WO2005057434A1 - 電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体 - Google Patents

電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体 Download PDF

Info

Publication number
WO2005057434A1
WO2005057434A1 PCT/JP2004/016434 JP2004016434W WO2005057434A1 WO 2005057434 A1 WO2005057434 A1 WO 2005057434A1 JP 2004016434 W JP2004016434 W JP 2004016434W WO 2005057434 A1 WO2005057434 A1 WO 2005057434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic field
elements
matrix
fine
coarse
Prior art date
Application number
PCT/JP2004/016434
Other languages
English (en)
French (fr)
Inventor
Tsutomu Okada
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP04801998A priority Critical patent/EP1713013A4/en
Priority to US10/527,738 priority patent/US7158921B2/en
Priority to JP2005516069A priority patent/JP4215056B2/ja
Publication of WO2005057434A1 publication Critical patent/WO2005057434A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • Electromagnetic field analysis apparatus electromagnetic field analysis program, and recording medium storing the program
  • the present invention relates to an electromagnetic field simulation technology used in the development and design of high-frequency products such as multilayer products, giga filters, and EMI (Electro-Magnetic Interference) removal filters, and in particular, has enabled a reduction in simulation time.
  • the present invention relates to an electromagnetic field analyzer, an electromagnetic field analysis program, and a recording medium on which the program is recorded.
  • the Multigrid method divides an analysis target into two types, a fine element, a coarse element, and an element, and obtains a fine element solution using ft and the element solution.
  • the calculation time is generally proportional to the cube of the matrix dimension. Since the size of a dimension is equivalent to the number of elements, for example, if the number of elements doubles, the calculation time increases eight times, and if the number of elements increases ten times, the calculation time increases 1000 times. Therefore, the Gaussian direct method is applied only to the coarse elements, the coarse elements are applied to the fine elements, an approximate solution is obtained using the element solution, and the Gaussian elimination method is not used. By doing so, the calculation time for small elements can be reduced to 1Z8, ⁇ . Actually, since the calculation time is added, the calculation time is not much shorter, but it is wrong that the calculation time can be greatly reduced.
  • the Multigrid method is classified into a method using a nested mesh and a method using a non-nested mesh.
  • the nested mesh has to be used because the prolongation matrix is incomplete as described later.
  • FIG. 12A to FIG. 12B are diagrams for explaining division of elements by nested mesh.
  • Figure 12A shows the division of elements by nested mesh in the case of two-dimensional analysis, in which coarse triangular elements are equally divided to create four fine triangular elements.
  • Fig. 12B shows the division of elements by nested mesh in the case of three-dimensional analysis, in which coarse tetrahedral elements are equally divided to create eight fine tetrahedral elements.
  • Figures 12A-12B Nested Mesh has geometric constraints between coarse and fine elements, as do the forces.
  • Non-Patent Document 1 R. Hiptmair, "Multigrid method for Maxwell's equations," SIAM Journal of Numerical Analysis, vol. 36, no.l, pp. 204-225, 1999
  • Patent Document 2 D. Dibben and T. Yamada, “Non-nested multigrid and automatic mesh coarsening for high frequency electromagnetic problems, IEEJ Technical Meeting, SA-02-34, pp.71-75, 2002
  • FIGS. 13A to 13C are diagrams for explaining a first problem of nested mesh.
  • FIGS. 13A and 13B show that a circle is divided into elements by nested mesh to create a coarse element.
  • Fig. 13B shows that coarse elements are divided into small elements by nested mesh.
  • the surface cannot be accurately represented due to the geometric constraints of the nested mesh.
  • FIG. 13C shows a circle created by dividing a circle into non-nested mesh elements to create fine elements. As can be seen from FIG. 13C, the surface can be accurately represented because there is no geometric constraint.
  • FIG. 14A to FIG. 14C are diagrams for explaining a second problem of the nested mesh.
  • Fig. 14 A shows that the square was divided into elements by nested mesh to create coarse elements.
  • Figure 14B shows the coarse elements divided into smaller elements by nested mesh.
  • the nested mesh's geometric constraints make it impossible to focus on some parts.
  • FIG. 14C shows that a square is divided into elements by Non-Nested Mesh to create fine elements. As shown in Fig. 14C, there is no geometrical restriction as well as the force, so it is possible to partially reduce the force.
  • the present invention has been made to solve the above problems, and its object is to
  • An object of the present invention is to provide an electromagnetic field analysis device, an electromagnetic field analysis program, and a recording medium on which the electromagnetic field analysis program is capable of performing an electromagnetic field analysis using the Multigrid method using a non-nested mesh.
  • Another object is to provide an electromagnetic field analysis device, an electromagnetic field analysis program, and a recording medium on which the program can be recorded, which can significantly reduce the time required for the electromagnetic field analysis.
  • the electromagnetic field analyzing apparatus includes a dividing unit configured to divide the shape data to be analyzed into coarse elements and fine elements; A means for creating a matrix that associates the electromagnetic field vector with the electromagnetic field vector of the fine element, and applying the iterative solution method of simultaneous linear equations to the fine element while referring to the matrix created by the creation means To calculate the approximate solution of the electromagnetic field vector Calculation means.
  • the creating unit creates the matrix by expressing the electromagnetic field vector on the side of the fine element using an interpolation function for the coarse element.
  • the length of the side 1 of the fine element is I
  • the interpolation function indicating the relationship between the electromagnetic field at the position X of the side 1 of the fine element and the electromagnetic field at the side j of the coarse element is Assuming that N e (x) and t is a tangent vector of the side 1 of the fine element, the creating means creates the matrix P by the following equation (14).
  • the calculating means removes high-frequency components included in the approximate solution of the electromagnetic field vector of the fine element by applying a stationary iterative solution of the simultaneous linear equation, and Using the created matrix, map the residuals in the fine elements to the residuals in the coarse elements, apply a direct method or a non-stationary iterative solution of the system of linear equations to create a correction vector for the coarse elements, By using the matrix created by the creating means to obtain the correction vector for the coarse element and the correction vector for the fine element, the accuracy of the approximate solution of the fine element is improved.
  • a computer program for causing a computer to execute an electromagnetic field analysis method for analyzing an electromagnetic field to be analyzed, wherein the computer stores the divided elements.
  • the electromagnetic field analysis method includes a first storage unit and a second storage unit that stores a matrix, wherein the electromagnetic field analysis method divides the shape data to be analyzed into coarse and small And a step of creating a matrix that associates the electromagnetic field vector of the coarse and element elements stored in the first storage means with the electromagnetic field vector of the fine element and stores the matrix in the second storage unit. Calculating an approximate solution of an electromagnetic field vector of fine elements by applying an iterative solution of a system of linear equations while referring to the matrix stored in the second storage means.
  • a computer-readable recording medium recording a program for causing a computer to execute an electromagnetic field analysis method for analyzing an electromagnetic field to be analyzed
  • the computer includes first storage means for storing the divided elements, and second storage means for storing the matrix, and the electromagnetic field analysis method converts the shape data to be analyzed into coarse elements and fine elements. Storing the data in the first storage means; Creating a matrix that associates the electromagnetic field vector of the coarse element and the electromagnetic field vector of the fine element stored in the first storage means and storing the matrix in the second storage unit; and Calculating an approximate solution of an electromagnetic field vector of fine elements by applying an iterative solution of a system of linear equations while referring to the stored matrix.
  • the creating unit creates a matrix that associates the electromagnetic field vector of the coarse element and the electromagnetic field vector of the fine element divided by the dividing unit
  • the non-nested mesh is Electromagnetic field analysis can be performed using the used Multigrid method.
  • the calculating means calculates the approximate solution of the electromagnetic field vector of the fine element while referring to the matrix created by the generating means, it is necessary to calculate the electromagnetic field vector of the fine element using the direct method. As a result, the time required for electromagnetic field analysis can be greatly reduced.
  • the creating means creates the matrix by expressing the elements of the electromagnetic field vector on the side of the fine element using an interpolation function for the coarse element, the matrix can be easily created. became.
  • the creating means creates the matrix P according to Expression (14) described later, it has become possible to create the matrix more easily.
  • the calculating means corrects the approximate solution of the electromagnetic field vector of the fine element using the matrix created by the creating means, the processing for increasing the accuracy of the approximate solution of the fine element can be performed at high speed. It became possible to do it.
  • FIG. 1 is a diagram showing an example of an external appearance of an electromagnetic field analyzer according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of an electromagnetic field analysis device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a functional configuration of the electromagnetic field analysis device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a processing procedure of the electromagnetic field analysis device according to the embodiment of the present invention.
  • [ ⁇ 5A] is a diagram showing a microstrip line divided into large elements.
  • FIG. 5B is a diagram showing a case where the analysis is performed using the large elements shown in FIG.
  • FIG. 6 is a diagram showing a component in contact with a side of an electromagnetic field u in a tetrahedron.
  • FIG. 7 is a diagram showing a relationship between an electromagnetic field vector I / at ⁇ F and an electromagnetic field vector u e at ⁇ e .
  • FIG. 8 is a diagram illustrating an example of a rectangular waveguide to be analyzed by the electromagnetic field analysis device according to the embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a patch antenna to be analyzed by the electromagnetic field analysis device according to the embodiment of the present invention.
  • FIG. 11 is a diagram for comparing the calculation time with respect to the number of elements when the patch antenna shown in FIG. 10 is driven at 7. OGHz between the case using the conventional direct method and the case using the present invention. .
  • FIG. 12A is a diagram showing division of elements by nested mesh in the case of two-dimensional analysis.
  • FIG. 12B is a diagram showing division of elements by nested mesh in the case of three-dimensional analysis.
  • FIG. 13A A diagram showing a rough element created by dividing a circle into elements using a nested mesh.
  • FIG. 13B A diagram showing a coarse element divided into fine elements by nested mesh.
  • FIG. 13C A diagram showing a fine element created by dividing a circle into elements using a non-nested mesh.
  • FIG. 14A A diagram showing a rough element created by dividing a square into elements by nested mesh.
  • FIG. 14B A diagram showing that coarse elements are divided into fine elements by nested mesh.
  • FIG. 14C A diagram showing a fine element created by dividing a square into elements using a non-nested mesh.
  • FIG. 1 is a diagram illustrating an example of an external appearance of an electromagnetic field analysis device according to an embodiment of the present invention.
  • This electromagnetic field analyzer is equipped with a computer 1, a display device 2, an FD (Flexible Disk) 4 mounted FD drive 3, a keyboard 5, a mouse 6, and a CD-ROM (Compact Disc-Read Only Memory) 8.
  • CD-ROM device 7 and network communication device 9 are included.
  • the electromagnetic field analysis program is supplied by a recording medium such as FD4 or CD-ROM8.
  • the electromagnetic field analysis program is executed by the computer main body 1, so that the electromagnetic field analysis is performed. Further, the electromagnetic field analysis program may be supplied from another computer to the computer main body 1 via the network communication device 9.
  • FIG. 2 is a block diagram showing a configuration example of the electromagnetic field analysis device according to the embodiment of the present invention.
  • the computer body 1 shown in FIG. 1 includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 11, a RAM (Random Access Memory) 12, and a node disk 13.
  • the CPU 10 performs processing while inputting and outputting data to and from the display device 2, the FD drive 3, the keyboard 5, the mouse 6, the CD-ROM device 7, the network communication device 9, the ROM 11, the RAM 12, and the hard disk 13.
  • the electromagnetic field analysis program recorded on the FD 4 or the CD-ROM 8 is stored on the hard disk 13 by the CPU 10 via the FD drive 3 or the CD-ROM device 7.
  • FIG. 3 is a block diagram showing a functional configuration of the electromagnetic field analyzer according to the embodiment of the present invention.
  • the electromagnetic field analysis apparatus includes a shape data storage unit 21 for storing shape data to be analyzed, an element division unit 22 for dividing shape data by changing the size of elements, and an element divided by the element division unit 22.
  • Element storage unit 23 vector / matrix creation unit 24 for creating vectors and matrices in simultaneous linear equations, Prolongation matrix creation unit 25 for creating a prolongation matrix, and vector 'matrix creation unit 24.
  • Vector / matrix storage unit 26 that stores the titles and matrices, Prolongation matrix creation unit 25 ⁇ Prolongation matrix storage unit 27 that stores the created Prolongation matrix, and approximation value calculation that calculates the approximate value of the electromagnetic field vector Section 28, an approximate solution correcting section 29 for correcting the approximate solution calculated by the approximate value calculating section 28, and the approximate solution corrected by the approximate solution correcting section 29 to the electromagnetic field vector.
  • a magnetic field vector storage unit 30 that stores as Le.
  • the prolongation matrix storage unit 27 and the electromagnetic field vector storage unit 30 are provided in a predetermined area in the RAM 12 or the hard disk 13 in FIG. Also elements division unit 22, the vector 'matrix creation unit 24, prolongation matrix creation unit 25, the respective functions of the approximate value calculating unit 28 and the approximate solution correction portion 2 9, CPU 10 shown in FIG. 2 has been loaded into RAM12 This is achieved by executing an electromagnetic field analysis program.
  • FIG. 4 is a flowchart for describing a processing procedure of the electromagnetic field analysis device according to the embodiment of the present invention.
  • the element dividing unit 22 reads the shape data to be analyzed stored in the shape data storage unit 21, divides the shape data into elements, and stores the divided elements in the element storage unit 23 (Sll). .
  • the element dividing unit 22 divides the shape data into triangular or quadrangular elements in the case of two-dimensional analysis, and divides the shape data into tetrahedrons, triangular prisms or quadrangular prisms in the case of three-dimensional analysis.
  • the element dividing unit 22 divides the shape data by changing the size of the element.
  • the set of larger (coarse) elements is ⁇
  • the set of smaller (fine) elements is Q F. Note that the subscript stands for oarse, and F stands for Fine.
  • FIGS. 5A to 5C are diagrams illustrating an example of element division in a microstrip line.
  • Figure 5 ⁇ shows the microstrip line divided into large elements.
  • Fig. 5 ⁇ shows the analysis performed on the large elements shown in Fig. 5 ⁇ to evaluate the error and subdivide it. Since the electromagnetic field concentrates on the edge of the electrode, that part is subdivided finely.
  • the vector.matrix creation unit 24 reads the elements ⁇ ⁇ and Q F stored in the element storage unit 23, applies the finite element method to the Maxwell equation, discretizes them by the elements, A matrix and a column vector in the simultaneous linear equation are created (S12).
  • the target Maxwell equation is expressed by the following equation.
  • electric field
  • magnetic field
  • dielectric constant
  • magnetic permeability
  • magnetic permeability
  • : conductivity
  • ⁇ ? angular frequency
  • ma are differential operators (3 / &, 3 / 3 ⁇ 4, 5 / &)
  • X is the cross product
  • B is the imaginary number.
  • w represents an electric field, a magnetic field, a vector potential, and the like, and and represent physical properties such as permittivity and magnetic permeability.
  • Equation (2) is substituted into Equation (1) and H is deleted to create Equation (3)
  • W is the electric field
  • V is the surface of V
  • n is its outward unit normal vector
  • N is the complement
  • inter-function also called a shape function, interpolation function, basis function, etc.
  • FIG. 6 is a diagram showing components that are in contact with the sides of the electromagnetic field u in the tetrahedron.
  • the components of the electromagnetic field u are arranged on six sides, each represented by u-u.
  • the electromagnetic field can be expressed by the following equation using equation (5) and the six electromagnetic field components.
  • u is a vector in which the electromagnetic fields arranged on the sides are arranged, and its dimension is approximately equal to the number of sides.
  • the components of the matrix A F are created by the following equation.
  • N F is the number of elements in Omega F.
  • the vector ′ matrix creation unit 24 also creates a matrix A e for ⁇ C in the same procedure, and stores A F , b F and A e in the vector ′ matrix storage unit 26. If u F is obtained by calculating the simultaneous linear equation of equation (7), the electromagnetic field distribution can be calculated by equation (6), and the Maxwell equations of equations (1) and (2) have been solved.
  • prolongation matrix creating unit 25 a front element created in step Omega F and Omega e from the elements Symbol ⁇ 23 reads, based on the geometric information, the electromagnetic field vectors in Q F u F And a prolongation matrix P that associates the electromagnetic field u e in Q c with the electromagnetic field vector u e (S13). With this Prolongation matrix, the other vector can be obtained from one vector as shown in the following equation.
  • t means a transposed matrix
  • FIG. 7 shows the relationship between the electromagnetic field vector u e in the electromagnetic field vector u F in Q F
  • FIG. J components u G column vector u G is disposed on a side of the elements of ⁇ ⁇ , ⁇ 1 * to definitive position X in the electromagnetic field u (X), using an interpolation function N c in Omega c It can be expressed by the following equation.
  • u F of i component u F is the average value of the electromagnetic field in the sides 1 it is placed. That is,
  • t is a unit tangent vector of side 1.
  • Prolongation matrix creation section 25 creates a Prolongation matrix using equation (14),
  • Prolongation matrix storage unit 27 Stored in Prolongation matrix storage unit 27.
  • the approximate value calculation unit 28 sets an appropriate initial value V F for u F in order to calculate the electromagnetic field vector I / using a simultaneous linear equation according to the multigrid method (S14). .
  • This initial value v F may be zero.
  • the approximate value calculation unit 28 applies a stationary iterative solution of a system of linear equations, such as the Jacobi method, the Gauss-Seidel method, or the SOR method, to the equation (7), and is included in V F.
  • the high-frequency component of the error is removed (S15).
  • the approximate value calculation unit 28 solves the simultaneous linear equation of the following equation (17), and calculates the correction vector e e (S 17).
  • the approximate solution correcting unit 29 applies the smoothing (Smoothing) shown in step S15 several times again to attenuate high-frequency components (S19).
  • steps S15 to S19 is a basic algorithm of the multigrid method, force convergence may be slow. If necessary, another iterative solution of a system of linear equations may be used together.
  • S20 To speed up convergence (S20). Specifically, the above processing is used as preprocessing for unsteady solution methods such as the CG method, GMRES method, and GCR method, or is accelerated by a residual excision method. For details of the residual resection method, see Reference 5 (Kikuchi et al. Vol., 62-604, Part B, pp. 4076-, 1996-12).
  • the approximate solution correcting unit 29 evaluates the residual of Expression (15) (S 21). If the residual is a large value (S21, No), it is determined that the electromagnetic field vector has not converged, and the process returns to step S15 to repeat the subsequent processing. Further, if the residual is sufficiently small value (S21, Yes), the electromagnetic field base Tuttle is converging, save the approximate solution V F on the electromagnetic field vector storage section 30 (S22), the process ends I do.
  • FIG. 8 is a diagram showing an example of a rectangular waveguide to be analyzed by the electromagnetic field analyzer according to the embodiment of the present invention.
  • the dimensions of this rectangular waveguide are as shown in Fig. 8, and the inside is filled with air.
  • the electromagnetic field analysis of this rectangular waveguide is performed using a tetrahedral primary element.
  • FIG. 9 shows the calculation time for the number of elements when the rectangular waveguide shown in FIG. 8 is driven in the 2.45 GHz TE10 mode, when the conventional direct method is used and when the present invention is used.
  • FIG. 9 shows the calculation time for the number of elements when the rectangular waveguide shown in FIG. 8 is driven in the 2.45 GHz TE10 mode, when the conventional direct method is used and when the present invention is used.
  • FIG. 9 shows the calculation time for the number of elements when the rectangular waveguide shown in FIG. 8 is driven in the 2.45 GHz TE10 mode, when the conventional direct method is used and when the present invention is used.
  • FIG. 9 shows the calculation time for the number of elements when the rectangular waveguide shown in FIG. 8 is driven in the 2.45 GHz TE10 mode, when the conventional direct method is used and when the present invention is used.
  • FIG. 9 shows the calculation time for the number of elements when the rectangular waveguide shown in FIG. 8 is driven in the 2.45 GHz TE10 mode, when the conventional direct method is used and when the present
  • FIG. 10 is a diagram showing an example of a patch antenna to be analyzed by the electromagnetic field analysis device according to the embodiment of the present invention.
  • the dimensions of this patch antenna are as shown in FIG. 10, and are formed on a dielectric substrate having a thickness of 0.794 mm and a relative permittivity of 2.2.
  • the electromagnetic field analysis of this patch antenna is performed using tetrahedral primary elements.
  • Fig. 11 is a graph for comparing the calculation time for the number of elements when the patch antenna shown in Fig. 10 is driven at 7.0 GHz between the case where the conventional direct method is used and the case where the present invention is used.
  • FIG. 11 As can be seen from FIG. 11, as the number of elements increases, the effect of using the electromagnetic field analyzer of this embodiment becomes more remarkable, and when the number of elements is 88,445, the conventional direct It is about 15 times faster than the law.
  • the Prolongation matrix P that associates the electromagnetic field vector u F in Q F with the electromagnetic field vector u e in ⁇ c is obtained. Since the electromagnetic field vector is calculated using this Prolongation matrix, electromagnetic field analysis can be performed using the Multigrid method using Non-nested Mesh. Noh.

Abstract

 要素分割部(22)は、解析対象の形状データを粗い要素と細かな要素とに分割する。Prolongation行列作成部(25)は、要素分割部(22)によって分割された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付けるProlongation行列を作成する。そして、近似値演算部(28)および近似解修正部(29)は、Prolongation行列を参照しながら、連立1次方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算する。したがって、Non-nested Meshを使用したMultigrid法を用いて電磁界解析を高速に行なうことが可能となる。

Description

明 細 書
電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した 記録媒体
技術分野
[0001] 本発明は、多層商品、ギガフィルタ、 EMI (Electro-Magnetic Interference)除去フィ ルタなどの高周波商品の開発や設計に使用する電磁界シミュレーション技術に関し 、特に、シミュレーション時間の短縮を可能にした電磁界解析装置、電磁界解析プロ グラムおよびそのプログラムを記録した記録媒体に関する。
背景技術
[0002] 近年、高周波商品の開発や設計が盛んに行なわれており、高周波商品の電磁界 解析を行なうのに電磁界シミュレーションソフトが広く使用されるようになってきている 。一般に、電磁界解析には有限要素法が利用される場合が多い。この有限要素法を 用いた電磁界シミュレーションにおいては、連立 1次方程式を解くのに長い時間がか かるため、高速な解法が望まれている。特に、電磁界解析の分野では、ガウスの消去 法と呼ばれる直接法しか使えないため、計算時間が長くなるという問題は一層深刻で ある。
[0003] ところが、 1999年に発表された Hiptmairの論文(R.Hiptmair, "Multigrid method for Maxwell s equations, SIAM Journal of Numenalc Analysis, vol.36, no.l, pp.204-225, 1999)により、 Multigridという解法が電磁界解析でも使えることが証明 され、直接法に比べて劇的にスピードアップする解法として注目されている。
[0004] Multigrid法は、解析対象を細かな要素と粗!、要素との 2種類に分割し、 ft 、要素の 解を利用して細かな要素の解を求めるものである。
[0005] ガウスの消去法を使用して連立 1次方程式を計算する場合、一般に計算時間は行 列の次元の 3乗に比例する。次元の大きさは要素の数に相当するので、たとえば要 素の数が 2倍になれば計算時間は 8倍、要素の数が 10倍になれば計算時間が 100 0倍となる。そこで、粗い要素に対してのみガウスの直接法を適用し、細かな要素に 対しては粗!、要素の解を利用して近似解を求め、ガウスの消去法を使用しな 、ように すれば細かな要素に対する計算時間を 1Z8、 ΐΖΐοοοに短縮できる。実際には、 付カ卩的な計算時間が加算されるため、これほどの短縮にはならないものの、大幅に 計算時間を短縮できることには間違 、な 、。
[0006] Multigrid法は、 Nested Meshを使用する方法と、 Non- Nested Meshを使用する方 法とに分類される。しかしながら、後述するようにプロロンゲーシヨン(Prolongation)行 列が未完成のため、 Nested Meshを使用せざるを得ない。
[0007] 図 12A— 12Bは、 Nested Meshによる要素の分割を説明するための図である。図 1 2Aは、 2次元解析の場合の Nested Meshによる要素の分割を示しており、粗い三角 形要素を均等に分割して 4つの細かな三角形要素を作成する。また、図 12Bは、 3次 元解析の場合の Nested Meshによる要素の分割を示しており、粗い四面体要素を均 等に分割して 8つの細かな四面体要素を作成する。図 12A— 12B力も分力るように、 Nested Meshにおいては、粗い要素と細かな要素との間に幾何学的な制約がある。 非特許文献 1 : R.Hiptmair, "Multigrid method for Maxwell's equations," SIAM Journal of Numerical Analysis, vol.36, no.l, pp.204-225, 1999
特許文献 2 : D.Dibben and T.Yamada, "Non-nested multigrid and automatic mesh coarsening for high frequency electromagnetic problems, 電気学会研 究会資料, SA-02-34, pp.71- 75, 2002
発明の開示
発明が解決しょうとする課題
[0008] 図 13A— 13Cは、 Nested Meshの第 1の問題点を説明するための図である。図 13
Aは、円を Nested Meshによって要素分割して、粗い要素を作成したところを示して いる。また、図 13Bは、粗い要素を Nested Meshによって細かな要素に分割したとこ ろを示している。図 13Aおよび図 13Bから分かるように、 Nested Meshの幾何学的な 制約によって曲面を正確に表現することができない。
[0009] また、図 13Cは、円を Non-Nested Meshによって要素分割して、細かな要素を作 成したところを示している。図 13Cから分かるように、幾何学的な制約がないため、曲 面を正確に表現することができる。
[0010] 図 14A— 14Cは、 Nested Meshの第 2の問題点を説明するための図である。図 14 Aは、正方形を Nested Meshによって要素分割して、粗い要素を作成したところを示 している。また、図 14Bは、粗い要素を Nested Meshによって細かな要素に分割した ところを示している。図 14Aおよび図 14Bから分かるように、 Nested Meshの幾何学 的な制約によって部分的に細力べすることができない。
[0011] また、図 14Cは、正方形を Non-Nested Meshによって要素分割して、細かな要素 を作成したところを示している。図 14C力も分力るように、幾何学的な制約がないため 、部分的に細力べすることができる。
[0012] 工業製品のほとんどは円柱や球などの曲面があり、また部分的に細かなところも必 ずある。したがって、 Nested Meshを工業製品などに用いることは困難である。一方、 Non-Nested Meshには幾何学的制約が一切ないため、細かな要素を自由に作成す ることができる。し力しながら、位置関係に規則性がないため、粗い要素と細かな要素 との間の電磁界の関連付けが難しい。この粗い要素と細かな要素との関連付けを行 なうのが Prolongation行列である力 正確な Prolongation行列は発見されて!ヽな ヽ。こ のことは、 Mulitigrid法が実用的に使用できないことを意味しており、電磁界解析にお V、てはガウスの直接法と 、う計算時間の力かる方法を用いざるを得な!/、。
[0013] 本発明は、上記問題点を解決するためになされたものであり、その目的は、
Non-nested Meshを使用した Multigrid法を用いて電磁界解析を行なうことが可能な 電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体 を提供することである。
[0014] 他の目的は、電磁界解析に要する時間を大幅に短縮することが可能な電磁界解析 装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体を提供するこ とである。
課題を解決するための手段
[0015] 本発明のある局面に従えば、電磁界解析装置は、解析対象の形状データを粗い 要素と細かな要素とに分割するための分割手段と、分割手段によって分割された粗 い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成 するための作成手段と、作成手段によって作成された行列を参照しながら、連立 1次 方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算するた めの演算手段とを含む。
[0016] 好ましくは、作成手段は、細かな要素の辺における電磁界ベクトルを、粗い要素に おける補間関数を用いて表すことによって行列を作成する。
[0017] さらに好ましくは、細かな要素の辺 1の長さを I、細かな要素の辺 1の位置 Xにお ける電磁界と粗い要素の辺 jにおける電磁界との関係を示す補間関数を N e (x)、細 かな要素の辺 1の接線ベクトルを tとすると、作成手段は後述する式(14)によって行 列 Pを作成する。
[0018] さらに好ましくは、演算手段は、連立 1次方程式の定常的な反復解法を適用して細 力な要素の電磁界ベクトルの近似解に含まれる高周波成分を除去し、作成手段によ つて作成された行列を用いて細かな要素における残差を粗い要素における残差に 写像し、連立 1次方程式の直接法または非定常的な反復解法を適用して粗い要素 に対する修正ベクトルを作成し、作成手段によって作成された行列を用いて粗 ヽ要 素に対する修正ベクトルを細かな要素における修正ベクトルを求めることによって、細 力な要素の近似解の精度を上げる。
[0019] 本発明の別の局面に従えば、解析対象の電磁界を解析する電磁界解析方法をコ ンピュータに実行させるためのコンピュータ 'プログラムであって、コンピュータは、分 割した要素を記憶する第 1の記憶手段と、行列を記憶する第 2の記憶手段とを含み、 電磁界解析方法は、解析対象の形状データを粗!ヽ要素と細かな要素とに分割して 第 1の記憶手段に記憶するステップと、第 1の記憶手段に記憶された粗!、要素の電 磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成して第 2の記 憶部に記憶するステップと、第 2の記憶手段に記憶された行列を参照しながら、連立 1次方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算する ステップとを含む。
[0020] 本発明のさらに別の局面に従えば、解析対象の電磁界を解析する電磁界解析方 法をコンピュータに実行させるためのプログラムを記録したコンピュータで読取り可會 な記録媒体であって、コンピュータは、分割した要素を記憶する第 1の記憶手段と、 行列を記憶する第 2の記憶手段とを含み、電磁界解析方法は、解析対象の形状デ ータを粗い要素と細かな要素とに分割して第 1の記憶手段に記憶するステップと、第 1の記憶手段に記憶された粗い要素の電磁界ベクトルと細かな要素の電磁界べタト ルとを関連付ける行列を作成して第 2の記憶部に記憶するステップと、第 2の記憶手 段に記憶された行列を参照しながら、連立 1次方程式の反復解法を適用して細かな 要素の電磁界ベクトルの近似解を演算するステップとを含む。
発明の効果
[0021] 本発明のある局面によれば、作成手段が、分割手段によって分割された粗い要素 の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成するので 、 Non-nested Meshを使用した Multigrid法を用いて電磁界解析を行なうことが可能と なった。また、演算手段が、作成手段によって作成された行列を参照しながら細かな 要素の電磁界ベクトルの近似解を演算するので、細かな要素の電磁界ベクトルを直 接法を用いて計算する必要がなくなり、電磁界解析に要する時間を大幅に短縮する ことが可能となった。
[0022] また、作成手段が、細かな要素の辺における電磁界ベクトルの要素を、粗い要素に おける補間関数を用いて表すことによって行列を作成するので、行列を容易に作成 することが可能となった。
[0023] また、作成手段は、後述する式(14)によって行列 Pを作成するので、行列をさらに 容易に作成することが可能となった。
[0024] また、演算手段が、作成手段によって作成された行列を用いて細かな要素の電磁 界ベクトルの近似解を修正するようにしたので、細かな要素の近似解の精度を上げる 処理を高速に行なうことが可能となった。
図面の簡単な説明
[0025] [図 1]本発明の実施の形態における電磁界解析装置の外観例を示す図である。
[図 2]本発明の実施の形態における電磁界解析装置の構成例を示すブロック図であ る。
[図 3]本発明の実施の形態における電磁界解析装置の機能的構成を示すブロック図 である。
[図 4]本発明の実施の形態における電磁界解析装置の処理手順を説明するための フローチャートである。 圆 5A]マイクロストリップラインを大きい要素に分割したところを示す図である。
圆 5B]図 5Aに示す大きい要素で解析を行ない、誤差を評価して細分化したところを 示す図である。
[図 6]四面体における電磁界 uの辺に接する成分を示す図である。
[図 7] Ω Fにおける電磁界ベクトル I /と Ω eにおける電磁界ベクトル ueとの関係を示す 図である。
圆 8]本発明の実施の形態における電磁界解析装置の解析対象である方形導波管 の一例を示す図である。
[図 9]図 8に示す方形導波管を 2. 45GHzの TE10モードで駆動したときの要素数に 対する計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較する ための図である。
圆 10]本発明の実施の形態における電磁界解析装置の解析対象であるパッチアン テナの一例を示す図である。
[図 11]図 10に示すパッチアンテナを 7. OGHzで駆動したときの要素数に対する計算 時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較するための図で ある。
[図 12A]2次元解析の場合の Nested Meshによる要素の分割を示す図である。
[図 12B]3次元解析の場合の Nested Meshによる要素の分割を示す図である。
[図 13A]円を Nested Meshによって要素分割して、粗い要素を作成したところを示す 図である。
[図 13B]粗い要素を Nested Meshによって細かな要素に分割したところを示す図であ る。
[図 13C]円を Non-Nested Meshによって要素分割して、細かな要素を作成したところ を示す図である。
[図 14A]正方形を Nested Meshによって要素分割して、粗い要素を作成したところを 示す図である。
[図 14B]粗い要素を Nested Meshによって細かな要素に分割したところを示す図であ る。 [図 14C]正方形を Non-Nested Meshによって要素分割して、細かな要素を作成した ところを示す図である。
符号の説明
[0026] 1 コンピュータ本体、 2 ディスプレイ装置、 3 FDドライブ、 4 FD、 5 キーボード 、 6 マウス、 7 CD— ROM装置、 8 CD-ROM, 9 ネットワーク通信装置、 10 CP U、 11 ROM, 12 RAM, 13 ハードディスク、 21 形状データ記憶部、 22 要素 分割部、 23 要素記憶部、 24 ベクトル '行列作成部、 25 Prolongation行列作成部 、 26 ベクトル '行列記憶部、 27 Prolongation行列記憶部、 28 近似値演算部、 29 近似解修正部、 30 電磁界ベクトル記憶部。
発明を実施するための最良の形態
[0027] 図 1は、本発明の実施の形態における電磁界解析装置の外観例を示す図である。
この電磁界解析装置は、コンピュータ本体 1、ディスプレイ装置 2、 FD (Flexible Disk ) 4が装着される FDドライブ 3、キーボード 5、マウス 6、 CD-ROM (Compact Disc-Read Only Memory) 8が装着される CD— ROM装置 7、およびネットワーク通 信装置 9を含む。電磁界解析プログラムは、 FD4または CD— ROM8等の記録媒体 によって供給される。電磁界解析プログラムがコンピュータ本体 1によって実行される こと〖こよって、電磁界解析が行なわれる。また、電磁界解析プログラムは他のコンビュ ータよりネットワーク通信装置 9を経由し、コンピュータ本体 1に供給されてもよい。
[0028] 図 2は、本発明の実施の形態における電磁界解析装置の構成例を示すブロック図 である。図 1に示すコンピュータ本体 1は、 CPU (Central Processing Unit) 10、 RO M (Read Only Memory) 11、 RAM (Random Access Memory) 12およびノヽードデ イスク 13を含む。 CPU10は、ディスプレイ装置 2、 FDドライブ 3、キーボード 5、マウス 6、 CD— ROM装置 7、ネットワーク通信装置 9、 ROMl l、 RAM12またはハードディ スク 13との間でデータを入出力しながら処理を行う。 FD4または CD— ROM8に記録 された電磁界解析プログラムは、 CPU10により FDドライブ 3または CD— ROM装置 7 を介してハードディスク 13に格納される。 CPU10は、ハードディスク 13から適宜電磁 界解析プログラムを RAM12にロードして実行することによって、電磁界解析が行な われる。 [0029] 図 3は、本発明の実施の形態における電磁界解析装置の機能的構成を示すブロッ ク図である。電磁界解析装置は、解析対象の形状データを記憶する形状データ記憶 部 21と、形状データを要素の大きさを変えて分割する要素分割部 22と、要素分割部 22によって分割された要素を記憶する要素記憶部 23と、連立 1次方程式におけるべ タトルおよび行列を作成するベクトル ·行列作成部 24と、 Prolongation行列を作成す る Prolongation行列作成部 25と、ベクトル '行列作成部 24によって作成されたべタト ルおよび行列を記憶するベクトル ·行列記憶部 26と、 Prolongation行列作成部 25〖こ よって作成された Prolongation行列を記憶する Prolongation行列記憶部 27と、電磁界 ベクトルの近似値を演算する近似値演算部 28と、近似値演算部 28によって演算さ れた近似解を修正する近似解修正部 29と、近似解修正部 29によって修正された後 の近似解を電磁界ベクトルとして記憶する電磁界ベクトル記憶部 30とを含む。
[0030] なお、形状データ記憶部 21、要素記憶部 23、ベクトル '行列記憶部 26、
Prolongation行列記憶部 27および電磁界べクトル記憶部 30は、図 2の RAM 12また はハードディスク 13内の所定領域に設けられる。また、要素分割部 22、ベクトル '行 列作成部 24、 Prolongation行列作成部 25、近似値演算部 28および近似解修正部2 9のそれぞれの機能は、図 2に示す CPU10が RAM12にロードされた電磁界解析プ ログラムを実行すること〖こよって実現される。
[0031] 図 4は、本発明の実施の形態における電磁界解析装置の処理手順を説明するため のフローチャートである。まず、要素分割部 22は、形状データ記憶部 21に記憶され る解析対象の形状データを読取り、形状データを要素に分割し、分割した後の要素 を要素記憶部 23に保存する(S l l)。要素分割部 22は、 2次元解析の場合には形状 データを三角形または四角形の要素に分割し、 3次元解析の場合には形状データを 四面体、三角柱または四角柱に分割する。
[0032] 要素分割部 22は、形状データを要素の大きさを変えて分割する。ここでは説明を 簡単にするために、 2種類の大きさの要素を作成するものとし、大きい方の (粗い)要 素の集合を Ω εとし、小さい方の(細かな)要素の集合を Q Fとする。なお、添え字 ま し oarse 表し、 Fは Fine 表して ヽる。
[0033] Ω eと Ω Fとを独立に作成してもよ!/、が、まず Ω cを作成し、それを細分化して Ω Fを作 成した方が処理時間を短縮できる。細分ィ匕の方法には、体積の大きな要素を再分割 する方法と、 Ω。を用いて解析を行ない、誤差の大きい要素を再分割する方法とがあ る。いずれを使用してもよいが、誤差を評価する方法の方が計算精度は良い。なお、 誤差を評価する方法は、文献 1 (神谷紀生他、 "コンビユートロール、特集 Ζソフトゥェ ァの誤差評価とァダプティブ要素, "Νο.42,コロナ社, 1993)を参照されたい。
[0034] 図 5Α— 5Βは、マイクロストリップラインにおける要素分割の一例を示す図である。
図 5Αは、マイクロストリップラインを大きい要素に分割したところを示している。また、 図 5Βは、図 5Αに示す大きい要素で解析を行ない、誤差を評価して細分化したところ を示している。電極の端に電磁界が集中するため、その部分が細力べ再分割されて いる。
[0035] 次に、ベクトル.行列作成部 24は、要素記憶部 23に記憶される要素 Ω εと Q Fとを読 込み、 Maxwell方程式に有限要素法を適用してそれらを要素で離散化し、連立 1次方 程式における行列および列ベクトルを作成する(S 12)。ここで、対象にしている Maxwell方程式は次式によって表される。
[0036] [数 1]
W x H = (& + ]ωέ)Ε ■■■(!)
ν Ε = -]ωμΗ 〜(2)
ここで、 Ε :電界、 Η :磁界、 ^ :誘電率、 β :透磁率、 ά :導電率、 α? :角 周波数、 マは微分演算子(3/&,3/¾ ,5/ &)、 Xは外積、 ブは虚数を意味する。
[0037] これらの式から、次の微分方程式が得られる。
[0038] [数 2]
Figure imgf000011_0001
wは電界、 磁界、 ベク トルポテンシャルなどを表わし、 と は誘電率や透磁率 の物性値を表わす。 たとえば、 式 (2 ) を式 ( 1 ) に代入して Hを削除して式 ( 3 ) を作成した場合は、 Wは電界、 は透磁率の逆数、 は誘電率になる。
[0039] 以上の前工程で作成した要素 Vに対して有限要素法を適用すると次式が得られる
[0040] [数 3] (V x Nkl)p NklqudV = (Nkl x pV x "). ndS
Figure imgf000012_0001
…(
[0041] ここで、 3 Vは Vの表面であり、 nはその外向き単位法線ベクトルである。 N は補
k k ki 間関数 (形状関数、内挿関数、基底関数などとも呼ばれる。)である。四面体要素で 1 次式を使用した場合、補間関数は次式によって与えられる。
[0042] 画
Figure imgf000012_0002
lfev - V
Nw = V ) ... (5)
Figure imgf000012_0003
[0043] ここで、 L
1一 Lは体積座標系、
4 1 I一
6 Iは辺 1の長さである。なお、体積座標 i
系の詳細については、文献 2 (T.Itoh, G.Pelosi and P.P.silvester, "Finite Element Software for Microwave Engineering, John Wiley & Sons, pplOl-125, 1996)を参照されたい。
[0044] 図 6は、四面体における電磁界 uの辺に接する成分を示す図である。電磁界 uの成 分は 6つの辺に配置され、それぞれ u— uで表される。要素 Vの内部の点 Xにおけ
1 6 k
る電磁界は、式(5)と 6つの電磁界成分とを使って次式で表すことができる。
[0045] [数 5] u(x) =
Figure imgf000012_0004
[0046] 式 (6)を式 (4)に代入し、 Q Fの全ての要素に適用すると次の連立 1次方程式が得 られる。
[0047] [数 6] AFuF ^ bF ■(7)
[0048] ここで、 uは辺に配置した電磁界を並べたベクトルであり、その次元はおよそ辺の 数に等しい。行列 AFの成分は、次式によって作成する。
[0049] [数 7]
Figure imgf000013_0001
[0050] また、ベクトル bFは、次式によって作成する。
[0051] [数 8] … )
Figure imgf000013_0002
[0052] ここで、 NFは Ω Fにある要素の数である。
[0053] ベクトル '行列作成部 24は、同様の手順で Ω Cに対する行列 Aeも作成し、 AF, bFお よび Aeをベクトル '行列記憶部 26に保存する。式(7)の連立 1次方程式を計算して u Fを求めれば、式(6)により電磁界分布を計算でき、式(1)、(2)の Maxwell方程式が 解けたことになる。
[0054] 次に、 Prolongation行列作成部 25は、前工程で作成した要素 Ω Fと Ω eとを要素記 憶部 23から読込み、その幾何学情報を元に、 Q Fにおける電磁界ベクトル uFと、 Q c における電磁界ベクトル ueとを関連付ける Prolongation行列 Pを作成する(S13)。こ の Prolongation行列によって、次式に示すように一方のベクトルから他方のベクトルを 求めることができる。
[0055] [数 9] uF = PuC - (10)
UC = PliiF …(川
[0056] ここで、 tは転置行列を意味する。
[0057] 図 7は、 Q Fにおける電磁界ベクトル uFと における電磁界ベクトル ueとの関係を 示す図である。列ベクトル uGの j成分 uGは、 Ω ϋの要素の辺に配置されており、 Ω 1*に おける位置 Xでの電磁界 u (X)は、 Ω cにおける補間関数 Ncを用いて次式で表すこと ができる。
[0058] [数 10]
=∑ N ) wC (12)
[0059] uFの i成分 u Fは、それが配置された辺 1における電磁界の平均値とする。すなわち、
I /の i成分 u Fは次式によって表される。
[0060] [数 11] u = ~ \ (x)- dl 〜(13)
[0061] ここで、 tは辺 1の単位接線ベクトルである。式(12)を式(13)に代入し、式(10)と 比較すると、 Prolongation行列 Pの ij成分 Pは次式で与えられる。
[0062] [数 12]
P^-^ l N^x t.dl - 04)
[0063] Prolongation行列作成部 25は、式(14)を用いて Prolongation行列を作成して
Prolongation行列記憶部 27に保存する。
[0064] 次に、近似値演算部 28は、マルチグリッド法による連立 1次方程式を用いて電磁界 ベクトル I /を計算するために、 uFに対する適当な初期値 V Fを設定する(S14)。この 初期値 v Fは、 0であってもよい。なお、マルチグリッド法による連立 1次方程式の計算 の詳細は、文献 3 (W.Briggs, V.Henson and S.McCormick, "A Multigrid Tutorial," SIAM)を参照された!、。
[0065] 次に、近似値演算部 28は、式(7)に Jacobi法、 Gauss- Seidel法または SOR法など の連立 1次方程式の定常的な反復解法を適用して、 V Fに含まれる誤差の高周波成 分を除去する(S 15)。なお、この反復解法の詳細については、文献 4 (長谷川里美、 長谷川秀彦、藤野清次訳、 "反復法 Templates,"朝倉書店, 1996)を参照されたい。
[0066] 次に、近似値演算部 28は、低周波成分を除去するために、次式を用いて QFにお ける残差/を Ω eの残差 reに写像する(S16)。
[0067] [数 13] rF = bF - AFvF - 05)
尸 - (16)
[0068] 次に、近似値演算部 28は、次式(17)の連立 1次方程式を解き、修正ベクトル eeを 計算する (S 17)。
[0069] [数 14]
Acec = rc …( )
[0070] この式(17)は、 Gaussの消去法による直接法、 CG法、 GMRES法など非定常的な 反復解法が使用されるが、式 (7)に比べて小さな行列なので短時間で計算すること ができる。なお、この反復解法の詳細については、上記文献 4を参照されたい。
[0071] 次に、近似解修正部 29は、次式(18)、(19)を用いて Ω εの修正ベクトルを Ω Ρの修 正ベクトルに戻し、近似解の精度を上げる(S18)。
[0072] [数 15] eF = Pec
vF = vF + eF …(
[0073] 近似解修正部 29は、再度ステップ S 15に示すスムージング(Smoothing)を数回適 用して高周波成分を減衰させる(S 19)。
[0074] 以上のステップ S 15— S 19の処理がマルチグリッド法の基本的なアルゴリズムであ る力 収束が遅い場合があるので、必要に応じて連立 1次方程式の別の反復解法を 併用して収束を早める(S20)。具体的には、以上の処理を CG法、 GMRES法、 GC R法などの非定常解法の前処理として使用するか、または残差切除法などによりカロ 速する。なお、残差切除法の詳細については、文献 5 (菊池他、日本機械学会論文 集、 62- 604, B編, pp4076- , 1996- 12)を参照されたい。
[0075] 次に、近似解修正部 29は、式(15)の残差を評価する(S21)。残差が大きな値で あれば(S21, No)、電磁界ベクトルが収束していないとして、ステップ S15に戻って 以降の処理を繰返す。また、残差が十分小さな値であれば (S21, Yes)、電磁界べ タトルが収束しているとして、近似解 V Fを電磁界ベクトル記憶部 30に保存して(S22 )、処理を終了する。
[0076] 図 8は、本発明の実施の形態における電磁界解析装置の解析対象である方形導 波管の一例を示す図である。この方形導波管の寸法は図 8に示す通りであり、内部 は空気によって満たされている。この方形導波管の電磁界解析は、四面体 1次要素 を使用して行なわれる。
[0077] 図 9は、図 8に示す方形導波管を 2. 45GHzの TE10モードで駆動したときの要素 数に対する計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比 較するための図である。図 9から分力るように、要素数が多くなるにしたがって、本実 施の形態における電磁界解析装置を用いた場合の効果が顕著となり、要素数が 206 , 266の場合には従来の直接法に比べて約 17倍の速度となっている。
[0078] 図 10は、本発明の実施の形態における電磁界解析装置の解析対象であるパッチ アンテナの一例を示す図である。このパッチアンテナの寸法は図 10に示す通りであり 、厚み 0. 794mmで比誘電率 2. 2の誘電体基板上に形成されている。このパッチァ ンテナの電磁界解析は、四面体 1次要素を使用して行なわれる。
[0079] 図 11は、図 10に示すパッチアンテナを 7. 0GHzで駆動したときの要素数に対する 計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較するための 図である。図 11から分力るように、要素数が多くなるにしたがって、本実施の形態に おける電磁界解析装置を用いた場合の効果が顕著となり、要素数が 88, 445の場合 には従来の直接法に比べて約 15倍の速度となっている。
[0080] 以上説明したように、本実施の形態における電磁界解析装置によれば、 Q Fにおけ る電磁界ベクトル uFと、 Ω cにおける電磁界ベクトル ueとを関連付ける Prolongation行 列 Pを作成し、この Prolongation行列を用いて電磁界ベクトルを計算するようにしたの で、 Non-nested Meshを使用した Multigrid法を用いて電磁界解析を行なうことが可 能となった。
[0081] また、 Non-Nested Meshを使用した Multigrid法を用いて電磁界解析ができるように なったことにより、直接法を用いた電磁界解析と比較して、解析に要する時間を大幅 に短縮することが可能となった。
[0082] 今回開示された実施の形態は、すべての点で例示であって制限的なものではな!/ヽ と考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれること が意図される。

Claims

請求の範囲
[1] 解析対象の形状データを粗い要素と細力な要素とに分割するための分割手段(22 )と、
前記分割手段(22)によって分割された粗!、要素の電磁界ベクトルと細かな要素の 電磁界ベクトルとを関連付ける行列を作成するための作成手段(25)と、
前記作成手段(25)によって作成された行列を参照しながら、連立 1次方程式の反 復解法を適用して前記細かな要素の電磁界ベクトルの近似解を演算するための演 算手段 (28, 29)とを含む電磁界解析装置。
[2] 前記作成手段(25)は、前記細かな要素の辺における電磁界ベクトルの要素を、前 記粗い要素における補間関数を用いて表すことによって前記行列を作成する、請求 項 1記載の電磁界解析装置。
[3] 前記細かな要素の辺 1の長さを I 1 I、前記細かな要素の辺 1の位置 Xにおける電 磁界と前記粗い要素の辺 jにおける電磁界との関係を示す補間関数を N e (x)、前記 細かな要素の辺 1の接線ベクトルを tとすると、前記作成手段(25)は次式によって前 記行列 Pを作成する、請求項 2記載の電磁界解析装置。
[数 1]
Figure imgf000018_0001
[4] 前記演算手段(28, 29)は、連立 1次方程式の定常的な反復解法を適用して前記 細かな要素の電磁界ベクトルの近似解に含まれる高周波成分を除去し、前記作成手 段(25)によって作成された行列を用いて前記細かな要素における残差を前記粗い 要素における残差に写像し、連立 1次方程式の直接法または非定常的な反復解法 を適用して前記粗い要素に対する修正ベクトルを作成し、前記作成手段(25)によつ て作成された行列を用いて前記粗 、要素に対する修正ベクトルを前記細かな要素に おける修正ベクトルを求めることによって、前記細かな要素の近似解の精度を上げる 、請求項 1一 3のいずれかに記載の電磁界解析装置。
[5] 解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるための コンピュータ ·プログラムであって、
前記コンピュータは、分割した要素を記憶する第 1の記憶手段(23)と、行列を記憶 する第 2の記憶手段(27)とを含み、
前記電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分 割して前記第 1の記憶手段(23)に記憶するステップと、
前記第 1の記憶手段(23)に記憶された粗い要素の電磁界ベクトルと細かな要素の 電磁界ベクトルとを関連付ける行列を作成して前記第 2の記憶手段(27)に記憶する ステップと、
前記第 2の記憶手段(27)に記憶された行列を参照しながら、連立 1次方程式の反 復解法を適用して前記細かな要素の電磁界ベクトルの近似解を演算するステップと を含む、コンピュータ 'プログラム。
解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるための プログラムを記録したコンピュータで読取り可能な記録媒体であって、
前記コンピュータは、分割した要素を記憶する第 1の記憶手段(23)と、行列を記憶 する第 2の記憶手段(27)とを含み、
前記電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分 割して前記第 1の記憶手段(23)に記憶するステップと、
前記第 1の記憶手段(23)に記憶された粗い要素の電磁界ベクトルと細かな要素の 電磁界ベクトルとを関連付ける行列を作成して前記第 2の記憶手段(27)に記憶する ステップと、
前記第 2の記憶手段(27)に記憶された行列を参照しながら、連立 1次方程式の反 復解法を適用して前記細かな要素の電磁界ベクトルの近似解を演算するステップと を含む、コンピュータで読取り可能な記録媒体。
PCT/JP2004/016434 2003-12-10 2004-11-05 電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体 WO2005057434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04801998A EP1713013A4 (en) 2003-12-10 2004-11-05 ELECTROMAGNETIC FIELD ANALYZER, ELECTROMAGNETIC FIELD ANALYSIS PROGRAM, AND RECORDING MEDIUM ON WHICH THE PROGRAM IS RECORDED
US10/527,738 US7158921B2 (en) 2003-12-10 2004-11-05 Electromagnetic field analyzer, electromagnetic field analyzing program and storage medium for recording the program
JP2005516069A JP4215056B2 (ja) 2003-12-10 2004-11-05 三次元電磁界解析装置、三次元電磁界解析プログラムおよびそのプログラムを記録した記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-412074 2003-12-10
JP2003412074 2003-12-10

Publications (1)

Publication Number Publication Date
WO2005057434A1 true WO2005057434A1 (ja) 2005-06-23

Family

ID=34675013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016434 WO2005057434A1 (ja) 2003-12-10 2004-11-05 電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体

Country Status (4)

Country Link
US (1) US7158921B2 (ja)
EP (1) EP1713013A4 (ja)
JP (1) JP4215056B2 (ja)
WO (1) WO2005057434A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015674A (ja) * 2006-07-04 2008-01-24 Japan Research Institute Ltd 電磁界解析方法および電磁界解析用プログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062948A (ja) * 2008-09-04 2010-03-18 Fujitsu Ltd シミュレートプログラム、シミュレート装置およびシミュレート方法
US9063882B1 (en) * 2010-09-09 2015-06-23 Sas Ip, Inc. Matrix preconditioners for simulations of physical fields
US10380293B1 (en) * 2016-12-19 2019-08-13 Cadence Design Systems, Inc. Methods, systems, and computer program product for implementing physics aware model reduction for three-dimensional designs
US10909302B1 (en) 2019-09-12 2021-02-02 Cadence Design Systems, Inc. Method, system, and computer program product for characterizing electronic designs with electronic design simplification techniques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521909A (en) * 1983-10-04 1985-06-04 Wang Laboratories, Inc. Dual level pattern recognition system
US6665849B2 (en) * 1999-06-09 2003-12-16 Interuniversitair Microelektronica Centrum Vzw Method and apparatus for simulating physical fields
JP3818874B2 (ja) * 2001-06-26 2006-09-06 富士通株式会社 電磁波解析装置および電磁波解析プログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DE GERSEM H. ET AL: "Full Multigrid for Magnetostatic Using Unstructured and Non-Nested Meshes.", IEEE TRANSACTIONS ON MAGNETICS., vol. 37, no. 5, September 2001 (2001-09-01), pages 3460 - 3464, XP002989384 *
KAMEARI A. ET AL: "Kika Multigrid-ho no Denjiba Suchi Kaisei eno Tekiyo.", DENKI GAKKAI KENKYU KAI SHIRYO, SEISHIKI KAITENKI GODO KENKYUKAI., 2 August 2001 (2001-08-02), pages 61 - 66, XP002989385 *
See also references of EP1713013A4 *
TSUBOTA K. ET AL: "Non-Nested Multigridho o Mochiita Yugen Yoso Kaiseki no Kosokuka.", DENKI GAKKAI KENKYUKAI SHIRYO, SEISHIKI KAITEN KI GODO KENKYUKAI., 19 August 1999 (1999-08-19), pages 19 - 24, XP002989383 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015674A (ja) * 2006-07-04 2008-01-24 Japan Research Institute Ltd 電磁界解析方法および電磁界解析用プログラム

Also Published As

Publication number Publication date
JPWO2005057434A1 (ja) 2007-07-05
EP1713013A4 (en) 2010-09-01
JP4215056B2 (ja) 2009-01-28
EP1713013A1 (en) 2006-10-18
US7158921B2 (en) 2007-01-02
US20060009953A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
Keuchel et al. Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics
Sawall et al. A fast polygon inflation algorithm to compute the area of feasible solutions for three‐component systems. I: concepts and applications
Ding et al. Implementation of the Daum-Huang exact-flow particle filter
Assari et al. A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions
Boag A fast physical optics (FPO) algorithm for high frequency scattering
Chang et al. Marginalised iterated unscented Kalman filter
Dimarco et al. An asymptotic preserving automatic domain decomposition method for the Vlasov–Poisson–BGK system with applications to plasmas
Liu et al. Quality improvement of surface triangular mesh using a modified Laplacian smoothing approach avoiding intersection
Nawaz et al. Optimum solutions of fractional order Zakharov–Kuznetsov equations
Gedney et al. The locally corrected Nyström method for electromagnetics
Li et al. Fast periodic interpolation method for periodic unit cell problems
WO2005057434A1 (ja) 電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体
Liu et al. Explicit matrix representation for NURBS curves and surfaces
Jovanovic et al. Spectral method for solving the nonlinear thomas-fermi equation based on exponential functions
US7826989B2 (en) Computer-readable medium storing electromagnetic field analysis program, and method of causing computer to perform electromagnetic field analysis
Minden et al. A technique for updating hierarchical skeletonization-based factorizations of integral operators
CN111651911A (zh) 一种集总元件阻抗灵敏度快速计算方法及优化方法
Jones et al. Optimising the Volgenant–Jonker algorithm for approximating graph edit distance
Chen Transient Analysis of Electromagnetic and Acoustic Scattering using Second-kind Surface Integral Equations
Liu et al. A direct finite-element-based solver of significantly reduced complexity for solving large-scale electromagnetic problems
Gallego et al. Optimal polygonal $ L_ {1} $ linearization and fast interpolation of nonlinear systems
Teggihalli et al. A polynomial surface fit algorithm for filling holes in point cloud data
Radjenović et al. 3D Etching profile evolution simulations: Time dependence analysis of the profile charging during SiO2 etching in plasma
US6499004B1 (en) Simulation method and apparatus using a Fourier transform
McBride et al. Finite volume method for the solution of flow on distorted meshes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005516069

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004801998

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006009953

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527738

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004801998

Country of ref document: EP