WO2005054458A1 - Method for analyzing nucleic acid, cell for analyzing nucleic acid, and analyzer for nucleic acid - Google Patents
Method for analyzing nucleic acid, cell for analyzing nucleic acid, and analyzer for nucleic acid Download PDFInfo
- Publication number
- WO2005054458A1 WO2005054458A1 PCT/JP2003/015490 JP0315490W WO2005054458A1 WO 2005054458 A1 WO2005054458 A1 WO 2005054458A1 JP 0315490 W JP0315490 W JP 0315490W WO 2005054458 A1 WO2005054458 A1 WO 2005054458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- compartment
- amplification
- detection
- substrate
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/54—Heating or cooling apparatus; Heat insulating devices using spatial temperature gradients
Definitions
- the present invention relates to a method for analyzing nucleic acids (polynucleotides) such as DNA, mRNA, and the like, a cell for nucleic acid analysis, and a nucleic acid analyzer.
- DNA chips use various single-stranded oligonucleotides to bind (capture) and synthesize nucleic acids of interest (target nucleic acids) such as genes in a complementary manner through hybridization (complementary strand binding).
- Probes are aligned and fixed on a substrate at high density.
- a typical example is a DNA chip from Affimetrix (USA) that uses oligonucleotides to align and immobilize oligonucleotide probes at a high density to capture target nucleic acids on a semiconductor chip using photolithography technology.
- a real-time PCR method, a TaQMan probe method, and the like are well known.
- a conventional biochemical reactor has a large number of holes (champers) arranged on a two-dimensional plane.
- champers holes
- Micro Multi-Champer discloses a technology in which a temperature control function is incorporated in each of the champers so that the temperature can be independently controlled for each champer.
- PCR polymerase chain reaction
- Japanese Unexamined Patent Application Publication No. 2000-342264 Japanese Unexamined Patent Application Publication No. 2000-25469 and Japanese Unexamined Patent Application Publication No. Discloses a technique in which a plurality of independent temperature conditions can be set on one substrate (sections).
- the purpose of this conventional technology is to detect (capture) nucleic acids (polynucleotides) such as DNA and mRNA by hybridization.
- nucleic acids polynucleotides
- different oligonucleotide probes probes for nucleic acid detection
- the type of sample solution containing the target nucleic acid is the sample common to each compartment. It states that the sample is added to the substrate (chip surface) and that each compartment is set at a temperature suitable for the hybridization of each nucleic acid detection probe.
- the conventional techniques include a DNA chip that arranges and fixes various single-stranded oligonucleotide probes on a substrate at high density, and a multi-chamber and many samples on a single substrate. And a technology for immobilizing nucleic acid detection probes (oligonucleotide probes) for each type on a single substrate in an independently temperature-controllable compartment. ing. These techniques are disclosed as being used exclusively for amplifying or detecting nucleic acids of interest (target nucleic acids) such as DNA and mRNA. However, a large number of nucleic acids g Amplification ⁇ No technology for detection is disclosed.
- the real-time PCR and TaqMan methods which are techniques for quantitatively evaluating the expression level, can be detected simultaneously with amplification, so that the detection accuracy is good and simple.
- the reaction increases accordingly and the cost and complexity increase dramatically.
- it is necessary to subdivide the measurement sample by dispensing, and the amount of sample per reaction decreases. In general, most samples examined for gene expression are in very small amounts, and a decrease in detectability due to subdivision is a major problem. Disclosure of the invention
- An object of the present invention is to provide a method for simultaneously producing target nucleic acids (DNA, mRNA, etc.) even when about 10 to 20 to 100 kinds of nucleic acids (target nucleic acids) such as genes of interest are present.
- the present invention relates to the provision of a nucleic acid analysis method capable of amplifying and collectively performing a quantitative assay. .
- the present invention is basically configured as follows. At least one surface that forms a space (reaction layer) for accommodating solutions such as samples and reagents, a compartment for generating nucleic acid by amplification (compartment for nucleic acid amplification), and the generated amplified nucleic acid after separation Specific capture by hybridization And a compartment (nucleic acid detection compartment) for controlling temperature independently of each other.
- a compartment for controlling temperature independently of each other.
- temperature cycle control for nucleic acid amplification is performed
- the nucleic acid detection section set temperature control suitable for specific capture is performed, so that nucleic acid amplification and nucleic acid amplification can be performed in a single reaction layer. Perform detection.
- Each compartment has its own set of temperature sensors and heaters, each of which can be controlled independently.
- the nucleic acid amplification compartment is provided with a nucleic acid amplification probe, and is formed with at least one or more.
- a probe of a poly-T sequence which is complementary to the poly-A sequence, which is a characteristic sequence at the end of the mRNA, is immobilized on the surface of the nucleic acid amplification compartment. I have.
- each nucleic acid detection compartment contains two or more detection probes (oligonucleotide probes) so that two or more target nucleic acids of interest can be captured by hybridization. Is fixed to each nucleic acid detection compartment for each species.
- the hybridization temperature is determined for each type of nucleic acid detection probe in order to guarantee the thermal stability of the hybridization between the nucleic acid detection probe and the polynucleotide that binds complementarily thereto. Is set. An amplified product using a labeled primer is used for nucleic acid detection.
- evanescent light which is a phenomenon in which an excitation laser is incident on the plate above the chip and detects the interface of the excitation light in nucleic acid detection.
- FIG. 1 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in a first embodiment of the present invention.
- FIG. 2 is a detailed structural diagram showing one of the temperature controllable sections provided on the chip of the first embodiment.
- FIG. 3 is a diagram showing the temperature controllable sections of FIG. 2 in an equivalent circuit.
- FIG. 4 is a basic circuit diagram showing a temperature control system of the section shown in FIG.
- FIG. 5 is a diagram showing an example of temperature characteristics of a temperature detecting diode provided in the section shown in FIG. 2;
- FIG. 6 is an overall configuration diagram of a temperature control system according to the present invention.
- FIG. 1 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in a first embodiment of the present invention.
- FIG. 2 is
- FIG. 7 is a cross-sectional view of a nucleic acid amplification and detection cell (for example, a detection cell for gene expression analysis) according to the first embodiment of the present invention.
- FIG. 8 is a schematic diagram of a nucleic acid amplification / detection cell and a detection system used in the first embodiment of the present invention.
- FIG. 9 shows a flow of a detection procedure in the first embodiment of the present invention.
- FIG. 10 is a diagram showing temperature conditions in a detection procedure in the first embodiment of the present invention.
- FIG. 11 is a diagram for explaining a nucleic acid amplification / detection method in the first embodiment of the present invention, and shows an initial state.
- FIG. 12 is a diagram for explaining a method for detecting and detecting nucleic acid amplification in the first embodiment of the present invention, in which mRNA is hybridized to an amplification poly-T probe.
- FIG. 13 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, showing a state in which a complementary chain extension of mRNA is synthesized by a reverse transcription reaction (RT reaction). I have.
- FIG. 14 is a diagram illustrating a method for amplifying and detecting a nucleic acid in the first embodiment of the present invention, and shows a single-stranded state of an extended product of the complementary chain of mRNA.
- FIG. 15 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, in which the amplification primer is hybridized to one strand of the complementary chain extension of mRNA. Is shown.
- FIG. 16 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, showing a state in which a fluorescently labeled detection amplification product is synthesized by extension of the amplification primer. _
- FIG. 17 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, wherein the fluorescently labeled detection amplification product specifically hybridizes to the probe in the detection compartment. The state is shown.
- FIG. 18 is a schematic view (cross-sectional view) of a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in the second embodiment of the present invention.
- FIG. 19 is a schematic diagram showing an example in which the cell of the second embodiment of the present invention utilizes excitation by evanescent light.
- FIG. 18 is a schematic view (cross-sectional view) of a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in the second embodiment of the present invention.
- FIG. 19 is a schematic diagram showing an example in which the cell of the second embodiment of the present invention utilizes excitation by evanescent light.
- FIG. 20 shows that in the initial state of the nucleic acid amplification / detection chip used in the third embodiment of the present invention, a reverse primer specific to a target nucleic acid (target gene) is immobilized in the nucleic acid amplification compartment.
- Bird's-eye view showing the example being performed.
- FIG. 21 is a bird's-eye view showing an example in which mRNA is hybridized to a nucleic acid amplification primer (a reverse primer) in the third embodiment of the present invention, and complementary strand extension synthesis is performed.
- FIG. 22 is a bird's-eye view showing an example in which a forward primer with a fluorescent label is hybridized to an extended portion of the reverse primer in the third embodiment of the present invention.
- FIG. 23 is a diagram showing an example in which the fluorescent-labeled forward primer is extended to become a fluorescent-labeled amplification product for detection in the third example of the present invention.
- FIG. 24 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in a fifth embodiment of the present invention.
- FIG. 1 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in the present example.
- a nucleic acid amplification / detection cell for example, a detection cell for gene expression analysis
- the chip (substrate) 11 in this embodiment is used for dissolving a sample, ⁇ It has a space for accommodating liquid (hereinafter referred to as "reaction layer") 12, and has an inlet 3-1 and an outlet 13-2 for the solution.
- reaction layer a space for accommodating liquid
- each compartment is equipped with a set of independently operating temperature sensors and heaters. An example of the temperature sensor and the heater will be described later with reference to FIG.
- section 14 is a section for nucleic acid amplification
- sections 15-1 to 15-8 are sections for nucleic acid detection.
- FIG. 1 illustrates one nucleic acid amplification section 14 and eight nucleic acid detection sections 15, the number is not limited to this number. The number of commercial lots is in the order of tens or hundreds.
- FIG. 2 is a diagram illustrating the structure of one of the sections shown in FIG. Each section has a similar structure. Each section is fabricated using semiconductor manufacturing technology.
- the temperature sensor that detects the temperature is a diode formed by the junction of the ⁇ -type diffusion layer 21 and the ⁇ -type diffusion layer 22, and is used as a sensor by using the temperature dependence of the resistance value.
- the ⁇ ⁇ ⁇ ⁇ ⁇ -type diffusion layer 23 is used as a protective layer to control the potential of the diode.
- the chip substrate 24 of the entire section uses a ⁇ -shaped substrate, and its potential is determined by the ⁇ -shaped diffusion layer 25.
- the potential of the chip 24, that is, the potential of the ⁇ ⁇ -type diffusion layer 25 is increased by the ⁇ -type g
- the potential of the diffusion layer 21 is increased by the ⁇ -type g
- the heater is formed of the N diffusion layer 26.
- the N-type diffusion layer 26 is surrounded by a protective layer 27 of a P-type diffusion layer.
- the potential of the protection layer 27 is determined by the P-type diffusion layer 28.
- the N-type diffusion layer 26 is equivalent to the structure of the heating wire.
- the heating can be controlled.
- S (ten) the positive side is represented by S (ten)
- R (ten) the negative side is represented by R (-). If these structures are represented by an equivalent circuit, the result is shown in Figure 3.
- the temperature sensor is a diode 31 and the heater is represented by 32.
- Figure 4 shows an outline of the basic circuit that controls the compartment temperature and the connection to the compartment on the chip. This is an example of a circuit that detects temperature and controls heating for one section.
- a constant current circuit is connected to diode 31 of the temperature sensor.
- This circuit is a constant current circuit in which almost constant current determined by the resistance 41 flows when the resistance of the diode 41 is negligibly large.
- the voltage drop in the diode 31 is measured by a voltmeter 42, and the value is sent to the control unit 43.
- the y control unit 43 compares a preset voltage value (set value V s) with a measured value (V x) of the voltmeter 42, and when V s ⁇ VX, sets the gate 44 to 0 N, V s> In the case of VX, control is performed so that the gate 44 is set to ⁇ FF.
- a voltage 45 is applied to both ends when the gate is turned on, and the voltage is cut off when the gate is turned off. Control using this basic circuit will be described below.
- Figure 5 shows the relationship between the voltage drop across diode 31 and the chip section temperature (one example).
- the chip temperature T [degrees Celsius]
- the voltage drop Vx CmV]
- the voltage drop Vx CmV]
- Vx -2 T + 560-(1)
- the chip temperature can be calculated from the voltage drop. Note that the value of the slope differs depending on the measurement conditions and the like.
- the temperature rise is observed by a decrease in the voltage drop. Therefore, it is possible to control the temperature of any section in the chip as follows.
- FIG. 6 is a diagram illustrating the entire system of the present embodiment.
- 6 1 and 6 2-1 to 6 2-8 indicate the control units of the basic circuit connected to section 14 and section 15-1 to; I 5 _ 8.
- the computer 63 controls the entire system and performs pre-programmed temperature control.
- the interface 6.4 controls the computer 63 and all the control units 61, 62-1 to 62-8.
- a set temperature for each time of each section or a set voltage value corresponding thereto is programmed in advance.
- the computer 63 sends the set temperature or the corresponding voltage value to the control units 61, 62-1 to 62-8 of the respective basic circuits via the interface 64. Enter as the set value Vs for each time.
- each section can faithfully implement the programmed temperature sequence.
- a poly-T probe that captures the expressed gene (target nucleic acid, eg, mRNA) in the sample is immobilized with its sequence end 5' facing the compartment surface.
- the poly T probe is an oligonucleotide probe having the sequence represented by SEQ ID NO: 1, and has a function of specifically hybridizing to the poly A region at the end of the expressed gene.
- a sequence length of 2 Omer was adopted.
- a poly T oligonucleotide having a length in the range of 8 to 20 Omer can be used as the poly T probe. Items shorter than 8 mer lack stability during hybridization.
- a region other than T is optionally added to the 5 'end of the poly T oligo. This has the effect of increasing the distance from the solid phase surface, increasing the efficiency of the hybridization.
- the amount of the target gene can be determined by detecting the amount. The details will be described later.
- the nucleic acid amplification detection cell used in the present invention comprises a chip 11 having the nucleic acid amplification compartment 14 and the nucleic acid detection compartments 15-1 to 15-8 described above, A transparent sheet (upper plate) 72 arranged on the surface of the chip 11 so as to face the chip surface, and the sample is placed in the space 12 sandwiched between the chip 11 and the upper plate 72 (Solution of sample, reagent, etc.) 72
- a combination of the chip 11 and the upper plate 72 is referred to as a “cell”.
- FIG. 1 the chip 11 is viewed with the upper plate 72 removed, and FIG. 7 is a cross-sectional view of FIG. 1 passing through the sections 15-1 and 15-5. .
- the layered space between the chip (substrate) 11 and the upper plate 72 becomes the reaction layer 12 for accommodating the sample, and is formed by processing the substrate 17 by lithography.
- the chip 11 and the upper part 72 are formed by a sheet, and a spacer is interposed therebetween to form the reaction layer 12. Is also possible. '
- the thickness of the upper plate 72 is optimally 0.01 mm to 1 mm. Glass, various plastics, etc. can be used for the material, but it is important that the inside does not contain fluorescent substances as much as possible. Although it is possible to use a material with a thickness exceeding 1 mm, it is difficult to maintain the temperature independence in the chip, which is the object of the present invention, because the upper plate acts as a heat transfer material. Become. On the other hand, if it is less than 0.01 mm, there is a problem in strength.
- the layer 73 of the sample is preferably between 0.05 mm and 1 mm. If it exceeds 1 mm, heat convection occurs in the sample solution in the chip, so that the heat independence deteriorates.
- nucleic acid amplification compartment 14 Between the nucleic acid amplification compartment 14 and the nucleic acid detection compartments 15-1-1 to 15-8 and between the nucleic acid detection compartments, it is important to have a thin-film structure to maintain heat independence. It is industrially effective to use a silicon oxide film, but it is also possible to use other organic material films, such as plastic and polyimide films. Also, since this chip is planar, it has high heat diffusion efficiency in the up and down method. Therefore, when the detected temperature is high, it is possible to lower the temperature to a predetermined temperature without providing a cooling function by simply turning off the heater.
- Figure 8 shows a state in which the detection system is added to the cell.
- the fluorescence detection system has the same configuration as the confocal microscope. Other detection methods will be described later in embodiments.
- the photodetector 82 and the excitation laser 83 are in a confocal relationship with the cell surface 84 and the laser 83
- the fluorescent label (fluorescence amount) in each detection compartment in the excited reaction layer 12 is measured by the photodetector 8'2.
- the detector 82, laser 83, and lens 81 are assembled as a single unit, and they move in the horizontal direction (indicated by the arrow in the figure) as a whole to scan the cell surface.
- the sample is, for example, total RNA extracted from somatic cells.
- target nucleic acids are two types of mRNA, GAPDH and P53.
- FIG. 9 summarizes the operation procedure of the present embodiment.
- FIG. 10 summarizes the temperature control conditions of the nucleic acid amplification section and the nucleic acid detection section 15-1 in each procedure.
- FIG. 11 is a bird's-eye view schematically illustrating the surface of the chip 11.
- the poly-T probe 11 SEQ ID NO: 1
- the nucleic acid detection section 15-1 for GAPDH is placed on the surface of the nucleic acid amplification section 14 and the nucleic acid detection section 15-1 for GAPDH is
- the probe 112 for GAPDH (SEQ ID NO: 2) is immobilized.
- a sample solution containing all RNA is injected into the reaction layer 12 of the chip 11, and then set to the temperature condition (1) shown in FIG.
- the temperature conditions are 35 ° C. where the amplification section 14 is suitable for hybridization, and 75 ° C., which is much higher than that of the nucleic acid amplification section 15 -1 to 15 -8.
- mRNA in the sample is fixed by hybridizing with the poly T probe 111 of the nucleic acid amplification section 14.
- FIG. 12 shows that mRNA is transferred to the nucleic acid amplification compartment 14 by poly T probe 1 1 1
- FIG. 4 is a bird's-eye view schematically showing a state captured by the camera.
- all mRNAs are captured, regardless of type.
- mRNA 122 of GAPDH, mRNA 122 of p53 and other mRNA 123 are captured.
- hybridization does not occur in the nucleic acid detection compartment 155-1 because of the high temperature condition.
- a reverse transcription reagent (RT reagent) is introduced, and under the temperature condition (2) shown in FIG. 10, reverse transcription occurs in the nucleic acid amplification compartment.
- the temperature of the amplification section 14 is set to 42 ° C. suitable for reverse transcription.
- the nucleic acid detection compartment 15-1 is maintained at a high temperature of 75 ° C.
- FIG. 3 is a diagram showing a state in which the poly-T probe 111 has been extended by reverse transcription.
- the extended probe faithfully reproduces the mRNA abundance.
- the above process is the pretreatment for forming a reverse probe for amplifying the target nucleic acid.
- the probe for target nucleic acid detection fixed in the nucleic acid detection compartment is under pretreatment as described above.
- the temperature is controlled to a temperature that does not cause the operation of the hybrid (for example, a high temperature condition of 75 ° C).
- a nucleic acid amplification reagent is introduced into the reaction layer 12, and the temperature condition is set to the temperature of (4) in FIG.
- the temperature condition at this time is 60 for amplification section 14 and 65 degrees for detection section 15-1.
- the operation shown in FIG. 15 is performed. That is, nuclear Among the acid amplification reagents, there are a primer for GAPDH with a fluorescent label at the 5 'end and a primer for p53. It can hybridize to a predetermined sequence of the main strand.
- GAPDH primer 15 1 hybridizes to GAPDH mRNA extension 131
- P53 primer 15 2 generates P53 mRNA extension 13 2 Hybridize to
- the temperature condition (5) is a thermal cycle in the amplification section 14
- amplification products with fluorescent labels are obtained by linear amplification from the GAPDH and P53 extension products. 2 is generated.
- FIG. 16 shows a state in which the respective fluorescent-labeled amplification products 161 and 162 were synthesized.
- the nucleic acid detection compartments 15-1 and 15-5 are set to optimal temperature conditions for the respective probes to hybridize. Therefore, the linearly amplified product specifically hybridizes to each probe (Fig. 17). If this amount is detected in real time in parallel with amplification, a signal of 2 N times the original mRNA amount can be detected for N amplification cycles.
- amplification and detection can be performed in parallel in one chip, and the expression levels of multiple types of mRNA in one sample can be simultaneously, rapidly and easily determined. It is possible to measure.
- FIG. 18 is a schematic diagram (cross-sectional view) in which a reaction layer (sample layer) 73 is interposed between the chip 11 and the upper plate 18 2 opposed thereto.
- the chip 11 is provided with a nucleic acid amplification compartment and a nucleic acid detection compartment as in the first embodiment, but here, for convenience of illustration, one of the nucleic acid detection compartments 15 — Only one is exaggerated.
- the probe 18 1 for nucleic acid detection (corresponding to the probe 1 12 in the first embodiment) is not on the surface of the nucleic acid detection compartment but on the opposite surface, that is, the upper plate portion (Transparent sheet) Fixed to 18 2.
- the upper plate 18 2 corresponds to the upper plate 72 of the first embodiment.
- the detection probe 181 which captures the target nucleic acid in the nucleic acid detection compartment, is fixed to a surface facing the heater surface such as a temperature-controllable compartment 151-1-1 ... 151-n. I have.
- the nucleic acid detection compartment in the present embodiment is formed with functions separated on the opposing surface between the substrate 11 and the sheet 18 2, and the temperature cycle control of the nucleic acid detection compartment is provided on the opposing surface on the substrate 11
- a heater is provided for each section, and a nucleic acid detection function is provided by fixing a nucleic acid detection probe 181 to the opposite surface of the sheet 18 2 side.
- the temperature of the section (15 1—1... Surface temperatures are about equal.
- the upper plate 182 has a laser light source 191, which is located on the side of the upper plate 182.
- the excitation laser 192 is incident laterally from.
- FIG. 19 schematically shows a case where the excitation laser 1992 is incident on the upper plate 182.
- the excitation laser travels while totally reflecting inside the upper plate 182, and is controlled to an angle that is not emitted to the outside of the upper plate 182. Then, only in the vicinity of the upper plate 18 2, leakage of the excitation laser 19 2 occurs as evanescent light. As a result, only the amplification product 193 with the fluorescent label present on the upper plate surface is excited, and the amplified product 194 with the fluorescent label floating in the middle of the sample layer is not excited. Therefore, according to this embodiment, in addition to the effect of the first embodiment, the primer present in the reaction solution does not contribute to the emission of fluorescence, so that the background of fluorescence detection is significantly reduced, and the measurement S / N is improved.
- a reverse primer that captures the target mRNA in a complementary and specific manner without performing pretreatment as in the first example is used as a probe to be fixed to the nucleic acid amplification compartment.
- target RNAs GAPDH and P53
- Sequences 4 to 7 are prepared as primers specific to these two types of mRNA.
- AAAGTGGTC GTTGAGGGCA (SEQ ID NO: 5)
- Sequence 4 and Sequence 5 are forward and reverse for GAPDH
- Sequence 6 and Sequence 7 are forward and reverse for P53.
- the reverse primer is fixed to the surface of the nucleic acid amplification section as indicated by reference numerals 201 and 202.
- the forward primer has a fluorescent label at the 5 ′ end. Using these, nucleic acid amplification is performed. The reaction in the nucleic acid amplification compartment is described below.
- FIG. 20 is a bird's-eye view of the inside of the chip.
- the reverse primers 211 and 212 are extended to have a sequence complementary to the mRNA. Due to the thermal cycle in this nucleic acid amplification, the dissociated mRNA re-hybridizes with another reverse primer.
- the free forward primer complementarily binds to the extended reverse primer (eight hybridizes) and extends (Fig. 22).
- the fixed extended reverse primer and the extended free forward primer are generated at 2 N times the initial mRNA amount (Fig. 23). Since the extended free forward primer has a sequence complementary to the primer in the nucleic acid detection compartment, it is detected in the detection compartment as in the first and second embodiments. Since the amplification rate of this method is extremely large, it is possible to detect a trace amount of target. In this example, it is necessary to set the temperature cycle of the two types of primer sets to optimal conditions. Therefore, it is better to set the annealing temperature individually for each array. In this case, if a plurality of nucleic acid amplification compartments are prepared, it is possible to simultaneously implement a plurality of types of temperature cycles in the chip.
- a compartment for nucleic acid amplification for GAPDH and a compartment for nucleic acid amplification for P53 are separately provided.
- each reparse primer is fixed on the surface of the compartment, each amplification reaction can be generated only in the corresponding compartment.
- nucleic acid amplification and detection were performed simultaneously. Therefore, as in the first embodiment, the background may be high due to the presence of free primer in the sample.
- the detection at the same time as the amplification is an approximate evaluation of the signal amount, and in the precision evaluation, it is effective to perform the process of washing the free component to improve the accuracy.
- FIG. 24 shows an embodiment in which two compartments for nucleic acid amplification, 2241-1 and 241-2, are provided in one reaction layer. As for other configurations, any one of the first to fourth embodiments is employed. 2 4 2— :! 2242 1 n is a nucleic acid detection compartment.
- Optimum conditions for the nucleic acid amplification temperature cycle differ depending on the sequence of the specified nucleic acid amplification primers.
- a temperature cycle 95 ° C .: 5 seconds—55: 15 seconds, at ⁇ 72: 15 seconds
- the GC rate of the primer is large, it may be effective to raise the primer's eight-fold temperature to 60, which is 5 degrees higher than that of the primer, because there is a fake synthesis due to pseudo-hybridization.
- the base length of the product is If it is long, it is necessary to make the extension synthesis time 15 seconds longer.
- a simple, inexpensive, and highly accurate gene expression analysis method is provided by simultaneously performing amplification and individual detection of a plurality of types of evening targets in a single sample. be able to.
- nucleic acids for example, genes
- those genes can be simultaneously amplified and quantitatively assayed at once.
- the reaction since the reaction is performed in a single reaction layer, there is no problem of miniaturization due to subdivision of samples, and detection with higher sensitivity than before can be performed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A convenient, inexpensive and highly accurate method for analyzing expression of a gene in which amplification and individual inspection are performed simultaneously for a plurality of kinds of target in a single sample. A plurality of sections capable of controlling temperature conditions individually are provided in a chip and utilized for amplification and detection of nucleic acid thus performing amplification and detection simultaneously in a single chip. Since a plurality of amplifying sections and detecting sections are provided and temperature conditions can be determined independently, a plurality of kinds of target in a single sample can be amplified and detected collectively. Since amplification and inspection can be performed simultaneously, the analyzer is utilized conveniently while contributing to cost reduction. Furthermore, detection sensibility is enhanced because a sample including a plurality of targets is not required to be subdivided.
Description
明 細 書 核酸分析方法、 核酸分析用セル、 および核酸分析装置 技術分野 Description Nucleic acid analysis method, nucleic acid analysis cell, and nucleic acid analyzer
本発明は、 D N A, m R N Aなどの核酸 (ポリヌクレオチド) の分析 方法、 核酸分析用セル、 および核酸分析装置に関する。 背景技術 The present invention relates to a method for analyzing nucleic acids (polynucleotides) such as DNA, mRNA, and the like, a cell for nucleic acid analysis, and a nucleic acid analyzer. Background art
サンプル中に存在する D N A或いは m R N Aの種類を測定する技術と して、 D N Aチップが知られている。 D N Aチップは、 遺伝子などの関 心のある核酸 (標的核酸) をハイプリダイゼーシヨ ン (相補鎖結合) に より相補的に結合 (捕捉), 合成するために、 種々の一本鎖のオリゴヌク レオチドプローブを、 基板上に高密度に整列固定してなる。 代表的なも のとしては、 ァフィメ トリックス社 (米国) の D N Aチップのように、 フォ トリソグラフィ技術を用いて半導体チップ上に標的核酸を捕捉する ためにオリゴヌクレオチドプローブを高密度に整列固定するものが周知 である。また、関心のある m R N Aの発現量を定量計測する技術として、 リアルタイム P C R法、及び T a Q M a nプローブ法などが周知である。 As a technique for measuring the type of DNA or mRNA present in a sample, a DNA chip is known. DNA chips use various single-stranded oligonucleotides to bind (capture) and synthesize nucleic acids of interest (target nucleic acids) such as genes in a complementary manner through hybridization (complementary strand binding). Probes are aligned and fixed on a substrate at high density. A typical example is a DNA chip from Affimetrix (USA) that uses oligonucleotides to align and immobilize oligonucleotide probes at a high density to capture target nucleic acids on a semiconductor chip using photolithography technology. Is well known. In addition, as a technique for quantitatively measuring the expression level of an interested mRNA, a real-time PCR method, a TaQMan probe method, and the like are well known.
'さらに、 従来の生化学反応装置では、 特開平 5— 3 1 7 0 3 0号公報 に開示されるように、 二次元平面上に配列された多数の孔 (チャンパ) を持つ生化学反応装置 (マイクロマルチチャンパ) において、 各々のチ ャンパに温度調節機能を組み込んで、 チャンパごとに温度を独立して制 御可能にした技術が開示されている。 'Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 5-310730, a conventional biochemical reactor has a large number of holes (champers) arranged on a two-dimensional plane. (Micro Multi-Champer) discloses a technology in which a temperature control function is incorporated in each of the champers so that the temperature can be independently controlled for each champer.
また、 同公報には、 このようなマイクロマルチチャンパを用いて P C R (polymerase chain reaction: P C R法) による核酸増幅反応を行う
ム 技術が記載されている。 この技術は、 それぞれのチャンバに微少容量の 種々の P CR用の反応液 (生化学的試料) を与え、 チャンバ毎に反応液 に応じた温度サイクル制御を行うことにより、 同時の多種, 多数の P C Rを可能にしている。 チャンバ母材は、 例えばシリコンが用いられ、 異 方性エッチングによってチャンバとなる孔が掘られ、 チャンパ内に温度 調節手段として、 半導体ペルティエ素子を形成している。 Also, the publication discloses that a nucleic acid amplification reaction by PCR (polymerase chain reaction: PCR) is performed using such a micro multi-champer. The technology is described. In this technology, a small amount of various PCR reaction liquids (biochemical samples) are supplied to each chamber, and temperature cycling control according to the reaction liquid is performed for each chamber. Enables PCR. For example, silicon is used as a chamber base material, and a hole serving as a chamber is dug by anisotropic etching, and a semiconductor Peltier element is formed in the champ as a temperature control means.
一方、 特開 2 0 0 0— 34 2 2 64号公報、 特開 2 0 0 1— 2 3 54 69号公報、 特開 2 0 0 1—2 3 54 74号公報においては、 核酸検出 用チップにおいて、 一つの基板上に複数の独立した温度条件を設定する ことが可能な区域 (区画) を設ける技術が開示されている。 この従来技 術は、 DNA, mRNA等の核酸 (ポリヌクレオチド) をハイブリダィ ゼーシヨンにより検出 (捕捉) することを目的としている。 また、 独立 した温度制御が可能な複数の区画については、 区画ごとに異なるオリゴ ヌクレオチドプローブ (核酸検出用プローブ) が固定されること、 標的 核酸を含む試料溶液の種類は各区画に共通の試料であり、 その試料が基 板上 (チップ表面) に添加されること、 各区画は各核酸検出用プローブ のハイプリダイゼーションに適した温度に設定されることが述べられて いる。 On the other hand, in Japanese Unexamined Patent Application Publication No. 2000-342264, Japanese Unexamined Patent Application Publication No. 2000-25469 and Japanese Unexamined Patent Application Publication No. Discloses a technique in which a plurality of independent temperature conditions can be set on one substrate (sections). The purpose of this conventional technology is to detect (capture) nucleic acids (polynucleotides) such as DNA and mRNA by hybridization. For multiple compartments where independent temperature control is possible, different oligonucleotide probes (probes for nucleic acid detection) are fixed for each compartment, and the type of sample solution containing the target nucleic acid is the sample common to each compartment. It states that the sample is added to the substrate (chip surface) and that each compartment is set at a temperature suitable for the hybridization of each nucleic acid detection probe.
上記したように、 従来の技術には、 種々の一本鎖のオリゴヌクレオチ ドプローブを、 基板上に高密度に整列固定する DNAチップや、 多種, 多数の試料を、 一つの基板上の複数のチャンバで個別に温度制御して核 酸増幅する技術や、 一つの基板上で種別ごとの核酸検出用プローブ (ォ リゴヌクレオチドプローブ) を、 独立して温度制御が可能な区画に固定 する技術が開示されている。 これらの技術では、 DNA, mRNAなど の関心のある核酸 (標的核酸) を専ら増幅或いは検出するために用いる ものとして開示されている。 しかしながら、 多種, 多数の核酸を同時に
g 増幅 ·検出可能にする技術については開示されていない。 As described above, the conventional techniques include a DNA chip that arranges and fixes various single-stranded oligonucleotide probes on a substrate at high density, and a multi-chamber and many samples on a single substrate. And a technology for immobilizing nucleic acid detection probes (oligonucleotide probes) for each type on a single substrate in an independently temperature-controllable compartment. ing. These techniques are disclosed as being used exclusively for amplifying or detecting nucleic acids of interest (target nucleic acids) such as DNA and mRNA. However, a large number of nucleic acids g Amplification · No technology for detection is disclosed.
ところで、 遺伝子発現が創薬分野などで重要となるに従い、 1 0〜2 0ないし 1 0 0種類の限定した関心のある遺伝子に関して、 その発現量 を定量評価することが求められている。 従来の技術では、 発現の増減な どは、 D N Aチップを用いることにより評価することが可能であつたが、 定量性に乏しく、 また標的,核酸の増幅手順を外部で行うため、 煩雑であ る問題があった。 また、 核酸の増幅においては、 最適な温度制御に種類 差が存在するため、 一度に増幅が可能な種類数も限られていた。 By the way, as gene expression becomes important in the field of drug discovery and the like, it is required to quantitatively evaluate the expression level of 10 to 20 to 100 types of limited genes of interest. In the conventional technology, it was possible to evaluate the increase and decrease of expression by using a DNA chip.However, the quantitativeness was poor, and the target and nucleic acid amplification procedures were performed externally, which was complicated. There was a problem. In addition, in nucleic acid amplification, there is a difference in the type of optimal temperature control, so that the number of types that can be amplified at one time was limited.
一方、 発現量の定量評価を行う技術であるリアルタイム P C Rや T a q M a n法は、 増幅と同時に検出が行えるため、 検出の精度が良く、 簡 便である。しかし、 1チューブで 1種類の遺伝子しか検討できないため、 関心のある遺伝子が複数ある場合は、 その分リアクションが増加し、 コ ス トと煩雑さが激増する。 さらに、 測定サンプルを分注により小分けす る必要があり、 1 リアクションあたりのサンプル量が減少してしまう。 一般に、 遺伝子発現で検討を行うサンプルは、 微量であることがほとん どであり、 小分けによる検出能の低下は、 大きな問題である。 発明の開示 On the other hand, the real-time PCR and TaqMan methods, which are techniques for quantitatively evaluating the expression level, can be detected simultaneously with amplification, so that the detection accuracy is good and simple. However, since only one type of gene can be examined in one tube, if there are multiple genes of interest, the reaction increases accordingly and the cost and complexity increase dramatically. Furthermore, it is necessary to subdivide the measurement sample by dispensing, and the amount of sample per reaction decreases. In general, most samples examined for gene expression are in very small amounts, and a decrease in detectability due to subdivision is a major problem. Disclosure of the invention
本発明の目的は、 関心のある遺伝子などの核酸 (標的核酸) が 1 0〜 2 0ないし 1 0 0種類程度存在する場合であっても、 それらの標的核酸 ( D N A, m R N Aなど) を同時に増幅し、 一括で定量検定することが 可能となる核酸分析方法の提供に関する。 . An object of the present invention is to provide a method for simultaneously producing target nucleic acids (DNA, mRNA, etc.) even when about 10 to 20 to 100 kinds of nucleic acids (target nucleic acids) such as genes of interest are present. The present invention relates to the provision of a nucleic acid analysis method capable of amplifying and collectively performing a quantitative assay. .
本発明は、 基本的には、 次のように構成する。 試料, 試薬などの溶液 を収容するためのスペース (反応層) を形成する少なく とも一面に、 核 酸を増幅により生成するための区画 (核酸増幅用区画) と、 生成された 増幅核酸を乖離後にハイプリダイゼーションにより特異的に捕捉するた
めの区画 (核酸検出用区画) とを、 互いに独立した温度制御が可能にな るよう形成する。 そして、 核酸増幅用区画では、 核酸増幅のための温度 サイクル制御を、 核酸検出用区画では、 特異的な捕捉に適した設定温度 制御を行う ことにより、 単一の反応層にて核酸の増幅と検出を行う。 各区画は、 温度センサーとヒーターのセッ トを個々に有し、 それぞれ 独立に制御することが可能である。 The present invention is basically configured as follows. At least one surface that forms a space (reaction layer) for accommodating solutions such as samples and reagents, a compartment for generating nucleic acid by amplification (compartment for nucleic acid amplification), and the generated amplified nucleic acid after separation Specific capture by hybridization And a compartment (nucleic acid detection compartment) for controlling temperature independently of each other. In the nucleic acid amplification section, temperature cycle control for nucleic acid amplification is performed, and in the nucleic acid detection section, set temperature control suitable for specific capture is performed, so that nucleic acid amplification and nucleic acid amplification can be performed in a single reaction layer. Perform detection. Each compartment has its own set of temperature sensors and heaters, each of which can be controlled independently.
核酸増幅用区画は、 核酸増幅用のプローブを備え、 かつ少なく とも 1 以上形成される。 例えば、 標的核酸が m R N Aである場合には、 核酸増 幅用区画の表面には、 m R N Aの末端の特徴的配列であるポリ A配列と 相補的な、 ポリ T配列のプローブが固定されている。 The nucleic acid amplification compartment is provided with a nucleic acid amplification probe, and is formed with at least one or more. For example, when the target nucleic acid is mRNA, a probe of a poly-T sequence, which is complementary to the poly-A sequence, which is a characteristic sequence at the end of the mRNA, is immobilized on the surface of the nucleic acid amplification compartment. I have.
核酸検出用区画は、 複数形成され、 各核酸検出用区画には、 2種以上 の関心のある標的核酸をハイブリダィゼ一シヨンにより捕捉可能にする ために 2種以上の検出用プローブ (オリゴヌクレオチドプローブ) が種 別ごとに各核酸検出用区画に.固定される。 A plurality of nucleic acid detection compartments are formed, and each nucleic acid detection compartment contains two or more detection probes (oligonucleotide probes) so that two or more target nucleic acids of interest can be captured by hybridization. Is fixed to each nucleic acid detection compartment for each species.
それぞれの核酸検出用区画では、 核酸検出用プローブとそれに相補的 に結合するポリヌクレオチドとのハイブリダィゼーシヨ ンの熱安定性を 保証するために、 核酸検出プローブの種別ごとにハイブリダイゼーショ ン温度が設定される。 核酸検出には標識化プライマ一を用いた増幅物を 利用する。 In each nucleic acid detection compartment, the hybridization temperature is determined for each type of nucleic acid detection probe in order to guarantee the thermal stability of the hybridization between the nucleic acid detection probe and the polynucleotide that binds complementarily thereto. Is set. An amplified product using a labeled primer is used for nucleic acid detection.
さらに、核酸検出において、チップ上部の板に励起レーザーを入射し、 その励起光の界面しみだし現象であるエバネッセント光を利用する装置 も提案する。 Furthermore, we propose a device that uses an evanescent light, which is a phenomenon in which an excitation laser is incident on the plate above the chip and detects the interface of the excitation light in nucleic acid detection.
以下、 上記およびその他の本発明の新規な特徴と効果について、 図面 を参酌して説明する。なお、図面はもっぱら解説のためのものであって、 この発明の範囲を限定するものではない。
g JP2003/015490 図面の簡単な説明 Hereinafter, the above and other novel features and effects of the present invention will be described with reference to the drawings. The drawings are for explanation only, and do not limit the scope of the present invention. g JP2003 / 015490 Brief description of drawings
第 1図は、 本発明の第 1の実施例に用いる核酸増幅 ·検出セル (例え ば遺伝子発現解析用検出セル) におけるチップ (基板) の上面図。 第 2 図は、 第 1実施例のチップに配設される温度制御可能な区画の一つを取 り出して示す詳細構造図。 第 3図は、 第 2図の温度制御可能な区画を等 価回路で示した図。 第 4図は、 第 2図に示す区画の温度制御系を示す基 本回路図。 第 5図は、 第 2図の区画に設けられる温度検出用ダイオード の温度特性例を示す図。 第 6図は、 本発明の温度制御を行うシステムの 全体構成図。 第 7図は、 本発明の第 1の実施例に係る核酸増幅 ,検出セ ル (例えば遺伝子発現解析用検出セル) の断面図。 第 8図は、 本発明の 第 1 の実施例に用いる核酸増幅 ·検出セルと検出システムの概略図。 第 9図は、 本発明の第 1 の実施例における検出手順のフローを示す 。 第 1 0図は、本発明の第 1の実施例における検出手順の温度条件を示す図。 第 1 1図は、 本発明の第 1の実施例おける核酸増幅 ·検出方法を説明す る図で、 初期状態を示している。 第 1 2図は、 本発明の第 1の実施例お ける核酸増幅 ' 検出方法を説明する図で、 増幅用のポリ Tプローブに、 m R N Aがハイブリダィズ状態を示している。 第 1 3図は、 本発明の第 1の実施例おける核酸増幅 ·検出方法を説明する図で、 逆転写反応 (R T反応) により m R N Aの相補鎖伸張物が合成されている状態を示して いる。 第 1 4図は、 本発明の第 1の実施例おける核酸増幅 ·検出方法を 説明する図で、 m R N Aの相補鎖伸張物の 1本鎖の状態を示している。 第 1 5図は、 本発明の第 1の実施例おける核酸増幅 ·検出方法を説明す る図であり、 m R N Aの相補鎖伸張物の 1本鎖に増幅用プライマーがハ ィプリダイズしている状態を示している。 第 1 6図は、 本発明の第 1の 実施例おける核酸増幅 ·検出方法を説明する図であり、 増幅用プライマ 一の伸張により、 蛍光標識化した検出用増幅物が合成されている状態を
_ FIG. 1 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in a first embodiment of the present invention. FIG. 2 is a detailed structural diagram showing one of the temperature controllable sections provided on the chip of the first embodiment. FIG. 3 is a diagram showing the temperature controllable sections of FIG. 2 in an equivalent circuit. FIG. 4 is a basic circuit diagram showing a temperature control system of the section shown in FIG. FIG. 5 is a diagram showing an example of temperature characteristics of a temperature detecting diode provided in the section shown in FIG. 2; FIG. 6 is an overall configuration diagram of a temperature control system according to the present invention. FIG. 7 is a cross-sectional view of a nucleic acid amplification and detection cell (for example, a detection cell for gene expression analysis) according to the first embodiment of the present invention. FIG. 8 is a schematic diagram of a nucleic acid amplification / detection cell and a detection system used in the first embodiment of the present invention. FIG. 9 shows a flow of a detection procedure in the first embodiment of the present invention. FIG. 10 is a diagram showing temperature conditions in a detection procedure in the first embodiment of the present invention. FIG. 11 is a diagram for explaining a nucleic acid amplification / detection method in the first embodiment of the present invention, and shows an initial state. FIG. 12 is a diagram for explaining a method for detecting and detecting nucleic acid amplification in the first embodiment of the present invention, in which mRNA is hybridized to an amplification poly-T probe. FIG. 13 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, showing a state in which a complementary chain extension of mRNA is synthesized by a reverse transcription reaction (RT reaction). I have. FIG. 14 is a diagram illustrating a method for amplifying and detecting a nucleic acid in the first embodiment of the present invention, and shows a single-stranded state of an extended product of the complementary chain of mRNA. FIG. 15 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, in which the amplification primer is hybridized to one strand of the complementary chain extension of mRNA. Is shown. FIG. 16 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, showing a state in which a fluorescently labeled detection amplification product is synthesized by extension of the amplification primer. _
6 示している。 第 1 7図は、 本発明の第 1の実施例おける核酸増幅 · 検出 方法を説明する図であり、 蛍光標識化した検出用増幅物が、 検出区画の プローブに特異的に八イブリダィズしている状態を示している。 第 1 8 図は、 本発明の第 2の実施例に用いる核酸増幅 · 検出セル (例えば遺伝 子発現解析用検出セル) の模式図 (断面図)。 第 1 9図は、 本発明の第 2 の実施例のセルに、 ェパネッセント光による励起を利用する例を示す模 式図。 第 2 0図は、 本発明の第 3の実施例に用いる核酸増幅 ·検出用チ ップの初期状態において、 核酸増幅用区画には、 標的核酸 (目的遺伝子) に特異的なリバースプライマーが固定されている例を示す鳥瞰図。 第 2 1図は、 本発明の第 3の実施例において、 核酸増幅用プライマー (リバ —スプライマー) に m R N Aがハイブリダィズし、 相補鎖伸張合成が行 われる例を示す鳥瞰図。 第 2 2図は、 本発明の第 3の実施例において、 リバースプライマ一の伸張した部分に、 蛍光標識付フォワードプライマ 一がハイブリダィズしている例を示す鳥瞰図。 第 2 3図は、 本発明の第 3の実施例において、 蛍光標識付フォワードプライマーが伸張されて、 蛍光標識化した検出用増幅物となる例を示す図。 第 2 4図は、 本発明の 第 5実施例に係るに用いる核酸増幅 ·検出セル (例えば遺伝子発現解析 用検出セル) におけるチップ (基板) の上面図。 発明を実施するための最良の形態 6 shows. FIG. 17 is a diagram for explaining the nucleic acid amplification / detection method in the first embodiment of the present invention, wherein the fluorescently labeled detection amplification product specifically hybridizes to the probe in the detection compartment. The state is shown. FIG. 18 is a schematic view (cross-sectional view) of a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in the second embodiment of the present invention. FIG. 19 is a schematic diagram showing an example in which the cell of the second embodiment of the present invention utilizes excitation by evanescent light. FIG. 20 shows that in the initial state of the nucleic acid amplification / detection chip used in the third embodiment of the present invention, a reverse primer specific to a target nucleic acid (target gene) is immobilized in the nucleic acid amplification compartment. Bird's-eye view showing the example being performed. FIG. 21 is a bird's-eye view showing an example in which mRNA is hybridized to a nucleic acid amplification primer (a reverse primer) in the third embodiment of the present invention, and complementary strand extension synthesis is performed. FIG. 22 is a bird's-eye view showing an example in which a forward primer with a fluorescent label is hybridized to an extended portion of the reverse primer in the third embodiment of the present invention. FIG. 23 is a diagram showing an example in which the fluorescent-labeled forward primer is extended to become a fluorescent-labeled amplification product for detection in the third example of the present invention. FIG. 24 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施例). (First embodiment).
本発明の第 1の実施例として、 遺伝子発現解析を実施した例を以下に 示す。 As a first example of the present invention, an example in which gene expression analysis was performed is described below.
図 1は、 本実施例に用いる核酸増幅 ·検出セル (例えば遺伝子発現解 析用検出セル) におけるチップ (基板) の上面図である。 FIG. 1 is a top view of a chip (substrate) in a nucleic acid amplification / detection cell (for example, a detection cell for gene expression analysis) used in the present example.
本実施例におけるチップ (基板) 1 1は、 例えば試料, '試薬などの溶
^ 液を収容するスペース (以下、 「反応層」 と称する) 1 2を有し、 また、 その溶液などの導入口 ϋ 3— 1及び排出口 1 3— 2を有する。 The chip (substrate) 11 in this embodiment is used for dissolving a sample, ^ It has a space for accommodating liquid (hereinafter referred to as "reaction layer") 12, and has an inlet 3-1 and an outlet 13-2 for the solution.
チップ 1 1 における反応層 1 2の一面には、 複数の区画 1 4および 1 5 — 1〜 1 5— 8が形成されている。 それぞれの区画には、 独立して作 動する温度センサーとヒーターの組みが設けられている。 温度センサー およびヒータ一の一例については、 図 2によって後述する。 On one surface of the reaction layer 12 of the chip 11, a plurality of sections 14 and 15-1 to 15-8 are formed. Each compartment is equipped with a set of independently operating temperature sensors and heaters. An example of the temperature sensor and the heater will be described later with reference to FIG.
複数の区画のうち、 あるものは、 核酸増幅用区画として機能し、 ある ものは核酸検出用として機能する。 図 1では、 チップ 1 1において、 区 画 1 4が核酸増幅用区画であり、 区画 1 5— 1〜 1 5— 8が核酸検出用 区画である。 本実施例で 、 核酸増幅用区画 1 4の両側或いは周囲に複 数の核酸検出用区画 1 5— 1〜 1 5— 8を配設することによって、 核酸 検出用区画 1 5 — 1〜 1 5— 8のすべてが、 核酸増幅用区画 1 4に対し て等しい距離で配置されている。 なお、 図 1では、 核酸増幅用区画 1 4 は、 一つ、 核酸検出用区画 1 5は 8つものを例示しているが、 実際は、 この数に限定されるものではなく、 また、 核酸検出用区画については、 数十、 数百のオーダとなる。 Of the plurality of compartments, some function as nucleic acid amplification compartments, and some function as nucleic acid detection. In FIG. 1, in chip 11, section 14 is a section for nucleic acid amplification, and sections 15-1 to 15-8 are sections for nucleic acid detection. In this example, by disposing a plurality of nucleic acid detection compartments 15-1 to 15-8 on both sides or around the nucleic acid amplification compartment 14, the nucleic acid detection compartments 15-1 to 15 — All eight are equidistant relative to nucleic acid amplification compartment 14. Although FIG. 1 illustrates one nucleic acid amplification section 14 and eight nucleic acid detection sections 15, the number is not limited to this number. The number of commercial lots is in the order of tens or hundreds.
図 2は、 図 1で示した区画のうち、 1つの区画の構造を説明する図で ある。 各区画は、 全て同様の構造を有する。 各区画は、 半導体製造技術 を用いて作製される。 FIG. 2 is a diagram illustrating the structure of one of the sections shown in FIG. Each section has a similar structure. Each section is fabricated using semiconductor manufacturing technology.
温度を検出する温度センサーは、 Ρ型拡散層 2 1 と Ν型拡散層 2 2の 接合で形成されたダイオードであり、 その抵抗値の温度依存性を用いて センサーとして利用する。 また、 このダイオードは、 Ρ型拡散層 2 3を 保護層として用い、 ダイオード部分の電位を制御している。 区画全体の チップ基板 2 4は Ν型基板を用いており、 その電位は Ν型拡散層 2 5 により決められる。 The temperature sensor that detects the temperature is a diode formed by the junction of the Ρ-type diffusion layer 21 and the Ν-type diffusion layer 22, and is used as a sensor by using the temperature dependence of the resistance value. In this diode, the ダ イ オ ー ド -type diffusion layer 23 is used as a protective layer to control the potential of the diode. The chip substrate 24 of the entire section uses a Ν-shaped substrate, and its potential is determined by the Ν-shaped diffusion layer 25.
チップ 2 4の電位即ち Ν型拡散層 2 5の電位を、ダイオードの Ρ型拡
g 散層 2 1の電位と等しくすることによって、 保護層 2 3 とチップ基板 2 4とが P N接合であっても、 温度センサーから保護層 2 3外部にセンサ 一電流が流出することを防ぐことが可能となる。 また、 チップ基板 2 4 側からみれば、 チップ基板 2 4と保護層 2 3は、 N P接合となるので、 保護層の外部から温度センサ一にノィズ電流が流入することを防止でき る。 The potential of the chip 24, that is, the potential of the 拡 散 -type diffusion layer 25 is increased by the Ρ-type g By making the potential of the diffusion layer 21 equal to that, even if the protection layer 23 and the chip substrate 24 are PN junctions, it is possible to prevent the current from flowing out of the temperature sensor to the outside of the protection layer 23 from the temperature sensor. Becomes possible. Further, when viewed from the chip substrate 24 side, since the chip substrate 24 and the protective layer 23 form an NP junction, it is possible to prevent a noise current from flowing into the temperature sensor 1 from outside the protective layer.
本実施例では、 ヒーターは N拡散層 2 6で形成されている。 N型拡散 層 2 6は、 P型拡散層の保護層 2 7で囲まれている。 保護層 2 7の電位 は、 P型拡散層 2 8で決まる。 In this embodiment, the heater is formed of the N diffusion layer 26. The N-type diffusion layer 26 is surrounded by a protective layer 27 of a P-type diffusion layer. The potential of the protection layer 27 is determined by the P-type diffusion layer 28.
N型拡散層 2 6の一端を保護層 2 7 と同電位 (一) とし、 他端を正極 ( + ) とすると、 N型拡散層 2 6 と保護層 2 7は NP接合となるため、 ヒーター電流が保護層ヘリークしない。 そのため、 N 型拡散層 2 6は、 電熱線の構造と等価となる。 このヒーター 2 6に流れる電流を制御する ことにより、 加熱を制御することができる。 センサーと回路の接続は、 正極側を S (十)、 負極側を S (—) と表す。 また、 ヒーターと回路の接 続は、 正極側を R (十)、 負極側を R (―) と表す。 これらの構造を、 等 価回路で表すと、 図 ' 3 となる。温度センサーは、ダイオード 3 1であり、 ヒーターは 3 2で表される。 If one end of the N-type diffusion layer 26 has the same potential (1) as the protection layer 27 and the other end has a positive electrode (+), the N-type diffusion layer 26 and the protection layer 27 have an NP junction. Current does not leak to the protective layer. Therefore, the N-type diffusion layer 26 is equivalent to the structure of the heating wire. By controlling the current flowing through the heater 26, the heating can be controlled. For the connection between the sensor and the circuit, the positive side is represented by S (ten), and the negative side is represented by S (—). For the connection between the heater and the circuit, the positive side is represented by R (ten) and the negative side is represented by R (-). If these structures are represented by an equivalent circuit, the result is shown in Figure 3. The temperature sensor is a diode 31 and the heater is represented by 32.
区画の温度を制御する基本回路の概略およびチップ上の区画との接続 を図 4に示す。 これは、 1つの区画について、 温度を検出し、 加熱を制 御する回路の 1例である。 Figure 4 shows an outline of the basic circuit that controls the compartment temperature and the connection to the compartment on the chip. This is an example of a circuit that detects temperature and controls heating for one section.
温度センサーのダイオード 3 1 には、 定電流回路が接続する。 この回 路は、 抵抗 4 1が、 ダイオードの抵抗値が無視できる程大きい場合、 抵 抗 4 1で決まるほぼ一定の電流が流れる定電流回路となる。 ダイォード 3 1における電圧降下は、 電圧計 4 2で測定し、 その値は制御部 4 3に 送られる。
y 制御部 43は、 予め設定された電圧値 (設定値 V s ) と、 電圧計 42 における測定値 (V x) を比較し、 V s < V Xの場合はゲート 44を 0 N、 V s〉 V Xの場合はゲート 44を〇 F Fとする制御を行う。 ヒータ 一側回路は、 ゲート ON時に両端に電圧 45が印加され、 OF F時には 電圧印加が切れる。 この基本回路を用いる制御について、 以下に説明す る。 A constant current circuit is connected to diode 31 of the temperature sensor. This circuit is a constant current circuit in which almost constant current determined by the resistance 41 flows when the resistance of the diode 41 is negligibly large. The voltage drop in the diode 31 is measured by a voltmeter 42, and the value is sent to the control unit 43. The y control unit 43 compares a preset voltage value (set value V s) with a measured value (V x) of the voltmeter 42, and when V s <VX, sets the gate 44 to 0 N, V s> In the case of VX, control is performed so that the gate 44 is set to 〇FF. In the heater one-side circuit, a voltage 45 is applied to both ends when the gate is turned on, and the voltage is cut off when the gate is turned off. Control using this basic circuit will be described below.
ダイオード 3 1両端の電圧降下とチップの区画温度との関係 ( 1例) を、 図 5に示した。 以下、 この例を用いて説明する。 図 5に示すとおり、 チップの温度 (T [摂氏度]) と電圧降下 (Vx CmV]) は、 直線性を 示し、 その傾きは、 本例では約一 2 mVZ度である。 そのため、 以下の 近似式 ( 1 ) で示される。 Figure 5 shows the relationship between the voltage drop across diode 31 and the chip section temperature (one example). Hereinafter, description will be made using this example. As shown in Figure 5, the chip temperature (T [degrees Celsius]) and the voltage drop (Vx CmV]) show linearity, with a slope of about 1-2 mVZ in this example. Therefore, it is represented by the following approximate expression (1).
Vx = - 2 T+ 5 6 0 - ( 1 ) つまりチップの区画温度が 1度上昇すると、 電圧降下が約 2 m V減少 する。 予め、 この関係式を測定しておく ことにより、 電圧降下からチッ プ温度を計算することが可能となる。 なお、 傾きの値は、 測定条件等に より異なる。 また、 本特許では説明しないが、 ダイオードの抵抗値の温 度依存性を、 定電圧条件や、 その他の条件を用いて関係式を求めること も可能であることは言うまでもない。 Vx =-2 T + 560-(1) In other words, if the chip section temperature rises once, the voltage drop will decrease by about 2 mV. By measuring this relational expression in advance, the chip temperature can be calculated from the voltage drop. Note that the value of the slope differs depending on the measurement conditions and the like. Although not described in this patent, it is needless to say that the temperature dependency of the resistance value of the diode can be obtained by using a constant voltage condition or other conditions to obtain a relational expression.
図 5で示した通り、 本例では、 温度上昇は、 電圧降下の低下で観測さ れる。 そこで、 チップ内における任意の区画の温度を、 以下の通りに制 御することが可能である。 As shown in FIG. 5, in this example, the temperature rise is observed by a decrease in the voltage drop. Therefore, it is possible to control the temperature of any section in the chip as follows.
例えば、 ある区画を、 ·Τ=摂氏 5 0度で制御する場合を説明する。 区 画の温度が、 所望の温度条件である摂氏 5 0度より低い場合、 センサー における電圧降下は、 摂氏 5 0度における電圧降下量 4 6 0 mVより大 きい。 設定値 V sを、 V s = 46 0とすると、 V X > V sの条件が成り 立っため、 ゲート 44が〇 N制御となり、 本回路は V X < V s となるま
^ でヒーター回路に電流が流れ、 区画は加熱される。 加熱により区画の温 度が上昇し、 V Xぐ V sが達成されると、 ゲートが O F Fとなり、 加熱 が停止するため、 それ以上の温度上昇は発生しない。 熱拡散により、 区 画の温度が下がり、再度 V X > V s となると、ゲートは再度 0 Nとなり、 加熱が再開する。 この制御により、 区画の温度は摂氏 5 0度に維持され る。 For example, a case will be described in which a certain section is controlled at 50 degrees Celsius. If the temperature of the compartment is lower than the desired temperature condition of 50 degrees Celsius, the voltage drop at the sensor is greater than the voltage drop at 50 degrees Celsius of 450 mV. Assuming that the set value Vs is Vs = 460, the condition of VX> Vs is satisfied, so that the gate 44 is controlled by 〇N, and the circuit is operated until VX <Vs. ^ Causes current to flow through the heater circuit, heating the compartment. When the temperature of the compartment rises due to heating and Vs is reached, the gate is turned off and heating stops, so no further temperature rise occurs. When the temperature of the partition drops due to thermal diffusion and VX> Vs again, the gate returns to 0 N and heating resumes. This control keeps the compartment temperature at 50 degrees Celsius.
本実施例では、 この基本回路をチップの全ての区画に、 それぞれ 1回 路ずつ接続し、 その各設定値を独立に制御することにより、 各区画の温 度を独立に制御することが可能となる。 すなわち、 単一のチップ (基板) 1 1に、 核酸を増幅するための区画 1 4と、 増幅された核酸をハイプリ ダイゼーシヨ ンにより特異的に捕捉するための区画 1 5—;!〜 1 5— 8 とが、 互いに独立して温度制御が可能なヒーターを伴って形成される。 図 6は、 本実施例のシステム全体を示す図である。 6 1および 6 2— 1〜 6 2— 8は、 区画 1 4および区画 1 5— 1〜; I 5 _ 8に接続する基 本回路の制御部を示している。 コンピューター 6 3は、 システム全体を 制御し、 予めプログラムされた温度制御を行い、 インタ一フェース 6 .4 は、 コンピュータ一 6 3と全部の制御部 6 1 、 6 2— 1 〜 6 2— 8を接 ¾一 9 る。 ' In this embodiment, it is possible to control the temperature of each section independently by connecting this basic circuit to all sections of the chip, one circuit at a time, and controlling each set value independently. Become. That is, a single chip (substrate) 11 has a section 14 for amplifying nucleic acid and a section 15 for specifically capturing the amplified nucleic acid by hybridization. ~ 15-8 are formed with heaters whose temperature can be controlled independently of each other. FIG. 6 is a diagram illustrating the entire system of the present embodiment. 6 1 and 6 2-1 to 6 2-8 indicate the control units of the basic circuit connected to section 14 and section 15-1 to; I 5 _ 8. The computer 63 controls the entire system and performs pre-programmed temperature control. The interface 6.4 controls the computer 63 and all the control units 61, 62-1 to 62-8. Contact 9 '
コンピュータ一 6 3には、 各区画の時刻ごとの設定温度或いは、 それ に対応する設定電圧値が、 予めプログラムされている。 コンピューター 6 3は、 そのプログラムに則り、 インターフェース 6 4を介し、 各基本 回路の制御部 6 1 、 6 2— 1 〜 6 2— 8へ、 設定された温度或いはそれ に対応する電圧値を、 その時刻ごとの設定値 V s として入力する。 この 結果、 各区画はプログラムされた温度シーケンスを忠実に実現すること ができる。 以上が本発明のチップにおける、 区画の構造、 並びにその区 画に接続する回路およびシステムの概要である。
つぎに、 チップの構造について説明する。 図 1'において、 核酸増幅用 区画 1 4には、 その表面に、 サンプル中の発現遺伝子 (標的核酸例えば mRNA) を捕捉するポリ Tプローブが、 配列末端 5 ' 側を区画表面側 に向けて固定されている。 ポリ Tプローブは、 配列番号 1で示される配 列を有するオリゴヌクレオチドプローブであり、 発現遺伝子が末端に有 するポリ A領域に、 特異的にハイブリザィズする機能を有する。 ここで は、 配列長として 2 Ome rのものを採用した。 しかし、 ポリ Tプロ一 ブとしては、 長さとして 8〜2 0 Ome rの範囲のポリ Tオリゴヌクレ ォチドを利用できる。 8 m e rより短い物では、 ハイブリダィズ時の安 定性に欠ける。 また、 2 0 0 me rより長い物の場合、 機能としては充 分であるが、 製造のコストがかかる短所がある。 また、 ポリ Tオリゴの 5 '末端側に、 T以外も並ぶ領域を任意に付加する場合もある。 これは、 固相表面からの距離を大きくする効果があり、 ハイブリダィゼーシヨ ン の効率が高まる。 In the computer 163, a set temperature for each time of each section or a set voltage value corresponding thereto is programmed in advance. In accordance with the program, the computer 63 sends the set temperature or the corresponding voltage value to the control units 61, 62-1 to 62-8 of the respective basic circuits via the interface 64. Enter as the set value Vs for each time. As a result, each section can faithfully implement the programmed temperature sequence. The above is the outline of the structure of the partition and the circuit and system connected to the partition in the chip of the present invention. Next, the structure of the chip will be described. In Figure 1 ', on the surface of the nucleic acid amplification compartment 14, a poly-T probe that captures the expressed gene (target nucleic acid, eg, mRNA) in the sample is immobilized with its sequence end 5' facing the compartment surface. Have been. The poly T probe is an oligonucleotide probe having the sequence represented by SEQ ID NO: 1, and has a function of specifically hybridizing to the poly A region at the end of the expressed gene. Here, a sequence length of 2 Omer was adopted. However, as the poly T probe, a poly T oligonucleotide having a length in the range of 8 to 20 Omer can be used. Items shorter than 8 mer lack stability during hybridization. Further, in the case of an object longer than 200 mer, the function is sufficient, but there is a disadvantage that the manufacturing cost is high. In some cases, a region other than T is optionally added to the 5 'end of the poly T oligo. This has the effect of increasing the distance from the solid phase surface, increasing the efficiency of the hybridization.
5, — TTTTTTTTTTTTTTTTTTTT— 3, (配列番号 1 ) 核酸検出用区画 1 5— 1〜 1 5— 8は、 その表面に、 目的の遺伝子に 対応する増幅物に、 特異的に結合することが可能なオリゴヌクレオチド プローブが固定されている。' このプローブは、 目的の遺伝子ごとに、 最 適な配列のものが選択される。 本実施例では、 GAPDHと P 5 3の 2 種類の mRNAについて、 その発現量を測定することを試みた。 GAP DH及び P 5 3の mRNAを検出するプローブの配列は、 それぞれ配列 番号 2及び配列番号 3である。 5, — TTTTTTTTTTTTTTTTTTTT-3, (SEQ ID NO: 1) Nucleic acid detection compartments 15—1 to 15—8 can specifically bind to the amplified product corresponding to the target gene on its surface Oligonucleotide probe is immobilized. 'For this probe, the probe with the optimal sequence is selected for each gene of interest. In this example, an attempt was made to measure the expression levels of two types of mRNA, GAPDH and P53. The sequences of the probes for detecting GAP DH and P53 mRNA are SEQ ID NO: 2 and SEQ ID NO: 3, respectively.
5 ' -GC GTCAAAGGTGGAGGAGTGGGTGT- 3 ' 5 '-GC GTCAAAGGTGGAGGAGTGGGTGT- 3'
(配列番号 2) (SEQ ID NO: 2)
5 ' -C GCTGTGC CGAAAAGTCTGC CTGTC- 3 ' 5 '-C GCTGTGC CGAAAAGTCTGC CTGTC- 3'
(配列番号 3 )
^ これらの.配列は、 それぞれ、 区画 1 5— 1及び区画 1 5— 5に固定さ れているとする。 固定化の方法は、 アミノシラン化処理を行ったチップ 表面に対し.、 リンカ一として、 1, 4- Phenylene Di isothiocyanate を用 レ 3 ' 末端をァミノ修飾した上記オリゴプローブを固定する方法が、 もっとも簡便である。 ここで、 特に、 3 ' 側をチップ表面に固定するこ とが重要である。 これにより、 このプロ一ブにおいて、 ポリメラーゼに よる伸張反応が発生しない。 同様の目的には、 5 ' 末端側を固定側とす る場合において、 プローブの 3 ' 側末端塩基を、 伸張反応が発生しない ように化学処理することも有効である。 (SEQ ID NO: 3) ^ Assume that these .arrays are fixed to block 15-1 and block 15-5, respectively. The most convenient method for immobilization is to use 1,4-Phenylene Diisothiocyanate as a linker and immobilize the above oligo probe whose 3 'end is amino-modified to the surface of the aminosilane-treated chip. It is. Here, it is particularly important to fix the 3 'side to the chip surface. As a result, no extension reaction by the polymerase occurs in this probe. For the same purpose, it is also effective to chemically treat the 3 ′ terminal base of the probe so that the extension reaction does not occur when the 5 ′ terminal side is used as the fixed side.
これらの核酸検出用区画に、 目的とする遺伝子に対応した増幅物がハ イブリダィズするため、 その量を検出することにより、 目的遺伝子の量 が決定できる。 その詳細は、 後述する。 Since the amplified product corresponding to the target gene hybridizes in these nucleic acid detection compartments, the amount of the target gene can be determined by detecting the amount. The details will be described later.
本発明で用いる核酸増幅 ' 検出セルは、 図 7に示すように、 既述した 核酸増幅用区画 14及び核酸検出用区画 1 5— 1 ~ 1 5— 8を有するチ ップ 1 1と、 そのチップ 1 1の面上に、 チップ面と対向するように配置 された透明なシート (上部板) 7 2とを有し、 このチップ 1 1と上部板 7 2とにより挟まれる空間 1 2にサンプル (試料, 試薬などの溶液) 7 2を保有する。 ここでは、 チップ 1 1と、 上部板 7 2とを合わせたもの を 「セル」 と称する。 As shown in FIG. 7, the nucleic acid amplification detection cell used in the present invention comprises a chip 11 having the nucleic acid amplification compartment 14 and the nucleic acid detection compartments 15-1 to 15-8 described above, A transparent sheet (upper plate) 72 arranged on the surface of the chip 11 so as to face the chip surface, and the sample is placed in the space 12 sandwiched between the chip 11 and the upper plate 72 (Solution of sample, reagent, etc.) 72 Here, a combination of the chip 11 and the upper plate 72 is referred to as a “cell”.
図 1では、 上部板 7 2を外した状態でチップ 1 1を見ているものであ り、 図 7は、 図 1において、 区画 1 5— 1と 1 5— 5を通る断面図であ る。 In FIG. 1, the chip 11 is viewed with the upper plate 72 removed, and FIG. 7 is a cross-sectional view of FIG. 1 passing through the sections 15-1 and 15-5. .
チップ (基板) 1 1及び上部板 72との間の層状の空間が、 サンプル を収容する反応層 1 2となり、 基板 1 7をリソグラフィにより加工する ことにより形成される。 なお、 チップ 1 1と上部 7 2とをシートにより 形成し、 その間にスぺーサを介在することで反応層 1 2を形成すること
も可能である。' The layered space between the chip (substrate) 11 and the upper plate 72 becomes the reaction layer 12 for accommodating the sample, and is formed by processing the substrate 17 by lithography. In addition, the chip 11 and the upper part 72 are formed by a sheet, and a spacer is interposed therebetween to form the reaction layer 12. Is also possible. '
上部板 7 2は、 厚さは、 0.01m m〜 1 m mが最適である。 材質は、 ガ ラス、 各種のプラスチックなどが利用できるが、 その内部に蛍光物質を なるべく含まないことが重要である。 また、 厚さ 1 m mを越える材料を 用いることも可能であるが、 上部板が熱伝達物質として働いてしまうた め、 本発明の目的である、 チップ内の温度独立性を保つことが、 難しく なる。 一方、 0.01m m以下では、 強度に問題がある。 サンプルの層 7 3 は、 0.05m m〜 1 m mが好適である。 1 m mを越えると、 チップ内のサ ンプル溶液において、 熱による対流が発生するため、 熱の独立性が劣化 する。 The thickness of the upper plate 72 is optimally 0.01 mm to 1 mm. Glass, various plastics, etc. can be used for the material, but it is important that the inside does not contain fluorescent substances as much as possible. Although it is possible to use a material with a thickness exceeding 1 mm, it is difficult to maintain the temperature independence in the chip, which is the object of the present invention, because the upper plate acts as a heat transfer material. Become. On the other hand, if it is less than 0.01 mm, there is a problem in strength. The layer 73 of the sample is preferably between 0.05 mm and 1 mm. If it exceeds 1 mm, heat convection occurs in the sample solution in the chip, so that the heat independence deteriorates.
核酸増幅用区画 1 4と核酸検出用区画 1 5— 1〜 1 5— 8 との間及び 核酸検出用区画間は、 熱の独立性を保っための薄膜状の構造が重要であ る。 これは、 シリコン酸化膜を用いることが工業的に有効であるが、 そ のほか、 プラスチックやポリイミ ドフィルムに代表される様な、 他の有 機材料フィルムを用いることも可能である。 また、 このチップは、 平面 的なため、 上下方法への熱拡散効率が高い。 そのため、 検知温度が高い 場合は、 単にヒーターを off 条件とすることにより、 冷却機能を設けず に、 所定の温度まで下げることが可能である。 Between the nucleic acid amplification compartment 14 and the nucleic acid detection compartments 15-1-1 to 15-8 and between the nucleic acid detection compartments, it is important to have a thin-film structure to maintain heat independence. It is industrially effective to use a silicon oxide film, but it is also possible to use other organic material films, such as plastic and polyimide films. Also, since this chip is planar, it has high heat diffusion efficiency in the up and down method. Therefore, when the detected temperature is high, it is possible to lower the temperature to a predetermined temperature without providing a cooling function by simply turning off the heater.
チップ表面上の核酸検出用区 1 5— 1〜 1 5— 8で捕捉した蛍光標識 付き核酸増幅産物の量は、 蛍光量として検出される (蛍光標識付き増幅 産物の生成については後述する)。 図 8にその検出系を、 セルに付加した 状態を示す。 The amount of the nucleic acid amplification product with a fluorescence label captured in the nucleic acid detection sections 15-1 to 15-8 on the chip surface is detected as the amount of fluorescence (the generation of the amplification product with a fluorescence label will be described later). Figure 8 shows a state in which the detection system is added to the cell.
本実施例では、 蛍光検出系は、 共焦点顕微鏡と同様な構成で行う。 他 の検出方法に関しては、 後述の実施例で説明する。 In this embodiment, the fluorescence detection system has the same configuration as the confocal microscope. Other detection methods will be described later in embodiments.
蛍光検出系は、 レンズ 8 1 を用いるより、 光検出器 8 2 と、 励起レー ザ一 8 3は、 セル表面に対して共焦点関係 8 4にあり、 レーザー 8 3で
励起された反応層 1 2中の各検出用区画における蛍光標識 (蛍光量) が 光検出器 8' 2により測定される。 In the fluorescence detection system, rather than using the lens 81, the photodetector 82 and the excitation laser 83 are in a confocal relationship with the cell surface 84 and the laser 83 The fluorescent label (fluorescence amount) in each detection compartment in the excited reaction layer 12 is measured by the photodetector 8'2.
検出器 8 2、 レーザー 8 3、 レンズ 8 1はユニッ トとして一体に組み 立てられており、 それ全体で水平方向 (図中矢印で表示) に移動して、 セル表面のスキャニングを行う。 The detector 82, laser 83, and lens 81 are assembled as a single unit, and they move in the horizontal direction (indicated by the arrow in the figure) as a whole to scan the cell surface.
次に、 本実施例のチップを用いた核酸増幅の前処理、 核酸増幅および 、検出の操作手順と、 チップ上 ( ル内) で生成される生成物の変遷につ いて、 図 9〜図 1 7を用いて説明する。 Next, the pretreatment of nucleic acid amplification using the chip of this example, the procedure of nucleic acid amplification and detection, and the transition of the product formed on the chip (within the tube) are described in FIGS. This will be described using FIG.
サンプルは、 一例として体細胞より抽出した全 RNAである。 また、 今回の標的核酸 (ターゲッ ト) は、 G A P D Hと P 5 3の 2種類の mR NAである。 The sample is, for example, total RNA extracted from somatic cells. In addition, the target nucleic acids (targets) are two types of mRNA, GAPDH and P53.
図 9は、 本実施例の操作手順をまとめたものである。 図 1 0は、 それ ぞれの手順における、 核酸増幅用区画、 核酸検出用区画 1 5— 1の温度 制御条件をまとめたものである。 FIG. 9 summarizes the operation procedure of the present embodiment. FIG. 10 summarizes the temperature control conditions of the nucleic acid amplification section and the nucleic acid detection section 15-1 in each procedure.
図 1 1は、 チップ 1 1の表面を模式的に説明する鳥瞰図である。 図 1 1に示すように、 チップ表面の初期状態では、 核酸増幅用区画 1 4の表 面にポリ Tプローブ 1 1 1 (配列番号 1) が、 GAP DH用核酸検出用 区画 1 5— 1には GAPDH用プローブ 1 1 2 (配列番号 2 ) が固定さ れている。 FIG. 11 is a bird's-eye view schematically illustrating the surface of the chip 11. As shown in Fig. 11, in the initial state of the chip surface, the poly-T probe 11 (SEQ ID NO: 1) is placed on the surface of the nucleic acid amplification section 14 and the nucleic acid detection section 15-1 for GAPDH is The probe 112 for GAPDH (SEQ ID NO: 2) is immobilized.
全 RN Aを含むサンプル溶液をチップ 1 1の反応層 1 2内に注入し、 その後、 図 1 0に示す温度条件 ( 1 ) に設定する。 この温度条件は、 増 幅用区画 1 4がハイブリダィズに適した 3 5 °C, 核酸増幅用区画 1 5 - 1〜 1 5 _ 8は、 それよりもはるかに高温の 7 5 °Cである。 その結果、 サンプル中の mR N Aは、 核酸増幅用区画 1 4のポリ Tプローブ 1 1 1 とハイプリダイズして固定される。 A sample solution containing all RNA is injected into the reaction layer 12 of the chip 11, and then set to the temperature condition (1) shown in FIG. The temperature conditions are 35 ° C. where the amplification section 14 is suitable for hybridization, and 75 ° C., which is much higher than that of the nucleic acid amplification section 15 -1 to 15 -8. As a result, mRNA in the sample is fixed by hybridizing with the poly T probe 111 of the nucleic acid amplification section 14.
図 1 2は、 m R N Aが、 核酸増幅用区画 1 4にポリ Tプローブ 1 1 1
によって捕捉された様子を模式的に示す鳥瞰図である。 ここでは、 全て の mRNAが、 種類を問わずに捕捉される。 例えば、 GAPDHの mR NA 1 2 1、 p 5 3の mRNA 1 2 2及びそれ以外の mR N A 1 2 3が 捕捉される。 一方、 核酸検出用区画 1 5— 1は、 高温条件のため、 ハイ ブリダィズは生じない。 Fig. 12 shows that mRNA is transferred to the nucleic acid amplification compartment 14 by poly T probe 1 1 1 FIG. 4 is a bird's-eye view schematically showing a state captured by the camera. Here, all mRNAs are captured, regardless of type. For example, mRNA 122 of GAPDH, mRNA 122 of p53 and other mRNA 123 are captured. On the other hand, hybridization does not occur in the nucleic acid detection compartment 155-1 because of the high temperature condition.
次に、 不要物を洗浄し、 逆転写用試薬 (RT試薬) を導入して、 図 1 0に示す温度条件 (2) とすると、 核酸増幅用区画において、 逆転写が 生じる。 このときは、 増幅用区画 1 4の温度は、 逆転写に適した温度 4 2 °Cに設定される。 核酸検出用区画 1 5— 1は、 引き続き 7 5 °Cの高温 条件に維持される。 Next, unnecessary substances are washed, and a reverse transcription reagent (RT reagent) is introduced, and under the temperature condition (2) shown in FIG. 10, reverse transcription occurs in the nucleic acid amplification compartment. At this time, the temperature of the amplification section 14 is set to 42 ° C. suitable for reverse transcription. The nucleic acid detection compartment 15-1 is maintained at a high temperature of 75 ° C.
図 Ί 3は、 逆転写により、 ポリ Tプローブ 1 1 1が伸張された様子を 示す図である。 ここで、 伸張したプローブは、 mRNAの存在量を忠実 に再現していることが肝要である。 つまり、 ここでは、 GAPDHの m RNAによる伸張物 1 3 1 と、 P 5 3の mRNAによる伸張物 1 3 2、 及びそれ以外の mRNAによる伸張物 1 3 3が存在する。 FIG. 3 is a diagram showing a state in which the poly-T probe 111 has been extended by reverse transcription. Here, it is important that the extended probe faithfully reproduces the mRNA abundance. In other words, here, there are an extension 13 1 of GAPDH mRNA, an extension 13 of P53 mRNA, and an extension 13 of other mRNA.
つぎに、 図 1 0の温度条件 (3) とし、 チップ内を洗浄すると、 mR NAは全て排出され、 核酸増幅用区画 1 4内には、 図 14の通り、 伸張 したプローブ (逆転写産物) 1 3 1〜 1 3 3の 1本鎖のみとなる。 Next, when the temperature condition (3) in Fig. 10 was applied and the inside of the chip was washed, all mRNA was discharged, and the expanded probe (reverse transcription product) was placed in the nucleic acid amplification compartment 14 as shown in Fig. 14. There is only a single strand of 13 1 to 13 3.
以上の過程が標的核酸を増幅するためのリバースプローブを形成する 前処理であり、 この前処理では、 既述のように核酸検出用区画に固定さ れた標的核酸検出用のプローブが前処理中に八イブリダイゼーシヨ ン動 作を起こさない温度 (例えば 7 5°Cの高温条件) に制御される。 The above process is the pretreatment for forming a reverse probe for amplifying the target nucleic acid. In this pretreatment, the probe for target nucleic acid detection fixed in the nucleic acid detection compartment is under pretreatment as described above. The temperature is controlled to a temperature that does not cause the operation of the hybrid (for example, a high temperature condition of 75 ° C).
次に、 反応層 1 2に核酸増幅試薬を導入し、 温度条件を図 1 0の (4) の温度に設定する。 このときの温度条件は、 増幅用区画 1 4が 6 0で、 検出用区画 1 5— 1が 6 5度である。 Next, a nucleic acid amplification reagent is introduced into the reaction layer 12, and the temperature condition is set to the temperature of (4) in FIG. The temperature condition at this time is 60 for amplification section 14 and 65 degrees for detection section 15-1.
この温度条件の下では、 図 1 5に示す動作がなされる。 すなわち、 核
酸増幅試薬中には、 5 ' 末端に蛍光標識を有する G A P D H用のプライ マー 1 5 1と p 5 3のプライマー 1 5 2とがあるため、 これらのプライ ' マーが伸張した増幅用プローブの 1本鎖の所定の配列にハイプリダイズ することができる。 ここでは、 GAPDH用のプライマー 1 5 1は、 G AP DHの mRN Aによる伸張物 1 3 1にハイブリダィズし、 P 5 3用 のプライマー 1 5 2は、 P 5 3の mRNAによる伸張物 1 3 2にハイブ リダイズする。 Under this temperature condition, the operation shown in FIG. 15 is performed. That is, nuclear Among the acid amplification reagents, there are a primer for GAPDH with a fluorescent label at the 5 'end and a primer for p53. It can hybridize to a predetermined sequence of the main strand. Here, GAPDH primer 15 1 hybridizes to GAPDH mRNA extension 131, and P53 primer 15 2 generates P53 mRNA extension 13 2 Hybridize to
ここで、 温度条件 ( 5) として、 増幅区画 14ではサーマルサイクル とすると、 増幅区画において、 G A P DHと P 5 3のそれぞれの伸張物 から、 リニア増幅により蛍光標識付き増幅物 1 6 1、 1 6 2が生成され る。 Here, assuming that the temperature condition (5) is a thermal cycle in the amplification section 14, in the amplification section, amplification products with fluorescent labels are obtained by linear amplification from the GAPDH and P53 extension products. 2 is generated.
図 1 6は、 それぞれの蛍光標識付き増幅物 1 6 1、 1 6 2が合成され た様子を示して ·いる。 一方、 核酸検出用区画 1 5— 1及び 1 5— 5は、 それぞれのプローブがハイプリダイズするために最適な温度条件に設定 されている。 そのため、 リニア増幅された増幅物が各プローブに特異的 にハイプリダイズする .(図 1 7)。 この量を、 増幅と並行して、 リアル夕 ィムで検出すると、 増幅サイクル N回に対し、 本来の mRNA量の 2 N 倍の信号が検出できる。 FIG. 16 shows a state in which the respective fluorescent-labeled amplification products 161 and 162 were synthesized. On the other hand, the nucleic acid detection compartments 15-1 and 15-5 are set to optimal temperature conditions for the respective probes to hybridize. Therefore, the linearly amplified product specifically hybridizes to each probe (Fig. 17). If this amount is detected in real time in parallel with amplification, a signal of 2 N times the original mRNA amount can be detected for N amplification cycles.
本実施例では、 説明を簡単にするため、 2種類の mRN Aの検出につ いて説明したが、 本発明ではそれ以上の複数種類.の mRNAを、 核酸検 出用区画の数だけ同時に測定することが可能である。 In this example, the detection of two types of mRNA was described for the sake of simplicity, but in the present invention, more than two types of mRNA are simultaneously measured by the number of the nucleic acid detection compartments. It is possible.
以上より、 本実施例によれば、 1つのチップ内において、 増幅と検出 を並行して行うことが可能であり、 1サン.プル中の複数種類の mRN A 発現量を、 同時に、 迅速で簡便に測定することが可能である。 As described above, according to the present example, amplification and detection can be performed in parallel in one chip, and the expression levels of multiple types of mRNA in one sample can be simultaneously, rapidly and easily determined. It is possible to measure.
(第 2の実施例) (Second embodiment)
第 2の実施例として、 第 1の実施例の検出性能をさらに向上させた核
酸増幅'検出用セルについて、 図 1 8及び図 1 9を用いて説明する。 図 1 8は、 チップ 1 1 とこれと対向する上部板 1 8 2 との間に反応層 (サンプル層) 7 3を介在させた模式図 (断面図) である。 チップ 1 1 には、 第 1 の実施例と同様に核酸増幅用区画と核酸検出用区画とを配設 しているが、 ここでは、 図の便宜上、 核酸検出用区画の一つである 1 5 — 1のみを誇張して表示している。 As a second embodiment, a nucleus with further improved detection performance of the first embodiment The cell for “acid amplification” detection will be described with reference to FIG. 18 and FIG. FIG. 18 is a schematic diagram (cross-sectional view) in which a reaction layer (sample layer) 73 is interposed between the chip 11 and the upper plate 18 2 opposed thereto. The chip 11 is provided with a nucleic acid amplification compartment and a nucleic acid detection compartment as in the first embodiment, but here, for convenience of illustration, one of the nucleic acid detection compartments 15 — Only one is exaggerated.
本実施例では、 核酸検出用のプローブ 1 8 1 (第 1実施例のプローブ 1 1 2に相当するもの) は、 核酸検出用区画のヒー夕一表面ではなく、 それと向かい面、 すなわち上部板部分 (透明シート) 1 8 2に固定され ている。 上部板 1 8 2は、 第 1実施例の上部板 7 2に相当するものであ る。 換言すれば、 核酸検出用区画で標的核酸を捕捉する検出用プローブ 1 8 1は、 温度制御可能な区画 1 5 1— 1… 1 5 1— nなどのヒーター 面と対向する面に固定されている。 In this embodiment, the probe 18 1 for nucleic acid detection (corresponding to the probe 1 12 in the first embodiment) is not on the surface of the nucleic acid detection compartment but on the opposite surface, that is, the upper plate portion (Transparent sheet) Fixed to 18 2. The upper plate 18 2 corresponds to the upper plate 72 of the first embodiment. In other words, the detection probe 181, which captures the target nucleic acid in the nucleic acid detection compartment, is fixed to a surface facing the heater surface such as a temperature-controllable compartment 151-1-1 ... 151-n. I have.
すなわち、 本実施例における核酸検出用区画は、 基板 1 1 とシート 1 8 2間の対向する面に機能を分けて形成され、 基板 1 1側の対向面には 核酸検出用区画の温度サイクル制御を区画ごとに行うヒータ一機能が設 けられ、 シート 1 8 2側の対向面には、 核酸検出用プローブ 1 8 1が固 定されて核酸検出機能が与えられている。 That is, the nucleic acid detection compartment in the present embodiment is formed with functions separated on the opposing surface between the substrate 11 and the sheet 18 2, and the temperature cycle control of the nucleic acid detection compartment is provided on the opposing surface on the substrate 11 A heater is provided for each section, and a nucleic acid detection function is provided by fixing a nucleic acid detection probe 181 to the opposite surface of the sheet 18 2 side.
本実施例のセルにおいて、 反応層 7 3の厚さが 1 . O m m以下の条件 では、 区画 ( 1 5 1— 1… 1 5 1— n ) の温度とそれに封向する上部板 1 8 2表面の温度は、 ほぼ等しい。 In the cell of the present embodiment, under the condition that the thickness of the reaction layer 73 is less than or equal to 1.0 mm, the temperature of the section (15 1—1... Surface temperatures are about equal.
そのため、 本実施例の構造においても、 プローブ固定領域の温度を、 それぞれのハイプリダイゼーシヨン条件に制御することが可能である。 そのため、 プローブ 1 8 1にハイプリダイズした測定対象物は、 上部板 表面に固定される。 Therefore, even in the structure of this embodiment, it is possible to control the temperature of the probe fixing region under each hybridization condition. Therefore, the measurement object hybridized to the probe 18 1 is fixed to the surface of the upper plate.
核酸増幅と並行に検出用プローブ 1 8 1に増幅産物 (増幅用プローブ
から乖離した蛍光標識付き増幅産物) が捕捉されている過程において、 図 1 9に示すように、 上部板 1 8 2には、 上部板 1 8 2の側方に配置し たレーザー光源 1 9 1から横方向に励起レーザー 1 9 2が入射される。 図 1 9は、 上部板 1 8 2へ励起レーザ一 1 9 2を入射させた場合を模式 的に表している。 Amplification products (probes for amplification) As shown in Fig. 19, the upper plate 182 has a laser light source 191, which is located on the side of the upper plate 182. The excitation laser 192 is incident laterally from. FIG. 19 schematically shows a case where the excitation laser 1992 is incident on the upper plate 182.
この励起レーザーは、 上部板 1 8 2内を全反射しながら進行し、 上部 板 1 8 2の外部には射出されない角度に制御してある。 すると、 上部板 1 8 2の近傍にだけ、 エバネッセント光として、 励起レ一ザ一 1 9 2の 漏れだしが発生する。 その結果、 上部板表面に存在する蛍光標識付き増 幅産物 1 9 3だけが励起され、 サンプル層中程に浮遊する蛍光標識付き 増幅産物 1 94は、 励起されない。 したがって、 本実施例によれば、 第 1の実施例の効果に加えて、 反応溶液中に存在するプライマ一は蛍光発 光に寄与しないため、 蛍光検出のバックグラウンドが著しく減少し、 測 定 S/Nが向上する。 The excitation laser travels while totally reflecting inside the upper plate 182, and is controlled to an angle that is not emitted to the outside of the upper plate 182. Then, only in the vicinity of the upper plate 18 2, leakage of the excitation laser 19 2 occurs as evanescent light. As a result, only the amplification product 193 with the fluorescent label present on the upper plate surface is excited, and the amplified product 194 with the fluorescent label floating in the middle of the sample layer is not excited. Therefore, according to this embodiment, in addition to the effect of the first embodiment, the primer present in the reaction solution does not contribute to the emission of fluorescence, so that the background of fluorescence detection is significantly reduced, and the measurement S / N is improved.
(第 3の実施例) (Third embodiment)
次に本発明の第 3実施例について、図 2 0〜図 23を用いて説明する。 本実施例と第 1実施例との相違点は、 核酸増幅用区画 1 4に固定される オリゴヌ.クレオチドプローブの配列構造である。 核酸検出用区画につい ては変わらない。 Next, a third embodiment of the present invention will be described with reference to FIGS. The difference between this example and the first example is the sequence structure of the oligonucleotide probe immobilized on the nucleic acid amplification section 14. The nucleic acid detection compartment does not change.
本実施例では、 核酸増幅用区画に固定するプローブとして、 第 1実施 例のような前処理を施すことなく、 目的の mRNAを相補的かつ特異的 にとらえるリバースプライマーを用いる例を示す。先と実施例と同様 、 標的核酸としては、 GAPDHと P 5 3の 2種類の mR N Aを例として 説明する。 これらの 2種類の mRNAに、 それぞれ特異的なプライマー として、 配列 4〜配列 7を用意する。 In this example, an example is shown in which a reverse primer that captures the target mRNA in a complementary and specific manner without performing pretreatment as in the first example is used as a probe to be fixed to the nucleic acid amplification compartment. As in the previous and examples, two types of target RNAs, GAPDH and P53, are described as examples. Sequences 4 to 7 are prepared as primers specific to these two types of mRNA.
GTCT C CTCTGACTTCAACAGC (配列番号 4)
丄 GTCT C CTCTGACTTCAACAGC (SEQ ID NO: 4) 丄
AAAGTGGTC GTTGAGGGCA (配列番号 5 )AAAGTGGTC GTTGAGGGCA (SEQ ID NO: 5)
C C GTATGCTGAGTATCTGGAC (配列番号 6 )C C GTATGCTGAGTATCTGGAC (SEQ ID NO: 6)
GAC CTCAGGTGGCTCATAC (配列番号 7 ) ここで、 配列 4と配列 5は、 G A P D Hに対するフォワード及びリバ ースであり、 配列 6と配列 7は、 P 5 3に対するフォワード及びリパー スである。リバースプライマーは、核酸増幅用区画の表面に符号 2 0 1, 2 0 2に示すように固定されている。 一方、 フォワードプライマ一は、 5 ' 末端部に蛍光標識を有する。 これらを用いて、 核酸増幅を行う。 核 酸増幅用区画における反応を、 以下に説明する。 GAC CTCAGGTGGCTCATAC (SEQ ID NO: 7) Here, Sequence 4 and Sequence 5 are forward and reverse for GAPDH, and Sequence 6 and Sequence 7 are forward and reverse for P53. The reverse primer is fixed to the surface of the nucleic acid amplification section as indicated by reference numerals 201 and 202. On the other hand, the forward primer has a fluorescent label at the 5 ′ end. Using these, nucleic acid amplification is performed. The reaction in the nucleic acid amplification compartment is described below.
図 2 0は、 チップ内部の鳥瞰図である。 チップ 1 1の反応層にサンプ ルとして、 全 RNAを注入すると、 そのうち、 固定されているリバース プライマー 2 0 1及びプライマ一 2 0 2に特異的な物、 即ち GAPDH 及び P 5 3のみ、対応するリバースプライマーにハイプリダイズする(図 2 1 )。 伸張反応により、 リバースプライマー 2 1 1、 2 1 2は伸張し、 mRNAと相補的な配列となる。 この核酸増幅におけるサーマルサイク ルにより、.乖離した mR N Aは別のリバースプライマーに再ぴハイブリ ダイズする。 一方、 フリーのフォワードプライマーは、 伸張したリバ一 スプライマーと相補的に結合し (八イブリダィズ) し、 伸張する (図 2 2 )。 FIG. 20 is a bird's-eye view of the inside of the chip. When total RNA is injected into the reaction layer of chip 11 as a sample, only those specific to fixed reverse primer 201 and primer 102, namely GAPDH and P53, correspond Hybridize to the reverse primer (Figure 21). By the extension reaction, the reverse primers 211 and 212 are extended to have a sequence complementary to the mRNA. Due to the thermal cycle in this nucleic acid amplification, the dissociated mRNA re-hybridizes with another reverse primer. On the other hand, the free forward primer complementarily binds to the extended reverse primer (eight hybridizes) and extends (Fig. 22).
以上を繰り返すと、 固定している伸張リバースプライマーと、 伸張し たフリーなフォワードプライマー (蛍光標識付き) が、 初期の mRNA 量の 2の N乗倍で生成される (図 2 3)。伸張したフリーなフォワードプ ライマーは、 核酸検出用区画のプライマーと相補的配列であるため、 第 1及び第 2の実施例と同様に、検出区画において検出される。本方法は、 増幅率が著しく大きいため、 微量のターゲッ トも検出することが可能で ある。
なお、 本実施例は、 2種類のプライマーセッ トの温度サイクルを、 そ れぞれ最適な条件とする必要がある。 そのため、 アニーリング温度を配 列ごとに、 個別に設定する方が精度が良い。 その場合、 核酸増幅用区画 を複数個準備すれば、 チップ内で複数種類の温度サイクルを同時に実現 することが可能である。 即ち、 G A P D Hに対する核酸増幅用区画と、 P 5 3に対する核酸増幅用区画を、 それぞれ別々に設ける。 本実施例で は、それぞれのリパースプライマーが、'区画表面に固定されているため、 それぞれの増幅反応は、 対応する区画内でのみ発生させることが可能で ある。 By repeating the above procedure, the fixed extended reverse primer and the extended free forward primer (with a fluorescent label) are generated at 2 N times the initial mRNA amount (Fig. 23). Since the extended free forward primer has a sequence complementary to the primer in the nucleic acid detection compartment, it is detected in the detection compartment as in the first and second embodiments. Since the amplification rate of this method is extremely large, it is possible to detect a trace amount of target. In this example, it is necessary to set the temperature cycle of the two types of primer sets to optimal conditions. Therefore, it is better to set the annealing temperature individually for each array. In this case, if a plurality of nucleic acid amplification compartments are prepared, it is possible to simultaneously implement a plurality of types of temperature cycles in the chip. That is, a compartment for nucleic acid amplification for GAPDH and a compartment for nucleic acid amplification for P53 are separately provided. In this example, since each reparse primer is fixed on the surface of the compartment, each amplification reaction can be generated only in the corresponding compartment.
(第 4の実施例) (Fourth embodiment)
以上の各実施例では、 核酸の増幅と検出を同時に行っていた。 そのた め、 第 1 の実施例のように、 サンプル中 フリーのプライマーが存在す るため、 バックグラウンドが高くなる場合がある。 この場合、 増幅と同 時の検出は、 信号量の概算評価とし、 精密の評価に際しては、 フリー成 分を洗浄する行程を行うことが、 精度向上に有効である。 In each of the above examples, nucleic acid amplification and detection were performed simultaneously. Therefore, as in the first embodiment, the background may be high due to the presence of free primer in the sample. In this case, the detection at the same time as the amplification is an approximate evaluation of the signal amount, and in the precision evaluation, it is effective to perform the process of washing the free component to improve the accuracy.
(第 5実施例) (Fifth embodiment)
図 2 4は、 核酸増幅用区画として、 2 4 1 — 1及び 2 4 1 — 2の 2個 が 1反応層内に設けられている実施例である。 その他の構成は、 第 1実 施例〜第 4実施例のいずれかの構成が採用される。 2 4 2— :!〜 2 4 2 一 nは核酸検出用区画である。 FIG. 24 shows an embodiment in which two compartments for nucleic acid amplification, 2241-1 and 241-2, are provided in one reaction layer. As for other configurations, any one of the first to fourth embodiments is employed. 2 4 2— :! 2242 1 n is a nucleic acid detection compartment.
核酸増幅の温度サイクルは、 仕様する核酸増幅用のプライマーの配列 により、最適条件が異なる。第一の実施例では、 図 1 0に示したとおり、 温度サイクルとして (95°C : 5秒— 55 : 15秒,— 72で : 15秒) を利用 した。 しかし、 プライマーの GC率が大きい場合は、 偽ハイブリダィズ による偽物合成があるため、 プライマーの八イブリ温度を よりも、 5度高い 60 とすることが有効な場合もある。 また、 生成物の塩基長が
長い場合は、 伸張合成時間である 15秒を、 さらに長くする必要もある。 本発明の目的である核酸解析の精度向上のためには、 これらの温度サイ クルを、 ターゲッ トとする核酸ごとに最適化することが有効である。 そ の実現には、 反応層内に核酸増幅用区雨を複数設け、 異なる温度サイク ルで制御する必要があり、 図 2 4の構成が有効である。 Optimum conditions for the nucleic acid amplification temperature cycle differ depending on the sequence of the specified nucleic acid amplification primers. In the first embodiment, as shown in FIG. 10, a temperature cycle (95 ° C .: 5 seconds—55: 15 seconds, at −72: 15 seconds) was used. However, when the GC rate of the primer is large, it may be effective to raise the primer's eight-fold temperature to 60, which is 5 degrees higher than that of the primer, because there is a fake synthesis due to pseudo-hybridization. Also, the base length of the product is If it is long, it is necessary to make the extension synthesis time 15 seconds longer. In order to improve the accuracy of nucleic acid analysis, which is an object of the present invention, it is effective to optimize these temperature cycles for each target nucleic acid. To achieve this, it is necessary to provide a plurality of nucleic acid amplification zones in the reaction layer and control them at different temperature cycles. The configuration shown in Fig. 24 is effective.
上記各実施例によれば、 単一サンプル内の複数種類の夕ーゲッ トに対 し、 その増幅と個々の検出を同時に行う ことにより、 簡便 ' 安価で、 高 精度の遺伝子発現解析方法を提供することができる。 産業上の利用可能性 According to the above embodiments, a simple, inexpensive, and highly accurate gene expression analysis method is provided by simultaneously performing amplification and individual detection of a plurality of types of evening targets in a single sample. be able to. Industrial applicability
本発明によれば、 例えば、 関心のある核酸 (例えば遺伝子) が 1 0〜 2 0ないし 1 0 0種類程度存在する塲合に、 それらの遺伝子を同時に増 幅し、 一括で定量検定できる。 また、 単一反応層内で行うため、 サンプ ルの小分けによる微量化の問題が生じず、 従来より高感度の検出が可能 となる。
According to the present invention, for example, when there are about 10 to 20 to 100 kinds of nucleic acids (for example, genes) of interest, those genes can be simultaneously amplified and quantitatively assayed at once. In addition, since the reaction is performed in a single reaction layer, there is no problem of miniaturization due to subdivision of samples, and detection with higher sensitivity than before can be performed.
Claims
1 . 試料, 試薬などの溶液を収容するためのスペース (以下、 「反応層」 と称する) を形成する少なくとも一面に、 核酸を増幅により生成するた めの区画 (以下、 「核酸増幅用区画」 と称する) と、 生成された増幅核酸 1. At least one surface that forms a space for accommodating solutions such as samples and reagents (hereinafter referred to as a “reaction layer”) is provided with a compartment for generating nucleic acids by amplification (hereinafter referred to as a “nucleic acid amplification compartment”). ) And the generated amplified nucleic acid
5 を乖離後に八ィブリダィゼ一シヨンにより特異的に捕捉するための区画 (以下、 「核酸検出用区画」 と称する) とを、 互いに独立した温度制御が 可能になるよう形成し、 前記核酸増幅用区画では、 核酸増幅のための温 度サイクル制御を、 前記核酸検出用区画では、 特異的な捕捉に適した設 定温度制御を行うことにより、 単一の反応層にて核酸の増幅と検出を行 10 う核酸分析方法。 And a compartment (hereinafter, referred to as a “nucleic acid detection compartment”) for specifically capturing by the hybridization after the separation of 5 from each other so that temperature control can be performed independently of each other. In this section, amplification and detection of nucleic acids are performed in a single reaction layer by controlling the temperature cycle for nucleic acid amplification, and performing the set temperature control suitable for specific capture in the nucleic acid detection section. 10 Nucleic acid analysis method.
2 . 請求項 1であって、 前記反応層で核酸の増幅と検出とを並行させ る核酸分析方法。 ' 2. The nucleic acid analysis method according to claim 1, wherein amplification and detection of the nucleic acid are performed in the reaction layer in parallel. '
3 . 請求項 1であって、 前記核酸増幅用区画は、 少なく とも 1以上形 成され、 それぞれの核酸増幅用区画に核酸増幅用のプローブを備え、 3. The method according to claim 1, wherein the nucleic acid amplification section is formed with at least one or more, and each nucleic acid amplification section is provided with a nucleic acid amplification probe.
15 前記核酸検出用区画は、 複数形成され、 各核酸検出用区画には、 種別 ごとの関心のある標的核酸をハイプリダイゼーシヨンにより捕捉可能に するための核酸検出用プローブが固定され、 15 A plurality of the nucleic acid detection compartments are formed, and in each nucleic acid detection compartment, a nucleic acid detection probe for fixing a target nucleic acid of interest for each type by hybridization is fixed,
前記各核酸検出用区画では、 ハイプリダイゼーションの熱安定性に従 い前記核酸検出用プローブの種別ごとにハイプリダイゼーション温度が In each of the nucleic acid detection compartments, a hybridization temperature is set for each type of the nucleic acid detection probe in accordance with the thermal stability of hybridization.
20 設定される核酸分析方法。 20 Nucleic acid analysis method to be set.
4 . 請求項 1であって、 前記核酸増幅用区画では、 標的核酸を増幅す るためのリバースプローブを形成する前処理が所定の設定温度制御め下 で行なわれ、 4. The method according to claim 1, wherein in the nucleic acid amplification section, a pretreatment for forming a reverse probe for amplifying a target nucleic acid is performed under a predetermined set temperature control,
前記核酸検出用区画には、 標的核酸をハイプリダイゼーションにより 25 捕捉可能にするための核酸検出用プローブ'が固定されており、 In the nucleic acid detection compartment, a nucleic acid detection probe 'for immobilizing a target nucleic acid by hybridization 25 is fixed.
- 前記前処理中に前記核酸検出用プローブがハイプリダイゼーション動
作を起こさないように前記核酸検出用区画の温度が制御される核酸分析 方法。 -During the pretreatment, the nucleic acid detection probe A nucleic acid analysis method in which the temperature of the nucleic acid detection compartment is controlled so as not to cause cropping.
5. 請求項 1であって、 前記核酸検出用区画には、 前記核酸増幅用区 画から乖離した蛍光標識付きの核酸増幅物を捕捉する核酸検出用プロ一 ブが固定され、 この検出用プローブに捕捉された蛍光標識付き増幅物を 検出する励起光としてエバネッセント光を用いる核酸分析方法。 5. The nucleic acid detection probe according to claim 1, wherein a nucleic acid detection probe for capturing a nucleic acid amplification product with a fluorescent label deviating from the nucleic acid amplification compartment is fixed to the nucleic acid detection compartment. A nucleic acid analysis method using evanescent light as excitation light for detecting an amplification product with a fluorescent label captured by the probe.
6. 試料, 試薬などの溶液を収容するためのスペース (以下、 「反応層」 と称する) を有し、 この反応層を形成する少なく とも一面に、 核酸を増 幅により生成するための区画 (以下、 「核酸増幅用区画」 と称する) と、 生成された増幅核酸を乖離後にハイプリダイゼーションにより特異的に 捕捉するための区画 (以下、 「核酸検出用区画」 と称する) と、 を互いに 独立した温度制御が可能になるよう形成した核酸分析用セル。 6. It has a space for accommodating solutions such as samples and reagents (hereinafter referred to as “reaction layer”). At least one surface of the reaction layer forms a compartment for generating nucleic acids by amplification. Hereinafter, a “compartment for nucleic acid amplification” and a compartment for specifically capturing generated nucleic acid by hybridization after separation (hereinafter, referred to as a “compartment for nucleic acid detection”) are independent of each other. A cell for nucleic acid analysis formed so as to enable controlled temperature.
7. 請求項 6であって、 前記核酸増幅用区画の表面には、 mRNAの ポリ A配列と相補的な配列をなすポリ T配列のプローブが固定されてい る核酸分析用セル。 7. The cell for nucleic acid analysis according to claim 6, wherein a probe of a poly T sequence having a sequence complementary to the poly A sequence of mRNA is fixed on the surface of the nucleic acid amplification section.
8. 請求項 6であって、 前記核酸増幅用区画の表面には、 関心のある mRNAが特異的にハイプリダイズ可能な核酸増幅用プローブが固定さ れている核酸分析用セル。 8. The nucleic acid analysis cell according to claim 6, wherein a nucleic acid amplification probe capable of specifically hybridizing an mRNA of interest is fixed on a surface of the nucleic acid amplification section.
9. 請求項 6であって、 前記反応層は、 基板とそれに対向して配置さ れた光透過性を有するシートとの間に形成され、 前記核酸増幅用区画と 前記核酸検出用区画とは少なく とも前記基板の一面の併設されている核 酸分析用セル。 9. The cell according to claim 6, wherein the reaction layer is formed between a substrate and a light-transmissive sheet disposed to face the substrate, and the nucleic acid amplification section and the nucleic acid detection section At least one cell for nuclear acid analysis provided on one side of the substrate.
1 0. 請求項 6であって、 前記反応層は、 基板とそれに対向して配置 された光透過性を有するシートとの間に形成され、 前記反応層の厚みが 0. 0 5 mm〜 1 mm及び前記シートの厚みが 0. 0 1 mm〜 l mmの 少なく とも一つの条件を満たしている核酸分析用セル。
10. The method according to claim 6, wherein the reaction layer is formed between a substrate and a light-transmitting sheet disposed opposite the substrate, and the reaction layer has a thickness of 0.05 mm to 1 mm. A cell for nucleic acid analysis which satisfies at least one condition that the thickness of the sheet and the thickness of the sheet is from 0.01 mm to 1 mm.
1 1 . 請求項 6であって、 前記反応層は、 基板とそれに対向して配置 された光透過性を有するシートとの間に形成され、 11. The method according to claim 6, wherein the reaction layer is formed between the substrate and a light-transmitting sheet disposed opposite to the substrate.
前記核酸増幅用区画は、 前記基板の一面に形成され、 The nucleic acid amplification section is formed on one surface of the substrate,
前記核酸検出用区画は、 前記基板と前記シー卜間の対向する面に機能 を分けて形成され、 前記基板側の対向面には核酸検出用区画の温度サイ クル制御を区画ごとに行うヒーター機能が設けられ、 前記シート側の対 向面には、 核酸検出用プローブが固定されて核酸検出機能が与えられて いる核酸分析用セル。 The nucleic acid detection compartment is formed with a function divided on an opposing surface between the substrate and the sheet, and a heater function for controlling the temperature cycle of the nucleic acid detection compartment for each compartment is provided on the opposing surface on the substrate side. A nucleic acid analysis cell, wherein a nucleic acid detection probe is fixed to the opposite surface on the sheet side to provide a nucleic acid detection function.
1 2 . 請求項 6であって、 前記核酸増幅用区画の両側或いは周囲に前 記核酸検出用区画が複数配設される核酸分析用セル。 12. The nucleic acid analysis cell according to claim 6, wherein a plurality of the nucleic acid detection compartments are arranged on both sides or around the nucleic acid amplification compartment.
1 3 . 請求項 6であって、 前記核酸検出用区画のすべてが、 前記核酸 増幅用区画と等しい距離で配置されている核酸分析用セル。 13. The nucleic acid analysis cell according to claim 6, wherein all of the nucleic acid detection compartments are arranged at an equal distance from the nucleic acid amplification compartment.
1 . 試料, 試薬などの溶液を収^するためのスペース (以下、 「反応 層」 と称する) を有し、 この反応層を形成する少なく とも一面に、 核酸 を増幅により生成するための区画 (以下、 「核酸増幅用区画」 と称する) と、 生成された増幅核酸を乖離後にハイプリダイゼーシヨンにより特異 的に捕捉するための区画 (以下、 「核酸検出用区画」 と称する) と、 を互 いに独立した温度制御が可能になるよう形成してなるセルと、 1. There is a space (hereinafter referred to as “reaction layer”) for storing solutions such as samples and reagents, and at least one side of the reaction layer is formed with a compartment for generating nucleic acids by amplification. Hereinafter, a “compartment for nucleic acid amplification” and a compartment for specifically capturing the generated amplified nucleic acid by hybridization after separation (hereinafter, referred to as a “compartment for nucleic acid detection”) are interchangeable. Cells formed so that independent temperature control is possible,
前記核酸増幅用区画の核酸増幅のための温度サイクル制御を行う温度 制御手段と、 Temperature control means for performing a temperature cycle control for nucleic acid amplification of the nucleic acid amplification compartment,
前記核酸検出用区画で、 ハイプリダイゼーションによる特異的な捕捉 に適した設定温度制御を行う温度制御手段と、 In the nucleic acid detection compartment, a temperature control means for performing a set temperature control suitable for specific capture by hybridization.
を備える核酸分析装置。 A nucleic acid analyzer comprising:
1 5 . 請求項 1 4であって、 前記反応層は、 基板とそれに対向配置す る光透過性を有するシートとの間に形成され、 15. The method according to claim 14, wherein the reaction layer is formed between the substrate and a light-transmitting sheet disposed to face the substrate.
前記核酸検出用区画は、 前記基板と前記シートとの対向面に機能を分
けて形成され、 前記基板側の対向面には核酸検出用区画の温度サイクル 制御を区画ごとに行うヒーター機能が設けられ、 前記シート側の対向面 には、 核酸検出用プローブが固定されて核酸検出機能が与えられ、 The nucleic acid detection compartment has a function on the opposite surface of the substrate and the sheet. A heater function for controlling the temperature cycle of the nucleic acid detection section for each section is provided on the opposed surface on the substrate side, and a nucleic acid detection probe is fixed on the opposed surface on the sheet side. Provided with a detection function,
前記核酸検出用プローブには、 蛍光標識付きの核酸増幅産物が捕捉 されるようにし、 その蛍光量の検出手段として、 前記シートの内面にし み出すように設定したエバネッセント光を'用いる核酸分析装置。 A nucleic acid analyzer using an evanescent light set so that a nucleic acid amplification product with a fluorescent label is captured by the nucleic acid detection probe, and a means for detecting the amount of fluorescence is set to leak out to the inner surface of the sheet.
1 6 . 請求項 1 4であって、前記セルは、核酸増幅用区画を複数有し、 それぞれの核酸増幅用区画で異なる温度サイクル制御を行う核酸分析装 置。
16. The nucleic acid analyzer according to claim 14, wherein the cell has a plurality of nucleic acid amplification sections, and performs different temperature cycle control in each of the nucleic acid amplification sections.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005511265A JP4426528B2 (en) | 2003-12-03 | 2003-12-03 | Nucleic acid analysis method, nucleic acid analysis cell, and nucleic acid analyzer |
PCT/JP2003/015490 WO2005054458A1 (en) | 2003-12-03 | 2003-12-03 | Method for analyzing nucleic acid, cell for analyzing nucleic acid, and analyzer for nucleic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/015490 WO2005054458A1 (en) | 2003-12-03 | 2003-12-03 | Method for analyzing nucleic acid, cell for analyzing nucleic acid, and analyzer for nucleic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005054458A1 true WO2005054458A1 (en) | 2005-06-16 |
Family
ID=34640431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/015490 WO2005054458A1 (en) | 2003-12-03 | 2003-12-03 | Method for analyzing nucleic acid, cell for analyzing nucleic acid, and analyzer for nucleic acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4426528B2 (en) |
WO (1) | WO2005054458A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009254259A (en) * | 2008-04-15 | 2009-11-05 | Sony Corp | Reaction treatment device |
JP2011237454A (en) * | 2006-03-21 | 2011-11-24 | Koninklijke Philips Electronics Nv | Microelectronic device with heating array |
WO2013021958A1 (en) * | 2011-08-05 | 2013-02-14 | 株式会社 東芝 | Multiple nucleic acid amplification reaction instrument |
WO2013035867A1 (en) * | 2011-09-08 | 2013-03-14 | 株式会社 東芝 | Multi-nucleic acid reaction tool, and detection method using same |
JP2016086689A (en) * | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | Nucleic acid amplification reaction apparatus and nucleic acid detection method |
EP2553473A4 (en) * | 2010-03-30 | 2016-08-10 | Advanced Liquid Logic Inc | Droplet operations platform |
US9475051B2 (en) | 2007-02-27 | 2016-10-25 | Sony Corporation | Nucleic acid amplifier |
JP2017042112A (en) * | 2015-08-27 | 2017-03-02 | 株式会社理研ジェネシス | Nucleic acid amplification substrate, nucleic acid amplification method using substrate, and nucleic acid detection kit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481738B2 (en) * | 1986-01-23 | 1992-12-24 | Kogyo Gijutsuin | |
WO1999041362A1 (en) * | 1998-02-10 | 1999-08-19 | Toyo Kohan Co., Ltd. | Apparatus for immobilized dna library preparation, apparatus for gene amplification, method for temperature control and method for comparing genes systematically |
WO1999063072A1 (en) * | 1998-06-04 | 1999-12-09 | Toyo Kohan Co., Ltd. | Apparatus for constructing immobilized dna library, gene amplification apparatus, apparatus for analyzing gene amplification product, gene diagnosis apparatus and method for controlling these apparatuses |
EP1092782A2 (en) * | 1999-10-15 | 2001-04-18 | Hitachi, Ltd. | Genetic screening method and genetic screening apparatus |
EP1108472A2 (en) * | 1999-12-15 | 2001-06-20 | Hitachi, Ltd. | Advanced thermal gradient DNA chip (ATGC), it's manufacture method and method for carrying out biochemical reactions |
JP2003299485A (en) * | 2002-04-10 | 2003-10-21 | Sekisui Chem Co Ltd | Temperature control-type microreactor and microreactor system |
-
2003
- 2003-12-03 WO PCT/JP2003/015490 patent/WO2005054458A1/en active Application Filing
- 2003-12-03 JP JP2005511265A patent/JP4426528B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481738B2 (en) * | 1986-01-23 | 1992-12-24 | Kogyo Gijutsuin | |
WO1999041362A1 (en) * | 1998-02-10 | 1999-08-19 | Toyo Kohan Co., Ltd. | Apparatus for immobilized dna library preparation, apparatus for gene amplification, method for temperature control and method for comparing genes systematically |
WO1999063072A1 (en) * | 1998-06-04 | 1999-12-09 | Toyo Kohan Co., Ltd. | Apparatus for constructing immobilized dna library, gene amplification apparatus, apparatus for analyzing gene amplification product, gene diagnosis apparatus and method for controlling these apparatuses |
EP1092782A2 (en) * | 1999-10-15 | 2001-04-18 | Hitachi, Ltd. | Genetic screening method and genetic screening apparatus |
EP1108472A2 (en) * | 1999-12-15 | 2001-06-20 | Hitachi, Ltd. | Advanced thermal gradient DNA chip (ATGC), it's manufacture method and method for carrying out biochemical reactions |
JP2003299485A (en) * | 2002-04-10 | 2003-10-21 | Sekisui Chem Co Ltd | Temperature control-type microreactor and microreactor system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237454A (en) * | 2006-03-21 | 2011-11-24 | Koninklijke Philips Electronics Nv | Microelectronic device with heating array |
US9475051B2 (en) | 2007-02-27 | 2016-10-25 | Sony Corporation | Nucleic acid amplifier |
JP2009254259A (en) * | 2008-04-15 | 2009-11-05 | Sony Corp | Reaction treatment device |
JP4544335B2 (en) * | 2008-04-15 | 2010-09-15 | ソニー株式会社 | Reaction processing equipment |
US9268346B2 (en) | 2008-04-15 | 2016-02-23 | Sony Corporation | Reactor with accurate temperature control |
EP2553473A4 (en) * | 2010-03-30 | 2016-08-10 | Advanced Liquid Logic Inc | Droplet operations platform |
US9910010B2 (en) | 2010-03-30 | 2018-03-06 | Advanced Liquid Logic, Inc. | Droplet operations platform |
WO2013021958A1 (en) * | 2011-08-05 | 2013-02-14 | 株式会社 東芝 | Multiple nucleic acid amplification reaction instrument |
US9359638B2 (en) | 2011-08-05 | 2016-06-07 | Toshiba Medical Systems Corporation | Multi-nucleic-acid amplification reaction tool |
WO2013035867A1 (en) * | 2011-09-08 | 2013-03-14 | 株式会社 東芝 | Multi-nucleic acid reaction tool, and detection method using same |
JP2016086689A (en) * | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | Nucleic acid amplification reaction apparatus and nucleic acid detection method |
JP2017042112A (en) * | 2015-08-27 | 2017-03-02 | 株式会社理研ジェネシス | Nucleic acid amplification substrate, nucleic acid amplification method using substrate, and nucleic acid detection kit |
Also Published As
Publication number | Publication date |
---|---|
JP4426528B2 (en) | 2010-03-03 |
JPWO2005054458A1 (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200299751A1 (en) | Thermo-Controllable High-Density Chips for Multiplex Analyses | |
US7235389B2 (en) | Molecular detection device and chip including MOSFET | |
CN101466848B (en) | The microelectronic sensor device detected for DNA | |
CN101981445B (en) | Method for electrically detecting physiologically active materials and biochip for the same | |
US6756223B2 (en) | Electro-chemical analysis device with integrated thermal sensor and method for monitoring a sample using the device | |
US9651492B2 (en) | Optical detector | |
JP4426528B2 (en) | Nucleic acid analysis method, nucleic acid analysis cell, and nucleic acid analyzer | |
KR100438822B1 (en) | Device for assaying mutation of nucleic acids and Method for assaying nucleic acids using the device | |
JP2002296280A (en) | Method of analyzing gene expression frequency using capillary array | |
CN112029656A (en) | PCR reaction device | |
Chiou | Biochip technology: a triad of micro-electro-mechanical (MEM), biochemical, and photonic technologies | |
Sumner et al. | DEVELOPMENT OF A PORTABLE DNA SENSOR SYSTEM | |
JP2004298017A (en) | Array for reaction to convert probe into solid phase amplifying nucleic acid and detecting hybridization | |
Caputo et al. | Implementation of SELEX technique on Lab-on-Chip systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005511265 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |