WO2005047798A1 - Multi-hole tube for heat exchanger and method of expanding tube therefor - Google Patents

Multi-hole tube for heat exchanger and method of expanding tube therefor Download PDF

Info

Publication number
WO2005047798A1
WO2005047798A1 PCT/JP2004/007935 JP2004007935W WO2005047798A1 WO 2005047798 A1 WO2005047798 A1 WO 2005047798A1 JP 2004007935 W JP2004007935 W JP 2004007935W WO 2005047798 A1 WO2005047798 A1 WO 2005047798A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
axis direction
hole tube
cross
Prior art date
Application number
PCT/JP2004/007935
Other languages
French (fr)
Japanese (ja)
Inventor
Kihachiro Koga
Original Assignee
Hidaka Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hidaka Seiki Kabushiki Kaisha filed Critical Hidaka Seiki Kabushiki Kaisha
Publication of WO2005047798A1 publication Critical patent/WO2005047798A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Definitions

  • the present invention relates to a multi-hole tube for a heat exchanger and a method for expanding the multi-hole tube for a heat exchanger.
  • the present invention relates to a multi-hole tube for a heat exchanger in which a plurality of flow paths are formed inside a tube for a heat exchanger used in a heat exchanger, and a method for expanding such a multi-hole tube for a heat exchanger. About.
  • Heat exchangers such as coolers for home use and automobiles are composed of a plurality of heat exchanger fins formed of a thin plate of aluminum or the like, and a metal heat exchanger tube. Refrigerant flows through the heat exchanger tube, and heat is exchanged through the fins.
  • the multi-hole tube 10 for a heat exchanger has a flat cross section. If the flat shape is inserted into the heat exchanger fins (not shown) so as to be parallel to the air flow direction A by providing the flat shape, the multi-well tube 10 for the heat exchanger is received. This is because air resistance can be reduced and heat exchange efficiency can be increased. Generally, not only the multi-hole tube but also the heat exchanger tube is inserted into the through hole with the collar of the fin, and then the heat exchanger tube and the fin are firmly joined and integrated by heat exchange. It is common practice to expand dexterous tubes.
  • the tube can be easily expanded using an expansion burette (for example, see Patent Document 2).
  • an expansion burette for example, see Patent Document 2.
  • Patent Document 1 JP-A-8-73973
  • Patent Document 2 JP-A-7-124670
  • the multi-hole tube for a heat exchanger having a flat cross section as described above, there is a possibility that dust may accumulate on a flat portion or water droplets may adhere. In such a case, there is a problem that the heat exchange efficiency is deteriorated because the flow of air is hindered.
  • the multi-hole tube for a heat exchanger is integrated with the fins, it can be expanded in the short axis direction of the flat tube, but is difficult to expand in the long axis direction. For this reason, there is a problem in that the heat exchange efficiency may be poor at the end of the multi-hole tube for a heat exchanger in the long axis direction because the end cannot be reliably contacted with the fin.
  • the present inventor has studied to solve the above problems, and as a result, it has been found that the multihole tubes for a heat exchanger are not flat, and the shape of a plurality of internal flow paths is devised to solve the above problems.
  • the present inventor has found out what can be done and arrived at the present invention.
  • an object of the present invention is to provide a multi-hole tube for a heat exchanger that can prevent dust and water droplets from adhering and preventing a decrease in heat exchange efficiency, and a method for expanding such a multi-hole tube for a heat exchanger. It is in.
  • the external shape of the cross section of the whole tube is formed in the opal shape.
  • the meaning of the opal in the present specification is a shape including an oval and an ellipse, and means a shape in which at least a major axis and a minor axis are present and no plane portion is present. Also, the odd number of the plurality of flow paths are formed, and the flow path having the largest cross-sectional area among the odd number of flow paths is provided at the center of the tube cross section in the major axis direction and the minor axis direction. It may be a sign.
  • a method for expanding a multi-hole tube for a heat exchanger according to claim 2 wherein the tube is provided at the center in the major axis direction and the minor axis direction of the tube cross section. It is characterized in that the entire tube is expanded by inserting the expansion burette into only the flow path in which the tube is located, and expanding the flow path provided at the center in the long axis direction and the short axis direction of the tube cross section. .
  • the multi-hole tube for heat exchangers of this invention since the cross section was made into the opal shape and the flat part was eliminated, it can be set as the heat exchanger with good heat exchange efficiency which is hard for dust and water droplets to adhere.
  • a heat exchanger can be provided at low cost.
  • it is possible to reliably expand the pipe in the long axis direction it is possible to surely make contact with the fins, thereby providing a heat exchanger having high heat exchange efficiency.
  • FIG. 1 is a perspective view showing the overall configuration of a multi-hole tube for a heat exchanger.
  • FIG. 2 is a cross-sectional view of the multi-hole tube for a heat exchanger according to the first embodiment.
  • FIG. 3 is a cross-sectional view of a multi-hole tube for a heat exchanger according to a second embodiment.
  • FIG. 4 is a sectional view of a multi-hole tube for a heat exchanger according to a third embodiment.
  • FIG. 5 is a perspective view showing an overall configuration of a multi-hole tube for a heat exchanger according to a fourth embodiment.
  • FIG. 6 is a sectional view of a multi-hole tube for a heat exchanger according to a fourth embodiment.
  • FIG. 7 is an explanatory diagram showing a structure of a heat exchanger.
  • FIG. 8 is an explanatory view showing a structure of a fin.
  • FIG. 9 is an explanatory view showing a state where a multi-hole tube for a heat exchanger is passed through the fins of FIG. 8.
  • FIG. 10 is an explanatory view showing a method for expanding the multi-hole tube for a heat exchanger shown in Example 1.
  • FIG. 11 is an explanatory view showing a state of expansion of the multi-hole tube for a heat exchanger shown in Example 1.
  • FIG. 12 is an explanatory view showing a method for expanding the multi-hole tube for a heat exchanger shown in Example 4.
  • FIG. 13 is an explanatory view showing a state of expansion of the multi-hole tube for a heat exchanger shown in Example 4.
  • FIG. 14 is an explanatory view illustrating the structure of a conventional multi-hole tube for a heat exchanger.
  • a plurality of flow paths were formed in a multi-hole tube for a heat exchanger having an overall oval cross section. At this time, the plurality of flow paths were arranged in series along the longitudinal direction of the tube cross section.
  • the flow path located at the center in the major axis direction and the minor axis direction of the tube cross section has a shape in which four sides of a rectangle that is long in the minor axis direction of the cross section are formed in an arc shape.
  • each side of the flow path has an arc shape in which two opposite sides in the long axis direction are convex toward the outside of the flow path, and the two opposite sides in the short axis direction are the flow path. It is formed so as to have an arc shape that is convex toward the inside of the circle.
  • Example 1 Hereinafter, examples of the multi-hole tube for a heat exchanger will be described.
  • FIG. 1 shows the overall configuration of the multi-hole tube for a heat exchanger.
  • a multi-hole tube for a heat exchanger (hereinafter simply referred to as a multi-hole tube) 30 is inserted into a fin for a heat exchanger (see FIG. 7; hereinafter, simply referred to as a fin) to allow a refrigerant to flow therethrough. Things.
  • the multi-hole tube 30 has therein a plurality of flow paths 31 partitioned by a partition wall 32, and thus has a characteristic that the heat exchange efficiency can be increased by increasing the contact area of the refrigerant. are doing.
  • the multi-hole tube 30 is made of aluminum or copper, and is formed by extrusion. Therefore, the outer peripheral wall 33 of the multi-hole tube 30 and the respective partition walls 32 for forming the internal flow path are formed integrally. It is also preferable to improve the mechanical properties of the multi-hole tube formed by extrusion processing by heat treatment (so-called annealing). Specifically, in the case of a multi-hole tube made of Anore Minim, by heating to 400 ° C ⁇ 50 ° C after extrusion, the tube can be expanded well in the longitudinal direction of the tube cross section.
  • the method of manufacturing the multi-hole tube 30 is well known in the art, and thus will not be described in detail here.
  • FIG. 2 shows a cross section of the multi-hole tube 30 of the present embodiment.
  • the entire cross section of the multi-hole tube 30 is formed in an oval shape.
  • the ratio of the length in the major axis direction X to the minor axis direction Y is about 4: 1.
  • the flow path 31a having the largest diameter is disposed at the center of the tube cross section in the long axis direction X, and the center of the flow path 31a is aligned with the center of the tube cross section in the short axis direction Y. I do.
  • the channels 31b having the next largest diameter are arranged on both sides of the channel 31a in the long axis direction. Further, a flow path 31c having the smallest diameter is arranged on the end side of the flow path 31b in the long axis direction.
  • the five flow paths 31a to 31c having an oval cross section are arranged in series in the longitudinal direction of the entire tube.
  • the partition walls 32 are arranged in contact with each other in the longitudinal direction X of the entire tube.
  • Each of these partition walls 32 is arranged in the short axis direction Y of the entire tube. It is arranged in contact with the inner wall surface 35 of the tube.
  • the flow passages formed inside the multi-hole tube 30 include not only flow passages 31a-31c having an oval cross section or a circular cross section, but also the circular holes existing outside thereof.
  • the non-bar-shaped part 3 Id is also a flow path.
  • FIG. 3 shows another embodiment of the multi-hole tube.
  • the multi-hole tube 40 is formed in an oval shape as a whole, and has a shape in which the ratio of the length in the major axis direction X to the minor axis direction Y is about 3: 1. Therefore, the shape is such that the thickness is increased in the short axis direction Y as compared with the multi-hole tube 30 shown in the first embodiment.
  • five oval-shaped flow paths 41 are formed inside an opal-shaped multi-hole tube 40 in the overall section.
  • the flow path 41a having the largest diameter is disposed at the center of the entire tube in the long axis direction X, and the center of the flow path 41a coincides with the center of the short axis direction Y.
  • Channels 41b having the next largest diameter are arranged on both sides of the channel 41a in the long axis direction.
  • a flow path 41c having the smallest diameter is disposed on the end side of the flow path 41b in the long axis direction.
  • the five oval-shaped flow paths 41a to 41c are arranged in series in the longitudinal direction of the entire tube.
  • the partition walls 42 are arranged in contact with each other in the longitudinal direction X of the entire tube.
  • Each of these partition walls 42 is disposed in contact with the inner wall surface 45 of the tube in the short axis direction Y of the entire tube.
  • the flow path formed inside the multi-well tube 40 is not only a flow path 41a-41c having an oval cross-section but a circular cross-section.
  • the part 41d is also a flow path.
  • FIG. 4 shows another embodiment of the multi-hole tube.
  • the multi-well tube 50 is formed in an oval shape as a whole, but has a shape in which the ratio of the length in the major axis direction X to the minor axis direction Y is about 3: 1. Therefore, the overall shape is the same as that of the multi-well tube 40 shown in the second embodiment.
  • three channels 51 having an opal-shaped cross section are formed inside the multi-hole tube 50 having an opal-shaped cross section.
  • the largest diameter channel 51a is arranged at the center of the entire tube in the long axis direction X, and the center of the channel 51a coincides with the center in the short axis direction Y .
  • the other flow paths 51b are respectively arranged on both sides of the flow path 51a in the long axis direction.
  • the three flow paths 51a and 51b having an oval cross section are arranged in series in the longitudinal direction X of the entire tube.
  • the partition walls 52 are arranged in contact with each other in the longitudinal direction X of the entire tube.
  • These partition walls 52 are arranged in contact with the inner wall surface 55 of the tube in the short axis direction Y of the entire tube.
  • the flow path formed inside the multi-well tube 50 includes a flow path 51a-51b having an oval cross-section and a circular cross-section. Is also a flow path.
  • Examples 1 to 3 an odd number of flow paths having a circular cross section or an opal-shaped cross section were provided, and these were arranged on a straight line (on a line parallel to the major axis direction X of the tube cross section).
  • Each flow path having a circular cross section or an opal cross section is formed by a narrow partition wall having the same shape as the flow path, and the partition walls come into contact with each other in the longitudinal direction X of the tube cross section, and the cross section of the tube cross section is formed.
  • the shape On the Y side in the short axis direction, the shape is such that it comes into contact with the inner wall surface of the tube outer peripheral wall.
  • the multi-hole tube 70 has an opal-shaped cross section as a whole, and has a plurality of flow paths 72a, 72b 'formed therein.
  • the flow path 72a located at the center in the major axis direction X and the minor axis direction Y has a cross section that is not circular or opal-shaped.
  • the cross-sectional shape of the flow path 72a is such that each side of a long rectangle in the short-axis direction Y is This is a shape formed in an arc shape (curve).
  • the cross-sectional shape of the flow path 72a located at the center is composed of four arc-shaped sides p, q, r, and s.
  • two opposing sides p and q in the long axis direction X are convex in the arc, and the protruding direction is outward, and the two opposing sides r and s in the short axis direction Y.
  • two opposing sides r and s in the short axis direction Y are shorter in length than two opposing sides p and q in the long axis direction X.
  • the radii of curvature of these four sides p, q, r, s are almost the same.
  • a plurality of flow paths 72b having a circular cross section are formed on both sides in the long axis direction X of the flow path 72a located at the center of the long axis direction X of the multi-well tube 70.
  • a total of four circular flow paths 72b are formed, two on each side of the flow path 72a (end side in the long axis direction X).
  • the diameters of the flow paths 72b having a circular cross section are all the same.
  • the entire flow paths 72a and 72b are formed in an oval shape, rather than being formed by a thin partition wall.
  • the tube is hollowed out to give a shape as if formed.
  • the part which can be said to be a partition wall has the same thickness as the diameter of each flow path, and the parts other than the flow path 72a located at the center and the circular flow path 72b (except for five places) Is not formed.
  • the method for manufacturing the multi-hole tube 70 can be formed by extrusion or drawing in the same manner as in the above-described embodiments.
  • the heat exchanger 60 is provided so that a plurality of thin fins 36 made of metal are stacked, and the multi-hole tubes 30 are inserted through the stacked fins 36, respectively.
  • the multi-hole tube 30 is joined to and integrated with the fin 36 by being expanded over its entire length.
  • expansion of the multi-hole tube 30 joins the multi-hole tube 30 to the fin 36. It is done at the time.
  • the connection between the fin and the multi-hole tube will be described with reference to FIGS.
  • the multi-hole tube described here is the same as that described in the first embodiment.
  • the fin 36 is a thin metal plate, and has a through hole 38 formed at a predetermined position so that the multi-hole tube 30 can be inserted therein.
  • the periphery of the through hole 38 is provided with a collar 39 formed so as to stand in one direction, and is configured as a through hole 46 with a collar.
  • the multi-hole tube 30 is inserted into such a collared through hole 46 of the fin 36.
  • FIG. 10 is a schematic explanatory view of the method for expanding a multi-hole tube according to the present invention
  • FIG. 11 shows a state of expanding the multi-hole tube at this time.
  • the broken line indicates the state before expansion
  • the solid line indicates the state after expansion.
  • the multi-hole tube 30 described below is the multi-hole tube described in the first embodiment, and has an oval cross section as a whole, and has five oval-shaped flow channels 31 disposed therein. It is. More specifically, a flow path 31a having the largest diameter among the oval cross-sections is disposed at the center of the entire major axis direction X, and the force S directed gradually toward the end in the major axis direction X is gradually increased.
  • the small-diameter flow paths 31b and 31c are arranged, and the partition walls 32 of the oval-shaped flow paths are in contact with each other, and are arranged in a straight line along the long axis direction X.
  • each of the flow paths 31 having the same cross-sectional shape is formed so as to inscribe the inner wall surface 35 of the multi-hole tube 30 in the entire short axis direction Y.
  • the expansion is performed by expanding one of the flow paths 31 having an opal-shaped cross section formed therein with an expansion buret 66.
  • an expansion buret 66 is inserted into a flow path 31a (hereinafter, referred to as a center flow path) arranged at the center in the major axis direction X and the minor axis direction Y, thereby expanding the pipe. It is.
  • the central flow channel 31a is entirely expanded in all directions around 360 degrees. Is pressed (arrow B in FIG. 11).
  • This partition 32bl pushes By being pressed, the center position of the flow path 31b adjacent to the center flow path 31a moves to the end 37 side in the long axis direction X, so that the partition wall 32b2 on the end 37 side of the flow path 31b further ends.
  • the partition wall 32cl forming the flow path 31c adjacent to the part 37 is pressed (arrow C in FIG. 11). Since the partition wall 32c2 on the end 37 side of the flow path 31c is in contact with the vicinity of the end 37, the partition 32c2 expands the vicinity of the end 37 in the longitudinal direction X.
  • the central flow channel 31a is entirely expanded in all directions around 360 degrees, but presses the outer peripheral wall 33 of the entire multi-hole tube 30 at a portion facing the short axis direction ⁇ (arrow D in FIG. 11). Expand the entire tube in the short axis direction Y as well.
  • the expansion burette 66 has a predetermined diameter that is the same as the inner diameter of the central flow path 31a of the multi-hole tube 30 after expansion, and is shown at the tip of the expansion mandrel 68. N, it is mounted by the mounting member.
  • a tube having five opal-shaped flow channels formed was expanded.
  • the number of opal-shaped flow paths is not limited to five, but may be other numbers, but an odd number is preferable.
  • the internal flow path may be a force-recessed circular flow path having a cross section of an opal shape.
  • the multi-hole tube 70 described here has a cross-sectional shape of a flow path 72a located at the center in the long axis direction X and the short axis direction Y among a plurality of flow paths.
  • the sides are formed in an arc shape.
  • two opposing sides p and q in the long axis direction X have outward projections in which the arcs are convex and short axes.
  • Opposite sides r and s in the direction Y are such that the protruding direction in which the arc is convex is inward.
  • the diameter of the expanded burette 66 is the width h (that is, the width It has a larger diameter than the width h) in various directions.
  • the expansion burette 66 is inserted into the flow path 72a, the flow path 72a is expanded in the long axis direction X and the short axis direction Y, and the cross section of the flow path 72a becomes circular (a portion indicated by a broken line E in FIG. 13).
  • the wall around the flow path 72a expands outward, and the entire multi-hole tube 70 is expanded (broken line F in FIG. 13).

Abstract

A multi-hole tube for a heat exchanger capable of preventing heat exchange efficiency from being lowered due to the less adherence of dirt and water droplets thereto and a method of expanding a tube capable of easily and securely expanding the tube by using a rather small device in the multi-hole tube for the heat exchanger. The multi-hole tube (30) for the heat exchanger in which a plurality of flow passages (31) are formed is characterized in that the outline of the tube in cross section is formed in an oval shape.

Description

明 細 書  Specification
熱交換器用多穴チューブおよび熱交換器用多穴チューブの拡管方法 技術分野  TECHNICAL FIELD The present invention relates to a multi-hole tube for a heat exchanger and a method for expanding the multi-hole tube for a heat exchanger.
[0001] 本発明は、熱交換器に用いられる熱交換器用チューブの内部に複数の流路が形 成された熱交換器用多穴チューブ、およびこのような熱交換器用多穴チューブの拡 管方法に関する。  The present invention relates to a multi-hole tube for a heat exchanger in which a plurality of flow paths are formed inside a tube for a heat exchanger used in a heat exchanger, and a method for expanding such a multi-hole tube for a heat exchanger. About.
^景技術  ^ Scenic technology
[0002] 家庭用や自動車用のクーラー等の熱交換器は、アルミニウム等の薄板で形成され ている複数枚の熱交換器用フィンと、金属製の熱交換器用チューブとから構成され ている。熱交換器用チューブ内には冷媒が流通し、フィンを介して熱交換が行なわ れる。  [0002] Heat exchangers such as coolers for home use and automobiles are composed of a plurality of heat exchanger fins formed of a thin plate of aluminum or the like, and a metal heat exchanger tube. Refrigerant flows through the heat exchanger tube, and heat is exchanged through the fins.
このような熱交換器用チューブとして、図 14に示すような多穴のチューブを用いるこ とは従来から知られている(例えば特許文献 1)。  It has been conventionally known to use a multi-hole tube as shown in FIG. 14 as such a heat exchanger tube (for example, Patent Document 1).
図 14に示したような熱交換器用多穴チューブ 10は、内部に複数の流路 11を仕切 る仕切壁 12が形成されているので、冷媒の接触面積が増加し、一穴のチューブと比 較して熱交換効率が高い。  In the multi-hole tube 10 for a heat exchanger as shown in FIG. 14, since a partition wall 12 for partitioning a plurality of flow paths 11 is formed inside, the contact area of the refrigerant is increased, and the tube is compared with a single-hole tube. Higher heat exchange efficiency.
かかる熱交換器用多穴チューブ 10は、断面が扁平形状のものである。扁平な形状 とすることによって、扁平の平面部分を空気の流通方向 Aと平行となるように熱交換 器用フィン(図示せず)に挿入して設ければ、熱交換器用多穴チューブ 10が受ける 空気抵抗を小さくすることができ、熱交換効率を上げることができるためである。 なお、多穴のチューブに限らず一般的に、熱交換器用チューブをフィンのカラー付 き透孔に揷入した後、熱交換器用チューブとフィンを強固に接合し一体化させるには 、熱交換器用チューブを拡管することが通常行なわれている。  The multi-hole tube 10 for a heat exchanger has a flat cross section. If the flat shape is inserted into the heat exchanger fins (not shown) so as to be parallel to the air flow direction A by providing the flat shape, the multi-well tube 10 for the heat exchanger is received. This is because air resistance can be reduced and heat exchange efficiency can be increased. Generally, not only the multi-hole tube but also the heat exchanger tube is inserted into the through hole with the collar of the fin, and then the heat exchanger tube and the fin are firmly joined and integrated by heat exchange. It is common practice to expand dexterous tubes.
ここで、熱交換器用チューブが多穴チューブではなぐ一穴のチューブで有れば拡 管ビュレット (例えば特許文献 2参照)等を用いて容易に拡管することができる。しかし 、多穴のチューブの場合には、各流路の形状が円形等ではなぐ各流路をそれぞれ どのように拡管させるかが問題となるため、この拡管ビュレットを用いる方法を採用す ることができず、高圧の流体を流通させて拡管させるという考え方が提案されていた。 特許文献 1:特開平 8 - 73973号公報 Here, if the heat exchanger tube is a single-hole tube instead of a multi-hole tube, the tube can be easily expanded using an expansion burette (for example, see Patent Document 2). However, in the case of a multi-hole tube, there is a problem in how to expand each of the flow paths that is not circular or the like, so a method using this expanded burette is adopted. Therefore, there has been proposed an idea of expanding a pipe by flowing a high-pressure fluid. Patent Document 1: JP-A-8-73973
特許文献 2:特開平 7 - 124670号公報 Patent Document 2: JP-A-7-124670
発明の開示 Disclosure of the invention
上述したような断面が扁平形状の熱交換器用多穴チューブでは、平面部分にゴミ が堆積したり、あるいは水滴が付着したりするおそれも考えられる。かかる場合には、 空気の流通が妨げられるために熱交換効率が悪くなつてしまうという課題がある。 熱交換器用多穴チューブをフィンに一体化させる際の拡管方法では扁平管の短軸 方向には拡管することはできても、長軸方向には拡管しにくい。このため、熱交換器 用多穴チューブの長軸方向の端部においてはフィンと確実に接触することができず に熱交換効率が悪い可能性があるという課題がある。  In the multi-hole tube for a heat exchanger having a flat cross section as described above, there is a possibility that dust may accumulate on a flat portion or water droplets may adhere. In such a case, there is a problem that the heat exchange efficiency is deteriorated because the flow of air is hindered. When the multi-hole tube for a heat exchanger is integrated with the fins, it can be expanded in the short axis direction of the flat tube, but is difficult to expand in the long axis direction. For this reason, there is a problem in that the heat exchange efficiency may be poor at the end of the multi-hole tube for a heat exchanger in the long axis direction because the end cannot be reliably contacted with the fin.
さらに、液圧による拡管では、どのような液体を用いることが最適であるか見出すた めに今後様々な液体で実験を重ねてレ、く必要性がある。  Furthermore, in the case of hydraulic expansion, it is necessary to repeat experiments with various liquids in order to find out what liquid is best to use.
本発明者は上記課題を解決すべく検討した結果、熱交換器用多穴チューブを扁 平ではない形状にし、内部の複数の流路の形状に工夫をこらすことで、上記課題を 解決することができることを見出し、本発明に想到した。  The present inventor has studied to solve the above problems, and as a result, it has been found that the multihole tubes for a heat exchanger are not flat, and the shape of a plurality of internal flow paths is devised to solve the above problems. The present inventor has found out what can be done and arrived at the present invention.
そこで、本発明の目的は、ゴミゃ水滴が付着しにくく熱交換効率の低下を防止する ことができる熱交換器用多穴チューブ、およびこのような熱交換器用多穴チューブの 拡管方法を提供することにある。  Therefore, an object of the present invention is to provide a multi-hole tube for a heat exchanger that can prevent dust and water droplets from adhering and preventing a decrease in heat exchange efficiency, and a method for expanding such a multi-hole tube for a heat exchanger. It is in.
本発明にかかる熱交換器用多穴チューブによれば、内部に複数の流路が形成さ れた、熱交換器用多穴チューブにおいて、チューブ全体の断面の外形がオーパル 形に形成されていることを特徴としている。 熱交換器用多穴チューブを断面オーバ ル形にすることで、チューブの外壁面にゴミゃ水滴が付着したりしても外壁 面が曲面であるので、すぐに滑り落ちてしまい、ゴミゃ水滴の付着による熱交換効率 の低下とレ、う事態を防ぐことができる。  ADVANTAGE OF THE INVENTION According to the multi-hole tube for heat exchangers which concerns on this invention, in the multi-hole tube for heat exchangers in which several flow paths were formed, the external shape of the cross section of the whole tube is formed in the opal shape. Features. By making the multi-hole tube for the heat exchanger an oval cross section, even if dirt and water droplets adhere to the outer wall surface of the tube, the outer wall surface is a curved surface, so it slips off quickly, and the dirt and water droplets This can prevent the heat exchange efficiency from lowering due to the adhesion and prevent the situation.
なお、本明細書中でいうオーパルという意味は、卵形および楕円を含めた形状であ り、少なくとも長軸および短軸と言える部分が存在し、且つ平面部分が存在し無い形 状をいう。 また、前記複数の流路は奇数個形成され、該奇数個の流路のうち断面積が最大の 流路が、チューブ断面の長軸方向および短軸方向の中心に設けられていることを特 徴としてもよい。 The meaning of the opal in the present specification is a shape including an oval and an ellipse, and means a shape in which at least a major axis and a minor axis are present and no plane portion is present. Also, the odd number of the plurality of flow paths are formed, and the flow path having the largest cross-sectional area among the odd number of flow paths is provided at the center of the tube cross section in the major axis direction and the minor axis direction. It may be a sign.
この構成によれば、長軸方向および短軸方向の中心に位置する流路からみて長軸 方向両側には同数の流路が配置されているので、中心に存在する流路のみを拡管 するようにすることで、チューブ断面の長軸方向に均一に拡管される。また、断面積 が最大の流路のみを拡管すれば、チューブの外形を短軸側と長軸側に拡管すること ができる。  According to this configuration, since the same number of flow paths are disposed on both sides in the long axis direction as viewed from the flow paths positioned at the center in the long axis direction and the short axis direction, only the flow path existing at the center is expanded. By doing so, the tube is uniformly expanded in the longitudinal direction of the tube cross section. If only the flow path having the largest cross-sectional area is expanded, the outer shape of the tube can be expanded toward the short axis and the long axis.
本発明にかかる熱交換器用チューブの製造方法によれば、請求項 2記載の熱交換 器用多穴チューブを拡管する方法であって、チューブ断面の長軸方向および短軸 方向の中心に設けられている流路のみに拡管ビュレットを揷入し、チューブ断面の長 軸方向および短軸方向の中心に設けられている流路を拡管することで、チューブ全 体を拡管させることを特徴としてレ、る。  According to the method for manufacturing a heat exchanger tube according to the present invention, there is provided a method for expanding a multi-hole tube for a heat exchanger according to claim 2, wherein the tube is provided at the center in the major axis direction and the minor axis direction of the tube cross section. It is characterized in that the entire tube is expanded by inserting the expansion burette into only the flow path in which the tube is located, and expanding the flow path provided at the center in the long axis direction and the short axis direction of the tube cross section. .
この方法を採用することによって、従来であれば多穴チューブの拡管は、流体によ つて行なわざるを得ないと考えられてきた力 長軸方向および短軸方向の中心に位 置する流路のみを機械的に拡管できるようになった。  By adopting this method, the expansion of the multi-hole tube has been considered to have to be carried out by a fluid in the past. Only the flow path located at the center in the long axis direction and the short axis direction has been considered. Can be expanded mechanically.
[0004] 発明の効果 [0004] Effects of the invention
本発明の熱交換器用多穴チューブによれば、断面をオーパル形にして平面部分を 無くしたのでゴミゃ水滴が付着しにくぐ熱交換効率の良い熱交換器とすることができ る。  ADVANTAGE OF THE INVENTION According to the multi-hole tube for heat exchangers of this invention, since the cross section was made into the opal shape and the flat part was eliminated, it can be set as the heat exchanger with good heat exchange efficiency which is hard for dust and water droplets to adhere.
また、本発明の熱交換器用多穴チューブの拡管方法によれば、低コストで熱交換 器を提供することができる。また、長軸方向にも確実に拡管することが可能となるので 、フィンとの接触も確実に行なえるため熱交換効率の良い熱交換器の提供が可能と なる。  Further, according to the method for expanding a multi-hole tube for a heat exchanger of the present invention, a heat exchanger can be provided at low cost. In addition, since it is possible to reliably expand the pipe in the long axis direction, it is possible to surely make contact with the fins, thereby providing a heat exchanger having high heat exchange efficiency.
図面の簡単な説明  Brief Description of Drawings
[0005] [図 1]熱交換器用多穴チューブの全体構成を示す斜視図である。  FIG. 1 is a perspective view showing the overall configuration of a multi-hole tube for a heat exchanger.
[図 2]実施例 1にかかる熱交換器用多穴チューブの断面図である。  FIG. 2 is a cross-sectional view of the multi-hole tube for a heat exchanger according to the first embodiment.
[図 3]実施例 2にかかる熱交換器用多穴チューブの断面図である。 [図 4]実施例 3にかかる熱交換器用多穴チューブの断面図である。 FIG. 3 is a cross-sectional view of a multi-hole tube for a heat exchanger according to a second embodiment. FIG. 4 is a sectional view of a multi-hole tube for a heat exchanger according to a third embodiment.
[図 5]実施例 4にかかる熱交換器用多穴チューブの全体構成を示す斜視図である。  FIG. 5 is a perspective view showing an overall configuration of a multi-hole tube for a heat exchanger according to a fourth embodiment.
[図 6]実施例 4にかかる熱交換器用多穴チューブの断面図である。  FIG. 6 is a sectional view of a multi-hole tube for a heat exchanger according to a fourth embodiment.
[図 7]熱交換器の構造を示す説明図である。  FIG. 7 is an explanatory diagram showing a structure of a heat exchanger.
[図 8]フィンの構造を示す説明図である。  FIG. 8 is an explanatory view showing a structure of a fin.
[図 9]図 8のフィンに熱交換器用多穴チューブを揷通させたところを示す説明図であ る。  FIG. 9 is an explanatory view showing a state where a multi-hole tube for a heat exchanger is passed through the fins of FIG. 8.
[図 10]実施例 1に示した熱交換器用多穴チューブを拡管する方法を示す説明図であ る。  FIG. 10 is an explanatory view showing a method for expanding the multi-hole tube for a heat exchanger shown in Example 1.
[図 11]実施例 1に示した熱交換器用多穴チューブの拡管の様子を示す説明図であ る。  FIG. 11 is an explanatory view showing a state of expansion of the multi-hole tube for a heat exchanger shown in Example 1.
[図 12]実施例 4に示した熱交換器用多穴チューブを拡管する方法を示す説明図であ る。  FIG. 12 is an explanatory view showing a method for expanding the multi-hole tube for a heat exchanger shown in Example 4.
[図 13]実施例 4に示した熱交換器用多穴チューブの拡管の様子を示す説明図であ る。  FIG. 13 is an explanatory view showing a state of expansion of the multi-hole tube for a heat exchanger shown in Example 4.
[図 14]従来の熱交換器用多穴チューブの構造について説明する説明図である。 発明を実施するための最良の形態  FIG. 14 is an explanatory view illustrating the structure of a conventional multi-hole tube for a heat exchanger. BEST MODE FOR CARRYING OUT THE INVENTION
全体を断面オーパル形とした熱交換器用多穴チューブに、複数個の流路を形成し た。このとき、複数個の流路はチューブ断面の長軸方向に沿って直列するように配置 した。また、チューブ断面の長軸方向および短軸方向の中心に位置する流路は、断 面の短軸方向に長い長方形の各四辺を円弧状に形成した形状である。  A plurality of flow paths were formed in a multi-hole tube for a heat exchanger having an overall oval cross section. At this time, the plurality of flow paths were arranged in series along the longitudinal direction of the tube cross section. In addition, the flow path located at the center in the major axis direction and the minor axis direction of the tube cross section has a shape in which four sides of a rectangle that is long in the minor axis direction of the cross section are formed in an arc shape.
さらに具体的に説明すると、この流路の各辺は、長軸方向の対向する二辺が流路 の外側に向けて凸となる円弧状であり、短軸方向の対向する二辺が流路の内側に向 けて凸となる円弧状となるように形成されたものである。  More specifically, each side of the flow path has an arc shape in which two opposite sides in the long axis direction are convex toward the outside of the flow path, and the two opposite sides in the short axis direction are the flow path. It is formed so as to have an arc shape that is convex toward the inside of the circle.
このような熱交換器用多穴チューブをフィンに接合する際に拡管する場合には、中 心部に位置するほぼ四角形状の流路のみを拡管ビュレットを挿入することで拡 管し、チューブ全体も拡管させるようにした。  When such a multi-hole tube for a heat exchanger is expanded when joining it to a fin, only the almost square flow path located at the center is expanded by inserting an expansion burette, and the entire tube is also expanded. The tube was expanded.
実施例 1 以下、熱交換器用多穴チューブの実施例について説明する。 Example 1 Hereinafter, examples of the multi-hole tube for a heat exchanger will be described.
図 1に熱交換器用多穴チューブの全体構成を示す。熱交換器用多穴チューブ (以 下、単に多穴チューブと称する) 30は、熱交換器用フィン(図 7参照:以下、単にフィ ンと称する)に揷入され、内部に冷媒を流通させるためのものである。多穴チューブ 3 0は、内部に仕切壁 32で仕切られた複数の流路 31が形成されており、このため冷媒 の接触面積を増加することによって熱交換効率を上げることができるという特性を有 している。  Figure 1 shows the overall configuration of the multi-hole tube for a heat exchanger. A multi-hole tube for a heat exchanger (hereinafter simply referred to as a multi-hole tube) 30 is inserted into a fin for a heat exchanger (see FIG. 7; hereinafter, simply referred to as a fin) to allow a refrigerant to flow therethrough. Things. The multi-hole tube 30 has therein a plurality of flow paths 31 partitioned by a partition wall 32, and thus has a characteristic that the heat exchange efficiency can be increased by increasing the contact area of the refrigerant. are doing.
多穴チューブ 30は、アルミニウム製や銅製であって、押出加工により形成される。し たがって、多穴チューブ 30の外周壁 33と、内部の流路を形成するための各仕切壁 3 2とは一体に形成されるものである。また、押出加工により成型された多穴チューブを 熱処理 (いわゆる焼鈍)により機械的性質を改善すると好適である。具体的には、ァ ノレミニゥム製の多穴チューブの場合には押出加工後に 400°C ± 50°Cに加熱すること で、チューブ断面の長軸方向にも良好に拡管できる。  The multi-hole tube 30 is made of aluminum or copper, and is formed by extrusion. Therefore, the outer peripheral wall 33 of the multi-hole tube 30 and the respective partition walls 32 for forming the internal flow path are formed integrally. It is also preferable to improve the mechanical properties of the multi-hole tube formed by extrusion processing by heat treatment (so-called annealing). Specifically, in the case of a multi-hole tube made of Anore Minim, by heating to 400 ° C ± 50 ° C after extrusion, the tube can be expanded well in the longitudinal direction of the tube cross section.
なお、多穴チューブ 30の製造方法自体については従来からよく知られているもの であるため、ここでは詳述しない。  The method of manufacturing the multi-hole tube 30 is well known in the art, and thus will not be described in detail here.
図 2に本実施例の多穴チューブ 30の断面を示す。多穴チューブ 30は、全体の断 面がオーバル形に形成されている。ここでは具体的に長軸方向 Xの長さと短軸方向 Yの長さの比が 4: 1程度の形状である。  FIG. 2 shows a cross section of the multi-hole tube 30 of the present embodiment. The entire cross section of the multi-hole tube 30 is formed in an oval shape. Here, specifically, the ratio of the length in the major axis direction X to the minor axis direction Y is about 4: 1.
このような全体の断面がオーバル形の多穴チューブ 30の内部には、断面がオーバ ル形の流路 31が 5個形成されている。 5個の流路のうち、最も径の大きい流路 31aが チューブ断面の長軸方向 Xの中心部に配置され、この流路 31aの中心はチューブ断 面の短軸方向 Yの中心部と一致している。  Inside the multi-hole tube 30 having such an oval cross section, five channels 31 having an oval cross section are formed. Among the five flow paths, the flow path 31a having the largest diameter is disposed at the center of the tube cross section in the long axis direction X, and the center of the flow path 31a is aligned with the center of the tube cross section in the short axis direction Y. I do.
流路 31aの長軸方向両側に次に径の大きい流路 31bがそれぞれ配置されている。 さらに、その流路 31bの長軸方向の端部側には最も小さい径の流路 31cが配置され ている。  The channels 31b having the next largest diameter are arranged on both sides of the channel 31a in the long axis direction. Further, a flow path 31c having the smallest diameter is arranged on the end side of the flow path 31b in the long axis direction.
つまり、断面オーバル形の 5個の流路 31a— 31cは、チューブ全体の長軸方向 に 対して直列している。このとき、互いの仕切壁 32がチューブ全体の長軸方向 Xに接 触して配置される。また、これら各仕切壁 32は、チューブ全体の短軸方向 Yにおいて チューブの内壁面 35に接触して配置されている。 In other words, the five flow paths 31a to 31c having an oval cross section are arranged in series in the longitudinal direction of the entire tube. At this time, the partition walls 32 are arranged in contact with each other in the longitudinal direction X of the entire tube. Each of these partition walls 32 is arranged in the short axis direction Y of the entire tube. It is arranged in contact with the inner wall surface 35 of the tube.
なお、このような多穴チューブ 30の内部に形成されている流路としては、断面ォー バル形や断面円形の流路 31 a— 31 cだけでなく、その外側に存在する円形ゃォー バル形ではない部位 3 Idも流路である。  The flow passages formed inside the multi-hole tube 30 include not only flow passages 31a-31c having an oval cross section or a circular cross section, but also the circular holes existing outside thereof. The non-bar-shaped part 3 Id is also a flow path.
実施例 2  Example 2
[0008] 図 3に多穴チューブの他の形態を示す。  FIG. 3 shows another embodiment of the multi-hole tube.
この多穴チューブ 40は、全体がオーバル形に形成されているが、その長軸方向 X の長さと短軸方向 Yの長さの比が 3 : 1程度の形状である。したがって、実施例 1に示 した多穴チューブ 30よりも短軸方向 Yに厚みを増したような形状となっている。  The multi-hole tube 40 is formed in an oval shape as a whole, and has a shape in which the ratio of the length in the major axis direction X to the minor axis direction Y is about 3: 1. Therefore, the shape is such that the thickness is increased in the short axis direction Y as compared with the multi-hole tube 30 shown in the first embodiment.
本実施例における、全体の断面がオーパル形の多穴チューブ 40内部には、断面 がオーバル形の流路 41が 5個形成されている。 5個の流路のうち、最も径の大きい流 路 41aがチューブ全体の長軸方向 Xの中心部に配置され、流路 41aの中心は短軸 方向 Yの中心部と一致している。この流路 41aの長軸方向両側に次に径の大きい流 路 41bがそれぞれ配置されている。さらに、その流路 41bの長軸方向の端部側には 最も小さい径の流路 41cが配置されてレ、る。  In the present embodiment, five oval-shaped flow paths 41 are formed inside an opal-shaped multi-hole tube 40 in the overall section. Among the five flow paths, the flow path 41a having the largest diameter is disposed at the center of the entire tube in the long axis direction X, and the center of the flow path 41a coincides with the center of the short axis direction Y. Channels 41b having the next largest diameter are arranged on both sides of the channel 41a in the long axis direction. Further, a flow path 41c having the smallest diameter is disposed on the end side of the flow path 41b in the long axis direction.
つまり、断面オーバル形の 5個の流路 41a— 41cは、チューブ全体の長軸方向 に 対して直列している。このとき、互いの仕切壁 42がチューブ全体の長軸方向 Xに接 触して配置される。また、これら各仕切壁 42は、チューブ全体の短軸方向 Yにおいて チューブの内壁面 45に接触して配置されてレ、る。  That is, the five oval-shaped flow paths 41a to 41c are arranged in series in the longitudinal direction of the entire tube. At this time, the partition walls 42 are arranged in contact with each other in the longitudinal direction X of the entire tube. Each of these partition walls 42 is disposed in contact with the inner wall surface 45 of the tube in the short axis direction Y of the entire tube.
またこのような多穴チューブ 40の内部に形成されている流路としては、断面オーバ ル形ゃ断面円形の流路 41a— 41cだけでなぐその外側に存在する円形やオーバ ル形ではなレ、部位 41dも流路である。  In addition, the flow path formed inside the multi-well tube 40 is not only a flow path 41a-41c having an oval cross-section but a circular cross-section. The part 41d is also a flow path.
このような流路の配置形態も実施例 1と同様である。  The arrangement of such flow paths is the same as in the first embodiment.
実施例 3  Example 3
[0009] 図 4に多穴チューブの他の形態を示す。  FIG. 4 shows another embodiment of the multi-hole tube.
この多穴チューブ 50は、全体がオーバル形に形成されているが、その長軸方向 X の長さと短軸方向 Yの長さの比が 3 : 1程度の形状である。したがって、実施例 2に示 した多穴チューブ 40と全体形状としては同一である。 本実施例における、全体の断面がオーパル形の多穴チューブ 50内部には、断面 がオーパル形の流路 51が 3個形成されている。 3個の流路 51のうち、最も径の大き ぃ流路 51aがチューブ全体の長軸方向 Xの中心部に配置され、流路 51aの中心は 短軸方向 Yの中心部と一致している。流路 51aの長軸方向両側に他の流路 51bがそ れぞれ配置されている。 The multi-well tube 50 is formed in an oval shape as a whole, but has a shape in which the ratio of the length in the major axis direction X to the minor axis direction Y is about 3: 1. Therefore, the overall shape is the same as that of the multi-well tube 40 shown in the second embodiment. In this embodiment, inside the multi-hole tube 50 having an opal-shaped cross section, three channels 51 having an opal-shaped cross section are formed. Of the three channels 51, the largest diameter channel 51a is arranged at the center of the entire tube in the long axis direction X, and the center of the channel 51a coincides with the center in the short axis direction Y . The other flow paths 51b are respectively arranged on both sides of the flow path 51a in the long axis direction.
断面オーバル形の 3個の流路 51a 51bは、チューブ全体の長軸方向 Xに対して 直列している。このとき、互いの仕切壁 52がチューブ全体の長軸方向 Xに接触して 配置される。また、これら各仕切壁 52は、チューブ全体の短軸方向 Yにおいてチュー ブの内壁面 55に接触して配置されている。  The three flow paths 51a and 51b having an oval cross section are arranged in series in the longitudinal direction X of the entire tube. At this time, the partition walls 52 are arranged in contact with each other in the longitudinal direction X of the entire tube. These partition walls 52 are arranged in contact with the inner wall surface 55 of the tube in the short axis direction Y of the entire tube.
またこのような多穴チューブ 50の内部に形成されている流路としては、断面オーバ ル形ゃ断面円形の流路 51a— 51bだけでなぐその外側に存在する円形やオーバ ル形ではない部位 51cも流路である。  In addition, the flow path formed inside the multi-well tube 50 includes a flow path 51a-51b having an oval cross-section and a circular cross-section. Is also a flow path.
実施例 1から実施例 3では、断面円形または断面オーパル形の流路を奇数個設け 、これらを一直線上(チューブ断面の長軸方向 Xに平行な線上)に配置した。断面円 形または断面オーパル形の各流路は、流路と同じ形状の幅狭の仕切壁によって形 成されており、この仕切壁がチューブ断面の長軸方向 Xに互いに接触し、チューブ 断面の短軸方向 Y側にはチューブ外周壁の内壁面に当接するような形状を成してい る。  In Examples 1 to 3, an odd number of flow paths having a circular cross section or an opal-shaped cross section were provided, and these were arranged on a straight line (on a line parallel to the major axis direction X of the tube cross section). Each flow path having a circular cross section or an opal cross section is formed by a narrow partition wall having the same shape as the flow path, and the partition walls come into contact with each other in the longitudinal direction X of the tube cross section, and the cross section of the tube cross section is formed. On the Y side in the short axis direction, the shape is such that it comes into contact with the inner wall surface of the tube outer peripheral wall.
このように、断面円形または断面オーパル形の流路の数を奇数個にすることで、チ ユーブの中心部に 1個の流路を配置すると中心部の流路の両側には、同数の流路が 配置されることとなる。したがって、中心部に配置された 1個の流路のみを拡管するだ けでチューブ全体をバランス良く均一に拡管することができるようになる。  In this way, by setting the number of flow paths having a circular or opal-shaped cross section to an odd number, if one flow path is arranged at the center of the tube, the same number of flow paths will be placed on both sides of the center flow path. Roads will be laid. Therefore, the entire tube can be uniformly and well-balanced by simply expanding only one channel disposed at the center.
実施例 4 Example 4
図 5および図 6に、多穴チューブの他の形態を示す。  5 and 6 show other embodiments of the multi-well tube.
この多穴チューブ 70は、全体の断面がオーパル形に形成されており、内部に複数 の流路 72a, 72b' ·が形成されている。複数の流路のうち、長軸方向 Xおよび短軸方 向 Yの中心部に位置する流路 72aは、その断面が円形やオーパル形ではない形状 となっている。具体的な流路 72aの断面形状は、短軸方向 Yに長い長方形の各辺が 円弧状(曲線)に形成されている形状である。 The multi-hole tube 70 has an opal-shaped cross section as a whole, and has a plurality of flow paths 72a, 72b 'formed therein. Of the plurality of flow paths, the flow path 72a located at the center in the major axis direction X and the minor axis direction Y has a cross section that is not circular or opal-shaped. Specifically, the cross-sectional shape of the flow path 72a is such that each side of a long rectangle in the short-axis direction Y is This is a shape formed in an arc shape (curve).
本実施例の流路 72aの断面形状をさらに具体的に説明する。  The cross-sectional shape of the flow channel 72a of this embodiment will be described more specifically.
中心に位置する流路 72aの断面形状は、 4つの円弧状の辺 p、 q、 r、 sから構成され ている。 4つの円弧状の辺のうち、長軸方向 Xの対向する 2辺 p、 qは、円弧が凸となる 突出方向が外向きになっており、短軸方向 Yの対向する 2辺 r、 sは、円弧が凸となる 突出方向が内向きとなっている。また、短軸方向 Yの対向する 2辺 r、 sは、長軸方向 X の対向する 2辺 p、 qと比較してその長さが短くなつている。これら 4辺 p、 q、 r、 sの曲率 半径はそれぞれほぼ同じ程度である。  The cross-sectional shape of the flow path 72a located at the center is composed of four arc-shaped sides p, q, r, and s. Of the four arc-shaped sides, two opposing sides p and q in the long axis direction X are convex in the arc, and the protruding direction is outward, and the two opposing sides r and s in the short axis direction Y. Has a circular arc convex, and the projection direction is inward. In addition, two opposing sides r and s in the short axis direction Y are shorter in length than two opposing sides p and q in the long axis direction X. The radii of curvature of these four sides p, q, r, s are almost the same.
多穴チューブ 70の長軸方向 Xの中心部に位置する流路 72aの長軸方向 Xの両側 には、複数の断面円形の流路 72bが形成されている。流路 72aの両側(長軸方向 X の端部側)にそれぞれ 2つずつ、計 4つの円形の流路 72bが形成されている。これら 断面円形の流路 72bの径は全て同じ径に形成されている。  A plurality of flow paths 72b having a circular cross section are formed on both sides in the long axis direction X of the flow path 72a located at the center of the long axis direction X of the multi-well tube 70. A total of four circular flow paths 72b are formed, two on each side of the flow path 72a (end side in the long axis direction X). The diameters of the flow paths 72b having a circular cross section are all the same.
なお、上述してきた各実施例とは異なり、本実施例では各流路 72a, 72bは、肉薄 の仕切壁によって仕切られて形成されているのではなぐ全体がオーバル状に形成 されてレ、るチューブをくりぬレ、て形成されたような形状を呈してレ、る。  Unlike the embodiments described above, in the present embodiment, the entire flow paths 72a and 72b are formed in an oval shape, rather than being formed by a thin partition wall. The tube is hollowed out to give a shape as if formed.
したがって、仕切壁といえる部位は各流路の径と同程度の厚さであり、また中心部 に位置する流路 72aと円形の流路 72b以外の部位(5箇所以外)には、流路は形成さ れない。  Therefore, the part which can be said to be a partition wall has the same thickness as the diameter of each flow path, and the parts other than the flow path 72a located at the center and the circular flow path 72b (except for five places) Is not formed.
また、この多穴チューブ 70の製造方法についても、上述した各実施例と同様に押 出加工または引出加工により形成することができる。  Also, the method for manufacturing the multi-hole tube 70 can be formed by extrusion or drawing in the same manner as in the above-described embodiments.
実施例 5 Example 5
以下、上述してきたような多穴チューブの拡管方法について説明する。  Hereinafter, a method for expanding the multi-hole tube as described above will be described.
まず、多穴チューブの拡管の前提となる熱交換器の構成から説明する。  First, a description will be given of a configuration of a heat exchanger which is a premise of expanding a multi-hole tube.
図 7に示すように、熱交換器 60は、金属製の薄板であるフィン 36が複数枚積層さ れ、多穴チューブ 30が積層したフィン 36のそれぞれを挿通するように設けられる。多 穴チューブ 30は、その全長にわたって拡管されることでフィン 36に接合して一体化さ れる。  As shown in FIG. 7, the heat exchanger 60 is provided so that a plurality of thin fins 36 made of metal are stacked, and the multi-hole tubes 30 are inserted through the stacked fins 36, respectively. The multi-hole tube 30 is joined to and integrated with the fin 36 by being expanded over its entire length.
上記のように、多穴チューブ 30の拡管は、多穴チューブ 30をフィン 36に接合する 際に行なわれる。以下、フィンと多穴チューブとの接合について図 8—図 9に基づい て説明する。ここで説明する多穴チューブは上述した実施例 1で説明したものである とする。 As described above, expansion of the multi-hole tube 30 joins the multi-hole tube 30 to the fin 36. It is done at the time. Hereinafter, the connection between the fin and the multi-hole tube will be described with reference to FIGS. The multi-hole tube described here is the same as that described in the first embodiment.
図 8に示すように、フィン 36は金属製の薄板であって、所定の箇所に多穴チューブ 30を揷入可能な透孔 38が形成されている。透孔 38の周縁は一方方向に起立するよ うに形成されたカラー 39が設けられ、カラー付き透孔 46として構成されている。多穴 チューブ 30は、このようなフィン 36のカラー付き透孔 46内に挿入される。カラー付き 透孔 46内に多穴チューブ 30が揷入された後に多穴チューブ 30が拡管されると、多 穴チューブ 30の外壁面がカラー 39に密着し、図 9のようにフィン 36と一体化するの である。  As shown in FIG. 8, the fin 36 is a thin metal plate, and has a through hole 38 formed at a predetermined position so that the multi-hole tube 30 can be inserted therein. The periphery of the through hole 38 is provided with a collar 39 formed so as to stand in one direction, and is configured as a through hole 46 with a collar. The multi-hole tube 30 is inserted into such a collared through hole 46 of the fin 36. When the multi-hole tube 30 is expanded after the multi-hole tube 30 is inserted into the through-hole 46 with the collar, the outer wall surface of the multi-hole tube 30 comes into close contact with the collar 39 and is integrated with the fin 36 as shown in FIG. It becomes.
本発明の多穴チューブの拡管方法の概略説明図を図 10に示し、このときの多穴チ ユーブの拡管の様子を図 11に示す。図 11では、破線部分が拡管前の状態で実線が 拡管後の状態を表している。  FIG. 10 is a schematic explanatory view of the method for expanding a multi-hole tube according to the present invention, and FIG. 11 shows a state of expanding the multi-hole tube at this time. In FIG. 11, the broken line indicates the state before expansion, and the solid line indicates the state after expansion.
以下、説明する多穴チューブ 30は上記実施例 1で説明した多穴チューブであり、 全体の断面がオーバル形であり、内部には断面オーバル形の流路 31が 5個配置さ れているものである。さらに具体的には、全体の長軸方向 Xの中心に断面オーバル 形の流路のうち最大径のもの 31aが配置され、長軸方向 Xの端部側に向力うにした 力 Sつて徐々に小径の流路 31b、 31cが配置され、断面オーバル形の流路同士の互い の仕切壁 32が接触し、長軸方向 Xに沿って一直線に配置されている。また、断面ォ 一バル形の各流路 31は、全体の短軸方向 Yでは多穴チューブ 30の内壁面 35に内 接するように形成されている。  The multi-hole tube 30 described below is the multi-hole tube described in the first embodiment, and has an oval cross section as a whole, and has five oval-shaped flow channels 31 disposed therein. It is. More specifically, a flow path 31a having the largest diameter among the oval cross-sections is disposed at the center of the entire major axis direction X, and the force S directed gradually toward the end in the major axis direction X is gradually increased. The small-diameter flow paths 31b and 31c are arranged, and the partition walls 32 of the oval-shaped flow paths are in contact with each other, and are arranged in a straight line along the long axis direction X. In addition, each of the flow paths 31 having the same cross-sectional shape is formed so as to inscribe the inner wall surface 35 of the multi-hole tube 30 in the entire short axis direction Y.
拡管は、内部に形成された断面オーパル形の流路 31のうちの 1っを拡管ビュレット 66で拡管することで実行される。具体的には、長軸方向 Xおよび短軸方向 Yの中心 に配置された流路 31a (以下、中心流路と称する)内に拡管ビュレット 66を揷入して レ、くことで拡管が行なわれる。  The expansion is performed by expanding one of the flow paths 31 having an opal-shaped cross section formed therein with an expansion buret 66. Specifically, an expansion buret 66 is inserted into a flow path 31a (hereinafter, referred to as a center flow path) arranged at the center in the major axis direction X and the minor axis direction Y, thereby expanding the pipe. It is.
拡管ビュレット 66を中心流路 31aに揷入していくと、中心流路 31aは周囲 360度全 方位にわたって全体的に拡管されるが、特に長軸方向 Xに向く部位では、隣り合う流 路 31bを形成する仕切壁 32blを押圧する(図 11の矢印 B)。この仕切壁 32blが押 圧されることで、中心流路 31aに隣接する流路 31bの中心位置が長軸方向 Xの端部 37側に移動するため、この流路 31bの端部 37側の仕切壁 32b2がさらに端部 37側 に隣接する流路 31cを形成する仕切壁 32clを押圧する(図 11の矢印 C)。この流路 31cの端部 37側の仕切壁 32c2は、端部 37付近に接触しているので、この仕切壁 3 2c2が端部 37付近を長軸方向 Xに拡管する。 When the expansion burette 66 enters the central flow channel 31a, the central flow channel 31a is entirely expanded in all directions around 360 degrees. Is pressed (arrow B in FIG. 11). This partition 32bl pushes By being pressed, the center position of the flow path 31b adjacent to the center flow path 31a moves to the end 37 side in the long axis direction X, so that the partition wall 32b2 on the end 37 side of the flow path 31b further ends. The partition wall 32cl forming the flow path 31c adjacent to the part 37 is pressed (arrow C in FIG. 11). Since the partition wall 32c2 on the end 37 side of the flow path 31c is in contact with the vicinity of the end 37, the partition 32c2 expands the vicinity of the end 37 in the longitudinal direction X.
一方、中心流路 31aは周囲 360度全方位にわたって全体的に拡管されるが、短軸 方向 γに向く部位では、多穴チューブ 30全体の外周壁 33を押圧し(図 11の矢印 D) 、チューブ全体を短軸方向 Yにも拡管する。  On the other hand, the central flow channel 31a is entirely expanded in all directions around 360 degrees, but presses the outer peripheral wall 33 of the entire multi-hole tube 30 at a portion facing the short axis direction γ (arrow D in FIG. 11). Expand the entire tube in the short axis direction Y as well.
なお、拡管ビュレット 66は、従来から公知のものを採用することができる。  It should be noted that a conventionally known pipe burette 66 can be employed.
具体的には、拡管ビュレット 66は、拡管後の多穴チューブ 30の中心流路 31aの内 径と同径となるような所定の径を有しており、拡管マンドレル 68の先端部に図示しな レ、装着部材によって装着されてレ、る。  Specifically, the expansion burette 66 has a predetermined diameter that is the same as the inner diameter of the central flow path 31a of the multi-hole tube 30 after expansion, and is shown at the tip of the expansion mandrel 68. N, it is mounted by the mounting member.
なお、上述した多穴チューブの拡管方法においては、断面オーパル形の流路が 5 個形成されているものを拡管した。しかし、断面オーパル形の流路の数は、 5個に限 定されるものではなく他の個数であってもよレ、が、奇数個であることが好ましい。  In the above-described method for expanding a multi-hole tube, a tube having five opal-shaped flow channels formed was expanded. However, the number of opal-shaped flow paths is not limited to five, but may be other numbers, but an odd number is preferable.
また、上述してきた実施例では、内部の流路の形状を断面オーパル形とした力 断 面円形の流路としてもよい。  Further, in the above-described embodiment, the internal flow path may be a force-recessed circular flow path having a cross section of an opal shape.
実施例 6 Example 6
次に、図 5と図 6に示した多穴チューブを拡管する際の拡管方法について、図 12お よび図 13に基づいて説明する。  Next, a method of expanding the multi-hole tube shown in FIGS. 5 and 6 will be described with reference to FIGS.
ここで説明する多穴チューブ 70は、複数の流路のうち、長軸方向 Xおよび短軸方 向 Yの中心部に位置する流路 72aの断面形状が、短軸方向 Yに長い長方形の各辺 が円弧状に形成されており、 4つの円弧状の辺のうち、長軸方向 Xの対向する 2辺 p、 qは、円弧が凸となる突出方向が外向きになっており、短軸方向 Yの対向する 2辺 r、 s は、円弧が凸となる突出方向が内向きとなっているものである。  The multi-hole tube 70 described here has a cross-sectional shape of a flow path 72a located at the center in the long axis direction X and the short axis direction Y among a plurality of flow paths. The sides are formed in an arc shape. Of the four arc-shaped sides, two opposing sides p and q in the long axis direction X have outward projections in which the arcs are convex and short axes. Opposite sides r and s in the direction Y are such that the protruding direction in which the arc is convex is inward.
この流路 72a内に公知の拡管ビュレット 66を挿入することによって、多穴チューブ 7 0全体が拡管される。  By inserting a known expansion burette 66 into the flow path 72a, the entire multi-hole tube 70 is expanded.
すなわち、拡管ビュレット 66の径は、流路 72aの長軸方向 Xの幅 h (すなわち、幅狭 な方向の幅 h)によりも大径に形成されている。拡管ビュレット 66が流路 72a内に挿入 されると、流路 72aが長軸方向 Xおよび短軸方向 Yに拡管され、流路 72aは断面円 形になる(図 13の破線 E部分)。流路 72aが拡管されると、流路 72aの周囲の肉が外 側に広がり多穴チューブ 70全体が拡管される(図 13の破線 F部分)。 That is, the diameter of the expanded burette 66 is the width h (that is, the width It has a larger diameter than the width h) in various directions. When the expansion burette 66 is inserted into the flow path 72a, the flow path 72a is expanded in the long axis direction X and the short axis direction Y, and the cross section of the flow path 72a becomes circular (a portion indicated by a broken line E in FIG. 13). When the flow path 72a is expanded, the wall around the flow path 72a expands outward, and the entire multi-hole tube 70 is expanded (broken line F in FIG. 13).
以上本発明にっき好適な実施例を挙げて種々説明したが、本発明はこの実施例に 限定されるものではなぐ発明の精神を逸脱しない範囲内で多くの改変を施し得るの はもちろんである。  Although various embodiments have been described above with reference to preferred embodiments of the present invention, the present invention is not limited to the embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention.

Claims

請求の範囲 The scope of the claims
[1] 内部に複数の流路が形成された、熱交換器用多穴チューブにおいて、  [1] In a multi-hole tube for a heat exchanger having a plurality of channels formed therein,
チューブ断面の外形がオーパル形に形成されていることを特徴とする熱交換器用 多穴チューブ。  A multi-hole tube for a heat exchanger, wherein the outer shape of the tube cross section is formed in an opal shape.
[2] 前記複数の流路は奇数個形成され、  [2] An odd number of the plurality of flow paths are formed,
該奇数個の流路のうち断面積が最大の流路が、チューブ断面の長軸方向および 短軸方向の中心に設けられていることを特徴とする請求項 1記載の熱交換器用多穴 チューブ。  2. The multi-hole tube for a heat exchanger according to claim 1, wherein the flow passage having the largest cross-sectional area among the odd-numbered flow passages is provided at the center of the tube cross section in the major axis direction and the minor axis direction. .
[3] 請求項 2記載の熱交換器用多穴チューブを拡管する方法であって、  [3] A method for expanding a multi-hole tube for a heat exchanger according to claim 2,
チューブ断面の長軸方向および短軸方向の中心に設けられている流路のみに拡 管ビュレットを挿入し、チューブ断面の長軸方向および短軸方向の中心に設けられ てレヽる流路を拡管することで、チューブ全体を拡管させることを特徴とする熱交換器 用多穴チューブの拡管方法。  The expansion burette is inserted only into the flow path provided at the center in the long axis direction and short axis direction of the tube cross section, and the flow path provided at the center in the long axis direction and short axis direction of the tube cross section is expanded. A method for expanding a multi-hole tube for a heat exchanger, wherein the entire tube is expanded.
PCT/JP2004/007935 2003-11-12 2004-06-07 Multi-hole tube for heat exchanger and method of expanding tube therefor WO2005047798A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-382853 2003-11-12
JP2003382853 2003-11-12
JP2004167560A JP2005164221A (en) 2003-11-12 2004-06-04 Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
JP2004-167560 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005047798A1 true WO2005047798A1 (en) 2005-05-26

Family

ID=34593943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007935 WO2005047798A1 (en) 2003-11-12 2004-06-07 Multi-hole tube for heat exchanger and method of expanding tube therefor

Country Status (2)

Country Link
JP (1) JP2005164221A (en)
WO (1) WO2005047798A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583445B (en) 2006-12-14 2012-12-26 Cta技术私人有限公司 Manufacturing method for a multi-channel tube, and manufacturing apparatus for the tube
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
JP4836996B2 (en) * 2008-06-19 2011-12-14 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP5525763B2 (en) * 2009-06-12 2014-06-18 東芝キヤリア株式会社 Heat transfer tube, heat exchanger, and air conditioner equipped with the heat exchanger
JP6815205B2 (en) * 2017-01-13 2021-01-20 三菱電機株式会社 Flat tubes, fin tube heat exchangers, and how to make them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128167A (en) * 1989-10-13 1991-05-31 Matsushita Refrig Co Ltd Production of heat exchanger
JPH11320005A (en) * 1998-05-13 1999-11-24 Showa Alum Corp Heat exchanger and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128167A (en) * 1989-10-13 1991-05-31 Matsushita Refrig Co Ltd Production of heat exchanger
JPH11320005A (en) * 1998-05-13 1999-11-24 Showa Alum Corp Heat exchanger and its production

Also Published As

Publication number Publication date
JP2005164221A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US6523603B2 (en) Double heat exchanger with condenser and radiator
EP1231448B1 (en) Heat exchanger
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP4180359B2 (en) Heat exchanger
EP1840495B1 (en) Double pipe heat exchanger and method of manufacturing the same
WO2014171095A1 (en) Heat exchanger
AU2018235514A1 (en) Heat exchanger having heat transfer tube unit
JP2002243381A (en) Air heat exchanger and its manufacturing method
JP2001241880A (en) Fixing bracket for elongated manifold of heat exchanger and its assembling method
US7311138B2 (en) Stacking-type, multi-flow, heat exchangers and methods for manufacturing such heat exchangers
JPH0571884A (en) Heat exchanger with small core depth
WO2005047798A1 (en) Multi-hole tube for heat exchanger and method of expanding tube therefor
JP3870865B2 (en) Heat exchanger
JPS58164995A (en) Heat exchanger and manufacture thereof
JP2005055064A (en) Double tube-type heat exchanger and its manufacturing method
EP1124107A2 (en) Header for heat exchanger core
JP2005090926A (en) Double pipe type heat exchanger
JPH11230686A (en) Heat exchanger
US7063135B2 (en) Heat exchanger
JP2004162993A (en) Heat exchanger
JP2002350071A (en) Double pipe heat exchanger
JP2006200862A (en) Flat tube for heat exchanger
JP2009250600A (en) Copper flat heat-transfer pipe
JP4569267B2 (en) Heat exchanger and manufacturing method thereof
JP2543965Y2 (en) Branch structure of heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033028.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC. EPO FORM 1205A DATED 18.10.2006

122 Ep: pct application non-entry in european phase