WO2005048614A1 - Procede de programmation de paquets pour systeme de communication sans fil - Google Patents

Procede de programmation de paquets pour systeme de communication sans fil Download PDF

Info

Publication number
WO2005048614A1
WO2005048614A1 PCT/CN2003/000966 CN0300966W WO2005048614A1 WO 2005048614 A1 WO2005048614 A1 WO 2005048614A1 CN 0300966 W CN0300966 W CN 0300966W WO 2005048614 A1 WO2005048614 A1 WO 2005048614A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
delay
user
scheduling
jitter
Prior art date
Application number
PCT/CN2003/000966
Other languages
English (en)
French (fr)
Inventor
Junfeng Zhang
Jiewei Ding
Yi Sun
Jun Zhang
Yingchun Pu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to AU2003280933A priority Critical patent/AU2003280933A1/en
Priority to PCT/CN2003/000966 priority patent/WO2005048614A1/zh
Priority to US10/579,131 priority patent/US7630320B2/en
Priority to EP03770870.8A priority patent/EP1691562B1/en
Priority to CNB2003801104262A priority patent/CN100394810C/zh
Publication of WO2005048614A1 publication Critical patent/WO2005048614A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/52Queue scheduling by attributing bandwidth to queues
    • H04L47/522Dynamic queue service slot or variable bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/54Loss aware scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/56Queue scheduling implementing delay-aware scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/58Changing or combining different scheduling modes, e.g. multimode scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/625Queue scheduling characterised by scheduling criteria for service slots or service orders
    • H04L47/626Queue scheduling characterised by scheduling criteria for service slots or service orders channel conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to a wideband code division multiple access (WCDMA) communication system in the field of wireless communications, and in particular, to a packet scheduling method of a WCDMA communication system.
  • WCDMA wideband code division multiple access
  • Wideband code division multiple access is a wireless transmission technology scheme proposed by the third generation mobile communication system standardization organization.
  • the well-known time division multiple access (TDMA) and frequency division multiple access (FDMA) technologies are mainly used for voice and low-rate data transmission.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA Code Division Multiple Access
  • the third generation mobile communication system can provide mobile users with multimedia services similar to the fixed network, support global roaming and have good quality of service. Its biggest feature is that it can support high-speed wireless services, such as wireless Internet browsing, downloading, high-speed Quality video, audio streaming service, FTP service, video phone, email and other services.
  • 3GPP 3rd Generation Partnership Project
  • the R99 version supports air transmission rates up to 2Mbps.
  • adaptive coding modulation AMC and hybrid feedback are used in high-speed downlink packet access HSDPA systems.
  • the retransmission HARQ technology enables the third generation mobile communication system to support packet services with a maximum air transmission rate of 12 Mbps.
  • the indexes for evaluating the packet scheduling algorithm are mainly the peak transmission rate, the service quality of service QoS, and whether each user's packets are treated fairly.
  • This method is quite effective for packet services without delay sensitivity, but for packet services with sensitive transmission delay, it cannot meet the quality of service (QoS) requirements of such services. Because the method uses the channel quality as the main criterion, the delay time for packet services with good channel quality is short, and the delay time for packet services with poor channel quality is long. If it is sensitive to the transmission delay, The service will delay transmission due to poor channel quality, which will cause the service's QoS requirements to be unsatisfactory.
  • QoS quality of service
  • the packet loss rate cannot be further reduced, and there is no relevant processing for users with packet loss, which may cause the packet loss rate of users in poor transmission environments to remain high. This affects the user's communication quality and satisfaction, and compared to wired transmission, packet loss often occurs in a burst. This environment requires special handling of packet loss.
  • a common solution is to set a long enough data buffer to compensate for the shortcomings of delay jitter, such as US patent application 20030112796 “Voice and data exchange over a packet based network with fax relay spoofing" Packet voice and data exchange) and US patent application 20030026275 “Dynamic Jitter buffering for voice-over-IP and other packet-based communication systems” (but dynamic delay jitter buffering for IP-based voice and other packet communication systems) If the jitter is large, the data buffer set to control the delay jitter must also be large, thereby increasing the data transmission delay. If the data transmission delay exceeds a certain threshold, the quality of service requirements of wireless communication will not be met. The prior art does not consider the processing of delay jitter in the packet scheduling method under the condition that all quality of service QoS requirements are met, thereby destroying the communication quality of some services.
  • the technical problem to be solved by the present invention is to provide a packet scheduling method for a wireless communication system, so as to reduce the packet loss rate and constrain delay jitter, so as to achieve packet delay, throughput, and delay under the premise of meeting the QoS of each service.
  • the jitter and packet loss rate are optimal.
  • a user packet queue to be transmitted is divided into a packet loss user packet queue. If the real-time packet loss rate of a user exceeds a predetermined packet loss rate threshold, the user's Connection; if the user's real-time packet loss rate does not exceed the threshold Value, the user packet is scheduled according to the size of the packet loss rate; for a user packet queue without packet loss, scheduling is performed based on the packet length, channel state, delay, and delay jitter.
  • the present invention reduces the packet loss rate by preferentially scheduling users with a high packet loss rate, especially for users in a poor transmission environment to ensure unfair transmission Relative fairness of transmission in the environment; when the packet loss rate exceeds the threshold, the connections of these users are temporarily suspended, waiting for the improvement of the transmission environment.
  • the present invention fully considers the requirements of delay-jitter users' sensitive packet services, restricts the delay jitter that is kept constant, and improves the communication quality of these users.
  • FIG. 1 is a flowchart of a packet scheduling method according to the present invention
  • FIG. 2 is a schematic diagram of applying the packet scheduling method of the present invention in a WCDMA HSDPA system
  • FIG. 3 is a specific flowchart of scheduling performed by a scheduling unit in FIG. 2;
  • FIG. 4 is a schematic diagram of the scheduling results of the HSDPA system on the code channel and time after scheduling. detailed description
  • the technical solution of the present invention is described in further detail below with reference to the drawings and embodiments.
  • the core idea of the present invention is that the user packet queue to be transmitted is first divided into a user packet queue with packet loss and a user packet queue without packet loss; for a user packet queue with packet loss, if the user's real-time packet loss rate If the predetermined packet loss rate threshold is exceeded, the user's connection is terminated; if the real-time packet loss rate of the user does not exceed the threshold, the user packets are scheduled according to the size of the packet loss rate; The user packet queue is scheduled according to the packet length, channel status, delay, and delay jitter.
  • step 100 it is determined whether a packet queue to be transmitted is empty (step 100). If it is empty, step 108 is executed to exit the scheduling algorithm. If the packet queue is not empty, relevant information required for scheduling is obtained at the beginning of each scheduling cycle (step 101), including the channel quality status, the length of all packets to be sent, the maximum delay threshold of each service, and the Delay waiting time, real-time packet loss rate for each user, real-time packet loss rate threshold for each user, grouping Delay jitter, the maximum threshold for packet delay jitter.
  • the channel quality status is the reciprocal of the maximum possible transmission rate of the wireless channel, which is expressed as ⁇ , where i represents the user, j represents the scheduling period, and the value of j is an integer not less than 1.
  • the channel quality status can also be expressed in other ways, such as using the reciprocal of the measured signal-to-interference ratio of the channel or using the transmission path loss.
  • the length of all packets to be transmitted is represented by ⁇ , where i represents the user to which it belongs, j represents the scheduling period, and the value of j is an integer not less than 1.
  • the maximum delay threshold of each service is expressed as max ,,, and m correspond to the types of services that limit the maximum delay threshold.
  • the delay waiting time of each packet is expressed as ⁇ ., Where i represents the user, j represents the scheduling period, and j's The value is an integer not less than 1.
  • the real-time packet loss rate of each user is represented as PJ, where i represents the user, j represents the scheduling period, and the value of j is an integer not less than 1.
  • the real-time packet loss rate P. can be expressed as being in all transmission packets over a period of time. The proportion of dropped packets depends on the statistical period of the entire system. Generally, it can be selected in the range of 200 milliseconds to 2 seconds. It is best to use 200 milliseconds because the shorter the time, the faster the system responds. However, it will increase the resource consumption of the system, so it needs to be considered comprehensively.
  • the real-time packet loss rate threshold for each user is represented by PZ max , and Z raax is a value greater than 0.
  • the delay jitter of a packet is expressed as Jitte riJ , where i indicates the user, j indicates the scheduling period, and the value of j is an integer not less than 1.
  • the delay jitter can be expressed recursively:
  • the maximum delay jitter threshold of the packet is expressed as Jitter, and n corresponds to the type of the service that limits the maximum delay jitter threshold.
  • step 102 determine whether there is a real-time packet loss rate PL U greater than 0 users (step 102), if there is, determine whether there is a user whose real-time packet loss rate J,., Is greater than the real-time packet loss rate threshold P max (step 103), and if there is, terminate the user's connection (step 104) ), And determine whether the packet queue is empty (step 107); if there are no users whose real-time packet loss rate is greater than the real-time packet loss rate threshold PL, that is, the above-mentioned users are users with PZ max ⁇ J,> 0, the packet is lost according to the user The user group with a large packet loss rate is scheduled first according to the size of the packet rate until all user packet schedulings smaller than the real-time packet loss rate threshold PL are completed, and then step 107 is performed to determine whether the packet queue is empty.
  • step 106 is performed, taking into account the packet length /, channel status, delay, ⁇ , delay jitter, etc. in the scheduling queue. group, may be carried out in accordance with the principle of minimum (ax, ", - - ⁇ ⁇ ⁇ ⁇ ,” ⁇ ⁇ ) / ⁇ . ⁇ priority scheduling, the product terms (maxm - W tJ).
  • Representative constraints on delay, ( Jtor max , mecanic-Jitter ⁇ ) represents the constraint on the delay jitter, /, represents the consideration of the packet length, and ⁇ represents the consideration of the channel state; you can also follow (J er max , remedy-) /,., ⁇ . / ⁇ . Minimum scheduling.
  • it is determined whether the packet queue is empty it is determined whether the packet queue is empty (step 107).
  • step 108 If the packet queue is empty, the scheduling ends (step 108). If it is not empty, go to step 101 to perform scheduling of the next cycle until all the packet queues to be transmitted are empty.
  • FIG. 2 is a schematic diagram of applying the packet scheduling method of the present invention in a WCDMA HSDAP system.
  • a solid line represents downlink user data and control information, and a dashed line represents uplink signaling
  • MAC-c / sh represents media for a control channel and a shared channel.
  • Access control; MAC-d indicates media access control for dedicated data channels;
  • MAC-hs indicates media access control for downlink high-speed packet access channels.
  • the MAC-hs module includes a flow control module 202, a scheduling unit 203, a hybrid automatic repeat (Harq) module 204, and a TCP friendly rate control (TFRC) module 205.
  • Hardq hybrid automatic repeat
  • TFRC TCP friendly rate control
  • the MAC-c / sh or MAC-d module 200 sends the packaged data in the MAC-d protocol data unit to the flow control module 202, and the flow control module 202 controls the MAC-c / sh or MAC-d module 200 and MAC- After the optimal traffic between the HS modules, the data is sent to the scheduling unit 203.
  • the scheduling unit 203 temporarily buffers the data packets and calculates the delay waiting time W u of each packet, the real-time packet loss rate of each user, and the delay jitter of the packet J ".
  • the scheduling unit 203 receives the control sent by the MAC controller 201 Information S211, control information S211 includes service QoS requirements, delay threshold) ⁇ ax ,, mecanic, delay jitter threshold J e r max , conjunction, real-time packet loss rate threshold Z max for each user, has occurred before MAC-hs And the upper limit of the total power of all HS-DSCHs.
  • the uplink signaling S212 from the Hi-Speed Downlink Shared Channel (HS-DSCH) 206 contains channel status information, such as transmission The maximum number of transmission bits, modulation method, number of code channels, etc. in the time interval TTI. Then, the scheduling unit 203 schedules the packet data according to the scheduling method of the present invention.
  • the packet data After the packet data is scheduled, it is transmitted to the HARQ module 204 to perform a hybrid feedback retransmission function, and then sent to the TFRC module 205 to perform a transmission format selection function. Finally, the packet data is allocated to the HS-DSCH 206 for air transmission.
  • FIG. 3 is a specific flowchart of packet scheduling performed by the scheduling unit 203 in FIG. 2.
  • the scheduling method applied in the HSDPA system divides the priority from high to low for packets with delay jitter and delay constraints, packets with delay constraints only, and packets without delay constraints.
  • the scheduling method not only performs packet scheduling according to the period of the transmission time interval TTI in time sequence, but also schedules the code channel and power in the same TTI period.
  • the packet data that needs to be transmitted through the HS-DSCH 206 is read into the queue buffer (step 300), because it is not necessarily available when considering the read data, it is necessary to determine whether the buffer queue is not empty (step 301). If it is empty, a TTI packet scheduling period is completed (step 308).
  • step 302 determines whether there is a delay-sensitive packet service in the queue (step 302). If it does not exist, it indicates that the queue is a packet service without a delay constraint, and step 306 is performed. If there is a delay-sensitive packet service, it is further determined whether there is a delay-jitter-sensitive packet service in the delay-sensitive packet service (step 303), and if it exists, step 304 is performed; if it does not exist, then Go to step 305.
  • Such packet data corresponding to the two-step determination in step 302 and step 303, may have to be transmitted is delay
  • the priority of each packet is from high to low, that is, the packet with delay jitter and delay constraints has the highest priority, only the packet with delay constraints has the second priority, and the packet without delay constraints has the lowest priority;
  • Step 304 is scheduling for packets with time-delay jitter and delay constraints.
  • the scheduling method of the present invention can be used to allocate code channels and power. For a specific implementation, refer to FIG. 1.
  • Step 305 performs scheduling for packet services without delay jitter but with delay constraints.
  • step 306 scheduling is performed for a packet service without a delay constraint, which has the lowest priority, and a normal wireless WFQ fair scheduling method may be adopted.
  • step (307) is performed to determine whether the code channel allocated or the total power used in the TTI scheduling period is greater than the specified upper limit, and if it exceeds Complete a TTI packet scheduling period (step 308). If it does not exceed, return to step 300, re-read new data, and continue to schedule packet services in this TTI scheduling period. After step 308 ends, it returns to step 300. After re-reading the new data, the packet service is scheduled in the next TTI scheduling period.
  • FIG. 4 is a schematic diagram of the scheduling result of the HSDPA system between the code channel and the time after the scheduling is performed. Assume that the maximum number of code channels is five, and there are three users in the system. All code channels and power are dispatched to user 1 in the first TTI; two code channels are dispatched to users in the second TTI. 2 and 3 code channels are scheduled to user 3; the scheduling result in the 3rd TTI is the same as the 2nd TTI; the scheduling result in the 4th TTI is the same as the 1st TTI; the 3rd in the 5th TTI Code channels are dispatched to user 2 and 2 code channels are dispatched to user 3. It can be shown that the scheduling method of the HSDPA system is to jointly schedule packets in code channel and time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种无线通信系统的分组调度方法
技术领域
本发明涉及无线通信领域的宽带码分多址 (WCDMA )通信系统, 具体地 说, 涉及 WCDMA通信系统的分组调度方法。
背景技术
宽带码分多址是第三代移动通信系统标准化组织提出的无线传输技术 方案, 熟知的时分多址(TDMA )和频分多址(FDMA )技术主要用于话音和低 速率的数据传输, 具有一定的局限性, 而码分多址(CDMA )调制技术是存在 大量系统用户的时候采用的一种新的通信技术。
第三代移动通信系统能够为移动用户提供与固定网络类似的多媒体业 务, 支持全球漫游并具有良好的服务质量, 其最大特点是能够支持高传输速 率的无线业务, 比如无线上网浏览、 下载、 高质量的视频、 音频流服务、 FTP 服务、 可视电话、 电子邮件等服务。 在第三代伙伴计划(3GPP )标准协议中, R99版本支持空中传输速率最高可以达到 2Mbps , 在增强型的 R5版本中, 在 高速下行分组接入 HSDPA 系统中采用自适应编码调制 AMC和混合反馈重传 HARQ技术, 使得第三代移动通信系统可以支持最高空中传输速率 12Mbps的 分组业务。 由于需要传输的分组业务速率很高, 因此当分组到达 WCDMA系统 的基站后,如何将分组妥善调度到空中链路进行传输是影响最终传输效率的 重要因素。 评价分组调度算法的指标主要是峰值传输速率、 业务的服务质量 QoS满足情况、 各用户的分组间是否公平对待等。
在有线数据通信网络中, 已经有了分组调度的技术, 主要是为了提高网 络的传输效率, 例如美国专利申请 20030103453 " System and method for managing flow bandwidth utilization in a packet communication environment" (一种在分组通信环境中管理流带宽实现的系统和方法)提出了一种时分队 歹 'J速率控制 ime-Divi s ion-Queue Rate Control Scheme (TDQ-RCS)方法来 解决有线数据通信的分组调度问题,但是在有线通信系统中对分组调度的分 析无需关注信道的质量, 一般情况下, 只基于两种信道状态来进行分析, 即 信道可用和信道不可用, 而无线通信的信道状态可存在有多种状态, 因此该 发明无法解决无线通信系统的分组调度问题,应用于无线通信的调度方法比 有线数据通信的调度方法复杂的多。
为了满足无线通信分组调度的需要,需要在原有的有线数据通信的分组 调度方法上增加信道条件对调度的影响, 例如美国专利申请 20020044527 " Channel efficiency based packet scheduling for interactive data in cellular networks" (蜂窝网中交互式数据基于分组调度的信道效率) 中提供了一种 应用于 GPRS 系统的分组调度方法, 该方法结合常用的加权公平队列 We i ghted Fa i r Queue ing ( WFQ )调度方法, 考虑信道效率参数对分组调度 权重的影响。 信道效率是无线环境中最大允许传输速率的倒数, 表征了每个 用户对应的信道^:量, 信道质量越好, 分配给这个用户的分组的资源越高。 该方法对于无时延敏感性的分组业务是相当有效的,但是针对传输时延比较 敏感的分组业务来说, 则不能满足该类业务的服务质量 QoS需求。 因为该方 法以信道质量作为最主要的判断准则, 因此信道质量好的分组业务等待传输 的时延就短, 信道质量差的分组业务等待传输的时延就长, 若对传输时延比 较敏感的业务则会由于信道质量差而耽误了传输,造成该业务的 QoS需求无 法满足。
针对特定的有时延敏感性的分组业务, 也有相应的解决办法, 例如美国 专利申请 20030101274 "Packet transmission scheduling technique" (分组传输 调度技术)描述了处理 WCDMA高速下行分组接入 HSDPA系统中实时分组业务 的调度方法, 该方法主要是基于无线信道状态, 分组的优先级、数量、延迟, 以及服务质量 QoS决定的最大延迟限制等判断分组的权重,如果数据延迟越 接近最大延迟限制或者延迟足够长, 则此数据越具有较高的传输优先级。 然 而对于实时分组业务来说, 如果数据延迟超过了最大延迟限制, 则相应的数 据分组将被丟弃。 分组丟弃的结果很难避免, 依靠现有技术, 无法进一步的 降低分组的丢失率, 并且对于存在分组丢失的用户没有相关处理, 可能造成 处于较差传输环境的用户的分组丢失率居高不下,影响用户的通信质量和满 意度, 而且无线环境相对于有线传输, 分组丟失往往以突发形式出现, 这种 环境需要对分组丢失进行特殊处理。
上述现有方法虽然考虑到无线通信的部分特点,但是还有些问题没有考 虑到。 例如, 分组实时业务中有些业务对时延抖动非常敏感, 比如分组语音 频、 视频业务等, 时延抖动会极大破坏通信的质量。 常用的解决办法是设置 足够长的数据緩冲,从而弥补时延抖动的缺点,如美国专利申请 20030112796 " Voice and data exchange over a packet based network with fax relay spoofing" (基于传真延时欺骗的网絡的分组话音和数据交换) 和美国专利 申请 20030026275 " Dynamic Jitter buffering for voice-over-IP and other packet-based communication systems" (基于 IP的话音和其他分组通信系统 的动态抖动緩冲), 但是如果时延抖动大, 则为控制时延抖动而设置的数据 缓冲也必须大, 从而加大了数据的传输延时, 如果当数据的传输延时超过一 定的门限, 则不满足无线通信的服务质量要求。 现有技术没有考虑在满足所 有服务质量 QoS要求下, 在分组调度方法中对时延抖动的处理, 从而破坏了 某些业务的通信质量。
发明内容
本发明所要解决的技术问题在于提供一种无线通信系统的分组调度方 法, 以降低分组丢失率并约束时延抖动, 从而达到在满足各业务 QoS的前提 下, 使分组延时、 吞吐量、 延时抖动和分组丟失率达到最优。
本发明所述无线通信系统的分组调度方法,将待传输的用户分组队列分 在分組丢失的用户分组队列,如果用户的实时分组丢失率超过预定的分组丢 失率门限值, 则中止该用户的连接; 如果用户的实时分组丢失率未超过门限 值, 则按照分组丢失率的大小对用户分组进行调度; 对于不存在分组丟失的 用户分组队列, 居分组长度、 信道状态、 延时、 时延抖动进行调度。
本发明在存在一定范围内分组丢失的情况下,通过优先调度分组丟失率 高的用户, 降低了分组丢失率, 尤其是处于较差传输环境中的用户的分组丟 失率, 保证了处于不公平传输环境中传输的相对公平性; 当分组丟失率超过 门限时, 暂时中止这些用户的连接, 等待传输环境的改善。 本发明充分考虑 时延抖动用户敏感的分组业务的要求, 对保持恒定的时延抖动进行约束, 提 高了这些用户的通信质量。
附图说明
图 1是本发明分组调度方法的流程图;
图 2是 WCDMA的 HSDPA系统中应用本发明分组调度方法的示意图; 图 3是图 2中调度单元进行调度的具体流程图;
图 4是经过调度后, HSDPA系统在码道和时间上的调度结果示意图。 具体实施方式
下面结合附图和实施例, 对本发明的技术方案做进一步的详细描述。 本发明的核心思想在于,首先将待传输的用户分组队列分为存在分组丟 失的用户分组队列与不存在分组丢失的用户分组队列;对于存在分组丟失的 用户分组队列, 如果用户的实时分组丟失率超过预定的分组丟失率门限值, 则中止该用户的连接; 如果用户的实时分组丢失率未超过门限值, 则按照分 组丢失率的大小对用户分组进行调度; 而对于不存在分组丟失的用户分组队 列, 则根据分组长度、 信道状态、 延时、 时延抖动进行调度。
如图 1所示的流程图中, 首先判断需要传输的分组队列是否为空(步骤 100 ) , 若为空, 则执行步骤 108退出调度算法。 如果分组队列不为空, 则 在每次调度周期的开始获取调度所需的相关信息 (步骤 101 ) , 包括信道质 量状态、 所有待发送的分组的长度、 各业务的最大延迟门限、 各分组的延迟 等待时间、 各用户的实时分组丢失率、 各用户的实时分组丟失率门限、 分组 的时延抖动、 分组的时延抖动最大门限。
在上述信息中, 信道质量状态为无线信道最大可能传输速率的倒数, 表 示为 ς , 其中 i表示所属用户, j表示调度周期, j的取值为不小于 1的整 数。 信道质量状态 也可以采用其他的表达方式, 例如釆用信道的测量信 干比的倒数或者采用传输路损表示。
所有待发送的分组的长度用^表示, 其中 i表示所属用户, j表示调度 周期, j的取值为不小于 1的整数。 '
各业务的最大延迟门限表示为 max,,„ , m对应为限制最大延迟门限的业务 的种类。 各分组的延迟等待时间表示为^^ . , 其中 i表示所属用户, j表示调 度周期, j的取值为不小于 1的整数。
各用户的实时分组丢失率表示为 PJ , 其中 i表示所属用户, j表示调 度周期, j的取值为不小于 1的整数; 实时分组丟失率 P .可以表示为一段 时间内所有传输分组中被丟弃的分组的比例,具体的时间长度视整个系统的 统计周期而定,一般可在 200毫秒至 2秒的范围内选择,最好采用 200毫秒, 因为时间越短, 则系统反应就越快, 但会加大系统的资源消耗, 因此需综合 考虑。 各用户的实时分组丢失率门限用 PZmax表示, 且 Zraax为大于 0的值。
分组的时延抖动表示为 JitteriJ, 其中 i表示所属用户, j表示调度周期, j的取值为不小于 1的整数; 时延抖动 Jitter.可以用递归的方式表示:
Jitter^. = 0 , 当 _ = 1时,
, 当 _/ e [2, +∞) ,
Figure imgf000007_0001
其中 a e (0,l)。 时延抖动 JZY .,还可以采用其它的表达方式, 例如可定义时延 抖动的递归公式为 Jitter^ = a \{Wi ) - [W^ )| + (l - a) Jitter^。 分组的时延抖动最大 门限表示为 Jitter , n对应为限制时延抖动最大门限的业务的种类。
在获得了上述相关信息后, 判断当前是否存在实时分組丢失率 PLU大于 0 的用户 (步骤 102) , 若存在, 则判断是否存在实时分组丟失率 J,., 大于 实时分组丢失率门限 P max的用户 (步骤 103) , 如果有, 则中止该用户的连 接 (步骤 104) , 并判断分組队列是否为空 (步骤 107) ; 如果不存在实时 分组丢失率 大于实时分组丢失率门限 PL 的用户, 即上述用户为 PZmax≥ J, >0的用户, 则按照用户分组丟失率的大小优先调度分组丢失率大 的用户分组, 直到所有小于实时分组丢失率门限 PL 的用户分组调度完成, 然后执行步驟 107, 判断分组队列是否为空。
如果不存在实时分组丢失率 Z,, 大于 0的用户, 则执行步骤 106, 综合 考虑分组长度 /, 、信道状态 ς,、 延时)^ .、 时延抖动 J ec.等因素调度队列中 的分组, 可按照 ( ax,„, - ^ χκ^Χ,„ - Υ ^)/υ.ς 最小的原则进行优先调度, . 前述乘积项中 ( maxm - WtJ )代表对延时的约束, (Jtormax,„ - Jitter^ )代表对时延抖 动的约束, /, 代表了对分组长度的考虑, ς 代表了对信道状态的考虑; 也 可以按照 (J ermax,„- )/,., ^./^^.最小的原则进行调度。 调度完成后判断分 组队列是否为空 (步骤 107) 。
若分组队列为空, 则结束调度(步骤 108) , 如果不为空则转至步骤 101 执行下一周期的调度, 直到所有需要传输的分组队列为空。
图 2是 WCDMA的 HSDAP系统中应用本发明分组调度方法的示意图, 图中 实线表示下行的用户数据和控制信息, 虚线表示上行信令; MAC- c/sh 表示 针对控制信道和共享信道的媒体接入控制; MAC-d表示针对专用数据信道的 媒体接入控制; MAC- hs 表示针对下行高速分组接入信道的媒体接入控制。 MAC- hs模块包括流控制模块 202、 调度单元 203、 混合自动重复 ( HARQ )模 块 204和 TCP友好速率控制 (TFRC)模块 205。 MAC-c/sh或者 MAC- d模块 200将 MAC-d协议数据单元中经过打包的数据送入流控制模块 202中, 流控 制模块 202控制 MAC- c/sh或者 MAC- d模块 200与 MAC- hs模块之间的最佳流 量后, 将数据送入调度单元 203。 调度单元 203将数据分组进行临时緩存,并计算各分组的延迟等待时间 Wu , 各用户的实时分组丢失率 .、 分组的时延抖动 J " 。 调度单元 203 接收 MAC控制器 201送来的控制信息 S211 , 控制信息 S211包括业务的 QoS 要求、 延迟门限)^ ax,,„、 时延抖动门限 J ermax,„、 各用户的实时分组丢失率门 限 Zmax、在 MAC- hs之前已经发生的延迟以及对所有 HS- DSCH的总功率上限。 来自高速下行共享信道 ( H i gh Speed Downl ink Shared Channe l , 简称 HS - DSCH ) 206的上行信令 S212中包含有信道状态的信息, 如传输时间间隔 TTI 内的最大传输比特数量、 调制方式、 码道数量等。 然后在调度单元 203 中根据本发明调度方法来调度分组数据。
分组数据经过调度后,传输到 HARQ模块 204中执行混合反馈重传功能, 然后送至 TFRC模块 205中执行传输格式选择功能, 最后将分组数据分配到 HS-DSCH 206进行空中传输。
图 3是图 2中调度单元 203进行分组调度的具体流程图。在 HSDPA系统 中应用的调度方法针对有时延抖动和延时约束的分组、 仅有延时约束的分 组、 无延时约束的分组进行优先级从高到低的划分。 同时调度方法除了在时 间顺序上按照传输时间间隔 TTI的周期进行分组调度,还要在同一个 TTI周 期内对码道和功率进行调度。 首先将需要通过 HS- DSCH 206传输的分组数据 读入队列中緩存(步骤 300 ) , 由于考虑读取数据时不一定能够取到, 因此 需判断緩存队列是否为非空 (步驟 301 ) , 若队列为空, 则完成一个 TTI的 分组调度周期 (步骤 308 ) 。 若队列非空, 则继续判断队列中是否存在对延 时敏感的分组业务(步骤 302 ) , 如果不存在, 则表明队列中为无延时约束 的分组业务, 执行步骤 306。 如果存在对延时敏感的分组业务, 则进一步判 断在对延时敏感的分组业务中是否存在对时延抖动敏感的分组业务 (步骤 303 ) , 如果存在, 则执行步骤 304 , 如果不存在, 则执行步骤 305。 这样通 过步骤 302和步骤 303的两步判断,可以将待传输的分组数据对应为有时延 个分组的优先级由高到低, 即有时延抖动和延时约束的分组的优先級最高, 仅有延时约束的分组的优先级次之, 无延时约束的分组的优先級最低; 优先 级越高的分组业务, 其数据最快发出去的概率越高。 步骤 304是针对有时延 抖动和延时约束的分组进行调度, 可采用本发明的调度方法, 分配码道和功 率, 其具体实施方案可参考图 1。 步驟 305针对无时延抖动、 但有延时约束 的分组业务进行调度, 通常采用 EDF ( Ear l ies t Deadl ine Fi r s t ) 算法, 即选择最接近超时门限的用户分组优先服务。而步骤 306针对无延时约束的 分组业务进行调度,其优先級最低,可以采用通常的无线 WFQ公平调度方法。 在分别执行了步骤( 304 )、 步骤( 305 )、 步骤( 306 )后, 执行步骤( 307 ) , 判断在本 TTI调度周期内分配的码道或所用的总功率是否大于规定上限,若 超出则完成一个 TTI的分组调度周期 (步骤 308 ) , 若没有超出, 则返回步 骤 300, 重新读入新的数据后继续在本 TTI调度周期内调度分组业务。 步骤 308结束后也返回步骤 300 , 重新读入新的数据后, 在下一个 TTI调度周期 内调度分组业务。
图 4是进行调度后, HSDPA系统在码道和时' '间上的调度结果示意图。 假 设码道上限为 5个, 系统中有 3个用户, 在第 1个 TTI内 ^巴所有的码道和功 率都调度给用户 1使用; 在第 2个 TTI 内把 2个码道调度给用户 2 , 3个码 道调度给用户 3; 在第 3个 TTI 内的调度结果同第 2个 TTI ; 在第 4个 TTI 内调度的结果同第 1个 TTI ; 在第 5个 TTI 内把 3个码道调度给用户 2 , 2 个码道调度给用户 3。 由此可说明 HSDPA系统的调度方法是在码道和时间上 共同调度分组。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限 制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员 应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发 明技术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。 .

Claims

权利要求书
1、 一种无线通信系统的分组调度方法, 其特征在于, 将待传输的用户 分组队列分为存在分组丟失的用户分组队列和不存在分组丢失的用户分组 队列; 对于存在分组丢失的用户分组队列, 如果用户的实时分组丟失率超过 预定的分组丢失率门限值, 则中止该用户的连接; 如果用户的实时分组丢失 率未超过门限值, 则按照分组丢失率的大小对用户分组进行调度; 对于不存 在分组丢失的用户分组队列, 根据分组长度、 信道质量状态、 延时、 时延抖 动进行调度。
2、 根据权利要求 1所述的无线通信系统的分组调度方法,其特征在于, 分组丢失的用户分组队列的步骤进一步包括: 获取调度所需的信息, 包括信 道质量状态、 所有待发送的分组的长度、 各分组的最大延迟门限、 各分组的 延迟等待时间、 各用户的实时分组丢失率、 各用户的实时分组丟失率门限、 分组的时延抖动、 分组的时延抖动最大门限; 判断用户的实时分组丢失率是 否大于 0 , 如果大于 0 , 则将该用户分组列入存在分组丢失的用户分组队列; 如果不大于 0, 则将该,
3、 根据权利要求 1所述的无线通信系统的分组调度方法,其特征在于, 所述根据分组长度、 信道盾量状态、 延时、 时延抖动进行调度是按照 ( χ,,»-^. ^ Χ,„- ^.)/,, ^.最小的原则进行优先调度' 其中, /, 表示分 组长度, ς 表示信道质量状态, 表示分組的延迟等待时间, J tter.表示分 组的时延抖动, Jitters,表示分组的时延抖动最大门限, ^,表示业务的最 大延迟门限, 上述 i表示所属用户, j表示调度周期, j 的取值为不小于 1 的整数, 11对应为限制时延抖动最大门限的业务的种类, m对应为限制最大 延迟门限的业务的种类。
4、 根据权利要求 1所述的无线通信系统的分组调度方法,其特征在于, 所述根据分组长度、 信道质量状态、 延时、 时延抖动进行调度是按照 ( termax,,, - ^, )/, :,., /^ .最小的原则进行调度, 其中/ ;,表示分组长度' 表 示信道质量状态, ^表示分组的延迟等待时间, J tte^.表示分组的时延抖动, J tto'max,„表示分组的时延抖动最大门限, 上述 i表示所属用户, j表示调度周 期, j的取值为不小于 1的整数, n对应为限制时延抖动最大门限的业务的 种类。
5、 根据权利要求 1至 4任一所述的无线通信系统的分组调度方法, 其 特征在于, 所述信道质量状态是无线信道最大可能传输速率的倒数。
6、 根据权利要求 1至 4任一所述的无线通信系统的分组调度方法, 其 特征在于, 所述信道质量状态为信道的测量信干比的倒数。
7、 根据权利要求 1至 4任一所述的无线通信系统的分组调度方法, 特征在于, 所述信道质量状态为传输路损。
8、 根据权利要求 1至 4任一所述的无线通信系统的分组调度方法, 其 特征在于, 所述分组的时延抖动 J tte^表示为:
Jitteru = 0 , 当 j' = l时,
,
Figure imgf000012_0001
当 _ e [2, +∞) , 其中 /;,表示分组长度, ς,,表示信道质量状态, 表示分组的延迟等待时间, 上述 i表示所属用户, j表示调度周期, j的取值为不小于 1的整数, α的 取值范围是在 0至 1之间, 即0^ (0,]
9、 根据权利要求 1至 4任一所述的无线通信系统的分组调度方法, 其 特征在于, 所述分组的时延抖动 J t 表示为:
Jitter) j = 0 , 当 = 1时,
Jitter ) = a {Wt )― (W^ ) + (l - a) Jitter^ , 当 e [2, +oo) ,
其中 ^表示分组长度, C, 表示信道质量状态, ,,表示分组的延迟等待时间, 上述 i表示所属用户, j表示调度周期, j的取值为不小于 1的整数, α的 取值范围是在 0至 1之间, 即 " e (0,l)。
1 0、 一种无线通信系统的分组调度方法, 其特征在于, 将待传输的分 组数据读入队列中緩存,并将上述分组数据分为有时延抖动和延时约束的分 组、 仅有延时约束的分组和无延时约束的分组, 其优先级由高至低; 按照优 先级的高低对分组数据进行调度: 对于有时延抖动和延时约束的分组, 采用 权利要求 1至 9任一所述的分组调度方法; 然后判断在传输时间间隔调度周 期内分配的码道或所用的总功率是否大于规定上限, 若大于, 则完成一个传 输时间间隔的分组调度周期; 若没有超出, 则重新读入新的数据后继续在本 传输时间间隔调度周期内调度分组业务; 重新读入新的数据, 在下一个传输 时间间隔调度周期内调度分组业务。
1 1、 根据权利要求 1 0所述的无线通信系统的分组调度方法, 其特征在 于, 所述将分组数据进行分组的步驟进一步包括: 判断队列中的分组数据是 否存在对延时敏感的分组业务, 如果不存在, 则表明队列中为无延时约束的 分组业务, 优先级最低; 如果存在对延时敏感的分组业务, 则进一步判断在 对延时敏感的分组业务中是否存在对时延抖动敏感的分组业务, 如果存在, 则对时延抖动敏感的分组业务即为有时延抖动和延时约束的分組,优先级最 高; 如果不存在, 则为仅有延时约束的分組, 优先级居中。
12、 根据权利要求 10或 11所述的无线通信系统的分组调度方法, 其 特征在于, 所述仅有延时约束的分組的调度方法为 EDF算法, 即选择最接近 超时门限的用户分组优先服务的方法。
13、 根据权利要求 10或 11所述的无线通信系统的分组调度方法, 其 特征在于, 所述无延时约束的分組的调度方法为无线加权公平队列调度方 法。
PCT/CN2003/000966 2003-11-14 2003-11-14 Procede de programmation de paquets pour systeme de communication sans fil WO2005048614A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003280933A AU2003280933A1 (en) 2003-11-14 2003-11-14 A packet scheduling method for wireless communication system
PCT/CN2003/000966 WO2005048614A1 (fr) 2003-11-14 2003-11-14 Procede de programmation de paquets pour systeme de communication sans fil
US10/579,131 US7630320B2 (en) 2003-11-14 2003-11-14 Packet scheduling method for wireless communication system
EP03770870.8A EP1691562B1 (en) 2003-11-14 2003-11-14 A packet scheduling method for wireless communication system
CNB2003801104262A CN100394810C (zh) 2003-11-14 2003-11-14 一种无线通信系统的分组调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2003/000966 WO2005048614A1 (fr) 2003-11-14 2003-11-14 Procede de programmation de paquets pour systeme de communication sans fil

Publications (1)

Publication Number Publication Date
WO2005048614A1 true WO2005048614A1 (fr) 2005-05-26

Family

ID=34578656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000966 WO2005048614A1 (fr) 2003-11-14 2003-11-14 Procede de programmation de paquets pour systeme de communication sans fil

Country Status (5)

Country Link
US (1) US7630320B2 (zh)
EP (1) EP1691562B1 (zh)
CN (1) CN100394810C (zh)
AU (1) AU2003280933A1 (zh)
WO (1) WO2005048614A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124675A1 (en) * 2006-04-20 2007-11-08 Huawei Technologies Co., Ltd. Method and apparatus for sharing radio resources in a wireless communications system
CN100389580C (zh) * 2006-02-23 2008-05-21 上海交通大学 适用于无线高速自适应信道的网络分组调度方法
CN100421388C (zh) * 2005-09-30 2008-09-24 华为技术有限公司 分组无线通信网络的优化方法
US7974353B2 (en) 2006-08-31 2011-07-05 Futurewei Technologies, Inc. Method and system for resource allocation for OFDM wireless networks
US8937911B2 (en) 2006-08-31 2015-01-20 Futurewei Technologies, Inc. Method and system for sharing resources in a wireless communication network

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356341B2 (en) * 2003-12-04 2008-04-08 Qualcomm, Incorporated Scheduling communications in a wireless network
JP4272048B2 (ja) * 2003-12-24 2009-06-03 株式会社エヌ・ティ・ティ・ドコモ パケット送信制御装置及びパケット送信制御方法
US7571250B2 (en) * 2005-01-14 2009-08-04 Microsoft Corporation Method and apparatus for distributing messages
US7808936B2 (en) * 2005-05-09 2010-10-05 J2 Global Communications, Inc. Systems and methods for facsimile echo cancellation
CN100486329C (zh) * 2005-11-16 2009-05-06 中兴通讯股份有限公司 一种iptv与流媒体设备的接口适配方法
US8265076B2 (en) * 2006-01-20 2012-09-11 Cisco Technology, Inc. Centralized wireless QoS architecture
US8179855B2 (en) 2006-02-07 2012-05-15 Research In Motion Limited Method, and associated apparatus, for communicating data at reduced transmission latency in radio communication system having slotted interface
US20070183320A1 (en) * 2006-02-08 2007-08-09 Chen Jian F Deficit fair priority queuing
US7903614B2 (en) * 2006-04-27 2011-03-08 Interdigital Technology Corporation Method and apparatus for selecting link adaptation parameters for CDMA-based wireless communication systems
US7769038B2 (en) * 2006-05-01 2010-08-03 Agere Systems Inc. Wireless network scheduling methods and apparatus based on both waiting time and occupancy
US20080019312A1 (en) * 2006-07-18 2008-01-24 Muthaiah Venkatachalam Efficient mechanisms for mapping harq connections to mac layer connections and scheduling in the presence of harq
JP2008167141A (ja) * 2006-12-28 2008-07-17 Nec Corp データ伝送方法および装置、それを用いた通信システム
US20080228878A1 (en) * 2007-03-15 2008-09-18 Tao Wu Signaling Support for Grouping Data and Voice Users to Share the Radio Resources in Wireless Systems
US8144589B2 (en) * 2007-05-07 2012-03-27 Qualcomm Incorporated Learning-based semi-persistent scheduling in wireless communications
US8203955B2 (en) * 2007-06-21 2012-06-19 Alcatel Lucent Method and apparatus for scheduling packets in an orthogonal frequency division multiple access (OFDMA) system
JP5108099B2 (ja) * 2007-07-18 2012-12-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) スケジューリング方法、基地局およびコンピュータ・プログラム
CN101110661B (zh) * 2007-07-23 2010-12-08 中兴通讯股份有限公司 电路仿真系统的抖动缓存调整方法
WO2009096746A2 (en) * 2008-02-01 2009-08-06 Lg Electronics Inc. Method for sending rlc pdu and allocating radio resource in mobile communications system and rlc entity of mobile communications
KR101375936B1 (ko) * 2008-02-01 2014-03-18 엘지전자 주식회사 시간동기 타이머의 만료 시 하향링크 harq의 동작 방법
KR101531419B1 (ko) 2008-02-01 2015-06-24 엘지전자 주식회사 시간동기 타이머의 만료 시 상향링크 harq의 동작 방법
EP2394460B1 (en) * 2009-02-05 2019-06-26 Samsung Electronics Co., Ltd. Communication system and method for media adaptation therein
EP2228927A1 (en) * 2009-03-12 2010-09-15 Alcatel Lucent Method for processing distributed data having a chosen type for synchronizing communication nodes of a data packet network, and associated device
JP5533322B2 (ja) * 2010-06-18 2014-06-25 富士通株式会社 データ転送装置、データ転送方法及びデータ転送プログラム
US9357103B2 (en) * 2012-01-20 2016-05-31 Control4 Corporation Systems and methods for controlling media devices
JP5935599B2 (ja) * 2012-08-28 2016-06-15 富士通株式会社 制御装置、送信装置及び制御方法
US9398474B2 (en) * 2012-11-23 2016-07-19 Broadcom Corporation System and method for network coded TCP in long term evolution (LTE)
US9369513B2 (en) * 2013-04-12 2016-06-14 Futurewei Technologies, Inc. Utility-maximization framework for dynamic adaptive video streaming over hypertext transfer protocol in multiuser-multiple input multiple output long-term evolution networks
CN103401792A (zh) * 2013-07-04 2013-11-20 中国科学院声学研究所 一种针对移动终端的自适应上传加速装置
CN104427630B (zh) * 2013-08-30 2018-03-27 京信通信系统(中国)有限公司 一种分组调度方法及装置
CN103490955A (zh) * 2013-09-18 2014-01-01 电子科技大学 基于卡尔曼滤波的时变网络链路丢包率的估计方法
CA2945702A1 (en) * 2014-01-28 2015-08-06 King Abdullah University Of Science And Technology Buffer sizing for multi-hop networks
US11812312B2 (en) * 2015-05-25 2023-11-07 Apple Inc. Link quality based single radio-voice call continuity and packet scheduling for voice over long term evolution communications
WO2017058247A1 (en) * 2015-10-02 2017-04-06 Hewlett Packard Enterprise Development Lp Device throughput determination
US10945160B2 (en) * 2016-09-30 2021-03-09 Kddi Corporation Management device, communication terminal, and method for communication terminal
EP3721669B1 (en) * 2017-12-05 2023-03-29 Telefonaktiebolaget LM Ericsson (publ) Downlink scheduling of terminal devices
CN111865705A (zh) * 2019-04-24 2020-10-30 普天信息技术有限公司 调度性能评价方法和装置
US11876725B2 (en) * 2020-01-30 2024-01-16 The Regents Of The University Of California Techniques for avoiding collisions among communications packets by using shared transmission queue
CN111918402B (zh) * 2020-07-22 2022-09-16 达闼机器人股份有限公司 调度终端设备的方法、装置、存储介质及网络设备和终端
CN112887226B (zh) * 2021-01-26 2022-07-22 重庆邮电大学 有线无线融合的卫星时间敏感网络队列管理调度方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2361707A1 (en) * 1999-02-10 2000-08-17 Nokia Wireless Routers, Inc. Adaptive communication protocol for wireless networks
JP2001285352A (ja) * 2000-03-30 2001-10-12 Fujitsu Ltd パケットスケジューリング方法および装置
US20030039213A1 (en) * 2001-08-14 2003-02-27 Jack Holtzman Method and apparatus for scheduling packet data transmissions in a wireless communication system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121383A (en) * 1990-11-16 1992-06-09 Bell Communications Research, Inc. Duration limited statistical multiplexing in packet networks
US6765904B1 (en) * 1999-08-10 2004-07-20 Texas Instruments Incorporated Packet networks
US6028842A (en) * 1996-12-23 2000-02-22 Nortel Networks Corporation Dynamic traffic conditioning
US5883819A (en) * 1996-12-31 1999-03-16 Northern Telecom Limited Method and system for quality of service assessment for multimedia traffic under aggregate traffic conditions
US7260060B1 (en) * 1997-06-07 2007-08-21 Nortel Networks Limited Call admission control
US6115390A (en) * 1997-10-14 2000-09-05 Lucent Technologies, Inc. Bandwidth reservation and collision resolution method for multiple access communication networks where remote hosts send reservation requests to a base station for randomly chosen minislots
US7406098B2 (en) * 1999-01-13 2008-07-29 Qualcomm Incorporated Resource allocation in a communication system supporting application flows having quality of service requirements
US7336611B1 (en) * 2003-04-30 2008-02-26 Nortel Networks Limited Rate-based multi-level active queue management with drop precedence differentiation
US6876659B2 (en) * 2000-01-06 2005-04-05 International Business Machines Corporation Enqueuing apparatus for asynchronous transfer mode (ATM) virtual circuit merging
EP1117184A1 (en) * 2000-01-17 2001-07-18 Matsushita Electric Industrial Co., Ltd. Method and apparatus for a CDMA cellular radio transmission system
WO2001056266A2 (en) * 2000-01-28 2001-08-02 Ibeam Broadcasting Corporation Method and apparatus for encoder-based distribution of live video and other streaming content
US7046678B2 (en) * 2000-02-18 2006-05-16 At & T Corp. Channel efficiency based packet scheduling for interactive data in cellular networks
US6990529B2 (en) * 2000-02-24 2006-01-24 Zarlink Semiconductor V.N., Inc. Unified algorithm for frame scheduling and buffer management in differentiated services networks
JP4879382B2 (ja) * 2000-03-22 2012-02-22 富士通株式会社 パケットスイッチ、スケジューリング装置、廃棄制御回路、マルチキャスト制御回路、およびQoS制御装置
US6574195B2 (en) * 2000-04-19 2003-06-03 Caspian Networks, Inc. Micro-flow management
JP2001320440A (ja) * 2000-05-02 2001-11-16 Sony Corp 通信装置及び方法
US7917647B2 (en) * 2000-06-16 2011-03-29 Mcafee, Inc. Method and apparatus for rate limiting
US6618397B1 (en) * 2000-10-05 2003-09-09 Provisionpoint Communications, Llc. Group packet encapsulation and compression system and method
US7120159B2 (en) * 2000-10-30 2006-10-10 Matsushita Electric Industrial Co., Ltd. Apparatus and method for packet transmission
GB2372172B (en) * 2001-05-31 2002-12-24 Ericsson Telefon Ab L M Congestion handling in a packet data network
KR100459573B1 (ko) * 2001-08-25 2004-12-03 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서역방향 전송 전력 오프셋과 고속 순방향 공통 채널 전력레벨을 송수신하는 장치 및 방법
JP3726741B2 (ja) * 2001-11-16 2005-12-14 日本電気株式会社 パケット転送装置、方法およびプログラム
US7917648B2 (en) * 2002-06-27 2011-03-29 Nokia Corporation Self-adaptive scheduling method and network element
TW576045B (en) * 2002-09-20 2004-02-11 Ind Tech Res Inst System for controlling network flow by monitoring download bandwidth
US7161957B2 (en) * 2003-02-10 2007-01-09 Thomson Licensing Video packets over a wireless link under varying delay and bandwidth conditions
KR100501717B1 (ko) * 2003-05-09 2005-07-18 삼성전자주식회사 Udp/tcp/ip 네트워크에서 버퍼관리를 기반으로 한음성 및 데이터 통합 전송방법
US20050047425A1 (en) * 2003-09-03 2005-03-03 Yonghe Liu Hierarchical scheduling for communications systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2361707A1 (en) * 1999-02-10 2000-08-17 Nokia Wireless Routers, Inc. Adaptive communication protocol for wireless networks
JP2001285352A (ja) * 2000-03-30 2001-10-12 Fujitsu Ltd パケットスケジューリング方法および装置
US20030039213A1 (en) * 2001-08-14 2003-02-27 Jack Holtzman Method and apparatus for scheduling packet data transmissions in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1691562A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421388C (zh) * 2005-09-30 2008-09-24 华为技术有限公司 分组无线通信网络的优化方法
CN100389580C (zh) * 2006-02-23 2008-05-21 上海交通大学 适用于无线高速自适应信道的网络分组调度方法
WO2007124675A1 (en) * 2006-04-20 2007-11-08 Huawei Technologies Co., Ltd. Method and apparatus for sharing radio resources in a wireless communications system
US7974353B2 (en) 2006-08-31 2011-07-05 Futurewei Technologies, Inc. Method and system for resource allocation for OFDM wireless networks
US8937911B2 (en) 2006-08-31 2015-01-20 Futurewei Technologies, Inc. Method and system for sharing resources in a wireless communication network

Also Published As

Publication number Publication date
AU2003280933A1 (en) 2005-06-06
EP1691562A1 (en) 2006-08-16
CN100394810C (zh) 2008-06-11
US7630320B2 (en) 2009-12-08
EP1691562B1 (en) 2016-10-05
EP1691562A4 (en) 2011-03-16
US20070116024A1 (en) 2007-05-24
CN1820517A (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
WO2005048614A1 (fr) Procede de programmation de paquets pour systeme de communication sans fil
JP4397928B2 (ja) ワイヤレス通信ネットワークの資源を、ネットワークのチャネルを介してユーザ機器に送信すべきトラヒックに割り当てる方法
JP4527779B2 (ja) サービス別の送信時間制御を伴う、高速アップリンク・パケット・アクセス(HSUPA)における自律送信のための低速MAC−e
CA2656859C (en) Compressed delay packet transmission scheduling
JP4971372B2 (ja) 多搬送波通信システムに関する分散型順方向リンクスケジューラ
EP1469640B1 (en) Method for scheduling transmissions in wireless systems
Rhee et al. A wireless fair scheduling algorithm for 1/spl times/EV-DO system
WO2010075724A1 (zh) 对通信系统中的业务数据进行调度的方法和装置
Puttonen et al. Mixed traffic packet scheduling in UTRAN long term evolution downlink
Falconio et al. Design and performance evaluation of packet scheduler algorithms for video traffic in the high speed downlink packet access
Komnakos et al. A delay optimal scheduling policy for real time services in WCDMA systems
Yerima et al. End-to-end QoS improvement of HSDPA end-user multi-flow traffic using RAN buffer management
Yerima et al. An enhanced buffer management scheme for multimedia traffic in HSDPA
Avramova et al. Modeling and simulation of downlink subcarrier allocation schemes in LTE
Yerima et al. Buffer management for multimedia QoS control over HSDPA downlink
Bejaoui et al. Combined fair packet scheduling policy and multi‐class adaptive CAC scheme for QoS provisioning in multimedia cellular networks
Yerima et al. Dynamic buffer management for multimedia services in 3.5 G wireless networks
Jung et al. A new hybrid packet scheduling algorithm with qos provision in HSDPA
Wu et al. A QoS-based hybrid multiple access transmission strategy in WCDMA downlink
Kim Throughput enhancement using adaptive delay barrier function over HSDPA system in mixed traffic scenarios
Bejaoui et al. Cross-Layer Radio Resource Management Protocols for QoS Provisioning in Multimedia Wireless Networks
Galeana et al. Comparison of transport capacity requirements in 3gpp r99 and hsdpa ip-based radio access networks
Iqbal et al. Scheduling Algorithms and QoS in HSDPA
Huang et al. Multi-flow merging gain in scheduling for flow-based wireless networks
Racunica et al. An opportunistic scheduling with fairness for NRT traffic in presence of RT traffic for UMTS/TDD

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110426.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007116024

Country of ref document: US

Ref document number: 10579131

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2003770870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003770870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003770870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10579131

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP