WO2005057715A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2005057715A1
WO2005057715A1 PCT/JP2004/018715 JP2004018715W WO2005057715A1 WO 2005057715 A1 WO2005057715 A1 WO 2005057715A1 JP 2004018715 W JP2004018715 W JP 2004018715W WO 2005057715 A1 WO2005057715 A1 WO 2005057715A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
group
carbon
secondary battery
electrode active
Prior art date
Application number
PCT/JP2004/018715
Other languages
French (fr)
Japanese (ja)
Inventor
Mariko Miyachi
Koji Utsugi
Yuki Kusachi
Hironori Yamamoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005516241A priority Critical patent/JP4951969B2/en
Publication of WO2005057715A1 publication Critical patent/WO2005057715A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery.
  • Non-aqueous electrolyte lithium-ion or lithium secondary batteries that use a carbon material or lithium metal for the negative electrode and a lithium-containing composite oxide for the positive electrode can achieve high energy densities, and are used for mobile phones and notebook computers. It is attracting attention as a power source.
  • a film called a surface film, a protective film, or an SE film is formed on the surface of the electrode. It is known that control of the surface film is indispensable for improving the performance of the electrode, since the surface film has a large effect on charge / discharge efficiency, cycle life, and safety.
  • a carbon material is used as the negative electrode material, its irreversible capacity needs to be reduced.
  • a lithium metal negative electrode it is necessary to solve the problems of reduction in charge / discharge efficiency and safety due to dendrite generation.
  • Patent Document 1 discloses a technique in which a lithium negative electrode is exposed to an electrolytic solution containing hydrofluoric acid, and the surface of the negative electrode is reacted with hydrofluoric acid to cover the surface with a lithium fluoride film. Have been. Hydrofluoric acid is produced by the reaction of LiPF and a small amount of water. Meanwhile, Lichi
  • a surface film of lithium hydroxide or lithium oxide is formed on the surface of the negative electrode by natural oxidation in air. These react to form a surface film of lithium fluoride on the surface of the negative electrode.
  • this lithium fluoride film is formed by utilizing the reaction between the electrode interface and the liquid, and it is difficult to obtain a uniform film as soon as side reaction components are mixed in the surface film. There was a case.
  • the surface film of lithium hydroxide or lithium oxide is not formed uniformly, or where there is a part where lithium is exposed. In these cases, a uniform thin film cannot be formed in these cases, and a safety problem has arisen due to the reaction of lithium with water or hydrogen fluoride.
  • Patent Document 2 a mixed gas of argon and hydrogen fluoride is reacted with an aluminum-lithium alloy to obtain a lithium fluoride surface film on the negative electrode surface.
  • a surface film already exists on the surface of the lithium metal especially when there are a plurality of types of compounds, the reaction tends to be uneven, and it is difficult to form a uniform film of lithium fluoride. There was a case. In this case, it is difficult to obtain a lithium secondary battery having sufficient cycle characteristics.
  • Patent Document 3 discloses that a surface film structure mainly composed of a material having a rock salt type crystal structure is formed on a surface of a lithium sheet having a uniform crystal structure, that is, a (100) crystal plane is preferentially oriented. A technique for performing this is disclosed. By doing so, a uniform precipitation-dissolution reaction, that is, charging and discharging of the battery can be performed, dendrite deposition of lithium metal can be suppressed, and the cycle life of the battery can be improved.
  • the substance used for the surface film it is preferable to use a solid solution of at least one selected from the group consisting of LiCl, LiBr, and Lil, which preferably has a halide of lithium, and LiF. Has been stated.
  • a (100) crystal plane formed by pressing (rolling) has priority.
  • a lithium sheet oriented in a non-aqueous state is immersed in an electrolytic solution containing at least one of chlorine molecules or chloride ions, bromine molecules or bromine ions, iodine molecules or iodine ions, and fluorine molecules or fluorine ions to thereby obtain non-aqueous solution.
  • Patent Document 4 proposes a negative electrode in which a carbon material is coated with aluminum. This allegedly suppresses the reductive decomposition of the solvent molecules solvated with lithium ions on the carbon surface, thereby suppressing the deterioration of the cycle life.
  • aluminum reacts with a very small amount of water, the capacity may decrease rapidly when the cycle is repeated.
  • Patent Document 5 discloses a negative electrode in which a surface of a carbon material is coated with a thin film of a lithium ion conductive solid electrolyte.
  • a lithium ion secondary battery that can use propylene carbonate can be provided.
  • cracks that occur in the solid electrolyte due to stress changes during the insertion and desorption of lithium ions sometimes lead to characteristic deterioration.
  • due to non-uniformity such as crystal defects of the solid electrolyte a uniform reaction was not obtained on the negative electrode surface, which sometimes led to a deterioration in cycle life.
  • the negative electrode is made of a material containing graphite, and has a cyclic carbonate and a chain carbonate as main components as an electrolytic solution, and 0.1 to 4 mass% in the electrolytic solution.
  • a secondary battery that contains 1,3-propane sultone and / or 1,4-butane sultone, which are less than or equal to 1% of a cyclic monosulfonic acid ester.
  • 1,3_propane sultone and 1,4-butane sultone contribute to the formation of a passive film on the surface of the carbon material, and the active and highly crystallized carbon material such as natural graphite and artificial graphite is used as a passive film.
  • Patent Documents 7 and 8 report that similar effects can be obtained by using a linear disulfonate ester in addition to the cyclic monosulfonate ester.
  • the cyclic monosulfonic acid ester of Patent Document 6 or the chain disulfonic acid ester of Patent Documents 7 and 8 mainly forms a film on the negative electrode, for example, a film is formed on the positive electrode. Sometimes it was difficult.
  • Patent Documents 9 and 10 disclose a method for producing a cyclic sulfonic acid ester having two sulfonyl groups
  • Non-Patent Documents 14 to 14 disclose a method for producing a chain disulfonic acid ester.
  • Patent Document 11 by adding an aromatic compound to an electrolyte solution solvent, oxidation of the electrolyte solution solution is prevented, thereby suppressing the capacity deterioration of the secondary battery when the charge and discharge are repeated for a long time. .
  • This is a technique for preventing the decomposition of the solvent by preferentially oxidatively decomposing the aromatic compound.
  • this additive when this additive is used, the effect of improving the cycle characteristics may not be sufficient because the surface of the positive electrode is not covered in some cases.
  • Patent Document 12 describes a technique for improving the cycle characteristics when a high-voltage positive electrode is used by adding a nitrogen-containing unsaturated cyclic compound to an electrolytic solution.
  • the nitrogen-containing unsaturated cyclic compound improved the charge and discharge efficiency of the negative electrode, it did not improve the charge and discharge efficiency of the positive electrode.
  • Patent Document 13 an example in which a solid solution of silicon and copper is used as an electrode for a secondary battery is reported in Patent Document 13, for example.
  • an electrode using only silicon absorbs an alkali metal or the like.
  • the volume expands and contracts to about four times, and when the volume expansion becomes large, the active material becomes fine powder or a current collector. Since the adhesion to the electrode is lost or the electrode surface is oxidized, the solid solution using copper or the like reduces the amount of occlusion of alkali metals and the like, and the active material is pulverized. It is said that the volume expansion and contraction of the active material can be controlled so as not to occur.
  • Patent Document 14 reports a negative electrode material comprising a metal or metalloid particle nucleus capable of forming a lithium alloy and a carbon layer covering the surface thereof.
  • Patent Document 15 has an oxide particle and a carbonaceous material particle containing at least one element selected from Si, Sn, Ge, Al, Zn, Bi, and Mg, and the oxide particle is a carbonaceous material.
  • the negative electrode active material carried in the particles has been reported.
  • Patent Document 1 JP-A-7-302617
  • Patent Document 2 JP-A-8-250108
  • Patent Document 3 JP-A-11-288706
  • Patent Document 4 Japanese Patent Application Laid-Open No. Hei 5-2344583
  • Patent Document 5 JP-A-5-275077
  • Patent Document 6 JP-A-2000-3724
  • Patent Document 7 JP-A-2000-133304
  • Patent Document 8 US Patent No. 6436582
  • Patent Document 9 Japanese Patent Publication No. 5-44946
  • Patent Document 10 U.S. Pat.No. 4,950,768
  • Patent Document 11 JP-A-2003-7334
  • Patent Document 12 JP 2003-115324 A
  • Patent Document 13 JP-A-2002-075350
  • Patent Document 14 JP-A-2000-215887
  • Patent Document 15 JP-A-2000-243396
  • Non-Patent Document 1 J. Am. Pham. Assoc., Vol. 126, pp. 485-493, 1937
  • Non-Patent Document 2 G. Schroeter, Lieb, Ann, Der Chemie, Vol. 418, 161- 257 pages, 1919
  • Non-Patent Document 3 Biol. Aktiv. Soedin., ⁇ 64_69 (1968).
  • Non-Patent Document 4 Armyanskii Khimicheskii Zhurnal, 21, pp393-396 (1968).
  • the surface film formed on the electrode surface is closely related to the charge / discharge efficiency, cycle life, and safety by its properties, but there is no method capable of controlling the film for a long time.
  • a surface film made of a lithium halide or a glassy oxide is formed on a layer made of lithium, the effect of suppressing dentite can be obtained to a certain extent during initial use. Was deteriorated and the function as a protective film was sometimes reduced. This is because while the layer made of lithium changes its volume by absorbing and releasing lithium, the layer of lithium halide or the like located above it changes its volume. It is thought that the internal stress is generated in these layers and their interfaces because the coatings made of them hardly change in volume. It is considered that the generation of such an internal stress particularly damages a part of the surface film made of lithium halide or the like, and reduces the function of suppressing dendrite.
  • the use of a metal, metalloid, or oxide that absorbs and releases an alkali metal or alkaline earth metal such as lithium as the negative electrode active material means that only a carbon material such as amorphous carbon is used as the negative electrode active material. Since higher capacity can be achieved than when used as a substance, it is expected as a method to realize small and light batteries.
  • the above-mentioned metal, metalloid, or oxide has a problem in that the battery has a large volume expansion and contraction due to charge and discharge, and has insufficient cycle characteristics of the obtained battery. That is, cracks and the like may be formed in the SEI formed on the surface due to the stress caused by the expansion and contraction of the volume.
  • the solvent of the electrolytic solution may enter the negative electrode active material and be decomposed to generate gas, or oxygen may enter to cause oxidative deterioration of the negative electrode active material.
  • Carbon materials are expected to have an improved conductivity and a cushion effect against the volume change caused by the charge / discharge of the metal, metalloid, or oxide, but the cushion effect of the carbon material alone is not sufficient. Cannot prevent the occurrence of cracks. Therefore, sufficient battery characteristics have not yet been obtained for such a metal or metalloid or oxide and carbon material as a negative electrode active material.
  • the present invention has been made in view of the above-mentioned problems, and has a negative electrode active material such as lithium. Stable on the electrode surface by adding chain-like disulfonate to the electrolyte of secondary batteries using metals or metalloids, oxides and carbon materials that occlude and release alkali metals or alkaline earth metals This prevents the decomposition of solvent molecules by forming a coated film. As a result, RCR II is aimed at obtaining a secondary battery with excellent cycle characteristics and charge / discharge efficiency.
  • the present invention has the following configurations. That is, the present invention provides a secondary battery including at least a positive electrode, a negative electrode, and an electrolytic solution,
  • the negative electrode contains, as a negative electrode active material, a metal or a metalloid or an oxide that occludes and releases an alkali metal or an alkaline earth metal, and a carbon material, and
  • the secondary battery is characterized in that the electrolytic solution contains at least an aprotic solvent in which an electrolyte is dissolved and a compound represented by the following general formula (1).
  • R and R are each independently a hydrogen atom
  • Substituted or unsubstituted alkyl group having 15 carbon atoms substituted or unsubstituted alkoxy group having 15 carbon atoms, substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, polyfluoro group having 15 carbon atoms Alkyl group, —SO X (X is a substituted or unsubstituted carbon atom 1
  • R and R are each independently
  • a chloroalkoxy group, a polyfluoroalkoxy group having 115 carbon atoms, a hydroxyl group, a halogen atom,-NX ⁇ X 1 and X 2 each independently represent a hydrogen atom or a substituted or unsubstituted carbon atom 5 alkyl groups) and one NY CONY ⁇ X 1 -X 3 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 15 carbon atoms), Show. )
  • polyfluoroalkylene group polyfluoroalkyl group
  • polyfluoroalkoxy group are bonded to carbon atoms of the corresponding alkylene group, alkyl group, and alkoxy group, respectively.
  • ⁇ fluoroalkylene group '', ⁇ fluoroalkyl group '', ⁇ fluoroalkoxy group '' is the carbon atom of the corresponding alkylene group, alkyl group, alkoxy group respectively It represents one in which part of the bonded hydrogen atoms has been replaced by fluorine atoms.
  • substitution means that at least one of the hydrogen atoms bonded to the carbon atom is an atom other than fluorine or It means that it is substituted by a functional group.
  • the atom or functional group other than fluorine include a halogen atom such as a chlorine atom, a bromine atom and an iodine atom, a hydroxyl group, an alkoxy group having 15 to 15 carbon atoms, or a halogen atom or a hydroxyl group.
  • a group in which one SO — is introduced into these groups (eg, -OSO C
  • an alkali metal such as lithium can be used as a negative electrode active material. Even when a metal or metalloid, oxide or carbon material that absorbs or releases alkaline earth metal is used, the resulting secondary battery has excellent charge / discharge efficiency, good cycle characteristics, and capacity retention. An excellent lithi that can suppress the rise in resistance during storage with high rate A secondary battery can be obtained.
  • FIG. 1 is a schematic configuration diagram of a secondary battery according to the present invention.
  • metal containing element M 1 or metalloid is a schematic diagram showing a state of composite is coated with a carbon material.
  • FIG 3 is a schematic view showing a state in which the carbon material is coated with a metal or metalloid containing the element M 1 is complexed.
  • FIG. 4 is a schematic diagram showing a state in which an oxide is covered with a carbon material to form a composite.
  • FIG. 5 is a schematic diagram showing a state in which a carbon material is covered with an oxide to form a composite. Explanation of symbols
  • FIG. 1 shows a schematic structure of an example of the battery according to the present invention.
  • the chain disulfonate compound (chain disulfonate) represented by the general formula (1) is contained in the electrolytic solution 15.
  • the positive electrode current collector 11 may be made of aluminum, stainless steel, nickel, titanium or any of these. An alloy or the like can be used, and as the negative electrode current collector 14, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • a porous film such as polyolefin such as polypropylene or polyethylene, or a fluororesin is preferably used.
  • LiMO LiMO (M is selected from Mn, Fe, Co, and a part thereof is other cations such as Mg, Al, Ti)
  • the layer 12 to be the positive electrode can be obtained by a method such as coating on the top.
  • the negative electrode active material contained in the negative electrode a metal or metalloid, an oxide, and a carbon material that occlude and release an alkali metal or an alkaline earth metal such as lithium are used.
  • Examples of the metal or metalloid, element M 1 (M 1 is Si, Sn, Al, Pb, Ag, Ge and from elements selected from S b) using a metal or metalloid and at least one more .
  • the metals or semimetals may be used an alkali metal or alkaline earth metal can be alloyed metal or metalloid, element M 1 contained in the metal or metalloid is two or more even one But it's fine.
  • these elements may include a state of even good tool alloys contain respectively metals or semi-metallic state.
  • a metal or metalloid containing an element selected from Si, Sn and A1 is preferably used, and a metal or metalloid containing at least one of Si and Sn is more preferably used.
  • an oxide that can be alloyed with an alkali metal or an alkaline earth metal can be used, and an element M 2 (M 2 is Si, Sn, Al , Pb, Ag, Ge, Sb, B, P, W, and Ti). Acid contained in this oxide
  • elements other than element one or two or more elements are good.
  • Two or more oxides can be used in combination. Above all, it is preferable to use an oxide containing an element selected from Si, Sn, Al, Pb, Ag, Ge and Sb, and it is more preferable to use an oxide containing at least one of Si and Sn. Sile,.
  • the composition of the oxide may be stoichiometry or non-stoichiometry.
  • a metal or semimetal and an oxide can be used in combination.
  • the above element M 1 is
  • M 1 is an element selected from Si, Sn, Al, Pb, Ag, Ge, and Sb
  • a metal or metalloid containing at least one of the above-mentioned metals and earth metal It is preferable to use together with an alloyable oxide.
  • the carbon material graphite, amorphous carbon, carbon nanotube, carbon nanohorn, fullerene, diamond-like carbon, soft carbon, hard carbon, or a mixture thereof can be used.
  • the carbon material may be one kind or two or more kinds. It is preferable to use at least one of graphite and amorphous carbon.
  • the content of the carbon material with respect to the whole negative electrode active material is preferably in the range of 5 to 95% by mass, more preferably in the range of 25 to 75% by mass, and more preferably in the range of 30 to 60% by mass. Is more preferable.
  • the carbon material is expected to improve conductivity and exhibit a cushioning effect against a volume change caused by charge / discharge of the metal or metalloid or oxide.
  • the use of a metal, metalloid, oxide, or carbon material as the negative electrode active material as described above has a higher capacity than when only a carbon material such as amorphous carbon is used as the negative electrode active material. Therefore, it is expected as a technique for realizing small and lightweight batteries.
  • the above-mentioned metals, metalloids and oxides have a large volume expansion and contraction due to charge and discharge, and although the cushioning effect of a carbon material can be expected, the cycle characteristics of the obtained batteries are still insufficient.
  • an additive represented by the general formula (1) described below in combination even if cracks or the like enter the SEI formed on the surface due to stress due to expansion and contraction of the volume, the film can be formed quickly.
  • the battery of the present invention can be obtained by using the above-mentioned metal or metalloid or oxide, and carbon material as a negative electrode active material. It is considered that good cycle characteristics were obtained.
  • the negative electrode active material contained in the negative electrode contains an element X that is not alloyed with an alkali metal or an alkaline earth metal, in addition to the above-mentioned metal, metalloid, or element contained in the oxide. You can also. These elements X are effective in suppressing the volume change due to charge / discharge of the negative electrode active material and improving the conductivity. Even when the negative electrode active material having such a configuration is used, the same effects as described above can be obtained.
  • the element X include an element selected from Fe, Ni, Cu, and Ti. These elements X may be present in any state as long as they do not alloy with the alkali metal or alkaline earth metal.
  • the Ti element cannot be alloyed with an alkali metal or an alkaline earth metal in a metal state, but may be alloyable with an alkali metal or an alkaline earth metal in an oxide state.
  • the Ti element in the alloyed state shall not be classified as this element X (for example, Li Ti O
  • the element X contained in the negative electrode active material may be one or more.
  • each of those elements may be contained in the form of a metal or metal compound, or may be contained in the form of an alloy or alloy compound. Further, it may be in a state of being alloyed with the above-mentioned metal, metalloid or oxide.
  • the negative electrode active material of the present invention can include materials that occlude and release alkali metals or alkaline earth metals such as lithium, such as lithium metals and lithium alloys.
  • the negative electrode active material may be in a form containing particles containing at least one of the above-mentioned metal, metalloid or oxide, and the above-mentioned carbon material.
  • Particles containing both the metal or metalloid or oxide and the carbon material i.e., composite particles, include at least a portion of the periphery of the metal or metalloid or oxide particle as the carbon material.
  • the negative electrode active material as described above can also be formed by a vacuum film forming method or a pressure welding method.
  • Vacuum evaporation, sputtering, CVD, etc. can be used as the vacuum film forming method.
  • As the pressure welding method a mechanofusion method, a mechanical milling method, or the like can be used.
  • a negative electrode having a layer containing at least a part of the negative electrode active material as described above can be formed by a coating method or a vacuum film forming method.
  • a vacuum film forming method a vacuum evaporation method, a sputtering method, a CVD method, etc. can be used.
  • the negative electrode of the secondary battery of the present invention is formed by forming a layered structure including a layer mainly containing the above-mentioned metal, metalloid or oxide, and a layer mainly containing the above-mentioned carbon material.
  • a layered structure including a layer mainly containing the above-mentioned metal, metalloid or oxide, and a layer mainly containing the above-mentioned carbon material.
  • the “layer containing the main component” occupies 50% by mass or more of the entire material constituting the layer.
  • the main component of each layer accounts for 70% by mass or more.
  • Additional elemental metal containing M 1 or metalloid and carbon material simply, each particle They may be mixed in a child state. Or, metallic or metalloid 2b containing the element M 1 may be conjugated is coated with a carbon material 2a as shown in FIG. Or a carbon material 3a may be conjugated coated with a metal or metalloid 3b including the element M 1, as shown in FIG. When complexed, and high conductivity, the expression of the cushion effect of the volume change due to charging and discharging of the metal or metalloid containing the element M 1 can be expected.
  • Particles composed of metal or metalloid containing element M 1 , particles composed of metal or metalloid containing element M 1 and element X, and metal or metalloid containing element M 1 are produced by using a vacuum film forming method or a pressure welding method in addition to a usual production method.
  • a vacuum film forming method such as a CVD method, a pressure welding method such as a mechanical milling method ⁇ mechanofusion method, or a sol-gel method can be used.
  • a metal or metalloid containing the element M 1 S When the composite was coated with a carbon material a metal or metalloid containing the element M 1, for example, CVD Rukoto force to coat the carbon material film on the metal or metalloid containing the element M 1 S can. Or, coated with carbonaceous material, such as data Lumpur the particles composed of a metal or metalloid containing the element M 1, including the element M 1 by firing at about 1000 ° C under an inert atmosphere Ability to apply carbon coating to particles composed of metal or metalloid. Further, it is possible to coat the carbon material film on the metal or metalloid containing the element M 1 by vacuum evaporation.
  • the metal or metalloid containing the elemental M 1 can be composited coated by the carbon material.
  • a pressure method such as mechanical milling Ya mechanofusion
  • the metal or metalloid containing the elemental M 1 can be composited coated by the carbon material.
  • mixing a metal or semi-metal particles and the carbon material particles containing the element M 1, by mechanical two Carmi ring, embedding a metal or metalloid particles containing the element M 1 in the carbon material particle composite Can be changed.
  • a CVD method or a carbon material deposition may be performed a carbon material coating.
  • the carbon material when the composite coated with a metal or metalloid containing the element M 1, for example by a CVD method, form a metal or semi-metal film containing an element M to the carbon material particles And can be compounded. Or, a metal or semi-metal film containing an element M 1 to the carbon material particles by sol-gel method, can be conjugated.
  • anode active material can as described above to the metal or metalloid was allowed to composite particles containing a carbon material and the element M 1 use Le, is Rukoto. Further, these composited particles can be further mixed with graphite or amorphous carbon particles and used as a negative electrode active material.
  • the negative electrode active material particles are converted to a conductive material such as carbon black (a conductivity-imparting material), polyvinylidene fluoride, or the like.
  • Layer 13 serving as a negative electrode by a method such as dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a binder such as chloride (PVDF), and applying the mixture on a substrate such as a copper foil.
  • NMP N-methyl-2-pyrrolidone
  • PVDF chloride
  • Gaining power S When dispersing a plurality of particles, it is also possible to use those that have been previously mixed by a method such as mechanical milling.
  • a metal or metalloid containing the above-described element M 1 and a carbon material can be simultaneously formed into a film to form a composite.
  • the selected negative electrode active material is appropriately cooled by a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, an optical CVD method, a thermal CVD method, a Zonoray gel method, or the like.
  • a layer 13 serving as a negative electrode can be obtained by forming a film on a substrate by a method.
  • [0059] may have a structure of at least two of the layers shall be the main component layer and a carbon material mainly composed of a metal or metalloid containing the element M 1.
  • a carbon material mainly composed of a metal or metalloid containing the element M 1 it is preferable to form a layer of carbon material on an anode current collector to form a layer mainly components, mainly composed of a metal or metalloid containing the element M 1 thereon. If you this structure, the metal or metalloid containing the element M 1 can preferentially form coatings on layer mainly, and the high conductivity, good cycle characteristics can be expected.
  • the layer containing a composite material of a metal or metalloid and the carbon material containing the above element M the structure of at least two layers of a layer containing carbon as a main component material. If you this structure, a high conductivity can be expected expression of cushioning effect for the volume change accompanying with charge and discharge of the metal or metalloid containing the element M 1.
  • it is preferable to form a layer containing a composite material of a metal or metalloid and the carbon material comprising forming a layer mainly composed of carbon material on an anode current collector, the element M 1 thereon .
  • the layer on containing a composite material of a metal or metalloid and the carbon material containing the serial element M 1 can preferentially form film, a high conductivity can be expected good cycle characteristics.
  • the layer containing a carbon material as a main component can be formed by a coating method or a vacuum film formation method such as a CVD method, a vacuum evaporation method, or a sputtering method.
  • a coating method in addition to carbon particles, N-methyl_2_pyrrolidone may be used together with a conductive substance such as carbon black (a conductivity-imparting material) and a binder such as polyvinylidene phthaleolide (PVDF). (NMP) or the like, and can be formed by a method such as dispersing and kneading in a solvent, and applying this on a substrate such as a copper foil.
  • PVDF polyvinylidene phthaleolide
  • Layer mainly containing a metal or metalloid containing the element M 1 is melt cooling method, liquid quick cooling method, atomizing method, a vacuum deposition method, sputtering method, plasma CVD method, optical CVD method, thermal CVD method, Zonoregeru It can be formed by forming a film on the substrate by an appropriate method such as a method.
  • the layer mainly composed of a metal or metalloid containing the element M 1 is a particle mainly composed of a metal or metalloid containing the element M 1, carbon black, conductive material (conductivity-imparting agent), It is formed by dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) with a binder such as polyvinylidene fluoride (PVDF) and applying it to a substrate such as copper foil. can do.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • layer containing a composite material of a metal or metalloid and the carbon material containing the above element M 1 is a coating method, or a vacuum deposition method, by a sputtering method or a vacuum deposition method such as CVD That power S can.
  • the oxide and the carbon material may be simply mixed in the form of particles.
  • the oxide 2c may be covered with the carbon material 2a to form a composite.
  • the carbon material 3a may be covered with the oxide 3c to form a composite.
  • Particles composed of the oxide, particles composed of the oxide and the element X, and particles composed of the oxide and the element X and lithium metal or lithium alloy are prepared by a usual production method. In addition to the above, Talk about things.
  • a vacuum film forming method such as a CVD method, a pressure contact method such as a mechanical milling method or a mechanofusion method, or a sol-gel method can be used.
  • the oxide can be coated with a carbon material film by, for example, a CVD method.
  • the particles composed of the above oxide are coated with a carbonaceous substance such as tar, and then calcined at about 1000 ° C in an inert atmosphere, so that the particles composed of the above oxide are carbon-coated. be able to.
  • the oxide can be coated with a carbon material film by a vacuum evaporation method.
  • the above oxide can be coated with a carbon material to form a composite.
  • a pressure welding method such as mechanical milling / mechanofusion
  • the oxide particles can be embedded in the carbon material particles to form a composite. It is also possible to combine the carbon material and the oxide by mechanical milling as described above, and then coat the carbon material by CVD or carbon material deposition.
  • the oxide film can be formed on the carbon material particles by, for example, a CVD method, and the composite film can be formed.
  • an oxide film can be formed on the carbon material particles by a sol-gel method to form a composite.
  • the negative electrode active material particles obtained by complexing the carbon material and the oxide as described above can be used. Further, these composited particles can be further mixed with graphite or amorphous carbon particles and used as a negative electrode active material.
  • the negative electrode active material particles are converted to a conductive material such as carbon black (a conductivity-imparting material), polyvinylidene fluoride, or the like.
  • Layer 13 serving as a negative electrode by a method such as dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a binder such as chloride (PVDF), and applying the mixture on a substrate such as a copper foil.
  • NMP N-methyl-2-pyrrolidone
  • PVDF chloride
  • Gaining power S When dispersing a plurality of particles, it is also possible to use those that have been previously mixed by a method such as mechanical milling.
  • the oxide and the carbon material can be simultaneously formed into a film to form a composite film.
  • the selected negative electrode active material is melt-cooled, liquid quenched, atomized. It is possible to obtain a layer 13 serving as a negative electrode by forming a film on a substrate by an appropriate method such as an empty deposition method, a sputtering method, a plasma CVD method, a light CVD method, a thermal CVD method, a sol-gel method, or the like.
  • a structure having at least two layers of a layer mainly containing the oxide and a layer mainly containing a carbon material can be employed.
  • a film can be formed preferentially on a layer mainly composed of an oxide, and high conductivity and good vital characteristics can be expected.
  • a structure having at least two layers of a layer containing the composite material of the oxide and the carbon material and a layer containing the carbon material as a main component may be employed.
  • this structure high conductivity and a cushioning effect against a volume change due to charge and discharge of the oxide can be expected.
  • a film can be formed preferentially on the layer containing the composite material of the oxide and the carbon material, and high resilience, conductivity, and good cycle characteristics can be expected.
  • the layer containing a carbon material as a main component can be formed by a coating method or a vacuum film formation method such as a CVD method, a vacuum evaporation method, or a sputtering method.
  • a coating method in addition to carbon particles, N-methyl-2-pyrrolidone may be used together with a conductive substance such as carbon black (a conductivity-imparting material) and a binder such as polyvinylidene phthaleolide (PVDF). (NMP) or the like, and can be formed by a method such as dispersing and kneading in a solvent, and applying this on a substrate such as a copper foil.
  • PVDF polyvinylidene phthaleolide
  • the layer mainly composed of an oxide is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum evaporation method, a sputtering method, a plasma CVD method, an optical CVD method, a thermal CVD method, or a sol-gel method. It can be formed by forming a film on a substrate.
  • the layer containing an oxide as a main component includes N particles, a conductive material such as carbon black (a conductivity-imparting material), and a binder such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the layer containing the composite material of the oxide and the carbon material is formed by a coating method or a vacuum deposition method. It can be formed by a vacuum film forming method such as a sputtering method, a sputtering method, or a CVD method.
  • the electrolytic solution 15 has at least an electrolyte, an aprotic solvent and an additive.
  • lithium salt As the electrolyte, in the case of a lithium secondary battery, a lithium salt is used, and this is dissolved in an aprotic solvent.
  • lithium salts lithium imide salts, LiPF, LiAsF, LiAICl, Li
  • LiPF and LiBF are preferred. These may be used alone or in combination.
  • High energy density can be achieved by including these lithium salts.
  • the aprotic electrolytic solution may include cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -ratatanes, cyclic ethers, chain ethers, and organic solvents of these fluorinated derivatives. Use at least one selected organic solvent. More specifically,
  • Cyclic carbonates propylene carbonate (hereinafter abbreviated as PC), ethylene carbonate (hereinafter abbreviated as EC), butylene carbonate (BC), and derivatives thereof
  • Linear carbonates dimethyl carbonate (DMC) Getyl carbonate (hereinafter abbreviated as DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof
  • Aliphatic carboxylic esters methyl formate, methyl acetate, ethyl propionate, and derivatives thereof
  • T-latatatones ⁇ -petit ratatone, and derivatives thereof
  • Cyclic ethers tetrahydrofuran, 2-methyltetrahydrofuran, and derivatives thereof
  • Chain ethers 1,2-diethoxytan (DEE), ethoxymethoxyethane ( ⁇ ), dimethyl ether, and derivatives thereof Others: dimethylsulfoxide, 1,3-dioxolane, honolemamide, acetamide, dimethylenolenomolemide, acetonitrile, propionitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, methylsulfolane, 1,3-Dimethinole_2_imidazolidinone, 3_methyl_2_oxazolidinone, anisol, N-methylbilidone, fluorinated carboxylate
  • a chain disulfonic acid ester represented by the general formula (1) is used as the additive.
  • R and R are each independently a hydrogen atom
  • Substituted or unsubstituted alkyl group having 15 carbon atoms substituted or unsubstituted alkoxy group having 15 carbon atoms, substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, polyfluoro group having 15 carbon atoms SO X (X is a substituted or unsubstituted carbon atom 1
  • Z is a hydrogen atom or a substituted or unsubstituted alkyl group having 15 to 15 carbon atoms), a halogen atom, and an atom or group selected from the following.
  • R and R are each independently
  • the compound represented by the general formula (1) is an acyclic compound, does not involve a cyclization reaction at the time of synthesis, and can be synthesized using, for example, Non-Patent Documents 14 to 14. It can also be obtained as a by-product of the synthesis of the cyclic disulfonic acid ester shown in Patent Document 9. As described above, since the compound represented by the general formula (1) is easily synthesized, there is a U point at which an inexpensive electrolytic solution can be provided.
  • the preferable molecular structure of R and R in the general formula (1) is a reaction occurring on an electrode.
  • An atom or group selected from (prime number 15 alkyl groups) is preferred, and each independently is a hydrogen atom or a hydrogen atom or a methyl group, more preferably an unsubstituted alkyl group having 115 carbon atoms.
  • Particularly preferred forms of R and R are those in which R and R are hydrogen
  • Independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and is preferably an independently substituted or unsubstituted alkyl having 1 to 5 carbon atoms.
  • Group, or a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms is more preferable, and more preferably, one or both of R and R are substituted or unsubstituted.
  • the substituted or unsubstituted alkyl group having 115 carbon atoms is preferably a methyl group or an ethyl group, and the substituted or unsubstituted alkoxy group having 115 carbon atoms is methoxy. Groups or ethoxy groups are preferred.
  • the compound represented by the general formula (1) has two sulfonyl groups and has a small LUMO.
  • the solvent molecule in the electrolytic solution, and the LUMO has a smaller value than the monosulfonate, so that the compound is reduced. easy.
  • the carbon atom has two electron-attractive sulfonyl groups bonded to it, and that the activation of the carbon atom can easily form a film on the electrode. Furthermore, it is conceivable that the carbanion generated by deprotonation of active methylene coordinates Li or reacts on the positive electrode to form a film.
  • the compound represented by the general formula (1) is not particularly limited, but is preferably contained in the electrolytic solution at 0.1 mass% to 5.0 mass%. If the amount is less than 0.1% by mass, the effect of forming a film by an electrochemical reaction on the electrode surface may not be sufficiently exerted. On the other hand, if it exceeds 5.0% by mass, not only is it difficult to dissolve, but also the viscosity of the electrolyte may be increased. More preferably, in the present invention, a more sufficient film effect can be obtained by adding in the range of 0.5% by mass to 3.0% by mass.
  • the compounds represented by the general formula (1) may be used alone or in combination of two or more.
  • at least one compound having an active methylene group ie, R and
  • the proportion of the compound in the electrolytic solution is not particularly limited, but for the same reason as described above, the total of the two types is 0.1% by mass or more.
  • the ratio of each compound to the total mass of the compound of the general formula (1) is not particularly limited, but the ratio of the least compound is 5% by mass, 95% of the most compound
  • a cyclic monosulfonic acid ester a cyclic sulfonic acid ester having two sulfonyl groups, an alkanesulfonic acid anhydride, It is also effective here to use an electrolytic solution containing at least one of the Renyidani products.
  • Examples of the cyclic monosulfonic acid ester include compounds represented by the following general formula (2).
  • n is an integer of 0 or more and 2 or less.
  • n is preferably 0 or 1 from the viewpoints of stability of the compound, ease of compound synthesis, solubility in a solvent, and price. So
  • R is independently an atom or a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 11 to 12 carbon atoms, and a polyfluoroalkyl group having 115 carbon atoms. Independently, each is more preferably a hydrogen atom or a polyfluoroalkyl group having 1 to 5 carbon atoms. More preferably, all R are hydrogen atoms, or one or two of R—R
  • a polyfluoroalkyl group having 115 carbon atoms a trifluoromethyl group is preferable.
  • 1,3_propane sultone (1,3_PS), ⁇ -trifluoromethyl- ⁇ -sultone, j3-trifluoromethylinone, ⁇ -sultone, ⁇ -trifluoromethylinole 1 ⁇ -sultone, 1 methinole 1 ⁇ _snoretone, 1 j-di (trifnorolelomethinole) 1 ⁇ _snoreton, 1 h, Hichiji (trif noreolomethinole) 1 ⁇ -sultone, 1d Gamma-sultone, Tafluoropropyl- ⁇ -sultone, 1,4-butansnoretone (1,4-BS), etc.
  • 1,3-propane sultone (1,3-PS) is considered to form a decomposition film on the negative electrode of a lithium ion secondary battery.
  • the LUMO of 1,3-PS is 0.07 eV, which is larger than that of compound No. 1 of the present invention (0.86 eV).
  • compound No. 1 of the present invention and 1,3-PS are added to the electrolyte and charged, first, the substance of compound No. 1 forms a film on the negative electrode, and then 1,3-PS is formed. It is conceivable to form a film.
  • the power S that mainly reacts with a certain part of the negative electrode surface and Compound No.
  • the content in the electrolytic solution is not particularly limited, but it is 0.5% by mass to 10.0% by mass in the electrolytic solution. % Or less is preferable. If the content is less than 0.5% by mass, the effect of electrochemical reaction on the electrode surface may not be sufficiently exerted to form a film. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased.
  • the ratio of the compound of the general formula (2) in the compound of the general formula (1) and the compound of the general formula (2) is calculated based on the total mass of the compound of the general formula (1) and the compound of the general formula (2). 10-90% by weight is preferred.
  • Examples of the cyclic sulfonic acid ester having two sulfonyl groups include a compound represented by the following general formula (3).
  • Q is an oxygen atom, a methylene group or a single bond
  • A is a substituted or unsubstituted alkylene group having 115 carbon atoms, a carbonyl group, C-C bond in a sulfinyl group, a polyfluoroalkylene group having 15 to 15 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 15 to 15 carbon atoms, or a substituted or unsubstituted alkylene group having 15 to 15 carbon atoms
  • a group in which at least one of the groups is a C-C bond, a group in which at least one of the C-C bonds in the C5-C15 polyfluoroalkylene group is a C-C bond, and A substituted or unsubstituted fluoroalkylene group having 1 to 5 carbon atoms in which at least one of the C—C bonds is a C_ ⁇ _C bond, and a group selected
  • A is a substituted or unsubstituted C1-C5 alkylene group, C5-C15 polyfluoroalkylene group, substituted or unsubstituted C5-C15 fluoroalkylene group, substituted or unsubstituted C1-C5 alkylene
  • At least one of the C-C bonds in the C-C bond is a C-O-C bond
  • at least one of the C_C bonds in a C5-C15 polyfluoroalkylene group is a C-C bond.
  • a group in which at least one of the C-C bonds in the substituted or unsubstituted fluoroalkylene group having 1 to 5 carbon atoms is a coc bond, or a group selected by force .
  • a substituted or unsubstituted alkylene group having 15 carbon atoms is more preferred, and a methylene group, an ethylene group or a 2,2-propanezyl group is particularly preferred.
  • the fluoroalkylene group having 115 carbon atoms described above is more preferably composed of a methylene group and a difluoromethylene group, which preferably contains a methylene group and a difluoromethylene group.
  • B is more preferably a methylene group, a 1,1-ethanediyl group, or a 2,2-propanediyl group, which is preferably an alkylene group having 115 carbon atoms.
  • MMDS is a cyclic compound, and is considered to be a compound which reacts with the negative electrode by ring opening to form a film.
  • the compound No. 1 has a relatively low probability of film formation on the negative electrode, and conversely, the reaction probability on the positive electrode. And film formation on the positive electrode is achieved. As a result, suppression of solvent decomposition on the positive electrode can be expected.
  • the content of the compound of the general formula (3) in the electrolytic solution is not particularly limited, but may be 0.5% by mass in the electrolytic solution. It is preferable that the content is not less than 10.0% by mass. If the amount is less than 0.5% by mass, the effect of forming a film on the electrode surface by an electrochemical reaction may not be sufficiently exerted. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased.
  • the ratio of the compound of the general formula (3) in the general formulas (1) and (3) is 1090% by mass of the total mass of the compounds of the general formulas (1) and (3). preferable.
  • 1090% by mass of the total mass of the compounds of the general formulas (1), (2) and (3) is preferable. ,.
  • At least one of vinylene carbonate (VC) and a derivative thereof can be optionally added to the electrolytic solution.
  • Cycle characteristics can be further improved by adding at least one of vinylene carbonate (VC) and a derivative thereof.
  • the LUMO of VC is 0.09 eV, which makes it less susceptible to reduction than the compound of general formula (1). Les ,. It is thought that it is present in the electrolyte for a long time without being consumed by the reduction reaction in the initial charge and discharge. Therefore, by gradually being consumed during the charge / discharge cycle, it is possible to contribute to improvement in cycle characteristics.
  • the effect can be obtained by adding 0.05% by mass and 3.0% by mass in the electrolytic solution.
  • the ratio of VC to the total electrolytic solution is particularly limited. 0.5% by mass 10.0% by mass is preferred. If the amount is less than 0.5% by mass, the effect of forming a film by an electrochemical reaction on the electrode surface may not be sufficiently exhibited. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased.
  • the electrolytic solution of the present invention is obtained by adding and dissolving the compound represented by the general formula (1) to the electrolytic solution.
  • Other additives cyclic monosulfonate, cyclic sulfonate having two sulfonyl groups, sulfolane, alkanesulfonic anhydride, sulfolene compound or vinylene carbonate compound
  • cyclic monosulfonate, cyclic sulfonate having two sulfonyl groups, sulfolane, alkanesulfonic anhydride, sulfolene compound or vinylene carbonate compound may be added to this electrolyte as appropriate.
  • a desired electrolyte can be obtained.
  • the shape of the secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, and a laminate shape.
  • the laminate type has a shape sealed by an outer package made of a flexible film or the like which is a laminate of a synthetic resin and a metal foil, and is a battery can of cylindrical type, square type, coin type and the like. As soon as it is affected by the increase of the internal pressure as compared with the one enclosed in an outer package, control of the chemical reaction between the electrode and the electrolyte is more important.
  • the secondary battery contains the chain disulfone compound represented by the general formula (1) according to the present invention, even if it is a laminate type battery, it suppresses a rise in resistance and swells the battery (gas generation and internal pressure reduction). Rise) can be suppressed. Therefore, it is possible to secure safety and long-term reliability even for large-sized lithium-ion secondary batteries such as those for automobiles.
  • the negative electrode 13 and the positive electrode 12 are laminated via the separator 16 in a dry air or inert gas atmosphere, or the laminated product is wound, and then inserted into the exterior body. And impregnated with an electrolytic solution containing the compound represented by the general formula (1). After that, it is obtained by sealing the battery exterior body.
  • the effect of the present invention can be obtained by charging the battery before or after sealing to form a film on the electrode.
  • the chain disulfonate represented by the general formula (1) of the present invention is not limited to a lithium secondary battery, and can also be used as an additive for other electrolytic solutions for electrochemical devices.
  • Other electrochemical devices include, for example, organic radical batteries, capacitors, and dye-sensitized wet solar cells.
  • a positive electrode active material and a conductivity-imparting agent shown in Table 15 were dry-mixed, and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder was dissolved to prepare a slurry. Carbon black was used as the conductivity-imparting agent.
  • NMP N-methyl-2-pyrrolidone
  • the slurry is applied on an aluminum metal foil (20 / m in the case of square or cylindrical type, 25 / im in the case of laminate type) serving as a positive electrode current collector, and NMP is evaporated to form a positive electrode sheet. did.
  • negative electrode active materials other than the carbon material were those shown in Table 15-15. Graphite or amorphous carbon was used as the carbon material.
  • the negative electrode active material is in the form of particles
  • the ratio of carbon material particles having an average particle diameter of 10 ⁇ m: PVDF: conductivity imparting material 90: 9: 1 (% by mass).
  • the dry mixture is dispersed in NMP and applied on copper foil (10 xm for square or cylindrical, 20 zm for laminate) as negative electrode current collector, followed by vacuum evaporation.
  • a negative electrode active material other than a carbon material was appropriately selected from a sputtering method, a sputtering method, and a CVD method.
  • the ratio of the composite particles: PVDF: conductivity imparting material 90: 9: 1 (% by mass)
  • the dry mixture is dispersed in NMP and mixed with the negative electrode current collector.
  • the carbon material was 50% by mass based on the entire negative electrode active material.
  • the film thickness of these negative electrodes is set according to the capacity ratio with the positive electrode (hereinafter referred to as A / C balance), where ⁇ is the capacity per unit surface area of the negative electrode, and C is the capacity per unit surface area of the positive electrode. ), The coating amount of the positive electrode and the negative electrode was determined so that this A / C balance was 1 or more and 1.7 or less.
  • the electrolytic solution used was a solvent described in Table 15-5, lmol / L LiPF as the electrolyte, and Table 1
  • a solution prepared by dissolving the additive described in 1-5 was used.
  • the number in parentheses in the column of the additive indicates the mass% of the additive in the electrolytic solution.
  • the negative electrode and the positive electrode were laminated with a separator made of polyethylene interposed therebetween, and a prismatic secondary battery (exemplified in the column 1-31, 52 60, 61 91, and 112-143, and]: ⁇ Rows 1-3, 9-13, 19, and 20), cylindrical secondary batteries (Examples 46-51 and 106 111, and Comparative Examples 8 and 18), and aluminum laminated film secondary batteries (Examples 32 to 45 and 92 to 105, and Comparative Examples 417 and 14 to 117) were produced.
  • a prismatic secondary battery exemplified in the column 1-31, 52 60, 61 91, and 112-143, and]: ⁇ Rows 1-3, 9-13, 19, and 20
  • cylindrical secondary batteries Examples 46-51 and 106 111, and Comparative Examples 8 and 18
  • aluminum laminated film secondary batteries Examples 32 to 45 and 92 to 105, and Comparative Examples 417 and 14 to 117
  • the laminated film used was a polypropylene resin (sealing layer, thickness 70 / im), polyethylene terephthalate (20 / im), aluminum (50 ⁇ ), polyethylene terephthalate (20 / m ). Two pieces of this are cut out to a predetermined size, and a recess having a bottom portion and a side portion corresponding to the size of the above-mentioned laminated electrode body is formed in a part thereof, and these are opposed to each other to wrap the above-mentioned laminated electrode body. Then, the periphery was heat-sealed to produce a film-covered battery. The electrolytic solution was impregnated into the laminated electrode body before the last one side was sealed by heat sealing.
  • the battery fabricated by the above process was subjected to a charge / discharge cycle test at a temperature of 20 ° C with a charge rate of 1.0C, a discharge rate of 1.0C, a charge end voltage of 4.2V, and a discharge end voltage of 3.0V.
  • the results are shown in Table 6-10.
  • the capacity retention rate (%) after 400 cycles is the value obtained by dividing the discharge capacity (mAh) after the 400 cycle test by the discharge capacity (mAh) after the 10 cycle test and multiplying by 100.
  • the resistance retention rate after 400 cycles is the relative value of the resistance after the 400 cycles test, where the resistance before the sitar test is 1. [0161] (Example 1)
  • a material containing 0.5% by mass of the product No. 1 was used.
  • a rectangular aluminum container was used for the battery exterior.
  • the capacity ratio A / C balance between the positive and negative electrodes was 1.05.
  • the layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was formed by sputtering A1 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was prepared using Pb having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was prepared using Ag having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was formed by sputtering Ge as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was formed by depositing Sb as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 1.
  • Compound No. 2 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 3 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 4 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 6 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 9 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 10 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 15 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 16 was used as an additive. Other conditions were the same as in Example 1.
  • Compound No. 19 was used as an additive. Other conditions were the same as in Example 1.
  • Example 20 The layer containing the negative electrode active material was produced using Si having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was prepared using Sn having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was produced using Si having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 1.
  • a material containing 0.5% by mass of the product No. 1 was used.
  • a rectangular aluminum container was used for the battery exterior.
  • the capacity ratio A / C balance between the positive and negative electrodes was 1.05.
  • the layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was formed by sputtering A1 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22. (Example 25)
  • the layer containing the negative electrode active material was prepared using Pb having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was prepared using Ag having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was formed by sputtering Ge as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was formed by depositing Sb as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources, Si and A1, as the negative electrode active material other than the carbon material (S source number: A1 atom number: 5: 5) . Other conditions were the same as in Example 22.
  • the layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 22. (Example 32)
  • the layer containing the negative electrode active material is formed by mechanically milling, as a negative electrode active material other than carbon material, Si—A1 alloy particles having an average particle size of 10 ⁇ and Ni particles corresponding to element X having an average particle size of 10 ⁇ .
  • Si—A1 alloy particles having an average particle size of 10 ⁇
  • Ni particles corresponding to element X having an average particle size of 10 ⁇ .
  • Si--Li alloy particles with an average particle size of 10 m and Fe particles corresponding to element X with an average particle size of 10 ⁇ m are mixed by mechanical milling.
  • Si atoms: Li atoms: Fe atoms 9: 4: 1).
  • Other conditions were the same as in Example 32. [0200] (Example 37)
  • o.1 containing 0.5% by mass was used.
  • a container was made of a member coated with aluminum foil by lamination and used.
  • the capacity ratio A / C balance between the positive and negative electrodes was set to 1.05.
  • the layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 38.
  • the layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. In addition, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used as additives. Other conditions were the same as in Example 38.
  • the layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. In addition, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used as additives. Other conditions were the same as in Example 38.
  • the additives used were 0.5% by mass of the compound ⁇ ⁇ 1, 3% by mass of 1,3_PS, and 1% by mass of VC. Other conditions were the same as in Example 38.
  • the layer containing the negative electrode active material corresponds to Si and element X as the negative electrode active material other than the carbon material.
  • Compound No. 1 was used in an amount of 0.1% by mass. Other conditions were the same as in Example 46.
  • Example 51 As an additive, compound No. 1 was used in an amount of 5% by mass. Other conditions were the same as in Example 46. (Example 51)
  • the layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle diameter of 10 ⁇ m and Si particles having an average particle diameter of 1 am by mechanical milling. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DE as electrolyte
  • the layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle size of 10 ⁇ m and Sn particles having an average particle size of 1 ⁇ m by mechanical milling. Other conditions were the same as in Example 52.
  • the layer containing the negative electrode active material is a composite particle obtained by combining graphite particles with an average particle size of 10 ⁇ m and Si particles with an average particle size of 1 am by mechanical milling and carbon coating by CVD. It was produced using. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material.
  • ECZDEC / EMC 30/50/20 (volume ratio) for electrolyte Inside, lmol / L LiPF as electrolyte and 0.5 mass of Compound No. 1 as additive
  • a rectangular container was used for the outer package of the battery.
  • the capacity ratio A / C balance between the positive electrode and the negative electrode was set to 1.5.
  • the layer containing the negative electrode active material is a composite particle obtained by combining graphite particles with an average particle size of 10 ⁇ m and Sn particles with an average particle size of 1 am by mechanical milling and carbon coating by CVD. It was produced using. Other conditions were the same as in Example 55.
  • the content of the carbon material was set to 5% by mass. Other conditions were the same as in Example 1.
  • the content of the carbon material was set to 95% by mass. Other conditions were the same as in Example 1.
  • a layer containing a negative electrode active material was prepared by first depositing a graphite film by a sputtering method, and then depositing Si thereon by a CVD method as a negative electrode active material other than a carbon material. Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material was formed by sputtering Sn ⁇ as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material was sputtered with Sn ⁇ as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 m and BO particles having an average particle size of 10 zm as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material is a particle obtained by mixing Fe O particles having an average particle size of 10 ⁇ and P O particles having an average particle size of 10 / im by mechanical milling as a negative electrode active material other than the carbon material.
  • W O was sputtered as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material was prepared using Li Ti 2 O having an average particle size of 10 m as the negative electrode active material other than the carbon material. Other conditions were the same as in Example 61.
  • Compound No. 2 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 3 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 4 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 6 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 9 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 10 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 15 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 16 was used as an additive. Other conditions were the same as in Example 61.
  • Compound No. 19 was used as an additive. Other conditions were the same as in Example 61.
  • Example 80 The layer containing the negative electrode active material was formed using Si ⁇ having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material was prepared using Sn ⁇ having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material was prepared by depositing Si ⁇ as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material was formed using Si ⁇ having an average particle size of 10 ⁇ as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material was formed by sputtering Sn ⁇ as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 82.
  • the layer containing the negative electrode active material was sputtered with Sn ⁇ as the negative electrode active material other than the carbon material.
  • Example 85 (Example 85)
  • the layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 ⁇ and BO particles having an average particle size of 10 / im as a negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 m and PO particles having an average particle size of 10 zm as a negative electrode active material other than the carbon material.
  • W O was sputtered as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material was prepared using Li Ti O having an average particle size of 10 ⁇ as the negative electrode active material other than the carbon material. Other conditions were the same as in Example 82.
  • the layer containing the negative electrode active material was prepared by depositing Si ⁇ by evaporation as a negative electrode active material other than the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 82.
  • No. 1 containing 0.5% by mass was used.
  • a container was prepared from a member coated with aluminum foil and laminated.
  • the capacity ratio A / C balance between the positive electrode and the negative electrode was 1.05.
  • the layer containing the negative electrode active material is formed by mechanical milling Sn-- particles with an average particle size of 10 ⁇ and Ni particles corresponding to element X with an average particle size of 10 ⁇ m as the negative electrode active material other than the carbon material.
  • a material containing 0.5% by mass of the product No. 1 was used.
  • a container was prepared from a member coated with aluminum foil and laminated.
  • the capacity ratio AZC of the positive and negative electrodes was set to 1.05.
  • Example 99 The layer containing the negative electrode active material was formed by depositing Sn ⁇ as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 98.
  • the layer containing the negative electrode active material was prepared by depositing Si ⁇ by evaporation as a negative electrode active material other than the carbon material. As additives, 0.5% by mass of compound No. 1 and 3% by mass of 1,3-PS were used. Other conditions were the same as in Example 98.
  • the layer containing the negative electrode active material was formed by depositing Sn ⁇ as a negative electrode active material other than the carbon material by vapor deposition.
  • As additives 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used. Other conditions were the same as in Example 98.
  • As additives 0.5% by mass of compound No. 1, 3% by mass of 1,3-PS, and 1% by mass of VC were used. Other conditions were the same as in Example 98.
  • the additives were compound No. 1 at 0.5% by mass and MMDS at 0.5% by mass. %Using. Other conditions were the same as in Example 98.
  • Compound No. 1 was used in an amount of 0.1% by mass. Other conditions were the same as in Example 106.
  • Example 106 As an additive, 0.75% by mass of Compound No. 1 was used. Other conditions were the same as in Example 106.
  • Example 110 As an additive, 3% by mass of Compound No. 1 was used. Other conditions were the same as in Example 106. (Example 110)
  • compound No. 1 was used in an amount of 5% by mass.
  • Other conditions were the same as in Example 106.
  • the layer containing the negative electrode active material was prepared using composite particles obtained by combining graphite particles having an average particle diameter of 10 ⁇ m and SiO 2 particles having an average particle diameter of 1 am by mechanical milling. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material.
  • the layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle diameter of 10 ⁇ m and Sn 2 O particles having an average particle diameter of 1 ⁇ m by mechanical milling.
  • the other conditions were the same as in Example 112.
  • the layer containing the negative electrode active material is composed of composite particles obtained by mechanically milling SiO particles having an average particle size of 1 ⁇ m and Ni particles having an average particle size of 1 ⁇ m, and graphite particles having an average particle size of 10 ⁇ m.
  • the layer containing the negative electrode active material was composed of graphite particles with an average particle size of 10 ⁇ m and Si particles with an average particle size of 1 O particles were compounded by mechanical milling, and carbon particles were coated by CVD to produce composite particles.
  • LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material.
  • EC / DEC / EMC 30/50/20 (volume ratio) for electrolyte
  • the layer containing the negative electrode active material is a composite obtained by combining graphite particles with an average particle size of 10 ⁇ m and SnO particles with an average particle size of 1 ⁇ m by mechanical milling, and then carbon coating by CVD. It was prepared using particles. Other conditions were the same as in Example 115.
  • the content of the carbon material was set to 5% by mass. Other conditions were the same as in Example 61.
  • the content of the carbon material was set to 95% by mass. Other conditions were the same as in Example 61.
  • a layer containing a negative electrode active material was formed by first depositing a graphite film by a sputtering method and then depositing SiO thereon by a CVD method as a negative electrode active material other than a carbon material. Other conditions were the same as in Example 61.
  • the layer containing the negative electrode active material is composed of two layers of negative electrode active materials other than carbon materials: Si and Si ⁇ . (S source number: 0 atom number: 2: 1). Other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material is composed of a mixture of Si, Si ⁇ , and Li
  • the layer containing the negative electrode active material contains Sn, Sn ⁇ , and Li as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material was prepared by mixing Si having an average particle size of 1 ⁇ m and SiO having an average particle size of 1 ⁇ m as a negative electrode active material other than the carbon material. Incidentally mixing ratio, and the average particle size 1 beta m number Si atoms in the Si of the average particle diameter 1 mu m Number of SiO molecules, the ratio of 1: 1 and so as. The other conditions were the same as in Example 1.
  • the layer containing the negative electrode active material has an average particle diameter of 1 ⁇ m as a negative electrode active material other than the carbon material.
  • Compound No. 2 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 3 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 4 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 6 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 9 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 10 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 15 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 16 was used as an additive. Other conditions were the same as in Example 127.
  • Compound No. 19 was used as an additive. Other conditions were the same as in Example 127.
  • the layer containing the negative electrode active material is composed of a mixture of Si, Si ⁇ , and Li
  • the layer containing the negative electrode active material contains Sn, Sn ⁇ , and Li as the negative electrode active material other than the carbon material.
  • the layer containing the negative electrode active material was prepared by mixing Si having an average particle size of 1 ⁇ m and SiO having an average particle size of 1 ⁇ m as a negative electrode active material other than the carbon material. Incidentally mixing ratio, and the average particle size 1 beta m number Si atoms in the Si of the average particle diameter 1 mu m Number of SiO molecules, the ratio of 1: 1 and so as. Other conditions were the same as in Example 22.
  • Example 1 Capacity retention rate after 400 cycles (capacity retention rate after 400 cycles) (%) Resistance retention rate
  • Example 1 84.1 1.42
  • Example 2 80.8 1.40
  • Example 3 77.4 1.50
  • Example 4 79.4 1.55
  • Example 5 84.2 1.47
  • Example 6 78.8 1.62
  • Example 7 76.5 1.60
  • Example 9 81.6 1.36
  • Example 10 83.5 1.27
  • Example 1 81.5 1.40
  • Example 12 82.6 1.41
  • Example 13 85.0 1.51
  • Example 14 82.6 1.37
  • Example 15 82.4 1.51
  • Example 16 80.8 1.41
  • Example 17 83.8 1.43
  • Example 18 84.2 1.41
  • Example 19 83.6 1.38
  • Example 20 81.1 1.43
  • Example 21 81.3 1.46 Comparative example 1 14.6 2.70 Comparative example 2 20.1 2.99
  • Example 22 76.3 1.57
  • Example 23 74.4 1.59
  • Example 24 72.5 1.84
  • Example 25 73.6 1.77
  • Example 26 80.0
  • Example 61 89.4 1.53
  • Example 62 85.4 1.53
  • Example 63 81.5 1.60
  • Example 64 84.3 1.62
  • Example 65 88.7 1.52
  • Example 66 85.9 1.73
  • Example 67 81.6 1.71
  • Example 68 82.5 1.70
  • Example 69 85.3 1.50
  • Example 70 88.3 1.43
  • Example 72 86.4 1.54
  • Example 74 88.3 1.40
  • Example 75 88.4 1.52
  • Example 76 86.2 1.55
  • Example 77 85.8 1.36
  • Example 78 82.6 1.40
  • Example 79 86.6 1.47
  • Example 80 85.6 1.57
  • Example 81 84.3 1.58 Comparative example 1 1 14.6 2.82 Comparative example 12 18.6 3.03
  • Example 82 79.7 1.71
  • Example 85 80.1 1.95
  • Example 86 81.6
  • the capacity retention rate in Examples 1 to 10 is much larger than the capacity retention rate of Comparative Example 1.
  • Elements which, depending on the compound No. 1, occludes' releasing alkali metal or alkaline earth metal as an anode active material the element M ⁇ M 1 is selected Si, Sn, Al, Pb, Ag, Ge, and Sb
  • the irreversible reaction is suppressed by the stabilization of the surface film present on the negative electrode surface and the high ion conductivity of the film.
  • the reason is considered as a reason.
  • a similar tendency was observed in Examples 11 to 19, and the effect of the compound represented by the general formula (1) was confirmed.
  • a similar tendency was observed in a comparison between Examples 20 and 21 using amorphous carbon as the carbon material and Comparative Example 2.
  • Examples 32 to 36 have a higher capacity retention ratio during the cycle than Comparative Example 4. A similar tendency was observed in a comparison between Example 37 using amorphous carbon as the carbon material and Comparative Example 5. From these results, it can be seen that the same effect as in Example 1 can be obtained in the case of a battery using the above-mentioned metal or metalloid and the carbon material and the element X which does not alloy with the alkali metal or alkaline earth metal as the negative electrode active material. was confirmed.
  • Examples 92-96 have a higher capacity retention rate during cycling than Comparative Example 14.
  • a similar tendency was observed in a comparison between Example 97 using amorphous carbon as the carbon material and Comparative Example 15. This result indicates that the oxides and carbon materials that occlude and release alkali metals or alkaline earth metals should not be alloyed with alkali metals or alkaline earth metals. It was confirmed that the same effect as in Example 61 was obtained.
  • Examples 126, 127 and 143 have a higher capacity retention rate during the cycle than Comparative Examples 4 and 14. From these results, it can be seen that in the case of a battery using a metal or metalloid and an oxide in combination as an anode active material, and further using a carbon material and an element X that does not alloy with an alkali metal or an alkaline earth metal as the anode active material. Also, it was confirmed that the same effect as in Example 121 was obtained. The same tendency was observed in Examples 129 to 137, and the effect of the compound represented by the general formula (1) was confirmed.
  • Example 38-40 The capacity retention rate after the cycle test in Examples 38 to 40 was higher than that in Comparative Example 6, and the capacity retention rate after the cycle test in Examples 41 to 43 to which 1,3-PS was added was And Example 38-40 are further improved.
  • a similar tendency was observed in Example 45 in which MMDS was added. This is because the addition of a cyclic sulfonate such as 1,3-PS or MMDS further stabilizes the film present on the negative electrode surface, and the higher ionic conductivity of the film further increases the irreversible reaction. The reason may be that it was suppressed.
  • 1,3-PS is used alone as an additive as in Comparative Example 7, the effect of improving the capacity retention ratio is not so large.
  • Example 44 the capacity retention after the cycle test was further improved as compared with Example 43, that is, the cycle characteristics were improved by further adding VC to the electrolyte. Was confirmed. The reason for this is thought to be the same as the reason for the addition of 1,3-PS described above.
  • Example 104 In the battery shown in Example 104, the capacity retention ratio after the cycle test was further improved as compared with Example 103, that is, the cycle characteristics were improved by further adding VC to the electrolytic solution. It was confirmed that. The reason for this is also considered to be the same as the above-mentioned reason for adding 1,3-PS.
  • the capacity retention rate after 400 cycles tended to decrease at concentrations of compound No. 1 below 0.1% by mass and above 5.0% by mass.
  • the rate of increase in resistance tended to increase. From these results, it was confirmed that the concentration of the compound represented by the general formula (1) in the electrolytic solution is preferably from 0.1% by mass to 5.0% by mass.
  • the capacity retention rate after 400 cycles tended to decrease when the concentration of compound No. 1 was less than 0.1% by mass and more than 5.0% by mass.
  • the resistance rise rate tended to increase. From these results, it was confirmed that the concentration of the compound represented by the general formula (1) in the electrolytic solution was preferably from 0.1% by mass to 5.0% by mass.
  • Example 121 It is higher than 19. From this result, it was confirmed that the same effect as in Example 121 was obtained also in the case of the battery using the composite particles as the negative electrode active material.
  • Example 1 carbon material content: 50% by mass
  • Example 61 carbon material content: 50% by mass
  • Examples 118 5% by mass
  • 119 carbon material content: 50% by mass
  • Example 1 coating method
  • Example 60 sputtering method
  • Example 61 coating method
  • Example 120 sputtering method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

The present invention aims to provide a lithium secondary battery with excellent characteristics such as energy density and electromotive force, which is also excellent in cycle life and shelf life stability. Disclosed is a secondary battery comprising at least a positive electrode, a negative electrode and an electrolyte solution wherein the negative electrode contains a metal, metalloid or oxide, which adsorbs/desorbs an alkali metal or alkaline earth metal, and a carbon material as the negative electrode active material, and the electrolyte solution contains a non-protic solvent wherein at least an electrolyte is dissolved and a chain disulfone compound.

Description

明 細 書  Specification
二次電池  Rechargeable battery
技術分野  Technical field
[0001] 本発明は、二次電池に関するものである。  The present invention relates to a secondary battery.
背景技術  Background art
[0002] 負極に炭素材料またはリチウム金属を用い、正極にリチウム含有複合酸化物を用 いた非水電解液リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実 現できることから携帯電話、ノートパソコン用などの電源として注目されている。この二 次電池においては、一般的に電極の表面には表面膜、保護膜、 SEほたは皮膜と呼 ばれる膜が生成することが知られている。この表面膜は、充放電効率、サイクル寿命 、安全性に大きな影響を及ぼすことから電極の高性能化には表面膜の制御が不可 欠であることが知られている。つまり負極材料として炭素材料を用いたとき、その不可 逆容量の低減が必要であり、リチウム金属負極においては充放電効率の低下とデン ドライト生成による安全性の問題を解決する必要がある。  [0002] Non-aqueous electrolyte lithium-ion or lithium secondary batteries that use a carbon material or lithium metal for the negative electrode and a lithium-containing composite oxide for the positive electrode can achieve high energy densities, and are used for mobile phones and notebook computers. It is attracting attention as a power source. In this secondary battery, it is generally known that a film called a surface film, a protective film, or an SE film is formed on the surface of the electrode. It is known that control of the surface film is indispensable for improving the performance of the electrode, since the surface film has a large effect on charge / discharge efficiency, cycle life, and safety. In other words, when a carbon material is used as the negative electrode material, its irreversible capacity needs to be reduced. In the case of a lithium metal negative electrode, it is necessary to solve the problems of reduction in charge / discharge efficiency and safety due to dendrite generation.
[0003] これらの課題を解決する手法として様々な手法が提案されてきている。例えば、リチ ゥム金属を負極材料として用いた場合、その表面に、化学反応を利用してフッ化リチ ゥム等からなる皮膜層を設けることによってデンドライトの生成を抑制することが提案 されている。  [0003] Various methods have been proposed as methods for solving these problems. For example, when lithium metal is used as a negative electrode material, it has been proposed to suppress the generation of dendrite by providing a film layer made of lithium fluoride or the like by using a chemical reaction on the surface thereof. .
[0004] 特許文献 1には、フッ化水素酸を含有する電解液にリチウム負極を曝し、負極をフ ッ化水素酸と反応させることによりその表面をフッ化リチウムの膜で覆う技術が開示さ れている。フッ化水素酸は、 LiPFおよび微量の水の反応により生成する。一方、リチ  [0004] Patent Document 1 discloses a technique in which a lithium negative electrode is exposed to an electrolytic solution containing hydrofluoric acid, and the surface of the negative electrode is reacted with hydrofluoric acid to cover the surface with a lithium fluoride film. Have been. Hydrofluoric acid is produced by the reaction of LiPF and a small amount of water. Meanwhile, Lichi
6  6
ゥム負極表面には、空気中での自然酸化により水酸化リチウムや酸化リチウムの表面 膜が形成されている。これらが反応することにより、負極表面にフッ化リチウムの表面 膜が生成するのである。し力しながら、このフッ化リチウム膜は、電極界面と液との反 応を利用して形成されるものであり、副反応成分が表面膜中に混入しやすぐ均一な 膜が得られにくい場合があった。また、水酸化リチウムや酸化リチウムの表面膜が均 一に形成されていない場合や一部リチウムがむきだしになっている部分が存在する 場合もあり、これらの場合には均一な薄膜の形成ができないばかりか、水やフッ化水 素等とリチウムが反応することによる安全性の問題が生じていた。また、反応が不十 分であった場合には、フッ化物以外の不要な化合物成分が残り、イオン伝導性の低 下を招く等の悪影響が考えられる。更に、このような界面での化学反応を利用してフ ッ化物層を形成する方法では、利用できるフッ化物や電解液の選択幅が限定され、 安定な表面膜を歩留まり良く形成することが困難な場合があった。 A surface film of lithium hydroxide or lithium oxide is formed on the surface of the negative electrode by natural oxidation in air. These react to form a surface film of lithium fluoride on the surface of the negative electrode. However, this lithium fluoride film is formed by utilizing the reaction between the electrode interface and the liquid, and it is difficult to obtain a uniform film as soon as side reaction components are mixed in the surface film. There was a case. In addition, there are cases where the surface film of lithium hydroxide or lithium oxide is not formed uniformly, or where there is a part where lithium is exposed. In these cases, a uniform thin film cannot be formed in these cases, and a safety problem has arisen due to the reaction of lithium with water or hydrogen fluoride. In addition, when the reaction is insufficient, unnecessary compound components other than the fluoride remain, which may cause adverse effects such as a decrease in ionic conductivity. Further, in the method of forming a fluoride layer using such a chemical reaction at the interface, the selection range of available fluorides and electrolytes is limited, and it is difficult to form a stable surface film with high yield. There was a case.
[0005] 特許文献 2では、アルゴンとフッ化水素の混合ガスとアルミニウム一リチウム合金とを 反応させ、負極表面にフッ化リチウムの表面膜を得ている。し力 ながら、リチウム金 属表面にあらかじめ表面膜が存在する場合、特に複数種の化合物が存在する場合 には反応が不均一になり易ぐフッ化リチウムの膜を均一に形成することが困難な場 合があった。この場合、十分なサイクル特性を有するリチウム二次電池を得ることが困 難となる。  [0005] In Patent Document 2, a mixed gas of argon and hydrogen fluoride is reacted with an aluminum-lithium alloy to obtain a lithium fluoride surface film on the negative electrode surface. However, when a surface film already exists on the surface of the lithium metal, especially when there are a plurality of types of compounds, the reaction tends to be uneven, and it is difficult to form a uniform film of lithium fluoride. There was a case. In this case, it is difficult to obtain a lithium secondary battery having sufficient cycle characteristics.
[0006] 特許文献 3には、均一な結晶構造すなわち(100)結晶面が優先的に配向している リチウムシートの表面に、岩塩型結晶構造を持つ物質を主成分とする表面皮膜構造 を形成する技術が開示されている。こうすることにより、均一な析出溶解反応すなわち 電池の充放電を行うことができ、リチウム金属のデンドライト析出を抑え、電池のサイク ル寿命が向上できるとされている。表面膜に用いる物質としては、リチウムのハロゲン 化物を有していることが好ましぐ LiCl、 LiBr及び Lilからなる群より選ばれた少なくと も一種と、 LiFとの固溶体を用いることが好ましいと述べられている。具体的には、 Li Cl、 LiBr及び Lilからなる群より選ばれた少なくとも一種と、 LiFとの固溶体皮膜を形 成するために、押圧処理 (圧延)により作成した(100)結晶面が優先的に配向してい るリチウムシートを、塩素分子もしくは塩素イオン、臭素分子もしくは臭素イオン、ヨウ 素分子もしくはヨウ素イオンのうち少なくとも一種とフッ素分子もしくはフッ素イオンを 含有している電解液に浸すことにより非水電解質電池用負極を作成している。この技 術の場合、圧延のリチウム金属シートを用いており、リチウムシートが大気中に曝され 易いため表面に水分などに由来する皮膜が形成され易ぐ活性点の存在が不均一と なり、 目的とした安定な表面膜を作ることが困難な場合があり、この場合、デントライト の抑制効果は必ずしも充分に得られなかった。 [0007] また、リチウムイオンを吸蔵、放出し得る黒鉛やハードカーボン等の炭素材料を負 極として用いた場合、容量および充放電効率の向上に係る技術が報告されている。 [0006] Patent Document 3 discloses that a surface film structure mainly composed of a material having a rock salt type crystal structure is formed on a surface of a lithium sheet having a uniform crystal structure, that is, a (100) crystal plane is preferentially oriented. A technique for performing this is disclosed. By doing so, a uniform precipitation-dissolution reaction, that is, charging and discharging of the battery can be performed, dendrite deposition of lithium metal can be suppressed, and the cycle life of the battery can be improved. As the substance used for the surface film, it is preferable to use a solid solution of at least one selected from the group consisting of LiCl, LiBr, and Lil, which preferably has a halide of lithium, and LiF. Has been stated. Specifically, in order to form a solid solution film of LiF and at least one selected from the group consisting of LiCl, LiBr and Lil, a (100) crystal plane formed by pressing (rolling) has priority. A lithium sheet oriented in a non-aqueous state is immersed in an electrolytic solution containing at least one of chlorine molecules or chloride ions, bromine molecules or bromine ions, iodine molecules or iodine ions, and fluorine molecules or fluorine ions to thereby obtain non-aqueous solution. We are making negative electrodes for electrolyte batteries. In the case of this technology, a rolled lithium metal sheet is used, and since the lithium sheet is easily exposed to the air, the existence of active sites where a film derived from moisture or the like is easily formed on the surface becomes nonuniform. In some cases, it was difficult to produce a stable surface film having a uniform thickness, and in this case, the effect of suppressing dendrites was not always sufficiently obtained. [0007] In addition, there has been reported a technology relating to improvement in capacity and charge / discharge efficiency when a carbon material such as graphite or hard carbon capable of occluding and releasing lithium ions is used as a negative electrode.
[0008] 特許文献 4では、アルミニウムで炭素材料を被覆した負極が提案されている。これ により、リチウムイオンと溶媒和した溶媒分子の炭素表面での還元分解が抑制され、 サイクル寿命の劣化を抑えられるとされている。ただし、アルミニウムが微量の水と反 応してしまうため、サイクルを繰り返すと急速に容量が低下する場合があった。  [0008] Patent Document 4 proposes a negative electrode in which a carbon material is coated with aluminum. This allegedly suppresses the reductive decomposition of the solvent molecules solvated with lithium ions on the carbon surface, thereby suppressing the deterioration of the cycle life. However, since aluminum reacts with a very small amount of water, the capacity may decrease rapidly when the cycle is repeated.
[0009] また、特許文献 5では、炭素材料の表面にリチウムイオン伝導性固体電解質の薄膜 を被覆した負極が提示されている。これにより、炭素材料を使用した際に生じる溶媒 の分解を抑制し、特に炭酸プロピレンを使用できるリチウムイオン二次電池を提供で きるとしてレ、る。し力 ながら、リチウムイオンの揷入、脱離時の応力変化により固体電 解質中に生じるクラックが特性劣化を導く場合があった。また、固体電解質の結晶欠 陥等の不均一性により、負極表面において均一な反応が得られずサイクル寿命の劣 化につながる場合があった。  [0009] Patent Document 5 discloses a negative electrode in which a surface of a carbon material is coated with a thin film of a lithium ion conductive solid electrolyte. As a result, the decomposition of the solvent that occurs when a carbon material is used is suppressed, and in particular, a lithium ion secondary battery that can use propylene carbonate can be provided. However, cracks that occur in the solid electrolyte due to stress changes during the insertion and desorption of lithium ions sometimes lead to characteristic deterioration. In addition, due to non-uniformity such as crystal defects of the solid electrolyte, a uniform reaction was not obtained on the negative electrode surface, which sometimes led to a deterioration in cycle life.
[0010] また、特許文献 6では、負極がグラフアイトを含む材料からなり、電解液として環状力 ーボネート及び鎖状カーボネートを主成分とし、且つ前記電解液中に 0. 1質量%以 上 4質量%以下の環式モノスルホン酸エステルである 1, 3—プロパンスルトン及び/ 又は 1, 4_ブタンスルトンを含んだ二次電池が開示されている。ここで、 1 , 3_プロパ ンスルトンや 1, 4一ブタンスルトンは、炭素材料表面での不働態皮膜形成に寄与し、 天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料を不働態皮膜で被覆し、 電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考え られてレ、る。環式モノスルホン酸エステルの他に特許文献 7及び 8では鎖状のジスル ホン酸エステルを用いても同様な効果が得られると報告されている。し力 ながら、特 許文献 6の環式モノスルホン酸エステル、または特許文献 7及び特許文献 8の鎖状の ジスルホン酸エステルは負極上での皮膜形成が主に起こり、例えば正極上に皮膜を 形成することが困難な場合があった。  [0010] Further, in Patent Document 6, the negative electrode is made of a material containing graphite, and has a cyclic carbonate and a chain carbonate as main components as an electrolytic solution, and 0.1 to 4 mass% in the electrolytic solution. Disclosed is a secondary battery that contains 1,3-propane sultone and / or 1,4-butane sultone, which are less than or equal to 1% of a cyclic monosulfonic acid ester. Here, 1,3_propane sultone and 1,4-butane sultone contribute to the formation of a passive film on the surface of the carbon material, and the active and highly crystallized carbon material such as natural graphite and artificial graphite is used as a passive film. It is considered to have the effect of suppressing the decomposition of the electrolyte solution without impairing the normal reaction of the battery by coating. Patent Documents 7 and 8 report that similar effects can be obtained by using a linear disulfonate ester in addition to the cyclic monosulfonate ester. However, the cyclic monosulfonic acid ester of Patent Document 6 or the chain disulfonic acid ester of Patent Documents 7 and 8 mainly forms a film on the negative electrode, for example, a film is formed on the positive electrode. Sometimes it was difficult.
[0011] また、特許文献 9及び 10にはスルホ二ル基を 2個有する環式スルホン酸エステルの 製造方法、非特許文献 1一 4には鎖状ジスルホン酸エステルの製造方法が開示され ている。 [0012] 特許文献 11では芳香族化合物を電解液溶媒に添加することによって、電解液溶 媒の酸化を防ぐことで二次電池の長期にわたる充放電を繰り返した際の容量劣化を 抑制している。これは、前記芳香族化合物を優先的に酸化分解させることにより、溶 媒の分解を防ぐ技術である。し力、しながら、この添加剤を用いた場合、正極表面が被 覆されないためにサイクル特性の改善効果は十分とはいえない場合があった。 [0011] Patent Documents 9 and 10 disclose a method for producing a cyclic sulfonic acid ester having two sulfonyl groups, and Non-Patent Documents 14 to 14 disclose a method for producing a chain disulfonic acid ester. . [0012] In Patent Document 11, by adding an aromatic compound to an electrolyte solution solvent, oxidation of the electrolyte solution solution is prevented, thereby suppressing the capacity deterioration of the secondary battery when the charge and discharge are repeated for a long time. . This is a technique for preventing the decomposition of the solvent by preferentially oxidatively decomposing the aromatic compound. However, when this additive is used, the effect of improving the cycle characteristics may not be sufficient because the surface of the positive electrode is not covered in some cases.
[0013] 特許文献 12では電解液中に窒素含有不飽和環状化合物を添加することによって 高電圧正極を用いた場合のサイクル特性を向上させる技術が記載されている。しか しながら窒素含有不飽和環状化合物は負極の充放電効率を向上させるものの、正 極の充放電効率を向上させるものではなかった。  [0013] Patent Document 12 describes a technique for improving the cycle characteristics when a high-voltage positive electrode is used by adding a nitrogen-containing unsaturated cyclic compound to an electrolytic solution. However, although the nitrogen-containing unsaturated cyclic compound improved the charge and discharge efficiency of the negative electrode, it did not improve the charge and discharge efficiency of the positive electrode.
[0014] また、前述のリチウム金属や炭素材料を負極として用いた場合の他に、シリコンと銅 の固溶体を二次電池用の電極として用いた例が、例えば特許文献 13に報告されて いる。この文献によれば、シリコンのみを用いた電極であるとアルカリ金属等を吸蔵. 放出すると体積が 4倍程度まで膨張 ·収縮し、この体積膨張が大きくなると活物質が 微粉化したり、集電体との密着性が失われれたり、また電極表面が酸化するため、銅 などを用いて固溶化することでアルカリ金属等の吸蔵量を減少させ、活物質の微粉 化ゃ集電体力 の脱離が生じないように活物質の体積膨張及び収縮を制御できると している。  [0014] In addition to the case where the above-mentioned lithium metal or carbon material is used as a negative electrode, an example in which a solid solution of silicon and copper is used as an electrode for a secondary battery is reported in Patent Document 13, for example. According to this document, an electrode using only silicon absorbs an alkali metal or the like. When released, the volume expands and contracts to about four times, and when the volume expansion becomes large, the active material becomes fine powder or a current collector. Since the adhesion to the electrode is lost or the electrode surface is oxidized, the solid solution using copper or the like reduces the amount of occlusion of alkali metals and the like, and the active material is pulverized. It is said that the volume expansion and contraction of the active material can be controlled so as not to occur.
[0015] 負極活物質として、リチウムなどのアルカリ金属またはアルカリ土類金属を吸蔵 ·放 出する金属または半金属及び炭素材料を用いる方法も検討されている。特許文献 1 4には、リチウム合金を形成可能な金属または半金属の粒子核と、その表面を被覆す る炭素層とからなる負極材料が報告されている。  [0015] As a negative electrode active material, a method of using a metal or a semimetal that absorbs and releases an alkali metal or an alkaline earth metal such as lithium and a carbon material has been studied. Patent Document 14 reports a negative electrode material comprising a metal or metalloid particle nucleus capable of forming a lithium alloy and a carbon layer covering the surface thereof.
[0016] 負極活物質として、リチウムなどのアルカリ金属またはアルカリ土類金属を吸蔵-放 出する酸化物及び炭素材料を用いる方法も検討されている。特許文献 15には、 Si、 Sn、 Ge、 Al、 Zn、 Bi、 Mgから選ばれる少なくとも一元素を含有する酸化物粒子およ び炭素質物質粒子を有し、その酸化物粒子が炭素質物質粒子内に坦設されている 負極活物質が報告されてレ、る。  [0016] As an anode active material, a method of using an oxide and a carbon material that occlude and release an alkali metal such as lithium or an alkaline earth metal has been studied. Patent Document 15 has an oxide particle and a carbonaceous material particle containing at least one element selected from Si, Sn, Ge, Al, Zn, Bi, and Mg, and the oxide particle is a carbonaceous material. The negative electrode active material carried in the particles has been reported.
特許文献 1 :特開平 7 - 302617号公報  Patent Document 1: JP-A-7-302617
特許文献 2:特開平 8 - 250108号公報 特許文献 3:特開平 11 - 288706号公報 Patent Document 2: JP-A-8-250108 Patent Document 3: JP-A-11-288706
特許文献 4:特開平 5— 234583号公報  Patent Document 4: Japanese Patent Application Laid-Open No. Hei 5-2344583
特許文献 5:特開平 5 - 275077号公報  Patent Document 5: JP-A-5-275077
特許文献 6 :特開 2000 - 3724号公報  Patent Document 6: JP-A-2000-3724
特許文献 7:特開 2000— 133304号公報  Patent Document 7: JP-A-2000-133304
特許文献 8:米国特許第 6436582号明細書  Patent Document 8: US Patent No. 6436582
特許文献 9:特公平 5 - 44946号公報  Patent Document 9: Japanese Patent Publication No. 5-44946
特許文献 10 :米国特許第 4950768号明細書  Patent Document 10: U.S. Pat.No. 4,950,768
特許文献 11 :特開 2003 - 7334号公報  Patent Document 11: JP-A-2003-7334
特許文献 12 :特開 2003 - 115324号公報  Patent Document 12: JP 2003-115324 A
特許文献 13:特開 2002 - 075350号公報  Patent Document 13: JP-A-2002-075350
特許文献 14 :特開 2000 - 215887号公報  Patent Document 14: JP-A-2000-215887
特許文献 15:特開 2000 - 243396号公報  Patent Document 15: JP-A-2000-243396
非特許文献 1 :J. Am. Pham. Assoc. ,第 126卷,第 485—493頁、 1937年 非特許文献 2 : G. Schroeter, Lieb, Ann, Der Chemie,第 418卷,第 16 1-257頁、 1919年  Non-Patent Document 1: J. Am. Pham. Assoc., Vol. 126, pp. 485-493, 1937 Non-Patent Document 2: G. Schroeter, Lieb, Ann, Der Chemie, Vol. 418, 161- 257 pages, 1919
非特許文献 3 : Biol. Aktiv. Soedin. , ρρ64_69 (1968) .  Non-Patent Document 3: Biol. Aktiv. Soedin., Ρρ64_69 (1968).
非特許文献 4 :Armyanskii Khimicheskii Zhurnal, 21, pp393— 396 (1968) . 発明の開示  Non-Patent Document 4: Armyanskii Khimicheskii Zhurnal, 21, pp393-396 (1968).
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] 上記従来技術は、次のような共通する課題を有していた。 [0017] The above prior arts have the following common problems.
[0018] 電極表面に生成する表面膜は、その性質によって充放電効率、サイクル寿命、安 全性に深く関わっているが、その膜の制御を長期にわたって行える手法はまだ存在 していない。例えば、リチウムからなる層の上にリチウムハロゲン化物またはガラス状 酸化物からなる表面膜を形成した場合、初期使用時にはデントライトの抑制効果が 一定程度得られるものの、繰り返し使用していると、表面膜が劣化して保護膜として の機能が低下する場合があった。これは、リチウムからなる層は、リチウムを吸蔵'放 出することにより体積変化する一方、その上部に位置するリチウムハロゲン化物等か らなる被膜は体積変化がほとんどないため、これらの層およびこれらの界面に内部応 力が発生することが原因と考えられる。このような内部応力が発生することにより、特 にリチウムハロゲン化物等からなる表面膜の一部が破損し、デンドライトの抑制機能 が低下するものと考えられる。 [0018] The surface film formed on the electrode surface is closely related to the charge / discharge efficiency, cycle life, and safety by its properties, but there is no method capable of controlling the film for a long time. For example, when a surface film made of a lithium halide or a glassy oxide is formed on a layer made of lithium, the effect of suppressing dentite can be obtained to a certain extent during initial use. Was deteriorated and the function as a protective film was sometimes reduced. This is because while the layer made of lithium changes its volume by absorbing and releasing lithium, the layer of lithium halide or the like located above it changes its volume. It is thought that the internal stress is generated in these layers and their interfaces because the coatings made of them hardly change in volume. It is considered that the generation of such an internal stress particularly damages a part of the surface film made of lithium halide or the like, and reduces the function of suppressing dendrite.
[0019] 黒鉛等の炭素材料を負極に用いた場合、溶媒分子またはァニオンの分解による電 荷が不可逆容量成分として現れ、初回充放電効率の低下を導く場合があった。また 、このとき生じた膜の組成、結晶状態、安定性等がその後の効率、サイクル寿命に大 きな影響を及ぼす。このように、二次電池用電極に皮膜を形成して、充放電効率、サ イタル寿命の改善などを図った研究が行われているが、一般的には未だ十分な電池 特性が得られていない。  [0019] When a carbon material such as graphite is used for the negative electrode, the charge due to the decomposition of the solvent molecule or the anion appears as an irreversible capacity component, which may lead to a decrease in the initial charge / discharge efficiency. In addition, the composition, crystal state, stability, and the like of the film generated at this time greatly affect the subsequent efficiency and cycle life. In this way, studies have been conducted to improve the charge / discharge efficiency and the life of the batteries by forming a film on the electrodes for secondary batteries, but generally sufficient battery characteristics have not yet been obtained. Absent.
[0020] またシリコン等を負極の活物質として用いる場合、銅などと固溶体を形成して用い ても体積の膨張収縮を効果的に抑制することは限界があり、更なる改善が望まれて いた。  Further, when silicon or the like is used as the active material of the negative electrode, there is a limit to effectively suppressing the expansion and contraction of the volume even if a solid solution is formed with copper or the like, and further improvement has been desired. .
[0021] ここで、リチウムなどのアルカリ金属またはアルカリ土類金属を吸蔵 ·放出する、金属 若しくは半金属又は酸化物を負極活物質として用いることは、非晶質炭素等の炭素 材料のみを負極活物質として用いた場合よりも高容量化が図れることから、小型 ·軽 量電池を実現する手法として期待されている。しかし、上記のような金属若しくは半金 属又は酸化物は充放電に伴う体積膨張 ·収縮が大きぐ得られる電池のサイクル特 性が充分ではないことが課題として挙げられる。すなわち、その体積の膨張'収縮に よる応力によって表面に形成されている SEIにクラック等が入ってしまう場合があった 。 SEIにクラック等が入ると、電解液の溶媒が負極活物質中に入り込んで分解されガ スが発生したり、酸素が入り込んで負極活物質の酸化劣化が起こることがある。炭素 材料は、導電性の向上及び上記金属若しくは半金属又は酸化物の充放電に伴う体 積変化に対するクッション効果の発現が期待されるものであるが、炭素材料のクッショ ン効果だけでは、完全にはクラック等の発生を防止できなレ、。したがって、このような 金属若しくは半金属又は酸化物及び炭素材料を負極活物質として用レ、た系におレ、 て、未だ充分な電池特性が得られていない。  Here, the use of a metal, metalloid, or oxide that absorbs and releases an alkali metal or alkaline earth metal such as lithium as the negative electrode active material means that only a carbon material such as amorphous carbon is used as the negative electrode active material. Since higher capacity can be achieved than when used as a substance, it is expected as a method to realize small and light batteries. However, the above-mentioned metal, metalloid, or oxide has a problem in that the battery has a large volume expansion and contraction due to charge and discharge, and has insufficient cycle characteristics of the obtained battery. That is, cracks and the like may be formed in the SEI formed on the surface due to the stress caused by the expansion and contraction of the volume. If cracks or the like enter the SEI, the solvent of the electrolytic solution may enter the negative electrode active material and be decomposed to generate gas, or oxygen may enter to cause oxidative deterioration of the negative electrode active material. Carbon materials are expected to have an improved conductivity and a cushion effect against the volume change caused by the charge / discharge of the metal, metalloid, or oxide, but the cushion effect of the carbon material alone is not sufficient. Cannot prevent the occurrence of cracks. Therefore, sufficient battery characteristics have not yet been obtained for such a metal or metalloid or oxide and carbon material as a negative electrode active material.
[0022] 本発明は上記課題に鑑みてなされたものであり、負極活物質として、リチウムなどの アルカリ金属またはアルカリ土類金属を吸蔵 ·放出する、金属若しくは半金属又は酸 化物及び炭素材料を用いた二次電池の電解液中に、鎖状のジスルホン酸エステル を添加することによって電極表面に安定した皮膜を形成し溶媒分子の分解を防止す るものである。また、その結果、サイクル特性ゃ充放電効率に優れた二次電池を得る ことを目的とするもRC RのII である。 [0022] The present invention has been made in view of the above-mentioned problems, and has a negative electrode active material such as lithium. Stable on the electrode surface by adding chain-like disulfonate to the electrolyte of secondary batteries using metals or metalloids, oxides and carbon materials that occlude and release alkali metals or alkaline earth metals This prevents the decomposition of solvent molecules by forming a coated film. As a result, RCR II is aimed at obtaining a secondary battery with excellent cycle characteristics and charge / discharge efficiency.
4  Four
課題を解決するためO OSのHH手段  OH HH means to solve the problem
[0023] 上記課題を解決するため、本発明は以下の構成を有する。すなわち、本発明は、 正極と、負極と、電解液とを少なくとも備えた二次電池において、  [0023] In order to solve the above problems, the present invention has the following configurations. That is, the present invention provides a secondary battery including at least a positive electrode, a negative electrode, and an electrolytic solution,
前記負極が、負極活物質として、アルカリ金属またはアルカリ土類金属を吸蔵 ·放出 する、金属若しくは半金属又は酸化物、及び炭素材料を含有し、かつ、  The negative electrode contains, as a negative electrode active material, a metal or a metalloid or an oxide that occludes and releases an alkali metal or an alkaline earth metal, and a carbon material, and
前記電解液は、少なくとも電解質が溶解された非プロトン性溶媒と、下記一般式(1) で示される化合物とを含むことを特徴とする二次電池である。  The secondary battery is characterized in that the electrolytic solution contains at least an aprotic solvent in which an electrolyte is dissolved and a compound represented by the following general formula (1).
[0024] [化 1]  [0024] [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
( 1 )  (1)
[0025] (但し、上記一般式(1)において、 Rおよび Rは、それぞれ独立して、水素原子、置 (However, in the above general formula (1), R and R are each independently a hydrogen atom,
1 4  14
換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5 のアルコキシ基、置換もしくは無置換の炭素数 1一 5のフルォロアルキル基、炭素数 1 一 5のポリフルォロアルキル基、—SO X (Xは置換もしくは無置換の炭素数 1  Substituted or unsubstituted alkyl group having 15 carbon atoms, substituted or unsubstituted alkoxy group having 15 carbon atoms, substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, polyfluoro group having 15 carbon atoms Alkyl group, —SO X (X is a substituted or unsubstituted carbon atom 1
2 一 5のァ ルキル基)、— SY (Yは置換もしくは無置換の炭素数 1一 5のアルキル基)、— COZ (Z は水素原子、または置換もしくは無置換の炭素数 1一 5のアルキル基)、及びハロゲ ン原子、力 選ばれる原子または基を示す。 Rおよび Rは、それぞれ独立して、置  --15 alkyl groups), --SY (Y is a substituted or unsubstituted alkyl group having 15 carbon atoms), --COZ (Z is a hydrogen atom or a substituted or unsubstituted alkyl group having 15 carbon atoms) Group), and a halogen atom, a selected atom or group. R and R are each independently
2 3  twenty three
換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5 のアルコキシ基、置換もしくは無置換のフエノキシ基、置換もしくは無置換の炭素数 1 一 5のフルォロアルキル基、炭素数 1一 5のポリフルォロアルキル基、置換もしくは無 置換の炭素数 1一 5のフルォロアルコキシ基、炭素数 1一 5のポリフルォロアルコキシ 基、水酸基、ハロゲン原子、 - NX ^X1及び X2は、それぞれ独立して、水素原子、 または置換もしくは無置換の炭素数 1一 5のアルキル基)、及び一 NY CONY ^^X1 一 X3は、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数 1一 5の アルキル基)、力 選ばれる原子または基を示す。) Substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, substituted or unsubstituted alkyl group having 1 to 5 carbon atoms An alkoxy group, a substituted or unsubstituted phenoxy group, a substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, a polyfluoroalkyl group having 15 carbon atoms, a substituted or unsubstituted A chloroalkoxy group, a polyfluoroalkoxy group having 115 carbon atoms, a hydroxyl group, a halogen atom,-NX ^ X 1 and X 2 each independently represent a hydrogen atom or a substituted or unsubstituted carbon atom 5 alkyl groups) and one NY CONY ^^ X 1 -X 3 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 15 carbon atoms), Show. )
[0026] 本明細書において、 「ポリフルォロアルキレン基」、 「ポリフルォロアルキル基」、 「ポリ フルォロアルコキシ基」はそれぞれ対応するアルキレン基、アルキル基、アルコキシ 基の炭素原子に結合した水素原子が全てフッ素原子により置換されたものを表し、「 フルォロアルキレン基」、「フルォロアルキル基」、「フルォロアルコキシ基」はそれぞれ 対応するアルキレン基、アルキル基、アルコキシ基の炭素原子に結合した水素原子 の一部がフッ素原子により置換されたものを表す。 [0026] In the present specification, "polyfluoroalkylene group", "polyfluoroalkyl group", and "polyfluoroalkoxy group" are bonded to carbon atoms of the corresponding alkylene group, alkyl group, and alkoxy group, respectively. Represents all hydrogen atoms replaced by fluorine atoms, `` fluoroalkylene group '', `` fluoroalkyl group '', `` fluoroalkoxy group '' is the carbon atom of the corresponding alkylene group, alkyl group, alkoxy group respectively It represents one in which part of the bonded hydrogen atoms has been replaced by fluorine atoms.
[0027] また、「置換フルォロアルキレン基」、「置換フルォロアルキル基」、「置換フルォロア ルコキシ基」における「置換」とは炭素原子に結合した水素原子の少なくとも 1つがフ ッ素以外の原子又は官能基に置換されてレ、ることを表す。そのフッ素以外の原子又 は官能基としては、例えば、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、水 酸基、または炭素数 1一 5のアルコキシ基、もしくはこれをハロゲン原子もしくは水酸 基等で置換した基、もしくはこれらの基中に一 SO —を導入した基(例えば、 -OSO C In the “substituted fluoroalkylene group”, “substituted fluoroalkyl group”, and “substituted fluoroalkoxy group”, “substitution” means that at least one of the hydrogen atoms bonded to the carbon atom is an atom other than fluorine or It means that it is substituted by a functional group. Examples of the atom or functional group other than fluorine include a halogen atom such as a chlorine atom, a bromine atom and an iodine atom, a hydroxyl group, an alkoxy group having 15 to 15 carbon atoms, or a halogen atom or a hydroxyl group. Or a group in which one SO — is introduced into these groups (eg, -OSO C
2 2 twenty two
H 2 SO 2 C1)などとすることができる。この官能基中に炭素原子が含まれる場合、この 炭素原子は「置換もしくは無置換の炭素数 1一 5のアルキル基」等の記載における「 炭素数 1一 5」の数には含まれないものとする。 H 2 SO 2 C1). When a carbon atom is contained in this functional group, this carbon atom is not included in the number of "C15-C5" in the description such as "Substituted or unsubstituted alkyl group of C15" And
発明の効果  The invention's effect
[0028] 本発明によれば、非プロトン性溶媒に本発明による鎖状のジスルホンィ匕合物が含ま れる二次電池用電解液を用いることにより、負極活物質として、リチウムなどのアル力 リ金属またはアルカリ土類金属を吸蔵,放出する、金属若しくは半金属又は酸化物及 び炭素材料を用いた場合でも、得られた二次電池は充放電効率に優れ、サイクル特 性が良好で、容量維持率が高ぐ保存における抵抗上昇の抑制が可能な優れたリチ ゥム二次電池を得ることができる。 According to the present invention, by using an electrolyte solution for a secondary battery in which the linear disulfone conjugate according to the present invention is contained in an aprotic solvent, an alkali metal such as lithium can be used as a negative electrode active material. Even when a metal or metalloid, oxide or carbon material that absorbs or releases alkaline earth metal is used, the resulting secondary battery has excellent charge / discharge efficiency, good cycle characteristics, and capacity retention. An excellent lithi that can suppress the rise in resistance during storage with high rate A secondary battery can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明に係る二次電池の概略構成図である。  FIG. 1 is a schematic configuration diagram of a secondary battery according to the present invention.
[図 2]元素 M1を含む金属または半金属が炭素材料により被覆されて複合化している 状態を示す模式図である。 [2] metal containing element M 1 or metalloid is a schematic diagram showing a state of composite is coated with a carbon material.
[図 3]炭素材料が元素 M1を含む金属または半金属により被覆されて複合化している 状態を示す模式図である。 3 is a schematic view showing a state in which the carbon material is coated with a metal or metalloid containing the element M 1 is complexed.
[図 4]酸化物が炭素材料により被覆されて複合化している状態を示す模式図である。  FIG. 4 is a schematic diagram showing a state in which an oxide is covered with a carbon material to form a composite.
[図 5]炭素材料が酸化物により被覆されて複合化している状態を示す模式図である。 符号の説明  FIG. 5 is a schematic diagram showing a state in which a carbon material is covered with an oxide to form a composite. Explanation of symbols
[0030] 11 正極集電体 [0030] 11 positive electrode current collector
12 正極活物質を含有する層  12 Layer containing positive electrode active material
13 負極活物質を含有する層  13 Layer containing negative electrode active material
14 負極集電体  14 Negative electrode current collector
15 非水電解質溶液  15 Non-aqueous electrolyte solution
16 多孔質セパレータ  16 Porous separator
2a, 3a 炭素材料  2a, 3a Carbon material
2b, 3b 元素 M1を含む金属または半金属 2b, the metal or metalloid containing 3b element M 1
2c, 3c 酸化物  2c, 3c oxide
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] (本発明による電池構成の説明)  (Description of Battery Configuration According to the Present Invention)
図 1に本発明に係る電池の一例について概略構造を示す。正極集電体 11と、リチ ゥムイオンを吸蔵、放出し得る正極活物質を含有する層 12と、リチウムイオンを吸蔵、 放出する負極活物質を含有する層 13と、負極集電体 14と、電解液 15、およびこれを 含むセパレータ 16から構成されている。ここで、一般式(1)で表される鎖状のジスル ホン酸化合物(鎖状のジスルホン酸エステル)は電解液 15に含まれる。  FIG. 1 shows a schematic structure of an example of the battery according to the present invention. A positive electrode current collector 11; a layer 12 containing a positive electrode active material capable of absorbing and releasing lithium ions; a layer 13 containing a negative electrode active material capable of absorbing and releasing lithium ions; a negative electrode current collector 14; It is composed of a liquid 15 and a separator 16 containing the liquid. Here, the chain disulfonate compound (chain disulfonate) represented by the general formula (1) is contained in the electrolytic solution 15.
[0032] (集電体)  [0032] (Current collector)
正極集電体 11としてはアルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの 合金などを用いることができ、負極集電体 14としては銅、ステンレス鋼、ニッケル、チ タンまたはこれらの合金を用いることができる。 The positive electrode current collector 11 may be made of aluminum, stainless steel, nickel, titanium or any of these. An alloy or the like can be used, and as the negative electrode current collector 14, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
[0033] (セパレータ) [0033] (Separator)
セパレータ 16としては、ポリプロピレン、ポリエチレン等のポリオレフイン、フッ素樹脂 等の多孔性フィルムが好ましく用いられる。  As the separator 16, a porous film such as polyolefin such as polypropylene or polyethylene, or a fluororesin is preferably used.
[0034] (正極) [0034] (Positive electrode)
正極活物質としては通常用いられるリチウム含有複合酸化物が用いられ、具体的 には LiMO (Mは Mn, Fe, Coより選ばれ、一部を Mg, Al, Tiなどその他カチオン  As the positive electrode active material, a commonly used lithium-containing composite oxide is used. Specifically, LiMO (M is selected from Mn, Fe, Co, and a part thereof is other cations such as Mg, Al, Ti)
2  2
で置換してもよい)、 LiMn Oなどの材料を用いることができる。選択された正極活物  And a material such as LiMnO can be used. Selected cathode active material
2 4  twenty four
質を用い、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等 の結着剤とともに N—メチルー 2_ピロリドン (NMP)等の溶剤中に分散混練し、これを アルミニウム箔等の基体上に塗布するなどの方法により正極となる層 12を得ることが できる。  And kneading with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF) in a solvent such as N-methyl-2-pyrrolidone (NMP), The layer 12 to be the positive electrode can be obtained by a method such as coating on the top.
[0035] (負極) (Negative electrode)
本発明では、負極が含有する負極活物質として、リチウムなどのアルカリ金属また はアルカリ土類金属を吸蔵,放出する、金属若しくは半金属又は酸化物及び炭素材 料を用いる。  In the present invention, as the negative electrode active material contained in the negative electrode, a metal or metalloid, an oxide, and a carbon material that occlude and release an alkali metal or an alkaline earth metal such as lithium are used.
[0036] 上記金属若しくは半金属としては、元素 M1 (M1は Si、 Sn、 Al、 Pb、 Ag、 Ge及び S bから選ばれた元素)を少なくとも 1種以上含む金属または半金属を用いる。上記金 属または半金属としては、アルカリ金属またはアルカリ土類金属と合金化可能な金属 または半金属を用いることができ、その金属または半金属に含まれる元素 M1は、 1種 でも 2種以上でも良い。元素 M1を 2種以上含む場合、それらの元素は、それぞれ金 属または半金属の状態で含んでいても良ぐ合金の状態で含んでいても良い。中で も、 Si、 Sn及び A1から選ばれた元素を含む金属または半金属を用いることが好ましく 、 Si及び Snの少なくとも一方を含む金属または半金属を用いることがより好ましレ、。 [0036] Examples of the metal or metalloid, element M 1 (M 1 is Si, Sn, Al, Pb, Ag, Ge and from elements selected from S b) using a metal or metalloid and at least one more . As the metals or semimetals, may be used an alkali metal or alkaline earth metal can be alloyed metal or metalloid, element M 1 contained in the metal or metalloid is two or more even one But it's fine. When containing the element M 1 2 or more, these elements may include a state of even good tool alloys contain respectively metals or semi-metallic state. Among them, a metal or metalloid containing an element selected from Si, Sn and A1 is preferably used, and a metal or metalloid containing at least one of Si and Sn is more preferably used.
[0037] 上記酸化物としては、アルカリ金属またはアルカリ土類金属と合金化可能な酸化物 を用レヽること力 Sでき、伊 ijえは'、元素 M2 (M2は Si、 Sn、 Al、 Pb、 Ag、 Ge、 Sb、 B、 P、 W及び Tiから選ばれた元素)を含む酸化物が挙げられる。この酸化物に含まれる酸 素以外の元素は、 1種でも 2種以上でも良レ、。 2種以上の酸化物を併用することもで きる。中でも、 Si、 Sn、 Al、 Pb、 Ag、 Ge及び Sbから選ばれた元素を含む酸化物を用 レ、ることが好ましぐ Si及び Snの少なくとも一方を含む酸化物を用いることがより好ま しレ、。酸化物の組成は、ストィキオメトリーでもノンストィキオメトリーでも良い。 [0037] As the oxide, an oxide that can be alloyed with an alkali metal or an alkaline earth metal can be used, and an element M 2 (M 2 is Si, Sn, Al , Pb, Ag, Ge, Sb, B, P, W, and Ti). Acid contained in this oxide For elements other than element, one or two or more elements are good. Two or more oxides can be used in combination. Above all, it is preferable to use an oxide containing an element selected from Si, Sn, Al, Pb, Ag, Ge and Sb, and it is more preferable to use an oxide containing at least one of Si and Sn. Sile,. The composition of the oxide may be stoichiometry or non-stoichiometry.
[0038] また、金属若しくは半金属と酸化物とを併用することもできる。特に、上記の元素 M1 [0038] A metal or semimetal and an oxide can be used in combination. In particular, the above element M 1
(M1は Si、 Sn、 Al、 Pb、 Ag、 Ge及び Sbから選ばれた元素)を少なくとも 1種以上含 む金属または半金属と、上記のアル力リ金属またはアル力リ土類金属と合金化可能 な酸化物と、を併用することが好ましい。 (M 1 is an element selected from Si, Sn, Al, Pb, Ag, Ge, and Sb) and a metal or metalloid containing at least one of the above-mentioned metals and earth metal. It is preferable to use together with an alloyable oxide.
[0039] 炭素材料としては、黒鉛、非晶質炭素、カーボンナノチューブ、カーボンナノホーン 、フラーレン、ダイヤモンドライクカーボン、ソフトカーボン、ハードカーボン、またはこ れらの混合物等を用いることができる。炭素材料は、 1種でも 2種以上でも良い。黒鉛 及び非晶質炭素の少なくとも一方を用レ、ることが好ましい。負極活物質全体に対する 炭素材料の含有量は、 5— 95質量%の範囲とすることが好ましぐ 25— 75質量%の 範囲とすることがより好ましぐ 30— 60質量%の範囲とすることがさらに好ましい。炭 素材料は、導電性の向上及び上記金属若しくは半金属又は酸化物の充放電に伴う 体積変化に対するクッション効果の発現が期待されるものである。  As the carbon material, graphite, amorphous carbon, carbon nanotube, carbon nanohorn, fullerene, diamond-like carbon, soft carbon, hard carbon, or a mixture thereof can be used. The carbon material may be one kind or two or more kinds. It is preferable to use at least one of graphite and amorphous carbon. The content of the carbon material with respect to the whole negative electrode active material is preferably in the range of 5 to 95% by mass, more preferably in the range of 25 to 75% by mass, and more preferably in the range of 30 to 60% by mass. Is more preferable. The carbon material is expected to improve conductivity and exhibit a cushioning effect against a volume change caused by charge / discharge of the metal or metalloid or oxide.
[0040] 上記のような金属若しくは半金属又は酸化物、及び炭素材料を負極活物質として 用いることは、非晶質炭素等の炭素材料のみを負極活物質として用いた場合よりも 高容量化が図れることから、小型 ·軽量電池を実現する手法として期待されている。し かし、上記のような金属若しくは半金属又は酸化物は充放電に伴う体積膨張 ·収縮 が大きぐ炭素材料のクッション効果が期待できるものの未だ得られる電池のサイクル 特性が充分ではなかった。本発明のように、後述の一般式(1)の添加剤を併用する ことで、その体積の膨張 '収縮による応力によって表面に形成されている SEIにクラッ ク等が入っても、速やかに皮膜が形成されるため電解液の溶媒の消費が抑制される と考えられる。すなわち、これにより溶媒分解によるガス発生を防ぐことができる。また 、皮膜が形成されることによって表面への酸素供給も遮断されるため、活物質の酸化 による劣化も抑制されると考えられる。その結果、本発明の電池は、上記のような金 属若しくは半金属又は酸化物、及び炭素材料を負極活物質として用いた場合でも、 良好なサイクル特性が得られていると考えられる。 [0040] The use of a metal, metalloid, oxide, or carbon material as the negative electrode active material as described above has a higher capacity than when only a carbon material such as amorphous carbon is used as the negative electrode active material. Therefore, it is expected as a technique for realizing small and lightweight batteries. However, the above-mentioned metals, metalloids and oxides have a large volume expansion and contraction due to charge and discharge, and although the cushioning effect of a carbon material can be expected, the cycle characteristics of the obtained batteries are still insufficient. As in the present invention, by using an additive represented by the general formula (1) described below in combination, even if cracks or the like enter the SEI formed on the surface due to stress due to expansion and contraction of the volume, the film can be formed quickly. It is considered that the consumption of the solvent of the electrolytic solution is suppressed due to the formation of. That is, this can prevent gas generation due to solvent decomposition. In addition, since the formation of the film also interrupts the supply of oxygen to the surface, it is considered that the deterioration of the active material due to oxidation is also suppressed. As a result, the battery of the present invention can be obtained by using the above-mentioned metal or metalloid or oxide, and carbon material as a negative electrode active material. It is considered that good cycle characteristics were obtained.
[0041] 本発明では、負極が含有する負極活物質中に、上記の金属若しくは半金属又は酸 化物に含まれる元素の他に、アルカリ金属またはアルカリ土類金属と合金化しない元 素 Xを含むこともできる。これらの元素 Xは、負極活物質の充放電に伴う体積変化の 抑制や導電性の向上に効果があり、このような構成の負極活物質とした場合でも上 記と同様の効果も得られる。元素 Xとしては、例えば、 Fe、 Ni、 Cu及び Tiから選ばれ た元素が挙げられる。これらの元素 Xは、アルカリ金属またはアルカリ土類金属と合 金化しない状態であれば、存在する状態は問わない。ただし、例えば Ti元素は、金 属の状態ではアルカリ金属またはアルカリ土類金属と合金化しなレ、が、酸化物の状 態ではアルカリ金属またはアルカリ土類金属と合金化可能な場合があり、その合金化 する状態における Ti元素はこの元素 Xには分類されないものとする(例えば Li Ti O  In the present invention, the negative electrode active material contained in the negative electrode contains an element X that is not alloyed with an alkali metal or an alkaline earth metal, in addition to the above-mentioned metal, metalloid, or element contained in the oxide. You can also. These elements X are effective in suppressing the volume change due to charge / discharge of the negative electrode active material and improving the conductivity. Even when the negative electrode active material having such a configuration is used, the same effects as described above can be obtained. Examples of the element X include an element selected from Fe, Ni, Cu, and Ti. These elements X may be present in any state as long as they do not alloy with the alkali metal or alkaline earth metal. However, for example, the Ti element cannot be alloyed with an alkali metal or an alkaline earth metal in a metal state, but may be alloyable with an alkali metal or an alkaline earth metal in an oxide state. The Ti element in the alloyed state shall not be classified as this element X (for example, Li Ti O
4 5 1 の状態における Ti元素)。負極活物質中に含まれる元素 Xは、 1種でも良ぐ 2種以 Ti element in the state of 4 51). The element X contained in the negative electrode active material may be one or more.
2 2
上でも良い。負極活物質中に 2種以上の元素 Xを含む場合、それらの元素は、それ ぞれ金属や金属化合物の状態で含んでいても良ぐ合金や合金化合物の状態で含 んでいても良い。さらに、上記の金属若しくは半金属又は酸化物と合金化されている 状態でも良い。  It can be on. When two or more elements X are contained in the negative electrode active material, each of those elements may be contained in the form of a metal or metal compound, or may be contained in the form of an alloy or alloy compound. Further, it may be in a state of being alloyed with the above-mentioned metal, metalloid or oxide.
[0042] 上記元素 M1 (M1は Si、 Sn、 Al、 Pb、 Ag、 Ge及び Sbから選ばれた元素)を少なく とも 1種以上含む金属または半金属と、上記元素 Xを含む負極活物質の場合、上記 元素 M1と元素 Xとの比率が、原子数比で元素 M1:元素 X= 19: 1— 1: 9であることが 好ましい。元素 Xが多すぎると、充放電に関与する金属または半金属の割合が少なく なることから、負極の体積エネルギー密度や重量エネルギー密度が小さくなる傾向が 見られ、元素 Xが少なすぎると、元素 Xを添加したことによる効果、すなわち負極活物 質の充放電に伴う体積変化の抑制や導電性の向上効果が小さくなる傾向が見られる 。より好ましくは原子数比で元素 M1 :元素 X= 14 : l 3 : 7であり、さらに好ましくは元 素 M1:元素 X = 9 : 1— 5 : 5である。 [0042] an anode active the element M 1 (M 1 is Si, Sn, Al, Pb, Ag, from elements selected from Ge and Sb) comprising a metal or metalloid containing both one or more less, the element X for materials, the ratio of the element M 1 and the element X, the element M 1 in atomic ratio: element X = 19: 1-1: is preferably 9. If the amount of the element X is too large, the ratio of the metal or metalloid involved in charge / discharge decreases, and therefore the volume energy density and the weight energy density of the negative electrode tend to decrease.If the amount of the element X is too small, the element X There is a tendency that the effect of adding, that is, the effect of suppressing the volume change due to the charge and discharge of the negative electrode active material and the effect of improving the conductivity is reduced. More preferably, the atomic ratio of the elements is M 1 : element X = 14: l 3: 7, and still more preferably, the element M 1 : element X = 9: 1-5: 5.
[0043] 上記元素 M2を含む酸化物と、上記元素 Xとを含む負極活物質の場合、元素 M2と 元素 Xとの比率が、原子数比で元素 M2:元素 X= 19 : 1- 1 : 9であることが好ましレ、。 元素 Xが多すぎると、充放電に関与する酸化物の割合が少なくなることから、負極の 体積エネルギー密度や重量エネルギー密度が小さくなる傾向が見られ、元素 Xが少 なすぎると、元素 Xを添加したことによる効果、すなわち負極活物質の充放電に伴う 体積変化の抑制や導電性の向上効果が小さくなる傾向が見られる。より好ましくは原 子数比で元素 M2:元素 X= 14 : 1-3 : 7であり、さらに好ましくは元素 M2:元素 X = 9 : 1一 5 : 5である。 [0043] the element and oxide containing M 2, of the negative electrode active material containing the above element X case, the element M 2 and the ratio of the element X, the element M 2 in atomic ratio: element X = 19: 1 -Preferably 1: 9. If the element X is too large, the proportion of oxides involved in charge and discharge will decrease, The volume energy density and the weight energy density tend to decrease.If the element X is too small, the effect of adding the element X, that is, the suppression of the volume change due to the charge and discharge of the negative electrode active material and the improvement in conductivity. The effect tends to be small. More preferably, the element ratio is the element M 2 : element X = 14: 1-3: 7, and further preferably, the element M 2 : element X = 9: 1-15: 5.
[0044] 本発明の負極活物質は、上記の他にリチウム金属、リチウム合金等の、リチウムなど のアルカリ金属またはアルカリ土類金属を吸蔵 ·放出する材料を含むことができる。  [0044] In addition to the above, the negative electrode active material of the present invention can include materials that occlude and release alkali metals or alkaline earth metals such as lithium, such as lithium metals and lithium alloys.
[0045] 負極活物質は、前記の金属若しくは半金属又は酸化物、及び前記の炭素材料の 少なくとも一方を含有する粒子を含む形態とすることができる。前記の金属若しくは半 金属又は酸化物、及び前記の炭素材料の両方を含有する粒子、すなわち複合粒子 としては、前記の金属若しくは半金属又は酸化物の粒子の周囲の少なくとも一部を 前記の炭素材料で被覆した複合粒子、前記の炭素材料の粒子の周囲の少なくとも 一部を前記の金属若しくは半金属又は酸化物で被覆した複合粒子が挙げられる。こ れらの粒子は、さらに表面を炭素膜で被覆されていても良い。  [0045] The negative electrode active material may be in a form containing particles containing at least one of the above-mentioned metal, metalloid or oxide, and the above-mentioned carbon material. Particles containing both the metal or metalloid or oxide and the carbon material, i.e., composite particles, include at least a portion of the periphery of the metal or metalloid or oxide particle as the carbon material. And a composite particle in which at least a part of the periphery of the carbon material particle is coated with the metal, metalloid or oxide. These particles may be further coated on the surface with a carbon film.
[0046] 前記のような負極活物質は、真空成膜法または圧接法で形成することもできる。真 空成膜法としては、真空蒸着法、スパッタ法、 CVD法等が利用できる。圧接法として は、メカノフュージョン法、メカニカルミリング法等が利用できる。  [0046] The negative electrode active material as described above can also be formed by a vacuum film forming method or a pressure welding method. Vacuum evaporation, sputtering, CVD, etc. can be used as the vacuum film forming method. As the pressure welding method, a mechanofusion method, a mechanical milling method, or the like can be used.
[0047] そして、例えば、塗布法または真空成膜法により、上記のような負極活物質の少な くとも一部を含有する層を有する負極を形成することができる。真空成膜法としては、 真空蒸着法、スパッタ法、 CVD法等が利用できる。  Then, for example, a negative electrode having a layer containing at least a part of the negative electrode active material as described above can be formed by a coating method or a vacuum film forming method. As a vacuum film forming method, a vacuum evaporation method, a sputtering method, a CVD method, etc. can be used.
[0048] 本発明の二次電池の負極は、前記の金属若しくは半金属又は酸化物を主成分と する層と、前記の炭素材料を主成分とする層と、を有する層状構造を形成しているこ とが好ましい。ここで、「主成分とする層」は、その主成分が層を構成する材料全体の 50質量%以上を占めているものとする。上記の層状構造を形成する場合、その各層 は主成分が 70質量%以上を占めていることが好ましい。  [0048] The negative electrode of the secondary battery of the present invention is formed by forming a layered structure including a layer mainly containing the above-mentioned metal, metalloid or oxide, and a layer mainly containing the above-mentioned carbon material. Is preferred. Here, it is assumed that the “layer containing the main component” occupies 50% by mass or more of the entire material constituting the layer. When the above-mentioned layered structure is formed, it is preferable that the main component of each layer accounts for 70% by mass or more.
[0049] 上記の元素 M1を含む金属または半金属及び炭素材料を用いた負極活物質につ いて、より詳細に説明すると以下の通りである。 [0049] and have negative active material Nitsu using metal or metalloid and carbon material containing an element M 1 above, is described below with more detail.
[0050] 上記の元素 M1を含む金属または半金属及び炭素材料は、単純に、それぞれが粒 子の状態で混合されていてもよい。または、図 2に示すように上記元素 M1を含む金 属または半金属 2bが炭素材料 2aにより被覆されて複合化していてもよい。または、 図 3に示すように炭素材料 3aが上記元素 M1を含む金属または半金属 3bにより被覆 されて複合化していてもよい。複合化した場合、高い導電性と、元素 M1を含む金属 または半金属の充放電に伴う体積変化に対するクッション効果の発現が期待できる。 [0050] Additional elemental metal containing M 1 or metalloid and carbon material, simply, each particle They may be mixed in a child state. Or, metallic or metalloid 2b containing the element M 1 may be conjugated is coated with a carbon material 2a as shown in FIG. Or a carbon material 3a may be conjugated coated with a metal or metalloid 3b including the element M 1, as shown in FIG. When complexed, and high conductivity, the expression of the cushion effect of the volume change due to charging and discharging of the metal or metalloid containing the element M 1 can be expected.
[0051] 上記元素 M1を含む金属または半金属で構成される粒子、上記元素 M1を含む金属 または半金属および上記元素 Xで構成される粒子、および上記元素 M1を含む金属 または半金属および上記元素 Xおよびリチウム金属またはリチウム合金で構成される 粒子は、通常の作製方法に加えて、真空成膜法または圧接法を用いて作製すること あでさる。 Particles composed of metal or metalloid containing element M 1 , particles composed of metal or metalloid containing element M 1 and element X, and metal or metalloid containing element M 1 The particles composed of the element X and the lithium metal or the lithium alloy are produced by using a vacuum film forming method or a pressure welding method in addition to a usual production method.
[0052] 複合化の方法としては、 CVD法等の真空成膜法、またはメカニカルミリング法ゃメ カノフュージョン法などの圧接法、またはゾルーゲル法を用いることができる。  As a method of compounding, a vacuum film forming method such as a CVD method, a pressure welding method such as a mechanical milling method ゃ mechanofusion method, or a sol-gel method can be used.
[0053] 上記元素 M1を含む金属または半金属を炭素材料により被覆して複合化する場合 は、例えば CVD法により、元素 M1を含む金属または半金属に炭素材料膜を被覆す ること力 Sできる。または、上記元素 M1を含む金属または半金属で構成される粒子をタ ール等の炭素質物でコーティングし、不活性雰囲気下にて 1000°C程度で焼成する ことで上記元素 M1を含む金属または半金属で構成される粒子に炭素コーティングを すること力 Sできる。また、真空蒸着法により元素 M1を含む金属または半金属に炭素 材料膜を被覆することができる。 [0053] When the composite was coated with a carbon material a metal or metalloid containing the element M 1, for example, CVD Rukoto force to coat the carbon material film on the metal or metalloid containing the element M 1 S can. Or, coated with carbonaceous material, such as data Lumpur the particles composed of a metal or metalloid containing the element M 1, including the element M 1 by firing at about 1000 ° C under an inert atmosphere Ability to apply carbon coating to particles composed of metal or metalloid. Further, it is possible to coat the carbon material film on the metal or metalloid containing the element M 1 by vacuum evaporation.
[0054] また、メカニカルミリングゃメカノフュージョン等の圧接法を用いた場合にも、上記元 素 M1を含む金属または半金属を炭素材料により被覆して複合化することができる。 例えば、上記元素 M1を含む金属または半金属粒子と炭素材料粒子とを混合し、メカ 二カルミリングすることにより、炭素材料粒子の中に上記元素 M1を含む金属または半 金属粒子を埋め込み複合化させることができる。また、上記のようなメカニカルミリング により炭素材料と上記元素 M1を含む金属または半金属を複合化させた後、 CVD法 や炭素材料蒸着により炭素材料被覆を行っても良い。 [0054] Further, even when using a pressure method such as mechanical milling Ya mechanofusion, the metal or metalloid containing the elemental M 1 can be composited coated by the carbon material. For example, mixing a metal or semi-metal particles and the carbon material particles containing the element M 1, by mechanical two Carmi ring, embedding a metal or metalloid particles containing the element M 1 in the carbon material particle composite Can be changed. Further, after compounding the metal or metalloid containing a carbon material and the element M 1 by mechanical milling, as described above, by a CVD method or a carbon material deposition may be performed a carbon material coating.
[0055] 炭素材料を、上記元素 M1を含む金属または半金属により被覆して複合化する場合 は、例えば CVD法により、炭素材料粒子に元素 Mを含む金属または半金属膜を形 成し、複合化させることができる。または、ゾルーゲル法により炭素材料粒子に元素 M1を含む金属または半金属膜を形成し、複合化させることができる。 [0055] The carbon material, when the composite coated with a metal or metalloid containing the element M 1, for example by a CVD method, form a metal or semi-metal film containing an element M to the carbon material particles And can be compounded. Or, a metal or semi-metal film containing an element M 1 to the carbon material particles by sol-gel method, can be conjugated.
[0056] 負極活物質として、上記のように炭素材料および上記元素 M1を含む金属または半 金属を複合化させた粒子を用レ、ることができる。また、これら複合化させた粒子を、さ らに黒鉛や非晶質炭素粒子と混合して負極活物質として用いることができる。 [0056] As the anode active material, can as described above to the metal or metalloid was allowed to composite particles containing a carbon material and the element M 1 use Le, is Rukoto. Further, these composited particles can be further mixed with graphite or amorphous carbon particles and used as a negative electrode active material.
[0057] 以上のような中から選択された粒子状の負極活物質を用いた場合には、負極活物 質粒子を、カーボンブラック等の導電性物質 (導電性付与材)、ポリビニリデンフルォ ライド(PVDF)等の結着剤とともに N—メチルー 2_ピロリドン (NMP)等の溶剤中に分 散混練し、これを銅箔等の基体上に塗布するなどの方法により負極となる層 13を得 ること力 Sできる。複数の粒子を分散させる際には、メカニカルミリング等の方法によりあ らかじめ混合したものを使用することもできる。  When a particulate negative electrode active material selected from the above is used, the negative electrode active material particles are converted to a conductive material such as carbon black (a conductivity-imparting material), polyvinylidene fluoride, or the like. Layer 13 serving as a negative electrode by a method such as dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a binder such as chloride (PVDF), and applying the mixture on a substrate such as a copper foil. Gaining power S When dispersing a plurality of particles, it is also possible to use those that have been previously mixed by a method such as mechanical milling.
[0058] また、上記元素 M1を含む金属または半金属と、炭素材料とを同時に成膜し、複合 化させることもできる。その場合、選択された負極活物質を、融液冷却方式、液体急 冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマ CVD方式、光 CVD方式、熱 CVD方式、ゾノレーゲル方式、などの適宜な方式により基体上に成膜 して負極となる層 13を得ることができる。 Further, a metal or metalloid containing the above-described element M 1 and a carbon material can be simultaneously formed into a film to form a composite. In such a case, the selected negative electrode active material is appropriately cooled by a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, an optical CVD method, a thermal CVD method, a Zonoray gel method, or the like. A layer 13 serving as a negative electrode can be obtained by forming a film on a substrate by a method.
[0059] 上記元素 M1を含む金属または半金属を主成分とする層と炭素材料を主成分とす る層の少なくとも 2層の構造とすることもできる。特に、負極集電体上に炭素材料を主 成分とする層を形成し、その上に元素 M1を含む金属または半金属を主成分とする層 を形成することが好ましい。この構造とした場合、元素 M1を含む金属または半金属を 主成分とする層上に優先的に皮膜を形成でき、高い導電性と、良好なサイクル特性 が期待できる。 [0059] may have a structure of at least two of the layers shall be the main component layer and a carbon material mainly composed of a metal or metalloid containing the element M 1. In particular, it is preferable to form a layer of carbon material on an anode current collector to form a layer mainly components, mainly composed of a metal or metalloid containing the element M 1 thereon. If you this structure, the metal or metalloid containing the element M 1 can preferentially form coatings on layer mainly, and the high conductivity, good cycle characteristics can be expected.
[0060] さらに、上記元素 M1を含む金属または半金属と炭素材料との複合材料を含有する 層と、炭素材料を主成分とする層との少なくとも 2層の構造とすることもできる。この構 造とした場合、高い導電性と、元素 M1を含む金属または半金属の充放電に伴う体積 変化に対するクッション効果の発現が期待できる。特に、負極集電体上に炭素材料 を主成分とする層を形成し、その上に上記元素 M1を含む金属または半金属と炭素 材料との複合材料を含有する層を形成することが好ましい。この構造とした場合、上 記元素 M1を含む金属または半金属と炭素材料との複合材料を含有する層上に優先 的に皮膜を形成でき、高い導電性と、良好なサイクル特性が期待できる。 [0060] Furthermore, it is also possible to the layer containing a composite material of a metal or metalloid and the carbon material containing the above element M 1, the structure of at least two layers of a layer containing carbon as a main component material. If you this structure, a high conductivity can be expected expression of cushioning effect for the volume change accompanying with charge and discharge of the metal or metalloid containing the element M 1. In particular, it is preferable to form a layer containing a composite material of a metal or metalloid and the carbon material comprising forming a layer mainly composed of carbon material on an anode current collector, the element M 1 thereon . With this structure, The layer on containing a composite material of a metal or metalloid and the carbon material containing the serial element M 1 can preferentially form film, a high conductivity can be expected good cycle characteristics.
[0061] 炭素材料を主成分とする層は、塗布法または、 CVD法や真空蒸着法、スパッタ法 等の真空成膜法で形成することができる。例えば、塗布法を用いた場合には、炭素 粒子に加えて、カーボンブラック等の導電性物質(導電性付与材)、ポリビニリデンフ ノレオライド(PVDF)等の結着剤とともに N—メチル _2_ピロリドン (NMP)等の溶剤中 に分散混練し、これを銅箔等の基体上に塗布するなどの方法により形成することがで きる。元素 M1を含む金属または半金属を主成分とする層は、融液冷却方式、液体急 冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマ CVD方式、光 CVD方式、熱 CVD方式、ゾノレーゲル方式、などの適宜な方式により基体上に成膜 して形成することができる。また、元素 M1を含む金属または半金属を主成分とする層 は、元素 M1を含む金属または半金属を主成分とする粒子と、カーボンブラック等の 導電性物質 (導電性付与材)、ポリビニリデンフルオライド (PVDF)等の結着剤ととも に N-メチル -2-ピロリドン (NMP)等の溶剤中に分散混練し、これを銅箔等の基体 上に塗布するなどの方法により形成することができる。 [0061] The layer containing a carbon material as a main component can be formed by a coating method or a vacuum film formation method such as a CVD method, a vacuum evaporation method, or a sputtering method. For example, when the coating method is used, in addition to carbon particles, N-methyl_2_pyrrolidone may be used together with a conductive substance such as carbon black (a conductivity-imparting material) and a binder such as polyvinylidene phthaleolide (PVDF). (NMP) or the like, and can be formed by a method such as dispersing and kneading in a solvent, and applying this on a substrate such as a copper foil. Layer mainly containing a metal or metalloid containing the element M 1 is melt cooling method, liquid quick cooling method, atomizing method, a vacuum deposition method, sputtering method, plasma CVD method, optical CVD method, thermal CVD method, Zonoregeru It can be formed by forming a film on the substrate by an appropriate method such as a method. The layer mainly composed of a metal or metalloid containing the element M 1 is a particle mainly composed of a metal or metalloid containing the element M 1, carbon black, conductive material (conductivity-imparting agent), It is formed by dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) with a binder such as polyvinylidene fluoride (PVDF) and applying it to a substrate such as copper foil. can do.
[0062] 上記元素 M1を含む金属または半金属と炭素材料との複合材料を含有する層は、 塗布法、または、真空蒸着法、スパッタ法、もしくは CVD法等の真空成膜法で形成 すること力 Sできる。 [0062] layer containing a composite material of a metal or metalloid and the carbon material containing the above element M 1 is a coating method, or a vacuum deposition method, by a sputtering method or a vacuum deposition method such as CVD That power S can.
[0063] 上記の酸化物及び炭素材料を用いた負極活物質について、より詳細に説明すると 以下の通りである。  [0063] The negative electrode active material using the above oxide and carbon material will be described in more detail as follows.
[0064] 上記の酸化物及び炭素材料は、単純に、それぞれが粒子の状態で混合されてい てもよレ、。または、図 4に示すように上記酸化物 2cが炭素材料 2aにより被覆されて複 合化していてもよい。または、図 5に示すように炭素材料 3aが上記酸化物 3cにより被 覆されて複合化していてもよい。複合化した場合、高い導電性と、酸化物の充放電に 伴う体積変化に対するクッション効果の発現が期待できる。  [0064] The oxide and the carbon material may be simply mixed in the form of particles. Alternatively, as shown in FIG. 4, the oxide 2c may be covered with the carbon material 2a to form a composite. Alternatively, as shown in FIG. 5, the carbon material 3a may be covered with the oxide 3c to form a composite. When compounded, high conductivity and a cushioning effect against volume change due to charge and discharge of the oxide can be expected.
[0065] 上記酸化物で構成される粒子、上記酸化物および上記元素 Xで構成される粒子、 および上記酸化物および上記元素 Xおよびリチウム金属またはリチウム合金で構成さ れる粒子は、通常の作製方法に加えて、真空成膜法または圧接法を用いて作製す ることちでさる。 [0065] Particles composed of the oxide, particles composed of the oxide and the element X, and particles composed of the oxide and the element X and lithium metal or lithium alloy are prepared by a usual production method. In addition to the above, Talk about things.
[0066] 複合化の方法としては、 CVD法等の真空成膜法、またはメカニカルミリング法ゃメ カノフュージョン法などの圧接法、またはゾルーゲル法を用いることができる。  As a method of compounding, a vacuum film forming method such as a CVD method, a pressure contact method such as a mechanical milling method or a mechanofusion method, or a sol-gel method can be used.
[0067] 上記酸化物を炭素材料により被覆して複合化する場合は、例えば CVD法により、 酸化物に炭素材料膜を被覆することができる。または、上記酸化物で構成される粒 子をタール等の炭素質物でコーティングし、不活性雰囲気下にて 1000°C程度で焼 成することで上記酸化物で構成される粒子に炭素コーティングをすることができる。ま た、真空蒸着法により酸化物に炭素材料膜を被覆することができる。  When the above oxide is coated with a carbon material to form a composite, the oxide can be coated with a carbon material film by, for example, a CVD method. Alternatively, the particles composed of the above oxide are coated with a carbonaceous substance such as tar, and then calcined at about 1000 ° C in an inert atmosphere, so that the particles composed of the above oxide are carbon-coated. be able to. The oxide can be coated with a carbon material film by a vacuum evaporation method.
[0068] また、メカニカルミリングゃメカノフュージョン等の圧接法を用いた場合にも、上記酸 化物を炭素材料により被覆して複合化することができる。例えば、上記酸化物粒子と 炭素材料粒子とを混合し、メカニカルミリングすることにより、炭素材料粒子の中に上 記酸化物粒子を埋め込み複合化させることができる。また、上記のようなメカ二カルミ リングにより炭素材料と上記酸化物を複合化させた後、 CVD法や炭素材料蒸着によ り炭素材料被覆を行っても良レ、。  [0068] Also, when a pressure welding method such as mechanical milling / mechanofusion is used, the above oxide can be coated with a carbon material to form a composite. For example, by mixing the oxide particles and the carbon material particles and performing mechanical milling, the oxide particles can be embedded in the carbon material particles to form a composite. It is also possible to combine the carbon material and the oxide by mechanical milling as described above, and then coat the carbon material by CVD or carbon material deposition.
[0069] 炭素材料を、上記酸化物により被覆して複合化する場合は、例えば CVD法により、 炭素材料粒子に酸化物膜を形成し、複合ィ匕させること力 Sできる。または、ゾルーゲル 法により炭素材料粒子に酸化物膜を形成し、複合化させることができる。  [0069] When the carbon material is coated with the above-described oxide to form a composite, the oxide film can be formed on the carbon material particles by, for example, a CVD method, and the composite film can be formed. Alternatively, an oxide film can be formed on the carbon material particles by a sol-gel method to form a composite.
[0070] 負極活物質として、上記のように炭素材料および上記酸化物を複合化させた粒子 を用いることができる。また、これら複合化させた粒子を、さらに黒鉛や非晶質炭素粒 子と混合して負極活物質として用いることができる。  [0070] As the negative electrode active material, particles obtained by complexing the carbon material and the oxide as described above can be used. Further, these composited particles can be further mixed with graphite or amorphous carbon particles and used as a negative electrode active material.
[0071] 以上のような中から選択された粒子状の負極活物質を用いた場合には、負極活物 質粒子を、カーボンブラック等の導電性物質 (導電性付与材)、ポリビニリデンフルォ ライド(PVDF)等の結着剤とともに N—メチルー 2_ピロリドン (NMP)等の溶剤中に分 散混練し、これを銅箔等の基体上に塗布するなどの方法により負極となる層 13を得 ること力 Sできる。複数の粒子を分散させる際には、メカニカルミリング等の方法によりあ らかじめ混合したものを使用することもできる。  When a particulate negative electrode active material selected from the above is used, the negative electrode active material particles are converted to a conductive material such as carbon black (a conductivity-imparting material), polyvinylidene fluoride, or the like. Layer 13 serving as a negative electrode by a method such as dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a binder such as chloride (PVDF), and applying the mixture on a substrate such as a copper foil. Gaining power S When dispersing a plurality of particles, it is also possible to use those that have been previously mixed by a method such as mechanical milling.
[0072] また、上記酸化物と、炭素材料とを同時に成膜し、複合ィ匕させることもできる。その 場合、選択された負極活物質を、融液冷却方式、液体急冷方式、アトマイズ方式、真 空蒸着方式、スパッタリング方式、プラズマ CVD方式、光 CVD方式、熱 CVD方式、 ゾルーゲル方式、などの適宜な方式により基体上に成膜して負極となる層 13を得る こと力 Sできる。 [0072] Further, the oxide and the carbon material can be simultaneously formed into a film to form a composite film. In this case, the selected negative electrode active material is melt-cooled, liquid quenched, atomized, It is possible to obtain a layer 13 serving as a negative electrode by forming a film on a substrate by an appropriate method such as an empty deposition method, a sputtering method, a plasma CVD method, a light CVD method, a thermal CVD method, a sol-gel method, or the like.
[0073] 上記酸化物を主成分とする層と炭素材料を主成分とする層の少なくとも 2層の構造 とすることもできる。特に、負極集電体上に炭素材料を主成分とする層を形成し、そ の上に酸化物を主成分とする層を形成するすることが好ましレ、。この構造とした場合 、酸化物を主成分とする層上に優先的に皮膜を形成でき、高い導電性と、良好なサ イタル特性が期待できる。  [0073] A structure having at least two layers of a layer mainly containing the oxide and a layer mainly containing a carbon material can be employed. In particular, it is preferable to form a layer mainly composed of a carbon material on the negative electrode current collector and form a layer mainly composed of an oxide thereon. With this structure, a film can be formed preferentially on a layer mainly composed of an oxide, and high conductivity and good vital characteristics can be expected.
[0074] さらに、上記酸化物と炭素材料との複合材料を含有する層と、炭素材料を主成分と する層との少なくとも 2層の構造とすることもできる。この構造とした場合、高い導電性 と、酸化物の充放電に伴う体積変化に対するクッション効果の発現が期待できる。特 に、負極集電体上に炭素材料を主成分とする層を形成し、その上に上記酸化物と炭 素材料との複合材料を含有する層を形成することが好ましい。この構造とした場合、 上記酸化物と炭素材料との複合材料を含有する層上に優先的に皮膜を形成でき、 高レ、導電性と、良好なサイクル特性が期待できる。  Further, a structure having at least two layers of a layer containing the composite material of the oxide and the carbon material and a layer containing the carbon material as a main component may be employed. With this structure, high conductivity and a cushioning effect against a volume change due to charge and discharge of the oxide can be expected. In particular, it is preferable to form a layer containing a carbon material as a main component on the negative electrode current collector, and to form a layer containing a composite material of the oxide and the carbon material on the layer. With this structure, a film can be formed preferentially on the layer containing the composite material of the oxide and the carbon material, and high resilience, conductivity, and good cycle characteristics can be expected.
[0075] 炭素材料を主成分とする層は、塗布法または、 CVD法や真空蒸着法、スパッタ法 等の真空成膜法で形成することができる。例えば、塗布法を用いた場合には、炭素 粒子に加えて、カーボンブラック等の導電性物質(導電性付与材)、ポリビニリデンフ ノレオライド(PVDF)等の結着剤とともに N—メチルー 2—ピロリドン (NMP)等の溶剤中 に分散混練し、これを銅箔等の基体上に塗布するなどの方法により形成することがで きる。酸化物を主成分とする層は、融液冷却方式、液体急冷方式、アトマイズ方式、 真空蒸着方式、スパッタリング方式、プラズマ CVD方式、光 CVD方式、熱 CVD方式 、ゾルーゲル方式、などの適宜な方式により基体上に成膜して形成することができる 。また、酸化物を主成分とする層は、酸化物を主成分とする粒子と、カーボンブラック 等の導電性物質 (導電性付与材)、ポリビニリデンフルオライド (PVDF)等の結着剤 とともに N—メチルー 2_ピロリドン (NMP)等の溶剤中に分散混練し、これを銅箔等の 基体上に塗布するなどの方法により形成することができる。  [0075] The layer containing a carbon material as a main component can be formed by a coating method or a vacuum film formation method such as a CVD method, a vacuum evaporation method, or a sputtering method. For example, when the coating method is used, in addition to carbon particles, N-methyl-2-pyrrolidone may be used together with a conductive substance such as carbon black (a conductivity-imparting material) and a binder such as polyvinylidene phthaleolide (PVDF). (NMP) or the like, and can be formed by a method such as dispersing and kneading in a solvent, and applying this on a substrate such as a copper foil. The layer mainly composed of an oxide is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum evaporation method, a sputtering method, a plasma CVD method, an optical CVD method, a thermal CVD method, or a sol-gel method. It can be formed by forming a film on a substrate. The layer containing an oxide as a main component includes N particles, a conductive material such as carbon black (a conductivity-imparting material), and a binder such as polyvinylidene fluoride (PVDF). —It can be formed by dispersing and kneading in a solvent such as methyl-2-pyrrolidone (NMP) and applying it to a substrate such as a copper foil.
[0076] 上記酸化物と炭素材料との複合材料を含有する層は、塗布法、または、真空蒸着 法、スパッタ法、もしくは CVD法等の真空成膜法で形成することができる。 [0076] The layer containing the composite material of the oxide and the carbon material is formed by a coating method or a vacuum deposition method. It can be formed by a vacuum film forming method such as a sputtering method, a sputtering method, or a CVD method.
[0077] (電解液) [0077] (Electrolyte)
電解液 15は電解質、非プロトン性溶媒と添加剤とを少なくとも有する。  The electrolytic solution 15 has at least an electrolyte, an aprotic solvent and an additive.
[0078] (電解質) [0078] (Electrolyte)
電解質は、リチウム二次電池の場合にはリチウム塩を用レ、、これを非プロトン性溶媒 中に溶解させる。リチウム塩としては、リチウムイミド塩、 LiPF、 LiAsF、 LiAICl、 Li  As the electrolyte, in the case of a lithium secondary battery, a lithium salt is used, and this is dissolved in an aprotic solvent. As lithium salts, lithium imide salts, LiPF, LiAsF, LiAICl, Li
6 6 4 6 6 4
CIO、 LiBF、 LiSbFなどがあげられる。リチウムイミド塩としては、 LiN (C F SOCIO, LiBF, LiSbF and the like. As the lithium imide salt, LiN (C F SO
4 4 6 k 2k+ l4 4 6 k 2k + l
) (C F SO ) (k, mは、それぞれ独立して 1又は 2)があげられる。この中でも特) (C F SO) (k and m are each independently 1 or 2). Special among them
2 m 2m+ l 2 2 m 2m + l 2
に LiPF、 LiBFが好ましい。これらは単独で、又は複数種を組み合わせて用いるこ  LiPF and LiBF are preferred. These may be used alone or in combination.
6 4  6 4
とができる。これらのリチウム塩を含むことで高エネルギー密度を達成することができ る。  Can be. High energy density can be achieved by including these lithium salts.
[0079] (非プロトン性溶媒)  (Aprotic solvent)
また、非プロトン性電解液としては、環状カーボネート類、鎖状カーボネート類、脂 肪族カルボン酸エステル類、 γ—ラタトン類、環状エーテル類、鎖状エーテル類およ びこれらのフッ化誘導体の有機溶媒から選ばれた少なくとも 1種類の有機溶媒を用 いる。より具体的には、  In addition, the aprotic electrolytic solution may include cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-ratatanes, cyclic ethers, chain ethers, and organic solvents of these fluorinated derivatives. Use at least one selected organic solvent. More specifically,
環状カーボネート類:プロピレンカーボネート(以下、 PCと略記。)、エチレンカーボネ ート(以下、 ECと略記。)、ブチレンカーボネート(BC)、およびこれらの誘導体 鎖状カーボネート類:ジメチルカーボネート(DMC)、ジェチルカーボネート(以下、 D ECと略記。)、ェチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、 およびこれらの誘導体  Cyclic carbonates: propylene carbonate (hereinafter abbreviated as PC), ethylene carbonate (hereinafter abbreviated as EC), butylene carbonate (BC), and derivatives thereof Linear carbonates: dimethyl carbonate (DMC) Getyl carbonate (hereinafter abbreviated as DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof
脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸ェチル、およ びこれらの誘導体  Aliphatic carboxylic esters: methyl formate, methyl acetate, ethyl propionate, and derivatives thereof
T -ラタトン類: γ -プチ口ラタトン、およびこれらの誘導体  T-latatatones: γ-petit ratatone, and derivatives thereof
環状エーテル類:テトラヒドロフラン、 2-メチルテトラヒドロフラン、およびこれらの誘導 体  Cyclic ethers: tetrahydrofuran, 2-methyltetrahydrofuran, and derivatives thereof
鎖状エーテル類:1 , 2—ジエトキシェタン(DEE)、エトキシメトキシェタン(ΕΜΕ)、ジ ェチルエーテル、およびこれらの誘導体 その他:ジメチルスルホキシド、 1 , 3—ジォキソラン、ホノレムアミド、ァセトアミド、ジメチ ノレホノレムアミド、ァセトニトリル、プロピオ二トリル、ニトロメタン、ェチルモノグライム、リ ン酸トリエステル、トリメトキシメタン、ジォキソラン誘導体、メチルスルホラン、 1 , 3-ジ メチノレ _2_イミダゾリジノン、 3_メチル _2_ォキサゾリジノン、ァニソール、 N—メチルビ 口リドン、フッ素化カルボン酸エステル Chain ethers: 1,2-diethoxytan (DEE), ethoxymethoxyethane (ΕΜΕ), dimethyl ether, and derivatives thereof Others: dimethylsulfoxide, 1,3-dioxolane, honolemamide, acetamide, dimethylenolenomolemide, acetonitrile, propionitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, methylsulfolane, 1,3-Dimethinole_2_imidazolidinone, 3_methyl_2_oxazolidinone, anisol, N-methylbilidone, fluorinated carboxylate
これらを一種又は二種以上を混合して使用することができる。  These can be used alone or in combination of two or more.
[0080] (添加剤) [0080] (Additive)
添加剤としては、一般式(1 )で示した鎖状のジスルホン酸エステルを用いる。  As the additive, a chain disulfonic acid ester represented by the general formula (1) is used.
[0081] [化 2] [0081]
Figure imgf000021_0001
Figure imgf000021_0001
[0082] (但し、上記一般式(1 )において、 Rおよび Rは、それぞれ独立して、水素原子、置 (However, in the above general formula (1), R and R are each independently a hydrogen atom,
1 4  14
換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5 のアルコキシ基、置換もしくは無置換の炭素数 1一 5のフルォロアルキル基、炭素数 1 一 5のポリフルォロアルキル基、一 SO X (Xは置換もしくは無置換の炭素数 1  Substituted or unsubstituted alkyl group having 15 carbon atoms, substituted or unsubstituted alkoxy group having 15 carbon atoms, substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, polyfluoro group having 15 carbon atoms SO X (X is a substituted or unsubstituted carbon atom 1
2 1 1 一 5の アルキル基)、 -SY (Yは置換もしくは無置換の炭素数 1  2 1 1 1 5 alkyl group), -SY (Y is a substituted or unsubstituted carbon atom 1
1 1 一 5のアルキル基)、一 CO 1 1 1 5 alkyl group), 1 CO
Z (Zは水素原子、または置換もしくは無置換の炭素数 1一 5のアルキル基)、及びハ ロゲン原子、力 選ばれる原子または基を示す。 Rおよび Rは、それぞれ独立して、 Z (Z is a hydrogen atom or a substituted or unsubstituted alkyl group having 15 to 15 carbon atoms), a halogen atom, and an atom or group selected from the following. R and R are each independently
2 3  twenty three
置換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5のアルコキシ基、置換もしくは無置換のフエノキシ基、置換もしくは無置換の炭素数 1一 5のフルォロアルキル基、炭素数 1一 5のポリフルォロアルキル基、置換もしくは無 置換の炭素数 1一 5のフルォロアルコキシ基、炭素数 1一 5のポリフルォロアルコキシ 基、水酸基、ハロゲン原子、 -NX X (X及び Xは、それぞれ独立して、水素原子、 または置換もしくは無置換の炭素数 1一 5のアルキル基)、及び NY CONY Y (Υ A substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, C15 polyfluoroalkyl group, substituted or unsubstituted C15 fluoroalkoxy group, C15 polyfluoroalkoxy group, hydroxyl group, halogen atom, -NX X ( X and X are each independently a hydrogen atom, Or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms) and NY CONY Y (Υ
2 3 4 2 一 Υは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数 1一 5の 2 3 4 2 1 Υ independently represents a hydrogen atom or a substituted or unsubstituted
4 Four
アルキル基)、力 選ばれる原子または基を示す。)  Alkyl group), force Indicates an atom or group to be selected. )
[0083] 一般式(1)によって示される化合物は、非環式ィ匕合物であり合成時に環化反応を 伴わず、例えば非特許文献 1一 4を用いて合成が可能である。また、特許文献 9に示 される環式ジスルホン酸エステルの合成の副生成物として得ることもできる。このよう に、一般式(1)で示される化合物は合成の工程が容易であるため、安価な電解液を 提供できる禾 U点がある。  [0083] The compound represented by the general formula (1) is an acyclic compound, does not involve a cyclization reaction at the time of synthesis, and can be synthesized using, for example, Non-Patent Documents 14 to 14. It can also be obtained as a by-product of the synthesis of the cyclic disulfonic acid ester shown in Patent Document 9. As described above, since the compound represented by the general formula (1) is easily synthesized, there is a U point at which an inexpensive electrolytic solution can be provided.
[0084] 前記一般式(1)の Rおよび Rの好ましい分子構造としては、電極上でおこる反応  [0084] The preferable molecular structure of R and R in the general formula (1) is a reaction occurring on an electrode.
1 4  14
性皮膜の形成の容易性、化合物の安定性、取り扱いの容易性、溶媒への溶解性、 化合物の合成の容易性、価格などの観点から、それぞれ独立して、水素原子、炭素 数 1一 5のアルキル基、ハロゲン原子、及び一 SO X (Xは置換もしくは無置換の炭  From the viewpoints of easy formation of a functional film, stability of the compound, ease of handling, solubility in a solvent, ease of compound synthesis, and price, etc. An alkyl group, a halogen atom, and one SO X (X is a substituted or unsubstituted carbon
2 1 1  2 1 1
素数 1一 5のアルキル基)から選ばれる原子又は基が好ましぐそれぞれ独立して水 素原子又は無置換の炭素数 1一 5のアルキル基がより好ましぐ水素原子又はメチル 基がさらに好ましい。 Rおよび Rの特に好ましい形態としては、 Rおよび Rが水素  An atom or group selected from (prime number 15 alkyl groups) is preferred, and each independently is a hydrogen atom or a hydrogen atom or a methyl group, more preferably an unsubstituted alkyl group having 115 carbon atoms. . Particularly preferred forms of R and R are those in which R and R are hydrogen
1 4 1 4 原子の場合である。 Rと Rが水素原子であると、二つのスルホニル基で挟まれたメチ  This is the case of 14 atoms. When R and R are hydrogen atoms, a methyl group sandwiched between two sulfonyl groups
1 4  14
レン部位が活性化し、電極上での反応皮膜を形成しやすくなるためである。  This is because the ren moiety is activated and a reaction film on the electrode is easily formed.
[0085] また、 Rおよび Rにおレ、て、化合物の安定性、化合物の合成の容易性、溶媒への [0085] In R and R, the stability of the compound, the ease of synthesis of the compound,
2 3  twenty three
溶解性、価格などの観点から、それぞれ独立して、置換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5のアルコキシ基、置換もしくは無 置換のフエノキシ基、水酸基、ハロゲン原子、及び NX X (X及び Xは、それぞれ  From the viewpoints of solubility, price, etc., each independently represents a substituted or unsubstituted alkyl group having 15 to 15 carbon atoms, a substituted or unsubstituted alkoxy group having 15 to 15 carbon atoms, a substituted or unsubstituted phenoxy group, Hydroxyl group, halogen atom, and NX X (X and X are
2 3 2 3  2 3 2 3
独立して、水素原子、または置換もしくは無置換の炭素数 1一 5のアルキル基)、から 選ばれる原子又は基が好ましぐそれぞれ独立して、置換もしくは無置換の炭素数 1 一 5のアルキル基、あるいは置換もしくは無置換の炭素数 1一 5のアルコキシ基がより 好ましぐさらに好ましくは Rと Rのどちらか一方または両方が置換もしくは無置換の  Independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and is preferably an independently substituted or unsubstituted alkyl having 1 to 5 carbon atoms. Group, or a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms is more preferable, and more preferably, one or both of R and R are substituted or unsubstituted.
2 3  twenty three
炭素数 1一 5のアルコキシ基である。また、同様の理由から、上記置換もしくは無置換 の炭素数 1一 5のアルキル基としてはメチル基又はェチル基が良ぐ上記置換もしく は無置換の炭素数 1一 5のアルコキシ基としてはメトキシ基又はエトキシ基が良い。 [0086] 一般式(1)の化合物は、スルホ二ル基を二つ有しており LUMOが小さぐ電解液 中の溶媒分子、モノスルホン酸エステルよりも LUMOが小さい値を持つので還元さ れ易い。例えば下記表 1に示す化合物 No. 1の LUMOは半経験的分子軌道計算 によると一 0. 86eVと小さレ、。そのため環状カーボネートや鎖状カーボネートからなる 溶媒 (LUMO :約 1. 2eV)より先に化合物 No. 1の還元皮膜が負極に形成され溶媒 分子の分解を抑制する役割を担うと考えられる。溶媒分子の分解を抑制するため高 抵抗性の溶媒分子の分解皮膜が負極上に形成されにくくなるため抵抗上昇の抑制 やサイクル特性の向上が期待できる。また、炭素原子に電子吸引性のスルホニル基 が二つ結合した形になっており、炭素原子の活性化よつて電極上で皮膜が形成され 易レ、ことも考えられる。更に、活性メチレンが脱プロトン化することで生じるカルボア二 オンは Liを配位したり、正極上で反応し皮膜を形成したりすることも考えられる。 It is an alkoxy group having 115 carbon atoms. For the same reason, the substituted or unsubstituted alkyl group having 115 carbon atoms is preferably a methyl group or an ethyl group, and the substituted or unsubstituted alkoxy group having 115 carbon atoms is methoxy. Groups or ethoxy groups are preferred. [0086] The compound represented by the general formula (1) has two sulfonyl groups and has a small LUMO. The solvent molecule in the electrolytic solution, and the LUMO has a smaller value than the monosulfonate, so that the compound is reduced. easy. For example, the LUMO of compound No. 1 shown in Table 1 below is as small as 0.86 eV according to semi-empirical molecular orbital calculations. Therefore, it is thought that a reduced film of Compound No. 1 is formed on the negative electrode before the solvent composed of cyclic carbonate or chain carbonate (LUMO: about 1.2 eV), and plays a role in suppressing the decomposition of solvent molecules. Since the decomposition of solvent molecules is suppressed, a decomposition film of high-resistance solvent molecules is less likely to be formed on the negative electrode, so that suppression of resistance increase and improvement of cycle characteristics can be expected. It is also possible that the carbon atom has two electron-attractive sulfonyl groups bonded to it, and that the activation of the carbon atom can easily form a film on the electrode. Furthermore, it is conceivable that the carbanion generated by deprotonation of active methylene coordinates Li or reacts on the positive electrode to form a film.
[0087] 以下に一般式(1)の具体例を示すが、本発明は特にこれらに限定されるものでは ない。  [0087] Specific examples of the general formula (1) are shown below, but the present invention is not particularly limited thereto.
[0088] [化 3]  [0088]
N o . 1
Figure imgf000023_0001
No. 1
Figure imgf000023_0001
o
Figure imgf000024_0001
o
Figure imgf000024_0001
s〔 s009 s (s009
〇〇 〇〇
「。。S0 "..S0
s〔008 io¾o¾oo— o 〇 s (008 io¾o¾oo—o 〇
L ' ° N  L '° N
[6^>] [ 600] [6 ^>] [600]
Figure imgf000025_0001
Figure imgf000025_0001
[s6oo] [s6oo]
Q、Q,
Figure imgf000025_0002
Figure imgf000025_0002
0 0
[2600] [2600]
Sl .8T0/l700Zdf/X3d VZ ST ..SO/SOOZ OAV [0095] [化 10]Sl .8T0 / l700Zdf / X3d VZ ST ..SO / SOOZ OAV [0095] [Formula 10]
N 8
Figure imgf000026_0001
N 8
Figure imgf000026_0001
[0096] [化 11]
Figure imgf000026_0002
[0096] [Formula 11]
Figure imgf000026_0002
[0097] [化 12]  [0097] [Formula 12]
N 1 0
Figure imgf000026_0003
[0098] [化 13]
N 1 0
Figure imgf000026_0003
[0098] [Formula 13]
N 1
Figure imgf000027_0001
N 1
Figure imgf000027_0001
[0099] [化 14]
Figure imgf000027_0002
[0099] [Formula 14]
Figure imgf000027_0002
[0100] [化 15]  [0100] [Formula 15]
N o . 1 3
Figure imgf000027_0003
[0101] [化 16]
Figure imgf000028_0001
No. 1 3
Figure imgf000027_0003
[0101] [Formula 16]
Figure imgf000028_0001
[0102] [化 17]
Figure imgf000028_0002
[0102] [Formula 17]
Figure imgf000028_0002
[0103] [化 18]
Figure imgf000028_0003
[0104] [化 19]
Figure imgf000029_0001
[0103] [Formula 18]
Figure imgf000028_0003
[0104] [Formula 19]
Figure imgf000029_0001
[0105] [化 20]  [0105] [Formula 20]
N 1 8
Figure imgf000029_0002
N 1 8
Figure imgf000029_0002
[0106] [化 21]
Figure imgf000029_0003
[0107] [化 22]
[0106] [Formula 21]
Figure imgf000029_0003
[0107] [Formula 22]
N o . 2 0 N o. 20
Figure imgf000030_0001
Figure imgf000030_0001
[0108] 一般式(1)で表される化合物は、特に限定されないが電解液中に 0. 1質量%以上 5. 0質量%以下含まれることが好ましい。 0. 1質量%未満では電極表面での電気化 学反応による皮膜形成に十分効果が発揮されない場合がある。また、 5. 0質量%を 越えると溶解しにくくなるだけでなく電解液の粘性を大きくしてしまう場合がある。本発 明においてより好ましくは、 0. 5質量%— 3. 0質量%の範囲で添加するとより十分な 皮膜効果が得られる。 [0108] The compound represented by the general formula (1) is not particularly limited, but is preferably contained in the electrolytic solution at 0.1 mass% to 5.0 mass%. If the amount is less than 0.1% by mass, the effect of forming a film by an electrochemical reaction on the electrode surface may not be sufficiently exerted. On the other hand, if it exceeds 5.0% by mass, not only is it difficult to dissolve, but also the viscosity of the electrolyte may be increased. More preferably, in the present invention, a more sufficient film effect can be obtained by adding in the range of 0.5% by mass to 3.0% by mass.
[0109] 一般式(1)に示す化合物は、単独或いは 2種類以上を組み合わせて用いてもよい 。 2種類以上を組み合わせて用いる場合、特に限定されないが電極との皮膜形成の 容易性の観点から少なくとも一つは活性メチレン基を有する化合物(すなわち R及び  [0109] The compounds represented by the general formula (1) may be used alone or in combination of two or more. When two or more kinds are used in combination, at least one compound having an active methylene group (ie, R and
1 One
Rが水素の化合物)が含まれることが有効である。具体的組み合わせとしては、前記It is effective to include a compound in which R is hydrogen). As a specific combination,
4 Four
化合物 No. 1 (活性メチレン基を有する化合物)と化合物 No. 5の化合物である。  Compound No. 1 (a compound having an active methylene group) and compound No. 5.
[0110] 電解液に一般式(1)の化合物を 2種類以上添加させる場合、電解液に占める割合 は特に限定されないが前述と同様な理由により、 2種類合わせて 0. 1質量%以上 5.[0110] When two or more compounds of the general formula (1) are added to the electrolytic solution, the proportion of the compound in the electrolytic solution is not particularly limited, but for the same reason as described above, the total of the two types is 0.1% by mass or more.
0質量%以下が好ましい。また、一般式(1)の化合物を 2種類以上添加する場合、一 般式(1)の化合物の全質量に対する各化合物の比率としては特に限定されるもので はないが、最も少ない化合物の割合が 5質量%、最も多い化合物の割合が 95質量0 mass% or less is preferable. When two or more compounds of the general formula (1) are added, the ratio of each compound to the total mass of the compound of the general formula (1) is not particularly limited, but the ratio of the least compound is 5% by mass, 95% of the most compound
%とすることが好ましい。 % Is preferable.
[0111] 更に、一般式(1)の化合物を含む電解液中に、環式モノスルホン酸エステル、スル ホニル基を 2個有する環式スルホン酸エステル、アルカンスルホン酸無水物、スルホ レンィ匕合物の内、少なくとも一種が含まれる電解液を用いるこことも有効である。 [0111] Furthermore, a cyclic monosulfonic acid ester, a cyclic sulfonic acid ester having two sulfonyl groups, an alkanesulfonic acid anhydride, It is also effective here to use an electrolytic solution containing at least one of the Renyidani products.
[0112] 環式モノスルホン酸エステルとしては下記一般式(2)で示される化合物があげられ る。  [0112] Examples of the cyclic monosulfonic acid ester include compounds represented by the following general formula (2).
[0113] [化 23]  [0113] [Formula 23]
Figure imgf000031_0001
Figure imgf000031_0001
[0114] (但し、上記一般式(2)において、 nは 0以上 2以下の整数である。また、 R— R は、 (However, in the above general formula (2), n is an integer of 0 or more and 2 or less.
5 10 それぞれ独立して、水素原子、置換もしくは無置換の炭素数 1一 12のアルキル基、 置換もしくは無置換の炭素数 1一 6のフルォロアルキル基、及び炭素数 1一 6のポリフ ルォロアルキル基、力 選ばれる原子または基を示す。)  5 10 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 6 carbon atoms, and a polyfluoroalkyl group having 1 to 6 carbon atoms. Indicates the selected atom or group. )
[0115] 上記一般式(2)で示される化合物おいて、化合物の安定性、化合物の合成の容易 性、溶媒への溶解性、価格などの観点から、 nは 0または 1が好ましぐ R そ [0115] In the compound represented by the general formula (2), n is preferably 0 or 1 from the viewpoints of stability of the compound, ease of compound synthesis, solubility in a solvent, and price. So
5一 R は、 10 れぞれ独立して、水素原子、置換もしくは無置換の炭素数 1一 12のアルキル基、及 び炭素数 1一 5のポリフルォロアルキル基、から選ばれる原子又は基が好ましぐそれ ぞれ独立して、水素原子、または炭素数 1一 5のポリフルォロアルキル基がより好まし レ、。さらに好ましくは、 R 全てが水素原子、または R— R の 1つもしくは 2つ  51 R is independently an atom or a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 11 to 12 carbon atoms, and a polyfluoroalkyl group having 115 carbon atoms. Independently, each is more preferably a hydrogen atom or a polyfluoroalkyl group having 1 to 5 carbon atoms. More preferably, all R are hydrogen atoms, or one or two of R—R
5一 R の  5 of R
10 5 10  10 5 10
が炭素数 1一 5のポリフルォロアルキル基で他が水素原子である。上記の炭素数 1一 5のポリフルォロアルキル基としては、トリフルォロメチル基が好ましレ、。  Is a polyfluoroalkyl group having 15 carbon atoms, and the others are hydrogen atoms. As the above-mentioned polyfluoroalkyl group having 115 carbon atoms, a trifluoromethyl group is preferable.
[0116] 具体的には、 1 , 3_プロパンスルトン(1 , 3_PS)、 α—トリフルォロメチルー γ—スル トン、 j3—トリフルォロメチノレ一 γ—スルトン、 γ—トリフルォロメチノレ一 γ—スルトン、 ひ一 メチノレ一 γ _スノレトン、 ひ, j3—ジ(トリフノレオロメチノレ)一 γ _スノレトン、 ひ, ひ一ジ(トリフ ノレオロメチノレ)一 γ—スルトン、 ひ一ゥンデカフルォロペンチノレ一 γ—スルトン、 ひ一ヘプ タフルォロプロピル一 γ—スルトン、 1, 4_ブタンスノレトン(1, 4—BS)などがあげられる [0116] Specifically, 1,3_propane sultone (1,3_PS), α-trifluoromethyl-γ-sultone, j3-trifluoromethylinone, γ-sultone, γ-trifluoromethylinole 1 γ-sultone, 1 methinole 1 γ_snoretone, 1 j-di (trifnorolelomethinole) 1 γ _snoreton, 1 h, Hichiji (trif noreolomethinole) 1 γ-sultone, 1d Gamma-sultone, Tafluoropropyl- γ -sultone, 1,4-butansnoretone (1,4-BS), etc.
[0117] 中でも 1 , 3—プロパンスルトン(1, 3— PS)はリチウムイオン二次電池の負極上での 分解皮膜を形成すると考えられている。 1, 3—PSの LUMOは 0. 07eVであり、本発 明の化合物 No. 1のそれ (一 0. 86eV)よりも大きレ、。例えば本発明の化合物 No. 1と 1 , 3—PSとを電解液に添加し、充電した場合、先ず化合物 No. 1の物質が負極に皮 膜を形成し、次に 1 , 3—PSが皮膜を形成することが考えられる。充電初期には負極 表面のある部分と化合物 No. 1が主に反応する力 S、化合物 No. 1と反応しなかった 部分 (溶媒分子と反応する可能性がある部分)での充電が進行して 1, 3— PSと反応 し、結果として化合物 No. 1と 1 , 3— PSとの複合皮膜が形成され、更なる抵抗上昇の 抑制効果、電池の膨れ抑制などが期待できる。 [0117] Among them, 1,3-propane sultone (1,3-PS) is considered to form a decomposition film on the negative electrode of a lithium ion secondary battery. The LUMO of 1,3-PS is 0.07 eV, which is larger than that of compound No. 1 of the present invention (0.86 eV). For example, when compound No. 1 of the present invention and 1,3-PS are added to the electrolyte and charged, first, the substance of compound No. 1 forms a film on the negative electrode, and then 1,3-PS is formed. It is conceivable to form a film. In the initial stage of charging, the power S that mainly reacts with a certain part of the negative electrode surface and Compound No. 1 and the charging progresses in the part that did not react with Compound No. 1 (the part that may react with solvent molecules). As a result, it reacts with 1,3-PS, and as a result, a composite film of compound No. 1 and 1,3-PS is formed, and it can be expected to further suppress the rise in resistance and to suppress battery swelling.
[0118] 一般式(2)の化合物を電解液に添加する場合、その電解液中の含量は特に限定 されるものではなレ、が、電解液中に 0. 5質量%以上 10. 0質量%以下含まれること が好ましい。 0. 5質量%未満では電極表面での電気化学反応による皮膜形成に十 分効果が発揮されない場合がある。 10. 0質量%を越えると電解液の粘性を大きくし てしまう場合がある。また、一般式(1)及び一般式(2)の化合物中の一般式(2)の比 率としては、それぞれ一般式(1)の化合物と一般式(2)の化合物を合わせた全質量 に対して 10— 90質量%が好ましレ、。  [0118] When the compound of the general formula (2) is added to the electrolytic solution, the content in the electrolytic solution is not particularly limited, but it is 0.5% by mass to 10.0% by mass in the electrolytic solution. % Or less is preferable. If the content is less than 0.5% by mass, the effect of electrochemical reaction on the electrode surface may not be sufficiently exerted to form a film. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased. The ratio of the compound of the general formula (2) in the compound of the general formula (1) and the compound of the general formula (2) is calculated based on the total mass of the compound of the general formula (1) and the compound of the general formula (2). 10-90% by weight is preferred.
[0119] スルホ二ル基を 2個有する環式スルホン酸エステルとしては下記一般式(3)で示さ れる化合物があげられる。 [0119] Examples of the cyclic sulfonic acid ester having two sulfonyl groups include a compound represented by the following general formula (3).
[0120] [化 24] [0120] [Formula 24]
Figure imgf000033_0001
Figure imgf000033_0001
[0121] (但し、上記一般式(3)におレ、て、 Qは酸素原子、メチレン基または単結合、 Aは、置 換もしくは無置換の炭素数 1一 5のアルキレン基、カルボニル基、スルフィニル基、炭 素数 1一 5のポリフルォロアルキレン基、置換もしくは無置換の炭素数 1一 5のフルォ 口アルキレン基、置換もしくは無置換の炭素数 1一 5のアルキレン基における C—C結 合の少なくとも一箇所が C一〇_C結合となった基、炭素数 1一 5のポリフルォロアルキ レン基における C—C結合の少なくとも一箇所が C一〇_C結合となった基、及び置換も しくは無置換の炭素数 1一 5のフルォロアルキレン基における C—C結合の少なくとも 一箇所が C_〇_C結合となった基、力 選ばれる基を示す。 Bは置換もしくは無置換 の炭素数 1一 5のアルキレン基、炭素数 1一 5のポリフルォロアルキレン基、及び置換 もしくは無置換の炭素数 1一 5のフルォロアルキレン基、から選ばれる基を示す。 )(Wherein, in the above general formula (3), Q is an oxygen atom, a methylene group or a single bond, A is a substituted or unsubstituted alkylene group having 115 carbon atoms, a carbonyl group, C-C bond in a sulfinyl group, a polyfluoroalkylene group having 15 to 15 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 15 to 15 carbon atoms, or a substituted or unsubstituted alkylene group having 15 to 15 carbon atoms A group in which at least one of the groups is a C-C bond, a group in which at least one of the C-C bonds in the C5-C15 polyfluoroalkylene group is a C-C bond, and A substituted or unsubstituted fluoroalkylene group having 1 to 5 carbon atoms in which at least one of the C—C bonds is a C_〇_C bond, and a group selected from the group consisting of: Unsubstituted alkylene group with 115 carbon atoms, polyfluoroal with 115 carbon atoms And a group selected from a kylene group and a substituted or unsubstituted fluoroalkylene group having 115 carbon atoms.)
[0122] 上記一般式(3)で示される化合物おレ、て、化合物の安定性、化合物の合成の容易 性、溶媒への溶解性、価格などの観点から、 Aは、置換もしくは無置換の炭素数 1一 5のアルキレン基、炭素数 1一 5のポリフルォロアルキレン基、置換もしくは無置換の 炭素数 1一 5のフルォロアルキレン基、置換もしくは無置換の炭素数 1一 5のアルキレ ン基における C一 C結合の少なくとも一箇所が C一 O— C結合となった基、炭素数 1一 5 のポリフルォロアルキレン基における C_C結合の少なくとも一箇所が C一〇_C結合と なった基、及び置換もしくは無置換の炭素数 1一 5のフルォロアルキレン基における C一 C結合の少なくとも一箇所が c-o-c結合となった基、力 選ばれる基が好ましい 。置換もしくは無置換の炭素数 1一 5のアルキレン基、炭素数 1一 5のポリフルォロア ルキレン基、および置換もしくは無置換の炭素数 1一 5のフルォロアルキレン基、力 選ばれる基がより好ましぐ置換もしくは無置換の炭素数 1一 5のアルキレン基がさら に好ましぐメチレン基、エチレン基又は 2, 2_プロパンジィル基が特に好ましレ、。上 記の炭素数 1一 5のフルォロアルキレン基は、メチレン基とジフルォロメチレン基を含 むことが好ましぐメチレン基とジフルォロメチレン基とで構成されていることがより好ま しい。 [0122] In view of the stability of the compound represented by the above general formula (3), the stability of the compound, the ease of compound synthesis, the solubility in a solvent, the price, and the like, A is a substituted or unsubstituted C1-C5 alkylene group, C5-C15 polyfluoroalkylene group, substituted or unsubstituted C5-C15 fluoroalkylene group, substituted or unsubstituted C1-C5 alkylene At least one of the C-C bonds in the C-C bond is a C-O-C bond, and at least one of the C_C bonds in a C5-C15 polyfluoroalkylene group is a C-C bond. A group in which at least one of the C-C bonds in the substituted or unsubstituted fluoroalkylene group having 1 to 5 carbon atoms is a coc bond, or a group selected by force . A substituted or unsubstituted alkylene group having 15 to 15 carbon atoms, a polyfluoroalkylene group having 15 to 15 carbon atoms, and a substituted or unsubstituted fluoroalkylene group having 15 to 15 carbon atoms; A substituted or unsubstituted alkylene group having 15 carbon atoms is more preferred, and a methylene group, an ethylene group or a 2,2-propanezyl group is particularly preferred. The fluoroalkylene group having 115 carbon atoms described above is more preferably composed of a methylene group and a difluoromethylene group, which preferably contains a methylene group and a difluoromethylene group. New
[0123] また、同様の理由から、 Bは炭素数 1一 5のアルキレン基が好ましぐメチレン基、 1 , 1—ェタンジィル基、または 2, 2_プロパンジィル基がより好ましい。  [0123] For the same reason, B is more preferably a methylene group, a 1,1-ethanediyl group, or a 2,2-propanediyl group, which is preferably an alkylene group having 115 carbon atoms.
[0124] これらのスルホ二ル基を 2個有する環式スルホン酸エステルは、特許文献 9に開示 されているものを含むものである。一般式(3)に示す具体的化合物を以下に列挙す るがこれらに限定されるものではない。  [0124] These cyclic sulfonic acid esters having two sulfonyl groups include those disclosed in Patent Document 9. Specific compounds represented by the general formula (3) are listed below, but are not limited thereto.
[0125] [化 25]  [0125] [Formula 25]
Figure imgf000034_0001
Figure imgf000034_0001
[0126] [化 26] [0126] [Formula 26]
N o . 2 2
Figure imgf000035_0001
N o. 2 2
Figure imgf000035_0001
[0127] [化 27] [0127] [Formula 27]
Ν  Ν
[0128]
Figure imgf000035_0002
[0129] [化 29]
[0128]
Figure imgf000035_0002
[0129] [Formula 29]
N o . 2 5
Figure imgf000036_0001
No. 2 5
Figure imgf000036_0001
[0130] [化 30]
Figure imgf000036_0002
[0130] [Formula 30]
Figure imgf000036_0002
[0131] [化 31] [0131] [Formula 31]
N o . 2 7 o o o ° 〇、 [0132] [化 32] N o. 2 7 ooo ° 〇, [0132] [Formula 32]
N o 8
Figure imgf000037_0001
N o 8
Figure imgf000037_0001
[0133] [化 33]  [0133] [Formula 33]
N 2 9
Figure imgf000037_0002
N 2 9
Figure imgf000037_0002
[0134] [化 34]  [0134] [Formula 34]
N o . 3 0
Figure imgf000037_0003
N o. 30
Figure imgf000037_0003
[0135] [化 35] o N〇 [0135] [N35] o N〇
"、 ",
N N
o  o
.  .
3 o 3 £— 3 o 3 £ —
4Four
Figure imgf000038_0001
Yes
Figure imgf000038_0001
[0136] [化 36] [0136] [Formula 36]
0, 0,
II  II
 〇
[0137] [化 37] [0137] [Formula 37]
N 0 N 0
Figure imgf000038_0002
Figure imgf000038_0002
[0138] [化 38] [0138] [Formula 38]
Figure imgf000038_0003
[0139] [化 39]
Figure imgf000038_0003
[0139] [Formula 39]
N o 3 5
Figure imgf000039_0001
N o 3 5
Figure imgf000039_0001
[0140] [化 40]  [0140] [Formula 40]
N 3 6
Figure imgf000039_0002
N 3 6
Figure imgf000039_0002
[0141] [化 41]  [0141] [Formula 41]
N o . 3 7
Figure imgf000039_0003
No. 3 7
Figure imgf000039_0003
[0142] [化 42] [0142] [Formula 42]
N o . 3 8
Figure imgf000040_0001
No. 3 8
Figure imgf000040_0001
[0143] [化 43]  [0143] [Formula 43]
N 3 9 N 3 9
Figure imgf000040_0002
Figure imgf000040_0002
[0144] [化 44]  [0144] [Formula 44]
N o . 4 0 N o. 40
Figure imgf000040_0003
Figure imgf000040_0003
[0145] [化 45]  [0145] [Formula 45]
N . 4 1
Figure imgf000040_0004
[0146] [化 46]
N. 4 1
Figure imgf000040_0004
[0146] [Formula 46]
N o . 4 2 No. 4 2
o o  o o
。1Λ . 1Λ
[0147] これらの化合物は本発明の一般式(1)の化合物と同準位の LUMOを有し、且つス ルホニル基を二つ以上有するため、例えば化合物 No. 1と化合物 No. 21 (MMDS )の物質とを電解液に添加すると、充電初期に高イオン伝導性の複合皮膜が形成さ れ易い。 MMDSは環式の化合物であり開環することで負極と反応し皮膜を形成しや すレ、ィ匕合物であると考えられる。 [0147] Since these compounds have the same level of LUMO as the compound of the general formula (1) of the present invention and have two or more sulfonyl groups, for example, the compound No. 1 and the compound No. 21 (MMDS When the substance is added to the electrolytic solution, a highly ion-conductive composite film is easily formed at the initial stage of charging. MMDS is a cyclic compound, and is considered to be a compound which reacts with the negative electrode by ring opening to form a film.
[0148] MMDSが負極上でかなり選択的に皮膜形成に寄与するとすれば、化合物 No. 1 の物質は負極上での皮膜形成確率が相対的に減少する力 逆に正極上での反応確 率が高くなり正極上での皮膜形成が達成される。その結果、正極上での溶媒分解抑 制も期待できる。  [0148] Assuming that MMDS significantly selectively contributes to film formation on the negative electrode, the compound No. 1 has a relatively low probability of film formation on the negative electrode, and conversely, the reaction probability on the positive electrode. And film formation on the positive electrode is achieved. As a result, suppression of solvent decomposition on the positive electrode can be expected.
[0149] 一般式(3)の化合物を電解液に添加する場合、一般式(3)の化合物の電解液中 の含量は特に限定されるものではないが、電解液中に 0. 5質量%以上 10. 0質量% 以下含まれることが好ましい。 0. 5質量%未満では電極表面での電気化学反応によ る皮膜形成に十分効果が発揮されない場合がある。 10. 0質量%を越えると電解液 の粘性を大きくしてしまう場合がある。一般式(1)と一般式(3)中の、一般式(3)の化 合物の比率としては、一般式(1)及び一般式(3)の化合物の全質量の 10 90質量 %が好ましい。また、これに加えて一般式(2)の化合物を用いる場合には、一般式(1 )、一般式(2)及び一般式(3)の化合物の全質量の 10 90質量%が好ましレ、。  [0149] When the compound of the general formula (3) is added to the electrolytic solution, the content of the compound of the general formula (3) in the electrolytic solution is not particularly limited, but may be 0.5% by mass in the electrolytic solution. It is preferable that the content is not less than 10.0% by mass. If the amount is less than 0.5% by mass, the effect of forming a film on the electrode surface by an electrochemical reaction may not be sufficiently exerted. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased. The ratio of the compound of the general formula (3) in the general formulas (1) and (3) is 1090% by mass of the total mass of the compounds of the general formulas (1) and (3). preferable. In addition, when the compound of the general formula (2) is used in addition, 1090% by mass of the total mass of the compounds of the general formulas (1), (2) and (3) is preferable. ,.
[0150] 本発明では、場合によっては前記電解液中にビニレンカーボネート (VC)及びその 誘導体の少なくとも一種を添加することができる。ビニレンカーボネート(VC)及びそ の誘導体の少なくとも一種を添カ卩することで更にサイクル特性の改善を図ることがで きる。 VCの LUMOは 0. 09eVであり一般式(1)の化合物よりも還元反応を受けにく レ、。初期の充放電で還元反応を受けて消費することなく長期に渡って電解液に存在 すると考えられる。そのため、充放電サイクル時に徐々に消費されることでサイクル特 性向上に寄与することができる。前記ビニレンカーボネート及びその誘導体の少なく とも一種を電解液の添加剤として使用する場合には、電解液中に 0. 05質量% 3. 0質量%含ませることで効果が得られる。 [0150] In the present invention, at least one of vinylene carbonate (VC) and a derivative thereof can be optionally added to the electrolytic solution. Cycle characteristics can be further improved by adding at least one of vinylene carbonate (VC) and a derivative thereof. The LUMO of VC is 0.09 eV, which makes it less susceptible to reduction than the compound of general formula (1). Les ,. It is thought that it is present in the electrolyte for a long time without being consumed by the reduction reaction in the initial charge and discharge. Therefore, by gradually being consumed during the charge / discharge cycle, it is possible to contribute to improvement in cycle characteristics. When at least one of vinylene carbonate and its derivative is used as an additive in the electrolytic solution, the effect can be obtained by adding 0.05% by mass and 3.0% by mass in the electrolytic solution.
[0151] 一般式(1)の化合物と VC、一般式(1)の化合物とそれ以外の添加剤と更に VCを 電解液に添加する場合、 VCの電解液全体に占める割合は特に限定されるものでは ないが 0. 5質量% 10. 0質量%が好ましレ、。 0. 5質量%未満では電極表面での 電気化学反応による皮膜形成に十分効果が発揮されない場合がある。 10. 0質量% を越えると電解液の粘性を大きくしてしまう場合がある。  [0151] When the compound of general formula (1) and VC, the compound of general formula (1) and other additives, and further VC are added to the electrolytic solution, the ratio of VC to the total electrolytic solution is particularly limited. 0.5% by mass 10.0% by mass is preferred. If the amount is less than 0.5% by mass, the effect of forming a film by an electrochemical reaction on the electrode surface may not be sufficiently exhibited. If it exceeds 10.0% by mass, the viscosity of the electrolyte may be increased.
[0152] 本発明の電解液は、一般式(1)で表される化合物を電解液にあら力、じめ添加'溶 解することによりもたらされる。この電解液に適宜その他の添加材料 (環式モノスルホ ン酸エステル、スルホ二ル基を 2個有する環式スルホン酸エステル、スルホラン、アル カンスルホン酸無水物、スルホレン化合物あるいはビニレンカーボネート化合物)を 加えることにより、所望の電解液を得ることができる。  [0152] The electrolytic solution of the present invention is obtained by adding and dissolving the compound represented by the general formula (1) to the electrolytic solution. Other additives (cyclic monosulfonate, cyclic sulfonate having two sulfonyl groups, sulfolane, alkanesulfonic anhydride, sulfolene compound or vinylene carbonate compound) may be added to this electrolyte as appropriate. Thus, a desired electrolyte can be obtained.
[0153] 本発明に係る二次電池の形状としては、特に制限はないが、例えば、円筒型、角 型、コイン型、ラミネート型などがあげられる。この中でラミネート型とは合成樹脂と金 属箔との積層体力 なる可撓性フィルム等よりなる外装体によって封口された形状を 有するものであり、円筒型、角型、コイン型等の電池缶よりなる外装体に封入したもの と比して内圧の上昇による影響を受けやすぐ従って電極と電解液との界面との化学 反応の制御がより重要となる。本発明による一般式(1)で表される鎖状のジスルホン 化合物を含有する二次電池であれば、ラミネート型の電池であっても抵抗上昇の抑 制や電池の膨れ (ガス発生及び内圧の上昇)を抑制することが可能である。従って、 自動車用途など大型のリチウムイオン二次電池においても、安全性や長期信頼性を 確保すること力 S可肯 となる。  [0153] The shape of the secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, and a laminate shape. Among them, the laminate type has a shape sealed by an outer package made of a flexible film or the like which is a laminate of a synthetic resin and a metal foil, and is a battery can of cylindrical type, square type, coin type and the like. As soon as it is affected by the increase of the internal pressure as compared with the one enclosed in an outer package, control of the chemical reaction between the electrode and the electrolyte is more important. As long as the secondary battery contains the chain disulfone compound represented by the general formula (1) according to the present invention, even if it is a laminate type battery, it suppresses a rise in resistance and swells the battery (gas generation and internal pressure reduction). Rise) can be suppressed. Therefore, it is possible to secure safety and long-term reliability even for large-sized lithium-ion secondary batteries such as those for automobiles.
[0154] 本発明に係るリチウム二次電池は、乾燥空気または不活性ガス雰囲気において、 負極 13および正極 12を、セパレータ 16を介して積層、あるいは積層したものを捲回 した後に、外装体に挿入し、一般式(1)で表される化合物を含む電解液を含浸させ た後、電池外装体を封止することで得られる。封止前または封止後に、電池を充電 することにより、前記電極上の皮膜を形成させることで本発明の効果を得ることが可 能である。 [0154] In the lithium secondary battery according to the present invention, the negative electrode 13 and the positive electrode 12 are laminated via the separator 16 in a dry air or inert gas atmosphere, or the laminated product is wound, and then inserted into the exterior body. And impregnated with an electrolytic solution containing the compound represented by the general formula (1). After that, it is obtained by sealing the battery exterior body. The effect of the present invention can be obtained by charging the battery before or after sealing to form a film on the electrode.
[0155] また、本発明の一般式(1)で示される鎖状ジスルホン酸エステルはリチウム二次電 池に限らず、他の電気化学デバイス用電解液の添加剤としても使用することもできる 。他の電気化学デバイスとしては、例えば有機ラジカル電池、キャパシタ、色素増感 型湿式太陽電池が挙げられる。  [0155] Further, the chain disulfonate represented by the general formula (1) of the present invention is not limited to a lithium secondary battery, and can also be used as an additive for other electrolytic solutions for electrochemical devices. Other electrochemical devices include, for example, organic radical batteries, capacitors, and dye-sensitized wet solar cells.
実施例  Example
[0156] (電池の作製)  [0156] (Production of Battery)
表 1一 5に記載の正極活物質および導電性付与剤を乾式混合し、バインダーであ る PVDFを溶解させた N—メチルー 2—ピロリドン(NMP)中に均一に分散させスラリ一 を作製した。導電性付与剤としてはカーボンブラックを用いた。そのスラリーを正極集 電体となるアルミ金属箔(角型、円筒型の場合には 20 / m、ラミネート型の場合には 25 /i m)上に塗布後、 NMPを蒸発させることにより正極シートとした。正極中の固形 分比率は正極活物質:導電性付与剤: PVDF = 80 : 10 : 10 (質量%)とした。  A positive electrode active material and a conductivity-imparting agent shown in Table 15 were dry-mixed, and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder was dissolved to prepare a slurry. Carbon black was used as the conductivity-imparting agent. The slurry is applied on an aluminum metal foil (20 / m in the case of square or cylindrical type, 25 / im in the case of laminate type) serving as a positive electrode current collector, and NMP is evaporated to form a positive electrode sheet. did. The solid content ratio in the positive electrode was positive electrode active material: conductivity imparting agent: PVDF = 80: 10: 10 (% by mass).
[0157] 一方、炭素材料以外の負極活物質としては表 1一 5に記載のものとした。炭素材料 としては黒鉛または非晶質炭素を使用した。負極活物質を粒子状とする場合、炭素 材料以外の負極活物質: PVDF:導電性付与材 = 90 : 9 : 1 (質量%)の比率となるよ うに乾式混合したものと、平均粒径 10 z mの炭素材料粒子とを NMPに分散させ、負 極集電体となる銅箔(角型、円筒型の場合には 10 x m、ラミネート型の場合には 20 z m)上に塗布して作製した。また負極活物質を膜状とする場合、特に明記しない限 り、平均粒径 10 μ mの炭素材料粒子: PVDF:導電性付与材 = 90 : 9 : 1 (質量%)の 比率となるように乾式混合したものを NMPに分散させ、負極集電体となる銅箔(角型 、円筒型の場合には 10 x m、ラミネート型の場合には 20 z m)上に塗布した後に、真 空蒸着方式、スパッタリング方式、及び CVD方式から適宜選択し炭素材料以外の負 極活物質を成膜した。負極活物質として金属若しくは半金属又は酸化物と炭素材料 とを複合化した複合粒子を用いる場合は、複合粒子: PVDF:導電性付与材 = 90: 9 : 1 (質量%)の比率となるように乾式混合したものを NMPに分散させ、負極集電体と なる銅箔(10 μ ΐη)上に塗布して作製した。なお、特に明記しない限り、負極活物質 全体に対する炭素材料は 50質量%とした。これら負極の膜厚は正極との容量比によ つて設定するものであり(以下 A/Cバランスと記載)、ここで Αは負極の単位表面積 あたりの容量、 Cは正極の単位表面積あたりの容量)、この A/Cバランスが 1以上 1. 7以下となるように正極と負極の塗布量を決定した。 [0157] On the other hand, negative electrode active materials other than the carbon material were those shown in Table 15-15. Graphite or amorphous carbon was used as the carbon material. When the negative electrode active material is in the form of particles, the negative electrode active material other than the carbon material: dry-mixed so that the ratio of PVDF: conductivity-imparting material = 90: 9: 1 (% by mass), and the average particle diameter Zm carbon material particles are dispersed in NMP and coated on copper foil (10 xm for square or cylindrical, 20 zm for laminate) as negative electrode current collector . When the negative electrode active material is in the form of a film, unless otherwise specified, the ratio of carbon material particles having an average particle diameter of 10 μm: PVDF: conductivity imparting material = 90: 9: 1 (% by mass). The dry mixture is dispersed in NMP and applied on copper foil (10 xm for square or cylindrical, 20 zm for laminate) as negative electrode current collector, followed by vacuum evaporation. A negative electrode active material other than a carbon material was appropriately selected from a sputtering method, a sputtering method, and a CVD method. When using composite particles obtained by compounding a metal, metalloid, or oxide and a carbon material as the negative electrode active material, the ratio of the composite particles: PVDF: conductivity imparting material = 90: 9: 1 (% by mass) The dry mixture is dispersed in NMP and mixed with the negative electrode current collector. On a copper foil (10 μΐη). Unless otherwise specified, the carbon material was 50% by mass based on the entire negative electrode active material. The film thickness of these negative electrodes is set according to the capacity ratio with the positive electrode (hereinafter referred to as A / C balance), where Α is the capacity per unit surface area of the negative electrode, and C is the capacity per unit surface area of the positive electrode. ), The coating amount of the positive electrode and the negative electrode was determined so that this A / C balance was 1 or more and 1.7 or less.
[0158] 電解液は、表 1一 5に記載の溶媒、電解質として lmol/Lの LiPF、及び表 1 [0158] The electrolytic solution used was a solvent described in Table 15-5, lmol / L LiPF as the electrolyte, and Table 1
6 一 5 に記載の添加剤を溶解したものを用いた。なお添加剤の欄の括弧内の数字は電解 液内における添加剤の質量%を示す。  A solution prepared by dissolving the additive described in 1-5 was used. The number in parentheses in the column of the additive indicates the mass% of the additive in the electrolytic solution.
[0159] その後、負極と正極とをポリエチレンからなるセパレータを介して積層し、角型二次 電池(実施 ί列 1一 31、 52 60、 61 91、及び 112— 143、並びに、 ]:匕較 ί列 1一 3、 9 一 13、 19、及び 20)、円筒型二次電池(実施例 46— 51、及び 106 111、並びに、 比較例 8、及び 18)、及びアルミニウムラミネートフィルム型二次電池(実施例 32— 4 5、及び 92— 105、並びに、比較例 4一 7、及び 14一 17)を作製した。アルミニウムラ ミネートフィルム型二次電池の場合、用いたラミネートフィルムはポリプロピレン樹脂( 封着層、厚み 70 /i m)、ポリエチレンテレフタレート(20 /i m)、アルミニウム(50 μ ΐη) 、ポリエチレンテレフタレート(20 / m)の順に積層した構造を有する。これを所定の 大きさに 2枚切り出し、その一部分に上記の積層電極体の大きさに合った底面部分と 側面部分とを有する凹部を形成し、これらを対向させて上記の積層電極体を包み込 み、周囲を熱融着させてフィルム外装電池を作製した。最後の 1辺を熱融着封口する 前に電解液を積層電極体に含浸させた。  [0159] Thereafter, the negative electrode and the positive electrode were laminated with a separator made of polyethylene interposed therebetween, and a prismatic secondary battery (exemplified in the column 1-31, 52 60, 61 91, and 112-143, and]: ί Rows 1-3, 9-13, 19, and 20), cylindrical secondary batteries (Examples 46-51 and 106 111, and Comparative Examples 8 and 18), and aluminum laminated film secondary batteries (Examples 32 to 45 and 92 to 105, and Comparative Examples 417 and 14 to 117) were produced. In the case of an aluminum laminated film type secondary battery, the laminated film used was a polypropylene resin (sealing layer, thickness 70 / im), polyethylene terephthalate (20 / im), aluminum (50 μΐη), polyethylene terephthalate (20 / m ). Two pieces of this are cut out to a predetermined size, and a recess having a bottom portion and a side portion corresponding to the size of the above-mentioned laminated electrode body is formed in a part thereof, and these are opposed to each other to wrap the above-mentioned laminated electrode body. Then, the periphery was heat-sealed to produce a film-covered battery. The electrolytic solution was impregnated into the laminated electrode body before the last one side was sealed by heat sealing.
[0160] (電池の評価)  [0160] (Evaluation of battery)
上記プロセスによって作製した電池は、温度 20°Cにおいて、充電レート 1. 0C、放 電レート 1. 0C、充電終止電圧 4. 2V、放電終止電圧 3. 0V、として充放電サイクル 試験を行った。その結果は表 6— 10に示した。なお、 400サイクル後の容量維持率( %)とは 400サイクル試験後の放電容量 (mAh)を、 10サイクル試験後の放電容量( mAh)で割った値に 100をかけたものである。 400サイクル後の抵抗維持率とは、サ イタル試験前の抵抗を 1としたときの、 400サイクル試験後の抵抗を相対値で示したも のである。 [0161] (実施例 1) The battery fabricated by the above process was subjected to a charge / discharge cycle test at a temperature of 20 ° C with a charge rate of 1.0C, a discharge rate of 1.0C, a charge end voltage of 4.2V, and a discharge end voltage of 3.0V. The results are shown in Table 6-10. The capacity retention rate (%) after 400 cycles is the value obtained by dividing the discharge capacity (mAh) after the 400 cycle test by the discharge capacity (mAh) after the 10 cycle test and multiplying by 100. The resistance retention rate after 400 cycles is the relative value of the resistance after the 400 cycles test, where the resistance before the sitar test is 1. [0161] (Example 1)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを CVD法によ つて成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層 に含まれる正極活物質には LiCoOを用いた。電解液には、 EC/DEC/EMC = 3  The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by CVD. Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DEC / EMC = 3 for electrolyte
2  2
0/50/20 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合  In 0/50/20 (volume ratio), lmol / L LiPF as electrolyte and compound as additive
6  6
物 No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミ製の角型容器を 用いた。正極と負極の容量比 A/Cバランスは 1. 05とした。  A material containing 0.5% by mass of the product No. 1 was used. A rectangular aluminum container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was 1.05.
[0162] (実施例 2) (Example 2)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snを蒸着によって 成膜して作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 1.
[0163] (実施例 3) (Example 3)
負極活物質を含有する層は、炭素材料以外の負極活物質として A1をスパッタによ つて成膜して作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by sputtering A1 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
[0164] (実施例 4) (Example 4)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Pbを用いて作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was prepared using Pb having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
[0165] (実施例 5) (Example 5)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Agを用いて作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was prepared using Ag having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
[0166] (実施例 6) (Example 6)
負極活物質を含有する層は、炭素材料以外の負極活物質として Geをスパッタによ つて成膜して作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by sputtering Ge as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 1.
[0167] (実施例 7) (Example 7)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sbを蒸着によって 成膜して作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by depositing Sb as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 1.
[0168] (実施例 8) [0168] (Example 8)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと A1との 2つの スパッタ源を使用し同時に成膜して作製した(S^g子数: A1原子数 = 5 : 5)。それ以 外の条件は実施例 1と同じとした。 The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources, Si and A1, as the negative electrode active material other than the carbon material (the number of S ^ g elements: the number of A1 atoms = 5: 5 ). Beyond The other conditions were the same as in Example 1.
[0169] (実施例 9) (Example 9)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Siと平均粒径 10 a mの Snとをメカニカルミリングで混合した粒子を用いて作製した (Si原子数: Sn原子数 = 5 : 5)。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was prepared using particles obtained by mixing mechanically milling Si having an average particle size of 10 μΐη and Sn having an average particle size of 10 am as a negative electrode active material other than the carbon material (the number of Si atoms). : Number of Sn atoms = 5: 5). Other conditions were the same as in Example 1.
[0170] (実施例 10) (Example 10)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Liとの 2つの 蒸着源を使用し同時蒸着によって成膜して作製した (Si原子数: Li原子数 = 5: 5)。 それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Si and Li, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Li atoms = 5: 5 ). Other conditions were the same as in Example 1.
[0171] (実施例 11)  (Example 11)
添加剤は化合物 No. 2を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 2 was used as an additive. Other conditions were the same as in Example 1.
[0172] (実施例 12) (Example 12)
添加剤は化合物 No. 3を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 3 was used as an additive. Other conditions were the same as in Example 1.
[0173] (実施例 13) (Example 13)
添加剤は化合物 No. 4を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 4 was used as an additive. Other conditions were the same as in Example 1.
[0174] (実施例 14) (Example 14)
添加剤は化合物 No. 6を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 6 was used as an additive. Other conditions were the same as in Example 1.
[0175] (実施例 15) (Example 15)
添加剤は化合物 No. 9を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 9 was used as an additive. Other conditions were the same as in Example 1.
[0176] (実施例 16) (Example 16)
添加剤は化合物 No. 10を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 10 was used as an additive. Other conditions were the same as in Example 1.
[0177] (実施例 17) (Example 17)
添加剤は化合物 No. 15を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 15 was used as an additive. Other conditions were the same as in Example 1.
[0178] (実施例 18) (Example 18)
添加剤は化合物 No. 16を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 16 was used as an additive. Other conditions were the same as in Example 1.
[0179] (実施例 19) (Example 19)
添加剤は化合物 No. 19を用いた。それ以外の条件は実施例 1と同じとした。  Compound No. 19 was used as an additive. Other conditions were the same as in Example 1.
[0180] (実施例 20) 負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Siを用いて作製した。炭素材料としては非晶質炭素を用いた。それ以外の条件は 実施例 1と同じとした。 [0180] (Example 20) The layer containing the negative electrode active material was produced using Si having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 1.
[0181] (実施例 21) [0181] (Example 21)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Snを用いて作製した。炭素材料としては非晶質炭素を用いた。それ以外の条件は 実施例 1と同じとした。  The layer containing the negative electrode active material was prepared using Sn having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 1.
[0182] (比較例 1) [0182] (Comparative Example 1)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを蒸着によって 成膜して作製した。また、電解液には添加剤を使用しなかった。それ以外の条件は 実施例 1と同じとした。  The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 1.
[0183] (比較例 2) [0183] (Comparative Example 2)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Siを用いて作製した。炭素材料としては非晶質炭素を用いた。また、電解液には 添加剤を使用しなかった。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was produced using Si having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 1.
[0184] (実施例 22) (Example 22)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを CVD法によ つて成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層 に含まれる正極活物質には LiMnOを用いた。電解液には、 PC/EC/DEC = 20  The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by CVD. Graphite was used as the carbon material. LiMnO was used as the positive electrode active material contained in the layer containing the positive electrode active material. PC / EC / DEC = 20 for electrolyte
2  2
/20/60 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合  In 20/60 (volume ratio), lmol / L of LiPF as electrolyte and compound as additive
6  6
物 No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミ製の角型容器を 用いた。正極と負極の容量比 A/Cバランスは 1. 05とした。  A material containing 0.5% by mass of the product No. 1 was used. A rectangular aluminum container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was 1.05.
[0185] (実施例 23) (Example 23)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snを蒸着によって 成膜して作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 22.
[0186] (実施例 24) (Example 24)
負極活物質を含有する層は、炭素材料以外の負極活物質として A1をスパッタによ つて成膜して作製した。それ以外の条件は実施例 22と同じとした。 [0187] (実施例 25) The layer containing the negative electrode active material was formed by sputtering A1 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22. (Example 25)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Pbを用いて作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was prepared using Pb having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
[0188] (実施例 26) (Example 26)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Agを用いて作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was prepared using Ag having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
[0189] (実施例 27) (Example 27)
負極活物質を含有する層は、炭素材料以外の負極活物質として Geをスパッタによ つて成膜して作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was formed by sputtering Ge as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 22.
[0190] (実施例 28) (Example 28)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sbを蒸着によって 成膜して作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was formed by depositing Sb as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 22.
[0191] (実施例 29) (Example 29)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと A1との 2つの スパッタ源を使用し同時に成膜して作製した (S源子数: A1原子数 = 5 : 5)。それ以 外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources, Si and A1, as the negative electrode active material other than the carbon material (S source number: A1 atom number: 5: 5) . Other conditions were the same as in Example 22.
[0192] (実施例 30) (Example 30)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Siと平均粒径 10 μ mの Snとをメカニカルミリングで混合した粒子を用いて作製した (Si原子数: Sn原子数 = 5 : 5)。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was prepared using particles obtained by mixing mechanically milled Si having an average particle size of 10 μΐη and Sn having an average particle size of 10 μm as a negative electrode active material other than the carbon material (Si atom Number: Sn atom number = 5: 5). Other conditions were the same as in Example 22.
[0193] (実施例 31) (Example 31)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Liとの 2つの 蒸着源を使用し同時蒸着によって成膜して作製した (Si原子数: Li原子数 = 5: 5)。 それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Si and Li, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Li atoms = 5: 5 ). Other conditions were the same as in Example 22.
[0194] (比較例 3) (Comparative Example 3)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを蒸着によって 成膜して作製した。また、電解液には添加剤を使用しなかった。それ以外の条件は 実施例 22と同じとした。 [0195] (実施例 32) The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 22. (Example 32)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つ蒸着源を使用し同時蒸着によって成膜して作製した(S源子数: Fe 原子数 = 19 : 1)。炭素材料としては黒鉛を用いた。正極活物質を含有する層に含ま れる正極活物質には LiCoOを用いた。電解液には、 EC/DEC/EMC = 30/50  The layer containing the negative electrode active material was formed by simultaneous deposition using two evaporation sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of S sources: Fe Atomic number = 19: 1). Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DEC / EMC = 30/50 for electrolyte
2  2
/20 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 No  / 20 (volume ratio), lmol / L LiPF as electrolyte and compound No as additive
6  6
. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミニウム箔をラミネートで コーティングした部材で容器を作製し用いた。正極と負極の容量比 A/Cバランスは 1 containing 0.5% by mass was used. For the battery exterior, a container was made of a member coated with aluminum foil by lamination and used. The capacity ratio of the positive and negative electrodes A / C balance is
1. 05とした。 1. Set to 05.
[0196] (実施例 33) (Example 33)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snと元素 Xに相当 する Cuとの 2つのスパッタ源を使用し同時に成膜して作製した(Sn原子数: Cu原子 数 = 3: 7)。それ以外の条件は実施例 32と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Sn and Cu corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of Cu atoms = 3: 7). Other conditions were the same as in Example 32.
[0197] (実施例 34) (Example 34)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si— A1合金粒子と平均粒径 10 μ ΐηの元素 Xに相当する Ni粒子とをメカニカルミリ ングで混合した粒子を用いて作製した(S源子数: A1原子数: N源子数 = 10: 9: 1) The layer containing the negative electrode active material is formed by mechanically milling, as a negative electrode active material other than carbon material, Si—A1 alloy particles having an average particle size of 10 μΐη and Ni particles corresponding to element X having an average particle size of 10 μΐη. Made using mixed particles (S source number: A1 atom number: N source number = 10: 9: 1)
。それ以外の条件は実施例 32と同じとした。 . Other conditions were the same as in Example 32.
[0198] (実施例 35) (Example 35)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si— Sn合金粒子と平均粒径 10 μ mの元素 Xに相当する Ti粒子とをメカニカルミリ ングで混合した粒子を用いて作製した(Si原子数: Sn原子数: Ti原子数 = 5 : 5 : 90) The layer containing the negative electrode active material is formed by mechanically milling Si—Sn alloy particles with an average particle diameter of 10 μΐη and Ti particles corresponding to element X with an average particle diameter of 10 μm as the negative electrode active material other than the carbon material. Fabricated using mixed particles (Si atoms: Sn atoms: Ti atoms = 5: 5: 90)
。それ以外の条件は実施例 32と同じとした。 . Other conditions were the same as in Example 32.
[0199] (実施例 36) (Example 36)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Si— Li合金粒子と平均粒径 10 μ mの元素 Xに相当する Fe粒子とをメカニカルミリ ングで混合した粒子を用いて作製した(Si原子数: Li原子数: Fe原子数 = 9 : 4 : 1)。 それ以外の条件は実施例 32と同じとした。 [0200] (実施例 37) In the layer containing the negative electrode active material, as a negative electrode active material other than carbon material, Si--Li alloy particles with an average particle size of 10 m and Fe particles corresponding to element X with an average particle size of 10 μm are mixed by mechanical milling. (Si atoms: Li atoms: Fe atoms = 9: 4: 1). Other conditions were the same as in Example 32. [0200] (Example 37)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si粒子と平均粒径 10 μ mの元素 Xに相当する Fe粒子をメカニカルミリングにより複 合化させたものを用いた (Si原子数: Fe原子数 = 9: 1 )。炭素材料としては非晶質炭 素を用いた。それ以外の条件は実施例 32と同じとした。  In the layer containing the negative electrode active material, Si particles with an average particle diameter of 10 μΐη and Fe particles corresponding to element X with an average particle diameter of 10 μm were combined by mechanical milling as the negative electrode active material other than the carbon material. (Number of Si atoms: number of Fe atoms = 9: 1). Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 32.
[0201] (比較例 4)  [0201] (Comparative Example 4)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つ蒸着源を使用し同時蒸着によって成膜して作製した (S源子数: Fe 原子数 = 19 : 1)。また、電解液には添加剤を使用しなかった。それ以外の条件は実 施例 32と同じとした。  The layer containing the negative electrode active material was formed by simultaneous vapor deposition using two evaporation sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of S sources: Fe Atomic number = 19: 1). No additives were used in the electrolyte. Other conditions were the same as in Example 32.
[0202] (比較例 5)  [0202] (Comparative Example 5)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Si粒子と平均粒径 10 μ mの元素 Xに相当する Fe粒子をメカニカルミリングにより複 合化させたものを用いた (Si原子数: Fe原子数 = 9: 1 )。炭素材料としては非晶質炭 素を用いた。また、電解液には添加剤を使用しなかった。それ以外の条件は実施例 32と同じとした。  The layer containing the negative electrode active material is a composite of mechanically milled Si particles with an average particle size of 10 m and Fe particles corresponding to element X with an average particle size of 10 μm as the negative electrode active material other than the carbon material. (Number of Si atoms: number of Fe atoms = 9: 1). Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 32.
[0203] (実施例 38)  [0203] (Example 38)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを蒸着によって 成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層に含 まれる正極活物質には LiMn Oを用いた。電解液には、 PC/EC/DEC = 20/2  The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. Graphite was used as the carbon material. LiMn 2 O was used as the positive electrode active material contained in the layer containing the positive electrode active material. PC / EC / DEC = 20/2 for electrolyte
2 4  twenty four
0/60 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 N  In 0/60 (volume ratio), lmol / L of LiPF as electrolyte and compound N as additive
6  6
o. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミニウム箔をラミネート でコーティングした部材で容器を作製し用いた。正極と負極の容量比 A/Cバランス は 1. 05とした。  o.1 containing 0.5% by mass was used. For the battery exterior, a container was made of a member coated with aluminum foil by lamination and used. The capacity ratio A / C balance between the positive and negative electrodes was set to 1.05.
[0204] (実施例 39) [0204] (Example 39)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snを蒸着によって 成膜して作製した。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 38.
[0205] (実施例 40) 負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。それ以外の条件は実施例 38と同じとした。 (Example 40) The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). Other conditions were the same as in Example 38.
[0206] (実施例 41) (Example 41)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siを蒸着によって 成膜して作製した。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3—PSを 3 質量%用いた。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by depositing Si as a negative electrode active material other than the carbon material by vapor deposition. In addition, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used as additives. Other conditions were the same as in Example 38.
[0207] (実施例 42) (Example 42)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snを蒸着によって 成膜して作製した。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3—PSを 3 質量%用いた。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by depositing Sn as a negative electrode active material other than the carbon material by vapor deposition. In addition, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used as additives. Other conditions were the same as in Example 38.
[0208] (実施例 43) (Example 43)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3— PSを 3質量%用 いた。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). As additives, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used. Other conditions were the same as in Example 38.
[0209] (実施例 44) (Example 44)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。また、添加剤は、化合物 Νο· 1を 0· 5質量%、 1, 3_PSを 3質量%、及び V Cを 1質量%用いた。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). The additives used were 0.5% by mass of the compound Νο · 1, 3% by mass of 1,3_PS, and 1% by mass of VC. Other conditions were the same as in Example 38.
[0210] (実施例 45) (Example 45)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。また、添加剤は、化合物 No. 1を 0. 5質量%、及び MMDSを 0. 5質量% 用いた。それ以外の条件は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). As additives, 0.5% by mass of Compound No. 1 and 0.5% by mass of MMDS were used. Other conditions were the same as in Example 38.
[0211] (比較例 6) [0211] (Comparative Example 6)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。また、電解液には添加剤を使用しなかった。それ以外の条件は実施例 38と 同じとした。 The layer containing the negative electrode active material corresponds to Si and element X as the negative electrode active material other than the carbon material. A film was formed by using two sputtering sources simultaneously with Fe (the number of Si atoms: the number of Fe atoms = 7: 3). No additives were used in the electrolyte. Other conditions were the same as in Example 38.
[0212] (比較例 7)  [0212] (Comparative Example 7)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。また、電解液には、添加剤は 1, 3—PSを 3質量%用いた。それ以外の条件 は実施例 38と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). In addition, 3% by mass of 1,3-PS was used for the electrolyte. Other conditions were the same as in Example 38.
[0213] (実施例 46)  (Example 46)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと元素 Xに相当 する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子数 = 7 : 3)。炭素材料としては黒鉛を用いた。正極活物質を含有する層に含まれる正極 活物質には LiCoOを用いた。電解液には、 EC/DEC/EMC = 30/50/20 (体  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Si and Fe corresponding to the element X, as the negative electrode active material other than the carbon material (the number of Si atoms: the number of Fe atoms = 7: 3). Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DEC / EMC = 30/50/20 (body
2  2
積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 No. 1を 0. 0  In the product ratio), 1 mol / L of LiPF as an electrolyte and Compound No.
6  6
1質量%含むものを用いた。電池の外装体には 18650円筒型容器を用いた。正極と 負極の容量比 A/Cバランスは 1. 05とした。  One containing 1% by mass was used. An 18650 cylindrical container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was set to 1.05.
[0214] (実施例 47) (Example 47)
添加剤は、化合物 No. 1を 0. 1質量%用いた。それ以外の条件は実施例 46と同じ とした。  As an additive, Compound No. 1 was used in an amount of 0.1% by mass. Other conditions were the same as in Example 46.
[0215] (実施例 48) (Example 48)
添加剤は、化合物 No. 1を 0. 75質量%用いた。それ以外の条件は実施例 46と同 じとした。  As an additive, 0.75% by mass of Compound No. 1 was used. Other conditions were the same as in Example 46.
[0216] (実施例 49) (Example 49)
添加剤は、化合物 No. 1を 3質量%用いた。それ以外の条件は実施例 46と同じと した。  As an additive, 3% by mass of Compound No. 1 was used. Other conditions were the same as in Example 46.
[0217] (実施例 50)  (Example 50)
添加剤は、化合物 No. 1を 5質量%用いた。それ以外の条件は実施例 46と同じと した。 [0218] (実施例 51) As an additive, compound No. 1 was used in an amount of 5% by mass. Other conditions were the same as in Example 46. (Example 51)
添加剤は、化合物 No. 1を 8質量%用いた。それ以外の条件は実施例 46と同じと した。  8% by mass of Compound No. 1 was used as an additive. Other conditions were the same as in Example 46.
[0219] (比較例 8)  [0219] (Comparative Example 8)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 46と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 46.
[0220] (実施例 52) (Example 52)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 a mの Si 粒子とをメカニカルミリングにて複合化した複合粒子を用いて作製した。正極活物質 を含有する層に含まれる正極活物質には LiCoOを用いた。電解液には、 EC/DE  The layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle diameter of 10 μm and Si particles having an average particle diameter of 1 am by mechanical milling. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DE as electrolyte
2  2
C/EMC = 30/50/20 (体積比)中に、電解質として lmol/Lの LiPF、及び添  In C / EMC = 30/50/20 (volume ratio), lmol / L of LiPF and electrolyte
6 加剤として化合物 No. 1を 0. 5質量%含むものを用いた。電池の外装体には角型容 器を用いた。正極と負極の容量比 AZCバランスは 1. 05とした。  6 An additive containing 0.5% by mass of Compound No. 1 was used. A rectangular container was used for the battery exterior. The capacity ratio between the positive and negative electrodes AZC balance was set to 1.05.
[0221] (実施例 53) (Example 53)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 μ mの Sn 粒子とをメカニカルミリングにて複合化した複合粒子を用いて作製した。それ以外の 条件は実施例 52と同じとした。  The layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle size of 10 μm and Sn particles having an average particle size of 1 μm by mechanical milling. Other conditions were the same as in Example 52.
[0222] (実施例 54) (Example 54)
負極活物質を含有する層は、平均粒径 1 μ mの Si粒子及び平均粒径 1 μ mの Ni粒 子をメカニカルミリングにて複合化した複合粒子と、平均粒径 10 μ mの黒鉛粒子とを メカノフュージョンにて複合化した複合粒子を用いて作製した (Si原子数: Ni原子数 = 9 : 1)。それ以外の条件は実施例 52と同じとした。  The layer containing the negative electrode active material consists of composite particles obtained by mechanically milling Si particles with an average particle size of 1 μm and Ni particles with an average particle size of 1 μm, and graphite particles with an average particle size of 10 μm. And were prepared using composite particles obtained by mechanofusion (number of Si atoms: number of Ni atoms = 9: 1). Other conditions were the same as in Example 52.
[0223] (比較例 9) (Comparative Example 9)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 52と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 52.
[0224] (実施例 55) (Example 55)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 a mの Si 粒子とをメカニカルミリングにて複合化し、さらに CVD法にて炭素コーティングして得 られた複合粒子を用いて作製した。正極活物質を含有する層に含まれる正極活物質 には LiCoOを用いた。電解液には、 ECZDEC/EMC = 30/50/20 (体積比) 中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 No. 1を 0. 5質量 The layer containing the negative electrode active material is a composite particle obtained by combining graphite particles with an average particle size of 10 μm and Si particles with an average particle size of 1 am by mechanical milling and carbon coating by CVD. It was produced using. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. ECZDEC / EMC = 30/50/20 (volume ratio) for electrolyte Inside, lmol / L LiPF as electrolyte and 0.5 mass of Compound No. 1 as additive
6  6
%含むものを用いた。電池の外装体には角型容器を用いた。正極と負極の容量比 A /Cバランスは 1 · 05とした。  % Was used. A rectangular container was used for the outer package of the battery. The capacity ratio A / C balance between the positive electrode and the negative electrode was set to 1.5.
[0225] (実施例 56) [0225] (Example 56)
負極活物質を含有する層は、平均粒径 1 μ mの Sn粒子及び平均粒径 1 μ mの Cu 粒子をメカニカルミリングにて合金化した粒子と平均粒径 10 μ mの黒鉛粒子とをメカ 二カルミリングにて複合化し、さらに CVDにて炭素コーティングして得られた複合粒 子を用いて作製した(Sn原子数: Cu原子数 =4: 1)。それ以外の条件は実施例 55と 同じとした。  The layer containing the negative electrode active material consists of mechanically milled particles of Sn particles with an average particle size of 1 μm and Cu particles with an average particle size of 1 μm and graphite particles with an average particle size of 10 μm. It was fabricated using composite particles obtained by compounding by two-car milling and then carbon coating by CVD (number of Sn atoms: number of Cu atoms = 4: 1). Other conditions were the same as in Example 55.
[0226] (実施例 57) (Example 57)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 a mの Sn 粒子とをメカニカルミリングにて複合化し、さらに CVDにて炭素コーティングして得ら れた複合粒子を用いて作製した。それ以外の条件は実施例 55と同じとした。  The layer containing the negative electrode active material is a composite particle obtained by combining graphite particles with an average particle size of 10 μm and Sn particles with an average particle size of 1 am by mechanical milling and carbon coating by CVD. It was produced using. Other conditions were the same as in Example 55.
[0227] (比較例 10) (Comparative Example 10)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 55と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 55.
[0228] (実施例 58) (Example 58)
炭素材料の含有量を 5質量%とした。それ以外の条件は実施例 1と同じとした。  The content of the carbon material was set to 5% by mass. Other conditions were the same as in Example 1.
[0229] (実施例 59) (Example 59)
炭素材料の含有量を 95質量%とした。それ以外の条件は実施例 1と同じとした。  The content of the carbon material was set to 95% by mass. Other conditions were the same as in Example 1.
[0230] (実施例 60) [0230] (Example 60)
負極活物質を含有する層を、先にスパッタリング方式により黒鉛の膜を成膜した後 に、その上に炭素材料以外の負極活物質として Siを CVD法によって成膜して作製し た。それ以外の条件は実施例 1と同じとした。  A layer containing a negative electrode active material was prepared by first depositing a graphite film by a sputtering method, and then depositing Si thereon by a CVD method as a negative electrode active material other than a carbon material. Other conditions were the same as in Example 1.
[0231] (実施例 61) [0231] (Example 61)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層に 含まれる正極活物質には LiCoOを用いた。電解液には、 ECZDEC/EMC = 30  The layer containing the negative electrode active material was prepared by depositing Si〇 as a negative electrode active material other than the carbon material by vapor deposition. Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. ECZDEC / EMC = 30 for electrolyte
2  2
/50/20 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合 物 No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミ製の角型容器を 用いた。正極と負極の容量比 A/Cバランスは 1. 05とした。 / 50/20 (volume ratio), lmol / L LiPF as electrolyte and compound as additive A material containing 0.5% by mass of the product No. 1 was used. A rectangular aluminum container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was 1.05.
[0232] (実施例 62) (Example 62)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇をスパッタに よって成膜して作製した。それ以外の条件は実施例 61と同じとした。  The layer containing the negative electrode active material was formed by sputtering Sn〇 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 61.
[0233] (実施例 63) (Example 63)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇をスパッタに  The layer containing the negative electrode active material was sputtered with Sn〇 as the negative electrode active material other than the carbon material.
2 よって成膜して作製した。それ以外の条件は実施例 61と同じとした。  2 Thus, a film was formed. Other conditions were the same as in Example 61.
[0234] (実施例 64) [0234] (Example 64)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Fe O粒子と平均粒径 10 z mの B O粒子とをメカニカルミリングで混合した粒子 The layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 m and BO particles having an average particle size of 10 zm as the negative electrode active material other than the carbon material.
2 3 2 3 2 3 2 3
を用いて作製した(Fe原子数: B原子数 = 5: 5)。それ以外の条件は実施例 61と同じ とした。  (The number of Fe atoms: the number of B atoms = 5: 5). Other conditions were the same as in Example 61.
[0235] (実施例 65) (Example 65)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Fe O粒子と平均粒径 10 /i mの P O粒子とをメカニカルミリングで混合した粒子 The layer containing the negative electrode active material is a particle obtained by mixing Fe O particles having an average particle size of 10 μΐη and P O particles having an average particle size of 10 / im by mechanical milling as a negative electrode active material other than the carbon material.
2 3 2 5 2 3 2 5
を用いて作製した。それ以外の条件は実施例 61と同じとした (Fe原子数: P原子数 = 5 : 5)。  It was produced using. Other conditions were the same as those in Example 61 (the number of Fe atoms: the number of P atoms = 5: 5).
[0236] (実施例 66) (Example 66)
負極活物質を含有する層は、炭素材料以外の負極活物質として W Oをスパッタに  For the layer containing the negative electrode active material, W O was sputtered as the negative electrode active material other than the carbon material.
2 5 より成膜して作製した。それ以外の条件は実施例 61と同じとした。  Films were formed from 25. Other conditions were the same as in Example 61.
[0237] (実施例 67) (Example 67)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Li Ti O を用いて作製した。それ以外の条件は実施例 61と同じとした。  The layer containing the negative electrode active material was prepared using Li Ti 2 O having an average particle size of 10 m as the negative electrode active material other than the carbon material. Other conditions were the same as in Example 61.
4 5 12  4 5 12
[0238] (実施例 68)  (Example 68)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Si〇粒子と平均粒径 10 μ mの Sn〇粒子とをメカニカルミリングで混合した粒子を 用レ、て作製した。それ以外の条件は実施例 61と同じとした(Si原子数: Sn原子数 = 5 : 5)。 The layer containing the negative electrode active material was prepared by mixing mechanically milled particles of Si〇 particles with an average particle size of 10 m and Sn〇 particles with an average particle size of 10 μm as the negative electrode active material other than the carbon material. Produced. Other conditions were the same as in Example 61 (number of Si atoms: number of Sn atoms = 5: 5).
[0239] (実施例 69) (Example 69)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇と Liとの 2つ の蒸着源を使用し同時蒸着によって成膜して作製した (Sn原子数: L源子数 = 5 : 5) 。それ以外の条件は実施例 61と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Sn〇 and Li, as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of L sources = 5: 5). Other conditions were the same as in Example 61.
[0240] (実施例 70) [0240] (Example 70)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と Liとの 2つ の蒸着源を使用し同時蒸着によって成膜して作製した (S源子数: Li原子数 = 5 : 5) それ以外の条件は実施例 61と同じとした。  The layer containing the negative electrode active material was prepared by simultaneous deposition using two evaporation sources, Si〇 and Li, as the negative electrode active material other than the carbon material (the number of S sources: the number of Li atoms = 5: 5) Other conditions were the same as those in Example 61.
[0241] (実施例 71)  [0241] (Example 71)
添加剤は化合物 No. 2を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 2 was used as an additive. Other conditions were the same as in Example 61.
[0242] (実施例 72) [0242] (Example 72)
添加剤は化合物 No. 3を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 3 was used as an additive. Other conditions were the same as in Example 61.
[0243] (実施例 73) [0243] (Example 73)
添加剤は化合物 No. 4を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 4 was used as an additive. Other conditions were the same as in Example 61.
[0244] (実施例 74) (Example 74)
添加剤は化合物 No. 6を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 6 was used as an additive. Other conditions were the same as in Example 61.
[0245] (実施例 75) (Example 75)
添加剤は化合物 No. 9を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 9 was used as an additive. Other conditions were the same as in Example 61.
[0246] (実施例 76) (Example 76)
添加剤は化合物 No. 10を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 10 was used as an additive. Other conditions were the same as in Example 61.
[0247] (実施例 77) (Example 77)
添加剤は化合物 No. 15を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 15 was used as an additive. Other conditions were the same as in Example 61.
[0248] (実施例 78) (Example 78)
添加剤は化合物 No. 16を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 16 was used as an additive. Other conditions were the same as in Example 61.
[0249] (実施例 79) (Example 79)
添加剤は化合物 No. 19を用いた。それ以外の条件は実施例 61と同じとした。  Compound No. 19 was used as an additive. Other conditions were the same as in Example 61.
[0250] (実施例 80) 負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si〇を用いて作製した。炭素材料としては非晶質炭素を用いた。それ以外の条件 は実施例 61と同じとした。 [0250] (Example 80) The layer containing the negative electrode active material was formed using Si〇 having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 61.
[0251] (実施例 81) (Example 81)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Sn〇を用いて作製した。炭素材料としては非晶質炭素を用いた。それ以外の条件 は実施例 61と同じとした。  The layer containing the negative electrode active material was prepared using Sn〇 having an average particle diameter of 10 m as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 61.
[0252] (比較例 11) [0252] (Comparative Example 11)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。また、電解液には添加剤を使用しなかった。それ以外の条件 は実施例 61と同じとした。  The layer containing the negative electrode active material was prepared by depositing Si〇 as a negative electrode active material other than the carbon material by vapor deposition. No additives were used in the electrolyte. Other conditions were the same as in Example 61.
[0253] (比較例 12) (Comparative Example 12)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si〇を用いて作製した。炭素材料としては非晶質炭素を用いた。また、電解液には 添加剤を使用しなかった。それ以外の条件は実施例 61と同じとした。  The layer containing the negative electrode active material was formed using Si〇 having an average particle size of 10 μΐη as a negative electrode active material other than the carbon material. Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 61.
[0254] (実施例 82) (Example 82)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層に 含まれる正極活物質には LiMnOを用いた。電解液には、 PC/EC/DEC = 20/  The layer containing the negative electrode active material was prepared by depositing Si〇 as a negative electrode active material other than the carbon material by vapor deposition. Graphite was used as the carbon material. LiMnO was used as the positive electrode active material contained in the layer containing the positive electrode active material. PC / EC / DEC = 20 /
2  2
20/60 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物  In 20/60 (volume ratio), lmol / L LiPF as electrolyte and compound as additive
6  6
No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミ製の角型容器を用 いた。正極と負極の容量比 A/Cバランスは 1. 05とした。  No. 1 containing 0.5% by mass was used. An aluminum rectangular container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was 1.05.
[0255] (実施例 83) [0255] (Example 83)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇をスパッタに よって成膜して作製した。それ以外の条件は実施例 82と同じとした。  The layer containing the negative electrode active material was formed by sputtering Sn〇 as a negative electrode active material other than the carbon material. Other conditions were the same as in Example 82.
[0256] (実施例 84) (Example 84)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇をスパッタに  The layer containing the negative electrode active material was sputtered with Sn〇 as the negative electrode active material other than the carbon material.
2 よって成膜して作製した。それ以外の条件は実施例 82と同じとした。 [0257] (実施例 85) 2 Thus, a film was formed. Other conditions were the same as in Example 82. (Example 85)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Fe O粒子と平均粒径 10 /i mの B O粒子とをメカニカルミリングで混合した粒子 The layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 μΐη and BO particles having an average particle size of 10 / im as a negative electrode active material other than the carbon material.
2 3 2 3 2 3 2 3
を用いて作製した(Fe原子数: B原子数 = 5: 5)。それ以外の条件は実施例 82と同じ とした。  (Number of Fe atoms: number of B atoms = 5: 5). Other conditions were the same as in Example 82.
[0258] (実施例 86) (Example 86)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Fe O粒子と平均粒径 10 z mの P O粒子とをメカニカルミリングで混合した粒子 The layer containing the negative electrode active material is composed of particles obtained by mechanically milling FeO particles having an average particle size of 10 m and PO particles having an average particle size of 10 zm as a negative electrode active material other than the carbon material.
2 3 2 5 2 3 2 5
を用いて作製した(Fe原子数: P原子数 = 5: 5)。それ以外の条件は実施例 82と同じ とした。  (Number of Fe atoms: number of P atoms = 5: 5). Other conditions were the same as in Example 82.
[0259] (実施例 87) (Example 87)
負極活物質を含有する層は、炭素材料以外の負極活物質として W Oをスパッタに  For the layer containing the negative electrode active material, W O was sputtered as the negative electrode active material other than the carbon material.
2 5  twenty five
より成膜して作製した。それ以外の条件は実施例 82と同じとした。  It was formed by film formation. Other conditions were the same as in Example 82.
[0260] (実施例 88) (Example 88)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Li Ti O を用いて作製した。それ以外の条件は実施例 82と同じとした。  The layer containing the negative electrode active material was prepared using Li Ti O having an average particle size of 10 μΐη as the negative electrode active material other than the carbon material. Other conditions were the same as in Example 82.
4 5 12  4 5 12
[0261] (実施例 89)  (Example 89)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si〇粒子と平均粒径 10 μ mの Sn〇粒子とをメカニカルミリングで混合した粒子を 用いて作製した(Si原子数: Sn原子数 = 5: 5)。それ以外の条件は実施例 82と同じ とした。  The layer containing the negative electrode active material was prepared by using mechanically milled particles of Si〇 particles with an average particle size of 10 μ〇η and Sn〇 particles with an average particle size of 10 μm as the negative electrode active material other than the carbon material. (Number of Si atoms: number of Sn atoms = 5: 5). Other conditions were the same as in Example 82.
[0262] (実施例 90) (Example 90)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇と Liとの 2つ の蒸着源を使用し同時蒸着によって成膜して作製した (Sn原子数: L源子数 = 5 : 5) 。それ以外の条件は実施例 82と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Sn〇 and Li, as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of L sources = 5: 5). Other conditions were the same as in Example 82.
[0263] (実施例 91 ) (Example 91)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と Liとの 2つ の蒸着源を使用し同時蒸着によって成膜して作製した (S源子数: Li原子数 = 5 : 5) それ以外の条件は実施例 82と同じとした。 The layer containing the negative electrode active material was prepared by simultaneous deposition using two evaporation sources, Si〇 and Li, as the negative electrode active material other than the carbon material (the number of S sources: the number of Li atoms = 5: 5) Other conditions were the same as in Example 82.
[0264] (比較例 13)  [0264] (Comparative Example 13)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。また、電解液には添加剤を使用しなかった。それ以外の条件 は実施例 82と同じとした。  The layer containing the negative electrode active material was prepared by depositing Si〇 by evaporation as a negative electrode active material other than the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 82.
[0265] (実施例 92)  (Example 92)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つ蒸着源を使用し同時蒸着によって成膜して作製した (S源子数: F e原子数 = 14 : 1)。炭素材料としては黒鉛を用いた。正極活物質を含有する層に含 まれる正極活物質には LiCoOを用いた。電解液には、 ECZDEC/EMC = 30/  The layer containing the negative electrode active material was formed by simultaneous vapor deposition using two evaporation sources, Si〇 and Fe, which corresponds to the element X, as the negative electrode active material other than the carbon material. : Fe atom number = 14: 1). Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. ECZDEC / EMC = 30 /
2  2
50/20 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物  In 50/20 (volume ratio), lmol / L of LiPF as electrolyte and compound as additive
6  6
No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミニウム箔をラミネ一 トでコーティングした部材で容器を作製し用いた。正極と負極の容量比 A/Cバラン スは 1. 05とした。  No. 1 containing 0.5% by mass was used. For the battery exterior, a container was prepared from a member coated with aluminum foil and laminated. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.05.
[0266] (実施例 93) (Example 93)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇と元素 Xに相 当する Cuとの 2つのスパッタ源を使用し同時に成膜して作製した(Sn原子数: Cu原 子数 = 3: 7)。それ以外の条件は実施例 92と同じとした。  The layer containing the negative electrode active material was formed by simultaneously forming films using two sputtering sources, Sn〇 and Cu corresponding to element X, as the negative electrode active material other than the carbon material (the number of Sn atoms: Cu source). Number of children = 3: 7). Other conditions were the same as in Example 92.
[0267] (実施例 94) (Example 94)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Sn〇粒子と平均粒径 10 μ mの元素 Xに相当する Ni粒子とをメカニカルミリングで The layer containing the negative electrode active material is formed by mechanical milling Sn-- particles with an average particle size of 10 μΐη and Ni particles corresponding to element X with an average particle size of 10 μm as the negative electrode active material other than the carbon material.
2 2
混合した粒子を用レ、て作製した(Sn原子数: Ni原子数 = 19 : 1)。それ以外の条件は 実施例 92と同じとした。  The mixed particles were prepared by using (number of Sn atoms: number of Ni atoms = 19: 1). Other conditions were the same as in Example 92.
[0268] (実施例 95) (Example 95)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇と Liと元素 X に相当する Tiとの 3つのスパッタ源を使用し同時に成膜して作製した(Sn原子数: Li 原子数: Ti原子数 = 1 : 1 : 9)。それ以外の条件は実施例 92と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using three sputtering sources of Sn〇 and Li and Ti corresponding to the element X as the negative electrode active material other than the carbon material (the number of Sn atoms: Li Atomic number: Ti atomic number = 1: 1: 9). Other conditions were the same as in Example 92.
[0269] (実施例 96) 負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と Liと元素 X に相当する Feとの 3つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Li 原子数: Fe原子数 = 9 : 3 : 1)。それ以外の条件は実施例 92と同じとした。 (Example 96) The layer containing the negative electrode active material was formed by simultaneously forming films using three sputtering sources of Si〇 and Li and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Li Atomic number: Fe atomic number = 9: 3: 1). Other conditions were the same as in Example 92.
[0270] (実施例 97) (Example 97)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 m の Si〇粒子と平均粒径 10 z mの元素 Xに相当する Fe粒子をメカニカルミリングにより 複合化させたものを用いた (Si原子数: Fe原子数 = 9: 1)。炭素材料としては非晶質 炭素を用いた。それ以外の条件は実施例 92と同じとした。  The layer containing the negative electrode active material was formed by combining mechanically milled Si〇 particles with an average particle size of 10 m and Fe particles corresponding to element X with an average particle size of 10 zm as the negative electrode active material other than the carbon material. Used (number of Si atoms: number of Fe atoms = 9: 1). Amorphous carbon was used as the carbon material. Other conditions were the same as in Example 92.
[0271] (比較例 14) [0271] (Comparative Example 14)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つ蒸着源を使用し同時蒸着により成膜して作製した (S源子数: Fe原 子数 = 14 : 1)。また、電解液には添加剤を使用しなかった。それ以外の条件は実施 例 92と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Si の and Fe, which corresponds to the element X, as the negative electrode active material other than the carbon material. : Fe atoms = 14: 1). No additives were used in the electrolyte. Other conditions were the same as in Example 92.
[0272] (比較例 15) (Comparative Example 15)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 10 μ ΐη の Si〇粒子と平均粒径 10 μ mの元素 Xに相当する Fe粒子をメカニカルミリングにより 複合化させたものを用いた (Si原子数: Fe原子数 = 9: 1)。炭素材料としては非晶質 炭素を用いた。また、電解液には添加剤を使用しなかった。それ以外の条件は実施 例 92と同じとした。  In the layer containing the negative electrode active material, as negative electrode active materials other than carbon material, Si particles with an average particle size of 10 μ 平均 η and Fe particles corresponding to element X with an average particle size of 10 μm were compounded by mechanical milling. (Number of Si atoms: number of Fe atoms = 9: 1). Amorphous carbon was used as the carbon material. No additives were used in the electrolyte. Other conditions were the same as in Example 92.
[0273] (実施例 98) (Example 98)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。炭素材料としては黒鉛を用いた。正極活物質を含有する層に 含まれる正極活物質には LiMn Oを用いた。電解液には、 PC/EC/DEC = 20  The layer containing the negative electrode active material was prepared by depositing Si〇 by evaporation as a negative electrode active material other than the carbon material. Graphite was used as the carbon material. LiMn 2 O was used as the positive electrode active material contained in the layer containing the positive electrode active material. PC / EC / DEC = 20 for electrolyte
2 4  twenty four
/20/60 (体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合  In 20/60 (volume ratio), lmol / L of LiPF as electrolyte and compound as additive
6  6
物 No. 1を 0. 5質量%含むものを用いた。電池の外装体にはアルミニウム箔をラミネ ートでコーティングした部材で容器を作製し用いた。正極と負極の容量比 AZCバラ ンスは 1. 05とした。  A material containing 0.5% by mass of the product No. 1 was used. For the battery exterior, a container was prepared from a member coated with aluminum foil and laminated. The capacity ratio AZC of the positive and negative electrodes was set to 1.05.
[0274] (実施例 99) 負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇を蒸着によつ て成膜して作製した。それ以外の条件は実施例 98と同じとした。 (Example 99) The layer containing the negative electrode active material was formed by depositing Sn〇 as a negative electrode active material other than the carbon material by vapor deposition. Other conditions were the same as in Example 98.
[0275] (実施例 100) (Example 100)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7: 3)。それ以外の条件は実施例 98と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). Other conditions were the same as in Example 98.
[0276] (実施例 101) (Example 101)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇を蒸着によつ て成膜して作製した。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3— PSを 3質量%用いた。それ以外の条件は実施例 98と同じとした。  The layer containing the negative electrode active material was prepared by depositing Si〇 by evaporation as a negative electrode active material other than the carbon material. As additives, 0.5% by mass of compound No. 1 and 3% by mass of 1,3-PS were used. Other conditions were the same as in Example 98.
[0277] (実施例 102) (Example 102)
負極活物質を含有する層は、炭素材料以外の負極活物質として Sn〇を蒸着によつ て成膜して作製した。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3— PSを 3質量%用いた。それ以外の条件は実施例 98と同じとした。  The layer containing the negative electrode active material was formed by depositing Sn〇 as a negative electrode active material other than the carbon material by vapor deposition. As additives, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3-PS were used. Other conditions were the same as in Example 98.
[0278] (実施例 103) (Example 103)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。また、添加剤は、化合物 No. 1を 0. 5質量%、及び 1, 3_PSを 3質量% 用いた。それ以外の条件は実施例 98と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). In addition, 0.5% by mass of Compound No. 1 and 3% by mass of 1,3_PS were used as additives. Other conditions were the same as in Example 98.
[0279] (実施例 104) (Example 104)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。また、添加剤は、化合物 No. 1を 0. 5質量%、 1, 3—PSを 3質量%、及 び VCを 1質量%用いた。それ以外の条件は実施例 98と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). As additives, 0.5% by mass of compound No. 1, 3% by mass of 1,3-PS, and 1% by mass of VC were used. Other conditions were the same as in Example 98.
[0280] (実施例 105) [0280] (Example 105)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。また、添加剤は、化合物 No. 1を 0. 5質量%、及び MMDSを 0. 5質量 %用いた。それ以外の条件は実施例 98と同じとした。 The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). The additives were compound No. 1 at 0.5% by mass and MMDS at 0.5% by mass. %Using. Other conditions were the same as in Example 98.
[0281] (比較例 16)  [0281] (Comparative Example 16)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。また、電解液には添加剤を使用しなかった。それ以外の条件は実施例 9 8と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). No additives were used in the electrolyte. Other conditions were the same as in Example 98.
[0282] (比較例 17)  [0282] (Comparative Example 17)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。また、添加剤は 1, 3—PSを 3質量%用いた。それ以外の条件は実施例 9 8と同じとした。  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). In addition, 3% by mass of 1,3-PS was used as an additive. Other conditions were the same as in Example 98.
[0283] (実施例 106)  (Example 106)
負極活物質を含有する層は、炭素材料以外の負極活物質として Si〇と元素 Xに相 当する Feとの 2つのスパッタ源を使用し同時に成膜して作製した(Si原子数: Fe原子 数 = 7 : 3)。炭素材料としては黒鉛を用いた。正極活物質を含有する層に含まれる正 極活物質には LiCoOを用いた。電解液には、 EC/DEC/EMC = 30/50/20 (  The layer containing the negative electrode active material was prepared by simultaneously forming films using two sputtering sources of Si〇 and Fe corresponding to the element X as the negative electrode active material other than the carbon material (the number of Si atoms: Fe atom Number = 7: 3). Graphite was used as the carbon material. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DEC / EMC = 30/50/20 (
2  2
体積比)中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 No. 1を 0  In the volume ratio), 1 mol / L of LiPF was used as the electrolyte, and Compound No. 1 was used as an additive.
6  6
. 01質量%含むものを用いた。電池の外装体には 18650円筒型容器を用いた。正 極と負極の容量比 A/Cバランスは 1. 05とした。  .01% by mass. An 18650 cylindrical container was used for the battery exterior. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.05.
[0284] (実施例 107) (Example 107)
添加剤は、化合物 No. 1を 0. 1質量%用いた。それ以外の条件は実施例 106と同 じとした。  As an additive, Compound No. 1 was used in an amount of 0.1% by mass. Other conditions were the same as in Example 106.
[0285] (実施例 108) (Example 108)
添加剤は、化合物 No. 1を 0. 75質量%用いた。それ以外の条件は実施例 106と 同じとした。  As an additive, 0.75% by mass of Compound No. 1 was used. Other conditions were the same as in Example 106.
[0286] (実施例 109) (Example 109)
添加剤は、化合物 No. 1を 3質量%用いた。それ以外の条件は実施例 106と同じと した。 [0287] (実施例 110) As an additive, 3% by mass of Compound No. 1 was used. Other conditions were the same as in Example 106. (Example 110)
添加剤は、化合物 No. 1を 5質量%用いた。それ以外の条件は実施例 106と同じと した。  As an additive, compound No. 1 was used in an amount of 5% by mass. Other conditions were the same as in Example 106.
[0288] (実施例 111)  (Example 111)
添加剤は、化合物 No. 1を 8質量%用いた。それ以外の条件は実施例 106と同じと した。  8% by mass of Compound No. 1 was used as an additive. Other conditions were the same as in Example 106.
[0289] (比較例 18)  (Comparative Example 18)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 106と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 106.
[0290] (実施例 112) (Example 112)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 a mの Si O粒子とをメカニカルミリングにて複合化した複合粒子を用いて作製した。正極活物 質を含有する層に含まれる正極活物質には LiCoOを用いた。電解液には、 EC/D  The layer containing the negative electrode active material was prepared using composite particles obtained by combining graphite particles having an average particle diameter of 10 μm and SiO 2 particles having an average particle diameter of 1 am by mechanical milling. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / D for electrolyte
2  2
EC/EMC = 30/50/20 (体積比)中に、電解質として lmol/Lの LiPF、及び  EC / EMC = 30/50/20 (volume ratio), lmol / L LiPF as electrolyte and
6 添加剤として化合物 No. 1を 0. 5質量%含むものを用いた。電池の外装体には角型 容器を用いた。正極と負極の容量比 A/Cバランスは 1. 05とした。  6 An additive containing 0.5% by mass of Compound No. 1 was used. A rectangular container was used for the battery exterior. The capacity ratio A / C balance between the positive and negative electrodes was 1.05.
[0291] (実施例 113) (Example 113)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 μ mの Sn O粒子とをメカニカルミリングにて複合化した複合粒子を用いて作製した。それ以外 の条件は実施例 112と同じとした。  The layer containing the negative electrode active material was prepared using composite particles obtained by compounding graphite particles having an average particle diameter of 10 μm and Sn 2 O particles having an average particle diameter of 1 μm by mechanical milling. The other conditions were the same as in Example 112.
[0292] (実施例 114) (Example 114)
負極活物質を含有する層は、平均粒径 1 μ mの SiO粒子及び平均粒径 1 μ mの Ni 粒子をメカニカルミリングにて複合化した複合粒子と、平均粒径 10 μ mの黒鉛粒子と をメカフィージョンにて複合化した複合粒子を用いて作製した(Si原子数: 原子数 = 9 : 1)。それ以外の条件は実施例 112と同じとした。  The layer containing the negative electrode active material is composed of composite particles obtained by mechanically milling SiO particles having an average particle size of 1 μm and Ni particles having an average particle size of 1 μm, and graphite particles having an average particle size of 10 μm. Was prepared by using composite particles obtained by compounding by mechanical filtration (number of Si atoms: number of atoms = 9: 1). Other conditions were the same as in Example 112.
[0293] (比較例 19) [0293] (Comparative Example 19)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 112と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 112.
[0294] (実施例 115) (Example 115)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 a mの Si O粒子とをメカニカルミリングにて複合化し、さらに CVDにて炭素コーティングして得 られた複合粒子を用いて作製した。正極活物質を含有する層に含まれる正極活物質 には LiCoOを用いた。電解液には、 EC/DEC/EMC = 30/50/20 (体積比) The layer containing the negative electrode active material was composed of graphite particles with an average particle size of 10 μm and Si particles with an average particle size of 1 O particles were compounded by mechanical milling, and carbon particles were coated by CVD to produce composite particles. LiCoO was used as the positive electrode active material contained in the layer containing the positive electrode active material. EC / DEC / EMC = 30/50/20 (volume ratio) for electrolyte
2  2
中に、電解質として lmol/Lの LiPF、及び添加剤として化合物 No. 1を 0. 5質量  Inside, lmol / L LiPF as electrolyte and 0.5 mass of Compound No. 1 as additive
6  6
%含むものを用いた。電池の外装体には角型容器を用いた。正極と負極の容量比 A /Cバランスは 1. 05とした。  % Was used. A rectangular container was used for the outer package of the battery. The capacity ratio A / C balance between the positive electrode and the negative electrode was set to 1.05.
[0295] (実施例 116) (Example 116)
負極活物質を含有する層は、平均粒径 1 μ mの SnO粒子及び平均粒径 1 μ mの C u粒子をメカニカルミリングにて合金化した粒子と平均粒径 10 a mの黒鉛粒子とをメ 力二カルミリングにて複合化し、さらに CVDにて炭素コーティングして得られた複合 粒子を用いて作製した(Sn原子数: Cu原子数 =4: 1)。それ以外の条件は実施例 1 15と同じとした。  The layer containing the negative electrode active material is composed of SnO particles having an average particle diameter of 1 μm and Cu particles having an average particle diameter of 1 μm alloyed by mechanical milling and graphite particles having an average particle diameter of 10 am. It was fabricated using composite particles obtained by compounding by force-calendering and then carbon coating by CVD (number of Sn atoms: number of Cu atoms = 4: 1). Other conditions were the same as in Example 115.
[0296] (実施例 117) (Example 117)
負極活物質を含有する層は、平均粒径 10 μ mの黒鉛粒子と平均粒径 1 μ mの Sn O粒子とをメカニカルミリングにて複合化し、さらに CVDにて炭素コーティングして得 られた複合粒子を用いて作製した。それ以外の条件は実施例 115と同じとした。  The layer containing the negative electrode active material is a composite obtained by combining graphite particles with an average particle size of 10 μm and SnO particles with an average particle size of 1 μm by mechanical milling, and then carbon coating by CVD. It was prepared using particles. Other conditions were the same as in Example 115.
[0297] (比較例 20) [0297] (Comparative Example 20)
電解液には添加剤を使用しなかった。それ以外の条件は実施例 115と同じとした。  No additives were used in the electrolyte. Other conditions were the same as in Example 115.
[0298] (実施例 118) (Example 118)
炭素材料の含有量を 5質量%とした。それ以外の条件は実施例 61と同じとした。  The content of the carbon material was set to 5% by mass. Other conditions were the same as in Example 61.
[0299] (実施例 119) (Example 119)
炭素材料の含有量を 95質量%とした。それ以外の条件は実施例 61と同じとした。  The content of the carbon material was set to 95% by mass. Other conditions were the same as in Example 61.
[0300] (実施例 120) [0300] (Example 120)
負極活物質を含有する層を、先にスパッタリング方式により黒鉛の膜を成膜した後 に、その上に炭素材料以外の負極活物質として SiOを CVD法によって成膜して作製 した。それ以外の条件は実施例 61と同じとした。  A layer containing a negative electrode active material was formed by first depositing a graphite film by a sputtering method and then depositing SiO thereon by a CVD method as a negative electrode active material other than a carbon material. Other conditions were the same as in Example 61.
[0301] (実施例 121) [0301] (Example 121)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Si〇との 2つ の蒸着源を使用し、同時蒸着により成膜して作製した (S源子数 : 0原子数 = 2 : 1)。 それ以外の条件は実施例 1と同じとした。 The layer containing the negative electrode active material is composed of two layers of negative electrode active materials other than carbon materials: Si and Si〇. (S source number: 0 atom number: 2: 1). Other conditions were the same as in Example 1.
[0302] (実施例 122) [0302] (Example 122)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snと Sn〇との 2つ のスパッタ源を使用し、同時スパッタリングにより成膜して作製した(Sn原子数: O原 子数 = 2 : 1)。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by simultaneous sputtering using two sputtering sources of Sn and Sn〇 as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of O atoms). = 2: 1). Other conditions were the same as in Example 1.
[0303] (実施例 123) [0303] (Example 123)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Si〇と Liとの  The layer containing the negative electrode active material is composed of a mixture of Si, Si〇, and Li
2  2
3つの蒸着源を使用し、同時蒸着により成膜して作製した (S源子数 : 0原子数: Li原 子数 = 1: 1 : 1)。それ以外の条件は実施例 1と同じとした。  A film was formed by simultaneous evaporation using three evaporation sources (S element number: 0 atom number: Li atom number = 1: 1: 1: 1). Other conditions were the same as in Example 1.
[0304] (実施例 124) [0304] (Example 124)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snと Sn〇と Liと  The layer containing the negative electrode active material contains Sn, Sn 負極, and Li as the negative electrode active material other than the carbon material.
2 の 3つの蒸着源を使用し、同時蒸着により成膜して作製した(Sn原子数:〇原子数: L i原子数 = 1 : 1 : 1)。それ以外の条件は実施例 1と同じとした。  A film was formed by simultaneous evaporation using three evaporation sources 2 and 3 (the number of Sn atoms: the number of atoms: the number of Li atoms = 1: 1: 1: 1). Other conditions were the same as in Example 1.
[0305] (実施例 125)  (Example 125)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 1 μ mの Siと平均粒径 1 μ mの SiOを混合して作製した。なお混合比は、平均粒径 1 β mの Si 中の Si原子数と、平均粒径 1 μ mの SiOの分子数と、の比が 1: 1となるようにした。そ れ以外の条件は実施例 1と同じとした。 The layer containing the negative electrode active material was prepared by mixing Si having an average particle size of 1 μm and SiO having an average particle size of 1 μm as a negative electrode active material other than the carbon material. Incidentally mixing ratio, and the average particle size 1 beta m number Si atoms in the Si of the average particle diameter 1 mu m Number of SiO molecules, the ratio of 1: 1 and so as. The other conditions were the same as in Example 1.
[0306] (実施例 126)  (Example 126)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 1 β mの Snと平均粒径 1 μ mの Sn〇をメカニカルミリングで混合した粒子(Sn原子数: O原子 数 = 2 : 1)を用いて作製した。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material is composed of particles obtained by mechanically milling Sn having an average particle diameter of 1 βm and Sn〇 having an average particle diameter of 1 μm as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of O atoms). = 2: 1). Other conditions were the same as in Example 1.
[0307] (実施例 127)  (Example 127)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Si〇と元素 X に相当する Feとの 3つの蒸着源を使用し、同時蒸着により成膜して作製した (Si原子 数: O原子数: Fe原子数 = 14 : 7 : 6)。それ以外の条件は実施例 1と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using three deposition sources of Si, Si〇, and Fe corresponding to the element X as the negative electrode active material other than the carbon material (Si atom Number: O atoms: Fe atoms = 14: 7: 6). Other conditions were the same as in Example 1.
[0308] (実施例 128) 負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 1 β mの(Example 128) The layer containing the negative electrode active material has an average particle diameter of 1 βm as a negative electrode active material other than the carbon material.
Snと平均粒径 1 μ mの Sn〇と平均粒径 1 μ mの Feとをメカニカルミリングで混合した 粒子(Sn原子数: O原子数: Fe原子数 = 14 : 7 : 6)を作製した後、その粒子と平均粒 径 10 μ mの黒鉛粒子とをメカニカルミリングにて複合化した複合粒子を用いて作製し た。それ以外の条件は実施例 1と同じとした。 Particles (Sn atoms: O atoms: Fe atoms = 14: 7: 6) were prepared by mechanically milling a mixture of Sn, Sn〇 with an average particle size of 1 μm, and Fe with an average particle size of 1 μm. Thereafter, composite particles were prepared by using mechanical milling to combine the particles with graphite particles having an average particle diameter of 10 μm. Other conditions were the same as in Example 1.
[0309] (実施例 129) (Example 129)
添加剤は化合物 No . 2を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 2 was used as an additive. Other conditions were the same as in Example 127.
[0310] (実施例 130) [0310] (Example 130)
添加剤は化合物 No . 3を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 3 was used as an additive. Other conditions were the same as in Example 127.
[0311] (実施例 131) [0311] (Example 131)
添加剤は化合物 No . 4を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 4 was used as an additive. Other conditions were the same as in Example 127.
[0312] (実施例 132) [0312] (Example 132)
添加剤は化合物 No . 6を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 6 was used as an additive. Other conditions were the same as in Example 127.
[0313] (実施例 133) [0313] (Example 133)
添加剤は化合物 No . 9を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 9 was used as an additive. Other conditions were the same as in Example 127.
[0314] (実施例 134) [0314] (Example 134)
添加剤は化合物 No . 10を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 10 was used as an additive. Other conditions were the same as in Example 127.
[0315] (実施例 135) [0315] (Example 135)
添加剤は化合物 No . 15を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 15 was used as an additive. Other conditions were the same as in Example 127.
[0316] (実施例 136) [0316] (Example 136)
添加剤は化合物 No . 16を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 16 was used as an additive. Other conditions were the same as in Example 127.
[0317] (実施例 137) [0317] (Example 137)
添加剤は化合物 No . 19を用いた。それ以外の条件は実施例 127と同じとした。  Compound No. 19 was used as an additive. Other conditions were the same as in Example 127.
[0318] (実施例 138) [0318] (Example 138)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Si〇との 2つ の蒸着源を使用し、同時蒸着により成膜して作製した (Si原子数 : 0原子数 = 2 : 1)。 それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material was formed by simultaneous deposition using two deposition sources, Si and Si〇, as the negative electrode active material other than the carbon material (the number of Si atoms: 0 atoms = twenty one). Other conditions were the same as in Example 22.
[0319] (実施例 139) 負極活物質を含有する層は、炭素材料以外の負極活物質として Snと Sn〇との 2つ のスパッタ源を使用し、同時スパッタリングにより成膜して作製した(Sn原子数: O原 子数 = 2 : 1)。それ以外の条件は実施例 22と同じとした。 [0319] (Example 139) The layer containing the negative electrode active material was formed by simultaneous sputtering using two sputtering sources of Sn and Sn〇 as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of O atoms). = 2: 1). Other conditions were the same as in Example 22.
[0320] (実施例 140) [0320] (Example 140)
負極活物質を含有する層は、炭素材料以外の負極活物質として Siと Si〇と Liとの  The layer containing the negative electrode active material is composed of a mixture of Si, Si〇, and Li
2  2
3つの蒸着源を使用し、同時蒸着により成膜して作製した (S源子数 : 0原子数: Li原 子数 = 1: 1 : 1)。それ以外の条件は実施例 22と同じとした。  A film was formed by simultaneous evaporation using three evaporation sources (S element number: 0 atom number: Li atom number = 1: 1: 1: 1). Other conditions were the same as in Example 22.
[0321] (実施例 141) [0321] (Example 141)
負極活物質を含有する層は、炭素材料以外の負極活物質として Snと Sn〇と Liと  The layer containing the negative electrode active material contains Sn, Sn 負極, and Li as the negative electrode active material other than the carbon material.
2 の 3つの蒸着源を使用し、同時蒸着により成膜して作製した (Sn原子数 :〇原子数: L i原子数 = 1 : 1 : 1)。それ以外の条件は実施例 22と同じとした。  A film was formed by simultaneous evaporation using the three evaporation sources 2 and 3 (the number of Sn atoms: the number of atoms: the number of Li atoms = 1: 1: 1: 1). Other conditions were the same as in Example 22.
[0322] (実施例 142)  (Example 142)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 1 μ mの Siと平均粒径 1 μ mの SiOを混合して作製した。なお混合比は、平均粒径 1 β mの Si 中の Si原子数と、平均粒径 1 μ mの SiOの分子数と、の比が 1: 1となるようにした。そ れ以外の条件は実施例 22と同じとした。 The layer containing the negative electrode active material was prepared by mixing Si having an average particle size of 1 μm and SiO having an average particle size of 1 μm as a negative electrode active material other than the carbon material. Incidentally mixing ratio, and the average particle size 1 beta m number Si atoms in the Si of the average particle diameter 1 mu m Number of SiO molecules, the ratio of 1: 1 and so as. Other conditions were the same as in Example 22.
[0323] (実施例 143)  (Example 143)
負極活物質を含有する層は、炭素材料以外の負極活物質として平均粒径 1 β mの Snと平均粒径 1 μ mの Sn〇をメカニカルミリングで混合した粒子(Sn原子数: O原子 数 = 2 : 1)を用いて作製した。それ以外の条件は実施例 22と同じとした。  The layer containing the negative electrode active material is composed of particles obtained by mechanically milling Sn having an average particle diameter of 1 βm and Sn〇 having an average particle diameter of 1 μm as the negative electrode active material other than the carbon material (the number of Sn atoms: the number of O atoms). = 2: 1). Other conditions were the same as in Example 22.
[0324] [表 1] [0324] [Table 1]
[zm [szso] [zm [szso]
Figure imgf000068_0001
Figure imgf000068_0001
請 OOZdf/IOd 19 SI ..S0/S00Z ΟΛ\ OOZdf / IOd 19 SI ..S0 / S00Z ΟΛ \
[S挲] [92S0] [S 挲] [92S0]
Figure imgf000069_0001
Figure imgf000069_0001
SlL8l0/ 00Zdr/13d 89 ST..S0/S00Z OAV [ 挲] [Z2S0] SlL8l0 / 00Zdr / 13d 89 ST..S0 / S00Z OAV [挲] [Z2S0]
Figure imgf000070_0001
Figure imgf000070_0001
SlL8l0/P00Zdr/13d 69 ST ..S0/S00Z OAV SlL8l0 / P00Zdr / 13d 69 ST ..S0 / S00Z OAV
Figure imgf000071_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000072_0001
400サイクル後の 400サイクル後の 容量維持率(%) 抵抗維持率 実施例 1 84.1 1.42 実施例 2 80.8 1.40 実施例 3 77.4 1.50 実施例 4 79.4 1.55 実施例 5 84.2 1.47 実施例 6 78.8 1.62 実施例 7 76.5 1.60 実施例 8 77.7 1.55 実施例 9 81.6 1.36 実施例 10 83.5 1.27 実施例 1 1 81.5 1.40 実施例 12 82.6 1.41 実施例 13 85.0 1.51 実施例 14 82.6 1.37 実施例 15 82.4 1.51 実施例 16 80.8 1.41 実施例 17 83.8 1.43 実施例 18 84.2 1.41 実施例 19 83.6 1.38 実施例 20 81.1 1.43 実施例 21 81.3 1.46 比較例 1 14.6 2.70 比較例 2 20.1 2.99 実施例 22 76.3 1.57 実施例 23 74.4 1.59 実施例 24 72.5 1.84 実施例 25 73.6 1.77 実施例 26 80.0 1.58 実施例 27 74.9 1.76 実施例 28 70.9 1.63 実施例 29 70.6 1.70 実施例 30 75.1 1.57 実施例 31 77.6 1.49 比較例 3 11.5 2.89 実施例 32 84.2 1.23 実施例 33 82.9 1.28 実施例 34 82.5 1.54 実施例 35 83.7 1.50 実施例 36 87.1 1.22 実施例 37 82.5 1.39 比較例 4 24.1 2.89 比較例 5 26.5 3.02 [0330] [表 7] Capacity retention rate after 400 cycles (capacity retention rate after 400 cycles) (%) Resistance retention rate Example 1 84.1 1.42 Example 2 80.8 1.40 Example 3 77.4 1.50 Example 4 79.4 1.55 Example 5 84.2 1.47 Example 6 78.8 1.62 Example 7 76.5 1.60 Example 8 77.7 1.55 Example 9 81.6 1.36 Example 10 83.5 1.27 Example 1 1 81.5 1.40 Example 12 82.6 1.41 Example 13 85.0 1.51 Example 14 82.6 1.37 Example 15 82.4 1.51 Example 16 80.8 1.41 Example 17 83.8 1.43 Example 18 84.2 1.41 Example 19 83.6 1.38 Example 20 81.1 1.43 Example 21 81.3 1.46 Comparative example 1 14.6 2.70 Comparative example 2 20.1 2.99 Example 22 76.3 1.57 Example 23 74.4 1.59 Example 24 72.5 1.84 Example 25 73.6 1.77 Example 26 80.0 1.58 Example 27 74.9 1.76 Example 28 70.9 1.63 Example 29 70.6 1.70 Example 30 75.1 1.57 Example 31 77.6 1.49 Comparative example 3 11.5 2.89 Example 32 84.2 1.23 Example 33 82.9 1.28 Example 34 82.5 1.54 Example 35 83.7 1.50 Example 36 87.1 1.22 Example 37 82.5 1.39 Comparison 4 24.1 2.89 Comparative Example 5 26.5 3.02 [0330] [Table 7]
Figure imgf000074_0001
Figure imgf000074_0001
[0331] [表 8] [0331] [Table 8]
400サイクル後の 400サイクル後の 容量維持率(%) 抵抗維持率 実施例 61 89.4 1.53 実施例 62 85.4 1.53 実施例 63 81.5 1.60 実施例 64 84.3 1.62 実施例 65 88.7 1.52 実施例 66 85.9 1.73 実施例 67 81.6 1.71 実施例 68 82.5 1.70 実施例 69 85.3 1.50 実施例 70 88.3 1.43 実施例 71 84.0 ' 1.55 実施例 72 86.4 1.54 実施例 73 85.2 1.46 実施例 74 88.3 1.40 実施例 75 88.4 1.52 実施例 76 86.2 1.55 実施例 77 85.8 1.36 実施例 78 82.6 1.40 実施例 79 86.6 1.47 実施例 80 85.6 1.57 実施例 81 84.3 1.58 比較例 1 1 14.6 2.82 比較例 12 18.6 3.03 実施例 82 79.7 1.71 実施例 83 77.6 1.72 実施例 84 74.3 1.88 実施例 85 80.1 1.95 実施例 86 81.6 1.64 実施例 87 78.0 1.81 実施例 88 76.0 1.68 実施例 89 75.4 1.83 実施例 90 82.0 1.68 実施例 91 82.1 1.55 比較例 13 1 1.7 3.06 実施例 92 91.6 1.38 実施例 93 88.9 1.48 実施例 94 88.2 1.61 実施例 95 89.6 1.50 実施例 96 90.9 1.29 実施例 97 86.1 1.52 比較例 14 27.5 3.00 比較例 15 29.0 3.33 400サイクル後の 400サイクル後の 容量維持率(%) 抵抗維持率 実施例 98 83.9 1.62 実施例 99 86.1 1.56 実施例 100 85.8 1.55 実施例 101 87.9 1.52 実施例 102 86.2 1.52 実施例 103 91.5 1.46 実施例 104 92.8 1.49 実施例 105 89.5 1.60 比較例 16 27.1 2.63 比較例 17 44.7 2.17 実施例 106 79.3 1.82 実施例 107 85.4 1.64 実施例 108 86.5 1.42 実施例 109 88.9 1.34 実施例 110 84.0 1.49 実施例 111 81.3 2.00 比較例 18 25.2 2.75 実施例 112 86.2 1.55 実施例 113 86.7 1.51 実施例 114 87.1 1.49 比較例 19 19.1 2.95 実施例 115 83.1 1.48 実施例 116 83.9 1.44 実施例 117 83.2 1.49 比較例 20 28.5 2.89 実施例 1 18 ■ 81.5 1.55 実施例 119 83.0 1.31 実施例 120 82.0 1.42 ] Capacity maintenance rate after 400 cycles after 400 cycles (%) Resistance maintenance rate Example 61 89.4 1.53 Example 62 85.4 1.53 Example 63 81.5 1.60 Example 64 84.3 1.62 Example 65 88.7 1.52 Example 66 85.9 1.73 Example 67 81.6 1.71 Example 68 82.5 1.70 Example 69 85.3 1.50 Example 70 88.3 1.43 Example 71 84.0 '1.55 Example 72 86.4 1.54 Example 73 85.2 1.46 Example 74 88.3 1.40 Example 75 88.4 1.52 Example 76 86.2 1.55 Example 77 85.8 1.36 Example 78 82.6 1.40 Example 79 86.6 1.47 Example 80 85.6 1.57 Example 81 84.3 1.58 Comparative example 1 1 14.6 2.82 Comparative example 12 18.6 3.03 Example 82 79.7 1.71 Example 83 77.6 1.72 Example 84 74.3 1.88 Example Example 85 80.1 1.95 Example 86 81.6 1.64 Example 87 78.0 1.81 Example 88 76.0 1.68 Example 89 75.4 1.83 Example 90 82.0 1.68 Example 91 82.1 1.55 Comparative example 13 1 1.7 3.06 Example 92 91.6 1.38 Example 93 88.9 1.48 Example 94 88.2 1.61 Example 95 89.6 1.50 Example 96 90.9 1.29 Example 97 86. 1 1.52 Comparative example 14 27.5 3.00 Comparative example 15 29.0 3.33 Capacity retention rate after 400 cycles after 400 cycles (%) Resistance retention rate Example 98 83.9 1.62 Example 99 86.1 1.56 Example 100 85.8 1.55 Example 101 87.9 1.52 Example 102 86.2 1.52 Example 103 91.5 1.46 Example 104 92.8 1.49 Example 105 89.5 1.60 Comparative Example 16 27.1 2.63 Comparative Example 17 44.7 2.17 Example 106 79.3 1.82 Example 107 85.4 1.64 Example 108 86.5 1.42 Example 109 88.9 1.34 Example 110 84.0 1.49 Example 111 81.3 2.00 Comparative Example 18 25.2 2.75 Example 112 86.2 1.55 Example 113 86.7 1.51 Example 114 87.1 1.49 Comparative Example 19 19.1 2.95 Example 115 83.1 1.48 Example 116 83.9 1.44 Example 117 83.2 1.49 Comparative Example 20 28.5 2.89 Example 1 18 ■ 81.5 1.55 Example Example 119 83.0 1.31 Example 120 82.0 1.42]
400サイクル後の 400サイクル後の After 400 cycles After 400 cycles
容量維持率(%) 抵抗維持率 実施例 121 84.1 1.51  Capacity maintenance rate (%) Resistance maintenance rate Example 121 84.1 1.51
実施例 122 82.7 1.48  Example 122 82.7 1.48
実施例 123 85.2 1.47  Example 123 85.2 1.47
実施例 124 83.6 1.45  Example 124 83.6 1.45
実施例 125 75.6 1.65  Example 125 75.6 1.65
実施例 126 84.2 1.53  Example 126 84.2 1.53
実施例 127 83.5 1.47  Example 127 83.5 1.47
実施例 128 82.6 1.46  Example 128 82.6 1.46
実施例 129 83.5 1.47  Example 129 83.5 1.47
実施例 130 82.9 1.45  Example 130 82.9 1.45
実施例 131 81.9 1.49  Example 131 81.9 1.49
実施例 132 83.0 1.50  Example 132 83.0 1.50
実施例 133 82.7 1.44  Example 133 82.7 1.44
実施例 134 82.4 1.51  Example 134 82.4 1.51
実施例 135 84.6 1.46  Example 135 84.6 1.46
実施例 136 83.1 1.45  Example 136 83.1 1.45
実施例 137 82.8 1.48  Example 137 82.8 1.48
実施例 138 83.1 1.52  Example 138 83.1 1.52
実施例 139 82.9 1.50  Example 139 82.9 1.50
実施例 140 84.0 1.48  Example 140 84.0 1.48
実施例 141 84.2 1.49  Example 141 84.2 1.49
実施例 142 78.9 1.61  Example 142 78.9 1.61
実施例 143 82.9 1.50  Example 143 82.9 1.50
(一般式(1)で示される化合物による効果の検証) (Verification of the effect of the compound represented by the general formula (1))
実施例 1一 10における容量維持率は、比較例 1の容量維持率より大きく上回ってい る。これは、化合物 No. 1によって、負極活物質としてアルカリ金属またはアルカリ土 類金属を吸蔵'放出する、元素 M^M1は Si、 Sn、 Al、 Pb、 Ag、 Ge及び Sbから選ば れた元素)を少なくとも 1種以上含む金属または半金属及び炭素材料を用いた電池 の場合、負極表面に存在する表面膜の安定化と、その膜の高いイオン伝導性によつ て、不可逆反応が抑制されたためなどが理由として考えられる。また、実施例 11一 1 9においても同様の傾向が見られ、一般式(1)で示される化合物による効果が確認さ れた。炭素材料として非晶質炭素を用いた実施例 20及び 21と比較例 2との比較でも 同様の傾向が見られた。正極活物質として LiMnOを用いた実施例 22 31の容量 The capacity retention rate in Examples 1 to 10 is much larger than the capacity retention rate of Comparative Example 1. Elements which, depending on the compound No. 1, occludes' releasing alkali metal or alkaline earth metal as an anode active material, the element M ^ M 1 is selected Si, Sn, Al, Pb, Ag, Ge, and Sb In the case of batteries using at least one metal or metalloid and carbon material containing at least one), the irreversible reaction is suppressed by the stabilization of the surface film present on the negative electrode surface and the high ion conductivity of the film. The reason is considered as a reason. A similar tendency was observed in Examples 11 to 19, and the effect of the compound represented by the general formula (1) was confirmed. A similar tendency was observed in a comparison between Examples 20 and 21 using amorphous carbon as the carbon material and Comparative Example 2. Example 22 using LiMnO as positive electrode active material Capacity of 31
2  2
維持率も、化合物 No. 1を含まない比較例 3の容量維持率より大きく上回っており、 実施例 1と同様の効果があることが確認された。 The retention rate was also significantly higher than the capacity retention rate of Comparative Example 3 not containing Compound No. 1, It was confirmed that the same effect as in Example 1 was obtained.
[0335] 実施例 32— 36は、比較例 4と比べてサイクル時における容量維持率が高いことが わかる。炭素材料として非晶質炭素を用いた実施例 37と比較例 5との比較でも同様 の傾向が見られた。この結果から、上記金属または半金属及び炭素材料とアルカリ 金属またはアルカリ土類金属と合金化しない元素 Xとを負極活物質として用いた電池 の場合にも、実施例 1と同様の効果があることが確認された。  [0335] It can be seen that Examples 32 to 36 have a higher capacity retention ratio during the cycle than Comparative Example 4. A similar tendency was observed in a comparison between Example 37 using amorphous carbon as the carbon material and Comparative Example 5. From these results, it can be seen that the same effect as in Example 1 can be obtained in the case of a battery using the above-mentioned metal or metalloid and the carbon material and the element X which does not alloy with the alkali metal or alkaline earth metal as the negative electrode active material. Was confirmed.
[0336] 実施例 61— 70における容量維持率は、比較例 11の容量維持率より大きく上回つ ている。これは、化合物 No. 1によって、負極活物質としてアルカリ金属またはアル力 リ土類金属を吸蔵 ·放出する酸化物及び炭素材料を用いた電池の場合、負極表面 に存在する表面膜の安定化と、その膜の高いイオン伝導性によって、不可逆反応が 抑制されたためなどが理由として考えられる。また、実施例 71 79においても同様 の傾向が見られ、一般式(1)で示される化合物による効果が確認された。炭素材料と して非晶質炭素を用いた実施例 80及び 81と比較例 12との比較でも同様の傾向が 見られた。正極活物質として LiMnOを用いた実施例 82— 91の容量維持率も、化  [0336] The capacity retention ratios of Examples 61 to 70 are much larger than the capacity retention ratio of Comparative Example 11. This is because compound No. 1 stabilizes the surface film present on the negative electrode surface in the case of batteries using oxides and carbon materials that occlude and release alkali metals or alkaline earth metals as the negative electrode active material. This is probably because the high ionic conductivity of the membrane suppressed the irreversible reaction. The same tendency was observed in Example 7179, and the effect of the compound represented by the general formula (1) was confirmed. A similar tendency was observed in the comparison between Examples 80 and 81 using amorphous carbon as the carbon material and Comparative Example 12. Example 82-91 using LiMnO as positive electrode active material
2  2
合物 No. 1を含まない比較例 13の容量維持率より大きく上回っており、実施例 61と 同様の効果があることが確認された。  The capacity retention ratio of Comparative Example 13 not containing Compound No. 1 was significantly higher than that of Comparative Example 13, and it was confirmed that the same effect as that of Example 61 was obtained.
[0337] 実施例 92— 96は、比較例 14と比べてサイクル時における容量維持率が高いこと がわかる。炭素材料として非晶質炭素を用いた実施例 97と比較例 15との比較でも同 様の傾向が見られた。この結果から、アルカリ金属またはアルカリ土類金属を吸蔵 · 放出する酸化物及び炭素材料とアルカリ金属またはアルカリ土類金属と合金化しな レ、元素 Xとを負極活物質として用いた電池の場合にも、実施例 61と同様の効果があ ることが確認された。 [0337] It can be seen that Examples 92-96 have a higher capacity retention rate during cycling than Comparative Example 14. A similar tendency was observed in a comparison between Example 97 using amorphous carbon as the carbon material and Comparative Example 15. This result indicates that the oxides and carbon materials that occlude and release alkali metals or alkaline earth metals should not be alloyed with alkali metals or alkaline earth metals. It was confirmed that the same effect as in Example 61 was obtained.
[0338] 実施例 121— 125における容量維持率は、比較例 1及び 11の容量維持率より大き く上回っている。これは、化合物 No. 1によって、負極活物質として金属若しくは半金 属と酸化物とを併用し、さらに炭素材料を用いた電池の場合、負極表面に存在する 表面膜の安定化と、その膜の高いイオン伝導性によって、不可逆反応が抑制された ためなどが理由として考えられる。正極活物質として LiMnOを用いた実施例 138  [0338] The capacity retention ratios in Examples 121 to 125 were significantly higher than those in Comparative Examples 1 and 11. This is due to the fact that compound No. 1 stabilizes the surface film present on the negative electrode surface in the case of a battery that uses a metal or metal oxide together with an oxide as the negative electrode active material, and further uses a carbon material. This may be because the irreversible reaction was suppressed due to the high ionic conductivity. Example 138 using LiMnO as positive electrode active material
2  2
142の容量維持率も、化合物 No. 1を含まない比較例 3及び 13の容量維持率より大 きく上回っており、実施例 121と同様の効果があることが確認された。 The capacity retention of 142 was also larger than the capacity retention of Comparative Examples 3 and 13, which did not contain Compound No. 1. Thus, it was confirmed that the same effect as in Example 121 was obtained.
[0339] 実施例 126及び 127並びに 143は、比較例 4及び 14と比べてサイクル時における 容量維持率が高いことがわかる。この結果から、負極活物質として金属若しくは半金 属と酸化物とを併用し、さらに炭素材料、及びアルカリ金属またはアルカリ土類金属と 合金化しない元素 Xを負極活物質として用いた電池の場合にも、実施例 121と同様 の効果があることが確認された。また、実施例 129— 137においても同様の傾向が見 られ、一般式(1)で示される化合物による効果が確認された。 [0339] It can be seen that Examples 126, 127 and 143 have a higher capacity retention rate during the cycle than Comparative Examples 4 and 14. From these results, it can be seen that in the case of a battery using a metal or metalloid and an oxide in combination as an anode active material, and further using a carbon material and an element X that does not alloy with an alkali metal or an alkaline earth metal as the anode active material. Also, it was confirmed that the same effect as in Example 121 was obtained. The same tendency was observed in Examples 129 to 137, and the effect of the compound represented by the general formula (1) was confirmed.
[0340] さらに実施例 1及び 61で作製した電池について、 400サイクル試験後の負極表面 を X線光電子分光法 (XPS)を用いて調べたところ、硫黄原子に基づく 164eV付近 にピークを有する物質が存在することを確認した。添加剤の入っていない系では 164 eV付近にピークを有する物質は存在しておらず、 1, 3— PSのみを用いた系では 164 eV付近にピークを有する物質が存在していた力 そのピーク強度は弱かった。した がって、化合物 No. 1に由来する皮膜が優先的に形成されたものと考えられる。 Further, when the negative electrode surface of the batteries prepared in Examples 1 and 61 after the 400 cycle test was examined by X-ray photoelectron spectroscopy (XPS), a substance having a peak at around 164 eV based on a sulfur atom was found. Confirmed that it exists. In the system containing no additive, there was no substance having a peak around 164 eV. In the system using only 1,3-PS, the substance had a peak near 164 eV. The strength was weak. Therefore, it is considered that the film derived from Compound No. 1 was formed preferentially.
[0341] (環式スルホン酸エステルを添加した効果の検証) [0341] (Verification of effect of adding cyclic sulfonic acid ester)
実施例 38— 40におけるサイクル試験後の容量維持率は、比較例 6に比較して上 回っており、 1 , 3-PSを添加した実施例 41一 43におけるサイクル試験後の容量維 持率は、実施例 38— 40よりもさらに向上している。また、 MMDSを添加した実施例 4 5においても同様の傾向が見られた。これは、 1 , 3—PSや MMDSのような環式スル ホン酸エステルの添カ卩により負極表面に存在する皮膜のさらなる安定化と、その膜の さらなる高いイオン伝導性によって、さらに不可逆反応が抑制されたためなどが理由 として考えられる。ただし、比較例 7のように添加剤として 1 , 3-PSを単独で用いた場 合は、容量維持率の向上効果はそれほど大きくない。  The capacity retention rate after the cycle test in Examples 38 to 40 was higher than that in Comparative Example 6, and the capacity retention rate after the cycle test in Examples 41 to 43 to which 1,3-PS was added was And Example 38-40 are further improved. A similar tendency was observed in Example 45 in which MMDS was added. This is because the addition of a cyclic sulfonate such as 1,3-PS or MMDS further stabilizes the film present on the negative electrode surface, and the higher ionic conductivity of the film further increases the irreversible reaction. The reason may be that it was suppressed. However, when 1,3-PS is used alone as an additive as in Comparative Example 7, the effect of improving the capacity retention ratio is not so large.
[0342] 実施例 98— 100におけるサイクル試験後の容量維持率は、比較例 16に比較して 上回っており、 1 , 3—PSを添カ卩した実施例 101— 103におけるサイクル試験後の容 量維持率は、実施例 98 100よりもさらに向上している。また、 MMDSを添加した実 施例 105においても同様の傾向が見られた。これは、 1, 3—PSや MMDSのような環 式スルホン酸エステルの添カ卩により負極表面に存在する皮膜のさらなる安定化と、そ の膜のさらなる高いイオン伝導性によって、さらに不可逆反応が抑制されたためなど が理由として考えられる。ただし、比較例 17のように添加剤として 1, 3-PSを単独で 用いた場合は、容量維持率の向上効果はそれほど大きくない。 [0342] The capacity retention rate after the cycle test in Examples 98-100 was higher than that in Comparative Example 16, and the capacity after the cycle test in Examples 101-103 to which 1,3-PS was added. The quantity retention is even better than in Example 98 100. A similar tendency was observed in Example 105 to which MMDS was added. This is because the addition of cyclic sulfonic acid ester such as 1,3-PS or MMDS further stabilizes the film present on the negative electrode surface, and further increases the irreversible reaction due to the higher ion conductivity of the film. Because it was suppressed Is considered as a reason. However, when 1,3-PS was used alone as an additive as in Comparative Example 17, the effect of improving the capacity retention rate was not so large.
[0343] (VC添加による効果の検証)  [Verification of the effect of adding VC]
実施例 44に示した電池は、実施例 43比較して、サイクル試験後の容量維持率が 更に向上していること、すなわち電解液に VCを更に添加することでサイクル特性が 改善していることが確認された。この理由についても、上記の 1, 3— PSを添加した際 の理由と同様と考えられる。  In the battery shown in Example 44, the capacity retention after the cycle test was further improved as compared with Example 43, that is, the cycle characteristics were improved by further adding VC to the electrolyte. Was confirmed. The reason for this is thought to be the same as the reason for the addition of 1,3-PS described above.
[0344] 実施例 104に示した電池は、実施例 103比較して、サイクル試験後の容量維持率 が更に向上していること、すなわち電解液に VCを更に添加することでサイクル特性 が改善していることが確認された。この理由についても、上記の 1 , 3—PSを添カ卩した 際の理由と同様と考えられる。  [0344] In the battery shown in Example 104, the capacity retention ratio after the cycle test was further improved as compared with Example 103, that is, the cycle characteristics were improved by further adding VC to the electrolytic solution. It was confirmed that. The reason for this is also considered to be the same as the above-mentioned reason for adding 1,3-PS.
[0345] (添加剤の電解液に占める濃度変化による効果の検証)  [0345] (Verification of effect of change in concentration of additive in electrolyte solution)
実施例 46— 51から、 400サイクル後の容量維持率は、化合物 No. 1の濃度が 0. 1 質量%未満および 5. 0質量%を越える濃度で低下する傾向が見られた。また、抵抗 上昇率は上昇する傾向が見られた。この結果より、電解液中における一般式(1)で 示される化合物の濃度は 0. 1質量%以上 5. 0質量%以下が好ましいことが確認され た。  From Examples 46-51, the capacity retention rate after 400 cycles tended to decrease at concentrations of compound No. 1 below 0.1% by mass and above 5.0% by mass. In addition, the rate of increase in resistance tended to increase. From these results, it was confirmed that the concentration of the compound represented by the general formula (1) in the electrolytic solution is preferably from 0.1% by mass to 5.0% by mass.
[0346] 実施例 106— 111から、 400サイクル後の容量維持率は、化合物 No. 1の濃度が 0 . 1質量%未満および 5. 0質量%を越える濃度で低下する傾向が見られた。また、抵 抗上昇率は上昇する傾向が見られた。この結果より、電解液中における一般式(1) で示される化合物の濃度は 0. 1質量%以上 5. 0質量%以下が好ましいことが確認さ れた。  [0346] From Examples 106 to 111, the capacity retention rate after 400 cycles tended to decrease when the concentration of compound No. 1 was less than 0.1% by mass and more than 5.0% by mass. In addition, the resistance rise rate tended to increase. From these results, it was confirmed that the concentration of the compound represented by the general formula (1) in the electrolytic solution was preferably from 0.1% by mass to 5.0% by mass.
[0347] (負極活物質に複合粒子を用いた場合の検証)  [0347] (Verification when using composite particles as negative electrode active material)
実施例 52— 54におけるサイクル試験後の容量維持率や抵抗維持率は、比較例 9 に比較して上回っている。この結果から、負極活物質として複合粒子を用いた電池の 場合にも、実施例 1と同様の効果があることが確認された。  The capacity retention ratio and the resistance retention ratio after the cycle test in Examples 52 to 54 were higher than those in Comparative Example 9. From these results, it was confirmed that the same effect as in Example 1 was obtained in the case of the battery using the composite particles as the negative electrode active material.
[0348] 実施例 112— 114におけるサイクル試験後の容量維持率や抵抗維持率は、比較 例 9に比較して上回っている。この結果から、負極活物質として複合粒子を用いた電 池の場合にも、実施例 61と同様の効果があることが確認された。 [0348] The capacity retention ratio and the resistance retention ratio after the cycle test in Examples 112 to 114 were higher than those in Comparative Example 9. From this result, it was found that the electrode using composite particles as the negative electrode active material In the case of a pond, it was confirmed that the same effect as in Example 61 was obtained.
[0349] 実施例 128におけるサイクル試験後の容量維持率や抵抗維持率は、比較例 9及び[0349] The capacity retention ratio and the resistance retention ratio after the cycle test in Example 128 were measured in Comparative Example 9 and
19に比較して上回っている。この結果から、負極活物質として複合粒子を用いた電 池の場合にも、実施例 121と同様の効果があることが確認された。 It is higher than 19. From this result, it was confirmed that the same effect as in Example 121 was obtained also in the case of the battery using the composite particles as the negative electrode active material.
[0350] (負極活物質に複合粒子と黒鉛粒子とを用いた場合の検証) [0350] (Verification when using composite particles and graphite particles as the negative electrode active material)
実施例 55— 57におけるサイクル試験後の容量維持率や抵抗維持率は、比較例 1 The capacity retention ratio and resistance retention ratio after the cycle test in Examples 55-57 were
0に比較して上回っている。この結果から、負極活物質として複合粒子を用いた電池 の場合にも、実施例 1と同様の効果があることが確認された。 It is higher than 0. From these results, it was confirmed that the same effect as in Example 1 was obtained in the case of the battery using the composite particles as the negative electrode active material.
[0351] 実施例 115— 117におけるサイクル試験後の容量維持率や抵抗維持率は、比較 例 20に比較して上回っている。この結果から、負極活物質として複合粒子を用いた 電池の場合にも、実施例 61と同様の効果があることが確認された。 [0351] The capacity retention ratio and the resistance retention ratio after the cycle test in Examples 115 to 117 were higher than those in Comparative Example 20. From these results, it was confirmed that the same effect as in Example 61 was obtained in the case of the battery using the composite particles as the negative electrode active material.
[0352] (炭素材料の含有量の違いによる効果の検証) [0352] (Verification of effects due to differences in carbon material content)
実施例 1 (炭素材料含有量: 50質量%)並びに実施例 58 (5質量%)及び 59 (95質 量%)の結果はいずれも良好であることが確認された。  It was confirmed that the results of Example 1 (carbon material content: 50% by mass) and Examples 58 (5% by mass) and 59 (95% by mass) were all good.
[0353] 実施例 61 (炭素材料含有量: 50質量%)並びに実施例 118 (5質量%)及び 119 (Example 61 (carbon material content: 50% by mass) and Examples 118 (5% by mass) and 119 (
95質量%)の結果はいずれも良好であることが確認された。 (95% by mass) was confirmed to be good.
[0354] (炭素材料の膜の形成方法による効果の検証) [0354] (Verification of effect by method of forming carbon material film)
実施例 1 (塗布方式)及び実施例 60 (スパッタリング方式)の結果はレ、ずれも良好で あることが確認された。  It was confirmed that the results of Example 1 (coating method) and Example 60 (sputtering method) had good results and deviation.
[0355] 実施例 61 (塗布方式)及び実施例 120 (スパッタリング方式)の結果はいずれも良 好であることが確認された。  [0355] The results of Example 61 (coating method) and Example 120 (sputtering method) were both confirmed to be good.

Claims

請求の範囲 The scope of the claims
正極と、負極と、電解液とを少なくとも備えた二次電池において、  In a secondary battery including at least a positive electrode, a negative electrode, and an electrolyte,
前記負極が、負極活物質として、アルカリ金属またはアルカリ土類金属を吸蔵 ·放出 する、金属若しくは半金属又は酸化物、及び炭素材料を含有し、かつ、 The negative electrode contains, as a negative electrode active material, a metal or a metalloid or an oxide that occludes and releases an alkali metal or an alkaline earth metal, and a carbon material, and
前記電解液は、少なくとも電解質が溶解された非プロトン性溶媒と、下記一般式(1 ) で示される化合物とを含むことを特徴とする二次電池。 A secondary battery, wherein the electrolytic solution contains at least an aprotic solvent in which an electrolyte is dissolved and a compound represented by the following general formula (1).
[化 1]  [Chemical 1]
Figure imgf000082_0001
Figure imgf000082_0001
(但し、上記一般式(1 )において、 Rおよび Rは、それぞれ独立して、水素原子、置 (However, in the above general formula (1), R and R are each independently a hydrogen atom,
1 4  14
換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5 のアルコキシ基、置換もしくは無置換の炭素数 1一 5のフルォロアルキル基、炭素数 1 一 5のポリフルォロアルキル基、一 SO X (Xは置換もしくは無置換の炭素数 1一 5の Substituted or unsubstituted alkyl group having 15 carbon atoms, substituted or unsubstituted alkoxy group having 15 carbon atoms, substituted or unsubstituted fluoroalkyl group having 15 carbon atoms, polyfluoro group having 15 carbon atoms SO X (X is a substituted or unsubstituted C 1 -C 5
2 1 1  2 1 1
アルキル基)、 -SY (Yは置換もしくは無置換の炭素数 1一 5のアルキル基)、一 CO Alkyl group), -SY (Y is a substituted or unsubstituted alkyl group having 115 carbon atoms), CO
1 1  1 1
Z (Zは水素原子、または置換もしくは無置換の炭素数 1一 5のアルキル基)、及びハ ロゲン原子、力 選ばれる原子または基を示す。 Rおよび Rは、それぞれ独立して、  Z (Z is a hydrogen atom or a substituted or unsubstituted alkyl group having 15 to 15 carbon atoms), a halogen atom, and an atom or group selected from the following. R and R are each independently
2 3  twenty three
置換もしくは無置換の炭素数 1一 5のアルキル基、置換もしくは無置換の炭素数 1一 5のアルコキシ基、置換もしくは無置換のフエノキシ基、置換もしくは無置換の炭素数 1一 5のフルォロアルキル基、炭素数 1一 5のポリフルォロアルキル基、置換もしくは無 置換の炭素数 1一 5のフルォロアルコキシ基、炭素数 1一 5のポリフルォロアルコキシ 基、水酸基、ハロゲン原子、 -NX X (X及び Xは、それぞれ独立して、水素原子、 A substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, C15 polyfluoroalkyl group, substituted or unsubstituted C15 fluoroalkoxy group, C15 polyfluoroalkoxy group, hydroxyl group, halogen atom, -NX X ( X and X are each independently a hydrogen atom,
2 3 2 3  2 3 2 3
または置換もしくは無置換の炭素数 1一 5のアルキル基)、及び一 NY CONY Y (Y Or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and one NY CONY Y (Y
2 3 4 2 一 Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数 1一 5の 2 3 4 2 1 Y is each independently a hydrogen atom or a substituted or unsubstituted
4 Four
アルキル基)、力 選ばれる原子または基を示す。) [2] 前記負極が、負極活物質として、アルカリ金属またはアルカリ土類金属を吸蔵 ·放 出する、元素 M1 (M1は Si、 Sn、 Al、 Pb、 Ag、 Ge及び Sbから選ばれた元素)を少な くとも 1種以上含む金属または半金属及び炭素材料を含有することを特徴とする請求 項 1に記載の二次電池。 Alkyl group), power Indicates the atom or group to be selected. ) [2] The element M 1 (where M 1 is selected from Si, Sn, Al, Pb, Ag, Ge and Sb), wherein the negative electrode absorbs and releases an alkali metal or an alkaline earth metal as a negative electrode active material. 2. The secondary battery according to claim 1, wherein the secondary battery comprises a metal or metalloid containing at least one element) and a carbon material.
[3] 前記負極に含まれる負極活物質中に、アルカリ金属またはアルカリ土類金属と合金 化しない元素 Xをさらに含むことを特徴とする請求項 2に記載の二次電池。  3. The secondary battery according to claim 2, wherein the negative electrode active material contained in the negative electrode further contains an element X that does not alloy with an alkali metal or an alkaline earth metal.
[4] 前記元素 Xが、 Fe、 Ni、 Cu及び Tiから選ばれた元素であることを特徴とする請求 項 3記載の二次電池。  4. The secondary battery according to claim 3, wherein the element X is an element selected from Fe, Ni, Cu, and Ti.
[5] 前記元素 M1と前記元素 Xとの比率が、原子数比で元素 M1 :元素 X= 19 : 1— 1 : 9 であることを特徴とする請求項 3または 4記載の二次電池。 [5] ratio of the element M 1 and the element X, the element M 1 in atomic ratio: element X = 19: 1-1: Secondary according to claim 3, wherein it is a 9 battery.
[6] 前記炭素材料が、黒鉛、非晶質炭素、カーボンナノチューブ、カーボンナノホーン[6] The carbon material is graphite, amorphous carbon, carbon nanotube, carbon nanohorn.
、フラーレン、ダイヤモンドライクカーボン、ソフトカーボン、ハードカーボン、及びこれ らの混合物から選ばれる少なくとも 1種であることを特徴とする請求項 2— 5のいずれ かに記載の二次電池。 The secondary battery according to any one of claims 2 to 5, wherein the secondary battery is at least one selected from carbon, fullerene, diamond-like carbon, soft carbon, hard carbon, and a mixture thereof.
[7] 前記負極活物質全体に対する前記炭素材料の含有量が 5— 95質量%であること を特徴とする請求項 2— 6のいずれかに記載の二次電池。  [7] The secondary battery according to any one of claims 2 to 6, wherein the content of the carbon material with respect to the entire negative electrode active material is 5 to 95% by mass.
[8] 前記負極活物質が、前記金属または半金属、及び前記炭素材料の少なくとも一方 を含有する粒子を含むことを特徴とする請求項 2— 7のいずれかに記載の二次電池。 [8] The secondary battery according to any one of claims 2 to 7, wherein the negative electrode active material includes particles containing at least one of the metal or metalloid and the carbon material.
[9] 前記粒子が、前記金属または半金属、及び前記炭素材料の両方を含有する複合 粒子であることを特徴とする請求項 8に記載の二次電池。 9. The secondary battery according to claim 8, wherein the particles are composite particles containing both the metal or metalloid and the carbon material.
[10] 前記複合粒子が、前記金属または半金属の粒子の周囲の少なくとも一部を前記炭 素材料で被覆したものであることを特徴とする請求項 9に記載の二次電池。 10. The secondary battery according to claim 9, wherein the composite particles are obtained by coating at least a part of the periphery of the metal or metalloid particles with the carbon material.
[11] 前記複合粒子が、前記炭素材料の粒子の周囲の少なくとも一部を前記金属または 半金属で被覆したものであることを特徴とする請求項 9に記載の二次電池。 11. The secondary battery according to claim 9, wherein the composite particles are obtained by coating at least a part of the periphery of the carbon material particles with the metal or metalloid.
[12] 前記粒子が、表面を炭素膜で被覆されていることを特徴とする請求項 8— 11のい ずれかに記載の二次電池。 12. The secondary battery according to claim 8, wherein the surface of the particles is coated with a carbon film.
[13] 前記負極活物質が、真空成膜法または圧接法で形成したものであることを特徴とす る請求項 2 12のレ、ずれかに記載の二次電池。 [14] 前記真空成膜法が、真空蒸着法、スパッタ法、及び CVD法のレ、ずれかであること を特徴とする請求項 13に記載の二次電池。 13. The secondary battery according to claim 212, wherein the negative electrode active material is formed by a vacuum film forming method or a pressure welding method. 14. The secondary battery according to claim 13, wherein the vacuum film forming method is any one of vacuum evaporation, sputtering, and CVD.
[15] 前記圧接法が、メカノフュージョン法またはメカニカルミリング法であることを特徴と する請求項 13に記載の二次電池。 15. The secondary battery according to claim 13, wherein the pressure welding method is a mechanofusion method or a mechanical milling method.
[16] 前記負極が、前記負極活物質の少なくとも一部を含有する、塗布法または真空成 膜法で形成した層を有することを特徴とする請求項 2 15のいずれかに記載の二次 電池。 16. The secondary battery according to claim 215, wherein the negative electrode has a layer containing at least a part of the negative electrode active material and formed by a coating method or a vacuum film forming method. .
[17] 前記負極活物質が、前記金属または半金属を主成分とする層と、前記炭素材料を 主成分とする層と、を有する層状構造を形成していることを特徴とする請求項 2 16 のレ、ずれかに記載の二次電池。  17. The negative electrode active material has a layered structure including a layer mainly composed of the metal or metalloid and a layer mainly composed of the carbon material. The rechargeable battery according to any one of the items 16.
[18] 前記一般式(1)で示される化合物が、前記電解液中に、前記電解液全体の質量に 対して 0. 1— 5. 0質量%含まれることを特徴とする請求項 2 17のいずれかに記載 の二次電池。 [18] The method according to [217], wherein the compound represented by the general formula (1) is contained in the electrolytic solution in an amount of 0.1 to 5.0% by mass based on the total mass of the electrolytic solution. The secondary battery according to any one of the above.
[19] 前記電解液が、さらに下記一般式(2)で示される環式モノスルホン酸エステルを含 むことを特徴とする請求項 2— 18のいずれかに記載の二次電池。  [19] The secondary battery according to any one of claims 2 to 18, wherein the electrolytic solution further comprises a cyclic monosulfonic acid ester represented by the following general formula (2).
Figure imgf000084_0001
Figure imgf000084_0001
(但し、上記一般式(2)において、 nは 0以上 2以下の整数である。また、 R— R は、 (However, in the above general formula (2), n is an integer of 0 or more and 2 or less.
5 10 それぞれ独立して、水素原子、置換もしくは無置換の炭素数 1一 12のアルキル基、 置換もしくは無置換の炭素数 1一 6のフルォロアルキル基、及び炭素数 1一 6のポリフ ルォロアルキル基、力 選ばれる原子または基を示す。)  5 10 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 6 carbon atoms, and a polyfluoroalkyl group having 1 to 6 carbon atoms. Indicates the selected atom or group. )
前記電解液が、さらに下記一般式(3)で示されるスルホ二ル基を 2個有する環式ス ルホン酸エステルを含むことを特徴とする請求項 2— 19のいずれかに記載の二次電 池。 20. The secondary battery according to claim 2, wherein the electrolytic solution further comprises a cyclic sulfonate having two sulfonyl groups represented by the following general formula (3). pond.
[化 3]  [Formula 3]
Figure imgf000085_0001
Figure imgf000085_0001
( 3 )  (3)
(但し、上記一般式(3)において、 Qは酸素原子、メチレン基または単結合、 Aは、置 換もしくは無置換の炭素数 1一 5のアルキレン基、カルボニル基、スルフィニル基、炭 素数 1一 5のポリフルォロアルキレン基、置換もしくは無置換の炭素数 1一 5のフルォ 口アルキレン基、置換もしくは無置換の炭素数 1一 5のアルキレン基における C一 C結 合の少なくとも一箇所が C一〇一 C結合となった基、炭素数 1一 5のポリフルォロアルキ レン基における C一 C結合の少なくとも一箇所が C_〇_C結合となった基、及び置換も しくは無置換の炭素数 1一 5のフルォロアルキレン基における C—C結合の少なくとも 一箇所が C_〇_C結合となった基、力 選ばれる基を示す。 Bは置換もしくは無置換 の炭素数 1一 5のアルキレン基、炭素数 1一 5のポリフルォロアルキレン基、及び置換 もしくは無置換の炭素数 1一 5のフルォロアルキレン基、から選ばれる基を示す。 ) (However, in the above general formula (3), Q is an oxygen atom, a methylene group or a single bond, A is a substituted or unsubstituted alkylene group having 115 carbon atoms, a carbonyl group, a sulfinyl group, a carbon atom having 11 carbon atoms. In a polyfluoroalkylene group of 5, a substituted or unsubstituted fluoroalkylene group having 15 to 15 carbon atoms, or a substituted or unsubstituted alkylene group having 15 to 15 carbon atoms, at least one of the C-C bonds is C-C基 C-bonded groups, groups in which at least one of the C-C bonds in the C15 polyfluoroalkylene group is C_ C_C-bonded, and substituted or unsubstituted A group in which at least one of the C—C bonds in the fluoroalkylene group having 115 carbon atoms is a C_〇_C bond or a group selected from the group B is a substituted or unsubstituted carbon atom having 1 to 5 carbon atoms 5 alkylene groups, 11-carbon polyfluoroalkyl Indicating group, and substituted or unsubstituted full O b alkylene group having a carbon number of 1 one 5, a group selected from.)
[21] 前記電解液が、更にビニレンカーボネート及びその誘導体の少なくとも 1種を含む ことを特徴とする請求項 2— 20のいずれかに記載の二次電池。  21. The secondary battery according to claim 2, wherein the electrolyte further contains at least one of vinylene carbonate and a derivative thereof.
[22] 前記電解質が、リチウム塩を含むことを特徴とする請求項 2 21のいずれかに記載 の二次電池。  22. The secondary battery according to claim 22, wherein the electrolyte contains a lithium salt.
[23] 前記リチウム塩力 LiPF  [23] The lithium salt power LiPF
6、 LiBF  6, LiBF
4、 LiAsF  4, LiAsF
6、 LiSbF  6, LiSbF
6、 LiCIO  6, LiCIO
4、 LiAlCl、及び Li  4, LiAlCl, and Li
4  Four
N (C F SO ) (C F SO ) (k, mは、それぞれ独立して 1又は 2)からなる群よ k 2k+ l 2 m 2m+ l 2  A group consisting of N (C F SO) (C F SO) (k and m are each independently 1 or 2) k 2k + l 2 m 2m + l 2
り選ばれた少なくとも 1種のリチウム塩であることを特徴とする請求項 22に記載の二次 電池。  23. The secondary battery according to claim 22, wherein the secondary battery is at least one selected from lithium salts.
[24] 前記非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カル ボン酸エステル類、 Ί一ラタトン類、環状エーテル類、鎖状エーテル類及びこれらの フッ化誘導体からなる群より選ばれた少なくとも 1種の有機溶媒であることを特徴とす る請求項 2— 23のいずれかに記載の二次電池。 [24] The aprotic solvent is selected from cyclic carbonates, chain carbonates, and aliphatic carbonates. 23. The organic solvent according to claim 2, wherein the organic solvent is at least one organic solvent selected from the group consisting of carboxylic esters, monolatatatones , cyclic ethers, chain ethers, and fluorinated derivatives thereof. The secondary battery according to any one of the above.
[25] ラミネート外装体により覆われていることを特徴とする請求項 2 24のいずれかに記 載の二次電池。 [25] The secondary battery according to any one of claims 224, wherein the secondary battery is covered with a laminate exterior body.
[26] 前記負極が、負極活物質として、アルカリ金属またはアルカリ土類金属を吸蔵 ·放出 する酸化物及び炭素材料を含有することを特徴とする請求項 1に記載の二次電池。  26. The secondary battery according to claim 1, wherein the negative electrode contains, as a negative electrode active material, an oxide capable of inserting and extracting an alkali metal or an alkaline earth metal and a carbon material.
[27] 前記酸化物が、元素 Μ22は Si、 Sn、 Al、 Pb、 Ag、 Ge、 Sb、 B、 P、 W及び Tiか ら選ばれた元素)を含むことを特徴とする請求項 26に記載の二次電池。 [27] The oxide is, (the Μ 2 Si, Sn, Al, Pb, Ag, Ge, Sb, B, P, W Ti or we selected element and) Elemental Micromax 2, characterized in that it comprises a 27. The secondary battery according to claim 26.
[28] 前記負極に含まれる負極活物質中に、アルカリ金属またはアルカリ土類金属と合金 化しない元素 Xをさらに含むことを特徴とする請求項 27に記載の二次電池。 28. The secondary battery according to claim 27, wherein the negative electrode active material contained in the negative electrode further contains an element X that does not alloy with an alkali metal or an alkaline earth metal.
[29] 前記元素 Xが、 Fe、 Ni、 Cu及び Tiから選ばれた元素であることを特徴とする請求 項 28記載の二次電池。 29. The secondary battery according to claim 28, wherein the element X is an element selected from Fe, Ni, Cu, and Ti.
[30] 前記元素 M2と前記元素 Xとの比率が、原子数比で元素 M2 :元素 X= 19 : 1— 1 : 9 であることを特徴とする請求項 28または 29記載の二次電池。 [30] The element ratio of M 2 and the element X, the element M 2 in atomic ratio: element X = 19: 1-1: Secondary according to claim 28 or 29, wherein it is a 9 battery.
[31] 前記負極に含まれる負極活物質中に、アルカリ金属またはアルカリ土類金属と合金 化しない元素 Xをさらに含むことを特徴とする請求項 26に記載の二次電池。 31. The secondary battery according to claim 26, wherein the negative electrode active material contained in the negative electrode further contains an element X that does not alloy with an alkali metal or an alkaline earth metal.
[32] 前記金属が、 Fe、 Ni、 Cu及び Tiから選ばれた元素を含むことを特徴とする請求項 [32] The method according to the above, wherein the metal contains an element selected from Fe, Ni, Cu and Ti.
31記載の二次電池。  31. The secondary battery according to 31.
[33] 前記炭素材料が、黒鉛、非晶質炭素、カーボンナノチューブ、カーボンナノホーン 、フラーレン、ダイヤモンドライクカーボン、ソフトカーボン、ハードカーボン、及びこれ らの混合物から選ばれる少なくとも 1種であることを特徴とする請求項 26 32のいず れかに記載の二次電池。  [33] The carbon material is characterized by being at least one selected from graphite, amorphous carbon, carbon nanotube, carbon nanohorn, fullerene, diamond-like carbon, soft carbon, hard carbon, and a mixture thereof. The rechargeable battery according to any one of claims 26 to 32.
[34] 前記負極活物質全体に対する前記炭素材料の含有量が 5— 95質量%であること を特徴とする請求項 26 33のいずれかに記載の二次電池。  34. The secondary battery according to claim 26, wherein the content of the carbon material is 5 to 95% by mass based on the whole negative electrode active material.
[35] 前記負極活物質が、前記酸化物、及び前記炭素材料の少なくとも一方を含有する 粒子を含むことを特徴とする請求項 26— 34のいずれかに記載の二次電池。  35. The secondary battery according to claim 26, wherein the negative electrode active material includes particles containing at least one of the oxide and the carbon material.
[36] 前記粒子が、前記酸化物、及び前記炭素材料の両方を含有する複合粒子であるこ とを特徴とする請求項 35に記載の二次電池。 [36] The particle may be a composite particle containing both the oxide and the carbon material. 36. The secondary battery according to claim 35, wherein:
[37] 前記複合粒子が、前記酸化物の粒子の周囲の少なくとも一部を前記炭素材料で被 覆したものであることを特徴とする請求項 36に記載の二次電池。 37. The secondary battery according to claim 36, wherein the composite particles have at least a part of the periphery of the oxide particles covered with the carbon material.
[38] 前記複合粒子が、前記炭素材料の粒子の周囲の少なくとも一部を前記酸化物で被 覆したものであることを特徴とする請求項 36に記載の二次電池。 38. The secondary battery according to claim 36, wherein the composite particles have at least a part of the periphery of the particles of the carbon material covered with the oxide.
[39] 前記粒子が、表面を炭素膜で被覆されていることを特徴とする請求項 35— 38のい ずれかに記載の二次電池。 39. The secondary battery according to claim 35, wherein the surface of the particles is covered with a carbon film.
[40] 前記負極活物質が、真空成膜法または圧接法で形成したものであることを特徴とす る請求項 26 39のいずれかに記載の二次電池。 40. The secondary battery according to claim 26, wherein the negative electrode active material is formed by a vacuum film forming method or a pressure welding method.
[41] 前記真空成膜法が、真空蒸着法、スパッタ法、及び CVD法のレ、ずれかであること を特徴とする請求項 40に記載の二次電池。 41. The secondary battery according to claim 40, wherein the vacuum film forming method is any one of vacuum evaporation, sputtering, and CVD.
[42] 前記圧接法が、メカノフュージョン法またはメカニカルミリング法であることを特徴と する請求項 40に記載の二次電池。 42. The secondary battery according to claim 40, wherein the pressure welding method is a mechanofusion method or a mechanical milling method.
[43] 前記負極が、前記負極活物質の少なくとも一部を含有する、塗布法または真空成 膜法で形成した層を有することを特徴とする請求項 26— 42のいずれかに記載の二 次電池。 43. The secondary according to claim 26, wherein the negative electrode has a layer containing at least a part of the negative electrode active material and formed by a coating method or a vacuum film forming method. battery.
[44] 前記負極活物質が、前記酸化物を主成分とする層と、前記炭素材料を主成分とす る層と、を有する層状構造を形成していることを特徴とする請求項 26— 43のいずれ かに記載の二次電池。  44. The negative electrode active material according to claim 26, wherein the negative electrode active material has a layered structure including a layer mainly containing the oxide and a layer mainly containing the carbon material. 43. The secondary battery according to any one of 43.
[45] 前記一般式(1)で示される化合物が、前記電解液中に、前記電解液全体の質量に 対して 0· 1-5. 0質量%含まれることを特徴とする請求項 26— 44のいずれかに記 載の二次電池。  45. The electrolytic solution according to claim 26, wherein the compound represented by the general formula (1) is contained in the electrolytic solution in an amount of 0.1 to 5.0% by mass based on the total mass of the electrolytic solution. The rechargeable battery described in any one of 44.
[46] 前記電解液が、さらに下記一般式(2)で示される環式モノスルホン酸エステルを含 むことを特徴とする請求項 26 45のいずれかに記載の二次電池。  46. The secondary battery according to claim 26, wherein the electrolytic solution further contains a cyclic monosulfonic acid ester represented by the following general formula (2).
[化 4]
Figure imgf000088_0001
[Formula 4]
Figure imgf000088_0001
(但し、上記一般式(2)において、 nは 0以上 2以下の整数である。また、 R— R は、 (However, in the above general formula (2), n is an integer of 0 or more and 2 or less.
5 10 それぞれ独立して、水素原子、置換もしくは無置換の炭素数 1一 12のアルキル基、 置換もしくは無置換の炭素数 1一 6のフルォロアルキル基、及び炭素数 1一 6のポリフ ルォロアルキル基、力 選ばれる原子または基を示す。)  5 10 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 6 carbon atoms, and a polyfluoroalkyl group having 1 to 6 carbon atoms. Indicates the selected atom or group. )
[47] 前記電解液が、さらに下記一般式(3)で示されるスルホ二ル基を 2個有する環式ス ルホン酸エステルを含むことを特徴とする請求項 26— 46のいずれかに記載の二次  47. The method according to claim 26, wherein the electrolytic solution further comprises a cyclic sulfonate having two sulfonyl groups represented by the following general formula (3). secondary
[化 5] [Formula 5]
Figure imgf000088_0002
Figure imgf000088_0002
(但し、上記一般式(3)において、 Qは酸素原子、メチレン基または単結合、 Aは、置 換もしくは無置換の炭素数 1一 5のアルキレン基、カルボニル基、スルフィニル基、炭 素数 1一 5のポリフルォロアルキレン基、置換もしくは無置換の炭素数 1一 5のフルォ 口アルキレン基、置換もしくは無置換の炭素数 1一 5のアルキレン基における C一 C結 合の少なくとも一箇所が C一〇一 C結合となった基、炭素数 1一 5のポリフルォロアルキ レン基における C一 C結合の少なくとも一箇所が C_〇_C結合となった基、及び置換も しくは無置換の炭素数 1一 5のフルォロアルキレン基における C—C結合の少なくとも 一箇所が C-O-C結合となった基、力 選ばれる基を示す。 Bは置換もしくは無置換 の炭素数 1一 5のアルキレン基、炭素数 1一 5のポリフルォロアルキレン基、及び置換 もしくは無置換の炭素数 1一 5のフルォロアルキレン基、から選ばれる基を示す。 ) (However, in the above general formula (3), Q is an oxygen atom, a methylene group or a single bond, A is a substituted or unsubstituted alkylene group having 115 carbon atoms, a carbonyl group, a sulfinyl group, a carbon atom having 11 carbon atoms. In a polyfluoroalkylene group of 5, a substituted or unsubstituted fluoroalkylene group having 15 to 15 carbon atoms, and a substituted or unsubstituted alkylene group having 15 to 15 carbon atoms, at least one of the C-C bonds is C-C基 C-bonded groups, groups in which at least one of the C-C bonds in the C15 polyfluoroalkylene group is C_ C_C-bonded, and substituted or unsubstituted At least a C--C bond in a fluoroalkylene group having 1 to 5 carbon atoms One point indicates a group that has become a COC bond and a group that can be selected. B is a group selected from a substituted or unsubstituted alkylene group having 115 carbon atoms, a polyfluoroalkylene group having 115 carbon atoms, and a substituted or unsubstituted fluoroalkylene group having 115 carbon atoms Is shown. )
[48] 前記電解液が、更にビニレンカーボネート及びその誘導体の少なくとも 1種を含む ことを特徴とする請求項 26 47のいずれかに記載の二次電池。  48. The secondary battery according to claim 26, wherein the electrolyte further contains at least one of vinylene carbonate and a derivative thereof.
[49] 前記電解質が、リチウム塩を含むことを特徴とする請求項 26 48のいずれかに記 載の二次電池。  49. The secondary battery according to claim 26, wherein the electrolyte contains a lithium salt.
[50] 前記リチウム塩力 LiPF  [50] The lithium salt power LiPF
6、 LiBF  6, LiBF
4、 LiAsF  4, LiAsF
6、 LiSbF  6, LiSbF
6、 LiCIO  6, LiCIO
4、 LiAlCl、及び Li  4, LiAlCl, and Li
4  Four
N (C F SO ) (C F SO ) (k, mは、それぞれ独立して 1又は 2)からなる群よ k 2k+ l 2 m 2m+ l 2  A group consisting of N (C F SO) (C F SO) (k and m are each independently 1 or 2) k 2k + l 2 m 2m + l 2
り選ばれた少なくとも 1種のリチウム塩であることを特徴とする請求項 49に記載の二次 電池。  50. The secondary battery according to claim 49, wherein the secondary battery is at least one selected from lithium salts.
[51] 前記非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カル ボン酸エステル類、 Ί一ラタトン類、環状エーテル類、鎖状エーテル類及びこれらの フッ化誘導体からなる群より選ばれた少なくとも 1種の有機溶媒であることを特徴とす る請求項 26— 50のいずれかに記載の二次電池。 [51] The aprotic solvent is, cyclic carbonates, chain carbonates, aliphatic Cal Bonn acid esters, I one Rataton, cyclic ethers, from chain ethers and the group consisting of fluoride derivatives The secondary battery according to any one of claims 26 to 50, wherein the secondary battery is at least one selected from organic solvents.
[52] ラミネート外装体により覆われていることを特徴とする請求項 26— 51のいずれかに 記載の二次電池。 [52] The secondary battery according to any one of [26] to [51], wherein the secondary battery is covered with a laminate exterior body.
PCT/JP2004/018715 2003-12-15 2004-12-15 Secondary battery WO2005057715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516241A JP4951969B2 (en) 2003-12-15 2004-12-15 Secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003416516 2003-12-15
JP2003-416516 2003-12-15
JP2004317280 2004-10-29
JP2004-317298 2004-10-29
JP2004-317280 2004-10-29
JP2004317298 2004-10-29

Publications (1)

Publication Number Publication Date
WO2005057715A1 true WO2005057715A1 (en) 2005-06-23

Family

ID=34681974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018715 WO2005057715A1 (en) 2003-12-15 2004-12-15 Secondary battery

Country Status (2)

Country Link
JP (1) JP4951969B2 (en)
WO (1) WO2005057715A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050319A (en) * 2005-08-16 2007-03-01 Ritsumeikan Composite catalytic particle
JP2007141798A (en) * 2005-11-22 2007-06-07 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium battery, and the lithium battery using the same
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2007329010A (en) * 2006-06-07 2007-12-20 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
JP2008153118A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
JP2009032693A (en) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd Si/C COMPOSITE, ANODE ACTIVE MATERIAL CONTAINING THE SAME, AND LITHIUM BATTERY
EP2051318A1 (en) * 2007-02-02 2009-04-22 Panasonic Corporation Lithium cell electrode, and method for manufacturing the lithium cell electrode
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011071085A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and the secondary battery
JP2011071084A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and secondary battery
JP2012033346A (en) * 2010-07-29 2012-02-16 Nec Energy Devices Ltd Aprotic electrolyte secondary battery
US20120177988A1 (en) * 2006-04-27 2012-07-12 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
JP5304961B1 (en) * 2013-02-22 2013-10-02 大日本印刷株式会社 Negative electrode plate for magnesium ion secondary battery, magnesium ion secondary battery, and battery pack
US8551655B2 (en) 2010-07-07 2013-10-08 Samsung Sdi Co., Ltd. Negative active material for secondary lithium battery and secondary lithium battery
JP2014127313A (en) * 2012-12-26 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method of the battery
US20140199601A1 (en) * 2011-07-07 2014-07-17 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
WO2016035396A1 (en) * 2014-09-01 2016-03-10 日立オートモティブシステムズ株式会社 Lithium ion secondary battery
JPWO2015129266A1 (en) * 2014-02-25 2017-03-30 新日鐵住金株式会社 Composite particles, negative electrode and battery
CN106688132A (en) * 2014-07-22 2017-05-17 瑞克锐斯株式会社 Silicon secondary battery
JPWO2016098214A1 (en) * 2014-12-17 2017-11-02 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
US10263280B2 (en) 2014-03-28 2019-04-16 Evonik Degussa Gmbh 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
WO2019163967A1 (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Multilayer body and method for producing same
US10608255B2 (en) 2016-08-05 2020-03-31 Evonik Operations Gmbh Use of thianthrene-containing polymers as a charge store

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263378A (en) * 1994-03-18 1995-10-13 Mitsubishi Heavy Ind Ltd Manufacture of electrode
JP2000133304A (en) * 1998-10-26 2000-05-12 Ube Ind Ltd Non-aqueous electrolyte and lithium secondary battery using it
JP2001313071A (en) * 2000-04-27 2001-11-09 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary cell using it
JP2002170564A (en) * 2000-11-30 2002-06-14 Mitsubishi Chemicals Corp Positive electrode material for nonaqueous system electrolyte secondary battery, positive electrode and second battery
JP2003217654A (en) * 2002-01-24 2003-07-31 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072021A1 (en) * 2003-02-14 2004-08-26 Daikin Industries, Ltd. Fluorosulfonic acid compound, process for producing the same, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263378A (en) * 1994-03-18 1995-10-13 Mitsubishi Heavy Ind Ltd Manufacture of electrode
JP2000133304A (en) * 1998-10-26 2000-05-12 Ube Ind Ltd Non-aqueous electrolyte and lithium secondary battery using it
JP2001313071A (en) * 2000-04-27 2001-11-09 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary cell using it
JP2002170564A (en) * 2000-11-30 2002-06-14 Mitsubishi Chemicals Corp Positive electrode material for nonaqueous system electrolyte secondary battery, positive electrode and second battery
JP2003217654A (en) * 2002-01-24 2003-07-31 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050319A (en) * 2005-08-16 2007-03-01 Ritsumeikan Composite catalytic particle
JP2007141798A (en) * 2005-11-22 2007-06-07 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium battery, and the lithium battery using the same
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
US20120177988A1 (en) * 2006-04-27 2012-07-12 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US9343777B2 (en) * 2006-04-27 2016-05-17 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
JP2007329010A (en) * 2006-06-07 2007-12-20 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
JP2008153118A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
EP2051318A4 (en) * 2007-02-02 2010-03-24 Panasonic Corp Lithium cell electrode, and method for manufacturing the lithium cell electrode
EP2051318A1 (en) * 2007-02-02 2009-04-22 Panasonic Corporation Lithium cell electrode, and method for manufacturing the lithium cell electrode
US8129076B2 (en) 2007-02-02 2012-03-06 Panasonic Corporation Electrode for lithium batteries and method of manufacturing electrode for lithium batteries
JP2009032693A (en) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd Si/C COMPOSITE, ANODE ACTIVE MATERIAL CONTAINING THE SAME, AND LITHIUM BATTERY
US8617746B2 (en) 2007-07-27 2013-12-31 Samsung Sdi Co., Ltd. Si/C composite, anode active materials, and lithium battery including the same
KR101375328B1 (en) 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C composite, anode materials and lithium battery using the same
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
JP2011071085A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and the secondary battery
JP2011071084A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and secondary battery
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
US8551655B2 (en) 2010-07-07 2013-10-08 Samsung Sdi Co., Ltd. Negative active material for secondary lithium battery and secondary lithium battery
JP2012033346A (en) * 2010-07-29 2012-02-16 Nec Energy Devices Ltd Aprotic electrolyte secondary battery
US10050304B2 (en) * 2011-07-07 2018-08-14 Sumitomo Seika & Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US20140199601A1 (en) * 2011-07-07 2014-07-17 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
JP2014127313A (en) * 2012-12-26 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method of the battery
JP5304961B1 (en) * 2013-02-22 2013-10-02 大日本印刷株式会社 Negative electrode plate for magnesium ion secondary battery, magnesium ion secondary battery, and battery pack
JPWO2015129266A1 (en) * 2014-02-25 2017-03-30 新日鐵住金株式会社 Composite particles, negative electrode and battery
US10263280B2 (en) 2014-03-28 2019-04-16 Evonik Degussa Gmbh 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
JP2017526150A (en) * 2014-07-22 2017-09-07 リクリッス カンパニー リミテッド Silicon secondary battery
CN106688132A (en) * 2014-07-22 2017-05-17 瑞克锐斯株式会社 Silicon secondary battery
CN106688132B (en) * 2014-07-22 2020-09-04 瑞克锐斯株式会社 Silicon secondary battery
US11024875B2 (en) 2014-07-22 2021-06-01 Rekrix Co., Ltd. Silicon secondary battery
WO2016035396A1 (en) * 2014-09-01 2016-03-10 日立オートモティブシステムズ株式会社 Lithium ion secondary battery
JPWO2016098214A1 (en) * 2014-12-17 2017-11-02 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
US10505184B2 (en) 2014-12-17 2019-12-10 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using the same
US10608255B2 (en) 2016-08-05 2020-03-31 Evonik Operations Gmbh Use of thianthrene-containing polymers as a charge store
WO2019163967A1 (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Multilayer body and method for producing same
US11916227B2 (en) 2018-02-23 2024-02-27 National Institute Of Advanced Industrial Science And Technology Multilayer body and method for producing same

Also Published As

Publication number Publication date
JPWO2005057715A1 (en) 2007-07-12
JP4951969B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4725728B2 (en) Secondary battery
JP4951969B2 (en) Secondary battery
JP4449907B2 (en) Secondary battery electrolyte and secondary battery using the same
US8932756B2 (en) Battery including a fluorine resin
JP5538226B2 (en) Nonaqueous electrolyte secondary battery
US8394540B2 (en) Anode and method of manufacturing same, secondary battery and method of manufacturing same, and sulfone compound
US8613873B2 (en) Anode, battery, and methods of manufacturing them
JP4876409B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4345641B2 (en) Secondary battery
JP4819409B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2008147153A (en) Lithium secondary battery
JP4345642B2 (en) Secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP5012767B2 (en) Secondary battery
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4345658B2 (en) Secondary battery
JP4345643B2 (en) Secondary battery
JP2004014459A (en) Electrolyte for secondary battery and secondary battery using it
JP4304570B2 (en) Non-aqueous electrolyte and secondary battery using the same
US20100081063A1 (en) Non-aqueous electrolyte secondary battery
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
US20090233180A1 (en) Secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4525018B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4355947B2 (en) Secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516241

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase