的は、ビート信号の周波数スペクトルを基に、その周波数スぺ タトルに含まれている物標力 の反射波に起因して生じるスペクトルピークをより確実 に検出して物標の探知精度を高めたレーダを提供することにある。 [0011] Therefore, an object of the present invention is to detect a spectrum peak caused by a reflected wave of a target force contained in a frequency spectrum based on a frequency spectrum of a beat signal, thereby more reliably detecting the spectrum peak. An object of the present invention is to provide a radar with improved target detection accuracy.
課題を解決するための手段  Means for solving the problem
[0012] この発明は、周波数変調した送信信号を送信し、該送信信号の物標からの反射信 号の周波数と前記送信信号の周波数との差の周波数成分を含むビート信号を生成 する手段と、該ビート信号の周波数スペクトルを求める手段と、該周波数スペクトルに 現れるピークのピーク周波数を求める手段と、を備え、該ピーク周波数に基づいて物 標の探知を行うようにしたレーダにぉ 、て、  [0012] The present invention provides a means for transmitting a frequency-modulated transmission signal and generating a beat signal including a frequency component of a difference between a frequency of a reflection signal from a target of the transmission signal and a frequency of the transmission signal. A radar for obtaining a frequency spectrum of the beat signal; and a means for obtaining a peak frequency of a peak appearing in the frequency spectrum, wherein the radar is configured to detect a target based on the peak frequency.
バックグラウンドノイズの強度または所定の反射断面積を持つ物標の反射信号強度 に基づ!/、て第 1のしき 、値を定め、周波数スペクトルに現れる第 1のしき!/、値を超える 複数のピークについて、それぞれのピークの強度に応じて、それぞれのピークの所 定の近傍周波数領域に第 2のしきい値を定め、該第 2のしきい値を超えるピークを抽 出する手段を備えたことを特徴として 、る。  Based on the background noise intensity or the reflected signal intensity of a target with a predetermined reflection cross section, determine the first threshold value and the first threshold value that appears in the frequency spectrum. Means for determining a second threshold value in the vicinity of a predetermined frequency of each peak in accordance with the intensity of each peak, and extracting peaks exceeding the second threshold value. It is characterized by that.
[0013] またこの発明は、前記第 2のしきい値を、ビート信号に窓関数を掛けることにより生じ るピークの周波数軸方向の拡がりに応じて裾野部分の所定帯域で値を高くしたことを 特徴としている。 [0014] またこの発明は、前記第 2のしきい値を、送信信号を生成する発振器の CZN特性 により生じるピークの周波数軸方向の拡がりに応じて所定帯域で値を高くしたことを 特徴としている。 [0013] Also, the present invention is characterized in that the second threshold value is increased in a predetermined band of a foot portion according to the spread of a peak generated by multiplying a beat signal by a window function in the frequency axis direction. Features. [0014] Further, the present invention is characterized in that the value of the second threshold is increased in a predetermined band in accordance with the spread of a peak generated by the CZN characteristic of the oscillator that generates the transmission signal in the frequency axis direction. .
[0015] またこの発明は、前記第 2のしきい値を、ピークの強度に応じて、該ピークの周波数 を中心として上下方向に向力つて次第に低下するように定めたことを特徴として 、る。  [0015] Further, the present invention is characterized in that the second threshold value is set so as to gradually decrease in accordance with the intensity of the peak in a vertical direction with the frequency of the peak as a center. .
[0016] またこの発明は、前記第 2のしきい値を、ビート信号に重畳されている変調成分によ りピークとともに現れるサイドバンドの強度を上回るように定めたことを特徴としている  [0016] Further, the present invention is characterized in that the second threshold value is set so as to exceed the intensity of a side band that appears together with a peak due to a modulation component superimposed on a beat signal.
[0017] またこの発明は、前記ピークを抽出する手段が、第 1のしきい値を超える複数のピ ークのうちピーク値の大きなものから順に第 2のしきい値を定めるとともに、各ピークの 第 2のしき 、値をすベて超えるピークを抽出することを特徴として 、る。 [0017] Further, according to the present invention, the means for extracting the peaks determines the second threshold value in the descending order of the peak value among the plurality of peaks exceeding the first threshold value, The second feature of the present invention is to extract peaks exceeding all values.
発明の効果  The invention's effect
[0018] ビート信号に窓関数を掛けると、周波数スペクトルに現れる信号成分に基づく突出 部(以下単に「ピーク」と言う。)は、そのピークの周波数 (以下「ピーク周波数」と言う。 )を中心として周波数軸方向に拡がる。この発明によれば、ノ ックグラウンドノイズの 強度または所定の反射断面積を持つ物標の反射信号強度に基づいて第 1のしきい 値を定め、周波数スペクトルに現れる第 1のしきい値を超える複数のピークについて When a beat signal is multiplied by a window function, a protrusion (hereinafter simply referred to as “peak”) based on a signal component appearing in the frequency spectrum is centered on the frequency of the peak (hereinafter referred to as “peak frequency”). And spreads in the frequency axis direction. According to the present invention, the first threshold is determined based on the intensity of knock ground noise or the reflected signal intensity of a target having a predetermined reflection cross-section, and the first threshold appearing in the frequency spectrum is determined. About multiple peaks
、それぞれのピークの強度に応じて、それぞれのピーク近傍の周波数で値が高ぐピ 一タカ 離れた周波数で値が低い第 2のしきい値を定めたことにより、ピーク近傍の 裾野部分のノイズを第 2のしき 、値で除去でき、またピークの現れて 、な 、周波数領 域のノイズは第 1のしきい値で除去できる。このようにして、物標からの反射波に起因 してビート信号の周波数スペクトルに生じる本来のピーク(以下、「ターゲットピーク」と いう。)のみを正しく検出できるようになる。 According to the intensity of each peak, the second threshold value, whose value is high at frequencies near the peak and low at frequencies near the peak, is set. Can be removed by a second threshold value, and a peak appears, and noise in the frequency domain can be removed by a first threshold value. In this way, only the original peak (hereinafter, referred to as “target peak”) that occurs in the frequency spectrum of the beat signal due to the reflected wave from the target can be correctly detected.
[0019] 前記第 2のしきい値として、ビート信号に窓関数を掛けることにより生じるピークの周 波数軸方向の拡がりに応じて裾野部分の所定帯域で値を高くすれば、窓関数を掛 けたことによる本来のピークの裾野部分にランダムノイズが重畳されることによって現 れるピークを誤検出することがない。  As the second threshold value, the window function is applied if the value is increased in a predetermined band of the tail portion in accordance with the spread of the peak in the frequency axis direction caused by multiplying the beat signal by the window function. As a result, the peak appearing due to the superimposition of random noise on the base of the original peak is not erroneously detected.
[0020] 前記第 2のしきい値として、送信信号を生成する発振器の CZN特性により生じるピ ークの周波数軸方向の拡がりに応じて所定帯域で値を高くすれば、窓関数を掛けた ことによる本来のピークの裾野部分にランダムノイズが重畳されることによって現れる ピークを誤検出することがない。 [0020] As the second threshold, a peak generated by the CZN characteristic of the oscillator that generates the transmission signal is used. If the value is increased in a predetermined band according to the spread of the peak in the frequency axis direction, a peak that appears due to random noise superimposed on the base of the original peak due to the application of the window function may be erroneously detected. Absent.
[0021] 前記第 2のしきい値を、ピークの強度に応じて該ピークの周波数を中心として上下 方向に向力つて次第に低下するように定めれば、本来のピークに近接する周波数で あるほど信号強度が高 、と 、う周波数スペクトルの形状に応じて、そこに重畳されるラ ンダムノイズによって生じるピークを検出することなく本来のピークのみを確実に検出 でさるよう〖こなる。  [0021] If the second threshold value is determined so as to gradually decrease in a vertical direction with the frequency of the peak as a center in accordance with the intensity of the peak, the frequency becomes closer to the original peak. When the signal intensity is high, it is possible to reliably detect only the original peak without detecting the peak caused by the random noise superimposed thereon according to the shape of the frequency spectrum.
[0022] 前記第 2のしきい値として、ビート信号に重畳されている変調成分によりピークととも に現れるサイドバンドの強度を上回るように定めれば、本来のピークのサイドバンドを ピークとして誤検出することがない。  [0022] If the second threshold value is set so as to exceed the intensity of the side band appearing together with the peak due to the modulation component superimposed on the beat signal, the side band of the original peak is erroneously detected as the peak. I can't.
[0023] またこの発明によれば、第 1のしきい値を超える複数のピークのうちピーク値の大き なものから順に第 2のしきい値を定めるとともに、各ピークの第 2のしきい値をすベて 超えるピークを抽出することにより、少ない演算量で本来のピークを高速に検出でき るようになり、物標探知速度が速まる。  According to the present invention, among the plurality of peaks exceeding the first threshold value, the second threshold value is determined in order from the one having the largest peak value, and the second threshold value of each peak is determined. By extracting peaks that exceed all points, the original peaks can be detected at high speed with a small amount of computation, and the target detection speed increases.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]第 1の実施形態に係るレーダの構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a radar according to a first embodiment.
[図 2]同レーダの物標までの距離と物標の相対速度により変化する送信信号と受信 信号の周波数変化の例を示す図である。  FIG. 2 is a diagram illustrating an example of a frequency change of a transmission signal and a reception signal that changes depending on a distance to a target of the radar and a relative speed of the target.
[図 3]距離および相対速度の検知のための処理手順を示すフローチャートである。  FIG. 3 is a flowchart showing a processing procedure for detecting a distance and a relative speed.
[図 4]窓関数の周波数スペクトルとピークの裾野部分の拡がりとの関係を示す図であ る。  FIG. 4 is a diagram showing the relationship between the frequency spectrum of the window function and the spread of the tail of the peak.
[図 5]ノックグラウンドノイズとそれにより定めるしきい値との関係、および所定反射断 面積を持つ物標の反射信号強度とそれを基に定めるしきい値との関係を示す図であ る。  FIG. 5 is a diagram showing a relationship between knock ground noise and a threshold value determined thereby, and a relationship between a reflection signal intensity of a target having a predetermined reflection cross-sectional area and a threshold value determined based thereon.
[図 6]ピーク近傍の裾野部分のノイズの重畳により生じるノイズピークの例を示す図で ある。  FIG. 6 is a diagram illustrating an example of a noise peak generated by superposition of noise in a foot portion near a peak.
[図 7]ピーク近傍の裾野部分に設定するしきい値の例を示す図である。 [図 8]ノックグラウンドノイズを基に定めたしきい値と、検出されるピークとの関係を示 す図である。 FIG. 7 is a diagram showing an example of a threshold value set in a foot portion near a peak. FIG. 8 is a diagram showing a relationship between a threshold determined based on knock ground noise and a detected peak.
[図 9]最終的に定めるしきい値ラインの例を示す図である。  FIG. 9 is a diagram showing an example of a finally determined threshold line.
[図 10]ピーク周波数検出の処理手順を示すフローチャートである。  FIG. 10 is a flowchart showing a processing procedure for peak frequency detection.
[図 11]第 2の実施形態に係るレーダにおける発振器の CZN特性によりピーク近傍の 裾野部分に生じるノイズピークの例を示す図である。  FIG. 11 is a diagram illustrating an example of a noise peak generated in a foot portion near a peak due to the CZN characteristic of the oscillator in the radar according to the second embodiment.
[図 12]同レーダにおけるしきい値の設定例を示す図である。  FIG. 12 is a diagram showing a setting example of threshold values in the radar.
[図 13]第 3の実施形態に係るレーダにおけるしきい値の設定例を示す図である。  FIG. 13 is a diagram showing a setting example of a threshold value in the radar according to the third embodiment.
[図 14]第 4の実施形態に係るレーダにおけるビート信号に AM変調成分が存在する ときのスペクトルの例を示す図である。  FIG. 14 is a diagram showing an example of a spectrum when an AM modulation component is present in a beat signal in the radar according to the fourth embodiment.
[図 15]同ビート信号に含まれるサイドバンドノイズに合わせて設定したしきい値の例を 示す図である。  FIG. 15 is a diagram showing an example of a threshold value set according to sideband noise included in the beat signal.
符号の説明  Explanation of symbols
[0025] 17-DSP [0025] 17-DSP
ADC— ADコンバータ  ADC—AD converter
DAC— DAコンバータ  DAC — DA converter
VCO -電圧制御発振器  VCO-voltage controlled oscillator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 第 1の実施形態に係るレーダの構成を図 1一図 10を参照して順に説明する。  The configuration of the radar according to the first embodiment will be sequentially described with reference to FIGS.
図 1はレーダの全体の構成を示すブロック図である。送信波変調部 16は、 DAコン バータ 14に対して変調信号のディジタルデータを順次出力する。 VCOlは、 DAコン バータ 14より出力される制御電圧に応じて発振周波数を変化させる。これにより、 VC Olの発振周波数を三角波状に連続して FM変調させる。アイソレータ 2は、 VCOl 力ゝらの発振信号を力ブラ 3側へ伝送し、 VCOlへ反射信号が入射するのを阻止する 。カプラ 3は、アイソレータ 2を経由した信号をサーキユレータ 4側へ伝送するとともに 、所定の分配比で送信信号の一部をローカル信号 Loとしてミキサ 6へ与える。サーキ ユレータ 4は、送信信号をアンテナ 5側へ伝送し、また、アンテナ 5からの受信信号を ミキサ 6へ与える。アンテナ 5は、 VCOlの FM変調された連続波の送信信号を送信 し、同方向からの反射信号を受信する。また、そのビームの方向を探知角度範囲に 亘つて周期的に変化させる。 FIG. 1 is a block diagram showing the overall configuration of the radar. The transmission wave modulator 16 sequentially outputs digital data of the modulation signal to the DA converter 14. VCOl changes the oscillation frequency according to the control voltage output from the DA converter 14. As a result, the oscillation frequency of the VC Ol is FM modulated continuously in a triangular waveform. The isolator 2 transmits the oscillating signal of the VCOl to the force bra 3 and prevents the reflected signal from entering the VCOl. The coupler 3 transmits the signal that has passed through the isolator 2 to the circulator 4 and also provides a part of the transmission signal to the mixer 6 as a local signal Lo at a predetermined distribution ratio. Circuit circulator 4 transmits a transmission signal to antenna 5 side and supplies a reception signal from antenna 5 to mixer 6. Antenna 5 transmits VCOl FM modulated continuous wave transmit signal Then, a reflected signal from the same direction is received. In addition, the direction of the beam is periodically changed over the detection angle range.
[0027] ミキサー 6は、カプラ 3からのローカル信号 Loとサーキユレータ 4からの受信信号とを ミキシングして中間周波信号 IFを出力する。 IF増幅回路 7は、その中間周波信号を、 距離によって定まる周波数に応じて所定の増幅度で増幅する。 ADコンバータ 8は、 その電圧信号をサンプリングデータ列に変換して DSP17へ与える。 DSP17は、 AD コンバータ 8により変換されたディジタルデータを少なくとも 1スキャン分 (所定の探知 角度範囲内での複数本のビーム走査分)だけ一時蓄積し、後述する処理によって、 アンテナを中心とする物標の方位、物標までの距離、およびアンテナに対する物標 の相対速度を算出する。  [0027] The mixer 6 mixes the local signal Lo from the coupler 3 and the received signal from the circulator 4, and outputs an intermediate frequency signal IF. IF amplifier circuit 7 amplifies the intermediate frequency signal with a predetermined amplification factor according to the frequency determined by the distance. The AD converter 8 converts the voltage signal into a sampling data sequence and supplies the same to the DSP 17. The DSP 17 temporarily accumulates the digital data converted by the AD converter 8 for at least one scan (for a plurality of beam scans within a predetermined detection angle range), and executes a process described later to set a target around the antenna. The direction of the target, the distance to the target, and the relative speed of the target to the antenna are calculated.
[0028] 上記 DSP17において、 DC除去部 9は ADコンバータ 8により求められたサンプリン グデータ列のうち、後段の FFTの処理対象となる所定のサンプリング区間の平均値 を求める。この平均値は、 FFT (高速フーリエ変換)により求められる直流成分に等し いので、すべてのサンプリング区間のそれぞれのデータからその平均値を減じる演 算処理を行うことにより、 FFT演算処理の前に直流成分の除去を行う。  [0028] In the above-described DSP 17, the DC removing unit 9 obtains an average value of a predetermined sampling section to be processed by the subsequent FFT in the sampling data sequence obtained by the AD converter 8. Since this average value is equal to the DC component obtained by FFT (Fast Fourier Transform), the arithmetic process of subtracting the average value from each data of all sampling intervals is performed before the FFT operation process. DC component is removed.
[0029] 窓関数処理部 15は、 DC除去部 9により直流成分が除去されたデータについて、所 定形状の窓関数を用いてデータの切り出しを行う。この窓関数による切り出しによつ て、時間波形を有限のサンプリング区間に切り出して FFT演算する際に生じるトラン ケーシヨンによる誤差を抑える。例えばノヽユング窓'ハミング窓'ブラックマン =ハリス 窓等の窓関数処理を行う。  The window function processing unit 15 cuts out data from the data from which the DC component has been removed by the DC removing unit 9 using a window function having a predetermined shape. With this window function extraction, errors due to the truncation that occur when the time waveform is extracted into a finite sampling section and the FFT operation is performed are suppressed. For example, window function processing such as a Nodjung window 'Humming window' Blackman-Harris window is performed.
[0030] FFT演算部 11は、窓関数をかけられた上記サンプリング区間のデータについて周 波数成分を分析する。  [0030] The FFT operation unit 11 analyzes the frequency component of the data of the sampling section to which the window function has been applied.
[0031] ピーク検出部 12は、周波数スペクトルのうち所定のしきい値を超える強度の信号の 周波数をピーク周波数として検出する。  [0031] The peak detection unit 12 detects, as a peak frequency, a frequency of a signal having an intensity exceeding a predetermined threshold value in the frequency spectrum.
[0032] 距離 ·速度算出部 13は、検出されたピーク周波数から物標までの距離と相対速度 を算出する。 [0032] The distance / speed calculating unit 13 calculates the distance from the detected peak frequency to the target and the relative speed.
[0033] 図 2は、物標までの距離と相対速度に起因する、送信信号 TXSと受信信号 RXSの 周波数変化のずれの例を示している。送信信号 TXSは中心周波数 foを周波数中心 として、三角波状に周波数変調された信号である。この送信信号 TXSの周波数上昇 時における送信信号 TXSと受信信号 RXSとの周波数差がアップビートの周波数 fBU であり、送信信号 TXSの周波数下降時における送信信号 TXSと受信信号 RXSとの 周波数差がダウンビートの周波数 fBDである。この送信信号 TXSと受信信号 RXSの 三角波の時間軸上のずれ(時間差)が、アンテナ力 物標までの電波の往復時間に 相当する。また、送信信号 TXSと受信信号 RXSの周波数軸上のずれがドッブラシフ ト量であり、これはアンテナに対する物標の相対速度に起因して生じる。この時間差 とドッブラシフト量によってアップビート fBUとダウンビート fBDの値が変化する。逆に、 このアップビートとダウンビートの周波数を検出することによって、レーダから物標まで の距離およびレーダに対する物標の相対速度を算出する。 FIG. 2 shows an example of a shift in frequency change between the transmission signal TXS and the reception signal RXS due to the distance to the target and the relative speed. Transmission signal TXS is centered on center frequency fo Is a signal frequency-modulated in a triangular wave. The frequency difference between the transmission signal TXS and the reception signal RXS when the frequency of the transmission signal TXS rises is the upbeat frequency fBU, and the frequency difference between the transmission signal TXS and the reception signal RXS when the frequency of the transmission signal TXS falls is down. Beat frequency fBD. The time axis difference (time difference) between the triangular wave of the transmission signal TXS and the reception signal RXS corresponds to the round trip time of the radio wave to the antenna target. Also, the shift on the frequency axis between the transmission signal TXS and the reception signal RXS is the Doppler shift amount, which is caused by the relative speed of the target with respect to the antenna. The value of the upbeat fBU and the value of the downbeat fBD change depending on the time difference and the amount of the Dobler shift. Conversely, by detecting the frequency of the upbeat and the downbeat, the distance from the radar to the target and the relative speed of the target to the radar are calculated.
[0034] 図 3は、上記 DSP17の処理手順を示すフローチャートである。まず、 ADコンバータ  FIG. 3 is a flowchart showing a processing procedure of the DSP 17. First, AD converter
8からデータを取り込み(S1)、ハユング窓の重み係数を掛け(S2)、 FFT演算を行い (S3)、各離散周波数における実部と虚部の自乗和の対数をとることによってパワー スペクトル (以下、単に「周波数スペクトル」という。)を算出する(S4)。  8 (S1), multiply by the weighting coefficient of the Hayung window (S2), perform FFT operation (S3), and take the log of the sum of squares of the real part and imaginary part at each discrete frequency to obtain the power spectrum (hereinafter , Simply referred to as “frequency spectrum”) (S4).
[0035] 続、て、その周波数スペクトルに現れて 、る複数のピークを検出し、それらのピーク のうちターゲットピークを抽出し、そのピーク周波数を求める(S5)。  Subsequently, a plurality of peaks appearing in the frequency spectrum are detected, a target peak is extracted from the peaks, and the peak frequency is obtained (S5).
[0036] 以上の処理は、送信周波数の上り変調区間と下り変調区間とについて順に行う。ま た、上り変調区間で抽出した複数の突出部のピーク周波数と、下り変調区間で抽出 した複数の突出部のピーク周波数との組み合わせ (ペアリング)を行う(S6)。すなわ ち、同一物標に起因して生じた突出部のピーク周波数同士をペアリングする。そして 、そのピーク周波数力 物標の相対距離および相対速度を算出する(S7)。  [0036] The above processing is performed in order for the uplink modulation section and the downlink modulation section of the transmission frequency. Also, a combination (pairing) of the peak frequencies of the plurality of protrusions extracted in the up-modulation section and the peak frequencies of the plurality of protrusions extracted in the down-modulation section is performed (S6). That is, the peak frequencies of the protruding portions caused by the same target are paired. Then, the relative distance and the relative speed of the peak frequency target are calculated (S7).
[0037] さて、ビート信号を FFT等の離散周波数スペクトルを求める際、切り出した信号のサ ンプルに対して窓関数を掛けることで信号の不連続性による影響を抑える。  [0037] When a discrete frequency spectrum such as FFT is obtained from a beat signal, the effect of the discontinuity of the signal is suppressed by multiplying a sample of the extracted signal by a window function.
図 4は、窓関数を掛ける信号処理と、その結果の周波数スペクトルとの例を示す図 である。ここで、(A)は前記 DC除去を行ったデータ列を時間波形で示している。この データ列に対して、(B)に示す所定の窓関数をかけることにより、(C)に示すように、 一定データ数 (例えば 1024個のデータ)のデータ列を求める。この窓関数をかけた データ列を FFT演算することにより、 (D)に示すような離散周波数スペクトルを求める [0038] 図 4の(D)において、丸印は各離散周波数での信号強度 (パワー)である。また、実 線は、図 4の(B)に示した窓関数の連続スペクトルである。このように窓関数をかけた ビート信号の周波数スペクトルは、ビート信号と窓関数の畳み込みとなるため、窓関 数のスペクトルに応じてスペクトルが周波数軸方向に膨らみ、スペクトルに裾野部分 ができる。 FIG. 4 is a diagram illustrating an example of signal processing by which a window function is multiplied and the resulting frequency spectrum. Here, (A) shows a data sequence from which the DC removal has been performed in a time waveform. By applying a predetermined window function shown in (B) to this data sequence, a data sequence of a fixed number of data (for example, 1024 data) is obtained as shown in (C). By performing an FFT operation on the data sequence to which this window function has been applied, a discrete frequency spectrum as shown in (D) is obtained. In FIG. 4D, circles indicate signal strength (power) at each discrete frequency. The solid line is a continuous spectrum of the window function shown in FIG. Since the frequency spectrum of the beat signal to which the window function has been applied in this way is a convolution of the beat signal and the window function, the spectrum expands in the frequency axis direction according to the spectrum of the window function, and a tail portion is formed in the spectrum.
[0039] 図 5は、ビート信号の周波数スペクトル力 ターゲットピークを抽出するためにしきい 値を設定する 2つの例を示して!/、る。図 5の(A)はバックグラウンドノイズを基にしき!/ヽ 値を設定する場合であり、ノ ックグラウンドノイズと、それを基にして設定したしきい値 との関係を示して 、る。このようにバックグラウンドノイズを基にしき 、値を設定する場 合、ノックグラウンドノイズがしき!/ヽ値を上回る確率が充分に小さくなるようにしき 、値 を定める。この確率はバックグラウンドノイズの平均値とその分散により定まる。図 5の (A)において BNはバックグラウンドノイズの瞬時値、 BNmはバックグラウンドノイズの 平均値、 TH1はしきい値をそれぞれ示している。横軸は時刻(経過時間)、縦軸は信 号強度である。  FIG. 5 shows two examples of setting a threshold to extract the frequency spectrum force target peak of the beat signal! /. Fig. 5 (A) is based on background noise! / ヽ When setting the value, it shows the relationship between the knock ground noise and the threshold value set based on it. When the value is set based on the background noise in this way, the value is determined so that the probability that the knock ground noise exceeds the threshold value! / ヽ becomes sufficiently small. This probability is determined by the average value of the background noise and its variance. In (A) of Fig. 5, BN indicates the instantaneous value of the background noise, BNm indicates the average value of the background noise, and TH1 indicates the threshold value. The horizontal axis is time (elapsed time) and the vertical axis is signal strength.
[0040] 図 5の (B)は、所定の反射断面積を持つ物標の反射信号強度を基にしきい値を設 定する場合であり、所定の反射断面積を持つ物標の反射信号強度と、それを基にし て設定したしきい値について示している。ここで、横軸は物標までの距離 [m]、縦軸 はピーク値を OdBとする受信信号強度 (対数メモリ)である。 Sは lOdBsm (レーダー 反射断面積 10m2の物体力もの反射信号強度を 0としたときの受信信号強度)の信 号強度の理論値であり、 THOはこの理論値より受信信号強度の時間的変動 (シンチ レーシヨン)を考慮したレベルだけ下げたしきい値である。このように、遠方からの反 射信号であるほど受信信号強度が低下するので、それに合わせてしき!/、値も変化さ せる。  FIG. 5B shows a case where the threshold value is set based on the reflection signal intensity of a target having a predetermined reflection cross section, and the reflection signal intensity of a target having a predetermined reflection cross section is set. And the thresholds set based on them. Here, the horizontal axis is the distance [m] to the target, and the vertical axis is the received signal strength (log memory) with the peak value being OdB. S is the theoretical value of the signal intensity of lOdBsm (received signal intensity when the reflected signal intensity is 0 when the object force of the radar reflection cross section is 10m2), and THO is based on this theoretical value. The threshold is lowered by a level that takes into account scintillation. In this way, the received signal strength decreases as the signal is reflected from a distance, and the value is changed accordingly.
[0041] しかし、受信信号強度の高 、ターゲットピークの周囲では、そのピークの裾野部分が ノ ックグラウンドノイズを基に定められた上記しきい値 TH1または所定の反射断面積 を持つターゲットの反射信号強度を基に設定された上記しきい値 THOを超えること があり、これと、ノックグラウンドノイズが混ざり合わさることにより、この部分にノイズに 起因するピーク(以下「ノイズピーク」という。)力 信号に起因するピークとして誤って 検出されることがある。 However, when the received signal strength is high, around the target peak, the base of the peak is reflected by the target having the above-mentioned threshold value TH1 determined based on the knock ground noise or the predetermined reflection cross-sectional area. The above threshold value THO, which is set based on the signal strength, may exceed the threshold value THO. Peaks (hereinafter referred to as “noise peaks”) may be erroneously detected as peaks due to force signals.
[0042] そこで、まず、窓関数によるピークの拡がりと、ノ ックグラウンドノイズの分散より想定 されるノイズ強度の変動する上下幅を求める。この上下幅が、ピーク(突出部)検出の 条件として定めた所定の強度変化の変化量を超えるような場合に、ノイズによる突出 部がピークとして検出される場合が生じる。すなわち、窓関数を掛け合わせたことによ り生じるターゲットピーク以外の各々のレンジビン (FFTの周波数分解能による各周 波数レンジビン)において、或るレンジビンの強度が上記上下幅の上限値であり、且 つその両側の隣接レンジビンの強度が上記上下幅の下限値であった場合、上記或 るレンジビンは微小ながらもピークとして誤検出されてしまう。  [0042] Therefore, first, the spread of the peak by the window function and the upper and lower limits of the fluctuation of the noise intensity assumed from the variance of the knock ground noise are obtained. If the vertical width exceeds a predetermined amount of change in intensity change defined as a condition for peak (projection) detection, a projection due to noise may be detected as a peak. In other words, in each range bin (each frequency range bin according to the FFT frequency resolution) other than the target peak generated by multiplying by the window function, the intensity of a certain range bin is the upper limit of the upper and lower widths, and If the intensity of the adjacent range bins on both sides is the lower limit of the vertical width, the certain range bin is erroneously detected as a small but peak.
[0043] したがって、このような誤検出が生じ得る周波数レンジでは、窓関数によるピークの 裾野部分の膨らみとノイズの強度との和の上限値を超えな 、強度のピークは、物標 力 の反射信号とは見なさな 、ように処理する。  Therefore, in the frequency range where such erroneous detection may occur, the peak of the intensity does not exceed the upper limit of the sum of the swelling of the peak of the window function due to the window function and the noise intensity. Process as if it were not considered a signal.
[0044] このために、ノ ックグラウンドノイズを基に定めたしきい値 TH1とは別に、ノイズと窓 関数スペクトルの和の上限値を上回る値にしき 、値 TH2を設定し、この 、ずれをも上 回ったものを物標力 の反射信号として検出する。  [0044] To this end, apart from the threshold TH1 determined based on the knock ground noise, a value exceeding the upper limit of the sum of the noise and the window function spectrum is set, and a value TH2 is set. Those that exceed the target are detected as reflected signals of the target force.
[0045] 周波数スペクトルの裾野の拡がり方は窓関数の種類によって異なる。また、周波数 スペクトルのターゲットピーク位置が FFTレンジビンの位置に一致する場合とずれて いる場合 (例えば、 FFTの周波数分解能が 1kHzのとき、 1kHzの整数倍とならない 周波数にビート周波数が存在するとき)とで、スペクトルの裾野の拡がり方に差がある ことに注意が必要である。これらのことを考慮して、ターゲットピーク位置とスペクトル の拡がりの関係により、最も裾野が拡がって 、る場合を基準として考える。  [0045] The manner in which the tail of the frequency spectrum spreads differs depending on the type of window function. Also, the case where the target peak position of the frequency spectrum coincides with the position of the FFT range bin and the position is shifted (for example, when the FFT frequency resolution is 1 kHz, when the beat frequency exists at a frequency that is not an integral multiple of 1 kHz) It should be noted that there is a difference in the spread of the spectrum base. In consideration of these points, the case where the base spreads the most due to the relationship between the target peak position and the spread of the spectrum is considered as a reference.
[0046] 図 6は窓関数によるスペクトルの裾野の様子、特にこれにノイズが加わることによつ て生じるノイズピークの出現の様子にっ 、て示して!/、る。  FIG. 6 shows the spectrum tail by the window function, in particular, the appearance of noise peaks caused by the addition of noise to this spectrum! /.
[0047] 図 6の (A)は窓関数によるピーク近傍の裾野部分の拡がりの形状を示して 、る。ま た (B)はこの窓関数によるピーク近傍の裾野部分の拡がりとノイズとの合成により現 れたスペクトルを示している。これらの図においてバッ印を付したスペクトル SPOは周 波数スペクトルのターゲットピーク位置が FFTレンジビンの位置に一致している場合 、 SP1はそれが半レンジ分ずれている場合について示している。 Pはターゲットピーク 、 NPはノイズピークである。これらのノイズピーク NPが上記バックグラウンドノイズを 基に定めたしきい値 TH1を超えている場合、これらのノイズピーク NPがターゲットピ ークとして誤検出されてしまう。 FIG. 6A shows the shape of the spread of the tail near the peak by the window function. Also, (B) shows the spectrum that appears as a result of combining the noise with the spread of the tail near the peak by this window function. In these figures, the spectrum SPO with a backslash indicates that the target peak position of the frequency spectrum coincides with the position of the FFT range bin. , SP1 shows the case where it is shifted by a half range. P is the target peak and NP is the noise peak. If these noise peaks NP exceed the threshold value TH1 determined based on the background noise, these noise peaks NP are erroneously detected as target peaks.
[0048] そこで、ピークの裾野部分について上記しきい値 (第 1のしきい値) TH1とは別のし きい値を定める。 [0048] Therefore, a threshold value different from the above threshold value (first threshold value) TH1 is determined for the tail portion of the peak.
図 7は窓関数のスペクトルの拡がりとノイズの混入によるピーク近傍の裾野部分のノ ィズ強度の変動幅の例を示している。 (A)において Cは理論値、 Uはノイズ混入によ る上限レベル、 Dはノイズ混入による下限レベルである。そこで図 7の(B)に示すよう にノイズ混入を考慮した上限レベルより上回る値である第 2のしきい値 TH2を設定す る。  Fig. 7 shows an example of the fluctuation width of the noise intensity near the peak due to the spread of the window function spectrum and the inclusion of noise. In (A), C is the theoretical value, U is the upper limit level due to noise contamination, and D is the lower limit level due to noise contamination. Therefore, as shown in Fig. 7 (B), the second threshold TH2, which is a value higher than the upper limit level considering noise contamination, is set.
[0049] し力し、ビート信号の周波数スペクトルに現れるピークのうち、どれがターゲットピー クであるの力ゾィズピークであるのかはまだ判明して ヽな 、ので、どのピークにつ!、て その裾野部分に上記しきい値 TH2を設定するかを定める必要がある。そこで、次の ようにして行う。  [0049] It is still unclear which of the peaks appearing in the frequency spectrum of the beat signal is the power peak of the target peak, so that which peak! It is necessary to determine whether to set the above threshold TH2 for the part. Therefore, it is performed as follows.
[0050] 図 8は複数のピークを含む周波数スペクトルの例を示している。ここで波形 SPは周 波数スペクトル、直線 TH1はスペクトルのバックグラウンドノイズの平均値と分散を基 にして設定したしきい値である。このバックグラウンドノイズは、物標からの反射信号を 受けない状態でビート信号に含まれるノックグラウンドノイズであり、例えば設計段階 または製造段階で、その平均値と分散を求め、ランダムノイズであるバックグラウンドノ ィズがしき!/、値を上回る確率が所定の充分小さな確率となるように予めしき!、値 TH1 を定めておく。  FIG. 8 shows an example of a frequency spectrum including a plurality of peaks. Here, the waveform SP is a frequency spectrum, and the straight line TH1 is a threshold value set based on the average and variance of the background noise of the spectrum. This background noise is a knock ground noise included in the beat signal in a state where the reflected signal from the target is not received. The threshold value TH1 is determined in advance so that the probability that the noise is greater than the value is a sufficiently small probability.
[0051] 図 8の(B)において丸印を付した位置はしきい値 TH1を超える範囲で周波数変化 に対する信号強度の変化が山型を成すピーク位置を示している。仮にしきい値 TH1 を超える範囲でピーク位置を全て真のピークとすれば、この丸印で示したピークもタ 一ゲットピークとして検出されることになる。そこで、しきい値 TH1を超える複数のピー クを検出し、これらのピークのうちピーク値の高いもの力 順に前記しきい値 TH2を 設定する。 [0052] 図 9はその例を示して!/、る。ここでしき!、値 TH1は前述のバックグラウンドノイズを基 にしたしき!/、値であり、しき!/、値 TH22はピーク P2のピーク値を基に定めたしき 、値( しきい値ライン)、 TH21はピーク P1のピーク値を基に定めたしきい値である。同様に TH23はピーク P3のピーク値を基に定めたしきい値である。これらの複数のしきい値 のうち値の大きくなる側を採用して図 9において実線で示すようなしきい値ラインを決 定する。したがつてこのしきい値ラインを超えるピークをターゲットピークとして検出す る。 In FIG. 8 (B), circled positions indicate peak positions where the change in signal intensity with respect to the frequency change forms a mountain shape in a range exceeding the threshold value TH1. If all the peak positions within the range exceeding the threshold value TH1 are regarded as true peaks, the peak indicated by the circle is also detected as a target peak. Therefore, a plurality of peaks exceeding the threshold value TH1 are detected, and the threshold value TH2 is set in descending order of the peak value. FIG. 9 shows an example of this. Here, the value TH1 is a threshold based on the background noise described above! /, Value TH22 is a threshold (threshold line) determined based on the peak value of peak P2, and TH21 is a threshold determined based on the peak value of peak P1. Similarly, TH23 is a threshold value determined based on the peak value of the peak P3. The threshold value line shown by the solid line in FIG. 9 is determined by using the side of the plurality of threshold values having the larger value. Therefore, a peak exceeding this threshold line is detected as a target peak.
[0053] 図 10は図 3のステップ S5に相当するピーク周波数検出の処理手順を示している。  FIG. 10 shows a processing procedure of peak frequency detection corresponding to step S5 in FIG.
まず、ノ ックグラウンドノイズの平均値と分散からしきい値 TH1を求め、既に検出し た複数のピークのうちしき 、値 TH1を超えるピークを抽出する(SI 1→S12)。続、て 、それらのピークのうちピーク値が最大であるピークを検出し、そのピーク値を基にし きい値(図 9の例では TH22)を設定する(S 13)。その後、そのしきい値 (TH22)を超 えるピークの有無を判定し、あれば、上記ピーク値最大のピークの次にピーク値が大 きなピークを検出し、そのピーク値を基にしきい値(図 9の例では TH21)を設定する  First, a threshold value TH1 is obtained from the average value and variance of the knock ground noise, and a peak exceeding the value TH1 is extracted from a plurality of already detected peaks (SI1 → S12). Subsequently, a peak having the maximum peak value is detected from the peaks, and a threshold value (TH22 in the example of FIG. 9) is set based on the peak value (S13). Then, the presence or absence of a peak exceeding the threshold value (TH22) is determined. (In the example of Fig. 9, TH21)
[0054] 以降、同様の処理を繰り返し、順次定めた複数のしきい値を超えるすべてのピーク についてしきい値の設定を行う(S14→S15→S13→. - ·) οこのようにして定めた複 数のしきい値を超えるピーク(図 9に示した例では PI, Ρ2, Ρ3)をターゲットピークと 見なす(S 16)。 [0054] Thereafter, the same processing is repeated, and threshold values are set for all peaks exceeding a plurality of threshold values sequentially determined (S14 → S15 → S13 → .- ·) ο Peaks exceeding multiple thresholds (PI, Ρ2, Ρ3 in the example shown in Fig. 9) are regarded as target peaks (S16).
[0055] 上述の処理は、各ピークのピーク値を基にしてそれぞれの裾野部分に設定したしき い値 ΤΗ2と、バックグラウンドノイズの平均値と分散から求めたしきい値 TH1のうち、 それぞれのレンジビンで値の高!、方をしき!、値として採用し、このしき!、値より低!ヽピ ークをノイズピークとして処理することと等しい。但し、上述のように、ピーク値の高い 順に、その裾野部分にしきい値を設定する方が、効率的にノイズピークをふるい落と せる。  [0055] The above-described processing is based on the threshold value ΤΗ2 set at each foot portion based on the peak value of each peak and the threshold value TH1 obtained from the average value and variance of the background noise. This is equivalent to adopting a value higher or lower than the value in the range bin as a value, and processing the peak as a noise peak. However, as described above, it is more efficient to set the threshold value in the tail part in the descending order of the peak value, so that the noise peak can be eliminated efficiently.
[0056] なお、検出したピークのピーク値を基に設定したしき 、値 ΤΗ2と、ノ ックグラウンドノ ィズの平均値と分散から求めたしきい値 TH1だけでなぐ図 5の(Β)に示したようにさ らに所定の反射断面積のターゲットからの反射強度を基に設定したしきい値 ΤΗΟの うち、それぞれのレンジビンで値の高 ヽ方をしき!、値として採用する処理を行ってもよ い。 [0056] It should be noted that the threshold value set based on the peak value of the detected peak and the value し き い 値 2 and the threshold value TH1 obtained from the average value and the variance of the knock ground noise are used as shown in FIG. 5 (Β). As described above, the threshold value し た set based on the reflection intensity from the target having the predetermined reflection cross section is Of these, the range of the value may be determined in each range bin, and a process for adopting the value may be performed.
[0057] 次に第 2の実施形態に係るレーダについて図 11 ·図 12を基に説明する。  Next, a radar according to the second embodiment will be described with reference to FIGS. 11 and 12.
FM— CW方式のレーダにぉ 、て、送信信号およびローカル信号を生成する発振 器の CZN特性が悪化すると、それに応じてビート信号の周波数スペクトルに現れる ピーク近傍の裾野が拡がることになる。すなわち、発振信号に含まれるノイズ成分が 大きくなるほど、ピークの裾野部分が周波数軸方向に拡がる。この影響で、ピーク値 の大きなピークの近傍にノイズに起因する強度の小さなピークが多数現れ、これをタ 一ゲットピークとして誤認識するおそれがある。  With respect to the FM-CW radar, when the CZN characteristic of the oscillator that generates the transmission signal and the local signal deteriorates, the area near the peak appearing in the frequency spectrum of the beat signal expands accordingly. In other words, as the noise component included in the oscillation signal increases, the base of the peak expands in the frequency axis direction. Due to this effect, a number of small peaks due to noise appear near a peak having a large peak value, which may be erroneously recognized as a target peak.
[0058] そこで、第 1の実施形態の場合と同様に、 CZN特性によるピーク近傍の裾野部分 のレベルとランダムノイズとを合成したレベルの最大値を上回るレベル(ノイズがその しき 、値を所定の確率で上回らな 、レベル)にしき 、値を設定する。  Therefore, as in the case of the first embodiment, a level exceeding the maximum value of the level obtained by synthesizing the level of the foot portion near the peak due to the CZN characteristic and the random noise (the threshold value of the noise is a predetermined value) If the probability exceeds, set the value.
[0059] 図 11は、発振器の CZN特性によるピーク近傍の裾野部分のスペクトルの拡がりと ノ ックグラウンドノイズの合成により発生した周波数スペクトルの様子を示している。  [0059] Fig. 11 shows a state of a frequency spectrum generated by combining a spectrum spread of a foot portion near a peak due to the CZN characteristic of the oscillator and a knock ground noise.
[0060] もし図 11に示したバックグラウンドノイズを基にして定めたしき 、値 TH1だけでピー クを検出すると、図中破線 Aで囲んだ部分に含まれる複数の丸印で示すピークがタ 一ゲットピークとして誤検出されていまう。  If a peak is detected based on only the value TH1 based on the background noise shown in FIG. 11, a plurality of peaks indicated by a plurality of circles included in a portion surrounded by a broken line A in FIG. It is erroneously detected as one get peak.
[0061] そこで図 12に示すように、ピーク Pのピーク値と発振器の CZN特性とに基づいてし き!、値 TH3を定め、バックグラウンドノイズを基に定めたしき 、値 TH1との値の高!ヽ 方を全体のしきい値として用いる。このようにして、発振信号に重畳されているノイズ の影響でピーク近傍の裾野部分にランダムノイズが重畳されることによって生じるピ ークがターゲットピークとして誤検出されるのを防止することができる。  Thus, as shown in FIG. 12, the value TH3 is determined based on the peak value of the peak P and the CZN characteristic of the oscillator, and the value TH3 is determined based on the background noise. High! ヽ is used as the overall threshold. In this way, it is possible to prevent a peak caused by random noise from being superimposed on the foot near the peak due to the noise superimposed on the oscillation signal from being erroneously detected as the target peak.
[0062] なお、このようなしきい値の設定は第 1の実施形態の場合と同様に、まずバックダラ ゥンドノイズを基に定めたしきい値 TH1を超える複数のピークを検出し、それらの複 数のピークのうちピーク値の高 、もの力も順に行 、、しき ヽ値を超えるピークが無くな るまで、その処理を繰り返せばよい。 [0062] As in the case of the first embodiment, such setting of the threshold value first detects a plurality of peaks exceeding a threshold value TH1 determined based on the background noise, and sets a plurality of peaks. The peak value of the peak and the power of the peak are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.
[0063] 次に第 3の実施形態に係るレーダについて図 13を基に説明する。 Next, a radar according to a third embodiment will be described with reference to FIG.
図 1に示した IF増幅回路 7はビート信号である IF信号の物標までの距離に応じて定 まる周波数によって増幅度を変化させる特性を備えている。この IF増幅回路 7は、遠 方からの反射信号であるほど、すなわち周波数が高いほど、その受信信号の増幅度 を高める。そのため、ノ ックグラウンドノイズも高周波になるほど増大する傾向を示す The IF amplifier 7 shown in Fig. 1 is determined according to the distance of the beat signal to the target. It has the characteristic of changing the degree of amplification depending on the complete frequency. The IF amplifier circuit 7 increases the degree of amplification of the received signal as the signal is reflected from a distance, that is, as the frequency is higher. Therefore, the knock ground noise tends to increase as the frequency increases.
[0064] 図 13はその場合の周波数スペクトルの例を示している。この例では、レンジビン 31 にピーク Pが生じて 、て、それより低域側では裾野部分が比較的急激に減衰して!/、る 力 高域側ではノイズレベルの高いノイズが現れている。そこでピーク Pのピーク値を 基にして定めるしきい値は、上記距離減衰補正の特性を考慮して、しきい値ライン T H2Lで示すように低域側で比較的急峻に減衰させ、しき 、値ライン TH2Hで示すよ うに高域側ではその減衰を緩やかにする。但し、図 13の例では高域側のしきい値ラ イン TH2Hを略一定 (傾き 0)として!/、る FIG. 13 shows an example of a frequency spectrum in that case. In this example, a peak P occurs in the range bin 31, and at the lower end, the base portion attenuates relatively sharply! /, And at the higher end, high-noise noise appears. Therefore, the threshold value determined based on the peak value of the peak P is set to be relatively abruptly attenuated on the low frequency side as shown by the threshold line T H2L in consideration of the characteristics of the distance attenuation correction described above. As shown by the value line TH2H, the attenuation is moderate on the high frequency side. However, in the example of Fig. 13, the threshold line TH2H on the high frequency side is approximately constant (slope 0).
なお、このようなしきい値の設定についても第 1の実施形態の場合と同様に、まずバ ックグラウンドノイズを基に定めたしきい値 TH1を超える複数のピークを検出し、それ らの複数のピークのうちピーク値の高 、もの力も順に行 、、しき ヽ値を超えるピークが 無くなるまで、その処理を繰り返せばよい。  As in the case of the first embodiment, a plurality of peaks exceeding a threshold value TH1 determined based on the background noise are detected, and the plurality of peaks are detected. The peak value of the peaks and the power of the peaks are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.
[0065] 次に第 4の実施形態に係るレーダについて図 14·図 15を基に説明する。  Next, a radar according to the fourth embodiment will be described with reference to FIGS.
FM— CW方式のレーダにおいて、レーダ装置内のスイッチング電源や、信号処理 回路'ビームスキャン機構のクロック発振器などの信号が受信段に混入する場合があ る。このことにより、ビート信号は物標カもの反射波と送信信号との本来のビート信号 成分以外に FMまたは AMの変調成分が含まれる状態になり、ビート信号にそのサイ ドバンド成分がスプリアスとして現れる。本来のターゲットピークのピーク値が高!、場 合、上記 FMまたは AMの変調成分が本来のビート信号のレベルに比較すると小さ なレベルに抑えられていても、上記サイドバンドのピークがしきい値を超えて、それを ターゲットピークとして誤検出するおそれがある。  In FM-CW radar, signals from the switching power supply in the radar device or the clock oscillator of the signal processing circuit's beam scan mechanism may be mixed into the receiving stage. As a result, the beat signal contains FM or AM modulation components in addition to the original beat signal components of the reflected wave of the target and the transmission signal, and the side band components appear as spurious components in the beat signal. If the peak value of the original target peak is high !, the peak of the sideband will be a threshold even if the FM or AM modulation component is suppressed to a level that is smaller than the level of the original beat signal. And it may be erroneously detected as a target peak.
[0066] 図 14の (A) , (B)はいずれもビート信号に AM変調成分が存在する場合であり、( A)は SZN比が比較的小さぐターゲットピークのピーク値が比較的小さい場合、 (B )は SZN比が比較的大きぐターゲットピークのピーク値が比較的大きい場合である [0067] このようにターゲットピーク PI, P2のピーク値が比較的低ぐバックグラウンドノイズ の強度が高い場合には、バックグラウンドノイズを基にして定めたしきい値 TH1が高く 、サイドバンド成分が小さいので、サイドバンドによるピークはしきい値 TH1を超えな いが、(B)に示すように、ターゲットピーク PI, P2のピーク値が高ぐノックグラウンド ノイズの強度が低くてしき 、値 TH1が低 ヽ場合には、ターゲットピーク近傍の Aで示 す部分にしきい値 TH1を超える丸印で示すサイドバンドによるピークが誤検出されて しまう。 [0066] FIGS. 14A and 14B show the case where an AM modulation component is present in the beat signal, and FIG. 14A shows the case where the SZN ratio is relatively small and the peak value of the target peak is relatively small. , (B) is the case where the SZN ratio is relatively large and the peak value of the target peak is relatively large As described above, when the peak values of the target peaks PI and P2 are relatively low and the intensity of the background noise is high, the threshold value TH1 determined based on the background noise is high, and the sideband component is low. Since the peak is small, the peak due to the side band does not exceed the threshold TH1, but as shown in (B), the peak values of the target peaks PI and P2 are high, and the intensity of the knock ground noise is low. In the case of low ヽ, a peak due to a side band indicated by a circle exceeding the threshold TH1 is erroneously detected in a portion indicated by A near the target peak.
[0068] し力し、装置内でノイズとして発生する信号源のスペクトルは略一定であるので、そ の信号源に起因してターゲットピークの近傍に生じるサイドバンドの出現箇所と強度 は予測することができる。そこで、図 15に示すようにこれらのサイドバンドのピークが 上回らな 、ようなしき 、値を、検出したピークの近傍に設定する。  However, since the spectrum of a signal source generated as noise in the apparatus is substantially constant, the occurrence position and intensity of a side band generated near the target peak due to the signal source should be predicted. Can be. Therefore, as shown in FIG. 15, when the peaks of these side bands do not exceed the values, the values are set near the detected peaks.
図 15において (A)は、ピーク近傍のサイドバンドの生じる周波数範囲のしきい値を 高めた例である。すなわち、検出したピーク P1のピーク値に応じて予測したサイドバ ンドの強度より上回る強度をしきい値 TH41として設定する。同様に、ピーク P2のピ ーク値に応じて予測したサイドバンドの強度より上回る強度をしきい値 TH42として設 定する。  In FIG. 15, (A) is an example in which the threshold value of the frequency range in which a side band near the peak occurs is increased. That is, an intensity higher than the predicted sideband intensity according to the peak value of the detected peak P1 is set as the threshold TH41. Similarly, an intensity that is higher than the predicted sideband intensity according to the peak value of the peak P2 is set as the threshold TH42.
また図 15の(B)は、予測したサイドバンドノイズの位置のみしきい値を高めるように した例である。  FIG. 15B shows an example in which the threshold value is increased only at the predicted sideband noise position.
[0069] なお、このようなしきい値の設定は第 1の実施形態の場合と同様に、まずバックダラ ゥンドノイズを基に定めたしきい値 TH1を超える複数のピークを検出し、それらの複 数のピークのうちピーク値の高 、もの力も順に行 、、しき ヽ値を超えるピークが無くな るまで、その処理を繰り返せばよい。  [0069] In the same manner as in the first embodiment, such a threshold value is set by first detecting a plurality of peaks exceeding a threshold value TH1 determined based on the background noise, and setting the plurality of peaks. The peak value of the peak and the power of the peak are sequentially increased, and the process may be repeated until there is no peak exceeding the threshold value.
このようにして、変調成分により発生するサイドバンドによるノイズピークをターゲット ピークとして誤検出するのを防止することができる。  In this way, it is possible to prevent a noise peak due to a side band generated by a modulation component from being erroneously detected as a target peak.

Claims

請求の範囲 The scope of the claims
[1] 周波数変調した送信信号を送信し、該送信信号の物標からの反射信号の周波数と 前記送信信号の周波数との差の周波数成分を含むビート信号を生成する手段と、該 ビート信号の周波数スペクトルを求める手段と、該周波数スペクトルに現れるピークの ピーク周波数を求める手段と、を備え、該ピーク周波数に基づいて物標の探知を行う ようにしたレーダにぉ 、て、  [1] means for transmitting a frequency-modulated transmission signal, generating a beat signal including a frequency component of a difference between the frequency of the reflection signal from the target of the transmission signal and the frequency of the transmission signal, Means for obtaining a frequency spectrum, and means for obtaining a peak frequency of a peak appearing in the frequency spectrum, wherein the radar is configured to detect a target based on the peak frequency.
バックグラウンドノイズの強度または所定の反射断面積を持つ物標の反射信号強度 に基づ!/、て第 1のしき 、値を定め、前記周波数スペクトルに現れる第 1のしき 、値を 超える複数のピークについて、それぞれのピークの強度に応じて、それぞれのピーク の所定の近傍周波数領域に第 2のしきい値を定め、該第 2のしきい値を超えるピーク を抽出する手段を備えたことを特徴とするレーダ。  Based on the intensity of the background noise or the reflected signal intensity of the target having a predetermined reflection cross section, the first threshold is determined, and the first threshold appearing in the frequency spectrum, the plurality of values exceeding the value are determined. Means for determining a second threshold value in a predetermined frequency region near each peak in accordance with the intensity of each peak, and extracting a peak exceeding the second threshold value. Characteristic radar.
[2] 前記第 2のしきい値は、前記ビート信号に窓関数を掛けることにより生じる前記ピー クの周波数軸方向の拡がりに応じて裾野部分の所定帯域で値を高くしたことを特徴と する請求項 1に記載のレーダ。 [2] The second threshold value is characterized in that the value is increased in a predetermined band of a foot portion in accordance with the spread of the peak in the frequency axis direction caused by multiplying the beat signal by a window function. The radar according to claim 1.
[3] 前記第 2のしきい値は、前記送信信号を生成する発振器の CZN特性により生じる 前記ピークの周波数軸方向の拡がりに応じて裾野部分の所定帯域で値を高くしたこ とを特徴とする請求項 1または 2に記載のレーダ。 [3] The second threshold value is characterized in that the value is increased in a predetermined band of a foot portion according to the spread of the peak in the frequency axis direction caused by the CZN characteristic of the oscillator generating the transmission signal. The radar according to claim 1 or 2, wherein:
[4] 前記第 2のしきい値は、前記ピークの強度に応じて、該ピークの周波数を中心とし て上下方向に向力つて次第に低下するように定めたことを特徴とする請求項 1、 2また は 3に記載のレーダ。 [4] The second threshold value according to claim 1, wherein the second threshold value is determined so as to gradually decrease in a vertical direction with the frequency of the peak as a center according to the intensity of the peak. A radar as described in 2 or 3.
[5] 前記第 2のしきい値は、前記ビート信号に重畳されている変調成分により前記ピー クとともに現れるサイドバンドの強度を上回るように定めたことを特徴とする請求項 1一 4のうちいずれかに記載のレーダ。  5. The second threshold value according to claim 14, wherein the second threshold value is set so as to exceed the intensity of a side band appearing together with the peak due to a modulation component superimposed on the beat signal. A radar according to any of the above.
[6] 前記ピークを抽出する手段は、前記第 1のしきい値を超える複数のピークのうちピ ーク値の大きなものから順に前記第 2のしきい値を定めるとともに、各ピークの第 2の しきい値をすベて超えるピークを抽出するものである請求項 1一 5のうちいずれかに 記載のレーダ。  [6] The means for extracting the peaks determines the second threshold value in the descending order of the peak value among the plurality of peaks exceeding the first threshold value, The radar according to any one of claims 15 to 15, which extracts peaks that exceed all of the thresholds.
PCT/JP2004/015903 2003-12-16 2004-10-27 Radar WO2005059588A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/581,091 US7339517B2 (en) 2003-12-16 2004-10-24 Radar
DE112004002458T DE112004002458T5 (en) 2003-12-16 2004-10-27 radar
JP2005516274A JP4120679B2 (en) 2003-12-16 2004-10-27 Radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003418314 2003-12-16
JP2003-418314 2003-12-16

Publications (1)

Publication Number Publication Date
WO2005059588A1 true WO2005059588A1 (en) 2005-06-30

Family

ID=34697098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015903 WO2005059588A1 (en) 2003-12-16 2004-10-27 Radar

Country Status (5)

Country Link
US (1) US7339517B2 (en)
JP (1) JP4120679B2 (en)
CN (1) CN100478702C (en)
DE (1) DE112004002458T5 (en)
WO (1) WO2005059588A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155396A (en) * 2005-12-01 2007-06-21 Nissan Motor Co Ltd Object detection device and object detection method
JP2007183275A (en) * 2005-12-30 2007-07-19 Valeo Raytheon Systems Inc System and method for generating radar detection threshold value
JP2009180698A (en) * 2008-02-01 2009-08-13 Honda Motor Co Ltd Vehicle-surrounding monitoring device, vehicle, vehicle-surrounding monitoring program
JP2011095011A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Sensor system
JP2013200255A (en) * 2012-03-26 2013-10-03 Fujitsu Ten Ltd Radar apparatus and target detection method
KR101328703B1 (en) * 2010-12-27 2013-11-14 재단법인 포항산업과학연구원 Apparatus and method for MEASURING DISTANCE USING FMCW TECHNIC
WO2014112390A1 (en) * 2013-01-21 2014-07-24 日本電気株式会社 Wireless communication apparatus, analysis apparatus, analysis method, and nontemporary computer readable medium on which program has been stored
JP2019197027A (en) * 2018-05-11 2019-11-14 株式会社デンソー Radar device
WO2022239348A1 (en) * 2021-05-12 2022-11-17 ソニーセミコンダクタソリューションズ株式会社 Radar device, signal processing method, and program

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462060B2 (en) * 2005-02-14 2010-05-12 株式会社デンソー FMCW radar equipment
JP4211809B2 (en) * 2006-06-30 2009-01-21 トヨタ自動車株式会社 Object detection device
US7504989B2 (en) * 2006-08-09 2009-03-17 Fujitsu Ten Limited On-vehicle radar device
JP4260831B2 (en) * 2006-09-20 2009-04-30 三菱電機株式会社 In-vehicle frequency modulation radar system
US20080169960A1 (en) * 2006-10-30 2008-07-17 Rosenbury Erwin T Handheld System for Radar Detection
WO2009081981A1 (en) 2007-12-25 2009-07-02 Honda Elesys Co., Ltd. Electronic scanning radar apparatus, received wave direction estimating method, and received wave direction estimating program
JP4715871B2 (en) * 2008-06-10 2011-07-06 株式会社デンソー Direction detection device, radar device
JP2009300102A (en) * 2008-06-10 2009-12-24 Denso Corp Azimuth detecting apparatus and radar apparatus
JP4843003B2 (en) * 2008-08-05 2011-12-21 富士通テン株式会社 Signal processing apparatus, radar apparatus, and signal processing method
US8400346B2 (en) * 2010-06-25 2013-03-19 Glass Wind, Llc Method and apparatus for locating a golf ball with doppler radar
JP5267538B2 (en) * 2010-11-05 2013-08-21 株式会社デンソー Peak detection threshold setting method, target information generating apparatus, program
DE102012107445B8 (en) * 2012-08-14 2016-04-28 Jenoptik Robot Gmbh Method for classifying moving vehicles
JP2014098571A (en) * 2012-11-13 2014-05-29 Honda Elesys Co Ltd Object detection device, object detection method, object detection program, and operation control system
DE102012024999A1 (en) * 2012-12-19 2014-06-26 Valeo Schalter Und Sensoren Gmbh Method for setting a detection threshold for a received signal of a frequency modulation continuous wave radar sensor of a motor vehicle depending on the noise level, radar sensor and motor vehicle
KR101896725B1 (en) * 2013-12-02 2018-09-07 주식회사 만도 Method and apparatus for detecting surrounding environment based on frequency modulated continuous wave radar
TWI504916B (en) * 2014-04-01 2015-10-21 Wistron Neweb Corp Signal processing method and device for frequency-modulated continuous waveform radar system
DE102016104466A1 (en) * 2016-03-11 2017-09-14 Osram Gmbh lighting device
US9753121B1 (en) * 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
WO2018137135A1 (en) * 2017-01-24 2018-08-02 SZ DJI Technology Co., Ltd. System and method of radar-based obstacle avoidance for unmanned aerial vehicles
CN107153189B (en) * 2017-04-18 2021-08-03 上海交通大学 Signal processing method for linear frequency modulation continuous wave radar ranging
CN107271982B (en) * 2017-07-31 2021-01-26 广东工业大学 Target detection method and device based on millimeter waves
DE102017125171B3 (en) 2017-10-26 2019-02-07 Infineon Technologies Ag RADAR SENSOR WITH DIGITAL SIGNAL PROCESSING UNIT
DE102018132739B4 (en) * 2018-12-18 2022-08-25 Endress+Hauser SE+Co. KG Method for FMCW-based distance measurement
CN109655832B (en) * 2019-03-13 2019-06-21 上海赫千电子科技有限公司 A kind of blind zone detection method
CN110879388B (en) * 2019-10-24 2023-03-10 中国人民解放军第四军医大学 Non-contact detection distinguishing method for human and animal based on IR-UWB (infrared-ultra wide band) biological radar signals
US11385344B2 (en) * 2020-03-20 2022-07-12 Aptiv Technologies Limited Frequency-modulated continuous-wave (FMCW) radar-based detection of living objects
US20210325508A1 (en) * 2021-06-24 2021-10-21 Intel Corporation Signal-to-Noise Ratio Range Consistency Check for Radar Ghost Target Detection
DE102022105195A1 (en) * 2022-03-04 2023-09-07 Endress+Hauser SE+Co. KG level gauge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278487A (en) * 1991-03-06 1992-10-05 Toyota Motor Corp Radar for vehicle
JPH08226963A (en) * 1995-02-21 1996-09-03 Fujitsu Ten Ltd Fm-cm radar
JPH11344560A (en) * 1998-06-02 1999-12-14 Fujitsu Ten Ltd Signal processing unit of fm-cw radar
JP2003050275A (en) * 2001-05-30 2003-02-21 Murata Mfg Co Ltd Radar
JP2003294835A (en) * 2002-04-01 2003-10-15 Murata Mfg Co Ltd Radar

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970950B2 (en) 1991-04-17 1999-11-02 富士通テン株式会社 Inter-vehicle distance measuring device having threshold value determining means
JP2953232B2 (en) 1993-01-19 1999-09-27 トヨタ自動車株式会社 Frequency modulation radar equipment
JP2788189B2 (en) 1994-05-20 1998-08-20 富士通テン株式会社 Inter-vehicle distance measuring device
JPH0862325A (en) 1994-06-13 1996-03-08 Nec Corp Moving target detecting device
JPH0990024A (en) 1995-09-27 1997-04-04 Fujitsu Ten Ltd Vehicle-to-vehicle distance measuring instrument
US5892478A (en) * 1997-10-27 1999-04-06 Gec-Marconi Hazeltine Corporation Electronics Systems Division Adaptive azimuth processing for monopulse IFF interrogators
US7061424B2 (en) * 2002-01-18 2006-06-13 Hitachi, Ltd. Radar device
JP4107882B2 (en) * 2002-06-04 2008-06-25 富士通テン株式会社 Data storage method for radar apparatus, radar apparatus and program therefor
JP4016826B2 (en) * 2002-12-10 2007-12-05 株式会社デンソー Object labeling method and apparatus, program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278487A (en) * 1991-03-06 1992-10-05 Toyota Motor Corp Radar for vehicle
JPH08226963A (en) * 1995-02-21 1996-09-03 Fujitsu Ten Ltd Fm-cm radar
JPH11344560A (en) * 1998-06-02 1999-12-14 Fujitsu Ten Ltd Signal processing unit of fm-cw radar
JP2003050275A (en) * 2001-05-30 2003-02-21 Murata Mfg Co Ltd Radar
JP2003294835A (en) * 2002-04-01 2003-10-15 Murata Mfg Co Ltd Radar

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155396A (en) * 2005-12-01 2007-06-21 Nissan Motor Co Ltd Object detection device and object detection method
JP2007183275A (en) * 2005-12-30 2007-07-19 Valeo Raytheon Systems Inc System and method for generating radar detection threshold value
JP2009180698A (en) * 2008-02-01 2009-08-13 Honda Motor Co Ltd Vehicle-surrounding monitoring device, vehicle, vehicle-surrounding monitoring program
JP4743797B2 (en) * 2008-02-01 2011-08-10 本田技研工業株式会社 Vehicle periphery monitoring device, vehicle, vehicle periphery monitoring program
JP2011095011A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Sensor system
KR101328703B1 (en) * 2010-12-27 2013-11-14 재단법인 포항산업과학연구원 Apparatus and method for MEASURING DISTANCE USING FMCW TECHNIC
JP2013200255A (en) * 2012-03-26 2013-10-03 Fujitsu Ten Ltd Radar apparatus and target detection method
WO2014112390A1 (en) * 2013-01-21 2014-07-24 日本電気株式会社 Wireless communication apparatus, analysis apparatus, analysis method, and nontemporary computer readable medium on which program has been stored
JP2014140137A (en) * 2013-01-21 2014-07-31 Nec Corp Radio communication device, analyzer, analysis method, and program
US9590672B2 (en) 2013-01-21 2017-03-07 Nec Corporation Method for determining threshold value of radio wave intensity for distinguishing noise in radio waves, and related wireless communication apparatus, analysis apparatus, and non-transitory computer readable medium
JP2019197027A (en) * 2018-05-11 2019-11-14 株式会社デンソー Radar device
WO2019216375A1 (en) * 2018-05-11 2019-11-14 株式会社デンソー Radar device
JP7014041B2 (en) 2018-05-11 2022-02-01 株式会社デンソー Radar device
WO2022239348A1 (en) * 2021-05-12 2022-11-17 ソニーセミコンダクタソリューションズ株式会社 Radar device, signal processing method, and program

Also Published As

Publication number Publication date
DE112004002458T5 (en) 2006-11-16
US20070103360A1 (en) 2007-05-10
JP4120679B2 (en) 2008-07-16
CN1894595A (en) 2007-01-10
CN100478702C (en) 2009-04-15
JPWO2005059588A1 (en) 2007-07-12
US7339517B2 (en) 2008-03-04

Similar Documents

Publication Publication Date Title
WO2005059588A1 (en) Radar
US7187321B2 (en) Interference determination method and FMCW radar using the same
US6795012B2 (en) Radar for detecting a target based on a frequency component
JP4356758B2 (en) FMCW radar
US8125375B2 (en) Radar
US7791532B2 (en) Radar
US7460058B2 (en) Radar
JP2008232832A (en) Interference determination method and fmcw radar
US20190369221A1 (en) Radar device
US7522093B2 (en) Radar for detecting a target by transmitting and receiving an electromagnetic-wave beam
US6593874B2 (en) Radar for detecting the distance to a target
JP2004233277A (en) Vehicle-mounted radar apparatus
JP2004264258A (en) Radar device having fault detection function
JP4811172B2 (en) Radar equipment
JP3675756B2 (en) Radar unnecessary peak detector
US7034745B2 (en) Radar apparatus equipped with abnormality detection function
US6927726B2 (en) Radar
JP2004069467A (en) Object detector for vehicle
JPH11271431A (en) Fmcw radar apparatus
JP3999472B2 (en) Vehicle object detection device
JP2019144082A (en) Fmcw radar device
JP2000147101A (en) Radar signal processing method
JP2004264232A (en) Radar system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037160.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007103360

Country of ref document: US

Ref document number: 10581091

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004002458

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004002458

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10581091

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607