WO2005045838A1 - 接触検査装置、磁気ディスク装置の接触検査装置及びその接触検査方法 - Google Patents

接触検査装置、磁気ディスク装置の接触検査装置及びその接触検査方法 Download PDF

Info

Publication number
WO2005045838A1
WO2005045838A1 PCT/JP2004/015911 JP2004015911W WO2005045838A1 WO 2005045838 A1 WO2005045838 A1 WO 2005045838A1 JP 2004015911 W JP2004015911 W JP 2004015911W WO 2005045838 A1 WO2005045838 A1 WO 2005045838A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic disk
slider
detection element
contact
contact inspection
Prior art date
Application number
PCT/JP2004/015911
Other languages
English (en)
French (fr)
Inventor
Masaru Nakakita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/578,511 priority Critical patent/US7591180B2/en
Priority to JP2005515267A priority patent/JP4498278B2/ja
Publication of WO2005045838A1 publication Critical patent/WO2005045838A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads

Definitions

  • the present invention relates to a contact inspection method and a contact inspection device in which a detection element that generates a detection output according to the vibration of the rotating body is mounted on the rotating body, and a contact of the rotating body with another object is detected. More particularly, the present invention relates to a contact inspection method and a contact inspection apparatus suitable for evaluating mechanical characteristics and tribological characteristics of a magnetic disk as a recording medium of a magnetic disk device and a slider on which a magnetic head is mounted.
  • a magnetic disk device that magnetically records and reproduces information is configured to fly a slider having a magnetic head at a substantially constant interval on a recording and reproducing surface of a magnetic disk as a recording medium to record and reproduce information.
  • the actuator arm of the magnetic disk device has a slider attached to the tip, and the slider has a built-in magnetic head for recording and / or reproducing information.
  • a magnetic head is disposed near an air outflow end of an air lubrication surface of a slider facing a magnetic disk, and generates an air flow generated by rotation of the magnetic disk to the air lubrication surface and the surface of the magnetic disk. , Whereby the slider is flying above the magnetic disk.
  • the slider thus floats on the rotating magnetic disk.
  • the flying height is the thickness of the air lubricating film, that is, the distance between the magnetic disk surface and the slider.
  • the surface of the slider facing the magnetic disk forms an air lubricating surface, and a self-pressurizing type air lubricating film is formed and maintained between the slider and the magnetic disk. This film makes it difficult for the slider and the magnetic disk to come into mechanical contact during rotation of the magnetic disk, thereby suppressing friction and wear.
  • FIG. 12 shows an example of a conventionally used contact inspection device between a slider and a magnetic disk.
  • 1 is a magnetic disk as a recording medium
  • 2 is a slider equipped with a magnetic head (not shown) for recording and reproducing signals on the magnetic disk
  • 3 is a magnetic disk 1 while holding the magnetic disk 1.
  • 7 is a spindle drive circuit that drives the spindle 3
  • 6 is an arm that supports the slider 2
  • 5 is a voice coil motor that drives the arm 6
  • 8 is a voice coil motor 5 that drives the spindle 3
  • This is an actuator drive circuit.
  • the magnetic disk 1 is fixed to the spindle 3 by, for example, screwing.
  • the slider 2 is made of a ceramic material such as A1203-TiC, and the surface of the slider 2 facing the magnetic disk 1 is not illustrated by mechanical polishing or etching. Is formed.
  • the arm 6 has a resiliency in the direction in which the slider 2 is pressed against the magnetic disk 1, whereby the air lubrication surface of the slider 2 is fixed to the recording / reproducing surface of the magnetic disk 1, for example, 20 mN. Pressed with a load of Further, the arm 6 is attached to the voice coil motor 5 and rotates around the axis of the voice coil motor 5 within a certain range of, for example, 30 degrees. With the rotation of the voice coil motor 5, the arm 6 swings substantially parallel to the recording / reproducing surface of the magnetic disk 1, and the slider 2 moves in the radial direction of the magnetic disk 1 accordingly. Te ru.
  • an AE sensor 12 as a vibration detecting element is mounted on the arm 6, an AE sensor 12 as a vibration detecting element is mounted.
  • This AE The sensor 12 is constituted by, for example, a piezoelectric element (PZT), and detects an acoustic elastic wave (acoustic emission, hereinafter referred to as ⁇ ) generated when the slider 2 and the magnetic disk 1 come into contact with each other. A corresponding electric signal is output.
  • PZT piezoelectric element
  • Reference numeral 20 denotes a broadband amplifier for amplifying an output signal of the sensor 12
  • 30 denotes a filter signal for extracting a frequency component necessary for a contact test
  • 50 denotes an output signal of the filter circuit 30.
  • Such a conventional contact inspection device is used to inspect the contact state between the slider 2 and the magnetic disk 1 of a magnetic disk device employing a CSS (contact 'start' stop) method or a start-stop method.
  • the magnetic disk 1 is in contact with the slider 2 when the spindle 3 is stopped.
  • the slider 2 has an air lubrication surface on the surface opposite to the recording / reproducing surface of the magnetic disk 1.
  • the spindle 3 starts rotating, the air flow generated by the rotation of the magnetic disk 1 is transferred between the slider 2 and the magnetic disk. Pulls in between disk 1 and gradually begins to float from magnetic disk 1.
  • the voice coil motor 5 moves the arm 6 to move the slider 2 to a predetermined position in a substantially radial direction of the magnetic disk 1.
  • the spindle 3 rotates at a high speed at a constant speed (for example, 5400 rpm)
  • the slider 2 maintains the self-pressurized air lubricating film formed between the slider 2 and the magnetic disk 1 so that the magnetic disk 1 On the other hand, it floats while maintaining a substantially constant interval.
  • the spindle 3 stops the slider 2 contacts the magnetic disk 1 again.
  • the magnetic disk 1 is stopped, it comes into contact with the slider 2, and while the magnetic disk 1 is rotating, the slider 2 flies and both 1 and 2 are in a non-contact state.
  • the voltage of the detection signal from the AE sensor 12 is a very weak force of several microvolts to several hundreds of microphone aperture volts. Contains information about the contact that occurred.
  • the detection output of the AE sensor 12 is amplified to a level observable (for example, 40 dB to 60 dB) by the wideband amplifier 20, the noise component is removed by the filter circuit 30, and displayed on the oscilloscope 50.
  • a level observable for example, 40 dB to 60 dB
  • the AE sensor 12 detects not only the AE generated by the contact between the slider 2 and the magnetic disk 1, but also the vibration of the arm 6 and the slider 2. Become. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2000-173032, as a method for more accurately measuring the contact state between the slider 2 and the magnetic disk 1, an AE sensor 12 is mounted on the magnetic disk 1 side. Is transmitted to the broadband amplifier 20 via the slip ring, the vibration of the arm 6 and the vibration of the slider 2 are
  • a contact inspection device has been devised which is prevented from being detected by Twelve.
  • JP 200 JP 200
  • Japanese Patent Publication No. 0-173032 proposes that the detection signal of the AE sensor 12 mounted on the magnetic disk side can be transmitted even by using a simple tally transformer.
  • FIG. 13 is a block diagram of a contact inspection device configured using a rotary transformer
  • FIG. 14 is a sectional view of a spindle 3 used in the contact inspection device shown in FIG.
  • reference numeral 3a denotes a rotor having a shaft 3c, and the shaft 3c is rotatably supported by a radial bearing 3d fixed to the stator 13b.
  • Reference numerals 3g and 3f denote rotary transformers arranged on the outside of the radial bearing 3d and the rotor 3a so as to face each other, and 3n and 3m denote primary and secondary connection terminals of the rotary transformers 3g and 3f. is there.
  • Reference numeral 3h denotes an annular permanent magnet attached to the rotor 3a, and reference numeral 3i denotes a coil fixed to the stator 3b so as to face the permanent magnet 3h and to form a motor.
  • a group (groove) is formed on the shaft 3c and the thrust bearing 3e, and The structure is a fluid bearing filled with oil. At this time, the contact between the shaft 3c, the radial bearing 3d and the thrust bearing 3e is kept in a non-contact state by the dynamic pressure of the oil caused by the rotation.
  • the spindle 3 in FIG. 14 has a fluid bearing structure, unlike a contact type bearing using a ball bearing or the like, the sliding of the rotor and the stator due to the rotation of the spindle 3 occurs. Does not occur.
  • the rotary transformers 3g and 3f can take out an electric signal to the outside of the rotating body without contact with the rotor 3a.
  • the output terminal of the AE sensor 12 mounted on the magnetic disk 1 is connected to the connection terminal 3m on the primary side of the rotary transformer 3f (3f ′).
  • the start-stop method of the magnetic disk device includes a method of directly loading and unloading the slider 2 with respect to one surface of the magnetic disk, and a so-called ramp load method.
  • a method for grasping the contact state between the magnetic disk 1 and the slider 2 during the process and the direct unloading process is a need for grasping the contact state between the magnetic disk 1 and the slider 2 during the process and the direct unloading process.
  • the AE caused by the contact between the slider 2 and the magnetic disk 1 in the direct loading process and the direct unloading process of the ramp loading method is reduced by a factor of one to several tenths. Since the duration is extremely short, about lms, even when the AE sensor 12 is mounted on the magnetic disk 1, it is necessary to measure the output voltage and the time response with extremely high accuracy. At this time, in the transmission method via the slip ring, The detection signal, which is greatly affected by the sliding noise generated between the coupling and the brush, cannot be accurately detected. Even when a rotary transformer is used, a piezoelectric element represented by the AE sensor 12 generally has a very large and internal impedance, and an optimal design is required for the transmission system.
  • the contact mode between the slider 2 and the magnetic disk 1 in the direct unloading process includes the first mode in which the slider 2 contacts the magnetic disk 1 in the process of peeling off the air lubricating film due to the action of the squeeze force.
  • the arm 6 supporting the slider 2 is vibrated by peeling off the air lubricating film, and the vibration of the arm 6 causes the slider 2 to come into contact with the magnetic disk 1.
  • the present invention has been made in view of such inconvenience, and provides a contact inspection method and apparatus in which the AE sensor 12 is mounted on the magnetic disk 1 as a rotating body. It is an object of the present invention to optimize the characteristics of an electric circuit including the AE sensor 12 so that the contact measurement between the slider 2 and the magnetic disk 1 can be realized with higher accuracy than before. Another object of the present invention is to specify a contact mode between the slider 2 and the magnetic disk 1 during the direct unloading process so that separation evaluation can be performed.
  • the present invention provides a method of mounting the AE sensor 12 on the magnetic disk 1 side. We propose that the contact mode between the slider 2 and the magnetic disk 1 in the direct unloading process is specified and separated and evaluated.
  • the contact inspection method of the present invention provides a rotating magnetic disk, a slider that includes a head that performs at least one of recording and reproduction on the magnetic disk, and that is pressed against the magnetic disk by a suspension, A magnetic disk having a slider holding mechanism for holding the magnetic disk, a magnetic disk side detecting element mounted on the magnetic disk for detecting vibration of the magnetic disk, and a slider, suspension or a slider side detecting element mounted on the slider holding mechanism; Based on the detection output of the side detection element and the slider side detection element, This is a contact inspection method for inspecting the vibration state of a disk, a slider, and a suspension.
  • the time difference between the maximum value of the detection output of the magnetic disk side detection element and the maximum value of the detection output of the slider side detection element is obtained. It is characterized in that the contact state between the slider and the magnetic disk is determined and the contact strength is evaluated.
  • a first contact inspection device of the present invention includes a rotating magnetic disk, and a slider including a head for performing at least one of recording and reproduction with respect to the magnetic disk and pressed against the magnetic disk by a suspension.
  • a slider holding mechanism for holding the suspension, a magnetic disk side detecting element mounted on the magnetic disk and detecting vibration of the magnetic disk, and a slider side detecting element mounted on the slider, the suspension or the slider holding mechanism.
  • a contact inspection device for inspecting a vibration state of a magnetic disk, a slider, and a suspension based on detection outputs of the magnetic disk-side detection element and the slider-side detection element.
  • the magnetic disk side You characterized that comprises a measurement means for determining the time difference between the maximum value of the detection output of the maximum value and the slider-side detection element of the detection output of.
  • accurate evaluation can be performed by specifying the mode of contact between the slider and the magnetic disk that occurs in the direct unloading process in the ramp load method and measuring the time difference between the outputs. This is an excellent effect.
  • a second contact inspection device of the present invention includes a magnetic disk fixed to a rotation holding mechanism and rotating, a slider equipped with a head for performing at least one of recording and Z reproduction on the magnetic disk, and a rotation holding device.
  • a contact inspection device having a detection element attached to the mechanism for detecting the vibration of the magnetic disk, and inspecting the vibration state of the magnetic disk based on the detection output of the detection element. Is constituted by an AE transmission plate parallel to the magnetic disk surface, and the detection element is fixed to a surface of the AE transmission plate opposite to the magnetic disk contact surface.
  • the present invention provides a rotating rotator with vibration of the rotator.
  • a contact element that attaches a detection element that generates a detection output according to the condition, transmits the detection output to a fixed unit via a rotary transformer, and checks the vibration state of the rotating body based on the transmitted detection output.
  • the contact inspection method provides a rotating magnetic disk, a slider having a head for performing at least one of recording and reproduction with respect to the magnetic disk, and being pressed against the magnetic disk by a suspension.
  • a slider holding mechanism for holding the suspension, a magnetic disk side detecting element attached to the magnetic disk and detecting vibration of the magnetic disk, and the slider is mounted on the suspension or the slider holding mechanism.
  • a slider-side detection element and based on detection outputs of the magnetic disk-side detection element and the slider-side detection element!
  • a contact inspection method for inspecting the vibration state of the magnetic disk, the slider, and the suspension comprising: detecting a vibration caused by a contact between the slider and the magnetic disk from a plurality of types of vibrations.
  • a contact detection method characterized by comprising a measuring means for determining a time difference between a maximum value of a detection output of the magnetic disk-side detection element and a maximum value of a detection output of the slider-side detection element.
  • the contact inspection device includes a magnetic disk fixed to a rotation holding mechanism and rotating, a slider having a head for performing at least one of recording and Z reproduction on the magnetic disk, and a rotation holding mechanism.
  • the magnetic disk fixing part of the mechanism is composed of an AE transmission plate parallel to the magnetic disk surface, and the detection element is fixed to a surface of the AE transmission plate opposite to the magnetic disk contact surface.
  • AE can be detected with high sensitivity.
  • the mode of contact between the slider and the magnetic disk generated in the direct unloading process in the ramp load method is specified and evaluated, or the replacement of the magnetic disk 1 is easy, and
  • the pressure contact ensures the close contact with the magnetic disk 1 and makes it possible to suppress AE attenuation.
  • FIG. 1 is a block diagram of a contact inspection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the contact inspection device according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an output frequency characteristic of the AE sensor used in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the impedance of the AE sensor used in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the impedance of the rotary transformer used in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the impedance of a circuit composed of an AE sensor and a rotary transformer used in the first embodiment of the present invention.
  • FIG. 7 is an output diagram of the AE sensor used in Embodiment 1 of the present invention.
  • FIG. 8 is a block diagram of a contact inspection device according to Embodiment 2 of the present invention.
  • FIG. 9 is a plan view of a suspension used in the second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of a suspension used in Embodiment 2 of the present invention.
  • FIG. 11a is a side view schematically illustrating the unloading process according to the second embodiment of the present invention.
  • FIG. 12 is a block diagram of a conventional contact inspection device.
  • FIG. 13 is a block diagram of a conventional contact inspection device that detects AE from the magnetic disk side.
  • FIG. 14 is a sectional view of a spindle of the contact inspection device shown in FIG.
  • FIG. 1 is a block diagram showing a contact inspection device according to the first embodiment. Parts corresponding to those of the conventional technique shown in FIGS. 12 to 14 are denoted by the same reference numerals, and detailed description thereof is omitted. I do.
  • 1 is a magnetic disk
  • 2 is a slider
  • 4 is a suspension
  • 5 is a voice coil motor
  • 6 is an arm
  • 7 is a spindle drive circuit
  • 8 is an actuator drive circuit
  • 9 is a disk clamp
  • 10 is a disk clamp.
  • the magnetic disk 1 is fixed to a spindle (not shown) in the housing 10 by a disk clamp 9.
  • Reference numeral 20 denotes a broadband amplifier
  • reference numeral 30 denotes a filter circuit
  • reference numeral 40 denotes an execution value calculation circuit as an execution value calculation means for calculating an execution value voltage of the AE sensor 12 from an output signal of the filter circuit 30, and reference numeral 70 controls each of the drive circuits 7, 8.
  • it is a powerful arithmetic control circuit such as a personal computer that executes various arithmetic processes.
  • FIG. 2 is a cross-sectional view of the contact inspection apparatus.
  • 33a is a rotor
  • 33b is a stator
  • 33c is a shaft extending from a spindle (not shown)
  • 33g is a rotor transformer
  • 33f is a rotor.
  • the stator-side transformer 33g is fixed to the rotor 33a
  • the stator-side transformer 33f is fixed to the stator 33b.
  • a rotary transformer 33h is formed by opposing a flat surface with a small gap.
  • An annular AE transmission plate 11 is sandwiched between the lower surface of the magnetic disk 1 and the rotor 33a.
  • the disk clamp 9 is fixed by screws.
  • the AE transmission plate 11 is in close contact with the magnetic disk 1.
  • the AE transmission flat plate 11 has the same surface state as the magnetic disk 1. What you have Therefore, the surface roughness is Ra ⁇ 0.3 nm, and a 2 nm thick lubricant thicker than the surface roughness is applied.
  • the magnetic disk 1 and the AE transmission flat plate 11 are secured by pressure contact with the disk clamp 9 by the smoothness of the surface and the effect of the lubricating film. Is done.
  • An AE sensor 12 is adhered to the lower surface of the AE transmission plate 11 with an epoxy-based adhesive or the like, and AE generated on the magnetic disk 1 due to contact between the slider 2 and the magnetic disk 1 passes through the AE transmission plate 11. Is detected as a voltage value by the AE sensor 12.
  • the detection signal of the AE sensor 12 is transmitted from the rotor-side transformer 33g to the stator-side transformer 33f, and is taken out from the arrow in Fig. 2 to a measurement circuit system outside the spindle.
  • the extracted signal of the AE sensor 12 is amplified by about 40 to 60 dB by the wideband amplifier 20 in order to obtain a voltage sufficient for calculating the effective value voltage.
  • a wide-band amplifier 20 having a frequency range of, for example, 100 Hz to 10 MHz is used. If an amplifier with such a band is used, the frequency power of the AE signal to be measured is from several tens of kHz to several MHz, so it is possible to amplify the signal without any loss.
  • the output signal amplified by the wideband amplifier 20 is input to an execution value calculation circuit 40 after unnecessary low frequency components are removed by a filter circuit 30 with a cutoff frequency of, for example, 100 kHz.
  • the execution value calculation circuit 40 calculates the execution value voltage of the detection signal of the AE sensor 12 from the signal passed through the filter circuit 30, and supplies this value to the calculation control circuit 70.
  • FIG. 3 shows a detection sensitivity curve of the AE sensor 12. From FIG. 3, it can be seen that the AE sensor 12 used in the first embodiment has a maximum sensitivity in the vicinity of 600 kHz to 700 kHz, and has a sensitivity of at least one-tenth of the maximum sensitivity in a frequency range of approximately 300 kHz to approximately 2 MHz. It can be seen that was secured. In addition, it is also found that the sensitivity is sharply reduced in other frequency bands, and it is considered that the effective sensitivity band in which the AE sensor 12 can substantially detect AE is from 300 kHz to 2 MHz.
  • the contact inspection device can transmit the output voltage of the AE from 300 kHz to 2 MHz to the wide band amplifier 20 through the rotary transformer 33h.
  • FIG. 4 shows the measurement results of the internal impedance of the AE sensor 12, and it can be seen from the frequency characteristics that the capacitance is dominant. In the effective sensitivity range of 300kHz to 2MHz, it has a maximum impedance of 1.5k ⁇ around 300kHz and 600kHz.
  • FIG. 5 shows the measurement results of the internal impedance of the rotor-side transformer 33g used in the first embodiment.
  • the impedance of the rotor Tsukuda J Transformer 33g is measured with the magnetic circuit formed with the stator Tsukuda J Transformer 33f facing.
  • FIG. 6 shows an impedance measurement result of an electric circuit including the AE sensor 12 and the rotor-side transformer 33g.
  • the stator-side transformer 33f is opposed to the rotor-side transformer 33g in the same manner as the internal impedance measurement of the rotor-side transformer 33g. I have. From Fig. 6, it can be seen that the impedance is extremely small and resonates at 400 kHz.
  • FIG. 7 shows the result of measuring the output of the AE sensor 12 via the broadband amplifier 20 by vibrating the adhesive surface of the AE sensor 12 by percussion.
  • the solid line indicates the output result when the output signal of the AE sensor 12 in the first embodiment is transmitted to the wideband amplifier 20 via the rotary transformer 33h, and the broken line indicates the AE sensor.
  • This is an output result when 12 output signals are directly transmitted to the wideband amplifier 20.
  • the output when transmitted to the wideband amplifier 20 via the rotary transformer 33h is equal to or higher than the output when directly transmitted to the wideband amplifier 20 in the region of 300 kHz or more.
  • the signal is amplified by about 10 dB at 400 kHz where circuit resonance occurs, compared to the case of direct transmission.
  • the contact inspection method according to the first embodiment optimizes the impedance of the rotor-side transformer 33g and the stator-side transformer 33f that constitute the rotary transformer 33h, and thereby enables the AE sensor 12 to be used effectively. It is possible to transmit a signal having a sensitivity band of 300 kHz to 2 MHz to the broadband amplifier 20 without attenuating.
  • the impedance of the rotor-side transformer 33g is larger than the impedance of the piezoelectric element at least in a part of the effective sensitivity band. Further, it is desirable that at least a half of the impedance of the piezoelectric element be secured at the lower limit frequency of the effective sensitivity band. Further, it is desirable that the impedance is larger than the impedance of the piezoelectric element for the frequency at which the piezoelectric element has the maximum sensitivity.
  • circuit resonance at 400kHz where circuit resonance occurs, it is about 10dB more than when directly transmitted without passing through the rotary transformer 33h.
  • the sensitivity is high.
  • the AE sensor 12 in the first embodiment is between 600kHz and 700kHz! /
  • the force with the highest sensitivity is from 300kHz to 2MHz.
  • the AE sensor has the maximum sensitivity at the mechanical resonance frequency. And has a certain degree of sensitivity in the frequency bands before and after.
  • the mechanical resonance frequency of an AE sensor depends on the size of the AE sensor. 1S Generally, it is about 100kHz to 1MHz. In addition, there is an effective sensitivity band before and after that, and the band is about 100 kHz to 2 MHz.
  • the resonance frequency of the electric circuit consisting of the AE sensor and the oral tally transformer is desirably in the effective sensitivity band of the AE sensor in the range of 100 kHz to 2 MHz, and more preferably in the maximum sensitivity range of 100 kHz to 1 MHz. Desired! / ,.
  • the AE sensor 12 since the AE sensor 12 is fixed to the AE transmission plate 11, the AE sensor 12 is moved to the magnetic disk 1 every time the magnetic disk 1 is replaced.
  • the magnetic disk 1 can be easily replaced without having to fix the magnetic disk again.
  • FIG. 8 is a block diagram of the contact inspection device according to the second embodiment.
  • the contact inspection device shown in FIG. 8 is basically the same as the contact inspection device shown in FIG. 1 in the first embodiment, except that the AE sensor 12b is also fixed to the arm 6 side. 13 is a lamp block, When the arm 6 rotates, the suspension 4 moves up and down to the ramp block 13, and the slider 2 is directly loaded or unloaded onto the magnetic disk 1.
  • reference numeral 12b denotes an AE sensor bonded and fixed to the arm 6.
  • 20b is a broadband amplifier for amplifying the signal from the AE sensor 12b
  • 30b is a filter circuit for the signal from the wideband amplifier 20b
  • 40b is an execution value for calculating the execution value voltage of the signal from the filter circuit 30b.
  • the arithmetic circuit 70 is an arithmetic control circuit that controls the driving circuits 7 and 8 and also has a powerful function such as a personal computer that executes various arithmetic processes.
  • the arithmetic control circuit 70 also serves as a means for converting the detection output of the AE sensor 12 and the AE sensor 12b from an analog signal to a digital signal, and a time difference calculating means for the maximum value.
  • FIG. 9 is a detailed view of the suspension 4 for pressing the slider 2 against the magnetic disk 1 according to the second embodiment as viewed from the magnetic disk 1 side.
  • FIG. 10 is an exploded view of the suspension 4 of FIG. It is a perspective view.
  • the suspension 4 is composed of a flexure 16 provided with a flexible base 14 carrying the slider 2 near the tip and a wiring structure 15, and a flexure 16 provided in a direction along the magnetic disk 1. And a load beam 17 that supports the tip.
  • the load beam 17 is attached to the arm 6 (not shown) via a base plate 18.
  • the fretasher 16 is joined to the surface of the load beam 17 facing the magnetic disk 1 by spot welding 23, 24.
  • a dimple 19 projecting toward the magnetic disk 1 is formed on the load beam 17, and the slider 2 carried on the fre-shaft 16 is pressed against the magnetic disk 1 while ensuring flexibility by the dimple 19.
  • a tab 22 extends at the tip of the suspension 4 so as to project in the longitudinal direction of the mechanism, and the tab 22 rides on the ramp block 13.
  • FIG. 11a-lid is a schematic diagram showing the state of the suspension 4 during the unloading process.
  • the unloading process will be described with reference to FIG.
  • FIG. 11 a shows a state in which the slider 2 is loaded on the magnetic disk 1, and the slider 2 is a force pressed against the magnetic disk 1 by the suspension 4, and the air flow accompanying the rotation of the magnetic disk 1 As a result, a small gap such as lOnm is maintained, and the magnetic disk 1 floats from the surface.
  • FIG. Lib shows a state at the beginning of the unloading process.
  • the suspension 4 is gradually pulled up by the tab 22 riding on the ramp block 13.
  • the force slider 2 generates a squeeze force due to the action of air between the slider 2 and the magnetic disk 1. 2 is attracted to the magnetic disk 1 side. At this time, a so-called dimple separation occurs, so that the dimple 19 that has pressed the fretasier 16 is separated from the fretascher 16.
  • the contact state between the slider 2 and the magnetic disk 1 during the unloading process of the slider 2 includes the first contact mode shown in FIG. Lib and the second contact mode shown in FIG.
  • the AE sensor 12b detects the dimple contact between the first contact mode and the second contact mode shown in FIG. Therefore, the time difference between the detection signal from the AE sensor 12 and the contact signal from the AE sensor 12b is calculated by the calculation control circuit 70, and the time difference between the two is determined. It is possible to know whether the contact mode with the disk 1 is the first contact mode or the second contact mode.
  • the means for evaluating the output voltage of the force AE sensors 12 and 12b in which the AE is evaluated by the execution value calculation circuits 40 and 40b as the execution value of the voltage are not limited thereto. It can also be evaluated as an envelope output by means. Also, as shown in the second embodiment, when the output voltages of the AE sensors 12 and 12b are converted into digital signals and evaluated, the duration of the AE generated in the direct load process and the direct unload process is about lms. Also, the transition time from the state of FIG. Lib to the state of FIG. 11c and from the state of FIG. 11c to the state of FIG. Lid are each about lms, so AE accompanying the contact between the slider 2 and the magnetic disk 1 is reduced. In order to grasp accurately, it is desirable to perform at least a sampling frequency of 10 kHz or more.
  • the magnetic disk 1 has been described as an example of a rotating body.
  • the present invention is not limited to this, and may be applied to an optical disk, a magneto-optical disk, and the like. It goes without saying that the present invention can be applied as a method of detecting vibration of any rotating body.
  • the AE sensor 12 is provided as the vibration detecting element has been described, an acceleration sensor or the like may be used.

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 回転体に、その回転体の振動に応じた検出出力を発生する検出素子を搭載し、回転体への他の物体の接触を検知する接触検査方法および装置に関するもので、特に、磁気ディスク装置における回転する磁気ディスク(1)とスライダ(2)との機械的特性の評価に好適な方法および装置を提供する。  振動に応じた検出出力を発生する検出素子(12)を回転体(1)に搭載し、その検出出力をロータリートランス(33h)を介して固定部に伝送し、その伝送された検出出力に基づいて、回転体(1)が回転するように構成すると共に、前記ロータリートランス(33h)のインピーダンスは、前記検出素子の有効感度帯域の一部において、前記検出素子が所定の出力を取得するに十分なインピーダンスが確保されていることを特徴とする。

Description

明 細 書
接触検査装置、磁気ディスク装置の接触検査装置及びその接触検査方 法
技術分野
[0001] 本発明は、回転体に、その回転体の振動に応じた検出出力を発生する検出素子を 搭載し、回転体への他の物体の接触を検出する接触検査方法および接触検査装置 に関し、特に、磁気ディスク装置の記録媒体である磁気ディスクと磁気ヘッドを搭載し たスライダとの機械的特性ならびにトライボ口ジー的特性の評価に好適な接触検査 方法および接触検査装置に関する。
背景技術
[0002] 磁気的に情報の記録再生を行う磁気ディスク装置は、記録媒体である磁気ディスク の記録再生面に対して磁気ヘッドを搭載したスライダを略一定の間隔で浮上させて、 情報の記録再生を行う極めて精密な装置である。この磁気ディスク装置のァクチユエ ータ 'アームは、その先端にスライダが取り付けられており、そのスライダに情報の記 録、再生の少なくとも一方を行う磁気ヘッドを内蔵している。一般的に、磁気ヘッドは スライダの磁気ディスクに対向する空気潤滑面の空気流出端近傍に配設されており 、磁気ディスクの回転にともなって発生する空気流を、空気潤滑面と磁気ディスク表 面の間に引き込み、それによつてスライダは磁気ディスクカゝら浮上している。
[0003] こうしてスライダは、回転する磁気ディスク上を浮動する。その浮動高度は、空気潤 滑膜の厚さであり、すなわち、磁気ディスク表面とスライダとの距離である。このように 、スライダの磁気ディスクに対向する面は空気潤滑面をなし、スライダと磁気ディスクと の間に自己加圧式の空気潤滑膜を形成し、かつ、これを維持している。この膜によつ て、磁気ディスク回転中にスライダと磁気ディスクが機械的に接触し難くなり、摩擦お よび摩耗が抑制されている。
[0004] 近年、磁気ディスク装置のデータ記録密度の向上は著しぐその記録密度の増加 は年率 100%ともいわれている。この著しい記録密度の増加は、高密度再生特性に 優れた GMRヘッドの採用や磁気ディスク表面の記録トラックの狭トラック化によって 達成されるものであるが、同時に磁気ヘッドを搭載するスライダの磁気ディスクに対す る浮上量も小さくする必要がある。現在その浮上量は lOnm程度まで極小化され、さ らに小さくすることが要求されており、装置の信頼性の確保のためには、スライダおよ び磁気ディスクの機械的特性ならびにトライボ口ジー的特性を評価することがますま す重要となってきている。
[0005] このような評価を実施するために、各種の検査装置が従来力 使用されているが、 その 1つとして、スライダと磁気ディスクの接触検査装置がある。この種の接触検査装 置としては、例えば、特公平 6— 40065号公報および特開平 8— 297816号公報に記 載の技術等が知られて 、る。
[0006] 図 12は、従来から使用されているスライダと磁気ディスクとの接触検査装置の一例 である。図 12において、 1は記録媒体である磁気ディスク、 2は磁気ディスク 1への信 号の記録再生を行う磁気ヘッド(図示せず)を搭載したスライダ、 3は磁気ディスク 1を 保持した状態でこれを回転させる回転保持機構としてのスピンドル、 7はスピンドル 3 を駆動するスピンドル駆動回路、 6はスライダ 2を支持するアーム、 5はアーム 6を駆動 するボイスコイルモータ、 8はボイスコイルモータ 5を駆動するァクチユエータ駆動回 路である。
[0007] そして、前記磁気ディスク 1は、スピンドル 3に例えばねじ止め等によって固定されて いる。また、スライダ 2は、例えば A1203— TiCに代表されるセラミックス材料カゝらなり、 スライダ 2の磁気ディスク 1との対向面には、機械カ卩ェあるいはエッチング等によって 図示しな!ヽ空気潤滑面が形成されて ヽる。
[0008] アーム 6は、スライダ 2の磁気ディスク 1への押し付け方向にばね性を有しており、こ れによってスライダ 2の空気潤滑面が磁気ディスク 1の記録再生面に例えば 20mNと いった一定の荷重で押圧されている。また、このアーム 6は、ボイスコイルモータ 5に 取り付けられており、ボイスコイルモータ 5の軸を中心に例えば 30度の一定の範囲で 回動する。そして、そのボイスコイルモータ 5の回転に伴い、アーム 6は磁気ディスク 1 の記録再生面に略平行に揺動し、これに伴ってスライダ 2が磁気ディスク 1の略半径 方向に移動するようになって 、る。
[0009] アーム 6の上には、振動検出素子としての AEセンサ 12が搭載されている。この AE センサ 12は、例えば圧電素子 (PZT)によって構成されており、スライダ 2と磁気ディ スク 1の接触に伴って発生する音響弾性波(アコースティック'ェミッション、以下 ΑΕと いう)を検出し、これに応じた電気信号を出力するものである。
[0010] 20は ΑΕセンサ 12の出力信号を増幅する広帯域アンプ、 30は前記広帯域アンプ 2 0の出力信号力 接触検査に必要な周波数成分を取り出すフィルタ回路、 50はフィ ルタ回路 30の出力信号を表示するオシロスコープである。
[0011] 以下、この接触検査装置の動作について説明する。従来のこのような接触検査装 置は、 CSS (コンタクト'スタート'ストップ)方式と 、われる起動停止方式を採用した磁 気ディスク装置の、スライダ 2と磁気ディスク 1との接触状態を検査するために考案さ れたのもであり、スピンドル 3の停止時は、磁気ディスク 1はスライダ 2と接触している。 スライダ 2は磁気ディスク 1の記録再生面に対向する面に空気潤滑面を有しており、 スピンドル 3が回転し始めると、磁気ディスク 1の回転にともない発生する空気流を、ス ライダ 2と磁気ディスク 1との間に引き込み、次第に磁気ディスク 1から浮上し始める。
[0012] また、ボイスコイルモータ 5は、アーム 6を動かし、スライダ 2を磁気ディスク 1の略半 径方向の所定位置まで移動する。ここで、スピンドル 3が一定速度(例えば 5400rpm )で高速回転するようになると、スライダ 2は磁気ディスク 1との間に形成される自己加 圧式の空気潤滑膜を維持することによって、磁気ディスク 1に対して略一定の間隔を 保持しながら浮上した状態となる。スピンドル 3が停止すると、再びスライダ 2は磁気デ イスク 1に接触する。このように、磁気ディスク 1の停止時はスライダ 2と接触し、磁気デ イスク 1の回転中は、スライダ 2は浮上して両者 1、 2は非接触の状態になる。
[0013] そして、このようにスピンドル 3の回転開始過程および停止過程では、スライダ 2と磁 気ディスク 1とが摺動接触しているので、これに伴って AEが発生し、この AEが AEセ ンサ 12で検出される。また、磁気ディスク 1が回転中であっても、スライダ 2へのゴミの 付着ゃスライダ 2や磁気ディスク 1の形状的欠陥などに起因して、スライダ 2が磁気デ イスク 1と接触した際には、これに伴って AEが発生し、この AEが AEセンサ 12で検出 される。
[0014] このときの AEセンサ 12からの検出信号の電圧は、数マイクロボルトから数百マイク 口ボルト程度と非常に微弱である力 その中にはスライダ 2と磁気ディスク 1との間で 発生した接触にかかわる情報が含まれて 、る。
[0015] そこで、 AEセンサ 12の検出出力は、広帯域アンプ 20によって観測可能なレベル まで (例えば 40dB— 60dB)増幅された後、フィルタ回路 30でノイズ成分が除去され 、オシロスコープ 50に表示される。
[0016] こうして、オシロスコープ 50で表示された AEセンサ 12の出力信号の波形の観察に 基づいて、接触の強度、接触の持続時間等を評価する。
[0017] 以上、現在一般的に用いられている接触検査装置について示した力 AEセンサ 1
2をアーム 6上に搭載している場合、スライダ 2と磁気ディスク 1との接触によって発生 した AEのみならず、アーム 6の振動や、スライダ 2の振動も同時に AEセンサ 12が検 出することになる。そこで特開 2000— 173032号公報により開示されているように、ス ライダ 2と磁気ディスク 1の接触状態をより精密に測定する方法として、磁気ディスク 1 側に AEセンサ 12を搭載し、 AEセンサ 12の検出信号をスリップリングを介して広帯 域アンプ 20に伝送することによって、アーム 6の振動ゃスライダ 2の振動が AEセンサ
12によって検出されないようにした接触検査装置が考案されている。なお、特開 200
0— 173032号公報では、磁気ディスク側に搭載した AEセンサ 12の検出信号は、口 一タリートランスを用いても伝送可能であることを提案して 、る。
[0018] 以下、図 13、図 14を用いて特開 2000— 173032号公報で開示されているロータリ 一トランスを用いて検出信号を伝送する手法を説明する。
[0019] 図 13はロータリートランスを用いて構成した接触検査装置のブロック図、図 14は図
13に示した接触検査装置に使用しているスピンドル 3の断面図である。
[0020] 図 14において、 3aはシャフト 3cを有するローターであり、このシャフト 3cはステータ 一 3bに固定されたラジアル軸受 3dにより回転可能に支持されている。
[0021] 3g、 3fはそれぞれ前記ラジアル軸受 3dの外側とローター 3aに、互いに対向するよ うに配置されたロータリートランス、 3n、 3mはロータリートランス 3g、 3fの一次側と二 次側の接続端子である。 3hはローター 3aに取り付けられた環状の永久磁石、 3iは前 記永久磁石に 3hに対向してステーター 3bに固定されたコイルであり、この両者でモ 一ターを構成している。
[0022] そして、シャフト 3cおよびスラスト軸受 3eにはグループ (溝)が形成され、軸受部に オイルを充填した流体軸受の構成となっている。このとき、シャフト 3cとラジアル軸受 3 dおよびスラスト軸受 3eの間は、回転によるオイルの動圧によって非接触に保たれる
[0023] このように、図 14のスピンドル 3は、流体軸受構造となっているため、ボールべアリン グ等を用いた接触型の軸受と異なり、スピンドル 3の回転によるローターとステーター の摺動が発生しない。また、ロータリートランス 3g、 3fによってローター 3a側力 非接 触で回転体外部に電気信号を取り出すことも可能となって 、る。
[0024] したがって、このようなスピンドル 3を使用する場合には、磁気ディスク 1側に搭載し た AEセンサ 12の出力端子をロータリートランス 3fの一次側の接続端子 3mに接続す る一方(3f 'への矢印参照)、ロータリートランス 3gの二次側の接続端子 3nを 3g'の矢 印から広帯域アンプ 20の入力端子と接続することによって、 AEセンサ 12からの検出 信号を外部の測定回路系に非接触で取り出すことができる。
[0025] この構成とすれば、スリップリングとブラシとの摺接によって発生する機械的ノイズが AEセンサ 12の検出信号に重畳する恐れもな 、ため、より 、つそう高!、精度が実現で きるという利点がある。
[0026] 近年の磁気ディスク装置の起動停止方式は、磁気ディスク 1面に対してスライダ 2を ダイレクトロードおよびダイレクトアンロードする方式、 、わゆるランプロード方式が一 般ィ匕されつつあり、ダイレクトロード過程およびダイレクトアンロード過程における磁気 ディスク 1とスライダ 2との接触状態を把握する方法が望まれている。
[0027] しかしながら、ダイレクトロードおよびダイレクトアンロードは、アーム 6の回動をともな う動作であるため、アーム 6あるいはスライダ 2の振動が発生してしまい、アーム 6上に AEセンサ 12を搭載した現在一般的に使用されて!ヽる接触検査装置では、スライダ 2 と磁気ディスク 1との接触を評価することは非常に困難である。
[0028] また、 CSS方式に比べ、ランプロード方式のダイレクトロード過程およびダイレクトァ ンロード過程におけるスライダ 2と磁気ディスク 1との接触にともなう AEは、強度で数 分の 1から数十分の 1、持続時間にいたっては lms程度と非常に短くなるため、磁気 ディスク 1側に AEセンサ 12を搭載した場合でも、出力電圧、時間応答性とも非常に 高い精度で測定する必要がある。この際、スリップリングを介した伝送方式では、スリ ップリングとブラシとの間で発生する摺動ノイズの影響が大きぐ検出信号を正確に捉 えられない。またロータリートランスを用いる場合でも、 AEセンサ 12に代表される圧 電素子は一般的に非常に大き 、内部インピーダンスを保有しており、その伝送系に は、最適な設計が必要とされる。
[0029] また、ダイレクトアンロード過程では、スライダ 2と磁気ディスク 1との間に形成されて いる空気潤滑膜を引き剥がすことになるため、スライダ 2に磁気ディスク 1方向への力 、いわゆるスクイーズ力が作用する。ダイレクトアンロード過程におけるスライダ 2と磁 気ディスク 1の接触モードには、このスクイーズ力の作用によって、空気潤滑膜を引き 剥がす過程においてスライダ 2と磁気ディスク 1とが接触する第 1のモードと、空気潤 滑膜を引き剥がした後、スライダ 2を支持してあるアーム 6が空気潤滑膜を引き剥がし たことによって振動してしまい、このアーム 6の振動によってスライダ 2が磁気ディスク 1と接触してしまう第 2のモードがある。し力しながら従来の手法においては、この 2つ のモードを分離し評価することが不可能であった。
[0030] 本発明はこのような不都合に鑑みて創案されたものであって、回転体としての磁気 ディスク 1側に AEセンサ 12を搭載した接触検査方法および装置にぉ 、て、ロータリ 一トランスと AEセンサ 12を含んでなる電気回路の特性の最適化を行い、スライダ 2と 磁気ディスク 1との接触測定を従来よりも高精度で実現できるようにすることを課題と する。また、ダイレクトアンロード過程におけるスライダ 2と磁気ディスク 1との接触モー ドを特定し、分離評価できるようにすることを課題とし、本発明は磁気ディスク 1側に A Eセンサ 12を搭載する手法により、ダイレクトアンロード過程におけるスライダ 2と磁気 ディスク 1との接触モードを特定し、分離評価できるよう提案する。
発明の開示
[0031] 本発明の接触検査方法は、回転する磁気ディスクと、この磁気ディスクに対して記 録、再生の少なくとも一方を行うヘッドを具備してサスペンションにより磁気ディスクに 押圧されるスライダと、サスペンションを保持するスライダ保持機構と、磁気ディスクに 取り付けられ磁気ディスクの振動を検出する磁気ディスク側検出素子と、スライダ、サ スペンションあるいはスライダ保持機構に取り付けられたスライダ側検出素子とを有し 、磁気ディスク側検出素子およびスライダ側検出素子の検出出力に基づいて、磁気 ディスク、スライダおよびサスペンションの振動状態を検査する接触検査方法である。 複数の種類の振動の中からスライダと磁気ディスクの接触による振動を検出するため に、磁気ディスク側検出素子の検出出力の極大値とスライダ側検出素子の検出出力 の極大値との時間差を求め、スライダと磁気ディスクの接触状態を判定してその接触 強度を評価することを特徴とする。
[0032] 本発明の第 1の接触検査装置は、回転する磁気ディスクと、この磁気ディスクに対し て記録、再生の少なくとも一方を行うヘッドを具備してサスペンションにより磁気デイス クに押圧されるスライダと、サスペンションを保持するスライダ保持機構と、磁気ディス クに取り付けられ磁気ディスクの振動を検出する磁気ディスク側検出素子と、スライダ 、サスペンションあるいはスライダ保持機構に取り付けられたスライダ側検出素子とを 有し、前記磁気ディスク側検出素子および前記スライダ側検出素子の検出出力に基 づいて、磁気ディスク、スライダおよびサスペンションの振動状態を検査する接触検 查装置であり、複数の種類の振動の中からスライダと磁気ディスクの接触による振動 を検出するために、磁気ディスク側検出素子の検出出力の極大値とスライダ側検出 素子の検出出力の極大値との時間差を求める計測手段を備えていることを特徴とす る。この発明によれば、ランプロード方式におけるダイレクトアンロード過程で生じるス ライダと磁気ディスクとの接触のモードを特定した上で、各出力の時間差を計測する ことにより、正確な評価を行うことができるという優れた効果が得られる。
[0033] 本発明の第 2の接触検査装置は、回転保持機構に固定され回転する磁気ディスク と、この磁気ディスクに対して記録 Z再生の少なくとも一方を行うヘッドを具備したスラ イダと、回転保持機構に取り付けられ磁気ディスクの振動を検出する検出素子を有し 、その検出素子の検出出力に基づいて前記磁気ディスクの振動状態を検査する接 触検査装置であり、回転保持機構の磁気ディスク固定部は磁気ディスク面に平行な AE伝達平板より構成されており、 AE伝達平板の磁気ディスク接触面と反対の面に 前記検出素子が固着されていることを特徴とする。この発明によれば、ディスクの置 換が容易でかつ、ディスクと圧接することによりディスクとの密着性も確保され、振動 の減衰を抑制することが可能になるという優れた効果が得られる。
[0034] 本発明は、上記の課題を解決するために、回転する回転体に、その回転体の振動 に応じた検出出力を発生する検出素子を取り付け、前記検出出力をロータリートラン スを介して固定部に伝送し、その伝送された検出出力に基づいて前記回転体の振 動状態を検査する接触検査方法であって、前記ロータリートランスのインピーダンス は、少なくとも前記検出素子の有効感度帯域の一部において、前記検出素子が所定 の出力を取得するに十分なインピーダンスが確保されていることを特徴とする接触検 查方法であり、検出素子で検出された出力信号の減衰を抑制することで、よりいつそ う高い感度で振動が検出できるという優れた効果が得られる。
[0035] また、本発明に係る接触検査方法は、回転する磁気ディスクと、この磁気ディスクに 対して記録、再生の少なくとも一方を行うヘッドを具備してサスペンションにより前記 磁気ディスクに押圧されるスライダと、前記サスペンションを保持するスライダ保持機 構と、前記磁気ディスクに取り付けられ前記磁気ディスクの振動を検出する磁気ディ スク側検出素子と、前記スライダある 、は前記サスペンションあるいはスライダ保持機 構に取り付けられたスライダ側検出素子とを有し、前記磁気ディスク側検出素子およ び前記スライダ側検出素子の検出出力に基づ!、て、前記磁気ディスクおよび前記ス ライダおよび前記サスペンションの振動状態を検査する接触検査方法であって、複 数の種類の振動の中から前記スライダと前記磁気ディスクの接触による振動を検出 するために、前記磁気ディスク側検出素子の検出出力の極大値と前記スライダ側検 出素子の検出出力の極大値との時間差を求める計測手段を備えていることを特徴と する接触検査方法であり、この発明によれば、ランプロード方式におけるダイレクトァ ンロード過程で生じるスライダと磁気ディスクとの接触のモードを特定した上で、評価 することができるという優れた効果が得られる。
[0036] あるいは、本発明に係る接触検査装置は、回転保持機構に固定され回転する磁気 ディスクと、この磁気ディスクに対して記録 Z再生の少なくとも一方を行うヘッドを具備 したスライダと、回転保持機構に取り付けられ前記磁気ディスクの振動を検出する検 出素子を有し、その検出素子の検出出力に基づ!/、て前記磁気ディスクの振動状態を 検査する接触検査装置であって、前記回転保持機構の磁気ディスク固定部は前記 磁気ディスク面に平行な AE伝達平板より構成されており、 AE伝達平板の前記磁気 ディスク接触面と反対の面に前記検出素子が固着されていることを特徴とする接触 検査装置であり、この発明によれば、ディスクの置換が容易でかつ、ディスクと圧接す ることによりディスクとの密着性も確保され、振動の減衰を抑制することが可能になる t 、う優れた効果が得られる。
[0037] 以上のように、本発明による接触検査方法および検出装置によれば、回転体側に 搭載した検出素子で検出された出力信号の伝達経路での減衰を抑制することで、よ りいつそう高い感度で AEが検出できる。あるいは、検出素子で検出された出力信号 を増幅することも可能となり、よりいつそう高い感度で AEが検出できる。
[0038] さらに、ランプロード方式におけるダイレクトアンロード過程で生じるスライダと磁気 ディスクとの接触のモードを特定した上で、評価すること、あるいは、磁気ディスク 1の 置換が容易でかつ、磁気ディスク 1と圧接することにより磁気ディスク 1との密着性も確 保され、 AEの減衰を抑制することが可能となる。
図面の簡単な説明
[0039] 図 1は、本発明の実施の形態 1による接触検査装置のブロック図である。
[0040] 図 2は、本発明の実施の形態 1による接触検査装置の断面図である。
[0041] 図 3は、本発明の実施の形態 1において使用する AEセンサの出力 周波数特性を 示す図である。
[0042] 図 4は、本発明の実施の形態 1において使用する AEセンサのインピーダンスを示 す図である。
[0043] 図 5は、本発明の実施の形態 1において使用するロータリートランスのインピーダン スを示す図である。
[0044] 図 6は、本発明の実施の形態 1において使用する AEセンサとロータリートランスとか らなる回路のインピーダンスを示す図である。
[0045] 図 7は、本発明の実施の形態 1において使用する AEセンサの出力線図である。
[0046] 図 8は、本発明の実施の形態 2による接触検査装置のブロック図である。
[0047] 図 9は、本発明の実施の形態 2において使用するサスペンションの平面図である。
[0048] 図 10は、本発明の実施の形態 2において使用するサスペンションの分解斜視図で ある。
[0049] 図 11a— l idは、本発明の実施の形態 2によるアンロード過程を模式的に示す側面 図である。
[0050] 図 12は、従来の接触検査装置のブロック図である。
[0051] 図 13は、従来の磁気ディスク側から AEを検出する接触検査装置のブロック図であ る。
[0052] 図 14は、図 13に示した接触検査装置のスピンドル断面図である。
発明を実施するための最良の形態
[0053] 以下、本発明の実施の形態を図面に基づいて説明する。
[0054] (実施の形態 1)
この発明の実施の形態 iについて、図 1ないし図 7を参照して説明する。
[0055] 図 1は本実施の形態 1の接触検査装置を示すブロック図であり、図 12から図 14に 示した従来技術と対応する部分には同一の符号を付し、詳細な説明は省略する。
[0056] 図 1において、 1は磁気ディスク、 2はスライダ、 4はサスペンション、 5はボイスコイル モータ、 6はアーム、 7はスピンドル駆動回路、 8はァクチユエータ駆動回路、 9はディ スククランプ、 10は筐体であり、磁気ディスク 1はディスククランプ 9によって筐体 10内 のスピンドル(図示せず)に固定されている。 20は広帯域アンプ、 30はフィルタ回路、 40はフィルタ回路 30の出力信号から AEセンサ 12の実行値電圧を演算する実行値 演算手段としての実行値演算回路、 70は各駆動回路 7、 8を制御するとともに、各種 の演算処理を実行するパーソナルコンピュータなど力もなる演算制御回路である。
[0057] 図 2は同接触検査装置の断面図であり、図 2において、 33aはローター、 33bはステ 一ター、 33cはスピンドル(図示せず)から伸びるシャフト、 33gはローター側トランス、 33fはステーター側トランスであり、ローター側トランス 33gはローター 33a、ステータ 一側トランス 33fはステーター 33bにそれぞれ固定されており、微小な隙間を保ち平 面対向することでロータリートランス 33hを構成して 、る。
[0058] 磁気ディスク 1の下面とローター 33aとの間には環状の AE伝達平板 11が挟み込ま れており、磁気ディスク 1をローター 33aに固定する際、ディスククランプ 9をねじで固 定することにより、 AE伝達平板 11は磁気ディスク 1と密着する。このとき AEの減衰を 抑制するためには磁気ディスク 1と AE伝達平板 11との密着性を高める必要があるが 、本実施の形態 1では AE伝達平板 11は磁気ディスク 1と同一の表面状態を持つもの としたので、その表面あらさは Ra< 0. 3nm、また表面あらさより厚い 2nm厚の潤滑 剤が塗布されている。磁気ディスク 1の表面も同様の構成であるので、ディスククラン プ 9により圧接することで、磁気ディスク 1と AE伝達平板 11とは、その表面の平滑性 と潤滑膜の作用によって、密着性が確保される。 AE伝達平板 11の下面には AEセン サ 12がエポキシ系接着剤等により接着されており、スライダ 2と磁気ディスク 1との接 触によって磁気ディスク 1に発生した AEは、 AE伝達平板 11を介して AEセンサ 12で 電圧値として検出される。
[0059] AEセンサ 12の検出信号は、ローター側トランス 33gからステーター側トランス 33f に伝達され、図 2の矢印からスピンドル外部の測定回路系に取り出される。取り出され た AEセンサ 12の信号は、実行値電圧の検算に十分な電圧を得るため、広帯域アン プ 20によって 40dBから 60dB程度増幅される。このとき、広帯域アンプ 20には周波 数レンジで、例えば 100Hzから 10MHzといったものを使用する。このような帯域を持 つたアンプを使用すれば、測定する AE信号の周波数力 数十 kHzから数 MHz程度 であるので、信号を少しも損なうことなく増幅することが可能である。さらに、広帯域ァ ンプ 20で増幅された出力信号は、フィルタ回路 30によって例えば 100kHzを遮断周 波数として低域の不要な周波数成分が除去された後、実行値演算回路 40に入力さ れる。
[0060] 実行値演算回路 40は、フィルタ回路 30を通過した信号から、 AEセンサ 12の検出 信号の実行値電圧が演算され、この値が演算制御回路 70に与えられる。
[0061] ここで図 3は AEセンサ 12の検出感度曲線を示したものである。図 3から、本実施の 形態 1で用 、て 、る AEセンサ 12は、 600kHz— 700kHz付近で最大感度を持ち、 略 300kHzから略 2MHzの周波数範囲においては最大感度の 10分の 1以上の感度 が確保できていることがわかる。また、その他の周波数帯域では急激に感度が低下し ていることもわかり、 AEセンサ 12が実質的に AEを検出できる有効感度帯域は、 300 kHzから 2MHzであると考えられる。
[0062] 上述の AEセンサ 12の特性を踏まえ、本実施の形態 1における接触検査装置は 30 0kHzから 2MHzの AEによる出力電圧をロータリートランス 33hを介して良好に広帯 域アンプ 20に伝送できるように作成した。 [0063] 図 4は AEセンサ 12の内部インピーダンスの測定結果であり、その周波数特性から キャパシタンスが支配的であることがわかる。また、有効感度帯域である 300kHzから 2MHzの範囲では 300kHzと 600kHz付近において 1. 5k Ωの最大インピーダンス を持つ。
[0064] 図 5は本実施の形態 1で用いたローター側トランス 33gの内部インピーダンスの測 定結果である。ロータリートランス 33hを構成するローター側トランス 33gおよびステー ター側トランス 33fは、それぞれフェライト系材料からなるコアに直径 0. 14mmのェナ メル被服銅線を用いて直径 20mm、 20巻のコイルを形成することで作成し、同一の 構成とした。なお、ローター佃 Jトランス 33gのインピーダンス柳』定はステーター佃 Jトラン ス 33fを対向させ磁気回路を形成した状態で測定している。
[0065] 図 6は AEセンサ 12とローター側トランス 33gとからなる電気回路のインピーダンス 測定結果であり、測定の際にはローター側トランス 33gの内部インピーダンス測定と 同様にステーター側トランス 33fを対向させている。図 6から 400kHzにおいてインピ 一ダンスは非常に小さくなつており共振していることがわかる。
[0066] 図 7は打診法により AEセンサ 12の接着面を加振し、 AEセンサ 12の出力を広帯域 アンプ 20を介して測定した結果である。図 7において、実線で示してあるのは本実施 の形態 1における AEセンサ 12の出力信号をロータリートランス 33hを介して広帯域 アンプ 20に伝達した場合の出力結果、破線で示してあるのが AEセンサ 12の出力信 号を直接広帯域アンプ 20に伝達した場合の出力結果である。図 7からロータリートラ ンス 33hを介して広帯域アンプ 20に伝達した場合の出力は、直接広帯域アンプ 20 に伝達した場合の出力と比べると、 300kHz以上の領域においては同等以上の出力 を得ていることがわかる。また、回路共振をおこしている 400kHzにおいては直接伝 達した場合よりも 10dB程度増幅されて 、ることがわ力る。
[0067] 以上のように、本実施の形態 1における接触検査方法は、ロータリートランス 33hを 構成するローター側トランス 33g、ステ一ター側トランス 33fのインピーダンスを最適化 することにより、 AEセンサ 12の有効感度帯域である 300kHzから 2MHzの信号を減 衰させることなく広帯域アンプ 20に伝達することが可能である。
[0068] ローター側トランス 33g、ステーター側トランス 33fのインピーダンスを最適化する際 には、本実施の形態 1のように、ローター側トランス 33gのインピーダンスは、少なくと も有効感度帯域の一部にぉ 、て圧電素子のインピーダンスより大き 、ことが望ま Uヽ 。さらに有効感度帯域の下限周波数において、少なくとも圧電素子のインピーダンス の 2分の 1以上が確保されていることが望ましい。さらに圧電素子が最大感度を有す る周波数にぉ 、て、圧電素子のインピーダンスより大き 、ことが望ま 、。
[0069] さらに、本実施の形態 1における接触検査方法によれば、回路共振を利用すること により、回路共振を起こしている 400kHzにおいては、ロータリートランス 33hを介さ ず直接伝達した場合よりも 10dB程度感度が高くできている。
[0070] 本実施の形態 1における AEセンサ 12は 600kHz— 700kHzにお!/、て感度が最も 高ぐ有効感度帯域は 300kHzから 2MHzである力 一般的に AEセンサは機械的 共振周波数で最大感度を持ち、その前後の周波数帯域である程度の感度を有する という特徴がある。 AEセンサの機械的共振周波数は AEセンサの大きさに依存する 1S 一般的には 100kHzから 1MHz程度にある。また、その前後において有効感度 帯域を有し、その帯域は 100kHzから 2MHz程度である。したがって、 AEセンサと口 一タリートランスとからなる電気回路の共振周波数は AEセンサの有効感度帯域であ る 100kHzから 2MHzにあることが望ましぐさらには最大感度を有する 100kHzから 1MHzにあることが望まし!/、。
[0071] さらに、本実施の形態 1における接触検査装置によれば、 AEセンサ 12を AE伝達 平板 11に固定してあるので、磁気ディスク 1を交換する毎に、 AEセンサ 12を磁気デ イスク 1に固定しなおす必要がなぐ簡便に磁気ディスク 1の交換が可能である。また 、本実施の形態 1のように AE伝達平板 11表面は平滑であることが望ましぐまた表面 あらさよりも厚 ヽ液体膜が塗布されて ヽることが望ま ヽ。このように構成した際には、 磁気ディスク 1の置換が容易でかつ、磁気ディスク 1と圧接することにより磁気ディスク 1との密着性も確保され、 AEの減衰を抑制することが可能となる。
[0072] (実施の形態 2)
本実施の形態 2における接触検査装置のブロック図を図 8に示す。図 8に示す接触 検査装置は、基本的には実施の形態 1で図 1に示した接触検査装置と同様であるが 、アーム 6側にも AEセンサ 12bが固定されている。また、 13はランプブロックであり、 アーム 6が回動することでサスペンション 4がランプブロック 13に昇降し、スライダ 2を 磁気ディスク 1へダイレクトロードあるいはダイレクトアンロードさせる構成となっている 。図 8において、 12bはアーム 6に接着固定された AEセンサである。 20bは AEセン サ 12bからの信号を増幅する広帯域アンプ、 30bは広帯域アンプ 20bからの信号の フィルタ回路、 40bはフィルタ回路 30bからの信号の実行値電圧を演算する実行値 演算手段としての実行値演算回路、 70は各駆動回路 7、 8を制御するとともに、各種 の演算処理を実行するパーソナルコンピュータなど力もなる演算制御回路である。
[0073] そして、この演算制御回路 70は、 AEセンサ 12と AEセンサ 12bとの検出出力のァ ナログ信号からデジタル信号への変換手段、ならびに極大値の時間差演算手段を 兼用している。
[0074] 図 9は本実施の形態 2におけるスライダ 2を磁気ディスク 1に押圧するためのサスぺ ンシヨン 4を磁気ディスク 1側から見た詳細図であり、図 10は図 9のサスペンション 4の 分解斜視図である。図 9および図 10において、サスペンション 4は、スライダ 2を先端 部近傍で担持した可撓性の基盤 14および配線構造体 15を備えたフレタシャ 16と、 磁気ディスク 1に沿う方向に設けられフレタシャ 16の先端部を支持するロードビーム 1 7とを有している。ロードビーム 17はベースプレート 18を介してアーム 6 (図示せず) に取り付けられている。フレタシャ 16は、ロードビーム 17の磁気ディスク 1対向面にス ポット溶接 23、 24により接合されている。またロードビーム 17には磁気ディスク 1側に 突出したディンプル 19が形成されており、このディンプル 19によってフレタシャ 16に 担持されたスライダ 2は可撓性を確保した状態で磁気ディスク 1に押圧される。
[0075] また、サスペンション 4の先端部に機構長手方向に凸状にタブ 22が延出していて、 このタブ 22がランプブロック 13に乗り上げるようにしている。
[0076] 図 11a— l idはアンロード過程のサスペンション 4の状態を示す模式図である。以下 、この図を用いてアンロード過程の説明をする。
[0077] 図 11aはスライダ 2が磁気ディスク 1上にロードされている状態を示しており、スライ ダ 2はサスペンション 4によって磁気ディスク 1側に押圧されている力 磁気ディスク 1 の回転にともなう空気流により lOnmといった微小隙間を保ち、磁気ディスク 1表面か ら浮上している。 [0078] 図 l ibはアンロード過程の初期における状態である。サスペンション 4は、タブ 22が ランプブロック 13に乗り上げることによって徐々に引き上げられるわけである力 スラ イダ 2には、スライダ 2と磁気ディスク 1との間の空気の作用によってスクイーズ力が発 生し、スライダ 2は磁気ディスク 1側に吸引されることとなる。この際、いわゆるディンプ ルセパレーシヨンが発生し、フレタシャ 16を押圧していたディンプル 19とフレタシャ 1 6とが離間してしまうこととなる。
[0079] 図 11cに示すようにある一定以上サスペンション 4を引き上げると、スライダ 2は磁気 ディスク 1からアンロードされ再びディンプル 19とフレタシャ 16とが接触した状態とな る。これがいわゆるディンプルコンタクトである。
[0080] し力し、図 l idに示すように、その後もフレタシャ 16はそのばね性によって振動し、 ディンプル 19とフレタシャ 16とは再度離間してしまい、この接触と離間は数度繰り返 される。
[0081] 図 l ibあるいは図 l idの状態ではスライダ 2と磁気ディスク 1とが接触する可能性が あり、接触が発生すれば磁気ディスク 1側に搭載した AEセンサ 12で接触強度に応じ た AEが検出される。この際アーム 6に搭載した AEセンサ 12bでもスライダ 2と磁気デ イスク 1の接触にともなう AEは検出される力 この状態はディンプル 19とフレタシャ 16 とが離間したディンプルセパレーシヨンの状態であるので、 AEの伝達経路はフレクシ ャ 16のみとなってしまい、可撓性を有したフレタシャ 16での AEの減衰は激しい。しか しながら、図 11cに示したディンプルコンタクトによってディンプル 19とフレタシャ 16と が接触した際に発生する AEは、ロードビーム 17を介して伝播するので AEセンサ 12 bで非常に大きな出力として検出される。また、この AEは磁気ディスク 1に伝播するこ とがな 、ので、 AEセンサ 12にお!/、ては検出されな!、。
[0082] つまり、スライダ 2のアンロード過程におけるスライダ 2と磁気ディスク 1との接触状態 は、図 l ibに示した第 1の接触モードと図 l idに示した第 2の接触モードがあるわけ であるが、本実施の形態 2における接触検査方法においては、第 1の接触モードと第 2の接触モードの間にある図 1 lcに示したディンプルコンタクトを AEセンサ 12bで検 出して!/、るので、 AEセンサ 12からの検出信号と AEセンサ 12bからの接触信号との 時間差を演算制御回路 70で演算処理し前後判定することにより、スライダ 2と磁気デ イスク 1との接触モードが第 1の接触モードか第 2の接触モードであるかを把握するこ とが可能となる。
[0083] また、スライダ 2と磁気ディスク 1の接触にともなう AEを、アーム 6側の AEセンサ 12b で評価した場合にはサスペンション 4の状態が変化することで AEの伝達経路に依存 した AE減衰率が変化してしまうので、 AEセンサ 12bの検出出力からスライダ 2と磁気 ディスク 1との接触強度を評価することは困難である。しかしながら本実施の形態 2の ように磁気ディスク 1側に搭載した AEセンサ 12で評価することにより、 AEの伝達経 路の変化はなくなり、検出出力からスライダ 2と磁気ディスク 1との接触強度を評価す ることが可能となる。
[0084] 本実施の形態 2では、実行値演算回路 40、 40bで AEを電圧の実行値として評価 する構成とした力 AEセンサ 12、 12bの出力電圧の評価手段はこの限りではなぐ 例えばエンベロープ演算手段によってエンベロープ出力として評価することも可能で ある。また本実施の形態 2に示すように、 AEセンサ 12、 12bの出力電圧をデジタル 信号に変換し、評価する場合には、ダイレクトロード過程、ダイレクトアンロード過程で 発生する AEの持続時間は lms程度、また図 l ibの状態から図 11cの状態へ、図 11 cの状態から図 l idの状態への移行時間もそれぞれ lms程度であるので、スライダ 2 と磁気ディスク 1との接触にともなう AEを正確に把握するためには、少なくとも 10kHz 以上のサンプリング周波数で行うことが望ま 、。
[0085] なお、実施の形態 1および実施の形態 2では、回転体として磁気ディスク 1を例にと つて説明したが、これに限定されるものではなぐ光ディスクや光磁気ディスクなどに も適用できることは言うまでもなぐいかなる回転体の振動を検出する手法としても適 用可能であることは勿論である。また振動検出素子として、 AEセンサ 12を設けた場 合について説明したが、加速度センサなどを使用することも可能である。

Claims

請求の範囲
[1] 回転する磁気ディスク(1)と、この磁気ディスク(1)に対して記録、再生の少なくと も一方を行うヘッドを具備してサスペンション (4)により前記磁気ディスク(1)に押圧さ れるスライダ(2)と、前記サスペンション (4)を保持するスライダ保持機構と、前記磁気 ディスク(1)に取り付けられ前記磁気ディスク(1)の振動を検出する磁気ディスク側検 出素子(12)と、前記スライダあるいは前記サスペンションあるいはスライダ保持機構 に取り付けられたスライダ側検出素子(12b)とを有し、前記磁気ディスク側検出素子 ( 12)および前記スライダ側検出素子( 12b)の検出出力に基づ 、て、前記磁気ディ スク(1)および前記スライダ(2)および前記サスペンション (4)の振動状態を検査する 接触検査方法であって、複数の種類の振動の中カゝら前記スライダ (2)と前記磁気デ イスク(1)の接触による振動を検出するために、前記磁気ディスク側検出素子(12)の 検出出力の極大値と前記スライダ側検出素子( 12b)の検出出力の極大値との時間 差を求め、前記スライダ(2)と前記磁気ディスク(1)の接触状態を判定してその接触 強度を評価することを特徴とする接触検査方法。
[2] 前記磁気ディスク側検出素子(12)の検出出力および前記スライダ側検出素子(1
2b)の検出出力に基づいて検出出力の実行値を検算し、検算した検出出力の実行 値に基づ 、て前記時間差を求めることを特徴とする請求項 1に記載の接触検査方法
[3] 前記磁気ディスク側検出素子(12)の検出出力および前記スライダ側検出素子(1
2b)の検出出力に基づいて検出出力のエンベロープを検算し、検算した検出出力の エンベロープに基づ 、て前記時間差を求めることを特徴とする請求項 1に記載の接 触検査方法。
[4] 前記磁気ディスク側検出素子(12)の検出出力は、前記磁気ディスク(1)に固着さ れたロータリートランス(33h)に接続され、前記ロータリートランスの入力インピーダン スは、少なくとも前記検出素子(12)がその最大感度の 10分の 1以上の感度を有する 有効感度帯域の一部において、前記検出素子(12)のインピーダンスよりも大きくな るように構成されて 、ることを特徴とする請求項 1に記載の接触検査方法。
[5] 前記検出素子(12)のインピーダンスを Zl、前記ロータリートランス(33h)の入カイ ンピーダンスを Z2とした場合、前記有効感度帯域の下限周波数において、 Z2>0.
5 X Z1であることを特徴とする請求項 4に記載の接触検査方法。
[6] 前記検出素子(12)のインピーダンスを Zl、前記ロータリートランス(33h)の入カイ ンピーダンスを Z2とした場合、前記検出素子が最大感度を持つ周波数において、 Z
2 > Z 1であることを特徴とする請求項 4に記載の接触検査方法。
[7] 前記検出素子(12)と前記ロータリートランス(33h)のローター側コイル(33g)とを 含んで構成される電気回路の共振周波数が前記圧電素子(12)の前記有効感度帯 域にあることを特徴とする請求項 4に記載の接触検査方法。
[8] 前記検出素子(12)と前記ロータリートランス(33h)のローター側コイル(33g)とを 含んで構成される電気回路の共振周波数が、前記検出素子(12)の最大感度の 10 分の 1以上の感度を有する有効感度帯域の範囲にあることを特徴とする請求項 4に 記載の接触検査方法。
[9] 回転する磁気ディスク(1)と、この磁気ディスク(1)に対して記録、再生の少なくとも 一方を行うヘッドを具備してサスペンション (4)により前記磁気ディスク(1)に押圧さ れるスライダ(2)と、前記サスペンション (4)を保持するスライダ保持機構と、前記磁気 ディスク(1)に取り付けられ前記磁気ディスク(1)の振動を検出する磁気ディスク側検 出素子(12)と、前記スライダ(2)あるいは前記サスペンション (4)あるいはスライダ保 持機構に取り付けられたスライダ側検出素子(12b)とを有し、前記磁気ディスク側検 出素子( 12)および前記スライダ側検出素子( 12b)の検出出力に基づ 、て、前記磁 気ディスク(1)および前記スライダ(2)および前記サスペンション (4)の振動状態を検 查する接触検査装置であって、複数の種類の振動の中から前記スライダ (2)と前記 磁気ディスク(1)の接触による振動を検出するために、前記磁気ディスク側検出素子 (12)の検出出力の極大値と前記スライダ側検出素子(12b)の検出出力の極大値と の時間差を求める計測手段を備えていることを特徴とする接触検査装置。
[10] 前記スライダ(2)を前記磁気ディスク(1)にダイレクトロードあるいはダイレクトアン口 ードする機構を備え、前記計測手段はダイレクトロード過程あるいはダイレクトアン口 ード過程における計測を行う手段であることを特徴とする請求項 9に記載の磁気ディ スク装置の接触検査装置。
[11] 回転保持機構 (3)に固定され回転する磁気ディスク(1)と、この磁気ディスク(1)に 対して記録 Z再生の少なくとも一方を行うヘッドを具備したスライダ(2)と、回転保持 機構 (3)に取り付けられ前記磁気ディスク(1)の振動を検出する検出素子(12)を有 し、前記検出素子(12)の検出出力に基づいて前記磁気ディスク(1)の振動状態を 検査する接触検査装置であって、前記回転保持機構 (3)の磁気ディスク固定部は前 記磁気ディスク(1)面に平行な AE伝達平板(11)より構成されており、前記 AE伝達 平板( 11 )の前記磁気ディスク接触面と反対の面に前記検出素子( 12)が固着されて V、ることを特徴とする接触検査装置。
[12] 前記検出素子(12)の検出出力は、前記磁気ディスク(1)に固着されたロータリート ランス(33h)に接続され、前記ロータリートランス(33h)の入力インピーダンスは、少 なくとも前記検出素子がその最大感度の 10分の 1以上の感度を有する有効感度帯 域の一部において、前記検出素子(12)のインピーダンスよりも大きくなるように構成 されて 、ることて 、ることを特徴とする請求項 11に記載の接触検査装置。
[13] 前記 AE伝達平板(11)と前記磁気ディスク(1)とは、前記回転保持機構 (3)に前記 磁気ディスク(1)を固定する手段によって圧接されることを特徴とする請求項 11に記 載の接触検査装置。
[14] 前記 AE伝達平板 (11)の前記磁気ディスク接触面の表面あらさは前記磁気デイス ク表面あらさと同程度であることを特徴とする請求項 11に記載の接触検査装置。
[15] 前記 AE伝達平板(11)の前記磁気ディスク接触面の表面あらさは平均あらさで 5n m以下であることを特徴とする請求項 11に記載の接触検査装置。
[16] 前記 AE伝達平板(11)の少なくとも前記磁気ディスク接触面には液体膜が塗布さ れて!、ることを特徴とする請求項 11に記載の接触検査装置。
[17] 前記液体膜の膜厚は、前記磁気ディスク接触面の表面あらさよりも厚 ヽことを特徴 とする請求項 16に記載の接触検査装置。
[18] 前記磁気ディスク表面および前記 AE伝達平板(11)の前記磁気ディスク接触面に は同一の潤滑剤が塗布されて 、ることを特徴とする請求項 11に記載の接触検査装 置。
PCT/JP2004/015911 2003-11-10 2004-10-27 接触検査装置、磁気ディスク装置の接触検査装置及びその接触検査方法 WO2005045838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/578,511 US7591180B2 (en) 2003-11-10 2004-10-27 Contact inspection device, and contact inspection device and method for magnetic disk device
JP2005515267A JP4498278B2 (ja) 2003-11-10 2004-10-27 接触検査方法及び接触検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003379743 2003-11-10
JP2003-379743 2003-11-10

Publications (1)

Publication Number Publication Date
WO2005045838A1 true WO2005045838A1 (ja) 2005-05-19

Family

ID=34567212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015911 WO2005045838A1 (ja) 2003-11-10 2004-10-27 接触検査装置、磁気ディスク装置の接触検査装置及びその接触検査方法

Country Status (3)

Country Link
US (1) US7591180B2 (ja)
JP (1) JP4498278B2 (ja)
WO (1) WO2005045838A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117708U (ja) * 1989-03-10 1990-09-20
JPH11203637A (ja) * 1998-01-07 1999-07-30 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000076634A (ja) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000173032A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000251431A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 磁気ヘッド支持機構と磁気ディスク装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640065B2 (ja) 1987-06-17 1994-05-25 富士電機株式会社 磁気記録媒体の摩擦係数推定方法
JPH02117708A (ja) 1988-10-25 1990-05-02 Kawasaki Steel Corp 薄鋼板の湿式調質圧延方法
JPH02226047A (ja) * 1989-02-27 1990-09-07 Nippon Telegr & Teleph Corp <Ntt> 磁気ディスク媒体突起検査方法
JP2682508B2 (ja) 1995-04-27 1997-11-26 日本電気株式会社 磁気ヘッド用テスタ装置
US6105432A (en) * 1998-01-07 2000-08-22 Matsushita Electric Industrial Co., Ltd. Contact tester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117708U (ja) * 1989-03-10 1990-09-20
JPH11203637A (ja) * 1998-01-07 1999-07-30 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000076634A (ja) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000173032A (ja) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd 接触検査装置
JP2000251431A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 磁気ヘッド支持機構と磁気ディスク装置

Also Published As

Publication number Publication date
US20070070533A1 (en) 2007-03-29
JP4498278B2 (ja) 2010-07-07
JPWO2005045838A1 (ja) 2007-11-29
US7591180B2 (en) 2009-09-22

Similar Documents

Publication Publication Date Title
US6290573B1 (en) Tape burnish with monitoring device
US6092412A (en) Glide height test signal processor and method using increased high frequency components
US6195219B1 (en) Method and apparatus for improving a thermal response of a magnetoresistive element
US5594595A (en) FM detection of slider-disk interface
US6016692A (en) Glide test slider having electrically isolated piezoelectric crystal for improved noise suppression
US7924020B2 (en) Free-state modal frequency response testing
US5545989A (en) Non-destructive in-situ landing velocity determination of magnetic rigid disk drives using back EMF from the spindle motor during shutdown
US7359138B1 (en) Method of feedback control for active damping of slider air bearing vibrations in a hard disk drive slider
US7215500B1 (en) Feedback control mechanism for active damping of slider air bearing vibrations in a hard disk drive slider
Su et al. Tribological and dynamic study of head disk interface at sub-1-nm clearance
WO1996022596A9 (en) Non-destructive in-situ landing velocity determination of magnetic rigid disk drives
US7277252B1 (en) Method of feedback control for active damping of slider air bearing vibrations in a hard disk drive slider
US6094973A (en) Method and apparatus for mechanical screening of magnetic recording disk drives
US6105432A (en) Contact tester
US7193806B1 (en) Feedback control mechanism for active damping of slider air bearing vibrations in a hard disk drive slider
WO1989004537A1 (en) Head-to-disk interference detector
US20050262922A1 (en) System, method, and apparatus for glide head calibration with enhanced PZT channel for very low qualification glide heights
JP4498278B2 (ja) 接触検査方法及び接触検査装置
JP3538557B2 (ja) 接触検査装置
JP2008135156A (ja) マイクロアクチュエータの圧電素子の問題を識別するシステム及び方法
US5668690A (en) Method and apparatus for lifetime prediction of gas lubricated interfaces in data storage devices
Shoda et al. Catastrophic damage of magnetic recording disk caused by slider-disk impact during loading/unloading
Kishigami et al. An experimental investigation of contact characteristics between a slider and medium using the electrical resistance method
JP2000076634A (ja) 接触検査装置
US6466392B1 (en) Head flight characterization using a non-contact voltmeter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007070533

Country of ref document: US

Ref document number: 10578511

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005515267

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10578511

Country of ref document: US