WO2005046005A1 - Zero insertion force high frequency connector - Google Patents

Zero insertion force high frequency connector Download PDF

Info

Publication number
WO2005046005A1
WO2005046005A1 PCT/US2004/036936 US2004036936W WO2005046005A1 WO 2005046005 A1 WO2005046005 A1 WO 2005046005A1 US 2004036936 W US2004036936 W US 2004036936W WO 2005046005 A1 WO2005046005 A1 WO 2005046005A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielded
conductive element
connector
land area
compressible interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2004/036936
Other languages
English (en)
French (fr)
Inventor
Christopher Alan Tutt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tensolite LLC
Original Assignee
Tensolite LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tensolite LLC filed Critical Tensolite LLC
Priority to CN2004800392322A priority Critical patent/CN1902786B/zh
Priority to EP04810401.2A priority patent/EP1687870B1/en
Priority to JP2006538508A priority patent/JP4943157B2/ja
Priority to CA2544851A priority patent/CA2544851C/en
Publication of WO2005046005A1 publication Critical patent/WO2005046005A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7082Coupling device supported only by cooperation with PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/714Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit with contacts abutting directly the printed circuit; Button contacts therefore provided on the printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/73Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/73Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • H01R12/735Printed circuits including an angle between each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0314Elastomeric connector or conductor, e.g. rubber with metallic filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers

Definitions

  • This present invention relates generally to electrical connectors, such as those used to electrically couple two circuit boards together and particularly to improving the performance, construction and ease of use of such electrical connectors.
  • a backplane generally includes multiple connectors soldered to and interconnected by conductive traces.
  • a backplane typically provides little functionality other than electrically interconnecting the circuit boards within the circuit packs.
  • a backplane however may also provide electrical connections external to the frame.
  • a backplane When a backplane includes functionality, it may be referred to as a "motherboard". Such is the case, for example, in a personal computer (PC). Since backplanes are sometimes referred to as motherboards, the circuit packs containing circuit boards that are electrically interconnected using such a motherboard backplane are often referred to as daughter cards. Each daughter card includes one or more circuit boards having electrically conductive traces to electrically interconnect various electrical components in a circuit. Electrical components, such as integrated circuits (ICs), transistors, diodes, capacitors, inductors, resistors, etc., may be packaged with metallic leads that are soldered to conductive traces on a daughter card.
  • ICs integrated circuits
  • transistors diodes
  • capacitors capacitors
  • resistors resistors
  • a daughter card will typically include a connector, proximate an edge, and soldered to the traces, for electrically coupling to a corresponding connector on the motherboard backplane when inserted into the frame.
  • One common method of attaching electrical components to a circuit board is to include "through holes”, e.g., holes drilled through the circuit board, and land areas in the traces proximate the holes. Wire leads on the electrical components may then be bent or “formed” or configured for insertion through the holes, and soldered to the land areas once inserted, or “placed”.
  • Through holes e.g., holes drilled through the circuit board, and land areas in the traces proximate the holes. Wire leads on the electrical components may then be bent or “formed” or configured for insertion through the holes, and soldered to the land areas once inserted, or “placed”.
  • Readily available through hole male and female connectors such as GbXTM, VHDM-HSDTM, VHDM®, Hardmetric (HM), CompactPCI, etc.
  • Such connectors are available in various sizes, having various arrays of conductive contact pins. Such arrays of pins are generally held together using a dielectric material, forming the connector. Each pin includes a portion extending from the dielectric material that may be inserted into a through hole in a circuit board. A circuit board for use with a respective connector will have through holes corresponding to the pins of the connector. Conductive traces on the circuit board extend from the land areas corresponding to the pins forming nodes in a circuit. In production, a circuit board is often placed on a conveyer. As the conveyer moves the board, a solder paste is applied to the board.
  • Through hole electronic components including connectors, are typically hand placed in the corresponding through holes, the solder paste having been applied.
  • the conveyer then carries the board and connector through an oven that heats the solder paste, soldering the connector to the board.
  • Such a process is generally referred to as "wave soldering”.
  • Another common method of attaching electrical components to a circuit board is referred to as "surface mounting”.
  • land areas are also included in the traces, but holes through the circuit board are not necessary.
  • each pin will include an electrically conductive "foot".
  • a surface mount connector with conductive feet may be slid over and/or bolted to the edge of a circuit board, the feet corresponding to land areas in the traces on the circuit board.
  • surface mount connectors may also be wave soldered. Irrespective of whether one of these connectors is a through hole or surface mount type, each type suffers from common problems once attached to a circuit board. For example, the pins typically found in these connectors are quite fine, or small. Any deviation in alignment when plugging one connector into another can result in the bending of one or more of these pins. This generally causes either a failure of the product under production test, or worse, a failure of the product in the possession of a user or consumer.
  • each of the conductive feet must heated one at a time and bent away from its respective land area to remove the connector.
  • all of the conductive feet must be heated simultaneously to re-flow the solder, allowing the connector to be removed from the board.
  • a hot air gun used for such heating. This subjects the board, as well other components adjacent to the connector, to a substantial amount of heat. A heat gun in the hands of an inexperienced repair technician can result in the board being ruined, or the adjacent components being damaged.
  • pins in such connectors are generally used in pairs, a pair of pins carrying either a single ended or differential data and/or communications signal. Deviation in the geometric arrangement and/or spacing of between pins when used as a pair generally results in impedance variation with a change in frequency, thereby degrading the electrical performance of the connector and/or limiting the usable frequency range of the connector. Further, since these pins are arranged in an array, and pairs of pins are generally in close proximity to other pairs of pins, there can be, and often is electromagnetic interaction between pairs and/or pins.
  • an elastomeric connector comprises a body constructed of an elastic polymer material having opposing first and second faces and a plurality of fine conductors that are passed from the first to the second faces.
  • An elastomeric connector may be positioned between land areas on a circuit board and conductive leads on the component, aligning the leads with the land areas. Pressure is then applied to the connector to compress the elastic polymer, providing electrical connection from the land areas on a circuit board on one face through the conductors to leads of the component on the other face.
  • One example of the use of such an elastomeric connector is in electrically coupling ⁇ a liquid crystal display (LCD) screen to a circuit board in a calculator.
  • LCD liquid crystal display
  • signals between an LCD screen and a circuit board are low frequency digital signals not high frequency data/communications signals. Therefore, there is little concern for the geometric arrangement of the components or shielding.
  • elastomeric connectors are essentially often just parallel data and/or power lines.
  • elastomeric materials such as in test fixtures to electrically contact integrated circuit chips in production testing, to couple a ribbon cable to a circuit board, or in coupling a pin grid array to a circuit board.
  • the elastomeric connectors when so used are generally parallel data and/or power lines.
  • Yet another use of an elastomeric material has been in the form of a seal in a connector to thereby extend the shielding provided by an outer conductor in a data cable.
  • elastomeric connectors to date, are essentially for powertransfer or simple low frequency digital signal transfer or shielding. Therefore, such connectors have not been particularly suited to the transfer of high frequency signals, e.g., data and/or communications signals in a connector assembly between two circuit boards. It is desirable to address drawbacks in the prior art in providing
  • a connector assembly includes a circuit board or component having at least one shielded land area and a signal array including at least one shielded conductor having at least one central conductive core and a conductive outer structure.
  • a connector of insulating material with two faces and conductive elements extending from face to face is coupled between the circuit board/component and the shielded conductor of the array to pass a high speed data and/or communications signal from the shielded conductor to the land areas pf the circuit board/component.
  • the connector assembly of the invention maintains the geometric arrangement of the shielded conductor through the connector to the land areas.
  • the connector assembly is also easily replaced requiring no soldering and is, therefore, easily and readily serviceable.
  • a signal array and two elastomeric connectors are placed between two substantially parallel circuit boards to electrically pass high frequency data and/or communications signals between the circuit boards.
  • a signal array and two elastomeric connectors are placed between two substantially orthogonal circuit boards.
  • a signal array comprises at least one coaxial conductor including a central conductive core and a conductive outer structure.
  • a signal array comprises at least one twinaxial conductor including two central conductive cores and a conductive outer structure.
  • Figure 1 is a perspective view of an embodiment of a connector assembly between two substantially parallel components, such as circuit boards, having coaxial land areas, one of the boards is shown in phantom lines, in accordance with principles of the present invention, and illustrating features thereof. Although circuit boards are used to illustrate some embodiments of the invention, the present invention also has applicability to other components as well.
  • Figure 2 is a partial cross-sectional view of the connector assembly of Figure 1 along line 2-2 of Figure 1.
  • Figure 3 is an exploded view of the signal array shown in Figures 1 and 2.
  • Figure 4 is a perspective view of an embodiment of a connector
  • Figure 5 is a partial cross-sectional view of the connector assembly of Figure 4 along line 5-5 of Figure 4.
  • Figure 6 is an exploded view of the signal array shown in Figures 4 and 5.
  • Figure 7 is perspective view of an embodiment of a connector assembly between two substantially orthogonal circuit boards in accordance with principles of the present invention.
  • Figure 8 is an exploded perspective view of a signal array in accordance with principles of the present invention including coaxial conductors.
  • Figure 9 is an exploded perspective view of a signal array in accordance with principles of the present invention including twinaxial
  • connector assembly 10 comprises two substantially parallel oriented components, such as circuit boards 12, 14 (circuit board 14 shown in phantom line), a signal array 16 including at least one shielded conductor 18, and compressible interface elements 20, 22
  • Circuit boards 12, 14 include corresponding shielded land areas 24, 26, only shielded land area 26 being shown in Figure 1.
  • Shielded conductor 18 has opposite ends and includes an axial conductive element 38 and an outer conductive element 40 surrounding the axial conductive element 38.
  • Shielded land areas 24, 26 include a central conductive core area 28 and a conductive outer structure area 30. Land areas 24, 26 on circuit boards 12, 14 may be etched, deposited, or other placed using methods well known to those of skill in the art.
  • central conductive core areas 28 and conductive outer structure areas 30 extend to traces on multiple layers of circuit boards 12, 14, and, in some instances, to electrical components, e.g., integrated circuits (ICs), transistors, diodes, capacitors, inductors, resistors, etc., soldered to those traces. Such traces, in part, form nodes in circuits on circuit boards 12, 14.
  • circuit boards 12, 14 may be a backplane and a circuit pack.
  • Circuit boards 12, 14 may be two circuit boards comprising a circuit pack.
  • Circuit boards 12, 14 may also be a motherboard and a daughter card.
  • a signal array such as signal array 16 comprises one or more blocks or wafers 32, each including one or more shielded conductors
  • Each shielded conductor 18 includes an axial conductive element 38 and an outer conductive element 40 surrounding the axial conductive element 38, as may be seen in Figure 2.
  • Shielded conductors are generally used for high speed or high frequency signals, such as high speed data and/or communications signals. Signals as defined herein mean essentially conducted voltages and/or currents associated with conductors and not necessarily “smart" signals. Further, the simultaneous conduction of voltages and/or currents create a data signal or other signal. Desirable attributes of shielded conductors worthy of particular note are minimizing interference and constant impedance.
  • the outer conductive element or shield of a shielded conductor is generally connected to a reference or electrically grounded.
  • shielded conductors likewise having grounded shields will generally be resistant to interference by the signals carried by the adjacent shielded conductors.
  • Such coupling or interfering of signals between proximate conductors may also be referred to as "crosstalk".
  • the lack of "crosstalk" between shielded conductors is generally due to there being no voltage gradient between the various shields due to each of the shields being grounded or connected to the same or similar reference or voltage potential.
  • shielded conductors are commonly available in two types, though others may be possible. One type is coaxial, or coax, and another type twinaxial, or twinax.
  • Coaxial conductors generally have a central conductive core or center conductor equally spaced or centered axially within a shield or outer conductive structure.
  • An outer conductive structure may be braided wires or a conductive foil, or some combination thereof, or some rigid or semi-rigid adequately conductive metal.
  • twinaxial conductors generally have two central conductive cores or center conductors spaced apart or twisted and equally spaced or centered axially, within a shield or outer conductive structure.
  • both types have an axial conductive element and an outer conductive structure surrounding the axial conductive element, an axial conductive element being defined herein as a conductive element located or spaced axially within an outer conductive element.
  • the center conductor of a coaxial conductor generally carries a signal that varies with respect to the shield, which is generally grounded as mentioned above. Such a signal may be referred to "single-
  • a twinaxial conductor has two center conductors that carry signals that are the same, but 180 degrees out of phase.
  • the advantage in a twinaxial conductor is that any interference that is induced or coupled into the center conductors of the twinaxial conductor past the shield may be cancelled when the two out of phase signals are added together.
  • the signal is formed by the difference between the two out of phase signals carried by the center conductors, such a signal being referred to "differential.” If the signals carried by the center conductors of a coaxial or twinaxial conductor are low speed or low frequency, the spacing between the center conductors and the shield is of little consequence.
  • the spacing between the center conductors and the shield becomes significant.
  • the spacing between the center conductors and the shield, along with the center conductors and the shield themselves form a capacitor of significant value.
  • Such capacitance in a shielded conductor is often referred as a "distributed capacitance," as the capacitance is distributed along the length of the conductor, and may be described in units of picofarads per foot (pF/ft).
  • the overall size or dimensions of a shielded conductor, along with the spacing determines a characteristic impedance for the conductor at particular frequency ranges of use.
  • signal array 16 includes four blocks 32, each containing four shielded conductors 18, that are used to form a four-by-four array.
  • FIG. 2 a partial cross-sectional view of connector assembly 10 taken along line 2-2 of Figure 1 is shown.
  • Figure 2 shows a cross-sectional view through one of the shielded conductors 18 in signal array 16, along with the coupling of that conductor to the circuit boards 12, 14.
  • each shielded conductor 18 includes an axial conductive element 38 and an outer conductive element 40.
  • shielded conductor 18 is molded or potted in a non-conductive substance, such as a liquid crystal polymer (LCP) material 19. Molding the shielded conductor 18 into LCP material 19 allows positioning of the ends of the conductor to tight tolerances typically found with such molding. Additional details concerning such molding will be discussed herein after. Those skilled in the art will appreciate that the expansion of the cross-sectional view to include other conductors in the array would be redundant in nature; and therefore, such an expansion is not made for ease of illustration and purposes of clarity.
  • Compressible interface elements 20, 22 each include two faces 33, 34 and conductive elements 36 (not shown in Figure 1 ; but, shown in
  • Compressible interface elements 20, 22 are generally constructed of an elastomeric material, e.g., elastomeric connectors.
  • the elastomeric connectors comprises a body constructed of an elastic polymer having opposing first and second faces, e.g., faces 33 and 34 shown in Figure 2, and a plurality of fine conductors, e.g., conductive elements 36, also shown in Figure 2, that pass or extend from the first to the second faces.
  • Elastomeric connectors may be constructed using extremely accurate silicon rubber with anisotropic conductive properties. Such connectors may include anywhere from 300 to 2,000 fine metal wires per square centimeter embedded in the thickness direction of a transparent silicone rubber sheet.
  • Such fine metal wires are generally gold-plated to ensure low resistivity and the ability to withstand relatively high current flow.
  • compressible interface elements 20, 22 are placed between corresponding shielded land areas 24, 26 on circuit boards 12, 14 and shielded conductors 18 in signal array 16, aligning the central conductive core areas 28 and the conductive outer structure areas 30 with the axial conductive element 38 and the outer conductive element 40, respectively.
  • Guide pins or posts 21 also molded into LCP material 19, corresponding to holes 23 in circuit boards 12, 14 and holes 25 in compressible interface elements 20, 22 are configured to aid in, or provide, such alignment.
  • Those of ordinary skill in the art will appreciate that other structures such as notches, raise portions or bumps and corresponding recessed portions, etc. may be used in the alternative to aid in or provide alignment.
  • compressible interface elements 20,22 to compress the elements 20, 22 such that the conductive elements 36 provide electrical connection from shielded land areas 24, 26 on circuit boards 12, 14 on faces 32 through elements 36 to shielded conductor 18 on faces 34.
  • Such pressure or compression typically causes those conductive elements making such contacts to distort or bend as shown, whereas those conductive elements that do not make such contacts generally remain straight.
  • holes 25 in compressible interface elements 20, 22 are not necessary for alignment of compressible interface elements 20, 22.
  • compressible interface elements 20, 22 only need cover shielded land areas 24, 26 and the ends of shielded conductors 18, as aligned. Which conductive elements 36 within compressible interface elements 20, 22 make contact with or electrically couple the shielded land areas 24, 26 and the ends of shielded conductors
  • the compressible interface elements 20, 22 when compressed between the signal array 16 and a signal bearing component, such as circuit boards 12, 14, maintains the geometric arrangement of the axial conductive element 38 and the outer conductive element 40 through the compressible interface elements 20, 22 to the signal bearing component, or circuit boards 12, 14.
  • Signal array 16 of the illustrated embodiment comprises four blocks 32a-d, each including four shielded conductors 18. A greater or lesser number of blocks or a greater or lesser number of shielded conductors 18 per block might also be used.
  • Each shielded conductor 18 includes an axial conductive element 38 and an outer conductive element 40.
  • shielded conductors 18 may be semi- rigid coax well known to those of skill in the art.
  • Each block 32a-d may be constructed by molding or potting shielded conductors 18, such as, for example, lengths of semi-rigid coax, in a non-conductive substance, such as a LCP material 19, as mentioned above.
  • the contact faces 48 of the blocks 32a-d may then be machined or polished to improve the co-planarity of the shielded conductors 18 or semirigid coax on the contact faces 48. Such machining or polishing improves the interface between signal array 16 and compressible interface elements 20, 22.
  • Guide pins or posts 21 may likewise be molded into one or more blocks 38a-d. For example, and as shown in Figure 3, guide posts 21 are molded into blocks 38a and 38d.
  • Shielded conductors 18 accompanied by compressible interface elements 20, 22 that extended the shielding of the shielded conductors 18 may be used for single-ended signals, such as high speed data and/or communications signals. Shielding is particularly useful in preventing interference when using such high speed signals.
  • connector assembly 10 includes elastometic connector elements, e.g., compressible interface elements 20, 22, in providing high frequency data and/or communications connections between circuit boards 12 and 14. In doing so, connector assembly 10 requires no soldering. Further, no soldering or special skill is required to remove and replace one of the compressible interface element 20, 22 or the signal array
  • connector assembly 10 includes no pins that may be bent or broken in assembly, resulting in a failure of the product the circuit boards 12, 14 are included in, either under production test or in the possession of a user or consumer. Also, connector assembly 10 extends the geometric arrangement of the shielded conductors 18 in the signal array 16 through the connector assembly 10 to the surface of the circuit boards 12, 14. By extending the geometric arrangement, with its inherent shielding, crosstalk between shielded conductors in the array is reduced, while the variation in impedance with changes in frequency of each respective shielded conductor 18 is also reduced. Thus, connector assembly 10 improves the replacement and
  • connector assembly 70 comprises two substantially parallel circuit boards 72, 74 (circuit board 74 shown in phantom line), a signal array 76 including at least one shielded conductor 78, and compressible interface elements 80, 82 (element 82 also shown in phantom line) coupled between each circuit board 72, 74 and shielded conductor 78.
  • Circuit boards 72, 74 include at least one pair of corresponding shielded land areas 84, 86, only shielded land area 86 being shown in Figure 4.
  • Shielded land areas 84, 86 include two central conductive core areas 88 and a conductive outer structure area 90.
  • central conductive core areas 88 and conductive outer structure areas 90 extend to traces on multiple layers of circuit boards 72, 74.
  • circuit boards 72, 74 may be a backplane and a circuit pack, two circuit boards comprising a circuit pack, or a motherboard and a daughter card. Other applications of two such circuit boards will readily appear to those of skill in the art.
  • Signal array 76 comprises four (or more or less) wafers 92a-d, each containing four (or more or less) shielded conductors 78.
  • Each shielded conductor 78 includes two axial conductive elements 94 and a conductive outer element 96, as may be seen in Figure 5.
  • Figure 5 a partial cross-sectional view of connector assembly 70 taken along line 5-5 of Figure 4 is shown. More specifically, Figure 5 shows a cross-sectional view through one of the shielded conductors 78 in wafer 92a in signal array 76, along with the coupling of the shielded conductor 78 to circuit boards 72, 74.
  • Compressible interface elements 80, 82 each include two faces
  • compressible interface elements 80, 82 may be referred to as elastomeric connectors and may be similar to those previously described above as elements 20, 22.
  • Compressible interface elements 80, 82 are placed between corresponding shielded land areas 84, 86 on circuit boards 72, 74 and shielded conductors 86 in signal array 76, aligning the central conductive core areas 88 and the conductive outer structure areas 90 with the two axial conductive elements 94 and the conductive outer element 96, respectively.
  • Figure 5 shows such an alignment.
  • Guide posts 91 molded into mounting ends 110 and extending through holes 93 in compressible interface elements 80, 82 and holes 95 in circuit boards 72, 74 aid in such alignment while holding compressible interface elements 80, 82 in position during assembly of connector assembly 70.
  • Pressure is applied to compressible interface elements 80,82 such that conductive elements 102 provide electrical connections from shielded land areas 84, 86 on circuit boards 72, 74 on faces 98 through elements 102 to shielded conductors 78 on faces 100.
  • Such pressure causes those conductive elements making such contacts to distort or bend slightly as illustrated.
  • Pressure may be applied using bolts 104 extending through corresponding holes 106 in circuit boards 72, 74 with nuts 108, as shown.
  • Such bolts104 may also aid in alignment in some embodiments.
  • Other fasteners may used in the alternative without departing from the spirit of the present invention.
  • compressible interface elements 80, 82 When compressible interface elements 80, 82 are compressed as illustrated, conductive elements 102 contacting conductive outer element 96 and conductive outer structure areas 90 form a shield around, or "shield", those conductive elements 102 contacting axial conductive elements 94 and central conductive core areas 88.
  • conductive elements 102 of compressible interface elements 80,82 "extend" the geometric arrangement or shielding of shielded conductors 78 through to land areas 84, 86, or the surface, of circuit boards 72, 74.
  • Figure 6 an exploded view of signal array 76 shown in Figures 4 and 5 is illustrated.
  • Signal array 76 comprises four (or more or less) wafers 92a-d.
  • Each wafer 92a-d comprises four (or more or less) twinaxial conductors 78 and two mounting ends 110.
  • Each twinaxial conductor includes two central conductive cores 94 and a conductive outer element 96.
  • Each wafer 92a-d may be constructed using circuit board materials well know to those of skill in the art, such as fiberglass, epoxy, teflon, etc. Coupled to each wafer 92a-d are mounting ends 110.
  • Mounting ends 110 may be constructed of a non-conductive substance, such as a LCP, and molded or formed to receive shielded conductors 78.
  • Shielded conductors 78 may be lengths of semi-rigid twinax well known to those of ordinary skill in the art.
  • the contact faces 112 of mounting ends 110 and shielded conductors 78 may be machined or polished to improve the co- planarity of the shielded 78 on the contact faces 112. Such machining improves the interface between signal array 76 and compressible interface elements 80, 82.
  • Shielded conductors 78 accompanied by compressible interface elements 80, 82 that extend the shielding of the shielded conductors may be used for differential signals, such high speed data and/or communications signals.
  • Shielding is particularly useful in preventing interference when using such high speed signals, while two axial conductive elements conducting a differential signal is useful in cancelling any noise or interference that penetrates the shielding. Moreover, shielding prevents "crosstalk" between shielded conductors placed in close proximity with one another, and facilities the construction of tightly spaced arrays.
  • Connector assembly 70 also capitalizes on the benefits of elastomeric connectors, e.g., compressible interface elements 80, 82, in providing high frequency data and/or communications connections between circuit boards 72, 74. In doing so, connector assembly 70 requires no soldering. Also, no soldering or special skill is required to remove and replace one of the compressible interface elements 80, 82 or signal array 76.
  • Connector assembly 70 also improves the replacement and serviceability of high speed data and/or communications connections. There are also no pins to bend or break in the connector, and "crosstalk" qualities are improved at the connector assembly.
  • Connector assembly 130 comprises two substantially orthogonal circuit boards 132, 134, a signal array 136 including at least one shielded conductor 146 (shown in phantom line), and compressible interface elements 138, 140 coupled between each circuit board 132, 134 and shielded conductor 146.
  • Compressible interface elements 138, 140 may be elastomeric connectors, as generally described herein above, and more specifically described in conjunction with Figures 2 and 5.
  • Shielded conductor 146 may, for example, be lengths of semirigid coax or twinax, including one or two axial conductive elements, respectively, and a conductive outer structure. Examples of signal arrays including shielded conductors with one and two axial conductive elements will be described in Figures 8 and 9, respectively.
  • shielded conductors containing more than two axial conductive elements may also used for high speed data and/or communications signals and that such a use does not constitute a departure from the spirit of the present invention.
  • circuit boards 132, 134 include at least one pair of corresponding land areas including one central conductive core area. Examples of corresponding lands areas including one central conductive core area located on circuit boards were shown in Figures 1 and 2, and the formation of such land areas were described in conjunction with connector assembly 10.
  • Figure 8 shows a signal array for use with circuit boards 132, 134 when circuit boards 132, 134 include at least one pair of corresponding land areas having one central conductive core area.
  • circuit boards 132, 134 include at least one pair of corresponding land areas including two central conductive core areas. Examples of corresponding land areas including two central conductive core areas located on circuit boards were shown in Figures 4 and 5, and described in conjunction with connector assembly 70.
  • Figure 9 shows a signal array for use with circuit boards 132, 134 when circuit boards 132, 134 include at least one pair of corresponding land areas having two central conductive core areas.
  • connectors assemblies 10 and 70 shown in Figures 1-3 and 4-6, respectively, those of ordinary skill in the art will readily appreciate the formation of land areas including one or two central conductive core areas on circuit boards 132, 134.
  • land areas including one or two central conductive core areas on circuit boards 132, 134 extend to traces on multiple layers of circuit boards 132, 134, and to any electrical components soldered to those traces. Such traces with electrical components soldered thereto form circuits on circuit boards 132, 134.
  • circuit boards 132, 134 may be a backplane and a circuit pack, respectively.
  • circuit board 132 may include primarily traces to interconnect numerous circuit packs using multiple connector assemblies described herein, and few, if any, electrical components.
  • Circuit board 134, as well as other similar circuit boards, may include numerous electrical components configured to perform some functionality, and also include connector assemblies described herein.
  • Circuit boards 132, 134 may also be a motherboard and a daughter card, respectively.
  • circuit board 132 may include a processor, e.g., microprocessor, and traces to interconnect numerous circuit packs using multiple connector assemblies described herein.
  • Circuit board 134 may include numerous electrical components configured to preform some function, and also include connector assemblies described herein. Other embodiments or applications which lend themselves to two substantially perpendicular circuit boards will readily appear to those of skill in the art.
  • Signal array 150 comprises four blocks 152a-d, each including four shielded conductors 154 (shown in phantom line) formed to extend at approximately 90 degree angles or have 90 degree bends.
  • Each shielded conductor 154 includes an axial conductive element 156 and an outer conductive element 158.
  • Shielded conductors 154 may be formed from semi-rigid coax well know to those of skill in the art. Each block 152a-d may be constructed by forming pieces of semi-rigid coax at approximately 90 degree angles and casting or molding the coax into a non-conductive substance, such as a LCP 159. The contact surfaces 160 may then be machined to improve the co-planarity of the shielded conductors 154 and the interface between the shielded conductors 154 and the compressible interface elements, such as compressible interface elements 138, 140 shown in Figure 7. In some embodiments, signal array 150 may further comprise a clip or band 162.
  • Clip 162 includes ribs 164, while blocks 152a-d include notches 166, corresponding to ribs 166. Clip 162 functions to holds blocks 152a-d together, and aligned, when pressure is applied to signal array 150, such as, for example, clip 141 does when pressure is applied to signal array 136 shown in Figure 7.
  • Signal array 170 also comprises four blocks 172a-d, each including four shielded conductors 174 (shown in phantom line) formed at approximately 90 degree angles or having 90 degree bends.
  • Each shielded conductor 174 includes two axial conductive elements 176 and an outer conductive element 178.
  • Shielded conductors 178 may be formed from semi-rigid twinax well know to those of skill in the art.
  • Each block 172a-d may be constructed by forming pieces of semi-rigid twinax at approximately 90 degree angles and casting or molding the twinax into a non-conductive substance, such as LCP 179.
  • the contact surfaces 180 may then be machined to improve the co-planarity of the shielded conductors 174 and the interface between the shielded conductors 174 and compressible interface elements, such as compressible interface elements 138, 140 shown in Figure 7.
  • signal array 170 may also comprise a clip or band 182.
  • Clip 182 includes ribs 184, while blocks 172a-d include corresponding notches 186. Clip 182 functions to holds blocks 172a-d in alignment when pressure is applied to signal array 170, such as pressure is applied to signal array 136 shown in Figure 7, such as, for example, clip 141 does when pressure is applied to signal array 136 shown in Figure 7.
  • signal arrays 150, 170 are constructed as blocks 152a-d , 172a-d , respectively, other embodiments of the present invention may be built using similarly functioning signal arrays having wafer type construction. An example of wafer type construction was shown in Figures 4-6 and described in conjunction with signal array 76.
  • a signal array may be constructed having any size desired.
  • a signal array need not be constructed having a four-by-four array as shown herein in Figures 1-9. Rather, those skilled in the art will readily size or scale the number of conductors in a signal array to meet various circuit requirements and the need to couple high frequency data and/or communications signals between two circuit boards.
  • compressible interface element 140 is placed between corresponding shielded land areas, e.g., coaxial or twinaxial, on circuit board 134 and shielded conductors 146 in signal array 136, aligning the central conductive core areas and the conductive outer structure areas of the land areas on circuit board 134 with the axial conductive element(s) and the conductive outer element of shielded conductors 146, respectively.
  • Pressure is applied to compressible interface element 140 to compress the compressible interface element 140 such that the conductive elements within compressible interface element 140 provide electrical connection from land areas on circuit board 134 through the conductive elements to shielded conductors 146. Pressure may be applied using a variety of fasteners.
  • connector assembly 130 further comprises bolts 144 extending through cross member 148 and circuit board 134 with nuts (not shown) that used to compress, or apply pressure to, compressible interface element 140 coupled between circuit board 134 and signal array 136.
  • Other fasteners may used in the alternative.
  • connector 138 is placed between corresponding land areas, e.g., coaxial ortwinaxial, on circuit board 132 and shielded conductors 146 in signal array 136, aligning the central conductive core areas and the conductive outer structure areas of the land areas on circuit board 132 with the axial conductive element(s) and the outer conductive element of shielded conductors 146, respectively.
  • Such alignment may be achieved in a variety of ways.
  • circuit board 132 may be mounted in a fixed location, such as to frame or enclosure 200.
  • circuit board 134 may be referred to as a backplane or a mother board.
  • Frame or enclosure 200 includes guides or slides 202 for receiving circuit boards, such as circuit board 134. Additional slides may be included for other circuit boards.
  • Circuit board 134 is inserted into guides or slides 202 such that circuit boards 132, 134 are substantially orthogonal. Pressure is also applied to compressible interface element 138 to compress compressible interface element 138 such that the conductive elements within compressible interface element 138 provide electrical connection from land areas on circuit board 132 through the conductive elements to shielded conductors 146.
  • Such pressure may be provided by latch 204 mounted to circuit board 134, that articulates and engages slide 202, applying pressure to compressible interface element 138.
  • compressible interface elements 138, 140 When compressible interface elements 138, 140 are compressed, those conductive elements contacting the outer conductive elements of shield conductors 146 and the conductive outer structure areas of land areas on circuit boards 132, 134 form a shield around, or "shield", those conductive elements contacting the axial conductive elements of shield conductors 146 and the central conductive core areas of the land areas on circuit boards 132, 134.
  • conductive elements of compressible interface elements 138, 140 "extend" the geometric arrangement and/or shielding of shield conductors 146 through to land areas, or the surface, of circuit boards 132, 134.
  • Shielded conductors 146 accompanied by compressible interface elements 138, 140 that extended the shielding of those conductors may be used for single-ended or differential signals, based on the number of axial conductive element in a shielded conductor, such as high speed data and/or communications signals. Shielding is particularly useful in preventing interference when using such high speed or high frequency signals.
  • connector assembly 130 capitalizes on the benefits of elastomeric connectors, e.g., compressible interface elements 138, 140, in providing high frequency data and/or communications connections between circuit boards 132, 134. In doing so, connector assembly 130 requires no soldering. Further, no soldering or special skill is required to remove and replace one of the compressible interface elements 138, 140 or the signal array 136.
  • connector assembly 130 includes no pins that may be bent or broken in inserting circuit board 134 in slides 202, resulting in a failure of the product the circuit boards 132, 134 are included in, either under production test or in the possession of a user or consumer.
  • Connector assembly 130 also extends the geometric arrangement of the shielded conductors 146 in signal array 136 through connector assembly 130 to the surface of the circuit boards 132, 134.
  • connector assembly 130 improves the replacement and serviceability of high speed data and/or communications connections. While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in anyway limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details of representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. What is claimed is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
PCT/US2004/036936 2003-11-05 2004-11-05 Zero insertion force high frequency connector Ceased WO2005046005A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2004800392322A CN1902786B (zh) 2003-11-05 2004-11-05 零插入力高频连接器
EP04810401.2A EP1687870B1 (en) 2003-11-05 2004-11-05 Zero insertion force high frequency connector
JP2006538508A JP4943157B2 (ja) 2003-11-05 2004-11-05 挿入力がゼロであるような高周波コネクタ
CA2544851A CA2544851C (en) 2003-11-05 2004-11-05 Zero insertion force high frequency connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/702,192 2003-11-05
US10/702,192 US7074047B2 (en) 2003-11-05 2003-11-05 Zero insertion force high frequency connector

Publications (1)

Publication Number Publication Date
WO2005046005A1 true WO2005046005A1 (en) 2005-05-19

Family

ID=34551610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/036936 Ceased WO2005046005A1 (en) 2003-11-05 2004-11-05 Zero insertion force high frequency connector

Country Status (6)

Country Link
US (2) US7074047B2 (enExample)
EP (1) EP1687870B1 (enExample)
JP (1) JP4943157B2 (enExample)
CN (1) CN1902786B (enExample)
CA (1) CA2544851C (enExample)
WO (1) WO2005046005A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249953B2 (en) 2003-11-05 2007-07-31 Tensolite Company Zero insertion force high frequency connector
US7404718B2 (en) 2003-11-05 2008-07-29 Tensolite Company High frequency connector assembly
US7503768B2 (en) 2003-11-05 2009-03-17 Tensolite Company High frequency connector assembly

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291842B2 (en) * 2005-06-14 2007-11-06 Varian Medical Systems Technologies, Inc. Photoconductor imagers with sandwich structure
DE102005033915A1 (de) * 2005-07-20 2007-02-01 Tyco Electronics Amp Gmbh Koaxialer Verbinder
US7666008B2 (en) * 2006-09-22 2010-02-23 Onanon, Inc. Conductive elastomeric and mechanical pin and contact system
US7699617B2 (en) * 2007-10-08 2010-04-20 Winchester Electronics Corporation Modular interconnect apparatus
US9692188B2 (en) * 2013-11-01 2017-06-27 Quell Corporation Flexible electrical connector insert with conductive and non-conductive elastomers
US9468103B2 (en) * 2014-10-08 2016-10-11 Raytheon Company Interconnect transition apparatus
US9660333B2 (en) 2014-12-22 2017-05-23 Raytheon Company Radiator, solderless interconnect thereof and grounding element thereof
GB2539964A (en) * 2015-07-03 2017-01-04 Sevcon Ltd Electronics assembly
US9780458B2 (en) 2015-10-13 2017-10-03 Raytheon Company Methods and apparatus for antenna having dual polarized radiating elements with enhanced heat dissipation
US10429321B2 (en) 2016-08-29 2019-10-01 Kla-Tencor Corporation Apparatus for high-speed imaging sensor data transfer
GB2570838C (en) * 2016-10-25 2021-08-11 Quell Corp Hybrid flexible electrical connector insert
US10361485B2 (en) 2017-08-04 2019-07-23 Raytheon Company Tripole current loop radiating element with integrated circularly polarized feed
US12407123B1 (en) 2020-11-23 2025-09-02 Quell Corporation Electrically dissipative flexible unitary connector insert

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798802A2 (en) * 1996-03-28 1997-10-01 Lucent Technologies Inc. RF flex circuit transmission line and interconnection method
US5872550A (en) 1997-06-09 1999-02-16 Raytheon Company Compressible coaxial interconnection with integrated environmental seal
US20030199181A1 (en) * 2002-04-17 2003-10-23 Akira Technology Co., Ltd. Pliable connector and manufacturing method thereof

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014474B2 (ja) * 1979-01-25 1985-04-13 アルプス電気株式会社 電気的接続部材の製造方法
JPS5745169U (enExample) * 1980-08-28 1982-03-12
US4556265A (en) * 1981-06-29 1985-12-03 Rca Corporation RF Coaxial-strip line connector
US4596432A (en) * 1981-11-20 1986-06-24 Amp Incorporated Shielded ribbon coax cable assembly
US4534602A (en) * 1982-05-26 1985-08-13 Fairchild Camera & Instrument Corp. R.F. multi-pin connector
US5007843A (en) * 1983-05-31 1991-04-16 Trw Inc. High-density contact area electrical connectors
US4626492A (en) * 1985-06-04 1986-12-02 Olin Hunt Specialty Products, Inc. Positive-working o-quinone diazide photoresist composition containing a dye and a trihydroxybenzophenone compound
US4754546A (en) * 1985-07-22 1988-07-05 Digital Equipment Corporation Electrical connector for surface mounting and method of making thereof
US4692561A (en) * 1985-09-26 1987-09-08 Commander Electrical Materials, Inc. Cable connector
US4992053A (en) * 1989-07-05 1991-02-12 Labinal Components And Systems, Inc. Electrical connectors
US4653840A (en) * 1986-06-20 1987-03-31 Amp Incorporated Electrical connections for shielded coaxial conductors
US5045249A (en) * 1986-12-04 1991-09-03 At&T Bell Laboratories Electrical interconnection by a composite medium
US4695258A (en) * 1986-12-09 1987-09-22 Cherne Industries, Inc. Connector assembly for electrically connecting flexible and rigid printed circuits
US4820376A (en) * 1987-11-05 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Fabrication of CPI layers
US4816791A (en) * 1987-11-27 1989-03-28 General Electric Company Stripline to stripline coaxial transition
EP0332560B1 (en) * 1988-03-11 1994-03-02 International Business Machines Corporation Elastomeric connectors for electronic packaging and testing
US4952174A (en) * 1989-05-15 1990-08-28 Raychem Corporation Coaxial cable connector
US5207602A (en) * 1989-06-09 1993-05-04 Raychem Corporation Feedthrough coaxial cable connector
US5046966A (en) * 1990-10-05 1991-09-10 International Business Machines Corporation Coaxial cable connector assembly
US5123851A (en) * 1991-03-11 1992-06-23 Apple Computer, Inc. Integrated connector module with conductive elastomeric contacts
US5163836A (en) * 1991-03-11 1992-11-17 Apple Computer, Inc. Integrated connector module with conductive elastomeric contacts
US5148135A (en) * 1991-09-04 1992-09-15 Raytheon Company Electronic hardware package
DE4137355C2 (de) 1991-11-13 1994-04-14 Contact Gmbh Elektrischer Steckverbinder für abgeschirmte Kabel
US5274917A (en) * 1992-06-08 1994-01-04 The Whitaker Corporation Method of making connector with monolithic multi-contact array
US5380212A (en) * 1992-08-14 1995-01-10 Hewlett Packard Company Conductive elastomeric interface for a pin grid array
US20050062492A1 (en) 2001-08-03 2005-03-24 Beaman Brian Samuel High density integrated circuit apparatus, test probe and methods of use thereof
US5504940A (en) * 1992-11-13 1996-04-02 Motorola, Inc. Shock isolation system having integral electrical interconnects
US5373109A (en) * 1992-12-23 1994-12-13 International Business Machines Corporation Electrical cable having flat, flexible, multiple conductor sections
GB2274356A (en) * 1993-04-30 1994-07-20 Itt Ind Ltd Improvements relating to electrical component mounting arrangements
US5479110A (en) * 1994-01-13 1995-12-26 Advanpro Corporation Printed flexible circuit terminations and method of manufacture
GB9420935D0 (en) * 1994-10-17 1994-11-30 Amp Gmbh Multi-position coaxial cable connector
US5509821A (en) * 1994-11-14 1996-04-23 Itt Corporation D-sub connector
US5701233A (en) * 1995-01-23 1997-12-23 Irvine Sensors Corporation Stackable modules and multimodular assemblies
US5552752A (en) * 1995-06-02 1996-09-03 Hughes Aircraft Company Microwave vertical interconnect through circuit with compressible conductor
US6133072A (en) * 1996-12-13 2000-10-17 Tessera, Inc. Microelectronic connector with planar elastomer sockets
US5904580A (en) * 1997-02-06 1999-05-18 Methode Electronics, Inc. Elastomeric connector having a plurality of fine pitched contacts, a method for connecting components using the same and a method for manufacturing such a connector
US5857865A (en) * 1997-03-26 1999-01-12 Raychem Corporation Sealed coaxial cable connector
DE69735253T2 (de) * 1997-07-04 2006-07-27 Agilent Technologies Inc., A Delaware Corp., Palo Alto Komprimierbares elastomerisches Kontaktelement und mechanischer Zusammenbau mit einem solchen Kontaktelement
US6039580A (en) * 1998-07-16 2000-03-21 Raytheon Company RF connector having a compliant contact
US6348659B1 (en) * 1999-01-07 2002-02-19 Thomas & Betts International, Inc. Resilient electrical interconnects having non-uniform cross-section
US6094115A (en) * 1999-02-12 2000-07-25 Raytheon Company Control impedance RF pin for extending compressible button interconnect contact distance
US6241532B1 (en) * 1999-06-25 2001-06-05 Exatron, Inc. High density electrical connector assembly and connector for use therewith
IT1307383B1 (it) 1999-09-10 2001-11-06 Antonio Carraro Spa Giunto elastico per alberi coassiali
DE60003376T2 (de) * 1999-10-22 2004-04-29 Shin-Etsu Polymer Co., Ltd. Verbindungselement aus Gummi
US6380485B1 (en) * 2000-08-08 2002-04-30 International Business Machines Corporation Enhanced wire termination for twinax wires
US6515499B1 (en) 2000-09-28 2003-02-04 Teradyne, Inc. Modular semiconductor tester interface assembly for high performance coaxial connections
TW518806B (en) * 2001-01-12 2003-01-21 Northrop Grumman Corp High speed, high density interconnect system for differential and single-ended transmission applications
US6843657B2 (en) * 2001-01-12 2005-01-18 Litton Systems Inc. High speed, high density interconnect system for differential and single-ended transmission applications
US6590478B2 (en) * 2001-03-08 2003-07-08 Lockheed Martin Corporation Short coaxial transmission line and method for use thereof
US6835071B2 (en) * 2001-07-18 2004-12-28 Tyco Electronics Corporation Elastomeric connector interconnecting flexible circuits and circuit board and method of manufacturing the same
US6685487B2 (en) * 2002-06-12 2004-02-03 Siemens Information & Communication Mobile Llc Elastomeric connector assembly
US6717079B2 (en) 2002-06-21 2004-04-06 Varian Semiconductr Equipmentassociates, Inc. Electrical switches and methods of establishing an electrical connection
KR101011741B1 (ko) * 2002-07-24 2011-02-07 윈체스터 일렉트로닉스 코포레이션 상호접속 시스템
US6712620B1 (en) * 2002-09-12 2004-03-30 High Connection Density, Inc. Coaxial elastomeric connector system
US6716062B1 (en) * 2002-10-21 2004-04-06 John Mezzalingua Associates, Inc. Coaxial cable F connector with improved RFI sealing
US6864696B2 (en) * 2002-10-31 2005-03-08 Agilent Technologies, Inc. High density, high frequency, board edge probe
US6929482B2 (en) * 2003-01-27 2005-08-16 Litton Systems, Inc. Interconnection arrangement
US7080998B2 (en) 2003-01-31 2006-07-25 Intelliserv, Inc. Internal coaxial cable seal system
US6752639B1 (en) * 2003-02-20 2004-06-22 Tyco Electronics Corporation Elastomeric connector assembly and method for producing the assembly
US7107034B2 (en) 2003-06-27 2006-09-12 The Boeing Company High frequency and low noise interconnect system
JP4590406B2 (ja) * 2003-07-17 2010-12-01 ウィンチェスター・エレクトロニクス・コーポレイション 高速電気コネクタ
US7074047B2 (en) * 2003-11-05 2006-07-11 Tensolite Company Zero insertion force high frequency connector
US6822162B1 (en) * 2003-11-07 2004-11-23 Agilent Technologies, Inc. Microcircuit housing with sloped gasket
US6767248B1 (en) * 2003-11-13 2004-07-27 Chen-Hung Hung Connector for coaxial cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798802A2 (en) * 1996-03-28 1997-10-01 Lucent Technologies Inc. RF flex circuit transmission line and interconnection method
US5872550A (en) 1997-06-09 1999-02-16 Raytheon Company Compressible coaxial interconnection with integrated environmental seal
US20030199181A1 (en) * 2002-04-17 2003-10-23 Akira Technology Co., Ltd. Pliable connector and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249953B2 (en) 2003-11-05 2007-07-31 Tensolite Company Zero insertion force high frequency connector
US7404718B2 (en) 2003-11-05 2008-07-29 Tensolite Company High frequency connector assembly
US7503768B2 (en) 2003-11-05 2009-03-17 Tensolite Company High frequency connector assembly
US7748990B2 (en) 2003-11-05 2010-07-06 Tensolite, Llc High frequency connector assembly
US7997907B2 (en) 2003-11-05 2011-08-16 Tensolite, Llc High frequency connector assembly

Also Published As

Publication number Publication date
CA2544851A1 (en) 2005-05-19
EP1687870A1 (en) 2006-08-09
US7249953B2 (en) 2007-07-31
EP1687870B1 (en) 2016-11-02
JP4943157B2 (ja) 2012-05-30
US20050095896A1 (en) 2005-05-05
CA2544851C (en) 2012-08-14
CN1902786A (zh) 2007-01-24
US7074047B2 (en) 2006-07-11
CN1902786B (zh) 2012-01-04
JP2007511051A (ja) 2007-04-26
US20060194477A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US7404718B2 (en) High frequency connector assembly
US7503768B2 (en) High frequency connector assembly
US7074047B2 (en) Zero insertion force high frequency connector
US5244395A (en) Circuit interconnect system
US20050085103A1 (en) High speed, high density interconnect system for differential and single-ended transmission systems
WO2018017385A1 (en) Stacked connectors
CN100539307C (zh) 印刷电路板组件及有该组件的电子装置
US20080238584A1 (en) Reducing crosstalk in electronic devices having microstrip lines
JP4387943B2 (ja) 相互接続システム
CN109787048B (zh) 能用于高频装置的网络连接器
US6558188B1 (en) Impedance controlled electrical connector assembly
US9209773B1 (en) RF/microwave pressure contact interface
CN119547284A (zh) 射频连接器
US10944191B1 (en) Offset ;lug connector on a board connection area
KR20240041827A (ko) 커넥터 인터페이스에서의 분리된 스프링 및 전기 경로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039232.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006538508

Country of ref document: JP

Ref document number: 2544851

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2515/DELNP/2006

Country of ref document: IN

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2004810401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004810401

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004810401

Country of ref document: EP