WO2005047554A1 - Al-mg-si-aluminium-gusslegierung mit scandium - Google Patents
Al-mg-si-aluminium-gusslegierung mit scandium Download PDFInfo
- Publication number
- WO2005047554A1 WO2005047554A1 PCT/DE2004/002425 DE2004002425W WO2005047554A1 WO 2005047554 A1 WO2005047554 A1 WO 2005047554A1 DE 2004002425 W DE2004002425 W DE 2004002425W WO 2005047554 A1 WO2005047554 A1 WO 2005047554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- alloy
- alloy according
- casting
- cast
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the present invention relates to an aluminum casting alloy which is particularly suitable for cast parts subject to high thermal stress.
- the performance of cast parts produced therefrom is considerably improved, with their thermal stability being guaranteed up to temperatures of 400.degree.
- die castings are used to produce castings with high quality standards.
- the quality of a die-cast part does not only depend on the
- Machine settings and the selected process but also to a large extent on the chemical composition and structure of the cast alloy used. These last two parameters are known to influence the castability, the feeding behavior, the mechanical properties and, particularly important in die casting, the service life of the casting tools.
- EP 0 687 742 A1 discloses a die-casting alloy based on aluminum-silicon which contains 9.5-11.5% by weight silicon, 0.1-0.5% by weight magnesium, 0.5-0, 8% by weight manganese, max. 0.15% by weight iron, max. 0.03% by weight copper, Max. 0.10 zinc, max. 0.15 wt .-% titanium and the rest of aluminum and permanent refinement contains 30 to 300 ppm strontium.
- An aluminum alloy is known from EP 0 792 380 A1, which consists of 5.4-5.8% by weight of magnesium, 1.8-2.5% by weight of silicon, 0.5-0.9% by weight.
- an aluminum casting alloy is known from EP 1 229 141 A1, which is particularly suitable for permanent mold casting and sand casting, and at least 0.05-0.5% by weight of manganese, 0.2-1.0%. -% Magnesium, 4 - 7 wt .-% zinc and 0.15 - 0.45 wt .-% chromium.
- the disadvantage is that there is usually a delay in solution annealing, which must be corrected by additional measures or work steps (remeasuring and straightening).
- the present invention has for its object to develop an aluminum casting alloy that is suitable for thermally highly stressed cast parts.
- the heat resistance ie the thermal stability of the mechanical properties, should be guaranteed up to temperatures of 400 ° C.
- the cast aluminum alloy according to the invention is said to have good weldability and to be able to be produced using a large number of processes with good castability.
- the task is solved by a cast aluminum alloy, which at least consists of
- Ti titanium
- element or a group of elements selected from the
- Zr zircon
- Hf hafnium
- Mo molybdenum
- Tb terbium
- Be beryllium
- the magnesium content is preferably between 2-7% by weight and particularly preferably between 3-6% by weight.
- a silicon content of 1.1-4.0% by weight is advantageous.
- a silicon content of 1.1-3.0% by weight is particularly advantageous.
- the addition of scandium is essential.
- the scandium In addition to intensive particle hardening due to the thermally very stable Al 3 Sc particles, the scandium also causes grain refinement of the cast structure and recrystallization inhibition. Castings made from the alloy according to the invention therefore have the advantage that their mechanical properties are stable up to temperatures of 400 ° C.
- the cast alloy according to the invention is therefore predestined especially for cast parts subject to high thermal stress.
- the high heat resistance means that it is not necessary to replace aluminum materials with high-density materials.
- the component weight is guaranteed with increased conductivity or can even be reduced by thin-walled castings.
- Another advantage is that the scandium content also improves weldability.
- the scandium content is preferably between 0.01-0.45% by weight.
- a scandium content of 0.015-0.4% by weight is particularly preferred.
- titanium Like scandium, titanium also causes grain refinement and thus contributes accordingly to improving the heat resistance. In addition, titanium lowers electrical conductivity.
- the titanium content is preferably 0.01-0.2% by weight, in particular 0.05-0.15% by weight.
- zircon Since zircon has the same effect as scandium or titanium, it is also advantageous to add zircon to the alloy.
- the combined effect of scandium and zircon increases the effect of the scandium, an intensive particle hardening by the thermally very stable AI 3 Sc particles, a grain refinement of the structure as well as a recrystallization inhibition.
- Zircon substitutes for Sc atoms and forms particles of the ternary compound Al 3 (Sc 1-x , Zr x ) which are less prone to coagulation at higher temperatures than the Alasc particles.
- the scandium and zircon components thus further improve the heat resistance of the alloy compared to an alloy that contains only scandium. This enables further optimization towards lower scandium contents in order to reduce costs.
- the zirconium content of preferred embodiments is between 0.01-0.3% by weight and 0.05-0.1% by weight.
- the aluminum casting alloy according to the invention has the effect of increasing the heat resistance even in the as-cast state.
- the heat resistance can be varied accordingly by a suitable choice of temperature and time period, the time period being known to depend on the component size or thickness.
- Solution annealing with subsequent hot aging is not necessary, which is advantageous insofar as the problem of warpage, which usually entails re-measuring and straightening and is known to occur with the classic, solution-annealed and heat-aged cast aluminum alloys, does not matter.
- hafnium, molybdenum, terbium, niobium, gadolinium, erbium and / or vanadium can be added to the alloy.
- the alloy contains one or more elements selected from the group consisting of zirconium, hafnium, molybdenum, terbium, niobium, gadolinium, erbium and vanadium. The sum of the selected elements is at most 0.5% by weight, but preferably 0.01-0.3% by weight.
- the alloy contains at least 0.001% by weight, preferably at least 0.008% by weight, of vanadium. Vanadium acts as a grain refiner similar to titanium. It also improves weldability and reduces the tendency of the melt to scratch.
- the alloy contains at least 0.001% by weight of gadolinium.
- Chromium 0.001-0.3% by weight, in particular 0.0015-0.2% by weight of copper: 0.001-1.0% by weight, in particular 0.5-1.0% by weight of zinc: 0.001-0.1% by weight, in particular 0.001-0.05% by weight.
- iron and / or manganese reduces the adhesive effect.
- the technical iron content is typically at least 0.12% by weight.
- the addition of iron and / or manganese is not absolutely necessary when casting molds and sand.
- Manganese content preferably between 0.4-0.8% by weight.
- the sum of manganese and iron content should be at least 0.8% by weight.
- the die-casting alloy contains either only iron or only manganese.
- Sample rods for determining the mechanical properties were cast from three different alloys using the die rod mold.
- the first alloy also contains zircon.
- the second alloy has a higher scandium content than the first alloy, but does not contain zircon.
- the third alloy is a variant with a higher magnesium and silicon content.
- a fourth alloy was produced using die casting, which also contains copper. This alloy was melted in a 200 kg, electrically heated crucible furnace. The casting temperature was 700 ° C. It was cast on a 4001 (tensile holding force) die casting machine. A plate with the dimensions 220 x 60 x 3 mm was used as the sample form. Test bars for tensile tests were taken from the plates. The test bars were only processed on the narrow sides.
- the mechanical properties of the various alloys according to the invention cast by means of die die mold were obtained in the as-cast state, after 3 hours of heat treatment at 300 ° C. and then under various thermal loads (200 ° C./500 h, 250 ° C./500 h, 350 ° C./500 h and 400 ⁇ C / 500h), to determine the thermal stability.
- the mechanical properties of alloy 4 (die casting alloy) were measured only in the as-cast state and after 1 hour, 300 ° C. heat treatment.
- the Reference alloy was subjected to conventional high temperature annealing.
- the reference alloy was solution annealed at 540 ° C for 12 hours, then quenched with water and then aged at 165 ° C for 6 hours.
- the measurement results are summarized in Table 2, where Rp0.2 is the yield strength in MPa, Rm is the tensile strength in MPa and A5 is the elongation at break in%.
- the tests show that the alloy according to the invention has good mechanical properties even in the as-cast state.
- the mechanical properties are further increased by a heat treatment (here 300 ° C. for 3 hours or 300 ° C. for 1 hour), which is due to particle hardening by segregation from the supersaturated mixed crystal during “warm aging”, ie formation of secondary precipitates AI 3 (Sc ⁇ - x , Zr x ) and the thermal stability of alloys 1 - 3 up to temperatures of 400 ° C is clearly visible.
- the yield strength and tensile strength values are quite high up to temperatures of 400 ° C. If the measured values of the reference alloy at 250 ° C. are compared with the corresponding values of the alloy according to the invention, one can clearly see that the very good mechanical properties of the alloy according to the invention are retained. In contrast, the reference alloy already shows a significant reduction in the yield strength and tensile strength at 250 ° C.
- the alloy according to the invention has very good weldability. It has excellent casting behavior and can be produced using the usual casting processes (die casting, sand casting, mold casting, thixocasting, rheocasting or derivatives of these processes).
- the alloy according to the invention is preferably used for cast parts subject to high thermal loads.
- These are, for example, cylinder heads, crankcases, components for air conditioning systems, aircraft structural components, in particular for Supersonic aircraft, engine segments, pylons, which are highly stressed connecting components between engine and wing, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Supercharger (AREA)
- Continuous Casting (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT04802664T ATE454480T1 (de) | 2003-11-11 | 2004-11-03 | Al-mg-si-aluminium-gusslegierung mit scandium |
US10/579,075 US20070240796A1 (en) | 2003-11-11 | 2004-11-03 | Cast Aluminium Alloy |
DE502004010622T DE502004010622D1 (de) | 2003-11-11 | 2004-11-03 | Al-Mg-Si-Aluminium-Gusslegierung mit Scandium |
EP04802664A EP1682688B1 (de) | 2003-11-11 | 2004-11-03 | Al-Mg-Si-Aluminium-Gusslegierung mit Scandium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10352932A DE10352932B4 (de) | 2003-11-11 | 2003-11-11 | Aluminium-Gusslegierung |
DE10352932.2 | 2003-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005047554A1 true WO2005047554A1 (de) | 2005-05-26 |
WO2005047554B1 WO2005047554B1 (de) | 2005-07-14 |
Family
ID=34585030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2004/002425 WO2005047554A1 (de) | 2003-11-11 | 2004-11-03 | Al-mg-si-aluminium-gusslegierung mit scandium |
Country Status (6)
Country | Link |
---|---|
US (1) | US20070240796A1 (de) |
EP (1) | EP1682688B1 (de) |
AT (1) | ATE454480T1 (de) |
DE (2) | DE10352932B4 (de) |
ES (1) | ES2339356T3 (de) |
WO (1) | WO2005047554A1 (de) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006122341A3 (de) * | 2005-05-19 | 2007-03-08 | Aluminium Lend Gmbh & Co Kg | Aluminiumlegierung |
EP2112242A1 (de) * | 2008-04-18 | 2009-10-28 | United Technologies Corporation | Wärmebehandlungsfähige L12 Aluminium-Legierungen |
US7871477B2 (en) | 2008-04-18 | 2011-01-18 | United Technologies Corporation | High strength L12 aluminum alloys |
US7875133B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
US7875131B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | L12 strengthened amorphous aluminum alloys |
US7879162B2 (en) | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
US7909947B2 (en) | 2008-04-18 | 2011-03-22 | United Technologies Corporation | High strength L12 aluminum alloys |
WO2011090451A1 (en) | 2010-01-21 | 2011-07-28 | Tetiana Legka | CASTING ALLOY OF THE AIMgSI TYPE |
US8002912B2 (en) | 2008-04-18 | 2011-08-23 | United Technologies Corporation | High strength L12 aluminum alloys |
US8017072B2 (en) | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
AT511207A4 (de) * | 2011-09-20 | 2012-10-15 | Salzburger Aluminium Ag | Aluminiumlegierung mit scandium und zirkon |
US8409497B2 (en) | 2009-10-16 | 2013-04-02 | United Technologies Corporation | Hot and cold rolling high strength L12 aluminum alloys |
US8409373B2 (en) | 2008-04-18 | 2013-04-02 | United Technologies Corporation | L12 aluminum alloys with bimodal and trimodal distribution |
US8409496B2 (en) | 2009-09-14 | 2013-04-02 | United Technologies Corporation | Superplastic forming high strength L12 aluminum alloys |
WO2013144343A1 (en) | 2012-03-30 | 2013-10-03 | Jaguar Land Rover Limited | Alloy and method of production thereof |
US8728389B2 (en) | 2009-09-01 | 2014-05-20 | United Technologies Corporation | Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding |
US8778098B2 (en) | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids |
US8778099B2 (en) | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Conversion process for heat treatable L12 aluminum alloys |
US9194027B2 (en) | 2009-10-14 | 2015-11-24 | United Technologies Corporation | Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling |
CN105256182A (zh) * | 2015-10-20 | 2016-01-20 | 安徽天祥空调科技有限公司 | 一种空调散热器用高耐腐蚀轻薄型铝合金片及其制备方法 |
US9611522B2 (en) | 2009-05-06 | 2017-04-04 | United Technologies Corporation | Spray deposition of L12 aluminum alloys |
CN106591649A (zh) * | 2016-12-14 | 2017-04-26 | 沈阳工业大学 | 一种高强Al‑Cu‑Mg‑Mn‑Er变形铝合金及其制备方法 |
CN108165907A (zh) * | 2018-02-22 | 2018-06-15 | 山东南山铝业股份有限公司 | 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材 |
CN109022956A (zh) * | 2018-08-30 | 2018-12-18 | 河南明泰铝业股份有限公司 | 5a12铝合金铸锭及其生产方法与应用 |
CN109072353A (zh) * | 2016-04-19 | 2018-12-21 | 莱茵费尔登合金有限责任两合公司 | 压铸合金 |
US10590518B2 (en) | 2014-02-11 | 2020-03-17 | Brunel University London | High strength cast aluminium alloy for high pressure die casting |
CN114000017A (zh) * | 2020-07-27 | 2022-02-01 | 湖南稀土金属材料研究院 | 一种高强高导铝合金导体材料及其制备方法 |
EP3954797A4 (de) * | 2019-04-12 | 2022-06-01 | BYD Company Limited | Aluminiumdruckgusslegierung, verfahren zu ihrer herstellung und ihre verwendung |
CN115011846A (zh) * | 2022-06-17 | 2022-09-06 | 吉林大学 | 一种高强度、高稳定性Al-Mg-Si-Cu-Sc铝合金及其制备方法 |
US11958140B2 (en) | 2019-05-10 | 2024-04-16 | General Cable Technologies Corporation | Aluminum welding alloys with improved performance |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE376075T1 (de) * | 2005-08-22 | 2007-11-15 | Rheinfelden Aluminium Gmbh | Warmfeste aluminiumlegierung |
DE102005047435A1 (de) * | 2005-09-30 | 2007-04-05 | Ks Aluminium-Technologie Ag | Verfahren zur Herstellung eines Zylinderkurbelgehäuses aus übereutektischer Aluminium-Silizium-Legierung im Rheocast/Thixocast-Verfahren |
DE102006039684B4 (de) * | 2006-08-24 | 2008-08-07 | Audi Ag | Aluminium-Sicherheitsbauteil |
CN102016095B (zh) * | 2008-04-22 | 2014-03-26 | 尤佳·布哈 | 使用钒的镁晶粒细化 |
CN102031424A (zh) * | 2009-09-29 | 2011-04-27 | 贵州铝厂 | Cr-Tb高强耐热铝合金材料及其制备方法 |
FR2956597B1 (fr) | 2010-02-23 | 2012-03-16 | Airbus Operations Sas | Procede de realisation d'une structure metallique courbe renforcee et structure correspondante |
CN101831578B (zh) * | 2010-06-02 | 2011-08-31 | 东北轻合金有限责任公司 | 铝镁铒合金铸锭的制备方法 |
US9601978B2 (en) * | 2013-04-26 | 2017-03-21 | GM Global Technology Operations LLC | Aluminum alloy rotor for an electromagnetic device |
DE102013012259B3 (de) | 2013-07-24 | 2014-10-09 | Airbus Defence and Space GmbH | Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes |
CN104032192B (zh) * | 2014-03-18 | 2016-04-27 | 北京工业大学 | 一种提高含铒铝合金板材抗疲劳损伤性能的轧制及热处理工艺 |
CN103938038B (zh) * | 2014-04-12 | 2016-01-13 | 北京工业大学 | 一种耐长期晶间腐蚀的含Zn、Er高Mg铝合金板材稳定化热处理工艺 |
KR101606525B1 (ko) | 2014-10-29 | 2016-03-25 | 주식회사 케이엠더블유 | 내식성이 개선된 다이캐스팅용 알루미늄 합금 |
CN104313414A (zh) * | 2014-11-06 | 2015-01-28 | 广西柳州银海铝业股份有限公司 | 铝镁合金及其板材的制备方法 |
DE102015200632A1 (de) | 2015-01-16 | 2016-07-21 | Federal-Mogul Nürnberg GmbH | Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung eines Kornfeiners zur Herstellung eines Motorbauteils |
CN104674083B (zh) * | 2015-03-10 | 2017-02-08 | 陈丹红 | 一种轮毂用铝合金材料及其制备方法 |
CN104862552A (zh) * | 2015-05-28 | 2015-08-26 | 马鸿斌 | 一种新型铝合金及其制备方法 |
CN105112742B (zh) * | 2015-09-01 | 2017-01-04 | 合肥工业大学 | 一种Al-Si-Mg-Cu-Ti-Sc铸锻合金及其制备方法 |
DE102015013540A1 (de) * | 2015-10-19 | 2017-04-20 | Trimet Aluminium Se | Aluminiumlegierung |
DE102015221643A1 (de) * | 2015-11-04 | 2017-05-04 | Airbus Defence and Space GmbH | Al-Mg-Si-Legierung mit Scandium für den integralen Aufbau von ALM-Strukturen |
CN105256192A (zh) * | 2015-11-13 | 2016-01-20 | 无锡清杨机械制造有限公司 | 一种铝合金板材及其制备方法 |
EP3181711B1 (de) | 2015-12-14 | 2020-02-26 | Apworks GmbH | Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien |
CN105420564A (zh) * | 2015-12-15 | 2016-03-23 | 深圳市鑫雅豪精密五金有限公司 | 一种高端铝合金材料mh-03及其制备方法 |
CN105734364A (zh) * | 2016-03-25 | 2016-07-06 | 广州市华峰有色金属有限公司 | 一种高端铝合金材料jh9及其制备方法 |
EP3159422B1 (de) | 2016-04-19 | 2018-06-13 | Rheinfelden Alloys GmbH & Co. KG | Druckgusslegierung |
EP3235916B1 (de) | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Gusslegierung |
FR3057476B1 (fr) * | 2016-10-17 | 2018-10-12 | Constellium Issoire | Toles minces en alliage aluminium-magnesium-scandium pour applications aerospatiales |
US20200010933A1 (en) * | 2017-02-23 | 2020-01-09 | Randolf Scott BEALS | Process for low-cost tempering of aluminum casting |
CN108034871A (zh) * | 2017-11-21 | 2018-05-15 | 保定隆达铝业有限公司 | 一种两幅式方向盘骨架铸造用的铝镁合金及其制备方法 |
CN109112368A (zh) * | 2018-09-20 | 2019-01-01 | 辽宁工业大学 | 一种含Sc铸造亚共晶Al-Mg2Si合金及其生产方法 |
CN109778028A (zh) * | 2019-01-21 | 2019-05-21 | 宁波市鄞州迪信机械制造有限公司 | 一种缝纫机铝合金盖板 |
CN109680192A (zh) * | 2019-01-29 | 2019-04-26 | 北京工业大学 | 一种Al-Mg-Mn-Er-Zr合金热变形及稳定化退火工艺及材料 |
CN111809083B (zh) * | 2019-04-12 | 2022-06-24 | 通用汽车环球科技运作有限责任公司 | 简化半固态铸造工艺的铝合金组合物和半固态铸造方法 |
CN110453119A (zh) * | 2019-09-05 | 2019-11-15 | 安徽鑫发铝业有限公司 | 一种防腐耐磨型高强度电泳铝型材及其制备工艺 |
CN111155003A (zh) * | 2020-02-25 | 2020-05-15 | 广西大学 | 一种高强韧性高镁铝合金及其制备方法 |
CN111575545B (zh) * | 2020-05-30 | 2022-11-08 | 苏州慧金新材料科技有限公司 | 手机中板用高强度压铸合金材料及其制备方法和应用 |
CN111500906B (zh) * | 2020-06-04 | 2021-06-04 | 福建祥鑫股份有限公司 | 一种高强耐腐蚀铝合金及其制备方法 |
CN112063899A (zh) * | 2020-09-14 | 2020-12-11 | 肇庆新联昌金属实业有限公司 | 一种高塑性铝合金及其制备方法 |
CN115418538A (zh) * | 2022-08-18 | 2022-12-02 | 昆明理工大学 | 一种高强耐蚀铝合金材料及制备方法 |
CN116732374B (zh) * | 2023-06-15 | 2023-12-01 | 湘潭大学 | 一种掺杂钪和锆制备6061铝合金的方法及6061铝合金 |
CN117926087A (zh) * | 2024-03-20 | 2024-04-26 | 广东鸿图汽车零部件有限公司 | 一种铸造铝合金及其制备方法和应用 |
CN118291824B (zh) * | 2024-06-05 | 2024-08-20 | 小米汽车科技有限公司 | 高折弯性能压铸铝镁合金及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279280A (ja) * | 1996-04-12 | 1997-10-28 | Furukawa Electric Co Ltd:The | 溶接性に優れたAl−Mg−Si系合金 |
JP2000328209A (ja) * | 1999-05-18 | 2000-11-28 | Furukawa Electric Co Ltd:The | アルミニウム合金ばね材の製造方法 |
EP1138794A1 (de) * | 2000-03-31 | 2001-10-04 | Corus Aluminium Voerde GmbH | Aluminium Druckgusslegierung |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619181A (en) * | 1968-10-29 | 1971-11-09 | Aluminum Co Of America | Aluminum scandium alloy |
US5055257A (en) * | 1986-03-20 | 1991-10-08 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US5597529A (en) * | 1994-05-25 | 1997-01-28 | Ashurst Technology Corporation (Ireland Limited) | Aluminum-scandium alloys |
CH689143A5 (de) * | 1994-06-16 | 1998-10-30 | Rheinfelden Aluminium Gmbh | Aluminium-Silizium Druckgusslegierung mit hoher Korrosionsbestaendigkeit, insbesondere fuer Sicherheitsbauteile. |
EP0853133B1 (de) * | 1994-11-15 | 2001-05-23 | ALUMINIUM RHEINFELDEN GmbH | Verwendung einer Aluminiumlegierung zum Druckgiessen |
ES2192257T3 (es) * | 1997-11-20 | 2003-10-01 | Alcan Tech & Man Ag | Procedimiento para fabricacion de una pieza componente estructural a base de una aleacion de aluminio moldeada por colada a presion. |
US6004506A (en) * | 1998-03-02 | 1999-12-21 | Aluminum Company Of America | Aluminum products containing supersaturated levels of dispersoids |
US6562154B1 (en) * | 2000-06-12 | 2003-05-13 | Aloca Inc. | Aluminum sheet products having improved fatigue crack growth resistance and methods of making same |
EP1229141A1 (de) * | 2001-02-05 | 2002-08-07 | ALUMINIUM RHEINFELDEN GmbH | Aluminiumgusslegierung |
-
2003
- 2003-11-11 DE DE10352932A patent/DE10352932B4/de not_active Expired - Fee Related
-
2004
- 2004-11-03 ES ES04802664T patent/ES2339356T3/es not_active Expired - Lifetime
- 2004-11-03 DE DE502004010622T patent/DE502004010622D1/de not_active Expired - Lifetime
- 2004-11-03 US US10/579,075 patent/US20070240796A1/en not_active Abandoned
- 2004-11-03 AT AT04802664T patent/ATE454480T1/de active
- 2004-11-03 EP EP04802664A patent/EP1682688B1/de not_active Expired - Lifetime
- 2004-11-03 WO PCT/DE2004/002425 patent/WO2005047554A1/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279280A (ja) * | 1996-04-12 | 1997-10-28 | Furukawa Electric Co Ltd:The | 溶接性に優れたAl−Mg−Si系合金 |
JP2000328209A (ja) * | 1999-05-18 | 2000-11-28 | Furukawa Electric Co Ltd:The | アルミニウム合金ばね材の製造方法 |
EP1138794A1 (de) * | 2000-03-31 | 2001-10-04 | Corus Aluminium Voerde GmbH | Aluminium Druckgusslegierung |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Derwent World Patents Index; AN 1998-015156, XP002319628 * |
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05) * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006246965B2 (en) * | 2005-05-19 | 2012-05-31 | Aluminium Lend Gmbh & Co Kg | Aluminium alloy |
WO2006122341A3 (de) * | 2005-05-19 | 2007-03-08 | Aluminium Lend Gmbh & Co Kg | Aluminiumlegierung |
US8337644B2 (en) | 2005-05-19 | 2012-12-25 | Aluminium Lend Gesellschaft M.B.H. | Aluminum alloy |
US8017072B2 (en) | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
US8409373B2 (en) | 2008-04-18 | 2013-04-02 | United Technologies Corporation | L12 aluminum alloys with bimodal and trimodal distribution |
US7879162B2 (en) | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
US7883590B1 (en) | 2008-04-18 | 2011-02-08 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
US7909947B2 (en) | 2008-04-18 | 2011-03-22 | United Technologies Corporation | High strength L12 aluminum alloys |
US7875131B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | L12 strengthened amorphous aluminum alloys |
US8002912B2 (en) | 2008-04-18 | 2011-08-23 | United Technologies Corporation | High strength L12 aluminum alloys |
US7875133B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
EP2112242A1 (de) * | 2008-04-18 | 2009-10-28 | United Technologies Corporation | Wärmebehandlungsfähige L12 Aluminium-Legierungen |
US7871477B2 (en) | 2008-04-18 | 2011-01-18 | United Technologies Corporation | High strength L12 aluminum alloys |
US8778098B2 (en) | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids |
US8778099B2 (en) | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Conversion process for heat treatable L12 aluminum alloys |
US9611522B2 (en) | 2009-05-06 | 2017-04-04 | United Technologies Corporation | Spray deposition of L12 aluminum alloys |
US8728389B2 (en) | 2009-09-01 | 2014-05-20 | United Technologies Corporation | Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding |
US8409496B2 (en) | 2009-09-14 | 2013-04-02 | United Technologies Corporation | Superplastic forming high strength L12 aluminum alloys |
US9194027B2 (en) | 2009-10-14 | 2015-11-24 | United Technologies Corporation | Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling |
US8409497B2 (en) | 2009-10-16 | 2013-04-02 | United Technologies Corporation | Hot and cold rolling high strength L12 aluminum alloys |
ES2397636R1 (es) * | 2010-01-21 | 2013-07-08 | Tetiana Legka | Aleación para fundición de tipo AlMgSi |
WO2011090451A1 (en) | 2010-01-21 | 2011-07-28 | Tetiana Legka | CASTING ALLOY OF THE AIMgSI TYPE |
AT511207B1 (de) * | 2011-09-20 | 2012-10-15 | Salzburger Aluminium Ag | Aluminiumlegierung mit scandium und zirkon |
AT511207A4 (de) * | 2011-09-20 | 2012-10-15 | Salzburger Aluminium Ag | Aluminiumlegierung mit scandium und zirkon |
WO2013144343A1 (en) | 2012-03-30 | 2013-10-03 | Jaguar Land Rover Limited | Alloy and method of production thereof |
US10590518B2 (en) | 2014-02-11 | 2020-03-17 | Brunel University London | High strength cast aluminium alloy for high pressure die casting |
CN105256182A (zh) * | 2015-10-20 | 2016-01-20 | 安徽天祥空调科技有限公司 | 一种空调散热器用高耐腐蚀轻薄型铝合金片及其制备方法 |
CN109072353A (zh) * | 2016-04-19 | 2018-12-21 | 莱茵费尔登合金有限责任两合公司 | 压铸合金 |
CN106591649A (zh) * | 2016-12-14 | 2017-04-26 | 沈阳工业大学 | 一种高强Al‑Cu‑Mg‑Mn‑Er变形铝合金及其制备方法 |
CN108165907A (zh) * | 2018-02-22 | 2018-06-15 | 山东南山铝业股份有限公司 | 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材 |
CN109022956B (zh) * | 2018-08-30 | 2020-01-21 | 河南明泰铝业股份有限公司 | 5a12铝合金铸锭及其生产方法与应用 |
CN109022956A (zh) * | 2018-08-30 | 2018-12-18 | 河南明泰铝业股份有限公司 | 5a12铝合金铸锭及其生产方法与应用 |
EP3954797A4 (de) * | 2019-04-12 | 2022-06-01 | BYD Company Limited | Aluminiumdruckgusslegierung, verfahren zu ihrer herstellung und ihre verwendung |
US11958140B2 (en) | 2019-05-10 | 2024-04-16 | General Cable Technologies Corporation | Aluminum welding alloys with improved performance |
CN114000017A (zh) * | 2020-07-27 | 2022-02-01 | 湖南稀土金属材料研究院 | 一种高强高导铝合金导体材料及其制备方法 |
CN115011846A (zh) * | 2022-06-17 | 2022-09-06 | 吉林大学 | 一种高强度、高稳定性Al-Mg-Si-Cu-Sc铝合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1682688B1 (de) | 2010-01-06 |
DE502004010622D1 (de) | 2010-02-25 |
ATE454480T1 (de) | 2010-01-15 |
US20070240796A1 (en) | 2007-10-18 |
ES2339356T3 (es) | 2010-05-19 |
DE10352932B4 (de) | 2007-05-24 |
DE10352932A1 (de) | 2005-06-16 |
EP1682688A1 (de) | 2006-07-26 |
WO2005047554B1 (de) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1682688B1 (de) | Al-Mg-Si-Aluminium-Gusslegierung mit Scandium | |
EP1443122B1 (de) | Druckgusslegierung aus Aluminiumlegierung | |
EP3235917B1 (de) | Druckgusslegierung | |
EP1612286B1 (de) | Aluminium-Druckgusslegierung | |
EP2735621B1 (de) | Aluminium-Druckgusslegierung | |
DE102013012259B3 (de) | Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes | |
EP2653579B1 (de) | Aluminium-Legierung | |
EP3176275B2 (de) | Aluminium-silizium-druckgusslegierung, verfahren zur herstellung eines druckgussbauteils aus der legierung und karosseriekomponente mit einem druckgussbauteil | |
DE102016219711B4 (de) | Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung | |
EP1718778A1 (de) | Werkstoff auf der basis einer aluminium-legierung, verfahren zu seiner herstellung sowie verwendung hierfür | |
EP1719820A2 (de) | Aluminium-Gusslegierung | |
EP1118685A1 (de) | Aluminium - Gusslegierung | |
DE102017109614B4 (de) | Verfahren zum Lösungsglühen eines Gussteils | |
EP0853133B1 (de) | Verwendung einer Aluminiumlegierung zum Druckgiessen | |
EP2471966B1 (de) | Gut giessbare, duktile AlSi-Legierung und Verfahren zur Herstellung eines Gussteils unter Verwendung der AlSi-Gusslegierung | |
EP0911420B1 (de) | Aluminium-Gusslegierung | |
WO2017174185A1 (de) | Aluminiumlegierung, insbesondere für ein giessverfahren, sowie verfahren zum herstellen eines bauteils aus einer solchen aluminiumlegierung | |
DE102013002632B4 (de) | Aluminium-Silizium-Druckgusslegierung und Verfahren zur Herstellung eines Druckgussbauteils | |
DE102011112005A1 (de) | Aluminium-Silizium-Legierung | |
DE1483228A1 (de) | Aluminiumlegierungen sowie aus diesen gefertigte Artikel | |
AT407533B (de) | Aluminiumlegierung | |
DE602004005529T2 (de) | Schmiedealuminiumlegierung | |
EP2088216B1 (de) | Aluminiumlegierung | |
DE102019202676B4 (de) | Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung | |
DE102015007929A1 (de) | Aluminium-Gusslegierung, Verfahren zum Herstellen eines Bauteils aus einer Aluminium-Gusslegierung und Verwendung einer Aluminium-Gusslegierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
B | Later publication of amended claims |
Effective date: 20050518 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004802664 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004802664 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10579075 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10579075 Country of ref document: US |