WO2005042979A1 - Rotary dry vacuum pump - Google Patents

Rotary dry vacuum pump Download PDF

Info

Publication number
WO2005042979A1
WO2005042979A1 PCT/JP2004/015639 JP2004015639W WO2005042979A1 WO 2005042979 A1 WO2005042979 A1 WO 2005042979A1 JP 2004015639 W JP2004015639 W JP 2004015639W WO 2005042979 A1 WO2005042979 A1 WO 2005042979A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
motor
rotor
housing
dry vacuum
Prior art date
Application number
PCT/JP2004/015639
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Inoue
Satoshi Fujii
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Priority to US10/595,482 priority Critical patent/US20080038132A1/en
Priority to EP04792788A priority patent/EP1681469A1/en
Priority to JP2005515119A priority patent/JPWO2005042979A1/en
Publication of WO2005042979A1 publication Critical patent/WO2005042979A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps

Definitions

  • the present invention relates to a rotary dry vacuum pump having a structure in which a reaction product gas hardly flows into a canned motor which is a power unit of a rotary dry vacuum pump used in a device for flowing a reaction product gas such as a semiconductor manufacturing apparatus. Things.
  • a problem in the semiconductor manufacturing process is that impurities such as oil are mixed in the reaction chamber 1 to contaminate the semiconductor.
  • mixing of oil from a vacuum pump for exhausting gas in the reaction chamber becomes a problem. Therefore, a rotary dry vacuum pump has been conventionally used.
  • Rotary dry vacuum pumps include a screw type, a roots type and a scroll type.
  • such a rotary dry vacuum pump has a rotating shaft for rotating the rotor, and a bearing is used to support the rotating shaft.
  • Lubricating oil is usually attached to the bearing, and a shaft seal is arranged between the exhaust chamber and the bearing to prevent oil molecules of the lubricating oil from entering the exhaust chamber of the rotary dry vacuum pump.
  • the structure of the canned motor is such that the stator core has a stator winding that generates a rotating magnetic field, and the inside of the partition is sealed by a metal thin-walled cylindrical partition (can) mounted on the frame, side plates, and the stator inner diameter side.
  • the rotating shaft supported by the bearing fixed to the bracket has a rotatable structure with a rotor attached.
  • Patent Document 1 JP-A-2003-189529 Disclosure of the invention
  • the canned motor When the canned motor is used as a drive unit of a rotary dry vacuum pump for a semiconductor manufacturing apparatus for flowing a reaction product gas while applying force, the inside of the partition wall in which the rotor is housed is evacuated during operation. . Therefore, when the motor is stopped and returned to the atmospheric pressure, the reaction product gas is mixed into the motor from the exhaust chamber and the reaction product adheres to the components inside the partition wall of the canned motor, causing the motor to fail. There was a problem that it would. At that time, if reaction products also adhered to the bearing ⁇ shaft seal, it also caused a failure of the pump itself.
  • a rotary dry vacuum pump having a fluid suction port and a discharge port formed in the housing and a rotary rotor configured to rotate at least one of the one or more rotors
  • the motor is a stator.
  • a partition provided with an iron core and mounted on the inner diameter side of the stator is fixed to the housing to seal the inside of the partition, and a rotor is rotatably arranged in the partition, and at least one of the plurality of rotors is provided.
  • the rotating shaft of the rotor and the rotating shaft of the rotor are fixedly connected to each other, and the rotor is driven to rotate, and a gas injection port for flowing a purge gas into the partition wall is provided. If the purge gas inlet is formed in the flange of the motor, the processing is easy.
  • the partition walls may be made of a magnetic metal.
  • the purge gas can also flow through a bearing that rotatably supports the rotating shaft of the rotor.
  • the rotating shaft of the motor and the rotating shaft of the rotor are integrally formed.
  • a rotor of a motor is fixed to an end of the rotor by a predetermined means on a rotating shaft, and the end is formed by a cylindrical member constituting a partition.
  • the inside of the partition is sealed by fixing to the flange and further covering with a flange constituting the partition.
  • An O-ring should be placed where sealing is required.
  • the motor is arranged on the intake port side.
  • a flow rate adjusting means is provided in a pipe for sending a purge gas to the purge gas inlet.
  • the flow rate adjusting means there are a means for reducing the flow rate of the purge gas through a purge gas flow hole of a predetermined size in the purge gas flow path, a manual valve as required, and a solenoid valve on the N2 supply side.
  • the solenoid valve is opened and adjusted by the valve when the gas flow rate changes when the pump is stopped, before or after that, and during operation, especially when the pressure in the exhaust chamber becomes higher than the pressure in the motor bulkhead due to increase.
  • an orifice that allows the same amount of gas to flow instead of a valve can be installed in the piping to eliminate the adjustment valve.
  • a pressure measuring instrument for measuring the pressure in the partition wall or a pressure measuring instrument for measuring the pressure in the exhaust chamber is provided.
  • the difference between the two pressure values may be taken, and the flow rate may be adjusted by an electromagnetic valve so that the pressure in the partition wall is equal to or greater than the pressure in the exhaust chamber.
  • the inflow amount and flow rate of the purge gas can be adjusted with only one pressure.
  • a pressure measuring device there is a thin film semiconductor detector and the like.
  • the inflow amount and the flow rate of the purge gas can be adjusted by measuring the pressure in a chamber of a semiconductor manufacturing apparatus or the like which is evacuated by a vacuum pump. The inflow and flow rate of gas may be adjusted only by changing the pressure in the chamber, but may be adjusted according to the pressure in the partition.
  • the rotation speed measuring means for measuring the rotation speed of the rotor or the rotor of the motor. Measurement means were provided. As the rotation speed measuring means, the rotation speed is detected by attaching an encoder to the rotor of the motor or detecting the magnetism of the permanent magnet of the rotor at a specific position. The inflow amount and flow rate of the purge gas are adjusted by the rotation speed. For example, when the number of revolutions decreases, the flow of the purge gas is controlled, and the flow rate and the flow rate of the gas are adjusted according to the rate of change of the number of revolutions.
  • means for measuring the power consumption of the motor is provided.
  • the gas flow is adjusted by the power consumption. For example, if the power consumption fluctuates due to an increase in the intake gas amount during operation, control of the purge gas flow is performed, and the inflow amount and flow rate of the purge gas are adjusted according to the change in the power consumption at the time of stoppage. You can do it.
  • the reaction product gas flow meter is provided near the intake port or the exhaust port.
  • the flow rate of the purge gas is adjusted according to the change in the flow rate of the reaction product gas. For example, when the flow rate of the reaction product gas increases, control is performed such as increasing the flow rate of the purge gas. Further, the flow rate of the purge gas may be adjusted according to the flow rate of the gas flowing into the chamber.
  • a rotary dry vacuum pump having a rotary rotor composed of a motor that rotationally drives at least one of the single or multiple rotors, wherein the motor includes a stator core fixed inside a motor housing, A partition mounted on the inner diameter side of the stator is fixed to the housing to seal the inside of the partition, and a rotor is fixed to a rotating shaft in the partition so as to be rotatable, and a purge gas flows into the partition.
  • the reaction product gas force in the vacuum exhaust chamber and the inside of the bulkhead from the exhaust chamber when the inside of the vacuum exhaust chamber and the bulkhead return to atmospheric pressure when the pump is stopped.
  • the purge gas should be supplied to prevent the reaction product gas from flowing into the partition from the vacuum exhaust chamber. it can.
  • the purge gas by similarly supplying the purge gas to the bearing, it is possible to prevent the reaction product from adhering to the bearing and to prevent the bearing from malfunctioning.
  • the pipe for sending gas to the purge gas inlet is provided with a flow rate adjusting means.
  • a pressure measuring instrument for measuring the pressure in the partition or a pressure measuring instrument for measuring the pressure in the exhaust chamber is provided.
  • the flow rate of the purge gas can be controlled by an electromagnetic valve or the like so that the pressure in the partition wall becomes slightly higher than the pressure in the exhaust chamber.
  • FIG. 1 shows a screw vacuum pump as an embodiment of the rotary dry vacuum pump according to the present invention.
  • the vacuum pump 200 includes two screw rotors 202 and 204.
  • Screw rotors 202 and 204 are housed inside housing 210. More specifically, the screw rotor 202 is rotatably supported on the housing 210 by bearings 231 and 233, and the screw rotor 204 is rotatably supported on the housing 210 by bearings 234 and 236. In addition, the timing gears 251 and 253, the motor 241 and the seals 237, 238, 239 and 240 are placed as shown in the figure. Here, the shears 237 and 238 separate the bearings 231 and 233 from the inner chamber 210b of the rotor and set the bearings 231 and 233 together.
  • the shears 239 and 240 separate the bearings 234 and 236 from the inner chamber 210b of the rotor, prevent the lubricating oil of the bearings 234 and 236 from leaking into the screw rotor storage chamber 210b, and prevent the rotation of the screw rotor. It prevents foreign matter from entering the bearings 234 and 236 from the storage room 210b.
  • a non-contact seal such as an insect-type chinolle, a magnetic fluid seal, and a labyrinth.
  • timing gears 251 and 253 for rotating the screw rotor 202 with the rotation of the screw rotor 204 are fixed to one ends of the screw rotor 202 and the screw rotor 204 so as to mesh with each other.
  • a motor 241 is physically connected to the other end of the screw rotor 202.
  • the screw rotor storage chamber 210b is formed on a wall of the housing 210, and an external force of the housing 210 is also provided by an intake port (not shown) for sucking a compressible fluid into the housing 210.
  • the screw rotor storage chamber 210 b communicates with the outside of the housing 210, and a screw outlet (not shown) is formed in the wall of the housing 210 to discharge a compressible fluid from inside the housing 210 to outside the housing 210.
  • the suction port is communicated with a not-shown vacuum vessel, and the discharge port is shown in FIG.
  • the housing 210 includes a first housing member 211, a second housing member 212, and a second housing member 212.
  • the third housing member 213, the fourth housing member 214, and the fifth housing member 215 are formed.
  • the first housing member 211 constitutes an intake side flange and also serves as a housing for the canned motor 241.
  • the second housing member 212, the third housing member 213, and the fourth housing member 214 form a housing body, and the second housing member 212, the third housing member 213, and the fourth housing member 214 form a vacuum exhaust chamber. Have been.
  • Bearings 231 and 234 and shaft seals 237 and 239 are fixed to the second housing member 212.
  • the fourth housing member 214 is fixed with the bearings 233 and 236 and the shaft shear rollers 238 and 240.
  • the canned motor 241 which is a driving unit of the vacuum pump 200 according to the present embodiment will be described.
  • the canned motor 241 has a stator core 261 provided with a stator winding for generating a rotating magnetic field.
  • a rotor 265 is fixed to a rotating shaft 263 of a canned motor 241 integrated with the rotor 202.
  • a partition (can) 281 is separated between the stator core 261 and the rotor 265, and the partition 281 is tightly fixed to the second housing member 212.
  • the flange 267 of the canned motor 241 is tightly fixed to the partition wall 281, and the rotor 265 is also sealed against external air.
  • a purge gas for example, nitrogen gas or argon gas
  • a purge gas is supplied to the inside of the partition wall 281 in which the joint is sealed with a ring or the like (not shown), the housing second member 212 and the canned motor 241 sealed with the flange 267.
  • Injection hole 269 for flowing is open.
  • the injection hole 269 is provided with a flow passage 271 for introducing a purge gas, and the flow passage 271 has flow rate adjusting means (for example, a manual valve, an orifice, etc.) 273 for adjusting the flow rate of the purge gas, and a solenoid valve 273. 275 is installed.
  • the timing gears 253 and 251 are fixed to one end of the screw rotor 204 and one end of the screw rotor 202 so as to mesh with each other.
  • the screw rotor 204 rotates with the rotation of the screw rotor 202.
  • the compressible fluid in the screw rotor storage chamber 210b is also transferred to the communication passage 210c with the intake-port-side force, and is discharged through the communication passage 210c.
  • screw rotor storage room 2 When the compressible fluid in 10b is discharged to the outside of the screw rotor storage chamber 210b through the communication passage 210c, a new compressible fluid is sucked into the screw rotor storage chamber 210b through the suction port and the force of the vacuum container is also suctioned. You.
  • the inside of the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 is evacuated.
  • the pressure in the exhaust chamber 210c rises, and the gas in the exhaust chamber 210c reduces the pressure of the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 with low pressure. It flows back inside.
  • the gas in the exhaust chamber is a corrosive gas or a reaction product gas
  • the gas may cause corrosion of the rotor 265 and the rotating shaft 263, and may cause a failure of the canned motor 241 due to adherence of products.
  • the pressure inside the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 becomes higher than the pressure inside the exhaust chamber 210c.
  • Purge gas as described above. Therefore, assuming that the flow rate of the purge gas is P1 inside the can motor and the pressure inside the exhaust chamber 210c closest to the can motor 241 is P2, the flow rate may be such that P1 ⁇ P2 after the pump stops.
  • the operation sequence is as follows: When the pump stops or before or after the pump stops, the solenoid valve is opened, and the flow rate L adjusted by the valve (manual valve or solenoid valve or orifice) is flowed as purge gas, so that the bearing section, Prevent process gas from entering the motor. If the time T required for P1 to reach the atmospheric pressure is preliminarily measured, the solenoid valve can be opened and the flow rate L can be supplied only during the time T.
  • the pressure inside the canned motor 241 sealed by the housing first member 211, the housing second member 212 and the flange 267 is measured by a pressure gauge P1
  • the pressure inside the exhaust chamber 210c is measured by a pressure gauge P2.
  • valve + solenoid valve use an electromagnetic valve that can freely control the flow rate.
  • the flow rate control is not limited to stoppage, but continues to flow the purge gas slightly during operation so that P1 ⁇ P2.
  • the flow rate of the reaction product gas may change during the operation. In such a case, the pressure in the exhaust chamber may change, so the flow rate of the purge gas is controlled so that P1 ⁇ P2.
  • the pressure in the exhaust chamber can be replaced with the pressure in the semiconductor manufacturing apparatus chamber using the vacuum pump.
  • the flow rate of the purge gas is controlled by comparing the two pressures.
  • the flow rate can be controlled by any one of the pressure inside the motor partition wall, the pressure inside the exhaust chamber, or the pressure inside the chamber.
  • the pressure can be measured to control the force by controlling the flow rate of the purge gas, or by controlling the rotation speed of the rotor, the power consumption, and the flow rate of the reaction product gas.
  • the force indicated only for the purge gas to the motor If the purge gas is allowed to flow also to the bearing, a reaction product adheres to the bearing and the rotary dry vacuum pump loses power. Can also be prevented.
  • a semiconductor manufacturing apparatus dislikes contamination by oil.
  • a vertically installed mold is used, and an intake port is arranged upward with a discharge port arranged downward.
  • the gears 251 and 253 are disposed below, and the canned motor 241 which does not use lubricating oil and is not likely to be contaminated by lubricating oil is disposed on the intake side. This can minimize contamination of the intake side with oil.
  • the effect is further enhanced by using vacuum grease as a lubricant for the bearing on the intake side.
  • the volume transfer type screw vacuum pump has been described.
  • the present invention is applied to a vacuum pump in which a rotary shaft of a claw type, a roots type, a scroll type, or the like is driven by a motor. be able to.
  • each of a plurality of stages of vacuum pumps may have the structure of the rotary dry vacuum pump of the present invention.
  • the pressure, gas flow rate, power consumption, and number of revolutions are converted into data electric signals and sent to the signal processing means. From the data electric signals, the flow rate of the purge gas is determined by the signal processing means. , And transmitted to the flow rate adjusting means, and the flow rate of the purge gas is adjusted by an electromagnetic valve or the like.
  • the present invention can be applied to a vacuum pump having a rotating shaft for flowing and exhausting extremely dilute reaction product gas and a motor for driving the rotating shaft, such as a semiconductor manufacturing apparatus.
  • FIG. 1 is an axial sectional view of the screw vacuum pump of the present invention.

Abstract

A rotary dry vacuum pump has had a problem that, when a canned motor is used in a drive section, a reaction produced gas enters inside the canned motor, causing a motor failure that leads to a failure of the rotary dry vacuum pump. A rotary dry vacuum pump with rotor of the invention has one or more rotors received in a housing, bearings supporting rotating shafts of the rotors, a suction opening and discharge opening for fluid, formed in the housing, and a motor for rotatingly driving at least one of the one or more rotors. The motor has a stator iron core fixed in the housing of the motor, a partition wall installed on the inner diameter side of the stator is adhered and fixed to the housing to seal off the inside of the partition wall, a rotor is adhered and fixed to a rotating shaft in the separation wall so as to be rotatable, and a gas inlet for pouring a purge gas into the partition wall is provided.

Description

明 細 書  Specification
回転式ドライ真空ポンプ  Rotary dry vacuum pump
技術分野  Technical field
[0001] 本発明は、半導体製造装置のような反応生成ガスを流す装置に用いられる回転式 ドライ真空ポンプの動力部であるキャンドモータ内に反応生成ガスが流れ込みにくい 構造の回転式ドライ真空ポンプに関するものである。  The present invention relates to a rotary dry vacuum pump having a structure in which a reaction product gas hardly flows into a canned motor which is a power unit of a rotary dry vacuum pump used in a device for flowing a reaction product gas such as a semiconductor manufacturing apparatus. Things.
背景技術  Background art
[0002] 半導体製造工程において、問題となるのは反応チャンバ一内に油等の不純物が混 入し、半導体が汚染されることである。特に反応チャンバ一内のガスを排気するため の真空ポンプからの油の混入が問題となる。そこで、従来から回転式ドライ真空ボン プが用いられている。回転式ドライ真空ポンプとしてはスクリュー式、ルーツ式、スクロ ール式等がある。しかし、このような回転式ドライ真空ポンプはロータを回転させるた め回転軸を持ち、該回転軸を支えるために軸受が用いられている。該軸受には通常 潤滑油が付着しており、該潤滑油の油分子が回転式ドライ真空ポンプの排気室へ進 入するのを防ぐため、排気室と軸受部の間に軸シールが配置されていた。しかしなが ら、この軸シールが摩耗した場合、軸シールを通り抜けて回転式ドライ真空ポンプの 排気室から反応チャンバ一内に漏れてしまう場合がある。これは、ロータを回転させ るためのモータが大気中にありモータ側と真空の排気室側との圧力差が大きいため である。そのため、軸シールが摩耗等して隙間ができた場合は、排気室内に大気が 漏れこんでしまいポンプとしての性能を落とす要因ともなった。そこで、モータ内も排 気室とほぼ同じ圧力にすることができるキャンドモータ力 回転駆動部を持つ回転式 ドライ真空ポンプに用いられるようになった。キャンドモータの構造は、固定子鉄心に 回転磁界を生成する固定子卷線を備え、フレーム、側板及び固定子内径側に装着 された金属製薄肉円筒隔壁 (キャン)で隔壁内が密封され、またブラケットに固定され た軸受によって支持された回転軸には、回転子が装着され回転自在な構造を持って 構成される。(特許文献 1)  A problem in the semiconductor manufacturing process is that impurities such as oil are mixed in the reaction chamber 1 to contaminate the semiconductor. In particular, mixing of oil from a vacuum pump for exhausting gas in the reaction chamber becomes a problem. Therefore, a rotary dry vacuum pump has been conventionally used. Rotary dry vacuum pumps include a screw type, a roots type and a scroll type. However, such a rotary dry vacuum pump has a rotating shaft for rotating the rotor, and a bearing is used to support the rotating shaft. Lubricating oil is usually attached to the bearing, and a shaft seal is arranged between the exhaust chamber and the bearing to prevent oil molecules of the lubricating oil from entering the exhaust chamber of the rotary dry vacuum pump. I was However, if this shaft seal is worn, it may leak through the shaft seal from the exhaust chamber of the rotary dry vacuum pump into the reaction chamber. This is because the motor for rotating the rotor is in the atmosphere and the pressure difference between the motor side and the vacuum exhaust chamber side is large. Therefore, if a gap was formed due to wear of the shaft seal, etc., the air leaked into the exhaust chamber, which reduced the performance of the pump. Therefore, it has come to be used for a rotary dry vacuum pump having a canned motor power rotary drive that can make the pressure inside the motor almost the same as the exhaust chamber. The structure of the canned motor is such that the stator core has a stator winding that generates a rotating magnetic field, and the inside of the partition is sealed by a metal thin-walled cylindrical partition (can) mounted on the frame, side plates, and the stator inner diameter side. The rotating shaft supported by the bearing fixed to the bracket has a rotatable structure with a rotor attached. (Patent Document 1)
特許文献 1:特開 2003— 189529号公報 発明の開示 Patent Document 1: JP-A-2003-189529 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、キャンドモータを反応生成ガスを流す半導体製造装置用回転式ドラ ィ真空ポンプの駆動部に用いた場合、回転子が収納されている隔壁の内部は運転 時には真空となる。従って、モータを停止して大気圧に戻る際に、排気室内から反応 生成ガスがモータ内部に混入し、キャンドモータの隔壁内の構成部品に反応生成物 が付着することによって、モータを故障させてしまうという問題があった。また、その際 に軸受ゃ軸シールにも反応生成物が付着した場合はポンプ自体の故障の原因とも なった。  [0003] When the canned motor is used as a drive unit of a rotary dry vacuum pump for a semiconductor manufacturing apparatus for flowing a reaction product gas while applying force, the inside of the partition wall in which the rotor is housed is evacuated during operation. . Therefore, when the motor is stopped and returned to the atmospheric pressure, the reaction product gas is mixed into the motor from the exhaust chamber and the reaction product adheres to the components inside the partition wall of the canned motor, causing the motor to fail. There was a problem that it would. At that time, if reaction products also adhered to the bearing ゃ shaft seal, it also caused a failure of the pump itself.
課題を解決するための手段  Means for solving the problem
[0004] これを解決するために、本件発明では、請求項 1の発明によれば、ハウジング内に収 納された単数もしくは複数のロータと、これらのロータの回転軸を支持する軸受と、前 記ハウジングに形成された流体の吸気口および吐出口と、前記単数もしくは複数の ロータの少なくとも一つを回転駆動するモータより構成された回転ロータを持つ回転 式ドライ真空ポンプにおいて、前記モータが固定子鉄心を備え、固定子内径側に装 着された隔壁が前記ハウジングに固着されて隔壁内を密封し、隔壁内には回転子が 回転自在に配置され、前記複数のロータのうち少なくとも一つのロータの回転軸と回 転子の回転軸とが固着されてロータを回転駆動し、前記隔壁内にパージガスを流し 入れるためのガス注入口を設けて構成されて 、る。パージガスの注入口はモータの 前記フランジに形成すると加工が容易である。また、隔壁としては磁性体の金属を材 質とすることができる。また該パージガスはロータの回転軸を回転自在に支えている 軸受けに対しても流すこともできる。  [0004] In order to solve this, according to the present invention, according to the first aspect of the present invention, one or more rotors housed in a housing, a bearing for supporting a rotating shaft of these rotors, In a rotary dry vacuum pump having a fluid suction port and a discharge port formed in the housing and a rotary rotor configured to rotate at least one of the one or more rotors, the motor is a stator. A partition provided with an iron core and mounted on the inner diameter side of the stator is fixed to the housing to seal the inside of the partition, and a rotor is rotatably arranged in the partition, and at least one of the plurality of rotors is provided. The rotating shaft of the rotor and the rotating shaft of the rotor are fixedly connected to each other, and the rotor is driven to rotate, and a gas injection port for flowing a purge gas into the partition wall is provided. If the purge gas inlet is formed in the flange of the motor, the processing is easy. The partition walls may be made of a magnetic metal. The purge gas can also flow through a bearing that rotatably supports the rotating shaft of the rotor.
[0005] 請求項 2の発明においては、前記モータの回転軸と、前記ロータの回転軸が一体 形成されて 、る。組立例としては該ロータをハウジングを構成するフランジに固定した 後にモータの回転子を該ロータの端部に回転軸に所定の手段で固定し、該端部を 隔壁を構成する筒状の部材を前記フランジに固定し、さらに隔壁を構成するフランジ で蓋をすることにより隔壁内を密封する。なお、密封が必要な部分には Oリングを配 置する。 [0006] 請求項 3の発明によれば、前記モータを吸気口側に配置した。この際に排気室とモ ータの間に配置されている軸受力 潤滑油がモータ内に漏洩する量を減らすために 、潤滑油ではなくグリースを用いてもよい。また、回転式ドライ真空ポンプを縦置きに し、該軸受とモータが上部に来る配置にすることによりさらに効果はあがる。また、複 数の回転軸を持つ回転式ドライ真空ポンプで縦置きにし、同期を取るための潤滑の 必要なタイミングギアを下方の吐出口側に配置し、モータを吸気側に配置することに より潤滑油による排気室の汚染を防ぐ。 [0005] In the invention of claim 2, the rotating shaft of the motor and the rotating shaft of the rotor are integrally formed. As an assembly example, after fixing the rotor to a flange constituting a housing, a rotor of a motor is fixed to an end of the rotor by a predetermined means on a rotating shaft, and the end is formed by a cylindrical member constituting a partition. The inside of the partition is sealed by fixing to the flange and further covering with a flange constituting the partition. An O-ring should be placed where sealing is required. [0006] According to the invention of claim 3, the motor is arranged on the intake port side. At this time, in order to reduce the amount of bearing force lubricating oil disposed between the exhaust chamber and the motor to leak into the motor, grease may be used instead of lubricating oil. Further effects can be further enhanced by placing the rotary dry vacuum pump vertically and arranging the bearing and motor at the top. In addition, a rotary dry vacuum pump with multiple rotating shafts is installed vertically, a timing gear that requires lubrication for synchronization is arranged on the lower discharge port side, and the motor is arranged on the intake side. Prevent the exhaust chamber from being contaminated by lubricating oil.
[0007] 請求項 4の発明によれば、前記パージガス注入口へパージガスを送るための配管 に流量調整手段を設けた。流量調整手段としては、パージガス流路に所定の大きさ のパージガス流通穴を通してパージガスの流量を絞る手段、必要に応じて手動のバ ルブがあり、さらに N2供給側に電磁弁が設置される。ポンプが停止した時もしくはそ の前後及び運転中にガスの流量が変化、特に増加して排気室内の圧力がモータの 隔壁内の圧力よりも高くなつた時、電磁弁を開き、バルブで調整された流量をパージ ガスとして流すことにより、軸受部、モータ部へのプロセスガスの進入を防ぐ。  [0007] According to the invention of claim 4, a flow rate adjusting means is provided in a pipe for sending a purge gas to the purge gas inlet. As the flow rate adjusting means, there are a means for reducing the flow rate of the purge gas through a purge gas flow hole of a predetermined size in the purge gas flow path, a manual valve as required, and a solenoid valve on the N2 supply side. The solenoid valve is opened and adjusted by the valve when the gas flow rate changes when the pump is stopped, before or after that, and during operation, especially when the pressure in the exhaust chamber becomes higher than the pressure in the motor bulkhead due to increase. By flowing the flow rate as the purge gas, the process gas is prevented from entering the bearing section and the motor section.
なお、流量を決めてしまえば、バルブのかわりに同量のガス量を流せるオリフィスを 配管内に設置して、調整バルブを無くすこともできる。  Once the flow rate is determined, an orifice that allows the same amount of gas to flow instead of a valve can be installed in the piping to eliminate the adjustment valve.
また、ガスの流入量を調整する場合は電磁バルブを開く時間で調整するか、もしくは 流量調整機能を持った電磁バルブを用いることができる。  In addition, when adjusting the inflow amount of gas, it is possible to adjust the opening time of the electromagnetic valve or to use an electromagnetic valve having a flow rate adjusting function.
[0008] 請求項 5の発明によれば、前記隔壁内の圧力を測定するための圧力測定器具又 は Z及び前記排気室内の圧力を測定するための圧力測定器具とを設けた。該 2つ の圧力値の差を取り、前記隔壁内の圧力が前記排気室内の圧力よりも同じか大きく なるように電磁バルブにて流量を調整しても良 、。また一方の圧力のみでパージガス の流入量、流量を調整することもできる。圧力測定器としては薄膜半導体検出器等 がある。また、真空ポンプで排気する半導体製造装置等のチェンバー内の圧力を測 定してパージガスの流入量、流量を調整することもできる。チ ンバー内の圧力の変 化のみで、ガスの流入量、流量を調整してもよいが、前記隔壁内の圧力に応じて調 整してちょい。 [0008] According to the invention of claim 5, a pressure measuring instrument for measuring the pressure in the partition wall or a pressure measuring instrument for measuring the pressure in the exhaust chamber is provided. The difference between the two pressure values may be taken, and the flow rate may be adjusted by an electromagnetic valve so that the pressure in the partition wall is equal to or greater than the pressure in the exhaust chamber. Also, the inflow amount and flow rate of the purge gas can be adjusted with only one pressure. As a pressure measuring device, there is a thin film semiconductor detector and the like. Further, the inflow amount and the flow rate of the purge gas can be adjusted by measuring the pressure in a chamber of a semiconductor manufacturing apparatus or the like which is evacuated by a vacuum pump. The inflow and flow rate of gas may be adjusted only by changing the pressure in the chamber, but may be adjusted according to the pressure in the partition.
[0009] 請求項 6の発明によれば、モータの回転子又はロータの回転数を測定するための 測定手段を設けた。回転数測定手段としてはモータの回転子にエンコーダを取り付 ける、回転子の永久磁石の磁気を特定の位置で検出する等で回転数を検出する。 該回転数により、パージガスの流入量、流量を調整する。例えば回転数が減少した 場合は、パージガスを流す制御をしたり、回転数の増減率によりガスの流入量、流量 を調整したりでさる。 [0009] According to the invention of claim 6, for measuring the rotation speed of the rotor or the rotor of the motor. Measurement means were provided. As the rotation speed measuring means, the rotation speed is detected by attaching an encoder to the rotor of the motor or detecting the magnetism of the permanent magnet of the rotor at a specific position. The inflow amount and flow rate of the purge gas are adjusted by the rotation speed. For example, when the number of revolutions decreases, the flow of the purge gas is controlled, and the flow rate and the flow rate of the gas are adjusted according to the rate of change of the number of revolutions.
[0010] 請求項 7の発明によれば、モータの消費電力を測定するための手段を設けた。該 消費電力によりガスの流量を調整する。例えば、運転中に吸入ガス量の増加によつ て、消費動力が変動した場合は、パージガスを流す制御をしたり、停止時に消費動 力の変化量に応じてパージガスの流入量、流量を調整したりできる。  [0010] According to the invention of claim 7, means for measuring the power consumption of the motor is provided. The gas flow is adjusted by the power consumption. For example, if the power consumption fluctuates due to an increase in the intake gas amount during operation, control of the purge gas flow is performed, and the inflow amount and flow rate of the purge gas are adjusted according to the change in the power consumption at the time of stoppage. You can do it.
[0011] 請求項 8の発明によれば、吸気口又は排気口付近に反応生成ガス流量計を設けた 。該反応生成ガスの流量の変化に応じてパージガスの流量を調整する。例えば反応 生成ガスの流量が増加した場合にパージガスの流量を増加する等の制御をする。ま た、前記チェンバー内に流すガスの流量に応じてパージガスの流量を調整してもよ い。  According to the invention of claim 8, the reaction product gas flow meter is provided near the intake port or the exhaust port. The flow rate of the purge gas is adjusted according to the change in the flow rate of the reaction product gas. For example, when the flow rate of the reaction product gas increases, control is performed such as increasing the flow rate of the purge gas. Further, the flow rate of the purge gas may be adjusted according to the flow rate of the gas flowing into the chamber.
発明の効果  The invention's effect
[0012] 請求項 1の発明によれば、ハウジング内に収納された単数もしくは複数のロータと、 これらのロータの回転軸を支持する軸受と、前記ハウジングに形成された流体の吸気 口および吐出口と、前記単数もしくは複数のロータの少なくとも一つを回転駆動する モータより構成された回転ロータを持つ回転式ドライ真空ポンプにおいて、前記モー タがモータのハウジング内部に固定された固定子鉄心を備え、固定子内径側に装着 された隔壁が前記ハウジングに固着されて隔壁内を密封し、隔壁内の回転軸には、 回転子が固着され回転自在な構造にし、前記隔壁内にパージガスを流し入れるため のガス注入口を設けたことにより、ポンプ停止時に真空排気室及び隔壁内が大気圧 に戻る際に真空排気室内の反応生成ガス力 S排気室から隔壁内に漏れ込んで、回転 子等のモータ構成部品に生成物が蓄積し、モータが動かなくなったり故障しないよう に、パージガスを流し入れて真空排気室から隔壁内に反応生成ガスが流れ込まない ようにすることができる。また、軸受けに対しても同様にパージガスを流すことにより、 軸受についても反応生成物が付着して故障することを防ぐことができるようになる。 [0013] 請求項 2の発明によれば、前記モータの回転軸と、前記ロータの回転軸を一体形 成した構成にすることにより、 2つの回転軸の接合部品が不要となり、さらに 2つの回 転軸の軸合わせをする必要もなくなる。 [0012] According to the invention of claim 1, one or more rotors housed in a housing, a bearing for supporting a rotating shaft of these rotors, and a fluid intake port and a discharge port formed in the housing. A rotary dry vacuum pump having a rotary rotor composed of a motor that rotationally drives at least one of the single or multiple rotors, wherein the motor includes a stator core fixed inside a motor housing, A partition mounted on the inner diameter side of the stator is fixed to the housing to seal the inside of the partition, and a rotor is fixed to a rotating shaft in the partition so as to be rotatable, and a purge gas flows into the partition. Due to the gas inlet, the reaction product gas force in the vacuum exhaust chamber and the inside of the bulkhead from the exhaust chamber when the inside of the vacuum exhaust chamber and the bulkhead return to atmospheric pressure when the pump is stopped. In order to prevent the product from accumulating in the motor components such as the rotor due to leakage and causing the motor not to operate or break down, the purge gas should be supplied to prevent the reaction product gas from flowing into the partition from the vacuum exhaust chamber. it can. In addition, by similarly supplying the purge gas to the bearing, it is possible to prevent the reaction product from adhering to the bearing and to prevent the bearing from malfunctioning. [0013] According to the invention of claim 2, by forming the rotation shaft of the motor and the rotation shaft of the rotor integrally, the joining part of the two rotation shafts becomes unnecessary, and further two rotation shafts are eliminated. There is no need to align the turning axes.
[0014] 請求項 3の発明によれば、前記モータを吸気口側に配置した構成にすることにより 、通常、排気室内が油により汚染されることを防止するため潤滑油が必要な部分は 吐出口側に配置される。よって潤滑油があまり用いられていない吸気口側に前記モ ータを配置することにより隔壁内に潤滑油が入り込むことを最小限に抑えることができ る。  [0014] According to the invention of claim 3, by arranging the motor on the intake port side, normally, a portion that requires lubricating oil to prevent the exhaust chamber from being contaminated with oil is discharged. It is located on the exit side. Therefore, by arranging the motor on the side of the intake port where lubricating oil is not used much, it is possible to minimize lubricating oil from entering the partition wall.
[0015] 請求項 4の発明によれば、前記パージガス注入口へガスを送るための配管に流量 調整手段を設けた。このような構成にすることにより、停止中にプロセスガスが隔壁内 に進入しな 、のに必要な最小の量のパージガスを流すことができ、無駄な N2の使用 を抑え、軸受部に付着している潤滑材の排気室への拡散を最小限に押えることがで きる。  [0015] According to the invention of claim 4, the pipe for sending gas to the purge gas inlet is provided with a flow rate adjusting means. With such a configuration, the minimum amount of purge gas required to prevent the process gas from entering the partition wall during the stop can be supplied, thereby suppressing useless use of N2 and adhering to the bearing. Diffusion of the lubricating material into the exhaust chamber can be minimized.
[0016] 請求項 5の発明によれば、前記隔壁内の圧力を測定するための圧力測定器具又 は Z及び前記排気室内の圧力を測定するための圧力測定器具とを設けた。このよう な構成にすることにより、排気室内の圧力よりも少しだけ隔壁内の圧力が高くなるよう に電磁バルブ等でパージガス流量を制御することができる。  According to the invention of claim 5, a pressure measuring instrument for measuring the pressure in the partition or a pressure measuring instrument for measuring the pressure in the exhaust chamber is provided. With such a configuration, the flow rate of the purge gas can be controlled by an electromagnetic valve or the like so that the pressure in the partition wall becomes slightly higher than the pressure in the exhaust chamber.
[0017] 請求項 6の発明によれば、前記モータの回転子又はロータの回転数を測定するた めの測定手段を設けたことにより、必要なパージガスのみを流す制御ができるように なり、ガスの無駄や排気室内へパージガスが漏れこみ、排気能力を悪化させることが なくなる。  [0017] According to the invention of claim 6, by providing a measuring means for measuring the number of rotations of the rotor or the rotor of the motor, it becomes possible to control the flow of only a necessary purge gas. This eliminates the waste of gas and the leakage of purge gas into the exhaust chamber, which does not deteriorate the exhaust capacity.
[0018] 請求項 7の発明によれば、前記モータの消費電力を測定するための手段を設けた ことにより、必要なパージガスのみを流す制御ができるようになり、ガスの無駄や排気 室内へパージガスが漏れこみ、排気能力を悪化させることがなくなる。  [0018] According to the invention of claim 7, since the means for measuring the power consumption of the motor is provided, it is possible to control the flow of only the necessary purge gas, thereby wasting gas and purging the purge gas into the exhaust chamber. Does not leak and deteriorates the exhaust capacity.
[0019] 請求項 8の発明によれば、前記吸気口又は排気口付近にガス流量計を設けたこと により、必要なパージガスのみを流す制御ができるようになり、ガスの無駄や排気室 内へパージガスが漏れこみ、排気能力を悪化させることがなくなる。  According to the invention of claim 8, by providing a gas flow meter near the intake port or the exhaust port, it becomes possible to control the flow of only a necessary purge gas, thereby wasting gas and reducing exhaust gas into the exhaust chamber. This prevents the purge gas from leaking and deteriorating the exhaust capacity.
発明を実施するための最良の形態 [0020] 図 1に本件発明における回転式ドライ真空ポンプの実施例として、スクリュー式真空 ポンプを示す。 BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a screw vacuum pump as an embodiment of the rotary dry vacuum pump according to the present invention.
[0021] 真空ポンプ 200は、 2つのスクリューロータ 202及び 204を備えている。  [0021] The vacuum pump 200 includes two screw rotors 202 and 204.
スクリューロータ 202及び 204は、ハウジング 210の内部に収納されている。詳述す ると、スクリューロータ 202は軸受 231及び 233によってハウジング 210に回転可能に 支持され、スクリューロータ 204は軸受 234及び 236によってハウジング 210に回転 可能に支持されている。また、タイミングギア 251及び 253、モータ 241、及びシール 237、 238、 239及び 240力図示のように酉己置されて!ヽる。ここで、シーノレ 237及び 2 38は軸受 231及び 233とロータ収糸内室 210bとを隔離し、軸受 231及び 233の?閏滑 油がスクリューロータ収納室 210bに漏洩することを防止するとともに、スクリューロー タ収納室 210bから軸受 231及び 233に異物が侵入することを防止している。同様に 、シーノレ 239及び 240は軸受 234及び 236とロータ収糸内室 210bとを隔離し、軸受 23 4及び 236の潤滑油がスクリューロータ収納室 210bに漏洩することを防止するととも に、スクリューロータ収納室 210bから軸受 234及び 236に異物が侵入することを防 止して ヽる。なお、シーノレ 237、 238、 239及び 240としては、接虫式シーノレ、磁'性流 体シールやラビリンスのような非接触シール等がある。  Screw rotors 202 and 204 are housed inside housing 210. More specifically, the screw rotor 202 is rotatably supported on the housing 210 by bearings 231 and 233, and the screw rotor 204 is rotatably supported on the housing 210 by bearings 234 and 236. In addition, the timing gears 251 and 253, the motor 241 and the seals 237, 238, 239 and 240 are placed as shown in the figure. Here, the shears 237 and 238 separate the bearings 231 and 233 from the inner chamber 210b of the rotor and set the bearings 231 and 233 together. This prevents leap oil from leaking into the screw rotor storage room 210b and prevents foreign substances from entering the bearings 231 and 233 from the screw rotor storage room 210b. Similarly, the shears 239 and 240 separate the bearings 234 and 236 from the inner chamber 210b of the rotor, prevent the lubricating oil of the bearings 234 and 236 from leaking into the screw rotor storage chamber 210b, and prevent the rotation of the screw rotor. It prevents foreign matter from entering the bearings 234 and 236 from the storage room 210b. As the chinoles 237, 238, 239, and 240, there are a non-contact seal such as an insect-type chinolle, a magnetic fluid seal, and a labyrinth.
[0022] また、スクリューロータ 202及びスクリューロータ 204の一端部には、スクリューロータ 204の回転に伴ってスクリューロータ 202を回転させるタイミングギア 251及び 253が 、それぞれ互いに嚙み合うように固定されている。更に、スクリューロータ 202の他端 部には、モータ 241がー体的に連結している。  Further, timing gears 251 and 253 for rotating the screw rotor 202 with the rotation of the screw rotor 204 are fixed to one ends of the screw rotor 202 and the screw rotor 204 so as to mesh with each other. . Further, a motor 241 is physically connected to the other end of the screw rotor 202.
[0023] また、スクリューロータ収納室 210bは、ハウジング 210の壁部に形成され、ハウジン グ 210の外部力もハウジング 210の内部に圧縮性流体を吸入するための吸気口(図 示していない。 )によってハウジング 210の外部と連通し、スクリューロータ収納室 210 bは、ハウジング 210の壁部に形成され、ハウジング 210の内部からハウジング 210 の外部に圧縮性流体を排出するための吐出口(図示していない。 )によってハウジン グ 210の外部と連通している。ここで、吸気口は図示していない被真空容器に連通し て 、て、吐出口は図示して!/ヽな 、排気ガス処理装置に連通して!/、る。  The screw rotor storage chamber 210b is formed on a wall of the housing 210, and an external force of the housing 210 is also provided by an intake port (not shown) for sucking a compressible fluid into the housing 210. The screw rotor storage chamber 210 b communicates with the outside of the housing 210, and a screw outlet (not shown) is formed in the wall of the housing 210 to discharge a compressible fluid from inside the housing 210 to outside the housing 210. ) Communicates with the outside of the housing 210. Here, the suction port is communicated with a not-shown vacuum vessel, and the discharge port is shown in FIG.
[0024] なお、ハウジング 210は、第一ハウジング部材 211、第二ハウジング部材 212、第 三ハウジング部材 213、第四ハウジング部材 214及び第五ハウジング部材 215から 形成されている。ここで、第一ハウジング部材 211は、吸気側フランジを構成するとと もにキャンドモータ 241のハウジングを兼ねている。第二ハウジング部材 212、第三 ハウジング部材 213及び第四ハウジング部材 214は、ハウジング本体を構成しており 、第二ハウジング部材 212、第三ハウジング部材 213及び第四ハウジング部材 214 によって真空排気室が構成されている。第二ハウジング部材 212には、軸受 231、 2 34及び軸シール 237、 239が固定されている。また、第四ハウジング部材 214には、 軸受 233、 236及び軸シーノレ 238、 240力 ^固定されて!/、る。 [0024] The housing 210 includes a first housing member 211, a second housing member 212, and a second housing member 212. The third housing member 213, the fourth housing member 214, and the fifth housing member 215 are formed. Here, the first housing member 211 constitutes an intake side flange and also serves as a housing for the canned motor 241. The second housing member 212, the third housing member 213, and the fourth housing member 214 form a housing body, and the second housing member 212, the third housing member 213, and the fourth housing member 214 form a vacuum exhaust chamber. Have been. Bearings 231 and 234 and shaft seals 237 and 239 are fixed to the second housing member 212. Further, the fourth housing member 214 is fixed with the bearings 233 and 236 and the shaft shear rollers 238 and 240.
[0025] 次に、本実施例に係る真空ポンプ 200の駆動部であるキャンドモータ 241の構成に ついて説明する。キャンドモータ 241は固定子鉄心 261に回転磁界を生成する固定 子卷線が備えられている。固定子内径側にはロータ 202と一体になつているキャンド モータ 241の回転軸部 263に回転子 265が固着されている。前記固定子鉄心 261と 回転子 265の間には、隔壁(キャン) 281が隔てており、隔壁 281は第二ハウジング 部材 212に密着固定している。該隔壁 281にはキャンドモータ 241のフランジ 267が 密着固定され、回転子 265は外気力も密閉される。該フランジ 267には接合部を 0リ ング等(図示なし)で密閉した隔壁 281、ハウジング第二部材 212及びフランジ 267 で密封されたキャンドモータ 241の内部にパージガス(例えば窒素ガスやアルゴンガ ス)を流すための注入穴 269が空いている。該注入穴 269にはパージガスを導くため の流通路 271が装着されており、該流通路 271にはパージガスの流量を調整するた めの流量調整手段 (例えば手動バルブ、オリフィスなど) 273及び電磁弁 275が装着 されている。 Next, a configuration of the canned motor 241 which is a driving unit of the vacuum pump 200 according to the present embodiment will be described. The canned motor 241 has a stator core 261 provided with a stator winding for generating a rotating magnetic field. On the inner diameter side of the stator, a rotor 265 is fixed to a rotating shaft 263 of a canned motor 241 integrated with the rotor 202. A partition (can) 281 is separated between the stator core 261 and the rotor 265, and the partition 281 is tightly fixed to the second housing member 212. The flange 267 of the canned motor 241 is tightly fixed to the partition wall 281, and the rotor 265 is also sealed against external air. A purge gas (for example, nitrogen gas or argon gas) is supplied to the inside of the partition wall 281 in which the joint is sealed with a ring or the like (not shown), the housing second member 212 and the canned motor 241 sealed with the flange 267. Injection hole 269 for flowing is open. The injection hole 269 is provided with a flow passage 271 for introducing a purge gas, and the flow passage 271 has flow rate adjusting means (for example, a manual valve, an orifice, etc.) 273 for adjusting the flow rate of the purge gas, and a solenoid valve 273. 275 is installed.
[0026] 次に、本実施形態に係る真空ポンプ 200の作用について説明する。  Next, the operation of the vacuum pump 200 according to the present embodiment will be described.
まず、キャンドモータ 241がスクリューロータ 202を回転させると、スクリューロータ 20 4及びスクリューロータ 202の一端部には、タイミングギア 253及び 251がそれぞれ互 いに嚙み合うように固定されて 、るので、スクリューロータ 202の回転に伴ってスクリュ 一ロータ 204が回転する。スクリューロータ 202及びスクリューロータ 204が回転する ことによって、スクリューロータ収納室 210b内の圧縮性流体は吸気口側力も連通路 2 10c側に移送され、連通路 210cを介して排出される。また、スクリューロータ収納室 2 10b内の圧縮性流体が連通路 210cを介してスクリューロータ収納室 210b外へ排出 されると、スクリューロータ収納室 210bには、吸気口を介して被真空容器力も新たな 圧縮性流体が吸入される。 First, when the canned motor 241 rotates the screw rotor 202, the timing gears 253 and 251 are fixed to one end of the screw rotor 204 and one end of the screw rotor 202 so as to mesh with each other. The screw rotor 204 rotates with the rotation of the screw rotor 202. As the screw rotor 202 and the screw rotor 204 rotate, the compressible fluid in the screw rotor storage chamber 210b is also transferred to the communication passage 210c with the intake-port-side force, and is discharged through the communication passage 210c. Also, screw rotor storage room 2 When the compressible fluid in 10b is discharged to the outside of the screw rotor storage chamber 210b through the communication passage 210c, a new compressible fluid is sucked into the screw rotor storage chamber 210b through the suction port and the force of the vacuum container is also suctioned. You.
この際にハウジング第一部材 211、ハウジング第二部材 212及びフランジ 267で密 封されたキャンドモータ 241の内部は真空になる。  At this time, the inside of the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 is evacuated.
従って、真空ポンプを停止すると排気室 210c内の圧力が上昇し、排気室 210c内 のガスが圧力の低いハウジング第一部材 211、ハウジング第二部材 212及びフラン ジ 267で密封されたキャンドモータ 241の内部に逆流してくる。該排気室内のガスが 腐食性ガスや反応生成ガスの場合、回転子 265や回転軸 263を腐食したり、生成物 が付着することによりキャンドモータ 241が故障してしまう原因となる。従って、腐食性 ガスや反応生成ガスを流す場合は、ハウジング第一部材 211、ハウジング第二部材 212及びフランジ 267で密封されたキャンドモータ 241の内部の圧力が排気室 210c 内の圧力よりも高くなるようにパージガスを流す。従って、パージガスの流量はキャン ドモータ内部の圧力 Pl、キャンドモータ 241に最も近い排気室 210c内の圧力を P2 とすると、ポンプ停止後 P1≥P2となるような流量にすれば良い。動作シーケンスとし ては、ポンプ停止した時もしくはその前後で、電磁弁を開き、バルブ (手動バルブまた は、電磁バルブまたはオリフィス)で調整された流量 Lをパージガスとして流すことによ り、軸受部、モータ部へのプロセスガスの進入を防ぐ。 P1が大気圧になるまでの時間 Tをあら力じめ測定しておけば、時間 Tの間のみ、電磁弁を開き、流量 Lを流すことが できる。  Therefore, when the vacuum pump is stopped, the pressure in the exhaust chamber 210c rises, and the gas in the exhaust chamber 210c reduces the pressure of the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 with low pressure. It flows back inside. When the gas in the exhaust chamber is a corrosive gas or a reaction product gas, the gas may cause corrosion of the rotor 265 and the rotating shaft 263, and may cause a failure of the canned motor 241 due to adherence of products. Therefore, when a corrosive gas or a reaction product gas flows, the pressure inside the canned motor 241 sealed by the housing first member 211, the housing second member 212, and the flange 267 becomes higher than the pressure inside the exhaust chamber 210c. Purge gas as described above. Therefore, assuming that the flow rate of the purge gas is P1 inside the can motor and the pressure inside the exhaust chamber 210c closest to the can motor 241 is P2, the flow rate may be such that P1≥P2 after the pump stops. The operation sequence is as follows: When the pump stops or before or after the pump stops, the solenoid valve is opened, and the flow rate L adjusted by the valve (manual valve or solenoid valve or orifice) is flowed as purge gas, so that the bearing section, Prevent process gas from entering the motor. If the time T required for P1 to reach the atmospheric pressure is preliminarily measured, the solenoid valve can be opened and the flow rate L can be supplied only during the time T.
従って必要最小限のパージガスを流すことができ、無駄なパージガスの使用を抑え 、軸受部に付着している潤滑材の排気室への拡散を最小限に押えることができる。 また、ハウジング第一部材 211、ハウジング第二部材 212及びフランジ 267で密封 されたキャンドモータ 241の内部の圧力を圧力計 P1で測定し、排気室 210c内の圧 力を圧力計 P2で測定し、該圧力の差が P1≥P2となるように電磁バルブにて流量を制 御する方法もある。(「バルブ +電磁弁」の変わりに流量を自由に制御できる電磁バ ルブにする。)流量の制御は停止時のみではなぐ運転中も P1≥P2となるようにわず かにパージガスを流し続けてもよいし、さらに、運転中でも反応生成ガスの流量が変 化した場合は、排気室内の圧力が変化する場合もあるので、 P1≥P2となるようにパー ジガスの流量を制御する。 Therefore, a minimum necessary purge gas can be supplied, useless use of the purge gas can be suppressed, and diffusion of the lubricant adhering to the bearing portion into the exhaust chamber can be minimized. Further, the pressure inside the canned motor 241 sealed by the housing first member 211, the housing second member 212 and the flange 267 is measured by a pressure gauge P1, and the pressure inside the exhaust chamber 210c is measured by a pressure gauge P2. There is also a method of controlling the flow rate with an electromagnetic valve so that the difference between the pressures becomes P1≥P2. (Instead of “valve + solenoid valve”, use an electromagnetic valve that can freely control the flow rate.) The flow rate control is not limited to stoppage, but continues to flow the purge gas slightly during operation so that P1 ≥ P2. The flow rate of the reaction product gas may change during the operation. In such a case, the pressure in the exhaust chamber may change, so the flow rate of the purge gas is controlled so that P1 ≥ P2.
また、排気室内の圧力は本件真空ポンプを用いる半導体製造装置チャンバ一内の 圧力に代えることもできる。  Further, the pressure in the exhaust chamber can be replaced with the pressure in the semiconductor manufacturing apparatus chamber using the vacuum pump.
本実施例では 2つの圧力の比較によりパージガスの流量を制御した力 モータ隔壁 内の圧力、排気室内の圧力又はチャンバ一内の圧力のうちどれ力 1つの圧力により 流量を制御することもできる。  In this embodiment, the flow rate of the purge gas is controlled by comparing the two pressures. The flow rate can be controlled by any one of the pressure inside the motor partition wall, the pressure inside the exhaust chamber, or the pressure inside the chamber.
[0028] 本実施例では圧力を測定するにより、パージガスの流量を制御した力 モータもしく はロータの回転数、消費電力、反応生成ガスの流量を測定することによつても制御す ることがでさる。 In this embodiment, the pressure can be measured to control the force by controlling the flow rate of the purge gas, or by controlling the rotation speed of the rotor, the power consumption, and the flow rate of the reaction product gas. Monkey
また、本実施例ではモータに対してのパージガスについてのみ示した力 当該パー ジガスを軸受にも流れるようにすれば、軸受に反応生成物が付着し、回転式ドライ真 空ポンプが動力なくなるという問題を防ぐこともできる。  Further, in the present embodiment, the force indicated only for the purge gas to the motor If the purge gas is allowed to flow also to the bearing, a reaction product adheres to the bearing and the rotary dry vacuum pump loses power. Can also be prevented.
[0029] 一般に半導体製造装置は、油による汚染を嫌うが、本実施例のように縦置きが型に し、吸気口を上にして吐出口を下に配置し、潤滑油が常に必要なタイミングギア 251 及び 253の部分を下方に配置し、潤滑油を使用しておらず潤滑油による汚染を嫌う キャンドモータ 241を吸気側に配置する。これにより、吸気側が油で汚染されることを 極力抑えることができる。また吸気側の軸受の潤滑材として真空用グリースを用いるこ とにより、さらに効果はあがる。  [0029] In general, a semiconductor manufacturing apparatus dislikes contamination by oil. However, as in the present embodiment, a vertically installed mold is used, and an intake port is arranged upward with a discharge port arranged downward. The gears 251 and 253 are disposed below, and the canned motor 241 which does not use lubricating oil and is not likely to be contaminated by lubricating oil is disposed on the intake side. This can minimize contamination of the intake side with oil. The effect is further enhanced by using vacuum grease as a lubricant for the bearing on the intake side.
[0030] なお、本実施形態においては、容積移送型のスクリュー式真空ポンプについて述 ベたが、本発明をクロー式、ルーツ式、スクロール式等の回転軸をモータで駆動する 真空ポンプに適応することができる。  [0030] In the present embodiment, the volume transfer type screw vacuum pump has been described. However, the present invention is applied to a vacuum pump in which a rotary shaft of a claw type, a roots type, a scroll type, or the like is driven by a motor. be able to.
また、複数段式真空ポンプ、例えば 2段スクリュー式真空ポンプの各ポンプを本件 発明の回転式ドライ真空ポンプの構造にすることもできる。  In addition, each of a plurality of stages of vacuum pumps, for example, a two-stage screw vacuum pump, may have the structure of the rotary dry vacuum pump of the present invention.
圧力、ガス流量、消費電力、回転数はデータ電気信号に変換され、信号処理手段 に送られ、前期データ電気信号から前期信号処理手段により、パージガスの流量を 決定し、該決定量は出力電気信号に変換されて流量調整手段に伝達され、電磁バ ルブ等でパージガスの流量が調整される。 産業上の利用可能性 The pressure, gas flow rate, power consumption, and number of revolutions are converted into data electric signals and sent to the signal processing means. From the data electric signals, the flow rate of the purge gas is determined by the signal processing means. , And transmitted to the flow rate adjusting means, and the flow rate of the purge gas is adjusted by an electromagnetic valve or the like. Industrial applicability
[0031] 半導体製造装置のような極希薄な反応生成ガスを流し排気するための回転軸と該 回転軸を駆動するためのモータを有する真空ポンプに適用できる。  [0031] The present invention can be applied to a vacuum pump having a rotating shaft for flowing and exhausting extremely dilute reaction product gas and a motor for driving the rotating shaft, such as a semiconductor manufacturing apparatus.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本件発明のスクリュー式真空ポンプの軸方向断面図である。 FIG. 1 is an axial sectional view of the screw vacuum pump of the present invention.
符号の説明  Explanation of symbols
[0033] 200 真空ポンプ [0033] 200 vacuum pump
202、 204 スクリューロータ  202, 204 screw rotor
210 ハウジング  210 housing
210b ロータ収納室  210b Rotor storage room
231、 233、 234、 236 軸受  231, 233, 234, 236 bearings
251、 253 タイミングギア  251, 253 Timing gear
237、 238、 239、 240 軸シール  237, 238, 239, 240 Shaft seal
241 キャンドモータ  241 canned motor
261 固定子鉄心  261 Stator core
263 回転軸部  263 Rotating shaft
265 回転子  265 rotor
267 フランジ  267 Flange
269 注入穴  269 Injection hole
271 流通路  271 Flow passage

Claims

請求の範囲 The scope of the claims
[1] ハウジング内に収納された単数もしくは複数のロータと、これらのロータの回転軸を 支持する軸受と、前記ハウジングに形成された流体の吸気口および吐出口と、前記 単数もしくは複数のロータの少なくとも一つを回転駆動するモータより構成された回 転ロータを持つ回転式ドライ真空ポンプにおいて、前記モータが固定子鉄心を備え 、固定子内径側に装着された隔壁が前記ハウジングに固着されて隔壁内を密封し、 隔壁内には回転子が回転自在に配置され、前記複数のロータのうち少なくとも一つ のロータの回転軸と回転子の回転軸とが固着されてロータを回転駆動し、前記隔壁 内にパージガスを流し入れるためのガス注入口を設けて構成されていることを特徴と する回転式ドライ真空ポンプ。  [1] One or more rotors housed in a housing, bearings for supporting the rotating shafts of these rotors, fluid inlets and outlets formed in the housing, and one or more rotors In a rotary dry vacuum pump having a rotary rotor configured to rotate at least one of the motors, the motor includes a stator core, and a partition mounted on a stator inner diameter side is fixed to the housing and the partition is fixed to the housing. A rotor is rotatably arranged in the partition wall, and a rotation shaft of at least one of the plurality of rotors and a rotation shaft of the rotor are fixed to drive the rotor to rotate. A rotary dry vacuum pump characterized by having a gas inlet for flowing a purge gas into a partition wall.
[2] 前記モータの回転軸と、前記ロータの回転軸が一体形成されていることを特徴とす る請求項 1に記載の回転式ドライ真空ポンプ。  [2] The rotary dry vacuum pump according to claim 1, wherein a rotation axis of the motor and a rotation axis of the rotor are formed integrally.
[3] 前記モータを吸気口側に配置したことを特徴とする請求項 1一 2に記載の回転式ド ライ真空ポンプ。 3. The rotary dry vacuum pump according to claim 12, wherein the motor is arranged on an intake port side.
[4] 前記パージガス注入口へパージガスを送るための配管に流量調整手段を設けたこ とを特徴とする請求項 1一 3に記載の回転式ドライ真空ポンプ。  4. The rotary dry vacuum pump according to claim 13, wherein flow rate adjusting means is provided in a pipe for sending a purge gas to the purge gas inlet.
[5] 前記隔壁内の圧力を測定するための圧力測定器具又は Z及び前記排気室内の 圧力を測定するための圧力測定器具とを設けたことを特徴とする請求項 1一 4に記載 の回転式ドライ真空ポンプ。 [5] The rotation according to claim 14, wherein a pressure measuring instrument for measuring the pressure in the partition wall or a pressure measuring instrument for measuring the pressure in the exhaust chamber is provided. Dry vacuum pump.
[6] 前記モータの回転子又はロータの回転数を測定するための測定手段を設けたことを 特徴とする請求項 1一 4に記載の回転式ドライ真空ポンプ。 6. The rotary dry vacuum pump according to claim 14, further comprising a measuring unit for measuring a rotation speed of a rotor or a rotor of the motor.
[7] 前記モータの消費電力を測定するための手段を設けたことを特徴とする請求項 1一 4 又は 6に記載の回転式ドライ真空ポンプ。 7. The rotary dry vacuum pump according to claim 14, further comprising means for measuring power consumption of the motor.
[8] 前記吸気口又は排気口付近もしくは真空チ ンバー内にガス流量計を設けたことを 特徴とする請求項 1一 4に記載の回転式ドライ真空ポンプ。 [8] The rotary dry vacuum pump according to claim 14, wherein a gas flow meter is provided near the intake port or the exhaust port or in a vacuum chamber.
PCT/JP2004/015639 2003-10-21 2004-10-21 Rotary dry vacuum pump WO2005042979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/595,482 US20080038132A1 (en) 2003-10-21 2004-10-21 Rotary Dry Vacuum Pump
EP04792788A EP1681469A1 (en) 2003-10-21 2004-10-21 Rotary dry vacuum pump
JP2005515119A JPWO2005042979A1 (en) 2003-10-21 2004-10-21 Rotary dry vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-361153 2003-10-21
JP2003361153 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005042979A1 true WO2005042979A1 (en) 2005-05-12

Family

ID=34543742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015639 WO2005042979A1 (en) 2003-10-21 2004-10-21 Rotary dry vacuum pump

Country Status (7)

Country Link
US (1) US20080038132A1 (en)
EP (1) EP1681469A1 (en)
JP (1) JPWO2005042979A1 (en)
KR (1) KR20060087599A (en)
CN (1) CN1871436A (en)
TW (1) TW200525086A (en)
WO (1) WO2005042979A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134427A1 (en) * 2009-05-20 2010-11-25 三菱重工業株式会社 Dry vacuum pump
JP2010270657A (en) * 2009-05-20 2010-12-02 Mitsubishi Heavy Ind Ltd Dry vacuum pump
WO2012014497A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石エネルギー株式会社 Exhaust gas processing system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039529A1 (en) 2006-08-23 2008-03-06 Oerlikon Leybold Vacuum Gmbh A method of reacting auto-ignitable dusts in a vacuum pumping apparatus
US20100269540A1 (en) * 2009-04-24 2010-10-28 Ebara International Corporation Method to Liquefy Ammonia Gas
DE102009034837A1 (en) * 2009-07-27 2011-02-17 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh casing
GB0922564D0 (en) 2009-12-24 2010-02-10 Edwards Ltd Pump
NO332974B1 (en) * 2010-06-22 2013-02-11 Vetco Gray Scandinavia As Pressure equalization control system for barrier and lubricating fluids for an undersea engine and pump module
CA2818294C (en) 2010-12-10 2019-04-30 Ateliers Busch Sa Vacuum pump for applications in vacuum packaging machines
DE102016102954A1 (en) * 2016-02-19 2017-08-24 Multivac Sepp Haggenmüller Se & Co. Kg vacuum pump
TWI624596B (en) * 2017-03-15 2018-05-21 亞台富士精機股份有限公司 Pump apparatus with remote monitoring function and pump apparatus monitoring system
US10844857B2 (en) * 2018-06-19 2020-11-24 Ingersoll-Rand Industrial U.S., Inc. Compressor system with purge gas system
GB2582327B (en) * 2019-03-19 2021-10-06 Edwards S R O Control apparatus and method for supplying purge gas
CN112032022A (en) * 2020-09-10 2020-12-04 北京通嘉宏瑞科技有限公司 Dry vacuum pump capable of sweeping gas without dead angle and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346882A (en) * 1993-06-07 1994-12-20 Hitachi Ltd Purge gas quantity control device for shaft seal of dry vacuum
JPH10159776A (en) * 1997-11-26 1998-06-16 Matsushita Electric Ind Co Ltd Vacuum pump
JP2000170680A (en) * 1998-09-30 2000-06-20 Aisin Seiki Co Ltd Vacuum pump
JP2003189529A (en) * 2001-12-14 2003-07-04 Hitachi Ltd Canned motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913346A (en) * 1974-05-30 1975-10-21 Dunham Bush Inc Liquid refrigerant injection system for hermetic electric motor driven helical screw compressor
JPH0784871B2 (en) * 1986-06-12 1995-09-13 株式会社日立製作所 Vacuum exhaust device
JPH0727814Y2 (en) * 1987-04-24 1995-06-21 株式会社荏原製作所 Vacuum pump drive motor
JPS6429690A (en) * 1987-07-22 1989-01-31 Hitachi Ltd Shaft sealing device for screw vacuum pump
CA1325412C (en) * 1987-07-28 1993-12-21 Vernon K. Quarve Battery powered metering and dispensing unit
FR2637655B1 (en) * 1988-10-07 1994-01-28 Alcatel Cit SCREW PUMP TYPE ROTARY MACHINE
JP3584999B2 (en) * 1995-03-06 2004-11-04 株式会社小松製作所 ELECTRO-HYDRAULIC HYBRID MOTOR, ITS CONTROL DEVICE, AND ITS CONTROL METHOD
JP2005061421A (en) * 1995-03-20 2005-03-10 Ebara Corp Vacuum pump
JP2001304258A (en) * 2000-04-26 2001-10-31 Ebara Corp Magnetic bearing and magnetic levitation device
JP2003097475A (en) * 2001-09-21 2003-04-03 Nsk Ltd Bearing for dry vacuum pump
JP2003120529A (en) * 2001-10-17 2003-04-23 Toyota Industries Corp Gas feeder in vacuum pump
JP3729398B2 (en) * 2001-11-21 2005-12-21 アイシン精機株式会社 Roots type dry pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346882A (en) * 1993-06-07 1994-12-20 Hitachi Ltd Purge gas quantity control device for shaft seal of dry vacuum
JPH10159776A (en) * 1997-11-26 1998-06-16 Matsushita Electric Ind Co Ltd Vacuum pump
JP2000170680A (en) * 1998-09-30 2000-06-20 Aisin Seiki Co Ltd Vacuum pump
JP2003189529A (en) * 2001-12-14 2003-07-04 Hitachi Ltd Canned motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134427A1 (en) * 2009-05-20 2010-11-25 三菱重工業株式会社 Dry vacuum pump
JP2010270657A (en) * 2009-05-20 2010-12-02 Mitsubishi Heavy Ind Ltd Dry vacuum pump
WO2012014497A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石エネルギー株式会社 Exhaust gas processing system
CN103052435A (en) * 2010-07-30 2013-04-17 吉坤日矿日石能源株式会社 Exhaust gas processing system

Also Published As

Publication number Publication date
JPWO2005042979A1 (en) 2007-05-10
TW200525086A (en) 2005-08-01
CN1871436A (en) 2006-11-29
US20080038132A1 (en) 2008-02-14
EP1681469A1 (en) 2006-07-19
KR20060087599A (en) 2006-08-02

Similar Documents

Publication Publication Date Title
WO2005042979A1 (en) Rotary dry vacuum pump
WO2001007791A1 (en) Turbo fluid machinery and dry gas seal used for the machinery
TWI345031B (en) Feed pump
US20120051948A1 (en) Vacuum Pump
KR20070012282A (en) Evacuating apparatus
EP2564069B1 (en) Scroll pump
US5356275A (en) Device for supplying a multi-stage dry-running vacuum pump with inert gas
US5380171A (en) Turbo vacuum pump
JP3777490B2 (en) Liquid feeding device and control method thereof
US5501583A (en) Turbo vacuum pump
JP3000356B1 (en) Vacuum pump and vacuum device
WO2004083643A1 (en) Positive-displacement vacuum pump
KR20000011840A (en) Vacuum pump and Vacuum apparatus
JPH11303788A (en) Liquid feeding line pump
GB2440542A (en) Vacuum pump gearbox purge gas arrangement
EP3325808B1 (en) Liquid ring pump
CN211930431U (en) Anti-corrosion transmission motor
US20230292652A1 (en) Air seeder meter with air purge
JPS6345597Y2 (en)
JPH1193877A (en) Vacuum pump
WO2023000477A1 (en) Mounting seat, electric-motor mounting structure, and inline pump
JP2004176704A (en) Gear pump
JPH05133385A (en) Dry vacuum pump
JP2005256845A5 (en)
WO2003074876A1 (en) Gear pump

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031156.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515119

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067007644

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004792788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007644

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10595482

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10595482

Country of ref document: US