JP2004069467A - Object detector for vehicle - Google Patents
Object detector for vehicle Download PDFInfo
- Publication number
- JP2004069467A JP2004069467A JP2002228536A JP2002228536A JP2004069467A JP 2004069467 A JP2004069467 A JP 2004069467A JP 2002228536 A JP2002228536 A JP 2002228536A JP 2002228536 A JP2002228536 A JP 2002228536A JP 2004069467 A JP2004069467 A JP 2004069467A
- Authority
- JP
- Japan
- Prior art keywords
- peak
- detection
- frequency
- signal
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Traffic Control Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、FM−CW波(周波数変調連続波)を用いたレーダー装置で先行車等の物体を検知するための車両の物体検知装置に関する。
【0002】
【従来の技術】
かかる車両の物体検知装置は、特開平11−38129号公報により公知である。
【0003】
図4に示すように、従来のFM−CW波を用いた物体検知装置は、タイミング信号生成回路1から入力されるタイミング信号に基づいて発振器3の発信作動がFM変調制御回路2により変調制御され、図5(a)に実線で示すように、周波数が三角波状に変調された送信波がアンプ4およびサーキュレータ5を介して送受信アンテナ6から送信される。このFM−CW波が先行車等の物体に反射された反射波が送受信アンテナ6に受信されると、この受信波は、例えば物体が自車に接近してくる場合には、図5(a)に破線で示すように、送信波の周波数が直線的に増加する上昇側では送信波よりも低い周波数で送信波から遅れて出現し、また送信波の周波数が直線的に減少する下降側では送信波よりも高い周波数で送信波から遅れて出現する。
【0004】
送受信アンテナ6で受信した受信波はサーキュレータ5を介してミキサ7に入力される。ミキサ7には、サーキュレータ5からの受信波の他に発振器3から出力される送信波から分配された走信波がアンプ8を介して入力されており、ミキサ7で送信波および受信波が混合されることにより、図5(b)に示すように、送信波の周波数が直線的に増加する上昇側でピーク周波数Fupを有し、送信波の周波数が直線的に減少する下降側でピーク周波数Fdnを有するビート信号が生成される。
【0005】
ミキサ7で得られたビート信号はアンプ9で必要なレベルの振幅に増幅され、A/Dコンバータ10によりサンプリングタイム毎にA/D変換され、デジタル化された増幅データがメモリ11に時系列的に記憶保持される。このメモリ11には、タイミング信号生成回路1からタイミング信号が入力されており、そのタイミング信号に応じてメモリ11は、送受信波の周波数が増加する上昇側および前記周波数が減少する下降側毎にデータを記憶保持することになる。
【0006】
メモリ11に記憶保持されたデータは周波数分析手段13、検知ピーク判定手段14および物体検知手段15を備えたCPU12に入力され、そのCPU12で前記入力データに基づく演算処理が実行される。
【0007】
周波数分析手段13は、メモリ11に記憶されたビート信号のデータを周波数分析してスペクトル分布を求めるものであり、周波数分析の手法としては、FFT(高速フーリエ変換)が用いられる。
【0008】
検知ピーク判定手段14は、周波数分析手段13での周波数分析により得られたスペクトルデータを基に、検知レベルが所定の検知閾値以上で極大値となるスペクトル(ピーク信号)を検出する。図6(a)に示す上昇側のピーク信号と図6(b)に示す下降側のピーク信号とは、物体との相対速度が「0」であるときのピーク位置を挟んで対称的に検知される。
【0009】
物体検知手段15は、検知ピーク判定手段14で得られた上昇側のピーク周波数Fupおよび下降側のピーク周波数Fdnに基づいて、物体の相対距離および相対速度を算出する。具体的には、両ピーク周波数Fup,Fdnの和に基づいて物体までの距離が算出され、両ピーク周波数Fup,Fdnの差に基づいて物体との相対速度が算出される。
【0010】
【発明が解決しようとする課題】
ところで、上記従来の物体検知装置により検知される検知レベルは、自車と物体との距離が増加するに伴って低下する(図8参照)。図7(a)には、時刻tにおけるスペクトルデータが示されており、自車から遠ざかる物体は鎖線で示す検知閾値以上のピーク信号Pa1を有しており、それ以外のノイズに起因する2つのピーク信号Pc1,Pc2は検知閾値未満の大きさである。図7(b)には、時刻t+1におけるスペクトルデータが示されており、物体との距離が増加したことにより物体のピーク信号Pa1が鎖線で示す検知閾値未満に低下するため、その時点で物体を検知できなくなる問題がある。このような不具合を解消するために、物体を検知できるレベルまで検知閾値を低下させると、物体を検知可能にはなるが、ノイズに起因する他の2つのピーク信号Pc1,Pc2を物体と誤認する新たな問題が発生してしまう。
【0011】
上記問題を解決する手法を、本出願人は特願2001−108925号により既に提案しているが、本発明は上記問題を上記特願2001−108925号とは異なる手法で解決するものである。
【0012】
即ち、本発明は、物体によるピーク信号とノイズによるピーク信号とを的確に識別して物体検知装置による検知精度を高めることを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、FM−CW波を送信して該FM−CW波の物体からの反射波を受信する送受信手段と、送信波および受信波を混合してビート信号を生成するミキサと、ミキサで得られたビート信号を周波数分析する周波数分析手段と、周波数分析手段による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値以上のピーク信号を検知ピークとして判定する検知ピーク判定手段と、検知ピーク判定手段で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段とを備えた車両の物体検知装置において、前記検知ピークを除いて得られる周波数領域を抽出する周波数領域抽出手段と、周波数領域抽出手段により得られた周波数領域の信号強度に基づいて前記検知閾値を変更する検知閾値変更手段とを備えたことを特徴とする車両の物体検知装置が提案される。
【0014】
上記構成によれば、検知ピークを除いて得られる周波数領域の信号強度に基づいて検知閾値を変更するので、最新のノイズレベルの状況に応じて検知閾値を逐次更新することが可能となり、検知ピークをバックグラウンドノイズから確実に識別して物体検知装置の検知精度を高めることができる。
【0015】
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記周波数領域抽出手段は、検知ピーク位置および予め定められた検知ピーク幅に基づいて前記周波数領域を抽出することを特徴とする車両の物体検知装置が提案される。
【0016】
上記構成によれば、検知ピークを除いて得られる周波数領域を、検知ピーク位置および予め定められた検知ピーク幅に基づいて抽出するので、検知ピークを除いたバックグラウンドノイズの周波数領域を的確に抽出することができる。
【0017】
また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記検知閾値変更手段は、抽出された周波数領域における周波数スペクトラムの平均値に基づいて前記検知閾値を変更することを特徴とする車両の物体検知装置が提案される。
【0018】
上記構成によれば、抽出された周波数領域における周波数スペクトラムの平均値に基づいて検知閾値を変更するので、周波数毎に異なるバックグラウンドノイズの変動やピーク状のノイズに影響されずに検知閾値の変更を的確に行うことができる。
【0019】
また請求項4に記載された発明によれば、請求項3の構成に加えて、信号判定用上限値および信号判定用下限値の少なくとも一方を記憶する異常検知手段を備え、この異常検知手段は前記周波数スペクトラムの平均値が前記信号判定用上限値以上または信号判定用下限値以下となる場合に異常判定を行うことを特徴とする車両の物体検知装置が提案される。
【0020】
上記構成によれば、抽出された周波数領域における周波数スペクトラムの平均値が信号判定用上限値以上または信号判定用下限値以下となる場合に異常判定を行うので、異常な値を示す周波数スペクトラムの平均値に基づいて検知閾値の不適切な変更が行われるのを防止することができる。
【0021】
尚、実施例の送受信アンテナ6は本発明の送受信手段に対応し、実施例のノイズ領域Fa,Fb,Fcは本発明の周波数領域に対応し、実施例の距離平均値Lnは本発明の周波数スペクトラムの平均値に対応する。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0023】
図1〜図3は本発明の一実施例を示すもので、図1は物体検知装置の全体構成図、図2は検知閾値を変更する手法を説明する図、図3は作用を説明するフローチャートである。
【0024】
図1には本実施例の物体検知装置のCPU12の回路構成が示される。CPU12以外の構成および作用は、図4のものと同一である。図4で説明した従来のCPU12は、周波数分析手段13と、検知ピーク判定手段14と、物体検知手段15とを備えていたが、本実施例のCPU12は更に周波数領域抽出手段16と、検知閾値変更手段17と、異常検知手段18とを備えている。
【0025】
図3のフローチャートのステップS1で、図2(a)に示すように、周波数分析手段13により分析した検知スペクトラムを検知閾値Th1と比較し、検知レベルが検知閾値Th1以上となる検知ピークのピーク位置を抽出する。続くステップS2で、検知ピークのピーク位置の前後に予め設定された検知ピーク幅を加えたものをピーク領域Fb,Fdとし、このピーク領域Fb,Fdを除いた周波数領域をノイズ領域Fa,Fc,Feとして抽出する。このように、検知ピーク位置および予め定められた検知ピーク幅に基づいてピーク領域Fb,Fdを設定するので、ピーク領域Fb,Fdを除いて得られるノイズ領域Fa,Fc,Feを的確に抽出することができる。続くステップS3で、図2(b)に示すように、抽出されたノイズ領域Fa,Fc,Feにおける検知レベル(ノイズレベル)の時刻Tにおける距離平均値Ln(T)を算出する。このように、抽出されたノイズ領域Fa,Fc,Feにおけるノイズレベルの距離平均値Ln(T)を使用することで、周波数(距離)毎に異なるバックグラウンドノイズの変動やピーク状のノイズに影響されずに、後述する検知閾値Th1の変更を的確に行うことができる。上記ステップS1〜S3の工程は周波数領域抽出手段16において実行される。
【0026】
続くステップS4で、前記ステップS3において算出したノイズレベルの距離平均値Ln(T)を信号判定用上限値MAX NOISE LEVELおよび信号判定用下限値MIN NOISE LEVELと比較し、ノイズレベルの距離平均値Ln(T)が信号判定用上限値MAX NOISE LEVEL以上、あるいは信号判定用下限値MIN NOISE LEVEL以下の場合には、ステップS7でノイズレベルが異常であると判断する。このように、ノイズレベルの距離平均値Ln(T)が異常な値を示した場合に異常判定を行うので、異常な値を示す距離平均値Ln(T)に基づいて検知閾値Th1の変更が行われるのを防止することができる。上記ステップS4およびS7の工程は異常検知手段18において実行される。
【0027】
前記ステップS4で、ノイズレベルの距離平均値Ln(T)が信号判定用上限値MAX NOISE LEVELおよび信号判定用下限値MIN NOISELEVELの間にあれば、ステップS5で、前回のサンプリング時(時刻T−1)におけるノイズレベルの時間平均値Lave(T−1)と、今回のサンプリング時(時刻T)におけるノイズレベルの距離平均値Ln(T)と、重み付け係数K(0<K<1)とを用いて、今回のサンプリング時におけるノイズレベルの時間平均値Lave(T)を、
Lave(T)=K×Ln(T)+(1−K)×Lave(T−1)
により算出する。このように、ノイズレベルの時間平均値Lave(T)を算出することにより、一時的なノイズ等の影響によるノイズレベルの変動を緩和することができる。
【0028】
そしてステップS6で、今回のノイズレベルの時間平均値Lave(T)に予め設定したマージンTHRESH MARGINを加算し、新たな検知閾値Th2(図2(b)参照)を算出する。このように、ピーク領域Fa,Fcを除いて得られるノイズ領域Fa,Fc,Feのノイズレベルに基づいて検知閾値Th1を変更するので、最新のノイズレベルの状況に応じて検知閾値Th1を逐次更新することが可能となり、検知ピークをバックグラウンドノイズから確実に識別して物体検知装置の検知精度を高めることができる。上記ステップS5およびS6の工程は検知閾値変更手段17において実行される。
【0029】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0030】
例えば、実施例では異常検知手段18が信号判定用上限値MAX NOISELEVELおよび信号判定用下限値MIN NOISE LEVELの両方を用いて異常判定を行っているが、その何れか一方を用いて異常判定を行っても良い。
【0031】
また送信用アンテナおよび受信用アンテナをそれぞれ別個に設置することにより、サーキュレータを用いない構成としても良い。
【0032】
【発明の効果】
以上のように請求項1に記載された発明によれば、検知ピークを除いて得られる周波数領域の信号強度に基づいて検知閾値を変更するので、最新のノイズレベルの状況に応じて検知閾値を逐次更新することが可能となり、検知ピークをバックグラウンドノイズから確実に識別して物体検知装置の検知精度を高めることができる。
【0033】
また請求項2に記載された発明によれば、検知ピークを除いて得られる周波数領域を、検知ピーク位置および予め定められた検知ピーク幅に基づいて抽出するので、検知ピークを除いたバックグラウンドノイズの周波数領域を的確に抽出することができる。
【0034】
また請求項3に記載された発明によれば、抽出された周波数領域における周波数スペクトラムの平均値に基づいて検知閾値を変更するので、周波数毎に異なるバックグラウンドノイズの変動やピーク状のノイズに影響されずに検知閾値の変更を的確に行うことができる。
【0035】
また請求項4に記載された発明によれば、抽出された周波数領域における周波数スペクトラムの平均値が信号判定用上限値以上または信号判定用下限値以下となる場合に異常判定を行うので、異常な値を示す周波数スペクトラムの平均値に基づいて検知閾値の不適切な変更が行われるのを防止することができる。
【図面の簡単な説明】
【図1】物体検知装置の全体構成図
【図2】検知閾値を変更する手法を説明する図
【図3】作用を説明するフローチャート
【図4】従来の物体検知装置の全体構成図
【図5】送受信アンテナに対して物体が接近移動しているときの送受信波の波形およびピーク周波数を示すグラフ
【図6】検知ピーク判定手段で検知されたピーク信号を示すグラフ
【図7】時間の経過に伴う検知レベルの変化を示すタイムチャート
【図8】自車および物体間の距離と検知レベルとの関係を示すグラフ
【符号の説明】
6 送受信アンテナ(送受信手段)
7 ミキサ
13 周波数分析手段
14 検知ピーク判定手段
15 物体検知手段
16 周波数領域抽出手段
17 検知閾値変更手段
18 異常検知手段
Fa ノイズ領域(周波数領域)
Fc ノイズ領域(周波数領域)
Fe ノイズ領域(周波数領域)
Ln 距離平均値(周波数スペクトラムの平均値)
MAX NOISE LEVEL 信号判定用上限値
MIN NOISE LEVEL 信号判定用下限値
Th1 検知閾値[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an object detection device for a vehicle for detecting an object such as a preceding vehicle with a radar device using an FM-CW wave (frequency modulated continuous wave).
[0002]
[Prior art]
Such an object detection device for a vehicle is known from Japanese Patent Application Laid-Open No. 11-38129.
[0003]
As shown in FIG. 4, in the conventional object detection device using the FM-CW wave, the oscillation operation of the oscillator 3 is modulated and controlled by the FM
[0004]
The received wave received by the transmitting / receiving
[0005]
The beat signal obtained by the
[0006]
The data stored and held in the memory 11 is input to a
[0007]
The frequency analysis means 13 performs frequency analysis of the beat signal data stored in the memory 11 to obtain a spectrum distribution, and an FFT (Fast Fourier Transform) is used as a frequency analysis method.
[0008]
The detection peak determination means 14 detects a spectrum (peak signal) having a maximum value when the detection level is equal to or higher than a predetermined detection threshold, based on the spectrum data obtained by the frequency analysis by the frequency analysis means 13. The rising-side peak signal shown in FIG. 6A and the falling-side peak signal shown in FIG. 6B are detected symmetrically with respect to the peak position when the relative speed with respect to the object is “0”. Is done.
[0009]
The object detecting means 15 calculates the relative distance and the relative speed of the object based on the ascending peak frequency Fup and the descending peak frequency Fdn obtained by the detected peak determining means 14. Specifically, the distance to the object is calculated based on the sum of the two peak frequencies Fup and Fdn, and the relative speed with the object is calculated based on the difference between the two peak frequencies Fup and Fdn.
[0010]
[Problems to be solved by the invention]
Meanwhile, the detection level detected by the above-described conventional object detection device decreases as the distance between the vehicle and the object increases (see FIG. 8). FIG. 7A shows spectral data at time t. An object moving away from the own vehicle has a peak signal Pa1 equal to or higher than a detection threshold indicated by a dashed line. The peak signals Pc1 and Pc2 are smaller than the detection threshold. FIG. 7B shows the spectrum data at time t + 1. Since the peak signal Pa1 of the object drops below the detection threshold indicated by the dashed line due to the increase in the distance to the object, the object is There is a problem that cannot be detected. If the detection threshold is lowered to a level at which the object can be detected in order to solve such a problem, the object can be detected, but the other two peak signals Pc1 and Pc2 due to noise are erroneously recognized as the object. New problems arise.
[0011]
The present applicant has already proposed a method for solving the above problem in Japanese Patent Application No. 2001-108925, but the present invention solves the above problem by a method different from that in the above Japanese Patent Application No. 2001-108925.
[0012]
That is, an object of the present invention is to accurately identify a peak signal due to an object and a peak signal due to noise to enhance the detection accuracy of the object detection device.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the invention described in
[0014]
According to the above configuration, since the detection threshold is changed based on the signal intensity in the frequency domain obtained by excluding the detection peak, the detection threshold can be sequentially updated according to the latest noise level, and the detection peak can be changed. Can be reliably identified from the background noise, and the detection accuracy of the object detection device can be increased.
[0015]
According to the second aspect of the present invention, in addition to the configuration of the first aspect, the frequency domain extracting means extracts the frequency domain based on a detected peak position and a predetermined detected peak width. A vehicle object detection device characterized by the following is proposed.
[0016]
According to the above configuration, the frequency region obtained by excluding the detected peak is extracted based on the detected peak position and the predetermined detected peak width, so that the frequency region of the background noise excluding the detected peak is accurately extracted. can do.
[0017]
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the detection threshold value changing unit is configured to detect the detection threshold value based on an average value of the frequency spectrum in the extracted frequency domain. Is proposed.
[0018]
According to the above configuration, since the detection threshold is changed based on the average value of the frequency spectrum in the extracted frequency domain, the detection threshold is changed without being affected by the fluctuation of the background noise or the peak-like noise which differs for each frequency. Can be performed accurately.
[0019]
According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, there is provided an abnormality detecting means for storing at least one of an upper limit value for signal determination and a lower limit value for signal determination. An object detection device for a vehicle is proposed, wherein an abnormality is determined when the average value of the frequency spectrum is equal to or more than the upper limit for signal determination or equal to or less than the lower limit for signal determination.
[0020]
According to the above configuration, the abnormality determination is performed when the average value of the frequency spectrum in the extracted frequency domain is equal to or more than the upper limit for signal determination or equal to or less than the lower limit for signal determination, so that the average of the frequency spectrum indicating an abnormal value is determined. It is possible to prevent the detection threshold from being inappropriately changed based on the value.
[0021]
The transmitting / receiving
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0023]
1 to 3 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of an object detection device, FIG. 2 is a diagram illustrating a method of changing a detection threshold, and FIG. 3 is a flowchart illustrating an operation. It is.
[0024]
FIG. 1 shows a circuit configuration of the
[0025]
In step S1 of the flowchart of FIG. 3, as shown in FIG. 2A, the detection spectrum analyzed by the
[0026]
In the following step S4, the distance average value Ln (T) of the noise level calculated in step S3 is set to the signal determination upper limit MAX. NOISE LEVEL and signal determination lower limit MIN NOISE Compared with LEVEL, the distance average value Ln (T) of the noise level is the signal determination upper limit value MAX. NOISE LEVEL or more, or signal judgment lower limit MIN NOISE If it is lower than LEVEL, it is determined in step S7 that the noise level is abnormal. As described above, since the abnormality determination is performed when the distance average value Ln (T) of the noise level indicates an abnormal value, the detection threshold Th1 can be changed based on the distance average value Ln (T) indicating the abnormal value. Can be prevented. The steps S4 and S7 are executed by the abnormality detecting means 18.
[0027]
In step S4, the distance average value Ln (T) of the noise level is set to the signal determination upper limit MAX. NOISE LEVEL and signal determination lower limit MIN If it is between NOISELEVEL, in step S5, the noise level time average value Lave (T-1) at the previous sampling time (time T-1) and the noise level distance average value at the current sampling time (time T). Using the value Ln (T) and the weighting coefficient K (0 <K <1), the time average value Lave (T) of the noise level at the time of the current sampling is calculated as
Lave (T) = K × Ln (T) + (1−K) × Lave (T−1)
It is calculated by: As described above, by calculating the time average value of the noise level Lave (T), the fluctuation of the noise level due to the influence of the temporary noise or the like can be reduced.
[0028]
Then, in step S6, a margin THRESH set in advance to the time average value Lave (T) of the current noise level is set. MARGIN is added to calculate a new detection threshold Th2 (see FIG. 2B). As described above, since the detection threshold value Th1 is changed based on the noise levels of the noise regions Fa, Fc, and Fe obtained by excluding the peak regions Fa and Fc, the detection threshold value Th1 is sequentially updated according to the latest noise level situation. This makes it possible to reliably identify the detection peak from the background noise, thereby improving the detection accuracy of the object detection device. The steps S5 and S6 are executed by the detection threshold
[0029]
The embodiments of the present invention have been described above. However, various design changes can be made in the present invention without departing from the gist thereof.
[0030]
For example, in the embodiment, the abnormality detection unit 18 determines that the signal determination upper limit MAX NOISELEVEL and signal determination lower limit MIN NOISE Although the abnormality determination is performed using both LEVEL, the abnormality determination may be performed using either one of them.
[0031]
Further, a configuration in which a circulator is not used may be adopted by separately installing a transmitting antenna and a receiving antenna.
[0032]
【The invention's effect】
As described above, according to the invention described in
[0033]
According to the second aspect of the present invention, the frequency region obtained by excluding the detected peak is extracted based on the detected peak position and the predetermined detected peak width, so that the background noise excluding the detected peak is extracted. Can be accurately extracted.
[0034]
According to the third aspect of the present invention, since the detection threshold is changed based on the average value of the frequency spectrum in the extracted frequency domain, the variation of the background noise and the peak-like noise which are different for each frequency are affected. Instead, the detection threshold can be changed accurately.
[0035]
According to the invention described in claim 4, when the average value of the frequency spectrum in the extracted frequency domain is equal to or more than the upper limit for signal determination or equal to or less than the lower limit for signal determination, abnormality determination is performed. It is possible to prevent the detection threshold from being inappropriately changed based on the average value of the frequency spectrum indicating the value.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an object detection device. FIG. 2 is a diagram illustrating a method of changing a detection threshold. FIG. 3 is a flowchart illustrating an operation. FIG. 4 is an overall configuration diagram of a conventional object detection device. FIG. 6 is a graph showing the waveform and peak frequency of a transmitted / received wave when an object is moving close to the transmitting / receiving antenna. FIG. 6 is a graph showing a peak signal detected by a detected peak determining means. FIG. 8 is a graph showing the relationship between the distance between the vehicle and the object and the detection level.
6 transmitting / receiving antenna (transmitting / receiving means)
7
Fc noise domain (frequency domain)
Fe noise area (frequency area)
Ln Distance average value (average value of frequency spectrum)
MAX NOISE LEVEL signal judgment upper limit MIN NOISE LEVEL signal determination lower limit value Th1 detection threshold value
Claims (4)
送信波および受信波を混合してビート信号を生成するミキサ(7)と、
ミキサ(7)で得られたビート信号を周波数分析する周波数分析手段(13)と、
周波数分析手段(13)による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値(Th1)以上のピーク信号を検知ピークとして判定する検知ピーク判定手段(14)と、
検知ピーク判定手段(14)で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段(15)と、
を備えた車両の物体検知装置において、
前記検知ピークを除いて得られる周波数領域(Fa,Fc,Fe)を抽出する周波数領域抽出手段(16)と、
周波数領域抽出手段(16)により得られた周波数領域(Fa,Fc,Fe)の信号強度に基づいて前記検知閾値(Th1)を変更する検知閾値変更手段(17)と、
を備えたことを特徴とする車両の物体検知装置。Transmitting and receiving means (6) for transmitting an FM-CW wave and receiving a reflected wave of the FM-CW wave from an object;
A mixer (7) for mixing the transmission wave and the reception wave to generate a beat signal;
Frequency analysis means (13) for frequency-analyzing the beat signal obtained by the mixer (7);
Detection peak determination means (14) for determining, as a detection peak, a peak signal equal to or greater than a detection threshold (Th1) among peak signals obtained based on the results of frequency analysis on the ascending and descending sides by the frequency analysis means (13);
Object detection means (15) for calculating at least one of the distance to the object and the relative speed to the object based on the detection peaks on the ascending and descending sides obtained by the detection peak determination means (14);
In an object detection device for a vehicle having
Frequency domain extraction means (16) for extracting a frequency domain (Fa, Fc, Fe) obtained by excluding the detection peak;
A detection threshold value changing unit (17) for changing the detection threshold value (Th1) based on the signal strength in the frequency domain (Fa, Fc, Fe) obtained by the frequency domain extraction unit (16);
An object detection device for a vehicle, comprising:
この異常検知手段(18)は前記周波数スペクトラムの平均値(Ln)が前記信号判定用上限値(MAX NOISE LEVEL)以上または信号判定用下限値(MIN NOISE LEVEL)以下となる場合に異常判定を行うことを特徴とする、請求項3に記載の車両の物体検知装置。Upper limit for signal judgment (MAX NOISE LEVEL) and the signal determination lower limit (MIN) NOISE LEVEL), and an abnormality detecting means (18) for storing at least one of
The abnormality detecting means (18) determines that the average value (Ln) of the frequency spectrum is equal to the signal determination upper limit (MAX). NOISE LEVEL) or higher or the lower limit for signal judgment (MIN) NOISE 4. The object detection device for a vehicle according to claim 3, wherein an abnormality is determined when the difference is equal to or less than (LEVEL).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002228536A JP2004069467A (en) | 2002-08-06 | 2002-08-06 | Object detector for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002228536A JP2004069467A (en) | 2002-08-06 | 2002-08-06 | Object detector for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004069467A true JP2004069467A (en) | 2004-03-04 |
Family
ID=32015189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002228536A Pending JP2004069467A (en) | 2002-08-06 | 2002-08-06 | Object detector for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004069467A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1672387A1 (en) * | 2004-12-20 | 2006-06-21 | Siemens Aktiengesellschaft | Radarsystem for locating a mobile control device |
JP2008232832A (en) * | 2007-03-20 | 2008-10-02 | Denso Corp | Interference determination method and fmcw radar |
JP2010066199A (en) * | 2008-09-12 | 2010-03-25 | Denso Corp | Object detecting apparatus |
JP2013083467A (en) * | 2011-10-06 | 2013-05-09 | Japan Aerospace Exploration Agency | Colored noise reduction method and apparatus for optical remote air flow measuring device |
JP7504682B2 (en) | 2020-07-01 | 2024-06-24 | 日清紡マイクロデバイス株式会社 | Moving target detection device, moving target detection system, moving target detection program, and moving target detection method |
-
2002
- 2002-08-06 JP JP2002228536A patent/JP2004069467A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1672387A1 (en) * | 2004-12-20 | 2006-06-21 | Siemens Aktiengesellschaft | Radarsystem for locating a mobile control device |
JP2008232832A (en) * | 2007-03-20 | 2008-10-02 | Denso Corp | Interference determination method and fmcw radar |
JP2010066199A (en) * | 2008-09-12 | 2010-03-25 | Denso Corp | Object detecting apparatus |
JP2013083467A (en) * | 2011-10-06 | 2013-05-09 | Japan Aerospace Exploration Agency | Colored noise reduction method and apparatus for optical remote air flow measuring device |
JP7504682B2 (en) | 2020-07-01 | 2024-06-24 | 日清紡マイクロデバイス株式会社 | Moving target detection device, moving target detection system, moving target detection program, and moving target detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6795012B2 (en) | Radar for detecting a target based on a frequency component | |
JP4120679B2 (en) | Radar | |
US7187321B2 (en) | Interference determination method and FMCW radar using the same | |
US7567204B2 (en) | Method for determining noise floor level and radar using the same | |
US7460058B2 (en) | Radar | |
US8125375B2 (en) | Radar | |
JP2008232832A (en) | Interference determination method and fmcw radar | |
US7522093B2 (en) | Radar for detecting a target by transmitting and receiving an electromagnetic-wave beam | |
JP2008232830A (en) | Interference determination method and fmcw radar | |
JP4408638B2 (en) | Radar device with anomaly detection function | |
JP2000241538A (en) | Radar device | |
JP5524803B2 (en) | In-vehicle radar device and radio wave interference detection method for in-vehicle radar device | |
JP2010014488A (en) | Signal processing device for fmcw radar device, signal processing method for the fmcw radar device, and the fmcw radar device | |
JP2021067461A (en) | Radar device and radar signal processing method | |
JP4093885B2 (en) | Radar device with anomaly detection function | |
JP2004069467A (en) | Object detector for vehicle | |
JP3999472B2 (en) | Vehicle object detection device | |
JP2008232936A (en) | Target automatic detection processing method and device | |
JP7205014B2 (en) | Signal processing device, radar device, radar operation method and radar operation program | |
JPWO2002067010A1 (en) | Distance / speed measurement method and radar signal processing device | |
US6927726B2 (en) | Radar | |
JP2022139870A (en) | radar detector | |
JPH11271431A (en) | Fmcw radar apparatus | |
JP2003329764A (en) | Pulse radar system | |
JP2008298750A (en) | Radar system and signal processing technique thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070418 |