WO2005050733A1 - Wiring structure for high-frequency wave, method for forming wiring structure for high-frequency wave, and method for shaping high-frequency signal waveform - Google Patents

Wiring structure for high-frequency wave, method for forming wiring structure for high-frequency wave, and method for shaping high-frequency signal waveform Download PDF

Info

Publication number
WO2005050733A1
WO2005050733A1 PCT/JP2004/017001 JP2004017001W WO2005050733A1 WO 2005050733 A1 WO2005050733 A1 WO 2005050733A1 JP 2004017001 W JP2004017001 W JP 2004017001W WO 2005050733 A1 WO2005050733 A1 WO 2005050733A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission line
segments
segment
wiring structure
Prior art date
Application number
PCT/JP2004/017001
Other languages
French (fr)
Japanese (ja)
Inventor
Moritoshi Yasunaga
Ikuo Yoshihara
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2005050733A1 publication Critical patent/WO2005050733A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths

Definitions

  • High-frequency wiring structure method for forming high-frequency wiring structure, and method for shaping high-frequency signal waveform
  • the present invention relates to a high-frequency wiring structure, a high-frequency mounting substrate using the high-frequency wiring structure, an integrated circuit and a high-frequency mounting substrate, a method of forming a high-frequency wiring structure, and a method of shaping a high-frequency signal waveform. is there.
  • FIG. 21 shows a problem of waveform distortion caused by impedance mismatch.
  • the signal (digital signal) sent from the VLSI is transmitted through the wiring with the characteristic impedance Z,
  • Radiation noise occurs.
  • the reflected noise propagates while reflecting on the wiring, which is superimposed on the digital signal and causes large waveform distortion.
  • Non-Patent Document 5 a technique has been proposed in which an integrated circuit that generates a signal for canceling a reflected wave is added to a transmission line.
  • Non-Patent Document 1 "High Speed Transmission Line Design in the Gigahertz Age” by Yuzo Usui, IEICE Technical Report F
  • Non-Patent Document 2 Hirokazu Toya, "Wiring Design Method Considering Signals as Electromagnetic Waves, Suitable for High-Speed Z-Micro Process," IEICE Trans. (C), Vol. J85-C No. 3, PP. 117-124, Issued in 2002
  • Non-Patent Document 3 "High-speed Digital System Design Method” by Norihiko Ueno and Yoshie Nakamura, Nikkei Business Publications, 2001
  • Non-Patent Document 4 Masao TAGUCHI, "High-Speed, Small-Amplitude I / O Interlace Circuits for Memory Bus Applicatio IEICE Trans. Electronics, Vol.E77-C, No. 12, pp. 1944-1950, 1994
  • Non-Patent Document 5 "Equalization technology for high-speed inter-chip signal transmission", written by Yasushi Tamura, Kotaro Goto, Misato Saito, Makoto Hariko, Shigetoshi Wakayama, Junni Ogawa, Yoshiharu Kato, Masao Taro and Ken Imamura, Shinnobu, Academic Theory (C-II), Vol. J82-C-II No. 5, PP. 239-246, 1999 and Information Processing Vol. 40, No. 8, pp. 795-800, 1999
  • An object of the present invention is to provide a high-frequency wiring structure capable of reducing waveform distortion of a high-frequency signal, a high-frequency mounting substrate using the high-frequency wiring structure, an integrated circuit, a high-frequency mounting substrate, and a high-frequency wiring structure. And a method for shaping a high-frequency signal.
  • Another object of the present invention is to provide a new wiring structure for a high-frequency mounting board on which a VLSI or the like is mounted, and a design method thereof.
  • the present invention proposes a transmission line structure, that is, a high-frequency wiring structure in which a wiring pattern is divided into a plurality of segments to adjust a global impedance and cancel a reflected wave, instead of a conventional local adjustment. I do.
  • this transmission line is divided into segments.
  • the present invention aims to improve a high-frequency wiring structure provided with a wiring pattern constituting a transmission line through which a high-frequency signal (a signal having a frequency of 200 MHz or more) is transmitted.
  • the wiring pattern is constituted by a plurality of segments having different characteristic impedances due to different shapes. Then, the characteristic impedance of each of the plurality of segments is determined so that a reflected wave that reduces the waveform distortion of the signal propagating through the transmission line is generated at the boundary between two adjacent segments.
  • the basic idea of the present invention is to reverse the idea of the conventional wiring design that prevents the generation of reflected waves, and to actively generate reflection at the boundary between two adjacent segments of the transmission line, Is to reduce the waveform distortion of the signal by superimposing them.
  • the technical idea of the present invention is that the waveform of the signal propagating through the transmission line is shaped by superimposing the characteristic impedance of each of the plurality of segments with the reflection noise generated at the boundary between the segments. It must be determined as follows. In this way, the waveform distortion can be reduced more reliably than in the conventional technique only by the shape of the wiring pattern without preparing a special integrated circuit or the like.
  • the high-frequency wiring structure of the present invention can of course be applied to a high-frequency mounting board provided on an insulating substrate, but the high-frequency wiring structure of the present invention can be applied to a wiring pattern inside an integrated circuit such as a microprocessor. Of course, it may be adopted. If the frequency of the signal is further increased, the problem of reflection naturally occurs even in a wiring pattern in an integrated circuit, but the present invention is also effective in an integrated circuit.
  • the present invention relates to a high-frequency device having a wiring pattern constituting a transmission line for transmitting a high-frequency signal of 200 MHz or more on a surface of an insulating substrate and mounting an integrated circuit electrically connected to the wiring pattern.
  • the wiring pattern When applied to a mounting board, the wiring pattern should consist of multiple segments with different characteristic impedances due to differences in shape, and the characteristic impedance of each of the multiple segments should be superimposed by the reflected noise generated by each segment. May be determined so that the waveform of the signal propagating through the transmission line is shaped.
  • the characteristic impedance of the segment can be set to a predetermined value by changing at least one of the width, length, and thickness of the segment.
  • the characteristic impedance of a segment is set by changing the width of the segment while keeping the length of the segment constant, it is relatively easy to set the characteristic impedance.
  • the method of the present invention is a method for forming a high-frequency wiring structure having a wiring pattern constituting a transmission line through which a high-frequency signal is transmitted, by a plurality of segments having different characteristic impedances due to different shapes.
  • a reflected wave that reduces the waveform distortion of a signal propagating through a transmission line is generated at a boundary between two adjacent segments by using an optimization algorithm such as a genetic algorithm (a plurality of segments).
  • the characteristic impedance of each segment is designed so that the waveform of the signal propagating through the transmission line is shaped by superimposing the reflected noise generated in each segment.
  • the optimization algorithm applicable in the present invention other known appropriate optimization algorithms can be used in addition to the genetic algorithm.
  • the present invention can also be specified as a method of shaping the waveform of a high-frequency signal by changing a high-frequency wiring structure including a wiring pattern forming a transmission line through which a high-frequency signal is transmitted.
  • the wiring pattern is composed of a plurality of segments having different characteristic impedances due to the difference in shape, and the characteristic impedance of each of the plurality of segments is propagated through the transmission line by superimposing the reflection noise generated in each segment.
  • the waveform of the high-frequency signal is determined to be shaped. Then, the shape of the plurality of segments may be designed using the aforementioned genetic algorithm.
  • FIG. 1 is a circuit diagram showing the concept of a segmented transmission line.
  • FIG. 2 is a diagram showing mapping of characteristic impedance and resistance of the segmented transmission line of FIG. 1 onto a chromosome.
  • FIG. 3 is a diagram showing an example of a segmented transmission line.
  • FIG. 4 is a diagram showing a configuration of a segmented transmission line design support system.
  • FIG. 5 is a diagram showing fitness values based on a difference between a waveform to be shaped and an ideal waveform.
  • FIG. 6 is a diagram showing a configuration of a memory module connected to clock wiring on a printed circuit board.
  • FIG. 7 is a diagram showing the circuit of FIG. 6.
  • FIG. 8 is a view showing an observed waveform in a basic matching wiring system at an observation point P1.
  • FIG. 9 is a view showing an observed waveform in a basic matching wiring system at an observation point P2.
  • FIG. 10 is a diagram showing an observation waveform at an observation point P1 in the segment division transmission system.
  • FIG. 11 is a diagram showing an observed waveform at an observation point P2 in the segment split transmission system.
  • FIG. 12 is a diagram showing an observed waveform at observation point 1 in a load trace system (conventional method).
  • FIG. 13 is a diagram showing an observed waveform at observation point 2 in a load trace system (conventional method).
  • FIG. 14 is a diagram used to explain a conventional impedance matching method (load trace method).
  • FIG. 15 is a diagram for explaining the design of a load trace for a memory module system.
  • FIG. 16 is a chart showing the results of Experiment 1.
  • FIG. 17 is a chart showing the results of Experiment 2.
  • FIG. 18 is a diagram showing a waveform at an observation point P1 of the basic matching wiring system.
  • FIG. 19 is a diagram showing a waveform at an observation point P1 in the segment split transmission system.
  • FIG. 20 is a chart showing the results of Experiment 3.
  • FIG. 21 is a diagram showing the relationship between wiring on a super-large-scale integrated circuit mounting board and reflected noise.
  • a wiring pattern constituting a transmission line for transmitting a high-frequency signal of 200 MHz or more is provided on the surface of an insulating substrate and electrically connected to the wiring pattern.
  • the wiring pattern on the high-frequency mounting substrate on which the integrated circuit to be mounted is mounted is divided into a plurality of segments SS. And each segment S—Independent characteristics for each S
  • a wave is generated.
  • these reflected waves generated at each boundary including the reflected waves generated by the capacitive load C, are superimposed on each other and are individually canceled so as to cancel each other.
  • the reflected wave does not occur!
  • the waveform distortion is reduced by the superposition.
  • each characteristic impedance ⁇ — ⁇ of the segmented transmission line is
  • the transmission line terminating resistance R and damping resistance R are also design parameters.
  • the thickness ⁇ and the insulator thickness D are generally constant (ie, ⁇ and D) for all wiring patterns on the substrate. So segment S
  • the characteristic impedance ⁇ is realized by changing the width W for each 0. Fig. 3 for high frequency mounting
  • FIG. 3 An example of a segmented transmission line for a microstrip line on a printed circuit board as a circuit board is shown.
  • the upper part shows a plan view of the wiring pattern
  • the lower part shows a cross-sectional view of each part individually.
  • the length of each segment is equal.
  • the length L of the segment may be variable, and the length may be different for each segment.
  • the length L of the segment since the propagation length of the reflected wave differs depending on the length L of each segment, the length L of the segment also needs to be determined by a genetic algorithm as a parameter similar to the characteristic impedance Z.
  • FIG. 4 shows the configuration of this system.
  • the created program for design supervision This program is called STL Designer, and this system is composed of this program and the existing electronic circuit simulator (SPICE).
  • SPICE electronic circuit simulator
  • the STL designer uses the flow control of the entire segmented transmission line (STL) design, optimization calculation by genetic algorithm, activation of the electronic circuit simulator (SPICE), and the OS [currently using Unix (registered trademark). Execute the interface with the shell.
  • the electronic circuit simulator (SPICE) has been widely used around the world since its development began in the late 1960s, and is described in "http: Z / bwrc.eecs.berkeley.edu / Classes / ⁇ cBook, SPI CEZ ”and“ Resve Saleh, Takahide Inoue and Yukihiko Ido, “Current Status and Prospects of Circuit Simulators—Implementation Issues Based on Expectations for Simulators and Overseas Research Trends” ), Vol. J74-A No. 8, PP. 1188-1196, 1991 ”[Detailed explanation! Also, many experimental results on transmission lines using an electronic circuit simulator (SPICE) have been reported so far, and their high reliability has been widely recognized.
  • the STL designer is a script written in the script language "perl”, and the electronic circuit simulator SPICE and the STL designer perform the following linked operations.
  • the STL designer performs GA calculation (genetic operation) on the parameters of the circuit model (characteristic impedance and terminating resistance of each segment of the segmented transmission line, etc.).
  • An electronic circuit simulator SPICE is used for fitness evaluation in this GA calculation (genetic operation).
  • the circuit description of the segmented transmission line including the input and output circuits is output as a file (circuit description file) in the fitness evaluation of the GA calculation.
  • the electronic circuit simulator (SPICE) reads the circuit description file, analyzes it, and outputs the analysis result as a signal waveform result file.
  • the STL designer reads the signal waveform result file, calculates fitness (fitness) from this, and continues to perform GA calculation (genetic operation).
  • the characteristic impedance (Z-Z) of the transmission line divided into segments can be directly mapped to individual genes.
  • a fitness function for fitness evaluation can be defined by “how close to an ideal transmission waveform”.
  • I (t) is an ideal propagation waveform (Ideal Wave Form) with perfect impedance matching
  • R (t) is a propagation waveform to be shaped by the method of the present invention (Wave Form Under Adjusting)
  • FIG. 5 shows the relationship between an ideal transmission waveform (Ideal Wave Form) and a transmission waveform to be shaped (Wave Form Under Adjusting).
  • Diff is equal to the absolute value of the difference between I (t) and R (t) indicated by the hatched portion in FIG.
  • a specific wiring system targeted is a clock supply wiring of a DIMM (Dual In-line Memory Module) used in a personal computer or the like.
  • Figure 6 Design The target wiring system is shown.
  • the DIMM is a memory module that is mounted on a printed circuit board and constitutes a main memory.
  • the ability to supply a wide memory bandwidth to the SCPU greatly affects system performance. Since the memory bandwidth is determined by the product of the transfer speed and the data width, it is necessary to supply a high-speed and high-quality clock signal to operate the DIMM at high speed. In order to transmit high-speed and high-quality signals on a substrate, it is necessary to realize an ideal transmission structure with less reflection.
  • the DIMM In the DIMM clock supply wiring system, the DIMM itself becomes an impedance mismatch point with respect to the transmission structure, causing waveform distortion. It is difficult for today's personal computers to supply such an ideal clock signal.
  • the clock frequency of the CPU reaches several GHz, but the performance has been improved.On the other hand, the clock signal speed on the board is several hundred MHz. It is staying at.
  • a clock signal whose clock driver (Clock Driver) power is also output passes through a damping resistor R and then is transmitted through a transmission line (see FIG. 6,
  • the characteristic impedance Z is usually about 70 ⁇ .
  • Z was set to 76 ⁇ from the measured value of the wiring system.
  • a clock signal pin (Clock In in the figure) of the DIMM is connected to this transmission line, and the clock signal is supplied to the DIMM from here.
  • the length of the transmission line was 10 cm. This length is in the range of a typical clock signal wiring length (about several cm to about 20 cm).
  • FIG. 7 shows a circuit diagram corresponding to FIG.
  • the transmission line is divided into several segments, each having a different characteristic impedance Z (in this figure, the Z force is also divided into 10 segments of Z).
  • the DIMM is equal to the load capacitance C at the position of its clock signal pin.
  • the design goal is to find the characteristic impedance Z of each segment that realizes an ideal clock signal at the clock signal input points (observation points) P1 and P2. Using a transmission line design support system.
  • FIG. 8 shows an observation waveform in the basic matching wiring system at the observation point P1
  • FIG. 9 shows an observation waveform in the basic matching wiring system at the observation point P2.
  • FIG. 10 shows an observation waveform at the observation point P1 in the segment division transmission system
  • FIG. 11 shows an observation waveform at the observation point P2 in the segment division transmission system.
  • Fig. 12 shows the observed waveform at observation point 1 in the load trace system (conventional method)
  • Fig. 13 shows the observed waveform at observation point 2 in the load trace system (conventional method).
  • the switching portion of the signal includes a high frequency component, a large reflection noise is generated due to the switching.
  • a very short rise time (20 ps) was set to evaluate the effect of the segmented transmission line on this signal switching, and the clock frequency was set as slow as 100 MHz.
  • the switching time of 20 ps is shorter than the current clock signal switching time.
  • 10 GHz class clock signals will be required in VLIS (ultra large scale integrated circuits).
  • GHz-class clock transmission is desired, which is a sufficiently realistic value to fulfill this requirement.
  • the amplitude of the signal was 3.3 [V].
  • FIG. 8 and FIG. 9 show waveforms observed at observation points P1 and P2 when a DIMM is connected to the basic matching wiring system, respectively.
  • the basic matching wiring system is an ideal transmission system with perfect impedance matching when there is no load (when a load such as a DIMM is not connected).
  • FIGS. 8 and 9 also show the waveforms (Ideal Wave Form in the figures) observed at the observation points PI and P2 when only the basic matching wiring system (no load) is used.
  • the clock signal propagates with an ideal waveform without any distortion.
  • FIG. 10 and FIG. 11 show observation waveforms at observation points PI and P2 by the segmented transmission line shown in FIG.
  • the ideal waveform (Ideal Wave Form) shown in Fig. 8 is also shown.
  • the power delay time when a slight transmission delay (Delay in the figure) and level oscillation are observed is about 200 ps (observation point P2), which is about 1Z5 of the delay time in Fig. 8.
  • almost ideal signal transmission, in which the level of vibration is large enough to cause malfunction is realized.
  • the number of GA individuals used for designing this segmented transmission line was 10, and the result of evolving about 300 generations was used.
  • the fitness value when connected is f
  • the fitness value obtained by the segmented transmission line is f
  • FIGS. 12 and 13 show the observed waveforms at the observation points PI and P2 when the load tracing method of the related art is used (ideal waveform (Ideal Wave Form) shown in FIG. 8 for comparison). Are also shown).
  • the load tracing method uses a load C connected to a transmission line (characteristic impedance Z) to locally change the characteristic impedance of the nearby wiring.
  • Table 1 shows the results of the segmented transmission line obtained by this design.
  • wire width (tran smission— line— width) W is the relational expression between characteristic impedance Z and wire shape
  • FIG. 18 shows the observed waveform (Wave Form Under Capacitance) when a DIMM is connected to the basic matching wiring system and the ideal waveform (Ideal Wave Form) when there is no DIMM. It can be seen that due to the effect of connecting the DIMM, large reflection noise is generated, and the switching part (rising and falling parts) of the rectangular wave is largely cut off and distorted like a sine waveform.
  • the characteristic impedance Z 'of the wiring is decomposed into a capacitance C' and an inductance L 'as follows.
  • t is a transmission delay time determined by the dielectric constant of the insulator of the wiring board.
  • load The characteristic impedance of the connected load trace with capacitance C can be calculated as pd L by measuring C, L, t and C, and since this value equals Z
  • the waveform distortion can be more reliably reduced as compared with the related art only by the shape of the wiring pattern without preparing a special integrated circuit or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

There is provided a new wiring structure for a substrate for a high-frequency wave on which a VLSI or the like is mounted. The wiring pattern constituting the transmission line via which a high-frequency signal is transmitted is composed of a plurality of segments S0 to S11 having different characteristic impedance depending on the shape difference. The respective characteristic impedance Z0 to Z11 of the segments are set so that a reflection wave reducing the waveform distortion of the signal transmitted via the transmission line is generated at the boundary between two adjacent segments.

Description

明 細 書  Specification
高周波用配線構造及び高周波用配線構造の形成方法並びに高周波信 号の波形整形方法  High-frequency wiring structure, method for forming high-frequency wiring structure, and method for shaping high-frequency signal waveform
技術分野  Technical field
[0001] 本発明は、高周波用配線構造、該高周波配線構造を用いた高周波用実装基板、 集積回路及び高周波用実装基板、高周波用配線構造の形成方法並びに高周波信 号の波形整形方法に関するものである。  The present invention relates to a high-frequency wiring structure, a high-frequency mounting substrate using the high-frequency wiring structure, an integrated circuit and a high-frequency mounting substrate, a method of forming a high-frequency wiring structure, and a method of shaping a high-frequency signal waveform. is there.
背景技術  Background art
[0002] VLSI (超大規模集積回路)の内部信号の高速ィ匕に伴 、、 VLSIを実装するプリント 基板やセラミック基板 (高周波用実装基板)上の信号も高速化 (高周波化)する必要 がある。最近では、高周波用実装回路基板の伝送線上を伝播する信号の周波数が MHzから GHzへと増加しょうとしている。このような高速ィ匕により、基板上の高周波信 号(200MHz以上の周波数)の電気長(波長)は基板上の配線の平均的な長さに比 ベて短くなつており、従って、基板上の配線は伝送線と見なして設計する必要がある 。この点に関しては非特許文献 1及び 2に記載されている。実際に伝送線として見る と、伝送線となる配線上には様々な特性インピーダンスの不整合箇所が存在するた めに伝送線上では反射ノイズが発生する。そして、これが原因で配線を伝搬する信 号に波形歪みが発生する。波形歪みは信号の品質を著しく劣化させることになり、特 に、最も重要な信号であるクロック信号にこれらの歪みが発生した場合、 VLSI (超大 規模集積回路)の誤動作に直結することが多い。従って、クロック信号については特 に歪みの少ない理想に近い信号品質を保つ必要がある。また高周波化が進むと、ク ロック信号だけでなく、データバスやアドレスバス上を伝送する信号でも波形歪は誤 動作の原因となる。  [0002] Along with high-speed transmission of internal signals of a VLSI (ultra large scale integrated circuit), it is necessary to increase the speed (frequency) of a signal on a printed circuit board or a ceramic substrate (high-frequency mounting substrate) on which the VLSI is mounted. . Recently, the frequency of a signal propagating on a transmission line of a high-frequency mounting circuit board is going to increase from MHz to GHz. Due to such a high-speed driving, the electrical length (wavelength) of the high-frequency signal (frequency of 200 MHz or more) on the substrate is shorter than the average length of the wiring on the substrate. Must be designed as a transmission line. This point is described in Non-Patent Documents 1 and 2. When actually viewed as a transmission line, reflection noise is generated on the transmission line because there are various mismatched points of characteristic impedance on the wiring that becomes the transmission line. This causes waveform distortion in a signal propagating through the wiring. Waveform distortion significantly degrades signal quality, and especially when these distortions occur in the clock signal, which is the most important signal, often leads to malfunction of VLSI (very large scale integrated circuit). Therefore, it is necessary to keep the signal quality of the clock signal close to the ideal especially with little distortion. As the frequency increases, waveform distortion causes malfunctions not only in clock signals but also in signals transmitted on data buses and address buses.
[0003] インピーダンス不整合によって生ずる波形歪みの問題を図 21に示す。 VLSIから送 出された信号 (ディジタル信号)は、特性インピーダンス Zの配線を伝わり、終端抵抗  [0003] FIG. 21 shows a problem of waveform distortion caused by impedance mismatch. The signal (digital signal) sent from the VLSI is transmitted through the wiring with the characteristic impedance Z,
0  0
で終端される。ここで、配線に VLSIやモジュールなどの部品が接続された場合、こ れらの部品は等価的に容量性負荷 Cと見なすことができる。これらの負荷は一様な 特性インピーダンス zの配線上においてインピーダンス不整合点となり、この点で反 Terminated by Here, when components such as VLSI and modules are connected to the wiring, these components can be equivalently regarded as a capacitive load C. These loads are uniform An impedance mismatching point on the wiring with characteristic impedance z
0  0
射ノイズが発生する。反射ノイズは配線上を反射しながら伝搬し、これがディジタル信 号に重畳されて大きな波形歪みを弓 Iき起こす。  Radiation noise occurs. The reflected noise propagates while reflecting on the wiring, which is superimposed on the digital signal and causes large waveform distortion.
[0004] 従来より基板上配線のインピーダンス整合には、インピーダンス不整合点の近傍で インピーダンスを調整する「負荷トレース手法」(非特許文献 3)や「Stub Series Te rminated Logic法」(非特許文献 4)が用いられてきた。 [0004] Conventionally, impedance matching of on-board wiring has been performed by a “load tracing method” (Non-Patent Document 3) or a “Stub Series Terminated Logic method” (Non-Patent Document 4) in which impedance is adjusted near an impedance mismatching point. ) Has been used.
[0005] また従来技術として、反射波を打ち消す信号を発生する集積回路を伝送線に付加 すると ヽぅ技術も提案されて ヽる (非特許文献 5)。 [0005] As a conventional technique, a technique has been proposed in which an integrated circuit that generates a signal for canceling a reflected wave is added to a transmission line (Non-Patent Document 5).
非特許文献 1 :碓井有三著の"ギガへルツ時代の高速伝送線路設計"、信学技報 F Non-Patent Document 1: "High Speed Transmission Line Design in the Gigahertz Age" by Yuzo Usui, IEICE Technical Report F
TS2001-34, Vol. 101, No. 475, pp. 21—28, 2001年発行 TS2001-34, Vol. 101, No. 475, pp. 21-28, 2001
非特許文献 2:遠矢弘和著の"高速 Z微細プロセスに適する、信号を電磁波とみなし た配線設計法"、信学論(C) , Vol. J85-C No. 3, PP. 117— 124, 2002年発 行  Non-Patent Document 2: Hirokazu Toya, "Wiring Design Method Considering Signals as Electromagnetic Waves, Suitable for High-Speed Z-Micro Process," IEICE Trans. (C), Vol. J85-C No. 3, PP. 117-124, Issued in 2002
非特許文献 3:上野典彦及び中村祥恵著の"高速デジタルシステム設計法詳説"、日 経 BP社, 2001年発行  Non-Patent Document 3: "High-speed Digital System Design Method" by Norihiko Ueno and Yoshie Nakamura, Nikkei Business Publications, 2001
非特許文献 4 : Masao TAGUCHI著の" High— Speed, Small-Amplitude I / O Interlace Circuits for Memory Bus Applicatio IEICE Trans. Electronics, Vol. E77-C, No. 12, pp. 1944—1950, 1994年発行 非特許文献 5 :田村泰考,後藤公太郎,斎藤美寿,張 子誠,若山繁俊,小川淳ニ, 加藤好治, 田ロ眞男及び今村 健共著の"チップ間高速信号伝送用ィコライズ技術" 、信学論(C— Π) , Vol. J82-C-II No. 5, PP. 239-246, 1999年及び情 報処理 Vol. 40, No. 8, pp. 795-800, 1999年発行  Non-Patent Document 4: Masao TAGUCHI, "High-Speed, Small-Amplitude I / O Interlace Circuits for Memory Bus Applicatio IEICE Trans. Electronics, Vol.E77-C, No. 12, pp. 1944-1950, 1994 Non-Patent Document 5: "Equalization technology for high-speed inter-chip signal transmission", written by Yasushi Tamura, Kotaro Goto, Misato Saito, Makoto Hariko, Shigetoshi Wakayama, Junni Ogawa, Yoshiharu Kato, Masao Taro and Ken Imamura, Shinnobu, Academic Theory (C-II), Vol. J82-C-II No. 5, PP. 239-246, 1999 and Information Processing Vol. 40, No. 8, pp. 795-800, 1999
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、前述の非特許文献 3及び 4に記載の手法では、局所的にインピーダ ンスを整合するため完全に反射を消すことが難しぐ不整合点が多い場合には反射 波同士が重畳して大きな信号劣化を生ずることがあった。また非特許文献 5に記載の 技術では、特別な集積回路を用意する必要がある。 [0007] 信号の高速化は今後も不可欠であり、高速化するほど電気長の短い高周波成分が 増加することになる。従って、インピーダンス不整合による波形歪みは一層大きくなる 。このため、高い信号品質を実現できる新たな信号配線構造とその設計手法 (配線 構造の形成方法;波形整形方法)が必要とされて!/ヽる。 [0006] However, in the methods described in Non-Patent Documents 3 and 4 described above, the impedance is locally matched, and when there are many mismatching points where it is difficult to completely eliminate the reflection, the reflected wave In some cases, the signals are superimposed on each other to cause large signal degradation. In the technology described in Non-Patent Document 5, it is necessary to prepare a special integrated circuit. [0007] Speeding up of signals is indispensable in the future, and the higher the speed, the more high frequency components with a short electrical length will increase. Therefore, waveform distortion due to impedance mismatching is further increased. Therefore, a new signal wiring structure that can achieve high signal quality and its design method (wiring structure forming method; waveform shaping method) are needed!
[0008] 本発明の目的は、高周波信号の波形歪を減少させることができる高周波用配線構 造、高周波配線構造を用いた高周波用実装基板、集積回路及び高周波用実装基 板、高周波用配線構造の形成方法並びに高周波信号の波形整形方法を提供するこ とにある。  An object of the present invention is to provide a high-frequency wiring structure capable of reducing waveform distortion of a high-frequency signal, a high-frequency mounting substrate using the high-frequency wiring structure, an integrated circuit, a high-frequency mounting substrate, and a high-frequency wiring structure. And a method for shaping a high-frequency signal.
[0009] また本発明の他の目的は、 VLSI等を実装する高周波用実装基板用の新たな配線 構造とその設計手法を提供することにある。  Another object of the present invention is to provide a new wiring structure for a high-frequency mounting board on which a VLSI or the like is mounted, and a design method thereof.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、配線パターンを複数のセグメントに分割することで、従来のような局所的 な調整ではなぐ大域的にインピーダンスを調整して反射波を打ち消す伝送線構造 すなわち高周波配線構造を提案する。本願明細書では、この伝送線をセグメント分[0010] The present invention proposes a transmission line structure, that is, a high-frequency wiring structure in which a wiring pattern is divided into a plurality of segments to adjust a global impedance and cancel a reflected wave, instead of a conventional local adjustment. I do. In this specification, this transmission line is divided into segments.
^Hzs达棘 (STL : Segmental Transmission Line)と呼ふ。 ^ Hzs 达 Spins (STL: Segmental Transmission Line).
[0011] まず本発明は、高周波信号(200MHz以上の周波数の信号)が伝送される伝送線 を構成する配線パターンを備えた高周波用配線構造を改良の対象とする。本発明で は、配線パターンを形状の相違により特性インピーダンスが異なる複数のセグメント により構成する。そして複数のセグメントのそれぞれの特性インピーダンスを、伝送線 を伝播する信号の波形歪を減少させる反射波を隣接する二つのセグメントどうしの境 界で発生させるように定める。本発明の基本的な思想は、反射波が発生しないように してきた従来の配線設計の発想を逆転し、伝送線の隣接する二つのセグメントどうし の境界で積極的に反射を発生させ、反射波を重ね合わせることによって信号の波形 歪みを減少させることにある。言換えると、本発明の技術的思想は、複数のセグメント のそれぞれの特性インピーダンスを、各セグメントどうしの境界で発生する反射ノイズ が重畳し合うことにより伝送線を伝播する信号の波形が整形されるように定めることで にある。このよう〖こすると、特別な集積回路等を用意することなぐ配線パターンの形 状だけで、従来の技術よりも確実に波形歪を減少させることができる。 [0012] 本発明の高周波配線構造は、絶縁基板上に備えた高周波用実装基板に適用でき るのは勿論であるが、本発明の高周波配線構造をマイクロプロセッサ等の集積回路 の内部の配線パターンに採用してもよいのは勿論である。信号の周波数が更に高く なれば、集積回路中の配線パターンでも反射の問題は当然にして発生することにな るが、集積回路の中でも本発明は有効に効果を発揮する。 First, the present invention aims to improve a high-frequency wiring structure provided with a wiring pattern constituting a transmission line through which a high-frequency signal (a signal having a frequency of 200 MHz or more) is transmitted. In the present invention, the wiring pattern is constituted by a plurality of segments having different characteristic impedances due to different shapes. Then, the characteristic impedance of each of the plurality of segments is determined so that a reflected wave that reduces the waveform distortion of the signal propagating through the transmission line is generated at the boundary between two adjacent segments. The basic idea of the present invention is to reverse the idea of the conventional wiring design that prevents the generation of reflected waves, and to actively generate reflection at the boundary between two adjacent segments of the transmission line, Is to reduce the waveform distortion of the signal by superimposing them. In other words, the technical idea of the present invention is that the waveform of the signal propagating through the transmission line is shaped by superimposing the characteristic impedance of each of the plurality of segments with the reflection noise generated at the boundary between the segments. It must be determined as follows. In this way, the waveform distortion can be reduced more reliably than in the conventional technique only by the shape of the wiring pattern without preparing a special integrated circuit or the like. The high-frequency wiring structure of the present invention can of course be applied to a high-frequency mounting board provided on an insulating substrate, but the high-frequency wiring structure of the present invention can be applied to a wiring pattern inside an integrated circuit such as a microprocessor. Of course, it may be adopted. If the frequency of the signal is further increased, the problem of reflection naturally occurs even in a wiring pattern in an integrated circuit, but the present invention is also effective in an integrated circuit.
[0013] 本発明を絶縁性基板の表面上に 200MHz以上の高周波信号が伝送される伝送 線を構成する配線パターンを備え且つ配線パターンに電気的に接続される集積回 路が実装される高周波用実装基板に適用する場合には、配線パターンを形状の相 違により特性インピーダンスが異なる複数のセグメントにより構成し、複数のセグメント のそれぞれの特性インピーダンスを、各セグメントで発生する反射ノイズが重畳し合う ことにより伝送線を伝播する信号の波形が整形されるように定めればよい。  [0013] The present invention relates to a high-frequency device having a wiring pattern constituting a transmission line for transmitting a high-frequency signal of 200 MHz or more on a surface of an insulating substrate and mounting an integrated circuit electrically connected to the wiring pattern. When applied to a mounting board, the wiring pattern should consist of multiple segments with different characteristic impedances due to differences in shape, and the characteristic impedance of each of the multiple segments should be superimposed by the reflected noise generated by each segment. May be determined so that the waveform of the signal propagating through the transmission line is shaped.
[0014] ここでセグメントの特性インピーダンスは、セグメントの幅寸法、長さ寸法及び厚み 寸法の少なくとも一つを変えることにより所定の値に設定することができる。特に、セ グメントの特性インピーダンスを、セグメントの長さ寸法を一定として、その幅寸法を変 えることにより設定すると、比較的特性インピーダンスの設定が容易である。  Here, the characteristic impedance of the segment can be set to a predetermined value by changing at least one of the width, length, and thickness of the segment. In particular, when the characteristic impedance of a segment is set by changing the width of the segment while keeping the length of the segment constant, it is relatively easy to set the characteristic impedance.
[0015] 本発明の方法は、高周波信号が伝送される伝送線を構成する配線パターンを備え た高周波用配線構造を、形状の相違により特性インピーダンスが異なる複数のセグメ ントにより形成する方法である。本発明の方法では、遺伝的アルゴリズム等の最適化 アルゴリズムを用いて、伝送線を伝播する信号の波形歪を減少させる反射波を隣接 する二つのセグメントどうしの境界で発生させるように (複数のセグメントのそれぞれの 特性インピーダンスを、各セグメントで発生する反射ノイズが重畳し合うことにより伝送 線を伝播する信号の波形が整形されるように)、複数のセグメントのそれぞれの特性 インピーダンスを設計する。本発明で適用可能な最適化アルゴリズムとしては、遺伝 的アルゴリズムの他に他の公知の適宜の最適化アルゴリズムを使用することができる  The method of the present invention is a method for forming a high-frequency wiring structure having a wiring pattern constituting a transmission line through which a high-frequency signal is transmitted, by a plurality of segments having different characteristic impedances due to different shapes. In the method of the present invention, a reflected wave that reduces the waveform distortion of a signal propagating through a transmission line is generated at a boundary between two adjacent segments by using an optimization algorithm such as a genetic algorithm (a plurality of segments). The characteristic impedance of each segment is designed so that the waveform of the signal propagating through the transmission line is shaped by superimposing the reflected noise generated in each segment. As the optimization algorithm applicable in the present invention, other known appropriate optimization algorithms can be used in addition to the genetic algorithm.
[0016] ここで最適化アルゴリズムの一つである遺伝的アルゴリズムや遺伝的プログラミング [0016] Here, one of the optimization algorithms, a genetic algorithm or a genetic programming
(Genetic Programing)等の進化計算については下記の文献(1)及び(2)に記載 されている。そして下記の文献(1)及び(2)に記載の技術をノ、一ドウ アの設計に用 いる試みは、近年、「進化ハードウェア」の枠組の中で盛んに報告がなされるようにな つてきた [下記の文献 (3) (4) (5)参照]。その中で、回路設計に GA、 GPを適用した 報告もいくつ力なされている [下記の文献 (6) (7) (8)参照]。しかし、これらは、トラン ジスタゃキャパシタンス等の回路部品の値を回路のゲインを最適化するように決定す るといった試みであり、伝送線の設計にかかわるものではない。また、 Cheldavi等は 、伝送線の Sパラメータの決定に遺伝的アルゴリズムを用いている力 これは、構造が 既にわ力つて 、る伝送線の Sパラメータの推定に関する研究である [下記の文献(9) 参照]。従って、従来公知の遺伝的アルゴリズムを用いる手法は、発明で提案するセ グメントに分割された伝送線とは対象構造が異なり、かつ、その目的や手法も異なる ものである。 Evolutionary calculations such as (Genetic Programming) are described in the following documents (1) and (2). Then, the techniques described in the following documents (1) and (2) are used for designing a single door. In recent years, many attempts have been reported in the framework of “evolved hardware” [see References (3), (4), and (5) below]. Among them, there have been several reports of applying GA and GP to circuit design [see References (6), (7), and (8) below]. However, these are attempts to determine the values of circuit components such as transistor and capacitance so as to optimize the gain of the circuit, and are not related to transmission line design. Also, Cheldavi et al. Use a genetic algorithm to determine the S-parameter of a transmission line. This is a study on estimating the S-parameter of a transmission line whose structure is already strong. ) See]. Therefore, the method using a conventionally known genetic algorithm has a different target structure from the transmission line divided into segments proposed in the present invention, and also has a different purpose and method.
文献(1) : D. E. Goldberg著の" Genetic Algorithms in Search Optimiza tion" Machine Learning, Addison— Wesley, 1989年発ィ丁  Reference (1): D. E. Goldberg's "Genetic Algorithms in Search Optimization" Machine Learning, Addison—Wesley, 1989
文献 (2) :John R. Koza^© "Genetic Programming" On the Program ming of Computers by means of Natural Selection, MIT Press, 1 992発行  Reference (2): John R. Koza ^ © "Genetic Programming" On the Programming of Computers by means of Natural Selection, MIT Press, 1 992
文献(3):樋口哲也著の"進化型ハードウェア"情報処理, Vol. 40, No. 8, pp. 7 95-800, 1999発行  Reference (3): "Evolutionary Hardware" Information Processing by Tetsuya Higuchi, Vol. 40, No. 8, pp. 7 95-800, 1999
文献 (4) :辺見 均,五味隆志著の"進化するハードウ ア"電子情報通信学会論 文誌, Vol. J84-C, No. 7, pp. 543-551, 2001発行  Reference (4): "Evolving Hardware", written by Hitoshi Henmi and Takashi Gomi, IEICE Transactions on Electronics, Vol. J84-C, No. 7, pp. 543-551, 2001
文献 (5) : Moshe Sipper及び Daniel Mange, Eds著の" Special Issue on from Biology to Hardware and Bac"lEEE Trans. Evolutionary Co mputation, Vol. 3, No. 3, pp. 165—250.  Reference (5): "Special Issue on from Biology to Hardware and Bac" by Moshe Sipper and Daniel Mange, Eds, IEEE Trans. Evolutionary Computation, Vol. 3, No. 3, pp. 165-250.
文献(6) : Forrest H. Bennett III,及び John R. Koza, Jessen Yu及び Will iam Mydlo wee著の" Automatic Synthesis, Placement, and Routing of an Amplifier Circuit by Means of Genetic Programming"Proc. Int' 1 Conf. Evolvable Systems 2000 (ICES2000) , pp. 1—10, Edinburgh, 2000発行  Reference (6): "Automatic Synthesis, Placement, and Routing of an Amplifier Circuit by Means of Genetic Programming" by Forrest H. Bennett III, and John R. Koza, Jessen Yu and Will iam Mydlo wee, "Proc. Int '1 Conf. . Evolvable Systems 2000 (ICES2000), pp. 1-10, Edinburgh, 2000
文献 (7) : Giovani Gomez Estrada著の' 'A Note on Designing Logical Circuits Using SAT"Proc. Int' l Conf. Evolvable Systems 2003 (1 CES2003) , pp. 410-421, Trondheim, 2003年発行 Reference (7): '' A Note on Designing Logical 'by Giovani Gomez Estrada Circuits Using SAT "Proc. Int'l Conf. Evolvable Systems 2003 (1 CES2003), pp. 410-421, Trondheim, 2003
文献 (8) : Thomas Beielstein, Jan Dienstuhl, Christian Feist及び Marc Pomp 1著の" Circuit Design Using Evolutionary Algorithms"Proc. Con gress on Evolutionary Computation 2003 (CEC2003) , CD-ROM, Honolulu, 2003年発行  Reference (8): Thomas Beielstein, Jan Dienstuhl, Christian Feist and Marc Pomp 1, "Circuit Design Using Evolutionary Algorithms" Proc. Congress on Evolutionary Computation 2003 (CEC2003), CD-ROM, Honolulu, 2003
文献(9) : Ahmad CHELDAVI及び Gholamali REZAI— RAD著の" Modelin g of Nonuniform Coppled Transmission Lines Interconnect Using Genetic Algorithm" IEICE Trans. Fundamentals ,  Reference (9): Ahmad CHELDAVI and Gholamali REZAI— "Modeling of Nonuniform Coppled Transmission Lines Interconnect Using Genetic Algorithm" by RAD IEICE Trans. Fundamentals,
Vol. E83-A, No. 10, pp. 2023—2034, 2000年発行 Vol. E83-A, No. 10, pp. 2023-2034, 2000
本発明は、高周波信号が伝送される伝送線を構成する配線パターンを備えた高周 波用配線構造を変えることにより高周波信号を波形整形する方法としても特定するこ とができる。この場合でも、配線パターンを形状の相違により特性インピーダンスが異 なる複数のセグメントにより構成し、複数のセグメントのそれぞれの特性インピーダン スを、各セグメントで発生する反射ノイズを重畳して伝送線を伝播する前記高周波信 号の波形を整形するように定める。そして前述の遺伝的アルゴリズムを用いて、複数 のセグメントの形状を設計すればよ 、。  The present invention can also be specified as a method of shaping the waveform of a high-frequency signal by changing a high-frequency wiring structure including a wiring pattern forming a transmission line through which a high-frequency signal is transmitted. Even in this case, the wiring pattern is composed of a plurality of segments having different characteristic impedances due to the difference in shape, and the characteristic impedance of each of the plurality of segments is propagated through the transmission line by superimposing the reflection noise generated in each segment. The waveform of the high-frequency signal is determined to be shaped. Then, the shape of the plurality of segments may be designed using the aforementioned genetic algorithm.
図面の簡単な説明 Brief Description of Drawings
[図 1]セグメント分割伝送線の概念を示す回路図である。 FIG. 1 is a circuit diagram showing the concept of a segmented transmission line.
[図 2]図 1のセグメント分割伝送線の特性インピーダンスと抵抗の染色体上へのマツピ ングを示す図である。  FIG. 2 is a diagram showing mapping of characteristic impedance and resistance of the segmented transmission line of FIG. 1 onto a chromosome.
[図 3]セグメント分割伝送線の例を示す図である。  FIG. 3 is a diagram showing an example of a segmented transmission line.
[図 4]セグメント分割伝送線設計支援システムの構成を示す図である。  FIG. 4 is a diagram showing a configuration of a segmented transmission line design support system.
[図 5]整形対象波形と理想波形の差による適応度値を示す図である。  FIG. 5 is a diagram showing fitness values based on a difference between a waveform to be shaped and an ideal waveform.
[図 6]プリント基板上のクロック配線に接続されたメモリモジュールの構成を示す図で ある。  FIG. 6 is a diagram showing a configuration of a memory module connected to clock wiring on a printed circuit board.
[図 7]図 6の回路を示す図である。  FIG. 7 is a diagram showing the circuit of FIG. 6.
[図 8]観察点 P1における基本整合配線系における観測波形を示す図である。 [図 9]観察点 P2における基本整合配線系における観測波形を示す図である。 FIG. 8 is a view showing an observed waveform in a basic matching wiring system at an observation point P1. FIG. 9 is a view showing an observed waveform in a basic matching wiring system at an observation point P2.
[図 10]セグメント分割伝送系における観察点 P1における観測波形を示す図である。 FIG. 10 is a diagram showing an observation waveform at an observation point P1 in the segment division transmission system.
[図 11]セグメント分割伝送系における観察点 P2における観測波形を示す図である。 FIG. 11 is a diagram showing an observed waveform at an observation point P2 in the segment split transmission system.
[図 12]負荷トレース系(従来手法)における観測点 1における観測波形を示す図であ る。 FIG. 12 is a diagram showing an observed waveform at observation point 1 in a load trace system (conventional method).
[図 13]負荷トレース系(従来手法)における観測点 2における観測波形を示す図であ る。  FIG. 13 is a diagram showing an observed waveform at observation point 2 in a load trace system (conventional method).
[図 14]従来のインピーダンス整合手法 (負荷トレース法)を説明するために用いる図 である。  FIG. 14 is a diagram used to explain a conventional impedance matching method (load trace method).
[図 15]メモリモジュール系に対する負荷トレースの設計を説明するための図である。  FIG. 15 is a diagram for explaining the design of a load trace for a memory module system.
[図 16]実験 1の結果を示す図表である。  FIG. 16 is a chart showing the results of Experiment 1.
[図 17]実験 2の結果を示す図表である。  FIG. 17 is a chart showing the results of Experiment 2.
[図 18]基本整合配線系の観測点 P1の波形を示す図である。  FIG. 18 is a diagram showing a waveform at an observation point P1 of the basic matching wiring system.
[図 19]セグメント分割伝送系の観測点 P1の波形を示す図である。  FIG. 19 is a diagram showing a waveform at an observation point P1 in the segment split transmission system.
[図 20]実験 3の結果を示す図表である。  FIG. 20 is a chart showing the results of Experiment 3.
[図 21]超大規模集積回路実装基板上の配線と反射ノイズの関係を示す図である。 発明を実施するための最良の形態  FIG. 21 is a diagram showing the relationship between wiring on a super-large-scale integrated circuit mounting board and reflected noise. BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参照して本発明の実施の形態を詳細に説明する。図 1に示すように、本 発明の実施の形態では、例えば、絶縁性基板の表面上に 200MHz以上の高周波 信号が伝送される伝送線を構成する配線パターンを備え且つ配線パターンに電気 的に接続される集積回路が実装される高周波用実装基板上の配線パターンを複数 個のセグメント S— S に分割する。そして各セグメント S— S 毎に独立した特性ィ  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, in the embodiment of the present invention, for example, a wiring pattern constituting a transmission line for transmitting a high-frequency signal of 200 MHz or more is provided on the surface of an insulating substrate and electrically connected to the wiring pattern. The wiring pattern on the high-frequency mounting substrate on which the integrated circuit to be mounted is mounted is divided into a plurality of segments SS. And each segment S—Independent characteristics for each S
0 11 0 11  0 11 0 11
ンピーダンス z (z一 z )を与える。これ〖こより、隣接する二つのセグメントどうしの境 Gives the impedance z (z-z). From this, the boundary between two adjacent segments
i 0 11  i 0 11
界(sと sの境界、 sと sの境界等)で特性インピーダンスの不整合点が発生し、反In the field (the boundary between s and s, the boundary between s and s, etc.)
0 1 1 2 0 1 1 2
射波が発生する。本実施の形態では、各境界で発生するこれらの反射波が、容量性 負荷 Cによって発生した反射波も含めて重畳し合い、互いに打ち消しあうように個々 し A wave is generated. In the present embodiment, these reflected waves generated at each boundary, including the reflected waves generated by the capacitive load C, are superimposed on each other and are individually canceled so as to cancel each other.
のセグメント S— S の特性インピーダンス Z (Z一 Z )を調整する。すなわち、本実 Adjust the characteristic impedance Z (Z-Z) of the segment S—S of That is, the real
0 11 i 0 11  0 11 i 0 11
施の形態では、反射波が発生しな!、ようにしてきた従来の配線設計の発想を逆転し 、積極的に各セグメントの境界で反射を発生させることでこれらの重ね合わせによつ て波形歪みを減少させる。 In the embodiment, the reflected wave does not occur! By superimposing reflections on the boundaries of each segment, the waveform distortion is reduced by the superposition.
[0020] ここで、セグメントの数を m、各セグメントのとり得る特性インピーダンスの値を n通りと すると、全体で可能な組合せは nm通りとなる。例えば、 m= 10、 η= 100 (100 Ωの範 囲で 1 Ωきざみ)とすると、 1001(>通りとなり、全検探索は不可能となる。そこで実施の 形態では、各セグメントの特性インピーダンスの決定に遺伝的アルゴリズムを適用す る。図 2に示すように、セグメント分割された伝送線の各特性インピーダンス Ζ— Ζ を Here, assuming that the number of segments is m and the value of characteristic impedance that each segment can take is n, there are n m possible combinations as a whole. For example, if m = 10 and η = 100 (in 1Ω increments in the range of 100Ω), then 100 1 (> results will not be possible, and the full search will not be possible. A genetic algorithm is applied to determine the characteristic impedance. As shown in Fig. 2, each characteristic impedance Ζ— の of the segmented transmission line is
0 11 そのまま個体の染色体(Chromosome)上の遺伝子にマッピングすることが可能であ り、基本的にこのまま遺伝的アルゴリズムの遺伝操作を適用することが可能である。な お、後述するように、具体的には、各セグメント S— S の特性インピーダンス Z (Z  0 11 It is possible to directly map the gene on the chromosome (chromosome) of the individual, and it is basically possible to apply the genetic operation of the genetic algorithm as it is. As described later, specifically, the characteristic impedance Z (Z
0 11 i 0一 0 11 i 0 one
Z )の他に伝送線の終端抵抗 Rやダンピング抵抗 Rも設計パラメータとなり、これらZ), the transmission line terminating resistance R and damping resistance R are also design parameters.
11 T O 11 T O
も含めて遺伝子にマッピングする。  Are mapped to genes, including
[0021] 各セグメント S— S の特性インピーダンス Z (Z— Z )を決定した後、 Zを実現す [0021] After determining the characteristic impedance Z (Z-Z) of each segment S-S, Z is realized.
0 11 i 0 11 i  0 11 i 0 11 i
るように各セグメントの形状を設計する。具体的には、特性インピーダンス Zは配線の 幅 W、厚さ T、絶縁体の厚さ D、及び基板の絶縁体の比誘電率 ε の関数である(Ζ = f (W , T , D , ε ;) )。実際には、厚さ Τ及び絶縁体の厚さ Dは基板上の全ての配 線パターンで一定 (すなわち、 Τと D)であることが一般的である。そこで、セグメント S  The shape of each segment is designed so that Specifically, the characteristic impedance Z is a function of the width W of the wiring, the thickness T, the thickness D of the insulator, and the relative permittivity ε of the insulator of the board (Ζ = f (W, T, D, ε;)). In practice, the thickness Τ and the insulator thickness D are generally constant (ie, Τ and D) for all wiring patterns on the substrate. So segment S
0 毎に幅寸法 Wを変えて特性インピーダンス Ζを実現する。図 3に高周波実装用 The characteristic impedance Ζ is realized by changing the width W for each 0. Fig. 3 for high frequency mounting
11 i i 11 i i
回路基板としてのプリント基板上のマイクロストリップラインを対象としたセグメント分割 伝送線の例を示す。図 3において、上段には配線パターンの平面図を示してあり、下 段には各部の横断面図を個別に示してある。図 3の例では、各セグメントの長さ が 等しい。しかし本発明を適用する場合には、セグメントの長さ Lも可変として、セグメン ト毎に長さを異ならせてもよい。この場合、各セグメントの長さ Lによって反射波の伝 搬長が異なることになるため、セグメントの長さ Lも特性インピーダンス Zと同様のパラ メータとして遺伝的アルゴリズムにより決定する必要がある。  An example of a segmented transmission line for a microstrip line on a printed circuit board as a circuit board is shown. In FIG. 3, the upper part shows a plan view of the wiring pattern, and the lower part shows a cross-sectional view of each part individually. In the example of Fig. 3, the length of each segment is equal. However, when the present invention is applied, the length L of the segment may be variable, and the length may be different for each segment. In this case, since the propagation length of the reflected wave differs depending on the length L of each segment, the length L of the segment also needs to be determined by a genetic algorithm as a parameter similar to the characteristic impedance Z.
[0022] 次に、セグメント分割伝送線設計支援システムについて説明する。本発明の方法を 実現するために、セグメント分割伝送線の設計支援システムを作成した。図 4は、この システムの構成を示す。本願明細書においては、作成した設計統括用のプログラム を STLデザイナー(STL Designer)呼び、このプログラムと既存の電子回路シミュ レータ(SPICE)と力もこのシステムは構成される。ここで STLデザイナーは、セグメン ト分割伝送線 (STL)設計全体のフロー制御、遺伝的アルゴリズムによる最適化計算 、電子回路シミュレータ(SPICE)の起動、そして OS [現在は Unix (登録商標)を使 用]のシェルとのインタフェースを実行する。電子回路シミュレータ(SPICE)は 1960 年台後半から開発に着手されて以来、広く世界中で使用されている電子回路シミュ レ ~~グであり、「http : Z /bwrc. eecs. berkeley. edu/ Classes/丄 cBook, SPI CEZ」及び「Resve Saleh,井上隆秀及び井戸幸彦共著の"回路シミュレータの現 状と展望一シミュレータへの期待と海外研究動向を踏まえた実現上の課題"信学論 (A) , Vol. J74-A No. 8, PP. 1188—1196, 1991発行」【こ詳しく説明されて!ヽる 。また電子回路シミュレータ(SPICE)を用いた伝送線に関する実験結果もこれまで 多く報告されており、その信頼性の高さは広く認められている。例えば、「廣瀬 啓及 び安浦寛人著の"クロストークを考慮したバス遅延削減手法"信学論 (A) , Vol. J83 A No. 8, PP. 989-998, 2000発行」、「遠藤哲郎,船木寿彦、中村広記、桜庭 弘及び舛岡富士男著の"新しい基板コンタクト型パストランジスタ"信学論 (C) , Vol . J84-C No. 3, PP. 192-198, 2001発行」及び「関根敏和,小林邦勝及び横川 泉二著の"損失のある不均一線路の FDTD法を用いた時間領域解析"信学論 (A) , Vol. J84-A No. 8, PP. 1018—1026, 2001発行」に報告力 Sある。 Next, a segmented transmission line design support system will be described. To realize the method of the present invention, a design support system for a segmented transmission line was created. Figure 4 shows the configuration of this system. In this specification, the created program for design supervision This program is called STL Designer, and this system is composed of this program and the existing electronic circuit simulator (SPICE). Here, the STL designer uses the flow control of the entire segmented transmission line (STL) design, optimization calculation by genetic algorithm, activation of the electronic circuit simulator (SPICE), and the OS [currently using Unix (registered trademark). Execute the interface with the shell. The electronic circuit simulator (SPICE) has been widely used around the world since its development began in the late 1960s, and is described in "http: Z / bwrc.eecs.berkeley.edu / Classes / 丄 cBook, SPI CEZ ”and“ Resve Saleh, Takahide Inoue and Yukihiko Ido, “Current Status and Prospects of Circuit Simulators—Implementation Issues Based on Expectations for Simulators and Overseas Research Trends” ), Vol. J74-A No. 8, PP. 1188-1196, 1991 ”[Detailed explanation! Also, many experimental results on transmission lines using an electronic circuit simulator (SPICE) have been reported so far, and their high reliability has been widely recognized. For example, "Bus Delay Reduction Method Considering Crosstalk" by Hirose Hirose and Hiroto Yasuura, IEICE (A), Vol. J83 A No. 8, PP. 989-998, 2000, "Tetsuro Endo" , "New Substrate Contact Type Pass Transistor", by IEICE (C), Vol. J84-C No. 3, PP. 192-198, 2001, by Seiki, Toshihiko Funaki, Hiroki Nakamura, Hiroshi Sakuraba and Fujio Masuzoka. Toshikazu, Kobayashi Kuniyoshi and Yokokawa Izumi, "Time Domain Analysis of Lossy Nonuniform Transmission Lines Using FDTD Method", IEICE Trans. (A), Vol. J84-A No. 8, PP. 1018-1026, 2001 issue "has reporting power S.
[0023] STLデザイナーは、スクリプト言語「perl」で書かれたスクリプトであり、電子回路シミ ユレータ SPICEと STLデザイナーは以下の連係動作を行なう。  [0023] The STL designer is a script written in the script language "perl", and the electronic circuit simulator SPICE and the STL designer perform the following linked operations.
[0024] 1. STLデザイナーは回路モデルのパラメータ(セグメント分割伝送線の各セグメン トの特性インピーダンスと終端抵抗値等)に対して GA計算 (遺伝操作)を行なう。電 子回路シミュレータ(SPICE)は、この GA計算(遺伝操作)の中の適応度評価の際に 用いられる。具体的には、 GA計算の適応度評価(fitness evaluation)の中で、入 出回路を含めたセグメント分割伝送線の回路記述をファイル(circuit description file)として出力する。  [0024] 1. The STL designer performs GA calculation (genetic operation) on the parameters of the circuit model (characteristic impedance and terminating resistance of each segment of the segmented transmission line, etc.). An electronic circuit simulator (SPICE) is used for fitness evaluation in this GA calculation (genetic operation). Specifically, the circuit description of the segmented transmission line including the input and output circuits is output as a file (circuit description file) in the fitness evaluation of the GA calculation.
[0025] 2. STLデザイナーは回路記述ファイルを出力後、電子回路シミュレータ(SPICE) に起動をかける。 [0026] 3.電子回路シミュレータ(SPICE)は回路記述ファイルを読み込み、これを解析し た後に解析結果を信号波形結果ファイル (signal wave form file)として出力す る。 [0025] 2. After outputting the circuit description file, the STL designer starts the electronic circuit simulator (SPICE). [0026] 3. The electronic circuit simulator (SPICE) reads the circuit description file, analyzes it, and outputs the analysis result as a signal waveform result file.
[0027] 4. STLデザイナーは信号波形結果ファイルを読み込み、これより適応度 (fitness) を計算し GA計算 (遺伝操作)を続けて実行する。  [0027] 4. The STL designer reads the signal waveform result file, calculates fitness (fitness) from this, and continues to perform GA calculation (genetic operation).
[0028] 次に遺伝操作について説明する。図 3に示すように、セグメントに分割された伝送 線の各特性インピーダンス (Z— Z )は、そのまま個体の遺伝子にマッピングするこ Next, the genetic operation will be described. As shown in Fig. 3, the characteristic impedance (Z-Z) of the transmission line divided into segments can be directly mapped to individual genes.
0 11  0 11
とが可能である。このマッピングにより、交差、突然変異、選択操作をそのまま致死遺 伝子を発生させることなく適用することができる。  It is possible. With this mapping, crossover, mutation, and selection operations can be applied as they are without generating lethal genes.
[0029] 適応度評価のための適応度関数は、「理想的な伝送波形にどれだけ近いか」によ つて定義することができる。すなわち、 I (t)をインピーダンス整合が完全にとれた理想 的な伝搬波形 (Ideal Wave Form)、 R (t)を本発明の方法で整形対象とする伝搬 波形(Wave Form Under Adjusting)とし、 Tを周期としたとき、  A fitness function for fitness evaluation can be defined by “how close to an ideal transmission waveform”. In other words, I (t) is an ideal propagation waveform (Ideal Wave Form) with perfect impedance matching, R (t) is a propagation waveform to be shaped by the method of the present invention (Wave Form Under Adjusting), and T Is the cycle,
[数 1]  [Number 1]
|J )一 ) | ¾, … ( 1 )| J) One) | ¾,… (1)
Figure imgf000012_0001
Figure imgf000012_0001
[数 2] fitness = ... ( 2 )[Number 2] fitness = ... (2)
Figure imgf000012_0002
Figure imgf000012_0002
[0030] として定義することができる。 [0030] can be defined as
[0031] 図 5は、理想的な伝送波形 (Ideal Wave Form)と整形対象である伝送波形 (Wa ve Form Under Adjusting)の関係を示している。ここで、 Diffは、図 5の斜線部 が示す I (t)と R (t)の差分の絶対値に等 、。  FIG. 5 shows the relationship between an ideal transmission waveform (Ideal Wave Form) and a transmission waveform to be shaped (Wave Form Under Adjusting). Here, Diff is equal to the absolute value of the difference between I (t) and R (t) indicated by the hatched portion in FIG.
[0032] 次に、実際のプリント基板の配線を対象として、セグメント分割伝送線の評価を行つ た。対象とした具体的な配線系は、パーソナルコンピュータなどで用いられている DI MM (Dual In-line Memory Module)のクロック供給配線である。図 6に設計 対象とした配線系を示す。図 6において、 DIMMはプリント基板上に実装し、メイン' メモリを構成するメモリモジュールであり、これ力 SCPUに対していかに広い帯域のメモ リバンド幅を供給できるかがシステム性能を大きく左右する。メモリバンド幅は転送速 度とデータ幅の積で決まるため、 DIMMを高速動作させるためには、高速で高品質 なクロック信号を供給する必要がある。そして基板上で高速かつ高品質な信号を伝 搬させるためには、反射の少ない理想的な伝送構造を実現する必要がある。 DIMM のクロック供給配線系では、 DIMM自体が伝送構造に対するインピーダンス不整合 点となり、波形歪みを引き起こす。現在のパーソナルコンピュータではこのような理想 的なクロック信号を供給することが難しぐ CPUのクロック周波数が数 GHzに達する 性能向上を示している半面で、基板上のクロック信号速度は、数百 MHz程度に留ま つている。 Next, segmented transmission lines were evaluated for actual printed circuit board wiring. A specific wiring system targeted is a clock supply wiring of a DIMM (Dual In-line Memory Module) used in a personal computer or the like. Figure 6 Design The target wiring system is shown. In FIG. 6, the DIMM is a memory module that is mounted on a printed circuit board and constitutes a main memory. The ability to supply a wide memory bandwidth to the SCPU greatly affects system performance. Since the memory bandwidth is determined by the product of the transfer speed and the data width, it is necessary to supply a high-speed and high-quality clock signal to operate the DIMM at high speed. In order to transmit high-speed and high-quality signals on a substrate, it is necessary to realize an ideal transmission structure with less reflection. In the DIMM clock supply wiring system, the DIMM itself becomes an impedance mismatch point with respect to the transmission structure, causing waveform distortion. It is difficult for today's personal computers to supply such an ideal clock signal.The clock frequency of the CPU reaches several GHz, but the performance has been improved.On the other hand, the clock signal speed on the board is several hundred MHz. It is staying at.
[0033] 図 6に示すように通常のクロック信号供給系では、クロックドライバ(Clock Driver) 力も出力されたクロック信号は、ダンピング抵抗 Rを通った後、基板上の伝送線(図  As shown in FIG. 6, in a normal clock signal supply system, a clock signal whose clock driver (Clock Driver) power is also output passes through a damping resistor R and then is transmitted through a transmission line (see FIG.
D  D
中のクロックライン (Clock line) )を伝搬して、終端抵抗 Rで終端される。伝送線の  It propagates through the clock line (Clock line) inside and is terminated by the terminating resistor R. Transmission line
T  T
特性インピーダンス Zは、通常 70 Ω程度が用いられる。この評価実験では、実際の  The characteristic impedance Z is usually about 70 Ω. In this evaluation experiment, the actual
0  0
配線系の実測値から Z = 76 Ωとした。  Z was set to 76 Ω from the measured value of the wiring system.
0  0
[0034] この伝送線に DIMMのクロック信号ピン(図中の Clock In)を接続し、クロック信号 はここから DIMMに供給される。通常の DIMMでは、 DIMMの片面に対して 2つの クロック信号ピンがあり、図 6もこれに対応している。なお、本評価対象では、伝送線 の長さを 10cmとしている。この長さは、典型的なクロック信号配線長(数 cmから 20c m程度)の範囲である。  [0034] A clock signal pin (Clock In in the figure) of the DIMM is connected to this transmission line, and the clock signal is supplied to the DIMM from here. In a normal DIMM, there are two clock signal pins on one side of the DIMM, as shown in Figure 6. In this evaluation, the length of the transmission line was 10 cm. This length is in the range of a typical clock signal wiring length (about several cm to about 20 cm).
[0035] 図 6に対する回路図を図 7に示す。伝送線は複数のセグメントに分割され、それぞ れ異なった特性インピーダンス Zをもつ(本図では、 Z力も Z の 10個のセグメントに  FIG. 7 shows a circuit diagram corresponding to FIG. The transmission line is divided into several segments, each having a different characteristic impedance Z (in this figure, the Z force is also divided into 10 segments of Z).
i 1 10  i 1 10
分割した例を示している)。 DIMMはそのクロック信号ピンの位置で負荷容量 Cと等  An example of division is shown). The DIMM is equal to the load capacitance C at the position of its clock signal pin.
1 価であり、今回の評価ではその実測値力も C = 10pFとした。また、クロックドライバは  In this evaluation, the measured force was also C = 10 pF. Also, the clock driver
1  1
、信号源 Vと内部抵抗 R として表される。  , Signal source V and internal resistance R.
on  on
[0036] 設計目標は、クロック信号入力点 (観測点) Pl、 P2において理想的なクロック信号 を実現する各セグメントの特'性インピーダンス Zを求めることであり、前述した「セグメ ント分割伝送線設計支援システム」を用いる。 The design goal is to find the characteristic impedance Z of each segment that realizes an ideal clock signal at the clock signal input points (observation points) P1 and P2. Using a transmission line design support system.
[0037] 以下評価結果について説明する。  Hereinafter, evaluation results will be described.
[0038] [実験 1] [0038] [Experiment 1]
伝送するクロック信号の切り替わり時間(立上り Z立下がり)を 20ps、信号振幅を 3. 3V、周期を 10nsとしたときの実験結果を図 8乃至図 13に示す。図 8は、観察点 P1に おける基本整合配線系における観測波形を示しており、図 9は観察点 P2における基 本整合配線系における観測波形を示している。また図 10は、セグメント分割伝送系 における観察点 P1における観測波形を示しており、図 11はセグメント分割伝送系に おける観察点 P2における観測波形を示している。そして図 12は負荷トレース系(従 来手法)における観測点 1における観測波形を示しており、図 13は負荷トレース系( 従来手法)における観測点 2における観測波形を示している。信号の切り替わり部分 は高い周波数成分を含むため、この切り替わりが原因で大きな反射ノイズが発生する 。この実験では、この信号切り替わりにおけるセグメント分割伝送線の効果を評価す るために非常に短い立上り時間(20ps)を設定し、クロックの周波数は 100MHzと遅 いものとした。なお、切り替わり時間 20psは現在のクロック信号の切り替わり時間に比 ベて短い値である力 今後、 VLIS (超大規模集積回路)内においては 10GHz級の クロック信号が要求されることから、プリント基板上においても GHz級のクロック伝送が 望まれ、この要求を実現するためには十分現実的な値である。なお、信号の振幅は 3 . 3 [V]とした。  The experimental results when the switching time of the transmitted clock signal (rising Z fall) is 20 ps, the signal amplitude is 3.3 V, and the period is 10 ns are shown in Figs. FIG. 8 shows an observation waveform in the basic matching wiring system at the observation point P1, and FIG. 9 shows an observation waveform in the basic matching wiring system at the observation point P2. FIG. 10 shows an observation waveform at the observation point P1 in the segment division transmission system, and FIG. 11 shows an observation waveform at the observation point P2 in the segment division transmission system. Fig. 12 shows the observed waveform at observation point 1 in the load trace system (conventional method), and Fig. 13 shows the observed waveform at observation point 2 in the load trace system (conventional method). Since the switching portion of the signal includes a high frequency component, a large reflection noise is generated due to the switching. In this experiment, a very short rise time (20 ps) was set to evaluate the effect of the segmented transmission line on this signal switching, and the clock frequency was set as slow as 100 MHz. The switching time of 20 ps is shorter than the current clock signal switching time. In the future, 10 GHz class clock signals will be required in VLIS (ultra large scale integrated circuits). Also, GHz-class clock transmission is desired, which is a sufficiently realistic value to fulfill this requirement. The amplitude of the signal was 3.3 [V].
[0039] 図 8及び図 9は、それぞれ基本整合配線系に DIMMを接続したときに観測点 P1, P2で観測された波形である。ここで、基本整合配線系とは無負荷時 (DIMMなどの 負荷が接続されて ヽな ヽとき)に完全にインピーダンス整合のとれた理想的な伝送系 のことである。図 8及び図 9には、この基本整合配線系のみ (負荷無し)のときに観測 点 PI, P2において観測された波形(図中の Ideal Wave Form)も同時に示してい る。基本整合配線系のみの場合には、クロック信号は歪みを生じることなくそのまま理 想的な波形で伝搬する。一方、この基本整合配線系に DIMMが接続された場合、 D IMMがインピーダンス不整合点となり反射ノイズ(図中の反射ノイズ: Reflection N oise)が発生し理想的波形に大きな歪みが発生している。さらにこの波形歪みが信号 の伝送遅延(図中の Delay)を引き起こしている。 FIG. 8 and FIG. 9 show waveforms observed at observation points P1 and P2 when a DIMM is connected to the basic matching wiring system, respectively. Here, the basic matching wiring system is an ideal transmission system with perfect impedance matching when there is no load (when a load such as a DIMM is not connected). FIGS. 8 and 9 also show the waveforms (Ideal Wave Form in the figures) observed at the observation points PI and P2 when only the basic matching wiring system (no load) is used. When only the basic matching wiring system is used, the clock signal propagates with an ideal waveform without any distortion. On the other hand, when a DIMM is connected to this basic matching wiring system, the DIMM becomes an impedance mismatching point, causing reflection noise (reflection noise in the figure: Reflection Noise), and large distortion in the ideal waveform. . In addition, this waveform distortion Transmission delay (Delay in the figure).
[0040] 図 10及び図 11は、図 7に示すセグメント分割伝送線による観測点 PI, P2での観 測波形である。比較のために、図 8に示した理想波形 (Ideal Wave Form)も示し ている。わずかな伝送遅延(図中の Delay)とレベルの振動が観測される力 遅延時 間は 200ps程度 (観測点 P2)であり、図 8における遅延時間の約 1Z5である。またレ ベルの振動も誤動作を生ずるほど大きくはなぐほぼ理想的な信号伝送を実現して いる。なお、本セグメント分割伝送線の設計のために用いた GAの個体数は 10であり 、約 300世代進化させた結果を用いた。  FIG. 10 and FIG. 11 show observation waveforms at observation points PI and P2 by the segmented transmission line shown in FIG. For comparison, the ideal waveform (Ideal Wave Form) shown in Fig. 8 is also shown. The power delay time when a slight transmission delay (Delay in the figure) and level oscillation are observed is about 200 ps (observation point P2), which is about 1Z5 of the delay time in Fig. 8. In addition, almost ideal signal transmission, in which the level of vibration is large enough to cause malfunction, is realized. The number of GA individuals used for designing this segmented transmission line was 10, and the result of evolving about 300 generations was used.
[0041] ここで、式(1)、 (2)による適応度値で、基本整合配線系(Z = 76 Ω )に DIMMを  Here, the DIMM is used for the basic matching wiring system (Z = 76 Ω) using the fitness values according to the equations (1) and (2).
0  0
接続した時の適応度値を f 、セグメント分割伝送線によって得られた適応度値を f  The fitness value when connected is f, and the fitness value obtained by the segmented transmission line is f
original  original
として改善率 r を両者の比と定義すると  Defining the improvement rate r as the ratio of the two
STL imp  STL imp
[数 3] rimp = fsTL = 2.59 … (3 ) [ Equation 3] r imp = fsTL = 2.59… (3)
j or gtnal  j or gtnal
[0042] となる。この改善率からも、セグメント分割伝送線によって、伝送信号の信号品質が大 幅に改善されたことがわかる。 [0042] From this improvement rate, it can be seen that the signal quality of the transmission signal is greatly improved by the segmented transmission line.
[0043] 図 12及び図 13は、従来技術である負荷トレース法を用いたときの観測点 PI, P2 における観測波形である(比較のために図 8に示した理想波形 (Ideal Wave For m)も示している)。負荷トレース法は、図 14に示すように、伝送線 (特性インピーダン ス Z )に接続された負荷 Cに対して、その近傍の配線の特性インピーダンスを局所 FIGS. 12 and 13 show the observed waveforms at the observation points PI and P2 when the load tracing method of the related art is used (ideal waveform (Ideal Wave Form) shown in FIG. 8 for comparison). Are also shown). The load tracing method, as shown in Fig. 14, uses a load C connected to a transmission line (characteristic impedance Z) to locally change the characteristic impedance of the nearby wiring.
0 し 0
的に調整し (特性インピーダンス Z'に変更)、 Cと Z'の合成インピーダンスを Zに近  (The characteristic impedance is changed to Z '), and the combined impedance of C and Z' is close to Z.
し 0 づける手法である。具体的に今回の実験では、図 15に示す伝送系を用いた。負荷ト レースの長さは Cの両側でそれぞれ長さ lcmとし、その特性インピーダンス Z'は特  It is a technique to add zero. Specifically, in this experiment, the transmission system shown in Fig. 15 was used. The length of the load trace is lcm on both sides of C, and its characteristic impedance Z 'is
1  1
性インピーダンスの整合計算より Z' = 526 Ωとした (詳細は付録に記載)。ここで、 Z' = 526 Ωのような高インピーダンス配線を実現することは製造プロセス上困難であり、 実際には 100— 150 Ω程度 (製造可能な範囲でできるだけ高 、値)の配線を用いる 。し力しながら今回は、比較のためにこの理論的な整合計算値 Ζ, = 526 [ Ω ]を用い た。なお、前述の通り、その他のパラメータ Z、 R、(R +R ) 76 Ωとした。図 12及 Z '= 526 Ω based on the calculation of impedance matching (details are described in the Appendix). Here, it is difficult to realize a high-impedance wiring such as Z '= 526 Ω due to a manufacturing process. In practice, a wiring of about 100 to 150 Ω (highest possible value in a practicable range) is used. This time, we used this theoretical matching calculation 計算, = 526 [Ω] for comparison. It was. As described above, other parameters Z, R, and (R + R) were set to 76 Ω. Fig. 12
0 T on D  0 T on D
び図 13では、図 8で示した大きな反射ノイズは無くなつている力 遅延時間(Delay) が増加しており、また信号レベルの大きな振動(Bounce Noise)が観測される。これ は、負荷 Cの影響を局所的なインピーダンス Z 'で消そうとしたため、結果的に Z'の値  In Fig. 13 and Fig. 13, the force delay time (Delay), in which the large reflection noise shown in Fig. 8 is eliminated, has increased, and a large signal level oscillation (Bounce Noise) is observed. This is because the effect of the load C was tried to be eliminated by the local impedance Z ', and as a result, the value of Z'
1  1
力 Sとても大きくなり、従って、局所的にインダクタンスが非常に高くなつたためと考えら れる。このような局所的なインピーダンス整合は、ディジタル信号の切り替わり時間が 長い時、すなわち、信号の切り替わりにおける周波数の成分が低い場合は効果があ る。しかし、高速な切り替わりでは、負荷トレース部が集中定数ではなく分布定数とな るので本結果が示すように効果が少なくなる。  It is considered that the force S became very large, and thus the inductance became very high locally. Such local impedance matching is effective when the switching time of the digital signal is long, that is, when the frequency component at the time of the signal switching is low. However, at high-speed switching, the load trace section becomes a distributed constant instead of a lumped constant, and as a result, the effect is reduced.
[0044] 本設計で得られたセグメント分割伝送線の結果を表 1に示す。表中の配線幅 (tran smission— line— width) Wは特性インピーダンス Zと配線形状の関係式  Table 1 shows the results of the segmented transmission line obtained by this design. In the table, wire width (tran smission— line— width) W is the relational expression between characteristic impedance Z and wire shape
Figure imgf000016_0001
Picture
Figure imgf000016_0001
[0045] によって求められる。ここで、 0 ( = 140111 )と丁( = 35111 )は、それぞれ、基板の絶 縁体の厚さと配線の厚さである(図 3参照)。また、 ε ( =4. 2)は、絶縁体の誘電率 である。 [0045] Here, 0 (= 140111) and Ding (= 35111) are the thickness of the substrate insulator and the thickness of the wiring, respectively (see Fig. 3). Ε (= 4.2) is the dielectric constant of the insulator.
[0046] [実験 2]  [Experiment 2]
信号切り替わり時間の依存性を評価するため、実験 1の立上り時間を t = 200psに 変えた場合の結果を表 2にまとめる。この実験においてもセグメント分割伝送線による 改善率は r = 2. 66となり、高い効果が得られている。  Table 2 summarizes the results when the rise time in Experiment 1 was changed to t = 200 ps to evaluate the dependence of the signal switching time. In this experiment as well, the improvement rate with the segmented transmission line was r = 2.66, indicating a high effect.
imp  imp
[0047] 図 16の表 1と図 17の表 2の比較からわ力るように、両者の対応するセグメントの特 性インピーダンス Zは異なっている。特に、立上り時間 20psの時、 Zは 64 Ωと全セグ i 6  As is apparent from a comparison between Table 1 in FIG. 16 and Table 2 in FIG. 17, the characteristic impedances Z of the corresponding segments are different. In particular, when the rise time is 20 ps, Z is 64 Ω and all segments are i 6
メントの中で最も高い特性インピーダンス値となっている(図 16)。一方、立上り時間 2 OOpsの時、 Zは 22 Ωと全セグメントの中で最も低い特性インピーダンス値となってい  It has the highest characteristic impedance value among the elements (Fig. 16). On the other hand, when the rise time is 2 OOps, Z is 22 Ω, which is the lowest characteristic impedance value among all segments.
6  6
る(図 16)。これは、両者の信号切り替わりにおける周波数成分が異るために異なつ た反射ノイズが発生するためである。セグメント分割伝送線はこれらの異なった反射ノ ィズに適応し、それぞれのケースにおいて個々のセグメントの特性インピーダンスを 調整することで理想的な伝送信号を実現して!/ヽる。 (Figure 16). This is because different reflection noises are generated due to different frequency components at the time of switching between the two signals. The segmented transmission line has these different reflection The ideal transmission signal is realized by adjusting the characteristic impedance of each segment in each case!
[0048] [実験 3]  [Experiment 3]
実験 1と実験 2では、特に大きな波形歪みが生じる信号の切り替わりに注目して実 験を行った。このため、クロック周波数については 100MHzという遅い値を用いた。 本実験では、信号周期(クロック周波数)を 500MHzとして実験を行った。 500MHz の信号波長は伝送線長 10cm (図 7)とほぼ等しぐ従って実験 1、実験 2以上に多く の多重反射が発生すると考えられる。そこで本実験では、セグメント数を 20として自 由度をさらに増やすことでこれに対応した (その他の設定値は全て実験 2と同じであ る)。結果を図 20の表 3にまとめる。また、 P1において観測される波形を図 18と図 19 に示す。図 18は、基本整合配線系に DIMMを接続した時の観測波形 (Wave For m under Capacitance)と DIMMが無い時の理想波形(Ideal Wave Form)で ある。 DIMMを接続した影響により、大きな反射ノイズが発生し、矩形波の切り替わり 部分 (立上りと立ち下がり部分)が大きく削り取られて正弦波形のように歪んでいること がわかる。図 19は、セグメント分割伝送線の波形(Wave Form under Capacita nce)と理想波形(Ideal Wave Form)である。図 18において大きく削り取られた信 号切り替わり部分が改善され、理想波形に近付 ヽ波形に整形されて ヽることがわカゝる 。この実験においても r = 2. 13となり、良好な改善効果が得られている。  In Experiments 1 and 2, experiments were conducted with a focus on signal switching that caused particularly large waveform distortion. For this reason, a slow clock frequency of 100 MHz was used. In this experiment, the experiment was performed with a signal period (clock frequency) of 500 MHz. The signal wavelength of 500 MHz is almost equal to the transmission line length of 10 cm (Fig. 7), so it is thought that more multiple reflections occur than in Experiments 1 and 2. Therefore, in this experiment, this problem was dealt with by further increasing the degree of freedom by setting the number of segments to 20 (all other settings are the same as in Experiment 2). The results are summarized in Table 3 in FIG. 18 and 19 show the waveforms observed at P1. Fig. 18 shows the observed waveform (Wave Form Under Capacitance) when a DIMM is connected to the basic matching wiring system and the ideal waveform (Ideal Wave Form) when there is no DIMM. It can be seen that due to the effect of connecting the DIMM, large reflection noise is generated, and the switching part (rising and falling parts) of the rectangular wave is largely cut off and distorted like a sine waveform. FIG. 19 shows a waveform (Wave Form under Capacitance) and an ideal waveform (Ideal Wave Form) of the segmented transmission line. In FIG. 18, it can be seen that the signal switching portion largely removed is improved, and the waveform is approximated to the ideal waveform and shaped into a waveform. Also in this experiment, r = 2.13, indicating a good improvement effect.
imp  imp
[0049] 上記実験から、設計した伝送線上の伝送波形と従来伝送線上の伝送波形を比較 評価し、伝送波形の品質が 2倍以上改善され、理想的な伝送波形が得られることが 分かった。  From the above experiment, the transmission waveform on the designed transmission line and the transmission waveform on the conventional transmission line were compared and evaluated, and it was found that the quality of the transmission waveform was improved by a factor of two or more, and an ideal transmission waveform was obtained.
[0050] なお配線の特性インピーダンス Z'は、キャパシタンス C'とインダクタンス L'に以下 のように分解される。  [0050] The characteristic impedance Z 'of the wiring is decomposed into a capacitance C' and an inductance L 'as follows.
[数 5]
Figure imgf000017_0001
[Number 5]
Figure imgf000017_0001
[0051] ここで、 t は配線基板の絶縁体の誘電率で決定される伝送遅延時間である。負荷 容量 Cの接続された負荷トレースの特性インピーダンスは、 C,, L,, t 及び Cで計 し pd L 算することができ、また、この値を Zと等しくすることから Here, t is a transmission delay time determined by the dielectric constant of the insulator of the wiring board. load The characteristic impedance of the connected load trace with capacitance C can be calculated as pd L by measuring C, L, t and C, and since this value equals Z
0  0
[数 6] [Number 6]
Figure imgf000018_0001
Figure imgf000018_0001
[0052] と表される。これより、 Z =76Ω, C'=10[pF]、t = 112[ps]を代入することで、 Z' [0052]. By substituting Z = 76Ω, C '= 10 [pF] and t = 112 [ps], Z'
0 pd  0 pd
= 526[Ω]を得る。  = 526 [Ω].
産業上の利用可能性  Industrial applicability
[0053] 本発明によれば、特別な集積回路等を用意することなぐ配線パターンの形状だけ で、従来の技術よりも確実に波形歪を減少させることができる利点が得られる。 According to the present invention, there is obtained an advantage that the waveform distortion can be more reliably reduced as compared with the related art only by the shape of the wiring pattern without preparing a special integrated circuit or the like.

Claims

請求の範囲 The scope of the claims
[1] 高周波信号が伝送される伝送線を構成する配線パターンを備えた高周波用配線構 造であって、  [1] A high-frequency wiring structure provided with a wiring pattern constituting a transmission line through which a high-frequency signal is transmitted,
前記配線パターンは形状の相違により特性インピーダンスが異なる複数のセグメン トにより構成され、  The wiring pattern is composed of a plurality of segments having different characteristic impedances due to different shapes,
前記複数のセグメントのそれぞれの前記特性インピーダンスは、前記伝送線を伝播 する前記信号の波形歪を減少させる反射波を隣接する二つの前記セグメントどうしの 境界で発生させるように定められていることを特徴とする高周波用配線構造。  The characteristic impedance of each of the plurality of segments is determined so that a reflected wave that reduces waveform distortion of the signal propagating through the transmission line is generated at a boundary between two adjacent segments. High frequency wiring structure.
[2] 請求項 1に記載の高周波配線構造を絶縁基板上に備えた高周波用実装基板。  [2] A high-frequency mounting substrate comprising the high-frequency wiring structure according to claim 1 on an insulating substrate.
[3] 請求項 1に記載の高周波配線構造を内部の配線パターン中に備えた集積回路。 [3] An integrated circuit comprising the high-frequency wiring structure according to claim 1 in an internal wiring pattern.
[4] 絶縁性基板の表面上に 200MHz以上の高周波信号が伝送される伝送線を構成す る配線パターンを備え且つ前記配線パターンに電気的に接続される集積回路が実 装される高周波用実装基板であって、 [4] A high-frequency mounting having a wiring pattern constituting a transmission line for transmitting a high-frequency signal of 200 MHz or more on a surface of an insulating substrate and mounting an integrated circuit electrically connected to the wiring pattern. A substrate,
前記配線パターンは形状の相違により特性インピーダンスが異なる複数のセグメン トにより構成され、  The wiring pattern is composed of a plurality of segments having different characteristic impedances due to different shapes,
前記複数のセグメントのそれぞれの前記特性インピーダンスは、各セグメントの境界 で発生する反射ノイズが重畳し合うことにより前記伝送線を伝播する前記信号の波形 が整形されるように定められていることを特徴とする高周波用実装基板。  The characteristic impedance of each of the plurality of segments is determined so that the waveform of the signal propagating through the transmission line is shaped by superimposition of reflected noise generated at the boundary of each segment. High frequency mounting board.
[5] 前記セグメントの前記特性インピーダンスは、前記セグメントの幅寸法、長さ寸法及び 厚み寸法の少なくとも一つを変えることにより所定の値に設定されている請求項 4に 記載の高周波用実装基板。  5. The high-frequency mounting board according to claim 4, wherein the characteristic impedance of the segment is set to a predetermined value by changing at least one of a width dimension, a length dimension, and a thickness dimension of the segment.
[6] 前記セグメントの前記特性インピーダンスは、前記セグメントの長さ寸法を一定として 、その幅寸法を変えることにより設定されている請求項 2に記載の高周波用実装基板  6. The high-frequency mounting board according to claim 2, wherein the characteristic impedance of the segment is set by changing a width of the segment while keeping a length of the segment constant.
[7] 高周波信号が伝送される伝送線を構成する配線パターンを備えた高周波用配線構 造を、形状の相違により特性インピーダンスが異なる複数のセグメントにより形成する 方法であって、 [7] A method for forming a high-frequency wiring structure including a wiring pattern constituting a transmission line through which a high-frequency signal is transmitted by a plurality of segments having different characteristic impedances due to different shapes,
最適化アルゴリズムを用いて、前記伝送線を伝播する前記信号の波形歪を減少さ せる反射波を隣接する二つの前記セグメントどうしの境界で発生させるように、前記 複数のセグメントのそれぞれの前記特性インピーダンスを設計することを特徴とする 高周波用配線構造の形成方法。 Using an optimization algorithm to reduce waveform distortion of the signal propagating through the transmission line. A method for forming a high-frequency wiring structure, wherein the characteristic impedance of each of the plurality of segments is designed so that a reflected wave to be generated is generated at a boundary between two adjacent segments.
[8] 前記セグメントの長さ寸法を一定として、その幅寸法を設計することにより前記特性ィ ンピーダンスを設計することを特徴とする請求項 7に記載の高周波用配線構造の形 成方法。  8. The method for forming a high-frequency wiring structure according to claim 7, wherein the characteristic impedance is designed by designing the width of the segment while keeping the length of the segment constant.
[9] 前記最適化アルゴリズムが遺伝的アルゴリズムである請求項 7に記載の高周波用配 線構造の形成方法。  9. The method for forming a high-frequency wiring structure according to claim 7, wherein the optimization algorithm is a genetic algorithm.
[10] 高周波信号が伝送される伝送線を構成する配線パターンを備えた高周波用配線構 造を変えることにより前記高周波信号を波形整形する方法であって、  [10] A method of waveform shaping the high-frequency signal by changing a high-frequency wiring structure including a wiring pattern forming a transmission line through which a high-frequency signal is transmitted,
前記配線パターンを形状の相違により特性インピーダンスが異なる複数のセグメン トにより構成し、  The wiring pattern is composed of a plurality of segments having different characteristic impedances due to different shapes,
前記複数のセグメントのそれぞれの前記特性インピーダンスを、各セグメントで発生 する反射ノイズを重畳して前記伝送線を伝播する前記高周波信号の波形を整形する ように定めることを特徴とする高周波信号の波形整形方法。  The waveform shaping of a high-frequency signal is characterized in that the characteristic impedance of each of the plurality of segments is determined so as to shape the waveform of the high-frequency signal propagating through the transmission line by superimposing reflection noise generated in each segment. Method.
[11] 最適化アルゴリズムを用いて、前記複数のセグメントの形状を設計することを特徴と する請求項 10に記載の高周波信号の波形整形方法。 11. The high-frequency signal waveform shaping method according to claim 10, wherein the shapes of the plurality of segments are designed using an optimization algorithm.
PCT/JP2004/017001 2003-11-19 2004-11-16 Wiring structure for high-frequency wave, method for forming wiring structure for high-frequency wave, and method for shaping high-frequency signal waveform WO2005050733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003390010A JP4972270B2 (en) 2003-11-19 2003-11-19 High frequency wiring structure, high frequency wiring structure forming method, and high frequency signal waveform shaping method
JP2003-390010 2003-11-19

Publications (1)

Publication Number Publication Date
WO2005050733A1 true WO2005050733A1 (en) 2005-06-02

Family

ID=34616320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017001 WO2005050733A1 (en) 2003-11-19 2004-11-16 Wiring structure for high-frequency wave, method for forming wiring structure for high-frequency wave, and method for shaping high-frequency signal waveform

Country Status (2)

Country Link
JP (1) JP4972270B2 (en)
WO (1) WO2005050733A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699056B1 (en) * 2019-01-21 2020-06-30 Samsung Electronics Co., Ltd. Computer-implemented method, processor-implemented system, and non-transitory computer-readable storage medium storing instructions for simulation of printed circuit board
CN118102600A (en) * 2024-04-22 2024-05-28 成都光创联科技有限公司 Design method of high-speed optical device circuit board

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855101B2 (en) * 2005-02-25 2012-01-18 三菱電機株式会社 Signal transmission circuit, IC package and mounting board
JP2007128339A (en) * 2005-11-04 2007-05-24 Matsushita Electric Ind Co Ltd Method for designing package of semiconductor device, layout design tool for executing the same and method for manufacturing semiconductor device
JP5211909B2 (en) * 2008-07-22 2013-06-12 富士通株式会社 Leadframe design support device, leadframe design support method, and leadframe design support program
JP2011215681A (en) * 2010-03-31 2011-10-27 Fujitsu Ltd Program and apparatus for verifying wire spacing
JP5703206B2 (en) * 2011-12-19 2015-04-15 株式会社日立製作所 Semiconductor device, signal transmission system, and signal transmission method
JP5246899B1 (en) * 2012-06-07 2013-07-24 国立大学法人 筑波大学 High-frequency wiring structure, high-frequency mounting substrate, high-frequency wiring structure manufacturing method, and high-frequency signal waveform shaping method
JP5360786B1 (en) * 2012-06-07 2013-12-04 国立大学法人 筑波大学 High-frequency wiring structure, high-frequency mounting substrate, high-frequency wiring structure manufacturing method, and high-frequency signal waveform shaping method
JP5925352B2 (en) * 2014-04-14 2016-05-25 キヤノン株式会社 Printed circuit board and printed wiring board
JP6267570B2 (en) * 2014-04-23 2018-01-24 株式会社アドバンテスト Compensation circuit, information processing apparatus, compensation method, and program
JP6357033B2 (en) * 2014-06-30 2018-07-11 キヤノン株式会社 Printed circuit board
JP2016219615A (en) * 2015-05-21 2016-12-22 パナソニックIpマネジメント株式会社 Printed wiring board
CN112151087B (en) * 2019-06-28 2023-11-24 深圳市金邦科技发展有限公司 Impedance transformation network and memory module comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330350A (en) * 1996-06-13 1997-12-22 Toshiba Corp Device and method for element arrangement
JPH10275175A (en) * 1997-02-03 1998-10-13 Fujitsu Ltd Device and method for arranging body in space
JP2003134177A (en) * 2001-10-25 2003-05-09 Nec Corp Design method for digital signal transmission circuit
JP2003281210A (en) * 2002-03-26 2003-10-03 Hitachi Ltd Layout design method and data library providing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330350A (en) * 1996-06-13 1997-12-22 Toshiba Corp Device and method for element arrangement
JPH10275175A (en) * 1997-02-03 1998-10-13 Fujitsu Ltd Device and method for arranging body in space
JP2003134177A (en) * 2001-10-25 2003-05-09 Nec Corp Design method for digital signal transmission circuit
JP2003281210A (en) * 2002-03-26 2003-10-03 Hitachi Ltd Layout design method and data library providing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699056B1 (en) * 2019-01-21 2020-06-30 Samsung Electronics Co., Ltd. Computer-implemented method, processor-implemented system, and non-transitory computer-readable storage medium storing instructions for simulation of printed circuit board
CN118102600A (en) * 2024-04-22 2024-05-28 成都光创联科技有限公司 Design method of high-speed optical device circuit board

Also Published As

Publication number Publication date
JP4972270B2 (en) 2012-07-11
JP2005150644A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
WO2005050733A1 (en) Wiring structure for high-frequency wave, method for forming wiring structure for high-frequency wave, and method for shaping high-frequency signal waveform
US7459985B2 (en) Connector having a cut-out for reduced crosstalk between differential conductors
KR100750038B1 (en) Compact electromagnetic coupler for use with digital transmission systems
KR100450677B1 (en) Semiconductor memory device with data bus scheme for reducing high frequency noise
KR100689967B1 (en) Memory system with improved multi-module memory bus using wilkinson power divider
US9548551B1 (en) DIMM connector region vias and routing
GB2024525A (en) Integrated circuit transmission lines
JP2003524288A (en) Backplane with reduced LC product
US6873533B2 (en) Unbuffered memory system
US20210407915A1 (en) Printed circuit board compensation structure for high bandwidth and high die-count memory stacks
US5696667A (en) Backplane for high speed data processing system
WO2016105782A1 (en) Two-part electrical connector
EP2882266B1 (en) Trace structure for improved electrical signaling
DE102021133949A1 (en) CHIP MODULE STRUCTURE AND METHOD AND SYSTEM FOR CHIP MODULE DESIGN USING CHIP PACKAGE CO-OPTIMIZATION
JPH1027049A (en) Interconnected bus
US6968474B2 (en) Generating and recovering clock signals based on differential scheme
Huang et al. Suppression of crosstalk using serpentine guard trace vias
US6067596A (en) Flexible placement of GTL end points using double termination points
JP5246899B1 (en) High-frequency wiring structure, high-frequency mounting substrate, high-frequency wiring structure manufacturing method, and high-frequency signal waveform shaping method
US6822526B2 (en) Voltage plane with high impedance link
JP2004281960A (en) Ultra-high speed interface using intersymbol interference suppression resistor
JP5240828B2 (en) Semiconductor package substrate design method
Wu et al. Passive equalizer design on high density interconnects for 25Gbps high speed IO and beyond
US10073937B2 (en) Distributed LC resonant tanks clock tree synthesis
Yasunaga et al. The design of segmental-transmission-line for high-speed digital signals using genetic algorithms

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase