WO2005040694A1 - Posicionador tipo hexápodo para seguimiento solar de reflectores solares - Google Patents

Posicionador tipo hexápodo para seguimiento solar de reflectores solares Download PDF

Info

Publication number
WO2005040694A1
WO2005040694A1 PCT/ES2004/070090 ES2004070090W WO2005040694A1 WO 2005040694 A1 WO2005040694 A1 WO 2005040694A1 ES 2004070090 W ES2004070090 W ES 2004070090W WO 2005040694 A1 WO2005040694 A1 WO 2005040694A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
hexapod
concentrators
actuators
type positioner
Prior art date
Application number
PCT/ES2004/070090
Other languages
English (en)
French (fr)
Inventor
Emilio Ramiro Arcas
Juan De Blas Pombo
Miguel Sanchez Martin
Carlos Laviada Hernandez
Original Assignee
Ramem, S.A.
Besel, S.A.
Lidax Ingenieria, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ramem, S.A., Besel, S.A., Lidax Ingenieria, S.L. filed Critical Ramem, S.A.
Publication of WO2005040694A1 publication Critical patent/WO2005040694A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/11Driving means
    • F24S2030/115Linear actuators, e.g. pneumatic cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/15Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the object of the present invention is the coupling of a multi-axis positioner (hexapod type) integrated to a solar concentrator system (parabolic, heliostat, disks, ...) for solar tracking.
  • hexapod type mechanisms as a means of positioning solar reflectors and tracking the sun, which allows greater rigidity than other systems, achieving a very precise pointing.
  • it supports higher loads thus allowing to position larger reflectors. It also improves the support points of the reflector which minimizes pointing errors due to deformations thereof and optimizes the anchoring position of the concentrator to the hexapod.
  • the hexapod type positioner object of the invention is an easy transport, easy assembly and easy maintenance positioner.
  • the positioner supports different control systems
  • linear parabolic systems that concentrate the light along a line in which there is a tube with the working fluid of the thermal machine.
  • concentrators are heliostats, in which a field of reflectors is arranged that concentrate the light at a fixed point of a tower located at a certain distance.
  • disk systems that concentrate the light at a point through a disk with the curvature of a paraboloid.
  • concentration systems that are used in specific applications such as the double reflection system and the linear Fresnel system .
  • the heliostat system is the one that presents the greatest future prospects for the generation of energy in large quantities while the parabolic disc system is the one with the best prospects for the generation of energy in a timely and autonomous way.
  • a common point to any solar concetration system is the need to track the solar disk with relative precision and autonomously.
  • the most common tracking systems used by the concentrators are the "T" type systems allowing turning Azimuth and Elevation. This is achieved by two rotary motors arranged orthogonally on a rigid pedestal.
  • the efficiency of any solar concentration system depends directly on the size of the reflector, which creates the need to increase this size if you want to develop generating plants with sufficient efficiency.
  • the monitoring systems described above have limitations in terms of their rigidity and structural integrity for reflector sizes greater than 100 m2. They present problems of pointing, focus and fatigue resulting from excessive deformations caused by the wind and its own weight. These limitations make it necessary to increase the number of reflector systems in the heliostat fields, increasing installation and maintenance costs.
  • the objective of the present invention is that of overcoming the previous inconveniences, of rigidity, of structural integrity, of excessive deformations, of limitations of size, of problems of fatigue and approach, using for this a hexapod type positioner, achieving more robust, conceptually simple positioning systems that they have a very precise aim, greater rigidity, they allow to improve the focus of the concentrator It is a low weight system with a simple foundation, it also allows to support greater loads of moment, for presenting a greater area of action.
  • the system object of the present invention would allow to increase the size of the heliostat reflectors by improving their performance. In the same way, it would allow the replacement of the cradle-type positioners for concentrator disk systems, reducing their civil works costs. It would also allow the greater performance of a heliostat field by allowing a greater installation of reflective elements, since the use of hexapods allows a greater density of equipment per unit area, by optimally controlling the generation of shadows. Hexapods are known as those shown in patent application WO 02/097920, which describes a hexapod for aiming antennas, telescopes or optical measuring or telecommunication devices.
  • hexapods as means of positioning and support of solar reflectors, due to the complex solicitations and technical requirements to which they would be subjected in the case of solar applications of the size studied in this proposal .
  • the objective of the present invention is the coupling of an integrated last position (hexapod) to a solar concentrator system for tracking the sun's path, specially designed for the support and positioning of solar reflectors.
  • the hexapod is designed according to the technical requirements to which it will be subjected.
  • the basic parameters used for the design of the hexapod are: - The radius of the circumference where the centers of the kneecaps of the lower platform are located. The radius of the circumference where the centers of the kneecaps of the upper platform are located. - The distance between the kneecaps of the lower platform. - The distance between the kneecaps of the upper platform. - The length of the actuators in nominal position.
  • the kinematic contour conditions are defined by the range of movements that you want to obtain with the positioning system.
  • the ranges of movement will be determined by the minimum elevation that is to be obtained, or what is the same as the daily use that the collector system wants to give.
  • the boundary conditions of loads are determined, both by the attitudes to be obtained with the positioning system and with the loads that it must bear.
  • the maximum loads will be determined by the weight of the reflector system and the maximum wind speed, with which the system must be operational. With these maximum loads and the envelope of attitudes the maximum load of the actuators is determined.
  • the hexapod system can be optimized for maximum resolution, maximum movement envelope or maximum load on the upper platform.
  • the envelope of movements and wind loads were dimensioning parameters.
  • Figures 1 shows a side view of the reflector in a completely horizontal position.
  • Figure 2 Shows the previous set with the reflector, with an elevation angle of 0 o .
  • Figure 3 Shows an example of kneecaps for the hexapod.
  • the hexapod will be attached to the ground by means of an anchor to a foundation of a certain depth. On these structures are the kneecaps (3) of the base of the hexapod. The number of floor fixing structures will be three, on each of them there is a pair of ball joints (3).
  • the ball joints (3) are sized to support a load on its input shaft with a safety factor of at least 1.2.
  • the ball joints are constituted by a base (4) attached to a floor fixing structure by means of screws.
  • Each of the ball joints has two bearings (5), a hardware (6) that has a lower part of revolution that serves as an axis for the rotation system, while the upper part is the base for rotation along an axis perpendicular to the previous one. It also has two friction bushings (7) as well as a bolt (8).
  • the actuators (2) will be defined by their stroke, by the maximum length with the actuator retracted, by the tensile load, the compression load and the working pressure. They can be of any type. The number of concentrators to be installed in the park is what determines that one type of actuator or another is more economical.

Abstract

Posicionador tipo hexápodo diseñado y pensado para su uso como medio posicionador de seguimiento solar de concentradores solares (1), constando de unos medios de fijación al suelo, de unas rótulas (3) de unión entre los actuadores (2) y los medios de fijación al suelo, donde para el diseño y dimensionamiento de los hexápodos, se tienen en cuenta las características de contorno como el tamaño y peso del conentrador, así como, las solicitaciones máximas de tipo cinemático y dinámico, datos que influyen en parámetros de diseño del hexápodo, como radio de la circunferencia donde están situadas las rótulas de la plataforma inferior y superior, la distancia entre rótulas (3) de la plataforma inferior y la superior, la longitud de los actuadores (2) y la carrera de los actuadores (2).

Description

POSICIONADOR TIPO HEXAPODO PARA SEGUIMIENTO SOLAR DE REFLECTORES SOLARES
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
Es objeto de la presente invención el acoplamiento de un posicionador multieje (tipo hexápodo) integrado a un sistema concentrador solar (parabólico, helióstato, discos,...) para seguimiento solar.
Caracteriza a la presente invención la aplicación de mecanismos tipo hexápodos como medio de posicionamiento de reflectores solares y de seguimiento del sol, lo que permite una mayor rigidez que otros sistemas, consiguiendo un apuntamiento muy preciso. Por otro lado, soporta mayores cargas permitiendo así posicionar reflectores más grandes. Además mejora los puntos de soporte del reflector lo que minimiza los errores de apuntamiento debidos a las deformaciones del mismo y optimiza la posición de anclaje del concentrador al hexápodo.
El posicionador tipo hexápodo objeto de la invención es un posicionador de fácil transporte, de fácil montaje y de fácil mantenimiento.
El posicionador admite diferentes sistemas de control
(hidráulico, eléctrico, electrónico, neumático, etc.) y actuadores diversos (neumáticos, eléctrico, hidráulicos, etc.) de los ya existentes en el mercado, lo cual añade versatilidad en su diseño.
Por lo tanto, la presente invención se circunscribe dentro del ámbito de los concentradores solares y de forma más particular de los sistemas de seguimiento solares, o posicionadores .
ANTECEDENTES DE LA INVENCIÓN
Existen diferentes sistemas de generación de energía eléctrica mediante la tecnología de concentración solar.
Pudiéndose diferenciar por el método de concentración, sistema de seguimiento, factores de concentración, temperaturas conseguidas, etc.
Entre estos sistemas se encuentran los sistemas parabólicos lineales que concentran la luz a lo largo de una línea en la que se encuentra un tubo con el fluido de trabajo de la máquina térmica. Otro tipo de concentradores son los helióstatos, en los cuales se dispone un campo de reflectores que concentran la luz en un punto fijo de una torre situada a determinada distancia. Por otro lado existen sistemas de disco que concentran la luz en un punto mediante un disco con la curvatura de un paraboloide.. Finalmente existen otros sistemas de concentración que son utilizados en aplicaciones puntuales como son el sistema de doble reflexión y el sistema de Fresnel lineal. De estos sistemas, el sistema de helióstato es el que presenta mayores perspectivas de futuro para la generación de energía en grandes cantidades mientras que el sistema de disco parabólico es el que mejores perspectivas presenta para la generación de energía de forma puntual y autónoma. Un punto común a cualquier sistema de concetración solar es la necesidad de hacer un seguimiento del disco solar con relativa precisión y de forma autónoma. Los sistemas de seguimiento más comunes empleados por los concentradores, son los sistemas de tipo "T" permitiendo girar en Acimut y en Elevación. Esto se consigue mediante sendos motores rotativos dispuestos ortogonalmente en un pedestal rígido . La eficacia de cualquier sistema de concentración solar depende directamente del tamaño del reflector lo que crea la necesidad de aumentar dicho tamaño si se quieren desarrollar plantas generadoras con suficiente eficiencia. Sin embargo, los sistemas de seguimiento anteriormente descritos presentan limitaciones en cuanto a su rigidez y su integridad estructural para tamaños de reflectores superiores a 100 m2. Presentan problemas de apuntamiento, enfoque y fatiga resultado de deformaciones excesivas originadas por el viento y por su propio peso. Estas limitaciones obligan a aumentar el número de sistemas reflectores en los campos de helióstatos incrementando los costes de instalación y mantenimiento.
En algunas ocasiones se emplean los sistemas tipo cuna que permiten el movimiento de elevación, mientras que a su vez todo el sistema puede girar sobre una plataforma. Este tipo de sistema de seguimiento requiere de instalaciones de obra civil muy voluminosas y costosas habiéndose aplicado en casos muy puntuales, más bien con carácter experimental Pese a que los sistemas anteriormente descritos representan la forma más sencilla de seguimiento, la forma de sujeción no es buena desde un punto de vista estructural, ya que por sus propias características constructivas no permite minimizar las deformaciones por flexión de la parte reflectora, presentando malas prestaciones frente a las cargas debidas al propio peso del reflector y a las fuerzas aerodinámicas, provocando un descentramiento del sistema. Por lo tanto, el objetivo de la presente invención, es el de superar los anteriores inconvenientes, de rigidez, de integridad estructural, de deformaciones excesivas, de limitaciones de tamaño, de problemas de fatiga y enfoque, empleando para ello un posicionador tipo hexápodo, consiguiendo unos sistemas de posicionamiento más robustos, simples conceptualmente, que presentan un apuntamiento muy preciso, una mayor rigidez, permiten mejorar el enfoque del concentrador. Es un sistema de bajo peso con una cimentación sencilla, también permite soportar mayores cargas de momento, por presentar una zona de actuación mayor .
El sistema objeto de la presente invención permitiría aumentar el tamaño de los reflectores de helióstatos mejorando el rendimiento de los mismos. De la misma manera permitiría reemplazar a los posicionadores tipo cuna para los sistemas de disco concentrador disminuyendo los costes de obra civil de los mismos. También permitiría el rendimiento mayor de un campo de helióstatos al permitir una mayor instalación de elementos reflectivos, ya que por el empleo de los hexápodos se permite una mayor densidad de equipos por unidad de área, al controlar de forma óptima la generación de sombras . Se conocen hexápodos como los mostrados en la solicitud de patente WO 02/097920, donde se describe un hexápodo para apuntamiento de antenas, de telescopios o de dispositivos ópticos de medida o de telecomunicación. Pero en ningún caso se hace mención alguna de la utilización de los hexápodos como medios de posicionamiento y soporte de los reflectores solares, debido a las complejas solicitaciones y requerimientos técnicos a los que estarían sometidos en el caso de aplicaciones solares del tamaño estudiado en esta propuesta. Nadie, ha definido las características estructurales de diseño que deben presentar los hexápodos para poder soportar tanto los requerimientos cinemáticos como dinámicos de los reflectores, como las condiciones de contorno, como para emplear un hexápodo como medio de posicionamiento de un reflector que supere los anteriores inconvenientes .
DESCRIPCIÓN DE LA INVENCIÓN
El objetivo de la presente invención es el acoplamiento de un posicionador ultieje (hexápodo) integrado a un sistema concentrador solar para el seguimiento de la trayectoria del sol, especialmente diseñado para el soporte y posicionamiento de reflectores solares .
El hexápodo está diseñado de acuerdo a los requerimientos técnicos a los que se va a ver sometido. Los parámetros básicos empleados para el diseño del hexápodo son: - El radio de la circunferencia donde están situados los centros de las rótulas de la plataforma inferior. El radio de la circunferencia donde están situados los centros de las rótulas de la plataforma superior. - La distancia entre las rótulas de la plataforma inferior. - La distancia entre las rótulas de la plataforma superior . - La longitud de los actuadores en posición nominal.
Para el diseño de un hexápodo es usual el fijar la relación entre los radios de las plataformas con las condiciones de contorno, giros máximos, resoluciones y carreras, para luego ver la influencia de otros como la distancia entre rótulas o el centro de rotación. El procedimiento de diseño de un hexápodo los pasos a seguir son los siguientes . - Determinación de las condiciones de contorno desde un punto de vista geométrico, cinemático y de cargas. Las condiciones de contorno geométricas estarán determinadas por los puntos de interface de la plataforma superior, inferior y la envuelta máxima del mecanismo. En el caso de un hexápodo para aplicaciones solares, los puntos de interface de la plataforma superior están determinados por los puntos de soporte que minimizan las deformaciones del reflector debido a su propio peso. Las condiciones de contorno cinemáticas están definidas por el rango de movimientos que se quiere obtener con el sistema posicionador. En el caso de un hexápodo para aplicaciones solares, los rangos de movimiento los determinará la elevación mínima que se quiera obtener, o lo que es lo mismo el aprovechamiento diario que se quiera dar al sistema colector. Las condiciones de contorno de cargas están determinadas, tanto por las actitudes a obtener con el sistema posicionador como con las cargas que debe soportar. En el caso de un hexápodo para aplicaciones solares, las cargas máximas las determinarán el peso del sistema reflector y la máxima velocidad del viento, con la cual el sistema debe ser operativo. Con estas cargas máximas y la envuelta de actitudes se determina la carga máxima de los actuadores. - Una vez determinadas todas las condiciones de contorno, se determina que parámetro será dimensionante en el caso del hexápodo. El sistema hexápodo podrá optimizarse para obtener máxima resolución, máxima envuelta de movimientos o máxima carga sobre la plataforma superior. En el caso del objeto de la invención se tuvieron como parámetros dimensionantes la envuelta de movimientos y las cargas del viento .
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de sus características, se acompaña a la presente memoria descriptiva, de un juego de planos en cuyas figuras, de forma ilustrativa y no limitativa, se representan los detalles más significativos de la invención. Figuras 1 muestra una vista lateral del reflector en posición completamente horizontal.
Figura 2. Muestra el conjunto anterior con el reflector, con un ángulo de elevación de 0o.
Figura 3. Muestra un ejemplo de rótulas para el hexápodo .
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras se describe seguidamente un modo de realización preferente de la invención propuesta.
En las figuras 1 y 2 observamos cómo el reflector (1) es posicionado y soportado por un hexápodo que consta de una serie de actuadores (2) articulados en sus bases mediante rótulas (3) .
El hexápodo estará unido al suelo por medio de un anclaje a una cimentación de una determinada profundidad. Sobre estas estructuras se encuentran las rótulas (3) de la base del hexápodo. El número de estructuras de fijación al suelo serán tres, sobre cada una de ellas se dispone una pareja de rótulas (3) .
Las rótulas (3) están dimensionadas para soportar una carga en su eje de entrada con un factor de seguridad de al menos 1,2. Las rótulas están constituidas por una base (4) unida a una estructura de fijación al suelo mediante tornillos. Cada una de las rótulas cuenta con dos rodamientos (5) , de un herraje (6) que tiene una parte inferior de revolución que sirve de eje para el sistema de rotación, mientras que la parte superior es la base para la rotación según un eje perpendicular al anterior . También cuenta con dos casquillos de fricción (7) así como con un bulón (8) .
Los actuadores (2) vendrán definidos por su carrera, por la longitud máxima con el actuador retraído, por la carga de tracción, la carga de compresión y la presión de trabajo. Podrán ser de cualquier tipo. Siendo el número de concentradores a instalar en el parque lo que determine que sea más económico un tipo de actuador u otro.
No se considera necesario hacer más extensa esta descripción para que cualquier experto en la materia comprenda el alcance de la invención y las ventajas que de la misma se derivan.
Los materiales, forma tamaño y disposición de los elementos serán susceptibles de variación siempre y cuando no alteren la esencialidad del invento. Los términos en que se ha descrito esta memoria deberán ser tomados siempre en sentido amplio y no limitativo.

Claims

REIVINDICACIONES
1.- Posicionador tipo hexápodo para el seguimiento solar de concentradores solares caracterizado porque consta de unos medios de fijación al suelo mediante rótulas, así como unos actuadores para el seguimiento solar del concentrador.
2. - Posicionador tipo hexápodo para el seguimiento solar de concentradores solares, según la reivindicación 1 caracterizado porque el dimensionamiento del hexápodo se tienen en cuenta los siguientes f ctores : El radio de la circunferencia donde están situados los centros de las rótulas de la plataforma inferior. El radio de la circunferencia donde están situados los centros de las rótulas de la plataforma. superior . - Distancia entre las rótulas de la plataforma inferior Distancia entre las rótulas de la plataforma superior. Carrera de los actuadores . - Las condiciones de contorno, como geometría del reflector . - Las posiciones extremas del movimiento. - Las cargas que ha de soportar la estructura posicionadora debido a la carga que efectúa el viento sobre la estructura reflectante, especialmente el efecto suelo en posición de supervivencia (posición horizontal del concentrador) .
3.- Posicionador tipo hexápodo para el seguimiento solar de concentradores, según la reivindicación 2, caracterizado por contar con unas rótulas ancladas a la cimentación.
4. - Posicionador tipo hexápodo para el seguimiento solar de concentradores, según la reivindicación 2, caracterizado porque con objeto de evitar interferencias entre el reflector con las patas del hexápodo cuenta éste con un desplazamiento lateral mínimo.
5. - Posicionador tipo hexápodo para el seguimiento solar de concentradores, según la reivindicación 2, caracterizado porque uno o más de los actuadores en sus ejes soporte no sea extensible o retráctil limitándose a estar articulado, y así, reducir los costes de fabricación y complejidad de controlar su extensión, posición y gobierno.
PCT/ES2004/070090 2003-10-27 2004-10-26 Posicionador tipo hexápodo para seguimiento solar de reflectores solares WO2005040694A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302500 2003-10-27
ES200302500A ES2231026A1 (es) 2003-10-27 2003-10-27 Posicionador tipo hexapodo para seguimiento solar de reflectores solares.

Publications (1)

Publication Number Publication Date
WO2005040694A1 true WO2005040694A1 (es) 2005-05-06

Family

ID=34507899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070090 WO2005040694A1 (es) 2003-10-27 2004-10-26 Posicionador tipo hexápodo para seguimiento solar de reflectores solares

Country Status (2)

Country Link
ES (1) ES2231026A1 (es)
WO (1) WO2005040694A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028268A1 (de) * 2007-06-15 2008-12-18 Schmid, Friedrich Vorrichtung zur Energieerzeugung durch Sonneneinstrahlung
WO2010146208A3 (es) * 2009-06-19 2012-01-12 Electrotecnica Industrial Y Naval, S.L. Seguidor solar
WO2012071404A1 (en) * 2010-11-24 2012-05-31 Devillier William J Solar collector positioning apparatus
WO2014039083A1 (en) * 2012-09-07 2014-03-13 Gies Mark Ground mounted solar module integration system
EP3064863A1 (en) * 2015-03-05 2016-09-07 Ricardo Lozano Peña Mounting and canting system of reflective surfaces

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643963A1 (de) * 1986-12-22 1987-12-17 Krupp Gmbh Traggestell eines reflektors
DE19927839A1 (de) * 1999-06-18 2000-12-28 Winfried Brenkmann Tragkonstruktion für eine Vorrichtung zur Konzentration von Sonnenstrahlen
WO2002097920A1 (fr) * 2001-05-31 2002-12-05 In-Snec Procede d'orientation d'une tourelle hexapode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229941A (en) * 1962-06-04 1966-01-18 Suliteanu Menahem Antenna support
EP0227930B1 (de) * 1985-11-15 1990-08-08 Siemens Aktiengesellschaft Tragegestell für eine Satellitenfunk-Parabolreflektorantenne
EP0266026A1 (en) * 1986-08-01 1988-05-04 HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research Tracking antenna mount
DE4117538C1 (es) * 1991-05-29 1992-07-09 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
HU9302394D0 (en) * 1993-08-23 1993-12-28 Goede Equipment for utilizing solar energy, in particular generating electric power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643963A1 (de) * 1986-12-22 1987-12-17 Krupp Gmbh Traggestell eines reflektors
DE19927839A1 (de) * 1999-06-18 2000-12-28 Winfried Brenkmann Tragkonstruktion für eine Vorrichtung zur Konzentration von Sonnenstrahlen
WO2002097920A1 (fr) * 2001-05-31 2002-12-05 In-Snec Procede d'orientation d'une tourelle hexapode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028268A1 (de) * 2007-06-15 2008-12-18 Schmid, Friedrich Vorrichtung zur Energieerzeugung durch Sonneneinstrahlung
WO2010146208A3 (es) * 2009-06-19 2012-01-12 Electrotecnica Industrial Y Naval, S.L. Seguidor solar
WO2012071404A1 (en) * 2010-11-24 2012-05-31 Devillier William J Solar collector positioning apparatus
CN103370582A (zh) * 2010-11-24 2013-10-23 威廉·J·帝维利尔 太阳能收集器定位装置
US9027545B2 (en) 2010-11-24 2015-05-12 William J. DeVillier Solar collector positioning apparatus
WO2014039083A1 (en) * 2012-09-07 2014-03-13 Gies Mark Ground mounted solar module integration system
US9010042B2 (en) 2012-09-07 2015-04-21 Panelclaw, Inc. Ground mounted solar module integration system
EP3064863A1 (en) * 2015-03-05 2016-09-07 Ricardo Lozano Peña Mounting and canting system of reflective surfaces
WO2016139343A1 (en) 2015-03-05 2016-09-09 Ricardo Lozano Peña Reflective surface canting system
CN108633302A (zh) * 2015-03-05 2018-10-09 R·洛萨诺·佩纳 反射表面倾斜系统
CN108633302B (zh) * 2015-03-05 2020-09-08 R·洛萨诺·佩纳 反射表面倾斜系统

Also Published As

Publication number Publication date
ES2231026A1 (es) 2005-05-01

Similar Documents

Publication Publication Date Title
WO2008084121A1 (es) Seguidor solar bidireccional
ES2495590B1 (es) Mecanismo de giro azimutal para seguidores solares
ES2758188T3 (es) Seguidor solar con dispositivo reductor de espacio libre
US20160010789A1 (en) Single-axis drive system and method
WO2008096029A1 (es) Seguidor solar hidráulico de dos ejes
US20090050191A1 (en) System and Method for Solar Tracking
ES2389798B2 (es) Seguidor solar para la orientación de paneles solares
ES2658390B2 (es) Mecanismo de giro azimutal y de elevación para seguidor solar
ES2332117B1 (es) Sistema de seguimiento solar para captadores de energia solar.
ES2387775B1 (es) Seguidor solar.
WO2005040694A1 (es) Posicionador tipo hexápodo para seguimiento solar de reflectores solares
ES2351919A1 (es) Seguidor solar para módulos solares fotovoltáicos de alta concentración de tipo giratorio para cubierta y huertos solares.
ES2541600T3 (es) Concentrador solar con sistema de soporte y seguimiento solar
ES2453716B1 (es) Estructura para sistema de concentración solar puntual de tipo disco, y sistema de concentración que incorpora dicha estructura
ES1061392U (es) Posicionador tipo hexapodo para seguimiento solar de reflectores solares.
ES2783725B2 (es) Sistema de concentración solar
ES2334187B1 (es) Seguidor solar de tres ejes de gran superficie.
ES2849598T3 (es) Helióstato de simetría central y central solar con un receptor y una pluralidad de helióstatos
ES2906675B2 (es) Soporte fotovoltaico
ES1264624U (es) Planta solar que comprende una torre central y un campo de heliostatos, y heliostato de uso en dicha planta solar
ES2316271B1 (es) Seguidor solar.
WO2010146208A2 (es) Seguidor solar
ES2332084A1 (es) Seguidor solar basado en cinematica paralela de accionamiento en linea.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase