WO2005040088A1 - Method for producing (meth)acrylic ester - Google Patents

Method for producing (meth)acrylic ester Download PDF

Info

Publication number
WO2005040088A1
WO2005040088A1 PCT/JP2003/013602 JP0313602W WO2005040088A1 WO 2005040088 A1 WO2005040088 A1 WO 2005040088A1 JP 0313602 W JP0313602 W JP 0313602W WO 2005040088 A1 WO2005040088 A1 WO 2005040088A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
reaction
alcohol
acrylic ester
oxygen
Prior art date
Application number
PCT/JP2003/013602
Other languages
French (fr)
Japanese (ja)
Inventor
Satomi Sugano
Shuhei Otsuka
Akira Ogawa
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to PCT/JP2003/013602 priority Critical patent/WO2005040088A1/en
Publication of WO2005040088A1 publication Critical patent/WO2005040088A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group

Definitions

  • the present invention relates to a method for producing a (meth) acrylate by a transesterification reaction.
  • Japanese Patent Application Laid-Open No. 57-93930 discloses a method for producing methyl acrylate using an inorganic weak acid salt of an alkali metal (such as a carbonate) as a transesterification catalyst. I have.
  • This catalyst is described in the same publication as having high catalytic activity and low side reactions. The publication also states that the transesterification is carried out under normal pressure or reduced pressure.
  • Japanese Patent Application Laid-Open No. 6-256620 describes that, during the production of a (meth) acrylic acid ester, Z and the remaining by-products are recovered by distillation and added to the next reaction. A method for producing an acrylate ester is disclosed. According to the publication, it is possible to suppress the generation of by-products and improve the selectivity of raw materials to products. In this publication, the transesterification reaction is performed under a reduced pressure of 300 Torr.
  • JP-A-3-118352 also discloses that in a transesterification reaction between a (meth) acrylic acid ester and a dialkylamino alcohol, a saturated hydrocarbon which is inert to the reaction is converted to a by-product alcohol.
  • the reaction is carried out under pressurized conditions (usually at a pressure of 1.5 to 4.0 atm) while removing the azeotrope of by-product alcohol and azeotropic agent from the system using a distillation column.
  • a method for producing an acrylic monomer is disclosed. The In this method, the gas phase during the reaction is occupied by by-product alcohol, azeotropic agent, raw material ester, and raw material alcohol, and oxygen is substantially absent.
  • the reaction time is significantly shortened, side reactions are less likely to occur, and the raw material (meth) acrylic acid ester can be used in a smaller number of times in this method.
  • the publication also states that when the reaction is not performed under pressure, the reaction time is long and the reaction yield is poor.
  • the present invention is intended to more effectively prevent the polymerization of (meth) acrylic acid ester in the transesterification reaction between (meth) acrylic acid ester and alcohol, and achieve the desired (meth) acrylic acid ester at a high selectivity. It is intended to provide a method for producing the same.
  • the present invention relates to a method for producing a (meth) acrylic acid ester of an alcohol by a transesterification reaction between a (meth) acrylic acid ester and an alcohol, wherein the (meth) acrylic acid ester is contained in a reactor.
  • a liquid phase sound 15 which is a reaction liquid containing alcohol, and a gas phase part.
  • the present invention relates to a method for producing a (meth) acrylic acid ester, wherein the gas exchange portion is pressurized with an oxygen-containing gas to dissolve oxygen in the reaction solution, and the ester exchange reaction is performed.
  • the present invention relates to the above-mentioned method for producing a (meth) acrylic acid ester, wherein the oxygen-containing gas contains 20% by volume or more of oxygen.
  • the present invention relates to the above-mentioned (meth) acrylic acid ester production method, wherein the gauge pressure in the gas phase part in the reactor is 0.05 to 0.5 MPa during the transesterification reaction. .
  • the transesterification reaction is performed in a state where the gas phase in the reactor is pressurized with an oxygen-containing gas and oxygen is dissolved in a reaction solution containing a (meth) acrylic ester and an alcohol.
  • a high polymerization inhibitory effect of (meth) acrylic acid ester can be obtained, and as a result, the desired (meth) acrylic acid ester can be produced with high selectivity.
  • the dissolved oxygen concentration in the reaction solution at the start of the transesterification reaction is preferably 100 mass ppm or more from the viewpoint that polymerization of the (meth) acrylate ester can be more effectively prevented.
  • the transesterification reaction in a state in which the gas phase in the reactor is pressurized with an oxygen-containing gas, the amount of dissolved oxygen in the reaction solution can be kept high, and the polymerization is less likely to occur. High reaction temperatures can be employed. As a result, the reaction speed is improved, and the reaction can be performed more efficiently.
  • the gage pressure in the gas phase in the reactor is preferably at least 0.05 MPa.
  • the concentration of dissolved oxygen in the reaction solution at atmospheric pressure varies depending on the combination of raw materials, but is around several tens of ppm with respect to the total mass of the reaction solution at a liquid temperature of around 10.
  • the concentration of dissolved oxygen in the reaction solution under reduced pressure becomes even lower. With such a dissolved oxygen concentration, a sufficient polymerization preventing effect cannot be obtained. In order to obtain a high polymerization inhibitory effect, it is necessary to pressurize to sufficiently dissolve oxygen in the reaction solution.
  • an azeotropic agent may be added at the time of the ester exchange reaction between the (meth) acrylic acid ester and the alcohol.
  • (meth) acrylate means “acrylic ester” and “methacrylic ester” as commonly used.
  • Gauge pressure is a pressure display that indicates the atmospheric pressure as 0 (reference).
  • the (meth) acrylate ester of the reaction raw material is not particularly limited as long as it is a transesterification reaction with the raw material alcohol.
  • (meth) methyl acrylate, (methyl) ethyl acrylate and the like can be used. .
  • the raw material alcohol is not particularly limited, and may be appropriately determined depending on the target (meth) acrylate.
  • Alkanols such as allyl alcohol and methallyl alcohol; phenoxyal phenols such as phenoxyethanol; cycloalkanols such as cyclohexanol; 3,3,5-trimethylcyclohexanol; -alkylcycloalkanols such as tert-butylcyclohexanol; cycloalkylalkanols such as cyclohexylmethanol; phenylalkanols such as benzyl alcohol and phenylethyl alcohol; alkylphenylalkanols Haloalkanols such as ethanol, etc .; cyanoalkanols such as cyanoethanol; aminoalkanols such as dimethylaminoethanol and ethylaminoethanol; phenol, 4-tert-butylphenol, 4-c Phenols such as mill phenol And the like.
  • the carbon number of the starting alcohol is preferably 24 or less. When the number of carbon atoms exceeds 25, the reaction rate becomes very slow, and sometimes the reaction does not proceed.
  • the (meth) acrylic acid ester produced tends to have a high boiling point, making distillation difficult.
  • the amount of the (meth) acrylic acid ester used as the raw material (mixing ratio) may be appropriately determined, but is preferably 1 mol or more, more preferably 1.2 mol or more, per 1 mol of the raw material alcohol.
  • the amount of the (meth) acrylic acid ester used as a raw material (mixing ratio charged) is preferably 5 mol or less, more preferably 4 mol or less, based on 1 mol of the raw material alcohol.
  • the polymerization inhibitor used in the present invention is not particularly limited, and any known one can be used.
  • examples of the polymerization inhibitor include hydroquinone, hide-mouth quinone monomethyl ether, catechol, phenothiazine, N, N-di-2-naphthyl p-phenylenediamine, nitric acid, nitrate and the like.
  • One type of polymerization inhibitor may be used, or two or more types may be used in combination.
  • the amount of the polymerization inhibitor used may be appropriately determined, but from the viewpoint of preventing polymerization, it is preferably at least 0.01%, more preferably at least 0.05%, based on the mass of the raw material (meth) acrylate. preferable. Further, the amount of the polymerization inhibitor to be used is preferably 1% or less, more preferably 0.5% or less, based on the mass of the raw material (meth) acrylate from the viewpoint of separation during purification.
  • both reactants and the catalyst are contacted. Specifically, a polymerization inhibitor is added to a reaction solution containing (meth) acrylate and alcohol as reaction raw materials, and a gas phase in the reactor is pressurized with an oxygen-containing gas to dissolve a desired amount of oxygen. After the reaction, the catalyst is added to the reaction solution as it is, or dissolved or suspended in an appropriate solvent, and the transesterification reaction is substantially started.
  • a solvent for dissolving or suspending the catalyst a (meth) acrylate or alcohol as a reaction raw material may be used.
  • the catalyst used in the present invention is not particularly limited, and any known catalyst can be used.
  • the catalyst include sodium carbonate, a basic ion exchange resin, an oxidizing catalyst such as calcium oxide, magnesium oxide and the like, g-n-butyltin oxide, Examples thereof include tin catalysts such as di-n-octyltin oxide, titanium catalysts such as tetra-n-butoxytitanium and tetra-n-methoxytin, and solid catalysts such as calcium oxide containing titanium metal.
  • One type of catalyst may be used, or two or more types may be used in combination.
  • the amount of the catalyst used may be appropriately determined, but is preferably 0.0001 mol or more, more preferably 0.0004 mol or more, per 1 mol of the starting alcohol.
  • the amount of the catalyst used is preferably 0.5 mol or less, more preferably 0.1 mol or less, per 1 mol of the starting alcohol.
  • the gas phase in the reactor is pressurized with an oxygen-containing gas, and oxygen is dissolved in the reaction solution to perform a transesterification reaction.
  • the reaction solution or the reaction solution and the gas phase of the reactor may be stirred.
  • the oxygen-containing gas to be used is not particularly limited as long as it preferably contains 20 to 100% by volume of oxygen, but it is preferable to use air in consideration of raw materials and equipment costs.
  • the dissolved oxygen concentration in the reaction solution at the start of the reaction is preferably 100 mass ppm or more from the viewpoint that a higher polymerization inhibitory effect can be obtained. Excessive pressurization to increase the dissolved oxygen concentration results in high cost reactors and peripheral equipment.
  • the pressure of the gas phase in the reactor may be appropriately determined depending on the combination of the raw materials, the reaction temperature and the like so that the desired dissolved oxygen concentration in the reaction solution can be obtained.
  • the gauge pressure of the gas phase in the reactor during the reaction is preferably 0.05 MPa or more, more preferably 0.0 IMP a or more, from the viewpoint of obtaining a higher polymerization preventing effect. Further, the gauge pressure of the gas phase in the reactor during the reaction is preferably 0.5 MPa or less, more preferably 0.4 MPa or less, from the viewpoint of the cost of the reaction apparatus and peripheral equipment.
  • the temperature of the reaction solution is 80 ° C, pressurization at a gauge pressure of 0.04 MPa or more will be performed. At ° C, by applying a gauge pressure of 0.25 MPa or more, the dissolved oxygen concentration in the reaction solution can be increased to 100 ppm or more.
  • the reaction temperature may be appropriately determined according to the combination of the raw materials, but from the viewpoint of the reaction rate,
  • the reaction temperature is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, from the viewpoint of preventing polymerization of the (meth) acrylyl ester.
  • the reaction time may be appropriately determined, but is usually about 0.5 to 20 hours.
  • the reactor used in the present invention is not particularly limited as long as the inside of the reactor can be pressurized.
  • a stirred tank batch type, continuous apparatus, a stirred tank batch type having a distillation apparatus, and a continuous apparatus And the like are preferable because the product can be removed by distillation.
  • the distillation conditions may be determined appropriately.
  • the (meth) acrylic ester produced is usually purified by a known method such as distillation.
  • the analysis (measurement of the content of the raw material and the product in the reaction solution) in the examples was performed by gas chromatography.
  • the selectivity was defined as the ratio of the number of moles of the target product (butyl methacrylate) to the number of moles of the starting alcohol (n-butanol) consumed by the reaction. The production of the polymer was confirmed visually.
  • reaction solution was heated to 130 ° C. with stirring, and air was supplied to pressurize the inside of the glass container to a gauge pressure of 0.3 MPa, thereby dissolving oxygen in the reaction solution.
  • Examples 1 and 2 in which the gas phase in the reactor was pressurized with air to dissolve oxygen in the reaction solution and transesterification was performed, Examples 1 and 2 were compared with Comparative Examples in which the reaction was performed in a nitrogen atmosphere. Product formation was suppressed, and the selectivity for the target product, butyl methacrylate, was high. Industrial applicability
  • the transesterification of (meth) acrylates with alcohols In the reaction, the polymerization of the (meth) acrylate can be more effectively prevented, and the desired (meth) acrylate can be produced at a high selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for producing a (meth)acrylic ester wherein the (meth)acrylic ester is produced through the transesterification reaction of another (meth)acrylic ester with an alcohol, characterized in that it comprises pressurizing the gas phase in a reactor with an oxygen-containing gas, to thereby carry out the transesterification reaction in a reaction mixture containing the another (meth)acrylic ester, the alcohol and dissolved oxygen. The method allows more effective inhibition of the polymerization of a (meth)acrylic ester, resulting in the production of the objective (meth)acrylic ester with improved selectivity.

Description

明細書  Specification
(メタ) アクリル酸エステルの製造方法 技術分  (Meth) Acrylic ester production method
本発明は、 エステル交換反応によって (メタ) アクリル酸エステルを製造する 方法に関する。 背景技術  The present invention relates to a method for producing a (meth) acrylate by a transesterification reaction. Background art
従来、 (メタ) アクリル酸エステルとアルコールとのエステル交換反応により 該アルコールの (メタ) アクリル酸エステルを製造する方法は知られており、 多 くの提案がなされている。  Conventionally, a method for producing a (meth) acrylic ester of an alcohol by a transesterification reaction between the (meth) acrylic ester and the alcohol has been known, and many proposals have been made.
例えば、 特開昭 5 7 - 9 3 9 3 0号公報には、 エステル交換触媒としてアル力 リ金属の無機弱酸塩 (炭酸塩など) を使用するメ夕クリル酸エステルの製造方法 が開示されている。 この触媒は、 触媒活性が高く、 つ、 副反応が少ないと同公 報に記載されている。 また、 同公報には、 エステル交換反応は常圧下または減圧 下で実施されると記載されている。  For example, Japanese Patent Application Laid-Open No. 57-93930 discloses a method for producing methyl acrylate using an inorganic weak acid salt of an alkali metal (such as a carbonate) as a transesterification catalyst. I have. This catalyst is described in the same publication as having high catalytic activity and low side reactions. The publication also states that the transesterification is carried out under normal pressure or reduced pressure.
特開平 6— 2 5 6 2 6 0号公報には、 (メタ) アクリル酸エステルを製造する 際に生成および Zまたは残存する副生物を蒸留によって回収し、 これを次回反応 に添加する (メタ) アクリル酸エステルの製造方法が開示されている。 これによ り、 副生物の生成を抑制し、 かつ、 原料の製品への選択率を向上させることがで きると同公報に記載されている。 また、 同公報では、 エステル交換反応を 3 0 0 Torrの減圧下で実施している。  Japanese Patent Application Laid-Open No. 6-256620 describes that, during the production of a (meth) acrylic acid ester, Z and the remaining by-products are recovered by distillation and added to the next reaction. A method for producing an acrylate ester is disclosed. According to the publication, it is possible to suppress the generation of by-products and improve the selectivity of raw materials to products. In this publication, the transesterification reaction is performed under a reduced pressure of 300 Torr.
また、 特開平 3— 1 1 8 3 5 2号公報には、 (メタ) アクリル酸エステルとジ アルキルァミノアルコールとのエステル交換反応において、 反応に対し不活性な 飽和炭化水素を副生物のアルコールの共沸剤として添加し、 蒸留塔を用いて副生 アルコールと共沸剤の共沸物を系外に取り出しながら加圧条件下 (通常、 圧力 1 . 5〜4. 0 a t m) で反応を行うアクリル系モノマーの製造方法が開示されてい る。 この方法では、 反応中の気相部は副生アルコール、 共沸剤、 原料エステル、 原料アルコ一ルで占められており、 酸素は実質的に存在しない。 この方法では、 反応時間:^大幅に短縮する、 副反応が起こることが少ない、 原料 (メタ) ァクリ ル酸エステルの口スが少なくすむといつた効果が得られると同公報に記載されて いる。 また、 同公報には、 加圧下で反応を行わない場合は、 反応時間が長く、 反 応収率が悪いと記載されている。 JP-A-3-118352 also discloses that in a transesterification reaction between a (meth) acrylic acid ester and a dialkylamino alcohol, a saturated hydrocarbon which is inert to the reaction is converted to a by-product alcohol. The reaction is carried out under pressurized conditions (usually at a pressure of 1.5 to 4.0 atm) while removing the azeotrope of by-product alcohol and azeotropic agent from the system using a distillation column. A method for producing an acrylic monomer is disclosed. The In this method, the gas phase during the reaction is occupied by by-product alcohol, azeotropic agent, raw material ester, and raw material alcohol, and oxygen is substantially absent. According to this publication, the reaction time is significantly shortened, side reactions are less likely to occur, and the raw material (meth) acrylic acid ester can be used in a smaller number of times in this method. . The publication also states that when the reaction is not performed under pressure, the reaction time is long and the reaction yield is poor.
しかしながら、 従来の方法では (メタ) アクリル酸エステルの重合防止効果が 必ずしも十分ではなく、 より効果的に重合を防止して高選択率で (メタ) ァクリ ル酸エステルを製造する方法が望まれている。  However, the effect of preventing polymerization of (meth) acrylic acid ester is not always sufficient in the conventional method, and a method of preventing polymerization more effectively and producing (meth) acrylic acid ester with high selectivity is desired. I have.
また、 上記特開平 3— 1 1 8 3 5 2号公報に記載の共沸剤を用いる方法では、 原料費が高くなり、 原料リサイクルを考えた場合には共沸剤との分離が必要とな つて設備費も高くなるという問題もある。 発明の開示  Further, in the method using an azeotropic agent described in the above-mentioned Japanese Patent Application Laid-Open No. 3-118352, the cost of raw materials is increased, and separation from the azeotropic agents is necessary when considering the recycling of raw materials. There is also a problem that equipment costs are high. Disclosure of the invention
本発明は、 (メタ) アクリル酸エステルとアルコールとのエステル交換反応に おいて、 より効果的に (メタ) アクリル酸エステルの重合を防止し、 高選択率で 目的とする (メタ) アクリル酸エステルを製造する方法を提供することを目的と する。  The present invention is intended to more effectively prevent the polymerization of (meth) acrylic acid ester in the transesterification reaction between (meth) acrylic acid ester and alcohol, and achieve the desired (meth) acrylic acid ester at a high selectivity. It is intended to provide a method for producing the same.
本発明は、 (メタ) アクリル酸エステルとアルコールとのエステル交換反応に より、 詨アルコールの (メタ) ァクリル酸エステルを製造する方法であって、 反応器内には、 (メタ) アクリル酸エステルとアルコールとを含む反応液であ る液相音 15と、 気相部とが存在し、  The present invention relates to a method for producing a (meth) acrylic acid ester of an alcohol by a transesterification reaction between a (meth) acrylic acid ester and an alcohol, wherein the (meth) acrylic acid ester is contained in a reactor. There is a liquid phase sound 15 which is a reaction liquid containing alcohol, and a gas phase part.
この気相部を酸素含有ガスで加圧して前記反応液に酸素を溶存させ、 前記エス テル交換反応を行うことを特徴とする (メタ) ァクリル酸エステルの製造方法に 関する。  The present invention relates to a method for producing a (meth) acrylic acid ester, wherein the gas exchange portion is pressurized with an oxygen-containing gas to dissolve oxygen in the reaction solution, and the ester exchange reaction is performed.
また、 本発明は、 前記酸素含有ガスが酸素を 2 0容量%以上含有する上記の ( メタ) アクリル酸エステルの製造方法に関する。 また、 本発明は、 前記エステル交換反応中、 前記反応器内の気相部のゲージ圧 力が 0 . 0 0 5〜0 . 5 M P aである上記の (メタ) アクリル酸エステルの製造 方法に関する。 発明を実施するための最良の形態 Further, the present invention relates to the above-mentioned method for producing a (meth) acrylic acid ester, wherein the oxygen-containing gas contains 20% by volume or more of oxygen. In addition, the present invention relates to the above-mentioned (meth) acrylic acid ester production method, wherein the gauge pressure in the gas phase part in the reactor is 0.05 to 0.5 MPa during the transesterification reaction. . BEST MODE FOR CARRYING OUT THE INVENTION
本発明では、 反応器内の気相部を酸素含有ガスで加圧し、 (メタ) アクリル酸 ェステルとアルコールとを含む反応液に酸素を溶存させた状態でエステル交換反 応を行う。 反応液に酸素を十分溶存させることにより高い (メタ) アクリル酸ェ ステルの重合防止効果が得られ、 その結果、 高選択率で目的とする (メタ) ァク リリレ酸エステルを製造することができる。 エステル交換反応開始時の反応液中の 溶存酸素濃度は、 より効果的に (メタ) アクリル酸エステルの重合を防止できる 点で、 1 0 0質量 p p m以上が好ましい。  In the present invention, the transesterification reaction is performed in a state where the gas phase in the reactor is pressurized with an oxygen-containing gas and oxygen is dissolved in a reaction solution containing a (meth) acrylic ester and an alcohol. By sufficiently dissolving oxygen in the reaction solution, a high polymerization inhibitory effect of (meth) acrylic acid ester can be obtained, and as a result, the desired (meth) acrylic acid ester can be produced with high selectivity. . The dissolved oxygen concentration in the reaction solution at the start of the transesterification reaction is preferably 100 mass ppm or more from the viewpoint that polymerization of the (meth) acrylate ester can be more effectively prevented.
また、 反応器内の気相部を酸素含有ガスで加圧した状態でエステル交換反応を 行うことにより、 反応液中の溶存酸素量を高く維持することができ、 重合の恐れ が少ない状態でより高い反応温度を採用することが可能となる。 この結果、 反応 速度が向上し、 より効率的に反応を行うことができる。 エステル交換反応中、 反 応器内の気相部のゲ一ジ圧力は 0 . 0 0 5 M P a以上が好ましい。  In addition, by performing the transesterification reaction in a state in which the gas phase in the reactor is pressurized with an oxygen-containing gas, the amount of dissolved oxygen in the reaction solution can be kept high, and the polymerization is less likely to occur. High reaction temperatures can be employed. As a result, the reaction speed is improved, and the reaction can be performed more efficiently. During the transesterification reaction, the gage pressure in the gas phase in the reactor is preferably at least 0.05 MPa.
大気圧における反応液中の溶存酸素濃度は、 原料の組合せによっても異なるが、 液温 1 0 付近では反応液全体の質量に対して数十 p p m程度である。 減圧下 における反応液中の溶存酸素濃度はさらに低くなる。 このような溶存酸素濃度で は十分な重合防止効果が得られない。 高い重合防止効果を得るためには、 加圧し て反応液に酸素を十分に溶存させる必要がある。  The concentration of dissolved oxygen in the reaction solution at atmospheric pressure varies depending on the combination of raw materials, but is around several tens of ppm with respect to the total mass of the reaction solution at a liquid temperature of around 10. The concentration of dissolved oxygen in the reaction solution under reduced pressure becomes even lower. With such a dissolved oxygen concentration, a sufficient polymerization preventing effect cannot be obtained. In order to obtain a high polymerization inhibitory effect, it is necessary to pressurize to sufficiently dissolve oxygen in the reaction solution.
また、 本発明においては、 (メタ) ァクリル酸エステルとアルコールとのエス テル交換反応時に共沸剤を添加してもよい。  Further, in the present invention, an azeotropic agent may be added at the time of the ester exchange reaction between the (meth) acrylic acid ester and the alcohol.
なお、 ここで Γ (メタ) アクリル酸エステル」 とは、 常用されるように 「ァク リル酸エステル」 および 「メタクリル酸エステル」 を意味する。 また、 ゲージ圧 力とは、 大気圧を 0 (基準) として表す圧力表示である。 以下、 本発明を詳しく説明する。 Here, “(meth) acrylate” means “acrylic ester” and “methacrylic ester” as commonly used. Gauge pressure is a pressure display that indicates the atmospheric pressure as 0 (reference). Hereinafter, the present invention will be described in detail.
反応原料の (メタ) アクリル酸エステルは、 原料アルコールとエステル交換反 応するものであれば特に限定されず、 例えば、 (メタ) アクリル酸メチル、 (メ 夕) アクリル酸ェチル等を用いることができる。  The (meth) acrylate ester of the reaction raw material is not particularly limited as long as it is a transesterification reaction with the raw material alcohol. For example, (meth) methyl acrylate, (methyl) ethyl acrylate and the like can be used. .
原料アルコールは特に限定されず、 目的とする (メタ) アクリル酸エステルに 応じて適宜決めればよい。 原料アルコールとしては、 具体的には、 n—プロパノ ール、 イソプロパノール、 n—ブタノール、 イソブ夕ノール、 t e r t—ブタノ ール、 n _ペンタノ一ル、 n _へキサノール、 n—ヘプタノ一ル、 n—ォクタノ ール、 2—ェチルへキサノール、 トリデカノール、 ラウリルアルコール、 ステア リルアルコール等のアル力ノール類;メトキシエタノール、 エトキシエタノール、 ブトキシエタノール等のアルコキシアル力ノール類;ァリルォキシエタノール等
Figure imgf000005_0001
ル類;ァリルアルコール、 メタリルアルコール等のァ ルケノール類; フエノキシエタノール等のフエノキシアル力ノール類; シクロへ キサノール等のシクロアルカノール類; 3, 3, 5—トリメチルシクロへキサノ ール、 4 - t e r t 一ブチルシク口へキサノール等のアルキルシクロアルカノ一 ル類; シクロへキシルメタノール等のシクロアルキルアルカノ一ル類;ベンジル アルコール、 フエニルエチルアルコール等のフエ二ルアルカノール類; アルキル フエ二ルアルカノール類;クロ口エタノール等のハロアルカノール類; シァノエ 夕ノール等のシァノアルカノール類;ジメチルアミノエ夕ノール、 ジェチルアミ ノエタノール等のアミノアル力ノ一ル類; フエノール、 4— t e r t一プチルフ ェノール、 4一クミルフエノール等のフエノール類などを挙げることができる。 中でも、 アル力ノール類、 ァルケノール類、 シクロアルカノール類、 フエニルァ ルカノール類を用いて反応を行う場合に、 より高い本発明の効果が得られる。 また、 原料アルコールの炭素数は 2 4以下が好ましい。 炭素数が 2 5以上にな ると、 反応速度が非常に遅くなり、 さらには反応が進まない場合もある。 また、 製造される (メタ) アクリル酸エステルが高沸点になり、 蒸留することが難しく なる傾向もある。 原料の (メタ) アクリル酸エステルの使用量 (仕込み混合比率) は適宜決めれ ばよいが、 原料アルコール 1モルに対して 1モル以上が好ましく、 1 . 2モル以 上がより好ましい。 また、 原料の (メタ) アクリル酸エステルの使用量 (仕込み 混合比率) は、 原料アルコール 1モルに対して 5モル以下が好ましく、 4モル以 下がより好ましい。
The raw material alcohol is not particularly limited, and may be appropriately determined depending on the target (meth) acrylate. As the raw material alcohol, specifically, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n_pentanol, n_hexanol, n-heptanol, n Alkanols such as —octanol, 2-ethylhexanol, tridecanol, lauryl alcohol, stearyl alcohol; alkoxyalkanols such as methoxyethanol, ethoxyethanol, butoxyethanol; aryloxyethanol, etc.
Figure imgf000005_0001
Alkanols such as allyl alcohol and methallyl alcohol; phenoxyal phenols such as phenoxyethanol; cycloalkanols such as cyclohexanol; 3,3,5-trimethylcyclohexanol; -alkylcycloalkanols such as tert-butylcyclohexanol; cycloalkylalkanols such as cyclohexylmethanol; phenylalkanols such as benzyl alcohol and phenylethyl alcohol; alkylphenylalkanols Haloalkanols such as ethanol, etc .; cyanoalkanols such as cyanoethanol; aminoalkanols such as dimethylaminoethanol and ethylaminoethanol; phenol, 4-tert-butylphenol, 4-c Phenols such as mill phenol And the like. Among them, when the reaction is carried out using alkanols, alkanols, cycloalkanols, or phenylalkanols, higher effects of the present invention can be obtained. Further, the carbon number of the starting alcohol is preferably 24 or less. When the number of carbon atoms exceeds 25, the reaction rate becomes very slow, and sometimes the reaction does not proceed. In addition, the (meth) acrylic acid ester produced tends to have a high boiling point, making distillation difficult. The amount of the (meth) acrylic acid ester used as the raw material (mixing ratio) may be appropriately determined, but is preferably 1 mol or more, more preferably 1.2 mol or more, per 1 mol of the raw material alcohol. The amount of the (meth) acrylic acid ester used as a raw material (mixing ratio charged) is preferably 5 mol or less, more preferably 4 mol or less, based on 1 mol of the raw material alcohol.
本発明では、 エステル交換反応を行う際、 重合防止剤を反応液に添加すること が好ましい。  In the present invention, it is preferable to add a polymerization inhibitor to the reaction solution when performing the transesterification reaction.
本発明において用いる重合防止剤は特に限定されず、 公知のものいずれも用い ることができる。 重合防止剤としては、 例えば、 ハイドロキノン、 ハイド口キノ ンモノメチルエーテル、 カテコール、 フエノチアジン、 N, N—ジ—2—ナフチ ルー p—フエ二レンジァミン、 硝酸、 硝酸塩などが挙げられる。 重合防止剤は、 1種を用いても、 2種以上を併用してもよい。  The polymerization inhibitor used in the present invention is not particularly limited, and any known one can be used. Examples of the polymerization inhibitor include hydroquinone, hide-mouth quinone monomethyl ether, catechol, phenothiazine, N, N-di-2-naphthyl p-phenylenediamine, nitric acid, nitrate and the like. One type of polymerization inhibitor may be used, or two or more types may be used in combination.
重合防止剤の使用量は適宜決めればよいが、 重合防止の点から、 原料 (メタ) アクリル酸エステルの質量に対して 0 . 0 0 1 %以上が好ましく、 0 . 0 0 5 % 以上がより好ましい。 また、 重合防止剤の使用量は、 精製時の分離の点から、 原 料 (メタ) アクリル酸エステルの質量に対して 1 %以下が好ましく、 0 . 5 %以 下がより好ましい。  The amount of the polymerization inhibitor used may be appropriately determined, but from the viewpoint of preventing polymerization, it is preferably at least 0.01%, more preferably at least 0.05%, based on the mass of the raw material (meth) acrylate. preferable. Further, the amount of the polymerization inhibitor to be used is preferably 1% or less, more preferably 0.5% or less, based on the mass of the raw material (meth) acrylate from the viewpoint of separation during purification.
エステル交換反応を実質的に開始するには、 両反応原料と触媒とを接触させる。 具体的には、 反応原料の (メタ) アクリル酸エステルおよびアルコールを含む反 応液に重合防止剤を添加し、 反応器内の気相部を酸素含有ガスで加圧して所望量 の酸素を溶存させた後、 触媒をそのまま、 あるいは、 適当な溶媒に溶解または懸 濁して反応液に添加し、 エステル交換反応を実質的に開始する。 触媒を溶解また は懸濁する溶媒として、 反応原料の (メタ) アクリル酸エステルやアルコールを 用いてもよい。  To substantially initiate the transesterification reaction, both reactants and the catalyst are contacted. Specifically, a polymerization inhibitor is added to a reaction solution containing (meth) acrylate and alcohol as reaction raw materials, and a gas phase in the reactor is pressurized with an oxygen-containing gas to dissolve a desired amount of oxygen. After the reaction, the catalyst is added to the reaction solution as it is, or dissolved or suspended in an appropriate solvent, and the transesterification reaction is substantially started. As a solvent for dissolving or suspending the catalyst, a (meth) acrylate or alcohol as a reaction raw material may be used.
本発明において用いる触媒は特に限定されず、 公知の触媒いずれも用いること ができる。 触媒としては、 例えば、 炭酸ソーダ、 塩基性イオン交換樹脂、 酸化力 ルシゥム、 酸化マグネシウム等のアル力リ触媒、 ジー n—ブチルチンォキサイド、 ジー n—ォクチルチンォキサイド等のスズ触媒、 テトラ _n—ブトキシチタン、 テトラー n—メトキシチ夕ン等のチタン触媒、 金属チタンを含有する酸化カルシ ゥム等の固体触媒などが挙げられる。 触媒は、 1種を用いても、 2種以上を併用 してもよい。 The catalyst used in the present invention is not particularly limited, and any known catalyst can be used. Examples of the catalyst include sodium carbonate, a basic ion exchange resin, an oxidizing catalyst such as calcium oxide, magnesium oxide and the like, g-n-butyltin oxide, Examples thereof include tin catalysts such as di-n-octyltin oxide, titanium catalysts such as tetra-n-butoxytitanium and tetra-n-methoxytin, and solid catalysts such as calcium oxide containing titanium metal. One type of catalyst may be used, or two or more types may be used in combination.
触媒の使用量は適宜決めればよいが、 原料アルコール 1モルに対して 0. 00 01モル以上が好ましく、 0. 0004モル以上がより好ましい。 また、 触媒の 使用量は、 原料アルコ一ル 1モルに対して 0. 5モル以下が好ましく、 0. 1モ ル以下がより好ましい。  The amount of the catalyst used may be appropriately determined, but is preferably 0.0001 mol or more, more preferably 0.0004 mol or more, per 1 mol of the starting alcohol. The amount of the catalyst used is preferably 0.5 mol or less, more preferably 0.1 mol or less, per 1 mol of the starting alcohol.
本発明では、 重合防止効果を向上させるために、 反応器内の気相部を酸素含有 ガスで加圧し、 反応液に酸素を溶存させてエステル交換反応を行う。 このとき、 反応液、 または、 反応液および反応器の気相部を攪拌してもよい。  In the present invention, in order to improve the polymerization prevention effect, the gas phase in the reactor is pressurized with an oxygen-containing gas, and oxygen is dissolved in the reaction solution to perform a transesterification reaction. At this time, the reaction solution or the reaction solution and the gas phase of the reactor may be stirred.
用いる酸素含有ガスとしては、 酸素を好ましくは 20〜100容量%含有する ものであれば特に限定されないが、 原料と設備のコストとを考慮した場合、 空気 を用いることが好ましい。  The oxygen-containing gas to be used is not particularly limited as long as it preferably contains 20 to 100% by volume of oxygen, but it is preferable to use air in consideration of raw materials and equipment costs.
反応開始時の反応液中の溶存酸素濃度は、 より高い重合防止効果が得られる点 から、 100質量 p pm以上が好ましい。 溶存酸素濃度を高くするための過度な 加圧は、 反応装置および周辺機器のコスト高を招く。  The dissolved oxygen concentration in the reaction solution at the start of the reaction is preferably 100 mass ppm or more from the viewpoint that a higher polymerization inhibitory effect can be obtained. Excessive pressurization to increase the dissolved oxygen concentration results in high cost reactors and peripheral equipment.
反応中、 反応器内の気相部の圧力は、 原料の組合せや反応温度等に応じて、 所 望の反応液中の溶存酸素濃度が得られるように適宜決めればよい。 反応中の反応 器内の気相部のゲージ圧力は、 より高い重合防止効果が得られる点から、 0. 0 05MP a以上が好ましく、 0. 0 IMP a以上がより好ましい。 また、 反応中 の反応器内の気相部のゲージ圧力は、 反応装置や周辺機器のコストの点から、 0. 5 MP a以下が好ましく、 0. 4 MP a以下がより好ましい。  During the reaction, the pressure of the gas phase in the reactor may be appropriately determined depending on the combination of the raw materials, the reaction temperature and the like so that the desired dissolved oxygen concentration in the reaction solution can be obtained. The gauge pressure of the gas phase in the reactor during the reaction is preferably 0.05 MPa or more, more preferably 0.0 IMP a or more, from the viewpoint of obtaining a higher polymerization preventing effect. Further, the gauge pressure of the gas phase in the reactor during the reaction is preferably 0.5 MPa or less, more preferably 0.4 MPa or less, from the viewpoint of the cost of the reaction apparatus and peripheral equipment.
空気を用いて反応器内の気相部を加圧する場合、 反応液の温度が 80°Cであれ ばゲージ圧力 0. 04MP a以上の加圧を行うことにより、 また、 反応液の温度 が 140°Cであればゲージ圧力 0. 25 MP a以上の加圧を行うことにより、 反 応液中の溶存酸素濃度を 100 ppm以上とすることができる。 反応温度は、 原料の組合せに応じて適宜決めればよいが、 反応速度の点から、When the gas phase inside the reactor is pressurized with air, if the temperature of the reaction solution is 80 ° C, pressurization at a gauge pressure of 0.04 MPa or more will be performed. At ° C, by applying a gauge pressure of 0.25 MPa or more, the dissolved oxygen concentration in the reaction solution can be increased to 100 ppm or more. The reaction temperature may be appropriately determined according to the combination of the raw materials, but from the viewpoint of the reaction rate,
6 0 °C以上が好ましく、 8 0 °C以上がより好ましい。 また、 反応温度は、 (メタ ) ァクリリレ酸エステルの重合防止の点から、 1 5 0 °C以下が好ましく、 1 4 0 °C 以下がより好ましい。 It is preferably at least 60 ° C, more preferably at least 80 ° C. The reaction temperature is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, from the viewpoint of preventing polymerization of the (meth) acrylyl ester.
反応時間は適宜決めればよいが、 通常、 0 . 5〜2 0時間程度とすることがで さる。  The reaction time may be appropriately determined, but is usually about 0.5 to 20 hours.
(メタ) アクリル酸エステルのエステル交換反応は平衡反応であるため、 反応 を進行させるために生成物を系外に除去しながら反応を行うことが好ましい。 本発明において用いる反応装置としては、 反応器内を加圧できれば特に限定さ れず、 例えば、 攪拌槽型の回分式、 連続式装置や、 蒸留装置をもつ攪拌槽型の回 分式、 連続式装置などが挙げられる。 中でも、 生成物を蒸留により除去すること ができる点から、 蒸留装置をもつ攪拌槽型装置が好ましい。 なお、 蒸留条件は適 宜決めればよい。  Since the transesterification reaction of the (meth) acrylic ester is an equilibrium reaction, it is preferable to carry out the reaction while removing the product out of the system in order to progress the reaction. The reactor used in the present invention is not particularly limited as long as the inside of the reactor can be pressurized. For example, a stirred tank batch type, continuous apparatus, a stirred tank batch type having a distillation apparatus, and a continuous apparatus And the like. Among them, a stirred tank type device having a distillation device is preferable because the product can be removed by distillation. The distillation conditions may be determined appropriately.
このようにしてエステル交換反応を行って (メタ) アクリル酸エステルを製造 した後、 通常、 蒸留等の公知の方法により生成した (メタ) アクリル酸エステル を精製する。 実施例  After the transesterification reaction is performed to produce the (meth) acrylic ester, the (meth) acrylic ester produced is usually purified by a known method such as distillation. Example
以下、 実施例および比較例により本発明を詳しく説明するが、 本発明はこれら に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例における分析 (反応液中の原料および生成物の含有量の測定) はガスク 口マトグラフィ一にて行った。. また、 選択率は、 反応により消費した原料アルコ ール (n—ブタノール) のモル数に対する、 生成した目的物 (メタクリル酸プチ ル) のモル数の割合とした。 重合物の生成は目視により確認した。  The analysis (measurement of the content of the raw material and the product in the reaction solution) in the examples was performed by gas chromatography. The selectivity was defined as the ratio of the number of moles of the target product (butyl methacrylate) to the number of moles of the starting alcohol (n-butanol) consumed by the reaction. The production of the polymer was confirmed visually.
〔実施例 1〕  (Example 1)
攪拌翼、 温度計、 触媒投入口および気相部へのガス供給口を備えたガラス容器 の 1 Lオートクレーブに、 メタクリル酸メチル 4 9 6 g ( 4. 9 5モル) 、 n— ブ夕ノール 22 O g (2. 97モル) 、 ハイドロキノン 0. 254 gを仕込んだ。 そして、 反応液を攪拌しながら 120°Cまで加熱すると共に、 空気を供給してガ ラス容器内をゲージ圧力 0. 2MP aまで加圧し、 反応液中に酸素を溶解させた。 反応液温度 120° (、 ゲージ圧力 0. 2MPaにおいて、 メタクリル酸メチル 10 g (0. 10モル) に溶解させたテトラメチルチタネート 0. 257 g (1.In a 1-liter autoclave of a glass vessel equipped with a stirring blade, a thermometer, a catalyst inlet, and a gas inlet to the gas phase, 496 g (4.995 mol) of methyl methacrylate, n- 22 g (2.97 mol) of bushnol and 0.254 g of hydroquinone were charged. The reaction solution was heated to 120 ° C. while stirring, and air was supplied to pressurize the inside of the glass container to a gauge pressure of 0.2 MPa to dissolve oxygen in the reaction solution. At a reaction temperature of 120 ° (at a gauge pressure of 0.2 MPa, 0.257 g of tetramethyl titanate dissolved in 10 g (0.10 mol) of methyl methacrylate (1.
49ミリモル) を、 空気により反応器内液相部へ圧入した。 そして、 反応液温度 120°C、 ゲージ圧力 0. 2MP aに保ちながら、 3時間反応を行った。 反応中、 一定間隔で内部の反応液を取り出して分析を行った。 その結果を表 1に示す。 (49 mmol) was injected into the liquid phase of the reactor with air. Then, the reaction was carried out for 3 hours while maintaining the reaction solution temperature at 120 ° C. and the gauge pressure at 0.2 MPa. During the reaction, the internal reaction solution was taken out at regular intervals and analyzed. The results are shown in Table 1.
〔比較例 1〕  (Comparative Example 1)
実施例 1と同様の 1 Lオートクレーブに、 メタクリル酸メチル 496 g、 n- ブ夕ノール 220 g、 ハイドロキノン 0. 254 gを仕込んだ。 そして、 反応液 を攪拌しながら脱気を 20分間行った後、 気相部を窒素によりゲージ圧力 0. 2 MP aに加圧し、 反応液を 120°Cまで加熱した。  In a 1 L autoclave similar to that in Example 1, 496 g of methyl methacrylate, 220 g of n-butanol, and 0.254 g of hydroquinone were charged. After degassing for 20 minutes while stirring the reaction solution, the gas phase was pressurized to a gauge pressure of 0.2 MPa with nitrogen, and the reaction solution was heated to 120 ° C.
反応液温度 120° (:、 ゲージ圧力 0. 2MPaにおいて、 メタクリル酸メチル 10 gに溶解させたテトラメチルチ夕ネート 0. 257 gを、 窒素により反応器 内液相部へ圧入した。 そして、 実施例 1と同様にして 3時間反応を行った。 その 結果を表 1に示す。 反応後、 反応器内に微小な重合物を確認した。  At a reaction solution temperature of 120 ° (:, gauge pressure: 0.2 MPa, 0.257 g of tetramethylthiocyanate dissolved in 10 g of methyl methacrylate was injected into the liquid phase inside the reactor with nitrogen. The reaction was carried out for 3 hours in the same manner as in Example 1. The results are shown in Table 1. After the reaction, a minute polymer was confirmed in the reactor.
〔実施例 2〕  (Example 2)
実施例 1と同様の 1 Lオートクレープに、 メ夕クリル酸メチル 492 g (4. 91モル) 、 n—ブ夕ノール 218 g (2. 94モル) 、 八ィドロキノン 0. 2 In a 1 L autoclave similar to that in Example 1, 492 g (4.91 mol) of methyl methacrylate, 218 g (2.94 mol) of n-butanol, 0.2 mol of octahydroquinone
53 gを仕込んだ。 そして、 反応液を攪拌しながら 130°Cまで加熱すると共に、 空気を供給してガラス容器内をゲージ圧力 0. 3MP aまで加圧し、 反応液中に 酸素を溶解させた。 53 g were charged. The reaction solution was heated to 130 ° C. with stirring, and air was supplied to pressurize the inside of the glass container to a gauge pressure of 0.3 MPa, thereby dissolving oxygen in the reaction solution.
反応液温度 130°C、 ゲージ圧力 0. 3MPaにおいて、 メタクリル酸メチル 10 g (0. 10モル) に溶解させたテトラメチルチタネート 0. 253 g (1. 47ミリモル) を、 空気により反応器内液相部へ圧入した。 そして、 実施例 1と 同様にして 3時間反応を行つた。 その結果を表 1に示す。 〔比較例 2〕 At a reaction solution temperature of 130 ° C and a gauge pressure of 0.3 MPa, 0.253 g (1.47 mmol) of tetramethyl titanate dissolved in 10 g (0.10 mol) of methyl methacrylate was dissolved in the reactor with air. Pressed into the phase. Then, the reaction was carried out for 3 hours in the same manner as in Example 1. The results are shown in Table 1. (Comparative Example 2)
実施例 1と同様の 1Lオートクレープに、 メタクリル酸メチル 492 g、 n— ブ夕ノール 218 g、 ハイドロキノン 0. 253 gを仕込んだ。 そして、 反応液 を攪拌しながら脱気を 20分間行った後、 気相部を窒素によりゲージ圧力 0. 3 MP aに加圧し、 反応液を 130°Cまで加熱した。  Into a 1 L autoclave similar to that in Example 1, 492 g of methyl methacrylate, 218 g of n-butanol, and 0.253 g of hydroquinone were charged. After degassing for 20 minutes while stirring the reaction solution, the gas phase was pressurized to a gauge pressure of 0.3 MPa with nitrogen, and the reaction solution was heated to 130 ° C.
反応液温度 130°C、 ゲージ圧力 0. 3MP aにおいて、 メタクリル酸メチル 10 gに溶解させたテトラメチルチタネ一ト 0. 253 gを、 窒素により反応器 内液相部へ圧入した。 そして、 実施例 1と同様にして 3時間反応を行った。 その 結果を表 1に示す。 反応後、 反応器内に微小な重合物を確認した。 表 1  At a reaction liquid temperature of 130 ° C. and a gauge pressure of 0.3 MPa, 0.253 g of tetramethyl titanate dissolved in 10 g of methyl methacrylate was injected into the liquid phase inside the reactor with nitrogen. Then, the reaction was carried out for 3 hours in the same manner as in Example 1. The results are shown in Table 1. After the reaction, a minute polymer was confirmed in the reactor. table 1
Figure imgf000010_0001
Figure imgf000010_0001
反応器内の気相部を空気で加圧して反応液に酸素を溶存させてエステル交換反 応を行った実施例 1、 2は、 窒素雰囲気中で反応を行った比較例と比べて、 重合 物の生成が抑制され、 目的物であるメタクリル酸ブチルの選択率が高かった。 産業上の利用可能性 In Examples 1 and 2 in which the gas phase in the reactor was pressurized with air to dissolve oxygen in the reaction solution and transesterification was performed, Examples 1 and 2 were compared with Comparative Examples in which the reaction was performed in a nitrogen atmosphere. Product formation was suppressed, and the selectivity for the target product, butyl methacrylate, was high. Industrial applicability
本発明によれば、 (メタ) アクリル酸エステルとアルコールとのエステル交換 反応において、 より効果的に (メタ) アクリル酸エステルの重合を防止し、 高選 択率で目的とする (メタ) アクリル酸エステルを製造することができる。 According to the invention, the transesterification of (meth) acrylates with alcohols In the reaction, the polymerization of the (meth) acrylate can be more effectively prevented, and the desired (meth) acrylate can be produced at a high selectivity.

Claims

請求の範囲 The scope of the claims
1 . (メタ) アクリル酸エステルとアルコールとのエステル交換反応により、 該アルコールの (メタ) アクリル酸エステルを製造する方法であって、 1. A method for producing a (meth) acrylic ester of an alcohol by transesterification of the (meth) acrylic ester with an alcohol,
反応器内には、 (メタ) アクリル酸エステルとアルコールとを含む反応液であ る液相部と、 気相部とが存在し、  In the reactor, there are a liquid phase portion, which is a reaction solution containing a (meth) acrylate and an alcohol, and a gas phase portion.
この気相部を酸素含有ガスで加圧して前記反応液に酸素を溶存させ、 前記エス テル交換反応を行うことを特徴とする (メタ) アクリル酸エステルの製造方法。  The method for producing a (meth) acrylate ester, wherein the gas exchange portion is pressurized with an oxygen-containing gas to dissolve oxygen in the reaction solution, and the ester exchange reaction is performed.
2 . 前記酸素含有ガスが酸素を 2 0容量%以上含有する請求項 1に記載の ( メタ) アクリル酸エステルの製造方法。 2. The method for producing a (meth) acrylate according to claim 1, wherein the oxygen-containing gas contains 20% by volume or more of oxygen.
3 . 前記エステル交換反応中、 前記反応器内の気相部のゲージ圧力が 0 . 0 0 5〜0 . 5 M P aである請求項 1または 2に記載の (メタ) アクリル酸エステ ルの製造方法。 3. The (meth) acrylic ester according to claim 1 or 2, wherein a gauge pressure of a gas phase part in the reactor is 0.05 to 0.5 MPa during the transesterification reaction. Method.
PCT/JP2003/013602 2003-10-24 2003-10-24 Method for producing (meth)acrylic ester WO2005040088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/013602 WO2005040088A1 (en) 2003-10-24 2003-10-24 Method for producing (meth)acrylic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/013602 WO2005040088A1 (en) 2003-10-24 2003-10-24 Method for producing (meth)acrylic ester

Publications (1)

Publication Number Publication Date
WO2005040088A1 true WO2005040088A1 (en) 2005-05-06

Family

ID=34509574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013602 WO2005040088A1 (en) 2003-10-24 2003-10-24 Method for producing (meth)acrylic ester

Country Status (1)

Country Link
WO (1) WO2005040088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080380A2 (en) * 2007-12-19 2009-07-02 Evonik Röhm Gmbh Process for preparing (meth)acrylates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292215A2 (en) * 1987-05-19 1988-11-23 Hitachi Chemical Co., Ltd. Method for production of methacrylate ester
US4983761A (en) * 1988-10-22 1991-01-08 Degussa Aktiengesellschaft Process for the preparation of high-boiling acrylates and methacrylates
JPH03106847A (en) * 1989-09-20 1991-05-07 Hitachi Chem Co Ltd Production of methacrylic acid ester
JPH03109350A (en) * 1989-09-22 1991-05-09 Hitachi Chem Co Ltd Production of methacrylate
US5072027A (en) * 1988-10-06 1991-12-10 Hitachi Chemical Company, Ltd. Process for producing methacrylic acid esters
JPH069496A (en) * 1992-04-30 1994-01-18 Dainippon Ink & Chem Inc Production of @(3754/24)meth)acrylic acid esters
JPH0616594A (en) * 1992-04-30 1994-01-25 Dainippon Ink & Chem Inc Production of @(3754/24)meth)acrylic ester
JPH07238056A (en) * 1994-02-28 1995-09-12 Daicel Chem Ind Ltd Production of (meth)acrylic acid tetrahydrobenzyl ester
JPH07238057A (en) * 1994-02-28 1995-09-12 Daicel Chem Ind Ltd Production of (meth)acrylic acid tetrahydrobenzyl ester

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292215A2 (en) * 1987-05-19 1988-11-23 Hitachi Chemical Co., Ltd. Method for production of methacrylate ester
US5072027A (en) * 1988-10-06 1991-12-10 Hitachi Chemical Company, Ltd. Process for producing methacrylic acid esters
US4983761A (en) * 1988-10-22 1991-01-08 Degussa Aktiengesellschaft Process for the preparation of high-boiling acrylates and methacrylates
JPH03106847A (en) * 1989-09-20 1991-05-07 Hitachi Chem Co Ltd Production of methacrylic acid ester
JPH03109350A (en) * 1989-09-22 1991-05-09 Hitachi Chem Co Ltd Production of methacrylate
JPH069496A (en) * 1992-04-30 1994-01-18 Dainippon Ink & Chem Inc Production of @(3754/24)meth)acrylic acid esters
JPH0616594A (en) * 1992-04-30 1994-01-25 Dainippon Ink & Chem Inc Production of @(3754/24)meth)acrylic ester
JPH07238056A (en) * 1994-02-28 1995-09-12 Daicel Chem Ind Ltd Production of (meth)acrylic acid tetrahydrobenzyl ester
JPH07238057A (en) * 1994-02-28 1995-09-12 Daicel Chem Ind Ltd Production of (meth)acrylic acid tetrahydrobenzyl ester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080380A2 (en) * 2007-12-19 2009-07-02 Evonik Röhm Gmbh Process for preparing (meth)acrylates
WO2009080380A3 (en) * 2007-12-19 2009-09-17 Evonik Röhm Gmbh Process for preparing (meth)acrylates
JP2011506517A (en) * 2007-12-19 2011-03-03 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing (meth) acrylate
US9206270B2 (en) 2007-12-19 2015-12-08 Evonik Roehm Gmbh Process for preparing (meth)acrylates
US9688601B2 (en) 2007-12-19 2017-06-27 Evonik Roehm Gmbh Process for preparing (meth)acrylates

Similar Documents

Publication Publication Date Title
JP5485547B2 (en) Production of di- (2-ethylhexyl) terephthalate
KR100954392B1 (en) Transesterification process for production of (meth)acrylate ester monomers
KR101545031B1 (en) Method for producing ethylene glycol dimethacrylate
KR101652555B1 (en) Method for producing (meth)acrylate ester
WO2010016493A1 (en) Method for producing (meth)acrylic acid anhydride, method for storing (meth)acrylic acid anhydride, and method for producing (meth)acrylate ester
JP2006206590A (en) Method of transesterification for producing (meth)acrylate ester monomer
TWI356818B (en) Process for preparing allyl methacrylate
JP3881386B2 (en) Process for producing dialkyl carbonate
JP2003300936A (en) Method for continuously and simultaneously producing dialkyl carbonate and glycol
JP4520310B2 (en) Method for producing (meth) acrylic acid N-alkylaminoalkyl ester
WO2005040088A1 (en) Method for producing (meth)acrylic ester
JP4860830B2 (en) Method for producing high purity (meth) acrylic acid ester
JP6008600B2 (en) Method for producing 4-hydroxybutyl acrylate
JP2003321420A (en) Method for producing (meth)acrylic ester
JP2004189650A (en) Method for producing (meth)acrylic ester
JP5606132B2 (en) Method for producing (meth) acrylic acid ester
JP5981763B2 (en) Method for producing 4-hydroxybutyl (meth) acrylate
JPH0530822B2 (en)
JP2004018389A (en) Production method for glyceryl (meth)acrylate
JP4960005B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2005013934A (en) Method for recovering catalyst and method for producing methacrylic acid alykyl aminoester
JP2009274986A (en) Method for producing alkyl (meth)acrylate
JP3421214B2 (en) Method for producing (meth) acrylate of tertiary alcohol
JP6957875B2 (en) Methods and Compositions for Producing 2-Methyl-2-Hydroxy-1-propyl (Meta) Acrylate and / or 3-Methyl-3-Hydroxy-1-butyl (Meta) Acrylate
JP2000319225A (en) Production of methacrylic acid alkyl ester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US