WO2005047878A1 - Sensoranordnung mit mehreren potentiometrischen sensoren - Google Patents

Sensoranordnung mit mehreren potentiometrischen sensoren Download PDF

Info

Publication number
WO2005047878A1
WO2005047878A1 PCT/EP2004/012182 EP2004012182W WO2005047878A1 WO 2005047878 A1 WO2005047878 A1 WO 2005047878A1 EP 2004012182 W EP2004012182 W EP 2004012182W WO 2005047878 A1 WO2005047878 A1 WO 2005047878A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor arrangement
potential
arrangement according
fet
sensors
Prior art date
Application number
PCT/EP2004/012182
Other languages
English (en)
French (fr)
Inventor
Wolfgang Babel
Torsten Pechstein
Thomas Steckenreiter
Original Assignee
Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg filed Critical Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg
Priority to DE502004010501T priority Critical patent/DE502004010501D1/de
Priority to EP04790955A priority patent/EP1682882B1/de
Priority to US10/578,865 priority patent/US7394263B2/en
Priority to AT04790955T priority patent/ATE451610T1/de
Publication of WO2005047878A1 publication Critical patent/WO2005047878A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to a sensor arrangement for potentiometric analysis of a large number of samples, in particular with so-called ISFET or CHEMFET sensors.
  • Potentiometric FET sensors of the type mentioned are suitable for measuring the pH value or the red-ox potential of an analyte.
  • Patent DE 198 57 953 C2 relates, for example, to the implementation of a pH ISFET sensor in which, in order to reduce the circuit complexity, the ISFET sensor is arranged as a resistor in a bridge circuit with at least three further resistors.
  • the assembly of a FET sensor the following principles are known, among others. Benton in U.S. Patent No.
  • 5,833,824 discloses a pH sensor in which an ISFET chip is attached to the underside of a substrate by means of a metallic seal that surrounds the ion sensitive region of the ISFET chip, the ion sensitive region having an opening is aligned in the substrate. Outside the area surrounded by the seal, conductor tracks on the surface of the chip are guided to contact areas which are connected to complementary contact areas on the underside of the substrate via solder or welded connections.
  • the solution proposed by Benton is very complex in that complex soldering and welding processes are required both in the manufacture of the seal and in the implementation of the electrical contact.
  • Solutions are also known in which the chips have their contact areas or bond pads on the rear side facing away from the ion-sensitive area. These chips can then be contacted on the back via a carrier with complementary contact surfaces, an anisotropic elastic conductor, for example a silicon foil with embedded gold threads, being arranged in a direction perpendicular to the plane of the foil to ensure sufficient galvanic contacts between the back of the chip and the carrier.
  • anisotropic elastic conductor for example a silicon foil with embedded gold threads
  • the sensor arrangements described are only possible for the investigation of individual samples. It is therefore the object of the present invention to provide a sensor arrangement for potentiometric measurements which on the one hand can measure minimal sample volumes and on the other hand can examine several samples at the same time.
  • the sensor arrangement according to the invention comprises at least two sample chambers; at least two potentiometric FET sensors, in particular IsFET sensors or ChemFET sensors with a sensitive surface section, the sensitive surface section in each case being in flow connection with one of the sample chambers; a reference cell with a reference medium for providing a reference potential, the sample chambers being connected to the reference medium via an electrolyte bridge.
  • the sensor arrangement has a modular structure, i. H. the sample chambers are arranged in a first module and the potentiometric FET sensors in a second module.
  • the first module can, for example, have a plate-shaped base body which has bores which serve as a sample chamber.
  • the potentiometric FET sensors can be integrated in a second module, which closes the bores from the underside of the base body as a base element.
  • a separate base element can be provided for each sample chamber, or several sample chambers can be closed with a common base element.
  • the electrolyte bridge can take place via electrolyte channels.
  • the base body has the electrolyte channels.
  • the base body can be in one piece or can be composed of several elements or several layers. In the latter case, it is recommended that the electrolyte channels be arranged in the interface between two layers.
  • the electrolyte channels are integrated in the second module, in particular the base element.
  • the reference cell can also have a potentiometric FET sensor for providing a reference potential, wherein the reference potential Udii re f can be measured against the pseudo reference potential of a potential derivation electrode.
  • the potential discharge electrode also communicates with the reference medium in the reference cell.
  • the potential discharge electrode can include, for example, metallic contact with a silver or silver chloride coating.
  • the potentials Udif ⁇ , Udifß, • • ⁇ UditfN of the N FET sensors in the sample chambers are preferably measured against the pseudo reference potential.
  • the potential difference relevant to the measured variable, for example U pr ⁇ ⁇ , is determined by forming the difference between the respective potential and the reference potential.
  • U P M Udiffi - U ⁇ ef- The difference can be formed analog or digital.
  • the FET sensors which can be present, for example, as individual chips or as a plurality of sensor elements in a possibly monolithic floor element, must be arranged in order to implement a sensor in such a way that they can be subjected to the sometimes corrosive samples without them on the other hand, components sensitive to corrosion, e.g. Conductor tracks that come into contact with the media.
  • FET sensors are arranged in such a way that the ion-sensitive surface areas of the FET sensors are aligned with holes in the sample chambers, an annular seal which surrounds the holes being arranged between the base body and the FET sensors that the ion-sensitive area of the semiconductor chip can be exposed to the sample without the sample coming into contact with the FET sensor outside the area enclosed by the seal.
  • annular seal which surrounds the holes being arranged between the base body and the FET sensors that the ion-sensitive area of the semiconductor chip can be exposed to the sample without the sample coming into contact with the FET sensor outside the area enclosed by the seal.
  • the FET sensors on the surface facing the base body have first contact surfaces that are aligned with matching second contact surfaces on the underside of the base body facing the FET sensor.
  • the underside of the base body has conductor tracks over which the second Contact surfaces are electrically connected to suitable circuits for feeding the FET sensors.
  • An elastic layer or film is arranged between the underside of the base body and the surface of the FET sensor, which is at least partially anisotropically conductive perpendicular to the surface of the FET sensor, the elastic layer having an opening that is flush with the bore.
  • the elastic film or layer thus serves on the one hand as a seal and on the other hand for electrical contacting.
  • the elastic insulating layer or film preferably comprises conductive particles, grains or threads, in particular metallic particles or threads, embedded in the anisotropically conductive region.
  • Gold threads that extend perpendicular to the plane of the elastic organic layer are currently particularly preferred.
  • Silicone layers which have gold threads and are commercially available from Shin-Etsu are currently particularly preferred.
  • the elastic layer has metallic grains, these are evenly distributed in a relaxed layer in such a concentration that there is not an adequate number of electrical contacts between the grains to produce electrical conductivity over large distances.
  • the elastic layer is compressed in one direction, for example by clamping it as a sealing element, between the first module and the second module or the base body and the base element, a sufficient number of electrical contacts are created in the compression direction to ensure conductivity along the compression direction to ensure.
  • the FET sensors or the base element can be pressed against the elastic layer by a back support in order to optimize the sealing effect of the elastic layer.
  • the rear support can be both stiff and elastic pretensioned.
  • the elastic bias e.g. B.
  • the other known types of contacting of the FET sensor for example according to Benton or according to the prior art discussed in Benton, are also suitable for realizing the present invention, with contacting according to Benton having the disadvantage that a firm connection between the FET sensor and the base body takes place, which affects the modularity.
  • the FET sensors 10 of the sensor arrangement each have a sensitive gate region which can be acted upon by an analyte in a sample chamber.
  • the individual sample chambers of the sensor arrangement are connected to one another via an electrolyte bridge.
  • the electrolyte bridge comprises an electrolyte channel 11 which communicates with the sample chambers via diaphragms.
  • the sensor arrangement further comprises a reference chamber in which a reference electrode 13, for example made of platinum, and a reference FET 12 are arranged.
  • the reference FET outputs a pseudo reference potential Udiffr ef , against which the potentials Udiff-i, Udifß, ⁇ • ⁇ Udiff of the N FET sensors in the sample chambers are measured.
  • FIG. 2a shows the underside of a substrate 6 with four sample chambers 9 for a sensor arrangement according to the invention, contact surfaces 7 and 8 being arranged on the underside at a distance from the openings of the sample chambers.
  • the contact surfaces 7 and 8 are each connected in a suitable manner to the required connections via conductor tracks.
  • the openings serve to apply the sample to be analyzed to the sensors.
  • FIG. 2b shows a plan view of a sealing element for a sensor arrangement according to the present invention, the sealing element in this embodiment comprising a silicone layer, into which continuous gold threads are introduced which extend essentially perpendicular to the plane of the sealing element 5.
  • the sealing element is electrically insulating in the plane of the sealing element and conductive perpendicular to the plane of the sealing element.
  • the minimum size of aligned contact surfaces required to ensure reliable contact is a question of the average number of gold threads per unit area of the sealing element. This parameter can be adapted in a suitable manner by a person skilled in the art. Likewise, the mean lateral spacing of components to ensure reliable insulation is a function of the number density of the gold threads and of their orientation and their diameter.
  • a sealing element is currently preferred which enables reliable contacting with aligned contact surfaces of less than 1 mm 2 and ensures sufficient insulation with a lateral spacing of approximately 0.5 mm.
  • the outer dimensions of the sealing element in FIG. 2b are congruent with the outer dimensions of the underside of the substrate in FIG. 2a, although this is not absolutely necessary.
  • the sealing element also has openings for each sample chamber in the substrate and optionally also for a reference chamber, which are aligned with the corresponding openings in the substrate. It is expedient if the openings in the sealing element have approximately the same size as the openings in the underside of the substrate 6. In this way, dead volumes between the substrate and a semiconductor chip serving as a base element or between the sealing element and the base element or the substrate are avoided.
  • FIG. 2c finally shows a longitudinal section through a composite sensor arrangement according to the present invention, the sealing element 5 being clamped between the semiconductor chip 1 and the substrate 6.
  • the semiconductor chip 1 In its surface facing the substrate 6, the semiconductor chip 1 has ion-sensitive regions 2 which are aligned with the openings in the substrate 6.
  • contact areas 3 and 4 are arranged, each of which is aligned with the complementary contact areas 7, 8 on the underside of the substrate. The contact between the chip-side contact surfaces 3, 4 and the substrate-side contact surfaces 7, 8 is ensured by the conductivity of the sealing element 5 perpendicular to its plane.
  • the semiconductor chip 1 In order to achieve a sufficient sealing effect, the semiconductor chip 1 must be pressed against the underside of the substrate 6 with sufficient force. This can be done on the one hand by clamping with dimensionally stable components and on the other hand by prestressing using elastic elements such as a helical spring, which is not shown here.
  • the substrate 6 can be formed in one piece with a housing of a semiconductor sensor or as a separate component which can be inserted into a housing in a suitable manner.

Abstract

Die erfindungsgemäße Sensoranordnung, umfasst mindestens zwei Probenkammern (9); mindestens zwei potentiometrische FET-Sensoren (10), insbesondere IsFET-Sensoren oder ChemFET-sensoren, mit jeweils einem sensitiven Oberflächenabschnitt (2), wobei der sensitive Oberflächenabschnitt jeweils mit einer der Probenkammern in Fließverbindung steht; und eine Referenzzelle mit einem Referenzmedium zur Bereitstellung eines Referenzpotentials, wobei die Probenkammem mit dem Referenzmedium über eine Elektrolytbrücke verbunden sind. Die Referenzzelle weist vorzugsweise einen potentiometrischen Referenz-FET­°Sensor (12) zur Bereitstellung eines Referenzpotentials auf, welches gegen das Pseudoreferenzpotential einer Potentialableitelektrode erfaßt wird. Die Potentiale Udiff1, Udiff2, ... UdiffN von N FET-Sensoren in den Probenkammem werden gegen das Pseudoreferenzpotential ermittelt, und die messgrößenrelevanten Potentialdifferenzen, werden jeweils durch Differenzbildung zwischen dem jeweiligen Potential und dem Referenzpotential Uph1...N= Udiff1...N- Udiffref bestimmt.

Description

Sensoranordnung mit mehreren potentiometrischen Sensoren
Die vorliegende Erfindung betrifft eine Sensoranordnung zur potentiometrischen Untersuchung einer Vielzahl von Proben, insbesondere mit sogenannten ISFET oder CHEMFET-Sensoren. Potentiometrische FET-Sensoren der genannten Art sind zur Messung des PH-Werts oder des Red-Ox-Potentials eines Analyten geeignet. Das Patent DE 198 57 953 C2 betrifft beispielsweise die Realisierung eines pH-ISFET-Sensor, bei dem zur Reduzierung des Schaltungsaufwands der ISFET-Sensor als Widerstand in eine Brückenschaltung mit mindestens drei weiteren Widerständen angeordnet ist. Hinsichtlich der Montage eines FET- Sensors sind u. a. die folgenden Prinzipien bekannt. Benton offenbart in US- Patent- Nr. 5,833,824 einen pH-Sensor, bei dem ein ISFET-Chip mittels einer metallischen Dichtung, welche den ionensensitiven Bereich des ISFET-Chips umgibt an der Unterseite eines Substrats befestigt ist, wobei der ionensensitive Bereich mit einer Öffnung in dem Substrat fluchtet. Außerhalb des von der Dichtung umgebenen Bereiches werden Leiterbahnen an der Oberfläche des Chips zu Kontaktflächen geführt, welche über Löt- oder Schweißverbindungen mit komplementären Kontaktflächen an der Unterseite des Substrats verbunden sind. Die von Benton vorgeschlagene Lösung ist insofern sehr aufwendig, als sowohl bei der Herstellung der Dichtung als auch bei der Verwirklichung der elektrischen Kontaktierung aufwendige Löt- bzw. Schweißverfahren erforderlich sind. Der in Benton diskutierte Stand der Technik beschreibt ISFET-Sensoren, bei denen eine gewöhnliche polymerische Dichtung um die Öffnung der Probenkammerwand zwischen dem Substrat und dem ionensensitiven Bereich des ISFET-Chips angeordnet ist. Die Kontaktierung des ISFET-Chips erfolgt jedoch nicht zum Substrat im Sinne von Benton, sondern zu einem Träger, welcher den ISFET-Chip auf der von dem Substrat abgewandten Rückseite unterstützt. Zu diesem Zweck sind Bonddrähte zwischen Kontaktflächen an der Vorderseite des ISFET-Chips zu Kontaktflächen auf den Träger außerhalb der Auflagefläche des ISFET-Chips geführt. Auch diese Lösung ist aufwendig, weil Bondarbeiten zur Kontaktierung des Chips erforderlich sind, und weil zur Gewährleistung der Funktion und Integrität des Sensors der Chip sowohl bezüglich des Substrats wie auch bezüglich des Trägers in engen Toleranzen ausgerichtet sein muss. Weiterhin sind Lösungen bekannt, bei denen die Chips ihre Kontaktflächen bzw. Bondpads auf der dem ionensensitiv Bereich abgewandten Rückseite aufweisen. Diese Chips können dann rückseitig über einen Träger mit komplementären Kontaktflächen kontaktiert werden, wobei zur Gewährleistung ausreichender galvanischer Kontakte zwischen der Rückseite des Chips und dem Träger ein anisotroper elastischer Leiter, z.B. eine Silikonfolie mit eingebetteten Goldfäden in einer Richtung senkrecht zur Ebene der Folie angeordnet ist. Diese Lösungen sind insofern sehr teuer, da die Führung der elektrischen Anschlüsse durch den Chip von dessen Vorderseite zu dessen Rückseite seine Herstellungskosten um ein vielfaches erhöht.
In der unveröffentlichten deutschen Patentanmeldung mit dem Aktenzeichen 10260961.6 der Anmelderin der gegenwärtigen Anmeldung wird eine Sensoranordnung mit einem einzelnen ISFET- bzw. CHEMFET-Sensor mit einer frontseitigen Montage mittels eines anisotropen Leiters offenbart.
Die beschriebenen Sensoranordnungen sind jeweils nur die Untersuchungen einzelner Proben möglich. Es ist daher die Aufgabe der vorliegenden Erfindung, eine Sensoranordnung für potentiometrische Messungen bereitzustellen, die einerseits minimalen Probenvolumina messen und andererseits mehrere Proben gleichzeitig untersuchen kann.
Die Aufgabe wird erfindungsgemäß gelöst durch die Sensoranordnung gemäß des unabhängigen Patentanspruchs 1.
Die erfindungsgemäße Sensoranordnung umfaßt mindestens zwei Probenkammem; mindestens zwei potentiometrische FET-Sensoren, insbesondere IsFET-Sensoren oder ChemFET-sensoren mit einem sensitiven Oberflächenabschnitt, wobei der sensitive Oberflächenabschnitt jeweils mit einer der Probenkammern in Fließverbindung steht; eine Referenzzelle mit einem Referenzmedium zur Bereitstellung eines Referenzpotentials, wobei die Probenkammern mit dem Referenzmedium über eine Elektrolytbrücke verbunden sind.
Die Sensoranordnung ist gemäß einer Ausgestaltung der Erfindung modular aufgebaut, d. h. die Probenkammem sind in einem ersten Modul angeordnet und die potentiometrischen FET-Sensoren in einem zweiten Modul.
Das erste Modul kann beispielsweise einen plattenförmigen Grundkörper aufweisen, der Bohrungen aufweist, welche als Probenkammer dienen. Im Falle von durchgehenden Bohrungen können die potentiometrischen FET-Sensoren in ein zweites Modul integriert sein, welches die Bohrungen von der Unterseite des Grundkörpers als Bodenelement verschließt. Für jede Probenkammer kann ein separates Bodenelement vorgesehen sein, oder es können mehrere Probenkammem mit einem gemeinsamen Bodenelement verschlossen werden.
Die Elektrolytbrücke kann über Elektrolytkanäle erfolgen. In einem derzeit bevorzugten Ausführungsbeispiel weist der Grundkörper die Elektrolytkanäle auf. Der Grundkörper kann einstückig sein oder aus mehreren Elementen bzw. mehreren Schichten zusammengesetzt sein. Im letzteren Fall empfiehlt es sich, daß die Elektrolytkanäle in der Grenzfläche zwischen zwei Schichten angeordnet sind.
In einer weiteren Ausgestaltung sind die Elektrolytkanäle in das zweite Modul, insbesondere das Bodenelement, integriert.
Die Referenzzelle kann ebenfalls einen potentiometrischen FET-Sensor zur Bereitstellung eines Referenzpotentials aufweisen, wobei das Referenzpotential Udii ref gegen das Pseudoreferenzpotential einer Potentialableitelektrode gemessen werden kann. Die Potentialableitelektrode kommuniziert ebenfalls mit dem Referenzmedium in der Referenzzelle. Die Potentialableitelektrode kann beispielsweise einen metallischen Kontakt mit einer Silber- bzw. Silberchloridbeschichtung umfassen.
Die Potentiale Udifπ, Udifß, ■•■ UditfN der N FET-Sensoren in den Probenkammern werden vorzugsweise gegen das Pseudoreferenzpotential gemessen. Die messgrößenrelevante Potentialdifferenz, beispielsweise Uprιι, wird durch Differenzbildung zwischen dem jeweiligen Potential und dem Referenzpotential ermittelt UPM = Udiffi - U^ef- Die Differenzbildung kann analog oder digital erfolgen.
Die FET-Sensoren, welche beispielsweise als vereinzelte Chips oder als eine Vielzahl von Sensorelementen in einem ggf. monolithischen Bodenelement vorliegen können, müssen zur Realisierung eines Sensors in der Weise angeordnet sein, daß sie einerseits mit den bisweilen korrosiven Proben beaufschlagt werden können, ohne daß andererseits korrosionsempfindliche Komponenten, z.B. Leiterbahnen, mit den Medien in Kontakt kommen. Hierzu werden in einer Ausgestaltung der Erfindung FET-Sensoren in der Weise angeordnet, daß die ionensensitiven Oberflächenbereiche der FET-Sensoren mit Bohrungen der Probenkammem fluchten, wobei zwischen dem Grundkörper und den FET-Sensoren eine ringförmige Dichtung angeordnet ist, welche die Bohrungen umgibt, so daß der ionensensitive Bereich des Halbleiterchips mit der Probe beaufschlagt werden kann, ohne das die Probe mit dem FET-Sensor außerhalb des von der Dichtung eingeschlossenen Bereichs in Berührung kommt. Für die elektrische Kontaktierung der FET-Sensoren sind verschiedene Ausgestaltungen möglich.
Derzeit wird das Konstruktionsprinzip der bereits in der Einleitung erwähnten deutschen Patentanmeldung No. 10260961.6 bevorzugt. Demnach weisen die FET-Sensoren an der dem Grundkörper zugewandten Oberfläche erste Kontaktflächen auf, die mit passenden zweiten Kontaktflächen auf der dem FET-Sensor zugewandten Unterseite des Grundkörpers fluchten. Die Unterseite des Grundkörpers weist Leiterbahnen auf, über welche die zweiten Kontaktflächen mit geeigneten Schaltungen zur Speisung der FET-Sensoren elektrisch verbunden sind. Zwischen der Unterseite des Grundkörpers und der Oberfläche des FET-Sensors wird eine elastische Schicht bzw. Folie angeordnet, die senkrecht zur Oberfläche des FET-Sensors zumindest abschnittsweise anisotrop leitend ist, wobei die elastische Schicht eine Öffnung aufweist, die mit der Bohrung fluchtet. Die elastische Folie bzw. Schicht dient somit einerseits als Dichtung und andererseits zur elektrischen Kontaktierung.
Vorzugsweise umfaßt die elastische isolierende Schicht oder Folie in dem anisotrop leitfähigen Bereich eingebettete leitfähige Partikel, Körner oder Fäden, insbesondere metallische Partikel oder Fäden. Besonders bevorzugt sind derzeit Goldfäden, die sich senkrecht zur Ebene der elastischen organischen Schicht erstrecken. Besonders bevorzugt sind derzeit Silikonschichten, die Goldfäden aufweisen und kommerziell von der Firma Shin- Etsu erhältlich sind.
Sofern die elastische Schicht metallische Körner aufweist, so sind diese in einer relaxierten Schicht in einer solchen Konzentration gleich verteilt, daß es nicht zu einer außreichenden Zahl von elektrischen Kontakten zwischen den Körnern kommt, um eine elektrische Leitfähigkeit über große Distanzen herzustellen. Wird jedoch die elastische Schicht in einer Richtung komprimiert, beispielsweise durch Einspannung als Dichtelement, zwischen dem ersten Modul und dem zweiten Modul bzw. dem Grundkörper und dem Bodenelement, so entsteht in der Kompressionsrichtung eine ausreichende Zahl von elektrischen Kontakten, um die Leitfähigkeit entlang der Kompressionsrichtung zu gewährleisten. Unabhängig von der gewählten Art des Dichtelements können die FET-Sensoren bzw. das Bodenelement durch eine rückseitige Abstützung gegen die elastische Schicht gepresst werden, um die Dichtungswirkung der elastischen Schicht zu optimieren. Die rückseitige Abstützung kann sowohl steif als auch elastisch vorgespannt sein. Die elastische Vorspannung, z. B. mit einer Schraubfeder, ist insoweit vorteilhaft, als dadurch die Effekte von unterschiedlichen Wärmeausdehnungskoeffizienten sicherer ausgeglichen werden können, als wenn dies ausschließlich durch die Elastizität des Dichtungselements erfolgen müsste. Dies ist insbesondere dann beachtlich, wenn ein gewisser Kompressionsgrad des Dichtungselementes erforderlich ist, um die elektrische Leitfähigkeit durch die Dichtung zu gewährleisten.
Die anderen bekannten Kontaktierungsarten des FET-Sensors, beispielsweise gemäß Benton oder gemäß des in Benton diskutierten Stands der Technik sind ebenfalls zur Realisierung der vorliegenden Erfindung geeignet, wobei bei einer Kontaktierung gemäß Benton der Nachteil in Kauf zu nehmen ist, daß eine feste Verbindung zwischen dem FET-Sensor und dem Grundkörper erfolgt, wodurch die Modularität beeinträchtigt wird.
Die Erfindung wird nun anhand eines in den Figuren gezeigten Ausführungsbeispiels erläutert. Es zeigt:
Fig. 1 : eine schematische Darstellung des Funktionsprinzipz einer Sensoranordnung gemäß der vorliegenden Erfindung;
Fig. 2a: eine Aufsicht auf die Unterseite eines Grundkörpers für eine Sensoranordnung gemäß der vorliegenden Erfindung
Fig. 2b: ein Dichtelement für eine Sensoranordnung gemäß der vorliegenden Erfindung; und
Fig. 2c: einen Längsschnitt durch eine Sensoranordnung gemäß der vorliegenden Erfindung.
Fig. 1 zeigt schematisch das Funktionsprinzip der erfindungsgemäßen Sensoranordnung. Die FET-Sensoren 10 der Sensoranordnung weisen jeweils eine sensitive Gate-Region auf, welche mit einem Analyten in einer Probenkammer beaufschlagbar ist. Die einzelnen Probenkammem der Sensoranordnung sind über eine Elektrolytbrücke miteinander verbunden. Hierzu umfaßt die Elektrolytbrücke einen Elektrolytkanal 11 der über Diaphragmen mit den Probenkammem kommuniziert. Die Sensoranordnung umfaßt weiterhin eine Referenzkammer, in der eine Referenzelektrode 13, beispielsweise aus Platin, und ein Referenz-FET 12 angeordnet ist. Der Referenz-FET gibt ein Pseudoreferenzpotential Udiffref aus, gegen welches die Potentiale Udiff-i, Udifß, ■•■ Udiff der N FET-Sensoren in den Probenkammern gemessen werden. Die messgrößenrelevante Potentialdifferenz, beispielsweise UPhi, wird durch Differenzbildung zwischen dem jeweiligen Potential und dem Referenzpotential ermittelt Upr,ι = Udifri - Udiffref- Die Differenzbildung kann analog oder digital erfolgen.
Konstruktive Einzelheiten eines Ausführungsbeispiels der erfindungsgemäßen Sensoranordnung werden nun anhand der Fign. 2a, 2b und 2c erläutert.
Fig. 2a zeigt die Unterseite eines Substrats 6 mit vier Probenkammern 9 für eine erfindungsgemäße Sensoranordnung, wobei auf der Unterseite jeweils Kontaktflächen 7 und 8 beabstandet zu den Öffnungen der Probenkammern angeordnet sind. Die Kontaktflächen 7 und 8 sind jeweils über Leiterbahnen in geeigneter Weise mit den erforderlichen Anschlüssen verbunden. Bei der fertig montierten Sensoranordnung dienen die Öffnungen dazu, die Sensoren mit der zu analysierenden Probe zu beaufschlagen.
Fig. 2b zeigt eine Aufsicht auf ein Dichtelement für eine Sensoranordnung gemäß der vorliegenden Erfindung, wobei das Dichtelement bei dieser Ausführungsform eine Silikonschicht umfasst, in welche durchgehende Goldfäden eingebracht sind, die sich im wesentlichen senkrecht zur Ebene des Dichtelements 5 erstrecken. Auf diese Weise ist das Dichtelement in der Ebene des Dichtelements elektrisch isolierend und senkrecht zur Ebene des Dichtelements leitend. Somit können miteinander fluchtende elektrische Kontaktflächen, welche durch die Dichtung voneinander getrennt sind, miteinander in elektrischen Kontakt gebracht werden, während bezüglich der Ebene des Dichtungselements lateral versetzte Kontaktflächen voneinander elektrisch isoliert sind.
Die erforderliche Mindestgröße von fluchtenden Kontaktflächen zur Gewährleistung eines sicheren Kontakts ist eine Frage der mittleren Anzahl von Goldfäden pro Flächeneinheit des Dichtelements. Dieser Parameter kann vom Fachmann in geeigneter Weise angepasst werden. Gleichermaßen ist der mittlere laterale Abstand von Bauelementen zur Gewährleistung einer zuverlässigen Isolation eine Funktion der Anzahldichte der Goldfäden sowie von deren Orientierung und deren Durchmesser. Derzeit wird ein Dichtungselement bevorzugt, welches eine zuverlässige Kontaktierung bei fluchtenden Kontaktflächen von bereits weniger als 1 mm2 ermöglicht und eine ausreichende Isolation bei einem lateralen Abstand von etwa 0,5 mm gewährleistet.
Die äußeren Abmessungen des Dichtelements in Fig. 2b sind bei dieser Ausführungsform kongruent mit den äußeren Abmessungen der Unterseite des Substrats in Fig. 2a, wobei dies nicht zwingend erforderlich ist. Das Dichtelement weist zudem für jede Probenkammer im Substrat und ggf. zusätzlich für eine Referenzkammer Öffnungen auf, welche mit den entsprechenden Öffnungen im Substrat fluchten. Es ist zweckmäßig, wenn die Öffnungen im Dichtelement etwa die gleiche Größe wie die Öffnungen in der Unterseite des Substrats 6 aufweisen. Auf diese Weise werden Totvolumina zwischen dem Substrat und einem als Bodenelement dienenden Halbleiterchip bzw. zwischen dem Dichtelement und dem Bodenelement oder dem Substrat vermieden.
Fig. 2c zeigt schließlich ein Längsschnitt durch eine zusammengesetzte Sensoranordnung gemäß der vorliegenden Erfindung, wobei das Dichtelement 5 zwischen dem Halbleiterchip 1 und dem Substrat 6 eingespannt ist. Der Halbleiterchip 1 weist in seiner dem Substrat 6 zugewandten Oberfläche ionensensitive Bereiche 2 auf, welcher mit den Öffnungen im Substrat 6 fluchten. Beabstandet zu den Öffnungen sind jeweils Kontaktflächen 3 und 4 angeordnet, welche jeweils mit den komplementären Kontaktflächen 7, 8 auf der Unterseite des Substrats fluchten. Die Kontaktierung zwischen den chipseitigen Kontaktflächen 3, 4 und den substratseitigen Kontaktflächen 7, 8 wird durch die Leitfähigkeit des Dichtelements 5 senkrecht zu dessen Ebene gewährleistet.
Um eine hinreichende Dichtungswirkung zu erzielen, muss der Halbleiterchip 1 mit ausreichender Kraft gegen die Unterseite des Substrats 6 gedrückt werden. Dies kann einerseits durch eine Einspannung mit formstabilen Bauelementen erfolgen und andererseits durch eine Vorspannung mittels elastischer Elemente wie einer Schraubfeder, die hier jedoch nicht dargestellt ist.
Das Substrat 6 kann einstückig mit einem Gehäuse eines Halbleitersensors ausgebildet sein oder als separates Bauteil, welches in geeigneter Weise in ein Gehäuse einzusetzen ist. Diese und ähnliche Ausgestaltungen ergeben sich für den Fachmann in nahe liegender Weise, ohne vom Gegenstand der Erfindung abzuweichen, die in den nachfolgenden Patentansprüchen definiert ist.

Claims

Patentansprüche
1. Sensoranordnung, umfassend: mindestens zwei Probenkammern; mindestens zwei potentiometrische FET-Sensoren, insbesondere IsFET- Sensoren oder ChemFET-sensoren, mit jeweils einem sensitiven Oberflächenabschnitt, wobei der sensitive Oberflächenabschnitt jeweils mit einer der Probenkammem in Fließverbindung steht; und eine Referenzzelle mit einem Referenzmedium zur Bereitstellung eines Referenzpotentials, wobei die Probenkammem mit dem Referenzmedium über eine Elektrolytbrücke verbunden sind.
2. Sensoranordnung nach Anspruch 1 , wobei die Sensoranordnung ein erstes Modul umfaßt, welches die Probenkammem aufweist.
3. Sensoranordnung nach Anspruch 2, wobei die Sensoranordnung mindestens ein zweites Modul umfaßt, welches mehrere potentiometrischen FET-Sensoren aufweist.
4. Sensoranordnung nach Anspruch 2, wobei die Sensoranordnung mindestens mehrere zweite Modul umfaßt, welche jeweils einen potentiometrischen FET-Sensor aufweisen.
5. Sensoranordnung nach einem der Ansprüche 2 - 4, wobei das erste Modul einen plattenförmigen Grundkörper mit Bohrungen aufweist, welche als Probenkammer dienen.
6. Sensoranordnung nach Anspruch 5, wobei die Bohrungen durchgehend sind, und wobei das mindestens eine zweite Modul bzw. die zweiten Module als Bodenelement gestaltet sind, welche die durchgehenden Bohrungen von der Unterseite des ersten Moduls verschließen.
7. Sensoranordnung nach Anspruch 5, wobei die potentiometrischen FET- Sensoren derart in das zweites Modul integriert sind, daß jeweils ein FET-Sensor mit einer der durchgehenden Bohrungen fluchtet.
8. Sensoranordnung nach einem der vorhergehenden Ansprüche, wobei die Elektrolytbrücke über Elektrolytkanäle verläuft, welche in dem Grundkörper ausgebildet sind.
9. Sensoranordnung nach Anspruch 8, wobei der Grundkörper mehrere Elemente, insbesondere mehrere Schichten aufweist, und die Elektrolytkanäle in einer Grenzfläche zwischen zwei benachbarten Elementen angeordnet sind.
10. Sensoranordnung nach einem der Ansprüche 1 bis 7, wobei die Elektrolytbrücke über Elektrolytkanäle verläuft, welche in dem zweiten Modul, integriert sind.
1 1. Sensoranordnung nach einem der Ansprüche 1 bis 10, wobei die Referenzzelle einen potentiometrischen Referenz-FET-Sensor zur Bereitstellung eines Referenzpotentials aufweist, welches gegen das Pseudoreferenzpotential einer Potentialableitelektrode erfaßt wird.
12. Sensoranordnung nach Anspruch 11 , wobei die Potentialableitelektrode mit dem Referenzmedium in der Referenzzelle beaufschlagt ist.
13. Sensoranordnung nach Anspruch 12, wobei die Potentiale Udiffi, Udjff2, ... UdiffN von N FET-Sensoren in den Probenkammem gegen das Pseudoreferenzpotential ermittelt, und die messgrößenrelevanten Potentialdifferenzen, jeweils durch Differenzbildung zwischen dem jeweiligen Potential und dem Referenzpotential bestimmt UPhi...N = Udiffi ...N - Udiffref- werden.
PCT/EP2004/012182 2003-11-11 2004-10-28 Sensoranordnung mit mehreren potentiometrischen sensoren WO2005047878A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502004010501T DE502004010501D1 (de) 2003-11-11 2004-10-28 Sensoranordnung mit mehreren potentiometrischen sensoren
EP04790955A EP1682882B1 (de) 2003-11-11 2004-10-28 Sensoranordnung mit mehreren potentiometrischen sensoren
US10/578,865 US7394263B2 (en) 2003-11-11 2004-10-28 Sensor arrangement with a plurality of potentiometric sensors
AT04790955T ATE451610T1 (de) 2003-11-11 2004-10-28 Sensoranordnung mit mehreren potentiometrischen sensoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352917A DE10352917A1 (de) 2003-11-11 2003-11-11 Sensoranordnung mit mehreren potentiometrischen Sensoren
DE10352917.9 2003-11-11

Publications (1)

Publication Number Publication Date
WO2005047878A1 true WO2005047878A1 (de) 2005-05-26

Family

ID=34585027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/012182 WO2005047878A1 (de) 2003-11-11 2004-10-28 Sensoranordnung mit mehreren potentiometrischen sensoren

Country Status (6)

Country Link
US (1) US7394263B2 (de)
EP (1) EP1682882B1 (de)
CN (1) CN100489515C (de)
AT (1) ATE451610T1 (de)
DE (2) DE10352917A1 (de)
WO (1) WO2005047878A1 (de)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806414A2 (de) 2006-01-09 2007-07-11 Samsung Electronics Co., Ltd. FET-basierter Sensor zum Nachweis von ionischem Material, Vorrichtung mit FET-basiertem Sensor zum Nachweis von ionischem Material, und Verfahren zum Nachweis ionischen Materials unter Verwendung des FET-basierten Sensors
GB2457851B (en) * 2006-12-14 2011-01-05 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale fet arrays
US8217433B1 (en) 2010-06-30 2012-07-10 Life Technologies Corporation One-transistor pixel array
US8263336B2 (en) 2009-05-29 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8552771B1 (en) 2012-05-29 2013-10-08 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8653567B2 (en) 2010-07-03 2014-02-18 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US8685324B2 (en) 2010-09-24 2014-04-01 Life Technologies Corporation Matched pair transistor circuits
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9029132B2 (en) * 2009-08-06 2015-05-12 International Business Machines Corporation Sensor for biomolecules
US8052931B2 (en) 2010-01-04 2011-11-08 International Business Machines Corporation Ultra low-power CMOS based bio-sensor circuit
US9068935B2 (en) 2010-04-08 2015-06-30 International Business Machines Corporation Dual FET sensor for sensing biomolecules and charged ions in an electrolyte
DE102011085841A1 (de) 2011-11-07 2013-05-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße eines Mediums, elektrochemischer Sensor und System
JP2015031686A (ja) * 2013-08-02 2015-02-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. 物理量センサの検査装置
CN103969314B (zh) * 2014-05-06 2017-02-15 中国农业科学院农业信息研究所 多参数离子传感器及其制备方法、多参数离子传感器芯片和监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952745A (ja) * 1982-09-20 1984-03-27 Fujitsu Ltd リンパ球の幼若化、活性化測定方式
US4874499A (en) * 1988-05-23 1989-10-17 Massachusetts Institute Of Technology Electrochemical microsensors and method of making such sensors
US5478526A (en) * 1992-03-31 1995-12-26 Kabushiki Kaisha Toshiba Nozzle-type analysis apparatus
DE19857953A1 (de) * 1998-12-16 2000-07-06 Conducta Endress & Hauser Vorrichtung zum Messen der Konzentration von Ionen in einer Meßflüssigkeit
US20020125133A1 (en) * 1999-05-04 2002-09-12 Bannigan John Thornto pH probe
WO2003052097A1 (en) * 2001-12-19 2003-06-26 Hitachi High-Technologies Corporation Potentiometric dna microarray, process for producing the same and method of analyzing nucleic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228609C1 (de) * 1992-08-28 1994-01-20 Fraunhofer Ges Forschung Vorrichtung zur Messung von Ionenkonzentrationen in Lösungen
ATE520972T1 (de) * 1999-06-17 2011-09-15 Smiths Detection Inc Vielfach-sensor-system, gerät und verfahren
EP1423505A2 (de) * 2001-08-06 2004-06-02 Vanderbilt University Vorrichtung und verfahren zur überwachung des zustands wenigstens einer zelle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952745A (ja) * 1982-09-20 1984-03-27 Fujitsu Ltd リンパ球の幼若化、活性化測定方式
US4874499A (en) * 1988-05-23 1989-10-17 Massachusetts Institute Of Technology Electrochemical microsensors and method of making such sensors
US5478526A (en) * 1992-03-31 1995-12-26 Kabushiki Kaisha Toshiba Nozzle-type analysis apparatus
DE19857953A1 (de) * 1998-12-16 2000-07-06 Conducta Endress & Hauser Vorrichtung zum Messen der Konzentration von Ionen in einer Meßflüssigkeit
US20020125133A1 (en) * 1999-05-04 2002-09-12 Bannigan John Thornto pH probe
WO2003052097A1 (en) * 2001-12-19 2003-06-26 Hitachi High-Technologies Corporation Potentiometric dna microarray, process for producing the same and method of analyzing nucleic acid
EP1460130A1 (de) * 2001-12-19 2004-09-22 Hitachi High-Technologies Corporation Potentiometrischer dna-mikroarray, verfahren zu dessen herstellung und verfahren zur nukleinsäureanalyse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 157 (P - 288) 20 July 1984 (1984-07-20) *

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US10563252B2 (en) 2004-06-25 2020-02-18 University Of Hawaii Ultrasensitive biosensors
US8357957B2 (en) 2006-01-09 2013-01-22 Samsung Electronics Co., Ltd. FET-based sensor for detecting ionic material, ionic material detecting device using the FET-based sensor, and method of detecting ionic material using the FET-based sensor
EP1806414A3 (de) * 2006-01-09 2008-03-26 Samsung Electronics Co., Ltd. FET-basierter Sensor zum Nachweis von ionischem Material, Vorrichtung mit FET-basiertem Sensor zum Nachweis von ionischem Material, und Verfahren zum Nachweis ionischen Materials unter Verwendung des FET-basierten Sensors
US7859029B2 (en) 2006-01-09 2010-12-28 Samsung Electronics Co., Ltd. FET-based sensor for detecting ionic material, ionic material detecting device using the FET-based sensor, and method of detecting ionic material using the FET-based sensor
EP1806414A2 (de) 2006-01-09 2007-07-11 Samsung Electronics Co., Ltd. FET-basierter Sensor zum Nachweis von ionischem Material, Vorrichtung mit FET-basiertem Sensor zum Nachweis von ionischem Material, und Verfahren zum Nachweis ionischen Materials unter Verwendung des FET-basierten Sensors
US8519448B2 (en) 2006-12-14 2013-08-27 Life Technologies Corporation Chemically-sensitive array with active and reference sensors
US8890216B2 (en) 2006-12-14 2014-11-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9023189B2 (en) 2006-12-14 2015-05-05 Life Technologies Corporation High density sensor array without wells
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8269261B2 (en) 2006-12-14 2012-09-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8293082B2 (en) 2006-12-14 2012-10-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8306757B2 (en) 2006-12-14 2012-11-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8313625B2 (en) 2006-12-14 2012-11-20 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8313639B2 (en) 2006-12-14 2012-11-20 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
GB2457851B (en) * 2006-12-14 2011-01-05 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale fet arrays
US8415716B2 (en) 2006-12-14 2013-04-09 Life Technologies Corporation Chemically sensitive sensors with feedback circuits
US8766328B2 (en) 2006-12-14 2014-07-01 Life Technologies Corporation Chemically-sensitive sample and hold sensors
US8530941B2 (en) 2006-12-14 2013-09-10 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8426898B2 (en) 2006-12-14 2013-04-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8426899B2 (en) 2006-12-14 2013-04-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US8435395B2 (en) 2006-12-14 2013-05-07 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8441044B2 (en) 2006-12-14 2013-05-14 Life Technologies Corporation Methods for manufacturing low noise chemically-sensitive field effect transistors
US8445945B2 (en) 2006-12-14 2013-05-21 Life Technologies Corporation Low noise chemically-sensitive field effect transistors
US8450781B2 (en) 2006-12-14 2013-05-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8764969B2 (en) 2006-12-14 2014-07-01 Life Technologies Corporation Methods for operating chemically sensitive sensors with sample and hold capacitors
US9039888B2 (en) 2006-12-14 2015-05-26 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8492799B2 (en) 2006-12-14 2013-07-23 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8492800B2 (en) 2006-12-14 2013-07-23 Life Technologies Corporation Chemically sensitive sensors with sample and hold capacitors
US8496802B2 (en) 2006-12-14 2013-07-30 Life Technologies Corporation Methods for operating chemically-sensitive sample and hold sensors
US8502278B2 (en) 2006-12-14 2013-08-06 Life Technologies Corporation Chemically-sensitive sample and hold sensors
US8535513B2 (en) 2006-12-14 2013-09-17 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US7948015B2 (en) 2006-12-14 2011-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8540867B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9134269B2 (en) 2006-12-14 2015-09-15 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8264014B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8540868B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8540865B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8742472B2 (en) 2006-12-14 2014-06-03 Life Technologies Corporation Chemically sensitive sensors with sample and hold capacitors
US8692298B2 (en) 2006-12-14 2014-04-08 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US8558288B2 (en) 2006-12-14 2013-10-15 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8575664B2 (en) 2006-12-14 2013-11-05 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US8685230B2 (en) 2006-12-14 2014-04-01 Life Technologies Corporation Methods and apparatus for high-speed operation of a chemically-sensitive sensor array
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8658017B2 (en) 2006-12-14 2014-02-25 Life Technologies Corporation Methods for operating an array of chemically-sensitive sensors
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8524057B2 (en) 2008-06-25 2013-09-03 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11874250B2 (en) 2008-10-22 2024-01-16 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US11448613B2 (en) 2008-10-22 2022-09-20 Life Technologies Corporation ChemFET sensor array including overlying array of wells
US9944981B2 (en) 2008-10-22 2018-04-17 Life Technologies Corporation Methods and apparatus for measuring analytes
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8592153B1 (en) 2009-05-29 2013-11-26 Life Technologies Corporation Methods for manufacturing high capacitance microwell structures of chemically-sensitive sensors
US8822205B2 (en) 2009-05-29 2014-09-02 Life Technologies Corporation Active chemically-sensitive sensors with source follower amplifier
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US8742469B2 (en) 2009-05-29 2014-06-03 Life Technologies Corporation Active chemically-sensitive sensors with correlated double sampling
US8766327B2 (en) 2009-05-29 2014-07-01 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US8698212B2 (en) 2009-05-29 2014-04-15 Life Technologies Corporation Active chemically-sensitive sensors
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8263336B2 (en) 2009-05-29 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US8994076B2 (en) 2009-05-29 2015-03-31 Life Technologies Corporation Chemically-sensitive field effect transistor based pixel array with protection diodes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US8912580B2 (en) 2009-05-29 2014-12-16 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US8592154B2 (en) 2009-05-29 2013-11-26 Life Technologies Corporation Methods and apparatus for high speed operation of a chemically-sensitive sensor array
US8772698B2 (en) 2010-06-30 2014-07-08 Life Technologies Corporation CCD-based multi-transistor active pixel sensor array
US8432149B2 (en) 2010-06-30 2013-04-30 Life Technologies Corporation Array column integrator
US8217433B1 (en) 2010-06-30 2012-07-10 Life Technologies Corporation One-transistor pixel array
US8823380B2 (en) 2010-06-30 2014-09-02 Life Technologies Corporation Capacitive charge pump
US8455927B2 (en) 2010-06-30 2013-06-04 Life Technologies Corporation One-transistor pixel array with cascoded column circuit
US8487790B2 (en) 2010-06-30 2013-07-16 Life Technologies Corporation Chemical detection circuit including a serializer circuit
US8247849B2 (en) 2010-06-30 2012-08-21 Life Technologies Corporation Two-transistor pixel array
US8524487B2 (en) 2010-06-30 2013-09-03 Life Technologies Corporation One-transistor pixel array with cascoded column circuit
US8983783B2 (en) 2010-06-30 2015-03-17 Life Technologies Corporation Chemical detection device having multiple flow channels
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8432150B2 (en) 2010-06-30 2013-04-30 Life Technologies Corporation Methods for operating an array column integrator
US8421437B2 (en) 2010-06-30 2013-04-16 Life Technologies Corporation Array column integrator
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US8741680B2 (en) 2010-06-30 2014-06-03 Life Technologies Corporation Two-transistor pixel array
US8415176B2 (en) 2010-06-30 2013-04-09 Life Technologies Corporation One-transistor pixel array
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US8415177B2 (en) 2010-06-30 2013-04-09 Life Technologies Corporation Two-transistor pixel array
US8742471B2 (en) 2010-06-30 2014-06-03 Life Technologies Corporation Chemical sensor array with leakage compensation circuit
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US8731847B2 (en) 2010-06-30 2014-05-20 Life Technologies Corporation Array configuration and readout scheme
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US8653567B2 (en) 2010-07-03 2014-02-18 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9958415B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation ChemFET sensor including floating gate
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8685324B2 (en) 2010-09-24 2014-04-01 Life Technologies Corporation Matched pair transistor circuits
US8912005B1 (en) 2010-09-24 2014-12-16 Life Technologies Corporation Method and system for delta double sampling
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8552771B1 (en) 2012-05-29 2013-10-08 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management

Also Published As

Publication number Publication date
US7394263B2 (en) 2008-07-01
EP1682882A1 (de) 2006-07-26
CN1882830A (zh) 2006-12-20
ATE451610T1 (de) 2009-12-15
DE10352917A1 (de) 2005-06-16
EP1682882B1 (de) 2009-12-09
CN100489515C (zh) 2009-05-20
US20070273395A1 (en) 2007-11-29
DE502004010501D1 (de) 2010-01-21

Similar Documents

Publication Publication Date Title
EP1682882B1 (de) Sensoranordnung mit mehreren potentiometrischen sensoren
EP1740932B1 (de) Messzelle sowie Verfahren zur Herstellung einer solchen Messzelle
DE69936199T2 (de) Sensorpackung mit einer integrierten pfropfenelektrode
DE2527505B2 (de) Thermischer Strömungsmeßumformer
DE4231530C2 (de) Kohlensäuregassensor
EP1003035A2 (de) Messeinrichtung
DE10310503A1 (de) Einrichtung und Verfahren zur Messung eines elektrischen Stroms
DE102006055797A1 (de) Sensorelement für einen Gasssensor zur Bestimmung einer physikalischen Eigenschaft eines Messgases
EP0382831B1 (de) Chemosensitiver wandler
DE102005008051A1 (de) Gassensor und Verfahren zu dessen Betrieb
DE102012111813A1 (de) Sensor zur Erfassung einer Analytkonzentration
DE102016110856A1 (de) Elektrochemischer Sensor mit austauschbarer Elektrodenbaugruppe
DE102017121914A1 (de) Sensorelement und Verfahren zum Herstellen eines Sensorelements
DE10014995C1 (de) Elektrochemischer Meßfühler
DE102012111811A1 (de) Elektrochemischer Sensor zur Erfassung einer Analytkonzentration in einem Messmedium
DE102006022290B4 (de) Heizer mit integriertem Temperatursensor auf Träger
DE102013106032A1 (de) Sensor zur Erfassung einer Analytkonzentration
EP0597203B1 (de) Referenzelektrode
EP1785708B1 (de) Drucksensor-Bauelement
EP2798348B1 (de) Anordnung und verfahren zur elektrochemischen analyse von flüssigen proben mit lateral flow assays
DE102004010635A1 (de) Vorrichtung zur Durchführung von Messungen an Biokomponenten
DE19843471A1 (de) Druckerkennungsvorrichtung
DE10260961A1 (de) Halbleitersensor mit frontseitiger Kontaktierung
DE19621227C2 (de) Sensorelement zum Nachweis von flüssigen, gasförmigen oder fluiden Substanzen
DE3417137A1 (de) Chemisch empfindlicher feldeffekttransistor mit integrierter referenzelektrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033227.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004790955

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004790955

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10578865

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10578865

Country of ref document: US