WO2005040666A1 - アルミニウム製軽量圧力容器 - Google Patents

アルミニウム製軽量圧力容器 Download PDF

Info

Publication number
WO2005040666A1
WO2005040666A1 PCT/JP2004/016162 JP2004016162W WO2005040666A1 WO 2005040666 A1 WO2005040666 A1 WO 2005040666A1 JP 2004016162 W JP2004016162 W JP 2004016162W WO 2005040666 A1 WO2005040666 A1 WO 2005040666A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
aluminum
fine carbon
lightweight pressure
carbon fibers
Prior art date
Application number
PCT/JP2004/016162
Other languages
English (en)
French (fr)
Inventor
Susumu Katagiri
Takeshi Morimoto
Original Assignee
Mitsubishi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corporation filed Critical Mitsubishi Corporation
Priority to JP2005515051A priority Critical patent/JPWO2005040666A1/ja
Publication of WO2005040666A1 publication Critical patent/WO2005040666A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an aluminum lightweight pressure vessel for filling various kinds of gas, fuel gas such as liquid oil (LP) gas and natural gas, particularly hydrogen gas for a fuel cell and the like.
  • the present invention relates to an aluminum metal lightweight pressure vessel suitable for mounting a moving body such as a vehicle, a ship, an aircraft, and a portable device.
  • Containers filled with various gases such as fuel gas such as LP gas and natural gas, oxygen gas, nitrogen gas, and carbon dioxide gas are generally made of steel due to their pressure resistance and the like. Containers are being used. However, in recent years, it has been increasingly required to mount a pressure vessel filled with these gases on a moving body such as a vehicle, a ship, an aircraft, or a portable device. In such a case, it is necessary to reduce the weight of the pressure vessel as much as possible.
  • fuel gas such as LP gas and natural gas
  • oxygen gas oxygen gas
  • nitrogen gas nitrogen gas
  • carbon dioxide gas carbon dioxide gas
  • Patent Document 1 In order to reduce the weight of such a pressure vessel, for example, as disclosed in Patent Document 1 to Patent Document 3, a lightweight metal vessel made of aluminum or titanium is used instead of a conventional steel vessel. Some of the used lightweight pressure vessels are used. In addition, for further weight reduction, an aluminum container with a reduced thickness was used, and fibers such as glass fiber and carbon fiber impregnated with resin were wound around the aluminum container to reinforce the strength.
  • a lightweight pressure vessel called a so-called composite vessel is known from Patent Document 1 and the like.
  • the aluminum composite container has an extremely lightweight feature of approximately 1Z3 of a conventional steel pressure container and approximately 1Z2 of an aluminum metal container.
  • this composite container requires time-consuming and time-consuming work, for example, by winding glass fibers impregnated with epoxy resin in a hoop wrap or helical wrap shape around an aluminum container by a filament winding method or the like. Need.
  • the reinforcing effect is greater than that of glass fiber! /
  • the pressure container must be used in a humid atmosphere due to its conductivity. In this case, a serious problem of contact corrosion occurs at the contact interface between carbon fiber and aluminum metal. In order to prevent this, it is necessary to provide a means for insulating the carbon fiber and aluminum, which is a factor that further increases the cost of the composite container.
  • Patent Document 1 JP-A-11-104762
  • Patent Document 2 JP-A-2000-234699
  • Patent Document 3 JP 2001-349494 A
  • Patent document 4 JP-A-10-267195
  • the present invention provides various types of gas such as LP gas and natural gas, particularly fuel cells, which are suitable for mounting on moving objects such as vehicles, ships, aircraft, and portable devices.
  • gas such as LP gas and natural gas, particularly fuel cells, which are suitable for mounting on moving objects such as vehicles, ships, aircraft, and portable devices.
  • the purpose is to provide a lightweight and high-strength lightweight metallic aluminum pressure vessel for filling hydrogen gas and the like for use.
  • the present inventor has repeatedly studied to achieve the above object, and found that the above object can be achieved by the present invention having the following gist.
  • Fine carbon fiber strength The lightweight pressure vessel according to the above (1) or (2), which is heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C. or more in the presence of a boron compound.
  • Fine carbon fiber strength The lightweight pressure vessel according to any one of (1) to (3) above, which has a coating layer or a treatment layer on its surface for increasing affinity with aluminum.
  • the lightweight pressure vessel according to the present invention has a higher strength than a so-called organic carbon fiber having a fiber diameter of 5 to 10 m, which is obtained by heat-treating and carbonizing fibers such as PAN, pitch, and cellulose. It has extremely high elastic modulus and is made of a material in which fine carbon fibers are uniformly dispersed and contained in aluminum metal, so it is extremely lightweight and has high mechanical strength such as impact strength. In addition, since the fine carbon fibers are uniformly dispersed in the aluminum metal and integrated, and have high conductivity, the problem of corrosion as occurs in the above-described composite container does not occur.
  • the fine carbon fiber has a coating layer or a treatment layer, such as a chemical vapor deposition layer, a plasma vapor deposition layer, a corona discharge treatment layer, or an acid treatment layer, which enhances affinity with aluminum metal, on its surface.
  • a coating layer or a treatment layer such as a chemical vapor deposition layer, a plasma vapor deposition layer, a corona discharge treatment layer, or an acid treatment layer, which enhances affinity with aluminum metal, on its surface.
  • the pressure vessel of the present invention is further improved in mechanical strength, and as a result, the pressure vessel can be formed to be thinner and more material.
  • a mobile object such as a vehicle, a ship, an aircraft, or a portable device for filling various gases such as LP gas and natural gas, in particular, hydrogen gas for fuel cells and the like.
  • a novel metallic aluminum lightweight pressure vessel suitable for mounting is provided.
  • the fine carbon fiber used in the present invention has a fiber diameter of 0.5 to 500 nm, a fiber length of 1000 ⁇ m or less, preferably has an aspect ratio of 3 to 1000, and preferably has a carbon hexagonal mesh surface.
  • a fine carbon fiber having a multilayer structure in which cylinders are arranged concentrically and whose central axis is a hollow structure is used.
  • Large carbon fiber is used for conventional PAN, pitch and cellulose. This fiber is very different from conventional carbon fiber with a fiber diameter of 5 to 15 m, obtained by heat-treating fibers such as fiber and rayon.
  • the fine carbon fibers used in the present invention not only differ from the conventional carbon fibers in fiber diameter / fiber length, but also in structural differences. As a result, it is extremely excellent in physical properties such as electrical conductivity and thermal conductivity.
  • the fine carbon fiber used in the present invention has a fiber diameter of less than 0.5 nm, the strength of the obtained composite material becomes insufficient. Conductivity etc. decrease. On the other hand, if the fiber length is larger than 1000 / zm, it is difficult to disperse the fine carbon fibers uniformly, so that the composition of the material becomes non-uniform and the mechanical strength of the pressure vessel decreases.
  • the fine carbon fiber used in the present invention is particularly preferably one having a fiber diameter of 10 to 200 nm, a fiber length of S3-300 / ⁇ , and preferably an aspect ratio of 3-500. In the present invention, the fiber diameter / fiber length of the fine carbon fiber can be measured by an electron microscope.
  • a preferred fine carbon fiber used in the present invention is a carbon nanotube.
  • This carbon nanotube is also called a graphite whisker, a filamentous carbon, a carbon fiber, or the like. In the present invention, any of them can be used. However, multi-walled carbon nanotubes are preferred because they can provide high mechanical strength and are economically advantageous.
  • the carbon nanotubes used in the present invention are, for example, an arc discharge method, a laser evaporation method as described in "Basics of Carbon Nanotubes" (Corona Corp., pp. 23-57, 1998). It is manufactured by a method and a thermal decomposition method.
  • the carbon nanotube has a fiber diameter of preferably 0.5-500 nm, a fiber length of preferably 1-1500 m, and preferably an aspect ratio of -500.
  • a particularly preferable fine carbon fiber in the present invention has a relatively large fiber diameter and fiber length! / ⁇ Vapor-grown carbon fiber.
  • a vapor-grown carbon fiber is also referred to as VGCF (Vapor Grown Carbon Fiber). Beneath And gas phase pyrolysis together with hydrogen gas.
  • This vapor grown carbon fiber has a fiber diameter of preferably 50 to 300 nm, a fiber length of preferably 3 to 300 ⁇ m, and preferably an aspect ratio of 3 to 500. This VGCF is excellent in terms of ease of manufacture, handling, and properties.
  • the fine carbon fiber used in the present invention is preferably heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C or more, preferably 2500 to 3500 ° C. This greatly improves the chemical stability and contributes to the weight reduction of the pressure vessel.
  • argon, helium, or nitrogen gas is preferably used as the non-oxidizing atmosphere.
  • a boron compound such as boron carbide, boron oxide, boric acid, borate, boron nitride, or an organic boron compound coexists, the heat treatment effect is further improved and the heat treatment temperature is lowered. , Can be advantageously implemented.
  • This boron compound is preferably present in the heat-treated fine carbon fiber so that the boron content is 0.01 to 10% by mass, preferably 0.1 to 5% by mass.
  • the fine carbon fiber used in the present invention preferably has a coating layer or a treatment layer on the surface thereof for enhancing affinity with aluminum.
  • This improves the so-called wettability and adhesiveness of the fine carbon fibers to the aluminum, makes the dispersion of the fine carbon fibers in the aluminum metal more uniform, and results in an integrated material. Contributes to improvement of container strength.
  • the covering layer or the treatment layer has at least one force selected from the group consisting of a chemical vapor deposition (CVD) layer, a plasma deposition (PVCD) layer, a corona discharge treatment layer, and an acid treatment layer.
  • the coating layer of the CVD layer or the PVCD layer is preferably used as a metal such as nickel, titanium, zirconium, tantalum, niobium, molybdenum, silicon carbide, nitride, boride, or acid. Daggers and the like are preferred.
  • the thickness of the CVD layer or the PVC D layer is preferably 0.1 to 10% of the fine carbon fiber diameter.
  • the affinity of the surface of the fine carbon fiber with aluminum can also be coated by bonding metal fine particles such as nickel and titanium to the surface of the fine carbon fiber by known means.
  • metal fine particles such as nickel and titanium
  • fine carbon fibers are rotated at high speed in a container having an inner wall surface made of a metal such as nickel or titanium, and are stirred and mixed.
  • a high compression force and a high impact force are applied to the fine carbon fibers, and the fine carbon fibers collide with the metal inner wall.
  • the fine metal particles forming the inner wall of the container adhere to and bind to the surface of the fine carbon fiber, and the surface is coated.
  • the pressure vessel When manufacturing a pressure vessel from fine carbon fibers and aluminum metal, a mixture of both is formed, and the pressure vessel is manufactured from the mixed material.
  • aluminum metal can be used as an alloy such as aluminum titanium as the strength of aluminum metal alone.
  • the aluminum metal preferably has an average particle size of 0.5 to 100 Onm.
  • mixing ratio of the fine carbon fibers and aluminum in the present invention is important, the fine carbon textiles and aluminum, and carbon fibers 1 one 50 volume 0/0, the aluminum 50- 99 vol 0/0 Mix in proportions. If the amount of the fine carbon fibers is too large, the adhesion to the aluminum metal is deteriorated, and if the amount of the fine carbon fibers is too small, the mechanical strength of the obtained pressure vessel decreases, and the object of the present invention cannot be achieved. .
  • the fine carbon fiber and aluminum, and carbon fibers 3 40 vol 0/0, the mixing ratio of aluminum 60- 97 vol 0/0 are preferred, in particular, the fine carbon fibers 6 30 vol%, A mixing ratio of 70-94% by volume of aluminum is preferred.
  • the fine carbon fiber and aluminum are sufficiently mixed, but as a mixing means, a mixer such as a ball mill or a grinder is used to uniformly mix.
  • other metals such as titanium and lithium can be added to a mixture of fine carbon fibers and aluminum in order to improve mechanical strength, formability, hardness and the like.
  • a method for producing a pressure vessel by molding a mixture containing fine carbon fibers and aluminum can employ the same method as that for producing an existing aluminum metal pressure vessel.
  • a method in which a mixture of fine carbon fiber and aluminum powder is melted and a molten metal is poured into a mold in the shape of a pressure vessel to produce a molten metal or a method of producing a molten metal from a mixture of fine carbon fiber and aluminum metal.
  • the plate-shaped material is bent into a cylindrical shape, and then the body part welded in the longitudinal direction is welded to a hemispherical end plate made of a mixture of fine carbon fiber and aluminum metal.
  • the torso and the hemispherical end plate are not necessarily formed of the same material, but are formed of different materials. You can do it.
  • the lightweight pressure vessel of the present invention is a vapor pressure carbon fiber having a fiber diameter of 150nm, a fiber length of 4.5m, and an aspect ratio of 30 in an argon gas atmosphere at a temperature of 2800 ° C. Obtained by molding a mixture of 10% by volume of fine carbon fibers coated with nickel on the surface by CVD and 10% by volume of aluminum powder having an average particle size of 50 nm at a temperature of 1200 ° C.
  • a 10 liter capacity pressure vessel is 35 Kg and has a 350 Kg Zcm 2 pressure test pressure.
  • the weight of a steel pressure vessel is about 150 kg
  • the weight of an aluminum metal vessel is about 50 kg
  • the weight of an aluminum composite vessel is Since the weight is about 40 kg, it can be seen that the pressure vessel of the present invention is extremely lightweight.
  • the pressure vessel manufactured by the present invention is extremely lightweight as compared with the conventional pressure vessel, has the features of high mechanical strength such as impact strength, and has the characteristic of being corroded like a composite vessel. It does not have the problems described above, and its production cost is not large, so that it can be used for a very wide range of applications. That is, the lightweight pressure vessel of the present invention is used for a filling vessel for LP gas or natural gas, or a filling vessel for hydrogen gas or the like for a fuel cell, which is mounted on a vehicle such as a vehicle, a ship, an aircraft, or a portable device. In this case, the fuel efficiency of the moving object can be reduced and the space occupied can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 車輌、船舶、航空機、携帯機器などの移動体への搭載に適した、LPガスや天然ガス、燃料電池用の水素ガスなどの充填用アルミニウム金属軽量圧力容器を提供する。  金属アルミニウム50~99体積%と、繊維径0.5~500nm、繊維長1000μm以下を有し、かつ中心軸が空洞構造からなる微細炭素繊維1~50体積%とを含有し、上記微細繊維が金属アルミニウム中に均一に分散された材料からなることを特徴とする軽量圧力容器。微細炭素繊維は、好ましくは、その表面にアルミニウムとの親和性を高める被覆層または処理層を有する。

Description

明 細 書
アルミニウム製軽量圧力容器
技術分野
[0001] 本発明は、各種のガス、液ィ匕石油 (LP)ガスや天然ガスなどの燃料ガス、特に燃料 電池用の水素ガスなどを充填するためのアルミニウム製軽量圧力容器に関し、更に 詳しくは、車輛、船舶、航空機、携帯機器などの移動体の搭載に適したアルミニウム 金属製軽量圧力容器に関する。
背景技術
[0002] LPガスや天然ガスなどの燃料ガス、酸素ガス、窒素ガス、炭酸ガスなどの各種のガ スを充填する容器 (ボンべ)は、耐圧性などの関係上一般に鋼製の重量の大きい容 器が使用されている。しかし、近年、これらのガスを充填した圧力容器を車輛、船舶、 航空機、携帯機器などの移動体に搭載することが要求される場合が増大している。こ のような場合には、移動体の軽量ィ匕の必要性力 圧力容器に対してできるだけ軽量 化することが要求される。
[0003] このような圧力容器の軽量ィ匕のために、例えば、特許文献 1一特許文献 3などに開 示されるように、従来の鋼製容器に代わり、アルミニウムやチタン製の軽量金属容器 を使用した軽量圧力容器が一部使用されている。また、さらなる軽量ィ匕のために、肉 厚を薄くしたアルミニウム容器を使用し、強度の補強のためにその周囲を、榭脂を含 浸したガラス繊維や炭素繊維などの繊維を卷回した、所謂コンポジット容器と呼ばれ る軽量圧力容器が特許文献 1などにより知られている。
[0004] このアルミニウム製コンポジット容器は、従来の鋼製圧力容器の約 1Z3であり、また 、アルミニウム金属容器の約 1Z2という、極めて軽量である特長を有している。しかし 、一方では、このコンポジット容器は、例えば、エポキシ榭脂を含浸したガラス繊維を フィラメントワイデイング法などによりアルミニウム製容器の外周にフープラップやヘリ カルラップ状に巻きつけるという手間と時間の力かる作業を必要とする。さらに、この コンポジット容器では、強化繊維としてガラス繊維よりも補強効果の大き!/ヽ炭素繊維 を使用した場合には、その有する導電性のために、圧力容器を湿潤雰囲気で使用し た場合に、炭素繊維とアルミニウム金属との接触界面で接触腐食という重大な問題 が生じる。これを防ぐために炭素繊維とアルミニウムとのを絶縁処理をするための手 段が必要なため、このコンポジット容器のコストをさらに増大させる要因となっている。
[0005] 特に、近年、 LPガスや天然ガスを燃料とする移動体が既に走行しており、また、実 用化が間近 、水素ガスを燃料にする燃料電池車にぉ 、ては、燃費を下げるために 移動体の軽量ィ匕が従来にも増して要求され、これらのガスを充填するための少しでも 軽量な圧力容器が要求が増大して 、る。
特許文献 1:特開平 11—104762号公報
特許文献 2:特開 2000 - 234699号公報
特許文献 3:特開 2001—349494号公報
特許文献 4:特開平 10- 267195号公報
発明の開示
発明が解決しょうとする課題
[0006] 上記のような従来の状況に鑑み、本発明は、車輛、船舶、航空機、携帯機器などの 移動体に搭載に適した、 LPガスや天然ガスなどの各種のガス、特に、燃料電池用の 水素ガスなどを充填するための軽量で強度の大きい新規な金属アルミニウム製軽量 圧力容器の提供を目的とする。
課題を解決するための手段
[0007] 本発明者は、上記の目的を達成すべく研究を重ねたところ、以下を要旨とする本発 明により上記目的が達成されることが見出された。
(1)アルミニウム金属 50— 99体積0 /0と、繊維径 0. 5— 500nm、繊維長 1000 μ m以 下を有し、かつ中心軸が空洞構造力もなる微細炭素繊維 1一 50体積%とを含有し、 上記微細炭素繊維がアルミニウム金属中に均一に分散された材料力 なることを特 徴とする軽量圧力容器。
(2)微細炭素繊維が、気相法による炭素繊維、及び Z又はカーボンナノチューブで ある上記(1)に記載の軽量圧力容器。
(3)微細炭素繊維力 ホウ素化合物の存在下に非酸ィ匕性雰囲気にて 2300°C以上 の温度で熱処理されて!/、る上記(1)又は(2)に記載の軽量圧力容器。 (4)微細炭素繊維力 その表面にアルミニウムとの親和性を高める被覆層または処 理層を有する上記(1)一 (3)の ヽずれかに記載の軽量圧力容器。
(5)被覆層又は処理層が、化学蒸着層、又はプラズマ蒸着層である上記 (4)に記載 の軽量圧力容器。
(6)液化石油ガス、天然ガス、又は水素ガスが充填され、移動体に搭載される上記( 1)一(5)の軽量圧力容器。
(7)燃料電池用の水素ガスが充填される上記(1)一 (5)の軽量圧力容器。
発明の効果
[0008] 本発明による軽量圧力容器は、従来の PAN、ピッチ、セルロースなどの繊維を熱 処理し炭化することによって得られる、繊維径が 5— 10 mの所謂有機系炭素繊維 と比べて、強度や弾性率が格段に大き!、微細炭素繊維がアルミニウム金属中に均一 に分散して含有する材料から形成されているので、極めて軽量であり、衝撃強度など の機械的強度が大きい特長を有する。また、微細炭素繊維は、アルミニウム金属中 に均一に分散し一体ィ匕し、かつ大きい導電性を有するので、上記したコンポジット容 器で発生するような腐食の問題も生じない。
[0009] さらに、微細炭素繊維が、その表面に、化学蒸着層、プラズマ蒸着層、コロナ放電 処理層、又は酸処理層などのアルミニウム金属との親和性を高める被覆層又は処理 層を有することにより、本発明の圧力容器はさらに機械的強度が大きく向上し、その 結果、肉厚の薄 、材料力 圧力容器を形成できるので一層大きな軽量ィ匕が達成でき る。
[0010] 力べして本発明によれば、 LPガスや天然ガスなどの各種のガス、特に燃料電池用 の水素ガスなどを充填するための、車輛、船舶、航空機、携帯機器などの移動体に 搭載に適した新規な金属アルミニウム製軽量圧力容器が提供される。
発明を実施するための最良の形態
[0011] 本発明で使用される微細炭素繊維としては、繊維径 0. 5— 500nm、繊維長 1000 μ m以下で、好ましくはアスペクト比 3— 1000を有する、好ましくは炭素六角網面か らなる円筒が同心円状に配置された多層構造を有し、その中心軸が空洞構造の微 細炭素繊維が使用される。カゝかる微細炭素繊維は、従来の PAN、ピッチ、セルロー ス、 レーヨンなどの繊維を熱処理することによって得られる、繊維径が 5— 15 mの 従来のカーボンファイバーとは大きく異なるものである。本発明で使用される微細炭 素繊維は、従来のカーボンファイバーと比べて繊維径ゃ繊維長さが異なるだけでなく 、構造的にも大きく異なっている。この結果、導電性、熱伝導性などの物性の点で極 めて優れるものである。
[0012] 本発明で使用される微細炭素繊維は、その繊維径が 0. 5nmより小さい場合には、 得られる複合材料の強度が不十分になり、 500nmより大きいと、機械的強度、熱伝 導性などが低下する。また、繊維長が 1000 /z mより大きい場合には、微細炭素繊維 が均一に分散し難くなるため、材料の組成が不均一になり、圧力容器の機械的強度 が低下する。本発明で使用される微細炭素繊維は、繊維径が 10— 200nm、繊維長 力 S3— 300 /ζ πι、好ましくはアスペクト比が 3— 500を有するものが特に好ましい。な お、本発明において微細炭素繊維の繊維径ゃ繊維長は、電子顕微鏡により測定す ることがでさる。
[0013] 本発明で使用される好ましい微細炭素繊維は、カーボンナノチューブである。この カーボンナノチューブは、グラフアイトウィスカー、フィラメンタスカーボン、炭素フイブ リルなどとも呼ばれて 、るもので、チューブを形成するグラフアイト膜が一層である単 層カーボンナノチューブと、多層である多層カーボンナノチューブとがあり、本発明で はそのいずれも使用できる。しかし、多層カーボンナノチューブの方が、大きい機械 的強度が得られるとともに経済面でも有利であり好ましい。
[0014] 本発明で使用されるカーボンナノチューブは、例えば、「カーボンナノチューブの基 礎」(コロナ社発行、 23— 57頁、 1998年発行)に記載されるようにアーク放電法、レ 一ザ蒸発法及び熱分解法などにより製造される。カーボンナノチューブは、繊維径が 好ましくは 0. 5— 500nm、繊維長が好ましくは 1一 500 m、好ましくはアスペクト比 カ^ー 500のものである。
[0015] 本発明において特に好ましい微細炭素繊維は、上記カーボンナノチューブのうち で繊維径と繊維長が比較的大き!/ヽ気相法炭素繊維である。このような気相法炭素繊 維は、 VGCF (Vapor Grown Carbon Fiber)とも呼ばれ、特開 2003— 176327号公 報に記載されるように、炭化水素などのガスを有機遷移金属系触媒の存在下におい て水素ガスとともに気相熱分解することによって製造される。この気相法炭素繊維 (V GCF)は、繊維径が好ましくは 50— 300nm、繊維長が好ましくは 3— 300 μ m、好ま しくはアスペクト比が 3— 500のものである。そして、この VGCFは、製造しやすさや取 り扱 、性の点で優れて 、る。
[0016] 本発明で使用される微細炭素繊維は、 2300°C以上、好ましくは 2500— 3500°C の温度で非酸化性雰囲気にて熱処理することが好ましぐこれにより、その機械的強 度、化学的安定性が大きく向上し、圧力容器の軽量化に貢献する。非酸化性雰囲気 は、アルゴン、ヘリウム、窒素ガスが好ましく使用される。この熱処理において、炭化 ホウ素、酸化ホウ素、ホウ酸、ホウ酸塩、窒化ホウ素、有機ホウ素化合物などのホウ素 化合物を共存させた場合には、上記熱処理効果が一層向上するとともに、熱処理温 度も低下し、有利に実施できる。このホウ素化合物は、熱処理された微細炭素繊維 中にホウ素含有量が 0. 01— 10質量%、好ましくは 0. 1— 5質量%になるように存在 させるのが好ましい。
[0017] さらに、本発明で使用される微細炭素繊維は、その表面にアルミニウムとの親和性 を高める被覆層又は処理層を有することが好ましい。これにより、微細炭素繊維のァ ルミ-ゥムへの 、わゆる濡れ性や接着性が改善され、微細炭素繊維のアルミニウム 金属中への分散が一層均一化し、一体ィ匕した材料となり、圧量容器の強度の向上に 貢献する。カゝかる被覆層又は処理層は、化学蒸着 (CVD)層、プラズマ蒸着 (PVCD )層、コロナ放電処理層、及び酸処理層力 なる群力 選ばれる少なくとも 1つ力 な るものが好ましい。なかでも、 CVD層、または PVCD層の被覆層が好ましぐその材 質としては、ニッケル、チタン、ジルコニウム、タンタル、ニオブ、モリブデンなどの金属 、ケィ素の炭化物、窒化物、ホウ化物、酸ィ匕物などが好ましい。 CVD層、または PVC D層の厚みは、微細炭素繊維径の 0. 1— 10%であるのが好ましい。
[0018] 上記微細炭素繊維表面のアルミニウムとの親和性の被覆は、既知の手段により、微 細炭素繊維の表面にニッケル、チタンなどの金属微粒子を結合させることによつても 行うことができる。このための方法としては、ニッケル、チタンなどの金属製の内壁面 を有する容器内で微細炭素繊維を高速回転させて撹乱混合する。これにより、微細 炭素繊維に高圧縮力、高衝撃力が加えられて、微細炭素繊維が金属製内壁に衝突 することにより容器内壁を形成する金属の微粒子が微細炭素繊維の表面に付着し、 結合し、表面が被覆される。
[0019] 微細炭素繊維とアルミニウム金属とから圧力容器を製造する場合、両者の混合物を 形成し、該混合材料から圧力容器が製造される。微細炭素繊維との混合に際し、了 ルミニゥム金属は、アルミニウム金属単体のほ力に、アルミニウム チタンなどの合金 が使用できる。微細炭素繊維との混合にあたって、アルミニウム金属は、平均粒径が 、好ましくは 0. 5— lOOOnmにするのが好ましい。
[0020] 本発明において微細炭素繊維とアルミニウムとの混合比は重要であり、微細炭素繊 維とアルミニウムとは、微細炭素繊維 1一 50体積0 /0と、アルミニウム 50— 99体積0 /0の 比率で混合される。微細炭素繊維の量が多すぎるとアルミニウム金属との密着性が 悪くなり、また、微細炭素繊維の量が少なすぎると、得られる圧力容器の機械的強度 が低下し、本発明の目的を達成できない。なかでも、微細炭素繊維とアルミニウムと は、微細炭素繊維 3— 40体積0 /0と、アルミニウム 60— 97体積0 /0の混合比が好ましく 、特には、微細炭素繊維 6— 30体積%と、アルミニウム 70— 94体積%の混合比が好 適である。
[0021] 微細炭素繊維とアルミニウムとは充分に混合することが好ましいが、混合する手段と しては、ボールミル、らいかい機などの混合機を使用して均一に混合される。
[0022] 本発明では、微細炭素繊維とアルミニウムとの混合物に対し、機械的強度、成形性 、硬度などを改善するために、チタン、リチウムなどの他の金属を添加することができ る。
[0023] 本発明で微細炭素繊維とアルミニウムとを含む混合物を成形して圧力容器を製造 する方法は、既存のアルミニウム金属製の圧力容器を製造する場合と同様な方法が 採用できる。例えば、微細炭素繊維とアルミニウム粉末との混合物を溶融し、溶湯を 圧力容器の形状の金型に注入して製造する方法、或!ヽは微細炭素繊維とアルミニゥ ム金属との混合物の溶湯から製造した板状物を筒状に曲げ加工し、次いで長手方 向に溶接した胴部と、微細炭素繊維とアルミニウム金属との混合物力 製造した半球 状の鏡板とを溶接するなどの方法により製造される。後者の製造方法の場合、胴部と 半球状の鏡板とは、必ずしも同じ材料カゝら形成する必要はなぐ異なる材料から形成 してちよい。
[0024] 本発明の軽量圧力容器であって、繊維径が 150nm、繊維長が 4. 5 m、ァスぺク ト比が 30の気相法炭素繊維をアルゴンガス雰囲気中、温度 2800°Cで 30分間処理 した繊維を CVD処理により表面にニッケルを被覆した微細炭素繊維 10体積%と平 均粒径 50nmのアルミニウム粉末 90体積%との混合物を温度 1200°Cにて成型して 得られる、 10リットルの容量の圧力容器は、 35Kgであり、かつ 350KgZcm2の而ォ圧 試験圧力を有する。これを同じ耐圧試験圧力を有する従来の圧力容器と比較した場 合、鋼製圧力容器の重量は約 150Kgであり、また、アルミニウム金属容器の重量は 約 50Kgであり、また、アルミニウム製コンポジット容器の重量は約 40Kgであるので 本発明の圧力容器が極めて軽量であることがわかる。
産業上の利用可能性
[0025] 本発明で製造される圧力容器は、上記のように従来の圧力容器に比較して極めて 軽量であり、衝撃強度などの機械的強度が大きい特長を有し、かつコンポジット容器 の如く腐食の問題も有さず、製造コストが大きくないので、極めて広範な用途に使用 できる。即ち、本発明の軽量圧力容器は、車輛、船舶、航空機、携帯機器などの移 動体に搭載される、 LPガスや天然ガスなどの充填容器、また燃料電池用の水素ガス などの充填容器に使用された場合、移動体の燃費を減少、及びその占めるスペース の減少に大きく貢献できる。

Claims

請求の範囲
[1] アルミニウム金属 50— 99体積0 /0と、繊維径 0. 5— 500nm、繊維長 1000 μ m以下 を有し、かつ中心軸が空洞構造力もなる微細炭素繊維 1一 50体積%とを含有し、上 記微細炭素繊維がアルミニウム金属中に均一に分散された材料力 なることを特徴と する軽量圧力容器。
[2] 微細炭素繊維が、気相法による炭素繊維、及び Z又はカーボンナノチューブであ る請求項 1に記載の軽量圧力容器。
[3] 微細炭素繊維が、ホウ素化合物の存在下に非酸ィ匕性雰囲気にて 2300°C以上の 温度で熱処理されている請求項 1又は 2に記載の軽量圧力容器。
[4] 微細炭素繊維が、その表面にアルミニウムとの親和性を高める被覆層または処理 層を有する請求項 1一 3のいずれかに記載の軽量圧力容器。
[5] 被覆層又は処理層が、化学蒸着層、プラズマ蒸着層、コロナ放電処理層、及び酸 処理層からなる群力 選ばれる少なくとも 1つ力 なる請求項 4に記載の軽量圧力容
[6] 液ィ匕石油ガス、天然ガス、又は水素ガスが充填され、移動体に搭載される請求項 1 一 5の 、ずれかに記載の軽量圧力容器。
[7] 燃料電池用の水素ガスが充填される請求項 1一 5のいずれかに記載の軽量圧力容
PCT/JP2004/016162 2003-10-29 2004-10-29 アルミニウム製軽量圧力容器 WO2005040666A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515051A JPWO2005040666A1 (ja) 2003-10-29 2004-10-29 アルミニウム製軽量圧力容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003369405 2003-10-29
JP2003-369405 2003-10-29

Publications (1)

Publication Number Publication Date
WO2005040666A1 true WO2005040666A1 (ja) 2005-05-06

Family

ID=34510389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016162 WO2005040666A1 (ja) 2003-10-29 2004-10-29 アルミニウム製軽量圧力容器

Country Status (2)

Country Link
JP (1) JPWO2005040666A1 (ja)
WO (1) WO2005040666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483005C (zh) * 2006-05-23 2009-04-29 沈阳中复科金压力容器有限公司 夹层复合压力气瓶
CN108758324A (zh) * 2018-06-14 2018-11-06 中材科技(成都)有限公司 燃料电池无人机用高压储气瓶及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088256A (ja) * 1996-09-19 1998-04-07 Tokyo Univ カーボンナノチューブ強化アルミニウム複合材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088256A (ja) * 1996-09-19 1998-04-07 Tokyo Univ カーボンナノチューブ強化アルミニウム複合材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483005C (zh) * 2006-05-23 2009-04-29 沈阳中复科金压力容器有限公司 夹层复合压力气瓶
CN108758324A (zh) * 2018-06-14 2018-11-06 中材科技(成都)有限公司 燃料电池无人机用高压储气瓶及其制备方法

Also Published As

Publication number Publication date
JPWO2005040666A1 (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
US9192993B1 (en) Processes for fabricating composite reinforced material
US7442414B2 (en) Methods for producing reinforced carbon nanotubes
Matthews et al. Composite materials: engineering and science
Ramachandran et al. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review
US20170275742A1 (en) Ceramic and metal boron nitride nanotube composites
US6844061B2 (en) Fine carbon fiber and composition thereof
Singh et al. An overview of processing and properties of Cu/CNT nano composites
JPH1088256A (ja) カーボンナノチューブ強化アルミニウム複合材料
US20060057050A1 (en) Synthesis of boron carbide nanoparticles
KR20120117998A (ko) 탄소 나노튜브 주입된 섬유 물질을 포함하는 금속 매트릭스 복합재 물질 및 그 제조방법
JPH0470376B2 (ja)
JP2012510948A (ja) 長微粒子状マイクロメートル材料上のカーボンナノチューブの合成方法
JPH11269576A (ja) 金属マトリックス繊維複合体の形成方法
TW201215701A (en) Process to grow carbon nanotubes onto fibers
WO2005040666A1 (ja) アルミニウム製軽量圧力容器
US20110020630A1 (en) Syntactic Foam Incorporating Vapor-Grown Carbon Fibers
US20220307649A1 (en) Storage vessels with fiber composite reinforcement
Ayodele et al. Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties
Rativa-Parada et al. Nanocarbon-Infused Metal Matrix Composites: A Review
JP4851294B2 (ja) 水素貯蔵材料の製造方法およびハイブリッド粉末
Behera et al. Fiber-reinforced metal matrix nanocomposites
Tian et al. Carbon Fiber Reinforced Polymer Composites with Enhanced Interfacial Properties Based on Electrostatic Assembled FGO/Oxidized CF
JPS62133030A (ja) 炭素繊維−金属系複合材料とその製造方法
Feng et al. Fiber reinforcement
Kang et al. The effect of heat treatment on mechanical properties of carbon nanofiber reinforced copper matrix composites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515051

Country of ref document: JP

122 Ep: pct application non-entry in european phase