WO2005038896A1 - Plasma etching method - Google Patents

Plasma etching method Download PDF

Info

Publication number
WO2005038896A1
WO2005038896A1 PCT/JP2004/015256 JP2004015256W WO2005038896A1 WO 2005038896 A1 WO2005038896 A1 WO 2005038896A1 JP 2004015256 W JP2004015256 W JP 2004015256W WO 2005038896 A1 WO2005038896 A1 WO 2005038896A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
etching
gas
plasma
hard mask
Prior art date
Application number
PCT/JP2004/015256
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Nishizuka
Toshihisa Nozawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2005038896A1 publication Critical patent/WO2005038896A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Definitions

  • the present invention relates to a method for etching a fluorine-added carbon film formed on a substrate for manufacturing a semiconductor device by plasma.
  • the n-th wiring layer and the (n + 1) -th wiring layer are connected by a conductive layer, and a thin film called an interlayer insulating film is formed in a region other than the conductive layer.
  • a typical example of the interlayer insulating film is an SiO film.
  • fluorine-added carbon film which is a compound of carbon (C) and fluorine (F)
  • fluorine-added carbon film which is a compound of carbon (C) and fluorine (F)
  • the relative dielectric constant of the fluorinated carbon film is less than or equal to 2.5 if the type of source gas is selected. Therefore, the fluorine-added carbon film is an extremely effective film as an interlayer insulating film.
  • the selection of source gases is progressing, and the prospect that high quality films can be obtained by CVD equipment that generates plasma with high density and low electron temperature is emerging. Therefore, practical use of a fluorine-added carbon film as a low dielectric constant insulating film is expected.
  • An object of the present invention is to provide a plasma etching method which can perform favorable etching on a fluorinated carocarbon film and does not damage other films formed after the etching.
  • the present invention provides a method for generating a plasma of a processing gas containing a CF gas (x and y are natural numbers).
  • the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching does not allow hydrogen to enter the surface portion. There is no risk of damaging the film formed in the process.
  • the CF gas is, for example, a CF gas, a CF gas, a CF gas, a CF gas, a CFy 4 2 6 4 6 3 8 4 8 gas, or the like.
  • the processing gas containing the C F gas (x and y are natural numbers) is a rare gas added to the processing gas.
  • the present invention also provides a method of etching a substrate on which a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are laminated in this order, wherein the pattern of the resist film is A hard mask removing step of etching and removing an exposed portion of the node mask film exposed based on the above, and after the hard mask removing step, adding fluorine below the node mask film removed by the hard mask removing step.
  • the carbon film is etched by a plasma of a processing gas containing CF gas (x and y are natural numbers).
  • the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching prevents hydrogen from entering the surface portion. There is no risk of damaging the film formed in the process.
  • a plasma of a processing gas containing a CF gas (x and y are natural numbers) may be used.
  • the hard mask removing step includes: a first step of partially removing the exposed portion of the hard mask film; and completely removing the exposed portion of the node mask film partially removed in the first step.
  • a resist film removing step of etching the resist film is performed between the first step and the second step.
  • a plasma containing an active species of oxygen is used.
  • the present invention provides a method for etching a substrate on which a base film, a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are laminated in this order,
  • the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching is performed so that hydrogen does not enter the surface. There is no risk of damaging the film formed in the process.
  • the fluorine-added carbon film is formed at the time of etching the resist film (at the time of ashing). The etching of the side wall of the film can be suppressed.
  • the main etching step is performed by a plasma of a processing gas containing a CF gas (x and y are natural numbers) and a rare gas.
  • FIG. 1 is a vertical sectional side view showing an example of a plasma processing apparatus used in an embodiment of the present invention.
  • FIG. 2 is a plan view showing a gas supply unit of the plasma processing apparatus of FIG. 1.
  • FIG. 3 is a perspective view showing an antenna section of the plasma processing apparatus of FIG. 1 in a partial cross section.
  • FIG. 4 is an explanatory view showing a state in which a fluorine-added carbon film is etched according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a state in which a fluorine-added carbon film is etched according to another embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a plasma electron density distribution in the plasma processing apparatus of FIG. 1.
  • FIG. 7 is an explanatory diagram showing an XPS analysis result of the surface portion of the fluorine-added carbon film.
  • FIG. 8 shows the RBS of the fluorinated carbon film plasma-treated using HZN gas.
  • FIG. 9 is an explanatory diagram showing an analysis result.
  • FIG. 9 shows the dilution ratio of CF gas with Ar gas and the etching rate of fluorine-added carbon film.
  • FIG. 4 is an explanatory diagram showing the relationship with the following.
  • FIG. 10 is an explanatory diagram showing a map of an etching rate of a fluorine-added carbon film.
  • FIG. 11 is an explanatory diagram showing a map of an etching rate of a SiCN film as a hard mask.
  • FIG. 12 is an explanatory diagram showing a map of a selectivity of a fluorine-added carbon film ZSiCN film.
  • FIG. 13 is an explanatory diagram showing the relationship between the temperature of the mounting table and the selectivity of the fluorine-added carbon film ZSiCN film.
  • FIG. 14 is an explanatory diagram showing the relationship between the temperature of the mounting table and the inclination of the side wall of the fluorinated carbon film.
  • FIG. 15 is an explanatory view showing observation results of a concave portion obtained by etching a fluorine-added carbon film by the method of the present invention.
  • reference numeral 1 denotes a processing container (vacuum chamber) that also has, for example, aluminum power.
  • a mounting table 2 is provided in the processing container 1.
  • An electrostatic chuck 21 is provided on the surface of the mounting table 2.
  • the electrodes of the electrostatic chuck 21 are connected to a DC power supply 23 via a switch 22.
  • a flow path 24 of a temperature control medium as a temperature control means is provided inside the mounting table 2.
  • the refrigerant which is a temperature control medium, is discharged from the outflow passage 26 through the inflow passage 24 as well as the inflow passage 25.
  • the semiconductor wafer (hereinafter, referred to as a wafer) W as a substrate on the mounting table 2 is maintained at a predetermined temperature.
  • the mounting table 2 is connected to a high frequency power supply 27 for biasing at 13.56 MHz, for example.
  • a gas supply unit 3 formed of, for example, a substantially disk shape and serving as a conductor is provided above the mounting table 2.
  • a large number of gas supply holes 31 are formed on the surface of the gas supply unit 3 facing the mounting table 2.
  • a lattice-shaped gas flow path 32 communicating with the gas supply hole 31 is formed inside the gas supply unit 3, for example, as shown in FIG. 2, a lattice-shaped gas flow path 32 communicating with the gas supply hole 31 is formed.
  • the gas flow path 32 is connected to a gas supply path 33.
  • a gas supply source (not shown) is connected to the gas supply path 33, and a CF gas (x, y is a natural number) such as CF gas is supplied from each gas supply source.
  • the gas is supplied into the processing vessel 1 through the gas supply path 33 and the gas supply hole 31.
  • the gas supply unit 3 has a number of openings 34 penetrating the gas supply unit 3 in the up-down direction.
  • the openings 34 are formed between adjacent gas channels 32, for example, as shown in FIG. 2, in order to allow the plasma to pass through the space below the gas supply unit 3.
  • An exhaust pipe 11 is connected to the bottom of the processing container 1.
  • a vacuum exhaust unit (not shown) is connected to the base end of the exhaust pipe 11. Further, inside the inner wall of the processing container 1, a surrounding member (wall portion) 13 in which a heater 12 as a heating means is built is provided.
  • a plate (microwave transmitting window) 4 that also has a dielectric material, for example, a quartz force is provided on the upper side of the quartz plate 4 so as to be in close contact with the quartz plate 4.
  • the dielectric plate is not limited to quartz, for example, Lumina or the like may be used.
  • the antenna section 5 has a flat antenna body 50 having a circular lower surface side and an opening, and a disk-shaped planar antenna member (a plurality of slots formed on the lower surface side of the antenna body 50). Slot plate) 51.
  • the antenna body 50 and the planar antenna member 51 are made of a conductor, form a flat hollow circular waveguide, and are connected to the coaxial waveguide 41.
  • the antenna main body 50 is divided into two members in this example, and a refrigerant reservoir 52 through which the refrigerant flows through a refrigerant passage having an external force (not shown) is formed therein.
  • a retardation plate 53 made of a low-loss dielectric material such as alumina, silicon oxide, silicon nitride or the like. .
  • the retardation plate 53 shortens the wavelength of the microwave described later to shorten the guide wavelength in the circular waveguide.
  • a radial line slot antenna (RLSA) is constituted by the antenna body 50, the planar antenna member 51, and the retardation plate 53! RU
  • the antenna unit 5 configured as described above is mounted on the processing container 1 via a sealing member (not shown) such that the planar antenna member 51 comes into close contact with the quartz plate 4.
  • the antenna section 5 is connected to an external microwave generation means 42 via a coaxial waveguide 41, so that a microwave having a frequency of, for example, 2.45 GHz or 8.4 GHz is supplied.
  • the outer waveguide 41A constituting the coaxial waveguide 41 is connected to the antenna main body 50, and the center conductor 41B is connected to the planar antenna member 51 via the opening formed in the retardation plate 53. I have.
  • the flat antenna member 51 is made of, for example, a copper plate having a thickness of about 0.3 to 1 mm.
  • the planar antenna member 51 has a large number of slots 54 for generating, for example, circularly polarized waves. More specifically, a plurality of pairs of slots 54a, 54b arranged slightly apart in a substantially T-shape, for example, concentrically or spirally along the circumferential direction around the center of the planar antenna member 51. Is formed. Note that the pair of slots may be arranged slightly apart in an approximately octagonal shape. Since the slots 54a and 54b are arranged so as to be substantially orthogonal to each other, circularly polarized waves including two orthogonally polarized components are emitted. If the slot pairs 54a and 54b are arranged at intervals corresponding to the wavelength of the microwave compressed by the retardation plate 53, the microwave is substantially planar from the planar antenna member 51. Radiated as waves.
  • the slot length of each of the slots 54a and 54b is 1Z2 or less of the microwave wavelength on the coaxial waveguide 41 side of the planar antenna member 51, and The dimension is set to be larger than 1/2 of the wavelength of the microwave on the plasma generation space (inside the processing vessel 2) of the surface antenna member 51.
  • the microwave does not return to the coaxial waveguide 41 after entering the plasma space through the slot 54.
  • the slot may be formed so that the microphone mouth wave is radiated not in circular polarization but in linear polarization.
  • a wafer W which is a substrate for manufacturing semiconductor devices, has a SiCN force on a fluorine-added carbon film (CF film) 61 to be etched.
  • a hard mask 62 is laminated, and a resist film (resist pattern) 63 for forming a pattern is further formed thereon.
  • a fluorine-added carbon film 65 is formed under the fluorine-added carbon film 61 via a hard mask 64 made of SiCN.
  • the fluorine additive films 65 and 61 correspond to the n-th and n + 1-th interlayer insulating films, respectively.
  • Each of the fluorine-added carbon films 65 and 61 and the hard masks 62 and 64 is formed by CVD using plasma generated by microwaves.
  • the thickness of the fluorine-added carbon films 65 and 61 is, for example, 500 ⁇ 500, and the thickness of the hard masks 62, 64 is, for example, 1000A.
  • the wafer W is loaded into the processing container 1 from a load lock chamber (not shown) through a transfer port (not shown), and is placed on the mounting table 2. Subsequently, while the CF gas and the Ar gas are supplied at predetermined flow rates from the gas supply unit 3, the inside of the processing vessel 1 is evacuated.
  • a high frequency (microwave) of, for example, 2.45 GHz and 1500 W is supplied from the microwave generation means 42, and a high frequency power for bias of, for example, 13.56 MHz and 1250 W is supplied to the mounting table 2 from the high frequency power supply unit 27.
  • the microwave propagates in the coaxial waveguide 41 in the TM mode, the TE mode, or the TEM mode, and reaches the planar antenna member 51 of the antenna unit 5. Then, while the central force of the planar antenna member 51 is also propagated radially toward the peripheral region, the microwaves are emitted from the pair of slots 54a and 54b through the quartz plate 4 toward the lower processing space. Is done. At this time, due to the arrangement of the pair of slots 54a and 54b as described above, the circularly polarized wave is uniformly emitted over the plane of the planar antenna member 51, and the electric field density in the space below this is made uniform. Is done. On the other hand, the CF gas and Ar gas supplied into the processing vessel 1 from the gas supply unit 3
  • the gas flows upward through the opening 34 (see FIG. 2) of the gas supply unit 3 and is turned into plasma by the microwave energy.
  • This plasma flows into the processing space below the gas supply unit 3 through the opening 34.
  • the exposed hard mask 62 is etched by the active species in the plasma. Specifically, as can be inferred from the experimental examples described later, the CF compound adheres to the surface of the hard mask 62, and the hard mask 62 is removed together with this compound.
  • the thickness of the node mask 62 becomes about ⁇ of the original thickness.
  • the process is stopped. Then, the process is switched to the etching (assisting) process of the resist film 63.
  • Ar gas, O gas and N gas are supplied from the gas supply unit 3 into the processing vessel 1.
  • microwaves are emitted from the planar antenna member 51, and a high-frequency bias is supplied to the mounting table 2.
  • the gas mixture is converted into plasma by the energy of microwaves, and the resist film 63 is ashed (ashed) by oxygen radicals, which are active oxygen species in the plasma, and removed (FIG. 4 (c)). )).
  • the gas supply and the power supply are stopped, and the process is stopped. Then, the process is switched to the etching process of the fluorine-added carbon film 61.
  • This etching process is performed under the same conditions as the etching process of the hard mask 62 described above. In this etching, active species of F and active species of CF are generated in the plasma, and these active species react with the fluorinated carbon film 61, as estimated from an experimental example described later, and the film is formed of CF or CF. It is removed as volatile gas such as CF.
  • the bon film 61 is etched, exposing the underlying hard mask 64 as shown in FIG.
  • a favorable etching shape of the fluorine-added carbon film 61 that is, an etching shape with high perpendicularity can be obtained.
  • use CF gas for example CF gas, and do not use hydrogen gas.
  • Hydrogen does not enter the side wall surface of the concave portion of the fluorine-added carbon film formed by the etching due to the etching. For this reason, it is possible to obtain the expected electrical characteristics without damaging the barrier metal film formed in the concave portion in the next step and the metal film embedded in the concave portion.
  • the ratio (selectivity) of the etching rate of the fluorine-added carbon film 61 to the etching rate of the SiCN film 62 as a hard mask can be increased. Therefore, it is possible to employ a method of etching the resist film 63 while leaving the exposed hard mask 62 thin without etching it, and thereafter etching the remaining hard mask 62 and the fluorine-added carbon film 61. In this case, when etching the resist film 63, the plasma of oxygen gas is not irradiated to the fluorinated carocarbon film 61. Therefore, the undercut (expansion of the side wall swelling and etching) does not occur, and a favorable etching shape with high perpendicularity can be obtained.
  • the circularly polarized wave is uniformly emitted over the plane of the planar antenna member 51, and the electric field density in the processing space below this is made uniform.
  • the energy excites high-density and uniform plasma over the entire processing space. Therefore, uniform processing can be performed at a high etching rate.
  • FIG. 5 (a) a wafer having the same surface structure as that used in the previous embodiment (FIG. 5 (a)) is used, and etching is performed by converting CF gas and Ar gas into plasma.
  • the etching of the mask 62 is not stopped, but is completely etched (FIG. 5B), and the fluorine-added carbon film 61 is continuously etched and removed (FIG. 5C). Then, a plasma containing active species of oxygen is generated (for example, Ar gas, N gas and O gas).
  • a plasma containing active species of oxygen for example, Ar gas, N gas and O gas.
  • a bias power of, for example, about 500 W to 1000 W is applied to the mounting table 2 to etch the resist film 63.
  • the resist film 63 is removed by etching (assisting) with an active species of oxygen.
  • Ar ions sputter the hard mask 64 which is a base film of the fluorinated carbon film 61, and the sputter adheres to the side wall of the concave portion of the fluorinated carbon film 61.
  • the attached spatter serves as a so-called protective film. This allows the oxygen radio The action of the cull to etch the side wall is suppressed, and the recess can be maintained in a good shape without becoming an undercut shape.
  • another rare gas may be added instead of Ar gas.
  • the CF gas used in the present invention is not limited to CF gas
  • F gas, CF gas, CF gas and CF gas can be used. Also, c
  • SiCN film not only SiCN film but also SiO mask, SiOF film, SiCO film, SiCOH film
  • an insulating film such as a SiN film may be used.
  • These insulating films are made of CF
  • the hard mask may be a conductive film such as TiN or TiW instead of the insulating film.
  • a gas for etching the hard mask for example, BC1 gas can be used.
  • the step of etching and removing the resist film 63 is preferably performed in a state where the hard mask 62 remains. Alternatively, it may be performed after the hard mask 62 and the fluorine-added carbon film 61 are removed by etching.
  • the rare gas used when etching the fluorine-added carbon film 61 is not limited to Ar gas, but may be Xe gas or Kr gas!
  • Ar gas was supplied into the processing vessel 1 of the plasma processing apparatus shown in Fig. 1, the pressure was set to 6.7 Pa, 67 Pa, and 133 Pa, the microwave power was set to 2000 W, and 60 mm below the quartz plate 4 was set. Electron density was measured at the position using a Langmuir probe. The results are as shown in FIG. Note that zero on the horizontal axis corresponds to the center position on the mounting table 2. As can be seen from the result, the electron density is about 1 ⁇ 10 12 (pieces / cm 3 ), which is about 10 times as large as that of the parallel plate type plasma apparatus. The electron temperature was 1.5 eV at the same position. Therefore, it is understood that high-density plasma with a low electron temperature was obtained.
  • a substrate (Ueno) with a fluorine-added carbon film formed on the entire surface other than the wafer shown in Fig. 4 was used. That is, this substrate was carried into the above-described plasma processing apparatus, and two types of plasmas of the processing gas were respectively generated to etch the fluorine-added carbon film.
  • the two types of processing gases are H gas ZN gas set at a flow rate of 200Z20 Osccm and Ar gas set at a flow rate of 400Zl00sccm.
  • the microwave power was set to 2000W and the pressure was 1.
  • the pressure was set to 33 Pa (10 mTorr), and the plasma irradiation time was 30 seconds.
  • the accelerated ions do not collide with the side walls of the recess formed by the actual etching. In order to model this side wall, etching was performed without applying a high frequency bias to the mounting table 2.
  • Irradiation increases the concentration of H atoms by about 2.5 times at a depth of about 1000A from the outermost surface.
  • N (nitrogen) atoms were only observed on the outermost surface and had not penetrated into the fluorine-added carbon film.
  • hydrogen easily penetrates and diffuses into the film due to its small atomic radius. As described above, hydrogen only penetrates deep into the fluorine-added carbon film simply by irradiating it with hydrogen plasma. It was found that the film composition was changed.
  • the profile of the CF bonding state on the surface has hardly changed. Therefore, the film formed after the etching is not likely to be damaged by hydrogen.
  • the microwave power and the bias power were 1500 W and 1250 W, respectively, the pressure was 1.33 Pa, and the wafer temperature was 0 ° C.
  • etching species such as F and CF are generated in the plasma to accelerate the etching of the fluorine-added carbon film. That is, the film surface becomes volatile gas such as CF or CF.
  • the etching speed is constant.
  • the result shown in FIG. 11 was obtained. It can be seen that, unlike the etching rate of the fluorine-added carbon film, the etching rate of the SiCN film does not depend so much on the plasma density but largely depends on the bias power. From this result, it can be said that the etching of the SiCN film is governed by the energy of ion sputtering rather than the ion density.
  • FIG. 12 shows the results of connecting the groups of the selectivity ratios (the etching rate of the fluorine-added carbon film and the etching rate of the ZSiCN film) from which the relational forces of FIGS. It is a map. From these results, it was concluded that microwave power, that is, high-density plasma was required to perform high-speed etching of the fluorine-added carbon film and to obtain a high selectivity, and that bias power was hardly involved. . Therefore, it is understood that the plasma processing apparatus shown in FIG. 1 is effective as an apparatus for etching a fluorine-added carbon film.
  • the microwave power and bias power were set to 1500 W and 1250 W, respectively, the pressure was set to 1.33 Pa, and the flow force of Ar gas ZCF gas was set to OOZlOOsccm.
  • the CF film is deposited on the surface of the SiCN film, and the SiCN film is peeled off together with the deposit.
  • the microwave power and bias power were set to 1500 W and 1250 W, respectively, the pressure was set to 1.33 Pa, and the flow force of Ar gas ZCF gas was set to OOZlOOsccm.
  • Example F-1 the temperature of the wafer is set to 40 ° C., first, the SiCN film which is a hard mask formed on the fluorinated carbon film is etched and removed, and then the fluorinated carbon film is formed in the next step. Etched.
  • the thicknesses of the fluorine-added carbon film and the node mask were 5000 A and 1000 A, respectively. This process is referred to as Example F-1.
  • CF gas instead of CF gas, CF gas is used, and further, Ar gas and O gas are used.
  • Ar gas ZC F gas ZO gas flow rate is set to 1000Zl5Zl0sccm and
  • Example F-2 The etching was performed in the same manner as in Example F-1, except that the pressure was set to 2.66 Pa. This process is referred to as Example F-2.
  • N gas was used instead of O gas, and the other conditions were the same as in Example F-2.
  • Example F-3 Was done. This process is referred to as Example F-3.
  • Example F-1 The cross section of the concave portion obtained in Example F-1 was confirmed by SEM (scanning electron microscope), and had a shape as shown in Fig. 15, and the angle ⁇ of the side wall was 87 degrees. High verticality was obtained. Further, the same results were obtained for Example F-2 and Example F-3.
  • the etching rate (etching rate) and selectivity in each example were as follows. The unit of the etching rate is AZ.
  • the pressure is set at 2.66 Pa
  • the microwave power and bias power are set at 1500 W and 500 W, respectively
  • the wafer temperature is set at S40 ° C
  • the resist film is set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A plasma etching method is characterized by comprising a step for generating a plasma of a process gas containing a CxFy gas (x and y are natural numbers) and another step for etching a fluorinated carbon film which is previously formed on a substrate by the plasma.

Description

明 細 書  Specification
プラズマエッチング方法  Plasma etching method
技術分野  Technical field
[0001] 本発明は、半導体装置を製造するための基板上に形成されたフッ素添加カーボン 膜をプラズマによりエッチングする方法に関する。  The present invention relates to a method for etching a fluorine-added carbon film formed on a substrate for manufacturing a semiconductor device by plasma.
背景技術  Background art
[0002] 半導体装置の高集積ィヒを図るための手法の一つとして、配線を多層化する技術が ある。多層配線構造をとるために、 n番目の配線層と (n+ 1)番目の配線層とが導電 層で接続されると共に、導電層以外の領域には層間絶縁膜と呼ばれる薄膜が形成さ れる。この層間絶縁膜の代表的なものとして、 SiO 膜があるが、近年デバイスの動  [0002] As one of techniques for achieving high integration of semiconductor devices, there is a technique of forming wirings in multiple layers. In order to form a multilayer wiring structure, the n-th wiring layer and the (n + 1) -th wiring layer are connected by a conductive layer, and a thin film called an interlayer insulating film is formed in a region other than the conductive layer. A typical example of the interlayer insulating film is an SiO film.
2  2
作についてより一層の高速ィ匕を図るために、層間絶縁膜の比誘電率をより低くするこ とが要求されている。  In order to achieve higher speed operation, it is required to lower the relative dielectric constant of the interlayer insulating film.
[0003] このような要請により、炭素(C)及びフッ素 (F)の化合物であるフッ素添加カーボン 膜 (フロロカーボン膜)が注目されている。 SiO 膜の比誘電率力 付近であるのに対  [0003] Due to such a request, a fluorine-added carbon film (fluorocarbon film), which is a compound of carbon (C) and fluorine (F), has attracted attention. Although it is near the relative dielectric constant force of the SiO film,
2  2
して、フッ素添加カーボン膜の比誘電率は、原料ガスの種類を選定すれば、 2. 5以 下になる。従って、フッ素添加カーボン膜は、層間絶縁膜として極めて有効な膜であ る。そして、その成膜方法についても、原料ガスの選定が進み、高密度で低電子温 度のプラズマを発生させる CVD装置により良質な膜が得られる見通しが立ってきて いる。従って、低誘電率の絶縁膜としてフッ素添加カーボン膜の実用化が期待されて いる。  The relative dielectric constant of the fluorinated carbon film is less than or equal to 2.5 if the type of source gas is selected. Therefore, the fluorine-added carbon film is an extremely effective film as an interlayer insulating film. As for the method of film formation, the selection of source gases is progressing, and the prospect that high quality films can be obtained by CVD equipment that generates plasma with high density and low electron temperature is emerging. Therefore, practical use of a fluorine-added carbon film as a low dielectric constant insulating film is expected.
[0004] 一方、フッ素添加カーボン膜をエッチングする方法としては、酸素ガス及び窒素ガ スをプラズマ化し、そのプラズマによりエッチングする方法が知られている(特開平 10 —144676号:段落 0010)。この場合、酸素ラジカルと炭素とが反応して、膜がいわ ば燃焼された格好になって側壁が除去され、そのためエッチング後の溝の断面形状 が横に膨らんだ (アンダーカット)形状になってしまう。  [0004] On the other hand, as a method for etching a fluorine-added carbon film, a method is known in which oxygen gas and nitrogen gas are converted into plasma and the plasma is used for etching (JP-A-10-144676: paragraph 0010). In this case, the oxygen radicals and carbon react with each other, and the film is burned, so that the side walls are removed, so that the cross-sectional shape of the etched groove becomes a laterally expanded (undercut) shape. I will.
[0005] また、その他の方法としては、水素ガス及び窒素ガスをプラズマ化し、そのプラズマ によりエッチングする方法が知られている(Materials Research Society Conference Proceedings ^ Volume V- 14、 Advanced Metallization Conference in 1998)。この場 合、エッチングされたフッ素添加カーボン膜の側壁部に水素が入り込み、この水素が 膜中のフッ素と結合してフッ化水素を生成してしまう。エッチングされた凹部内には次 工程でノ リアメタル膜が形成される力メタルが埋め込まれる力 フッ化水素が生成さ れていると、ノ リアメタル膜あるいはメタルが腐食されて、フッ素添加カーボン膜とこれ らとの密着性が悪くなるという課題がある。 [0005] As another method, a method is known in which hydrogen gas and nitrogen gas are turned into plasma and etched by the plasma (Materials Research Society Conference). Proceedings ^ Volume V-14, Advanced Metallization Conference in 1998). In this case, hydrogen enters the side wall of the etched fluorine-containing carbon film, and this hydrogen combines with fluorine in the film to generate hydrogen fluoride. In the etched recess, a force metal that forms a norimetal film in the next process is buried. If hydrogen fluoride is generated, the norimetal film or the metal is corroded, and the fluorine-added carbon film and There is a problem that the adhesion to them is deteriorated.
発明の要旨  Summary of the invention
[0006] 本発明は、このような背景に基づいてなされたものである。その目的は、フッ素添カロ カーボン膜に対して良好なエッチングを行うことができ、エッチング後に形成される他 の膜にダメージを与えることのないプラズマエッチング方法を提供することにある。  [0006] The present invention has been made based on such a background. An object of the present invention is to provide a plasma etching method which can perform favorable etching on a fluorinated carocarbon film and does not damage other films formed after the etching.
[0007] 本発明は、 C F ガス (x、yは自然数)を含む処理ガスのプラズマを発生させるェ y  [0007] The present invention provides a method for generating a plasma of a processing gas containing a CF gas (x and y are natural numbers).
程と、基板上に予め形成されたフッ素添加カーボン膜を、前記プラズマによってエツ チングする工程と、を備えたことを特徴とするプラズマエッチング方法である。  And a step of etching the fluorine-added carbon film previously formed on the substrate by the plasma.
[0008] 本発明によれば、フッ素添加カーボン膜を良好な形状でエッチングすることができ 、また処理ガスとして水素を用いていないので、エッチングを行うことにより表面部に 水素が入り込むことがなぐ次工程で形成される膜に対してダメージを与えるおそれ がない。  [0008] According to the present invention, the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching does not allow hydrogen to enter the surface portion. There is no risk of damaging the film formed in the process.
[0009] C F ガスは、例えば、 CF ガス、 C F ガス、 C F ガス、 C F ガス、 C F y 4 2 6 4 6 3 8 4 8 ガス、等である。  [0009] The CF gas is, for example, a CF gas, a CF gas, a CF gas, a CF gas, a CFy 4 2 6 4 6 3 8 4 8 gas, or the like.
[0010] 好ましくは、前記 C F ガス (x、yは自然数)を含む処理ガスは、希ガスが添加され y  [0010] Preferably, the processing gas containing the C F gas (x and y are natural numbers) is a rare gas added to the processing gas.
ている。  ing.
[0011] また、本発明は、フッ素添加カーボン膜、ハードマスク膜、及び、所望のパターンに 形成されたレジスト膜が当該順序で積層された基板をエッチングする方法であって、 前記レジスト膜のパターンに基づいて露出されたノヽードマスク膜の露出部分をエッチ ングして除去するハードマスク除去工程と、前記ハードマスク除去工程の後に、前記 ハードマスク除去工程によって除去されたノヽードマスク膜の下方のフッ素添加カーボ ン膜を、 C F ガス (x、yは自然数)を含む処理ガスのプラズマによってエッチングす y  [0011] The present invention also provides a method of etching a substrate on which a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are laminated in this order, wherein the pattern of the resist film is A hard mask removing step of etching and removing an exposed portion of the node mask film exposed based on the above, and after the hard mask removing step, adding fluorine below the node mask film removed by the hard mask removing step. The carbon film is etched by a plasma of a processing gas containing CF gas (x and y are natural numbers).
る主エッチング工程と、を備えたことを特徴とするプラズマエッチング方法である。 [0012] 本発明によれば、フッ素添加カーボン膜を良好な形状でエッチングすることができ 、また処理ガスとして水素を用いていないので、エッチングを行うことにより表面部に 水素が入り込むことがなぐ次工程で形成される膜に対してダメージを与えるおそれ がない。 And a main etching process. [0012] According to the present invention, the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching prevents hydrogen from entering the surface portion. There is no risk of damaging the film formed in the process.
[0013] 例えば、前記ハードマスク除去工程において、 C F ガス (x、yは自然数)を含む 処理ガスのプラズマが用いられ得る。  For example, in the hard mask removing step, a plasma of a processing gas containing a CF gas (x and y are natural numbers) may be used.
[0014] また、好ましくは、前記ハードマスク除去工程は、前記ハードマスク膜の露出部分を 途中まで除去する第 1工程と、前記第 1工程で途中まで除去されたノヽードマスク膜の 露出部分を完全に除去する第 2工程と、に分かれており、前記第 1工程及び前記第 2 工程の間に、前記レジスト膜をエッチングするレジスト膜除去工程が実施される。  [0014] Preferably, the hard mask removing step includes: a first step of partially removing the exposed portion of the hard mask film; and completely removing the exposed portion of the node mask film partially removed in the first step. A resist film removing step of etching the resist film is performed between the first step and the second step.
[0015] この場合、好ましくは、前記レジスト膜除去工程において、酸素の活性種を含むプ ラズマが用いられる。  In this case, preferably, in the resist film removing step, a plasma containing an active species of oxygen is used.
[0016] また、本発明は、下地膜、フッ素添加カーボン膜、ハードマスク膜、及び、所望のパ ターンに形成されたレジスト膜が当該順序で積層された基板をエッチングする方法で あって、前記レジスト膜のパターンに基づいて露出されたノヽードマスク膜の露出部分 をエッチングして除去するハードマスク除去工程と、前記ハードマスク除去工程の後 に、前記ハードマスク除去工程によって除去されたノヽードマスク膜の下方のフッ素添 加カーボン膜を、 C F ガス(x、yは自然数)を含む処理ガスのプラズマによってエツ チングする主エッチング工程と、前記主工程の後に、前記レジスト膜を、酸素の活性 種を含むプラズマによってエッチングするレジスト膜除去工程と、を備え、前記レジス ト膜除去工程中、前記基板にノィァス電力が印加されて、前記下地膜がプラズマ中 の活性種によりスパッタされることを特徴とするプラズマエッチング方法である。  Further, the present invention provides a method for etching a substrate on which a base film, a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are laminated in this order, A hard mask removing step of etching and removing an exposed portion of the node mask film exposed based on the pattern of the resist film; and, after the hard mask removing step, a hard mask removing step of removing the node mask film by the hard mask removing step. A main etching step of etching the lower fluorinated carbon film with a plasma of a processing gas containing CF gas (x and y are natural numbers); and after the main step, the resist film contains an active species of oxygen. A resist film removing step of etching by plasma, wherein a noise power is applied to the substrate during the resist film removing step. Then, the base film is sputtered by active species in the plasma.
[0017] 本発明によれば、フッ素添加カーボン膜を良好な形状でエッチングすることができ 、また処理ガスとして水素を用いていないので、エッチングを行うことにより表面部に 水素が入り込むことがなぐ次工程で形成される膜に対してダメージを与えるおそれ がない。  According to the present invention, the fluorine-added carbon film can be etched in a good shape, and since hydrogen is not used as a processing gas, the etching is performed so that hydrogen does not enter the surface. There is no risk of damaging the film formed in the process.
[0018] また、本発明によれば、下地膜のスパッタ物がフッ素添加カーボン膜の側壁の保護 層として機能するため、レジスト膜のエッチング時 (アツシング時)にフッ素添加カーボ ン膜の側壁がエッチングされることを抑制できる。 Further, according to the present invention, since the sputter of the base film functions as a protective layer on the side wall of the fluorine-added carbon film, the fluorine-added carbon film is formed at the time of etching the resist film (at the time of ashing). The etching of the side wall of the film can be suppressed.
[0019] 好ましくは、前記主エッチング工程は、 C F ガス (x、yは自然数)と希ガスとを含 む処理ガスのプラズマによって行われる。  [0019] Preferably, the main etching step is performed by a plasma of a processing gas containing a CF gas (x and y are natural numbers) and a rare gas.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]は、本発明の一実施の形態に用いられるプラズマ処理装置の一例を示す縦断 側面図である。  FIG. 1 is a vertical sectional side view showing an example of a plasma processing apparatus used in an embodiment of the present invention.
[図 2]は、図 1のプラズマ処理装置のガス供給部を示す平面図である。  FIG. 2 is a plan view showing a gas supply unit of the plasma processing apparatus of FIG. 1.
[図 3]は、図 1のプラズマ処理装置のアンテナ部を一部断面で示す斜視図である。  FIG. 3 is a perspective view showing an antenna section of the plasma processing apparatus of FIG. 1 in a partial cross section.
[図 4]は、本発明の一実施の形態によってフッ素添加カーボン膜がエッチングされる 様子を示す説明図である。  FIG. 4 is an explanatory view showing a state in which a fluorine-added carbon film is etched according to an embodiment of the present invention.
[図 5]は、本発明の他の実施の形態によってフッ素添加カーボン膜がエッチングされ る様子を示す説明図である。  FIG. 5 is an explanatory view showing a state in which a fluorine-added carbon film is etched according to another embodiment of the present invention.
[図 6]は、図 1のプラズマ処理装置内のプラズマ電子密度分布を示す説明図である。  FIG. 6 is an explanatory diagram showing a plasma electron density distribution in the plasma processing apparatus of FIG. 1.
[図 7]は、フッ素添加カーボン膜の表面部の XPSの分析結果を示す説明図である。  FIG. 7 is an explanatory diagram showing an XPS analysis result of the surface portion of the fluorine-added carbon film.
[図 8]は、 H ZN ガスを用いてプラズマ処理されたフッ素添加カーボン膜の RBSの  [Figure 8] shows the RBS of the fluorinated carbon film plasma-treated using HZN gas.
2 2  twenty two
分析結果を示す説明図である。  FIG. 9 is an explanatory diagram showing an analysis result.
[図 9]は、 CF ガスの Arガスによる希釈率とフッ素添加カーボン膜のエッチング速度  [Figure 9] shows the dilution ratio of CF gas with Ar gas and the etching rate of fluorine-added carbon film.
4  Four
との関係を示す説明図である。  FIG. 4 is an explanatory diagram showing the relationship with the following.
[図 10]は、フッ素添加カーボン膜のエッチング速度のマップを示す説明図である。  FIG. 10 is an explanatory diagram showing a map of an etching rate of a fluorine-added carbon film.
[図 11]は、ハードマスクである SiCN膜のエッチング速度のマップを示す説明図であ る。  FIG. 11 is an explanatory diagram showing a map of an etching rate of a SiCN film as a hard mask.
[図 12]は、フッ素添加カーボン膜 ZSiCN膜の選択比のマップを示す説明図である。  FIG. 12 is an explanatory diagram showing a map of a selectivity of a fluorine-added carbon film ZSiCN film.
[図 13]は、載置台の温度とフッ素添加カーボン膜 ZSiCN膜の選択比との関係を示 す説明図である。  FIG. 13 is an explanatory diagram showing the relationship between the temperature of the mounting table and the selectivity of the fluorine-added carbon film ZSiCN film.
[図 14]は、載置台の温度とフッ素添加カーボン膜の側壁の傾きとの関係を示す説明 図である。  FIG. 14 is an explanatory diagram showing the relationship between the temperature of the mounting table and the inclination of the side wall of the fluorinated carbon film.
[図 15]は、本発明方法によりフッ素添加カーボン膜に対してエッチングを行って得ら れた凹部の観察結果を示す説明図である。 発明を実施するための最良の形態 FIG. 15 is an explanatory view showing observation results of a concave portion obtained by etching a fluorine-added carbon film by the method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明のプラズマエッチング方法に用いられる好まし!/、プラズマ処理装置につ!ヽて 、図 1一図 3を参照しながら説明する。図中 1は、例えばアルミニウム力もなる処理容 器 (真空チャンバ)である。この処理容器 1内には、載置台 2が設けられている。載置 台 2の表面部には、静電チャック 21が設けられている。静電チャック 21の電極は、ス イッチ 22を介して直流電源 23に接続されている。また、載置台 2の内部には、温調 手段である温調媒体の流路 24が設けられて 、る。温調媒体である冷媒が流入路 25 力も流路 24内を通って流出路 26から排出される。これにより、載置台 2上の基板であ る半導体ウェハ(以下ウェハという) Wが所定温度に維持されることとなる。また、載置 台 2には、例えば 13. 56MHzのバイアス用高周波電源 27が接続されている。  Preferred for use in the plasma etching method of the present invention! A description will be given with reference to FIGS. In the figure, reference numeral 1 denotes a processing container (vacuum chamber) that also has, for example, aluminum power. A mounting table 2 is provided in the processing container 1. An electrostatic chuck 21 is provided on the surface of the mounting table 2. The electrodes of the electrostatic chuck 21 are connected to a DC power supply 23 via a switch 22. Further, inside the mounting table 2, a flow path 24 of a temperature control medium as a temperature control means is provided. The refrigerant, which is a temperature control medium, is discharged from the outflow passage 26 through the inflow passage 24 as well as the inflow passage 25. As a result, the semiconductor wafer (hereinafter, referred to as a wafer) W as a substrate on the mounting table 2 is maintained at a predetermined temperature. The mounting table 2 is connected to a high frequency power supply 27 for biasing at 13.56 MHz, for example.
[0022] また載置台 2の上方には、例えば略円板状に構成された導電体力 なるガス供給 部 3が設けられている。ガス供給部 3における載置台 2と対向する面には、多数のガス 供給孔 31が形成されている。ガス供給部 3の内部には、例えば図 2に示すように、ガ ス供給孔 31と連通する格子状のガス流路 32が形成されている。ガス流路 32には、 ガス供給路 33が接続されている。このガス供給路 33には、図示しないガス供給源が 接続されており、各ガス供給源から C F (x、yは自然数)ガスである例えば CF ガ  [0022] Above the mounting table 2, a gas supply unit 3 formed of, for example, a substantially disk shape and serving as a conductor is provided. A large number of gas supply holes 31 are formed on the surface of the gas supply unit 3 facing the mounting table 2. Inside the gas supply unit 3, for example, as shown in FIG. 2, a lattice-shaped gas flow path 32 communicating with the gas supply hole 31 is formed. The gas flow path 32 is connected to a gas supply path 33. A gas supply source (not shown) is connected to the gas supply path 33, and a CF gas (x, y is a natural number) such as CF gas is supplied from each gas supply source.
4 ス、希ガスである例えば Ar (アルゴン)ガス、 O (酸素)ガス及び N (窒素)ガスがガ  4 Noble gases such as Ar (argon) gas, O (oxygen) gas and N (nitrogen) gas
2 2  twenty two
ス供給路 33及びガス供給孔 31を介して処理容器 1内に供給されることとなる。  The gas is supplied into the processing vessel 1 through the gas supply path 33 and the gas supply hole 31.
[0023] また、ガス供給部 3には、図 2に示すように、ガス供給部 3を上下方向に貫通する多 数の開口部 34が形成されている。開口部 34は、プラズマをガス供給部 3の下方側の 空間に通過させるために、例えば図 2に示すように、隣接するガス流路 32の間に形 成されている。また、処理容器 1の底部には排気管 11が接続されている。排気管 11 の基端側には、図示しない真空排気手段が接続されている。更にまた、処理容器 1 の内壁の内側には、加熱手段であるヒータ 12が内蔵された囲い部材 (ウォール部) 1 3が設けられている。 As shown in FIG. 2, the gas supply unit 3 has a number of openings 34 penetrating the gas supply unit 3 in the up-down direction. The openings 34 are formed between adjacent gas channels 32, for example, as shown in FIG. 2, in order to allow the plasma to pass through the space below the gas supply unit 3. An exhaust pipe 11 is connected to the bottom of the processing container 1. A vacuum exhaust unit (not shown) is connected to the base end of the exhaust pipe 11. Further, inside the inner wall of the processing container 1, a surrounding member (wall portion) 13 in which a heater 12 as a heating means is built is provided.
[0024] ガス供給部 3の上部側には、誘電体例えば石英力もなるプレート (マイクロ波透過 窓) 4が設けられている。石英プレート 4の上部側には、当該石英プレート 4と密接す るようにアンテナ部 5が設けられている。誘電体のプレートは、石英に限らず例えばァ ルミナなどであってもよい。アンテナ部 5は、図 3に示すように、円形の下面側が開口 する扁平なアンテナ本体 50と、アンテナ本体 50の下面側に設けられ、多数のスロット が形成された円板状の平面アンテナ部材 (スロット板) 51と、を備えている。これらァ ンテナ本体 50と平面アンテナ部材 51とは、導体により構成されており、扁平な中空 の円形導波管を構成すると共に、同軸導波管 41に接続されている。アンテナ本体 5 0は、この例では 2つの部材に分割されており、図示しない外部力もの冷媒流路を介 して冷媒が通流する冷媒溜 52が内部に形成されて!ヽる。 On the upper side of the gas supply unit 3, a plate (microwave transmitting window) 4 that also has a dielectric material, for example, a quartz force is provided. An antenna unit 5 is provided on the upper side of the quartz plate 4 so as to be in close contact with the quartz plate 4. The dielectric plate is not limited to quartz, for example, Lumina or the like may be used. As shown in FIG. 3, the antenna section 5 has a flat antenna body 50 having a circular lower surface side and an opening, and a disk-shaped planar antenna member (a plurality of slots formed on the lower surface side of the antenna body 50). Slot plate) 51. The antenna body 50 and the planar antenna member 51 are made of a conductor, form a flat hollow circular waveguide, and are connected to the coaxial waveguide 41. The antenna main body 50 is divided into two members in this example, and a refrigerant reservoir 52 through which the refrigerant flows through a refrigerant passage having an external force (not shown) is formed therein.
[0025] 平面アンテナ部材 51とアンテナ本体 50との間には、例えばアルミナや酸ィ匕ケィ素 、窒化ケィ素等の低損失誘電体材料により構成された遅相板 53が設けられて ヽる。 この遅相板 53は、後述するマイクロ波の波長を短くして前記円形導波管内の管内波 長を短くする。この実施の形態では、これらアンテナ本体 50、平面アンテナ部材 51、 遅相板 53によりラジアルラインスロットアンテナ (RLSA)が構成されて!、る。  [0025] Between the planar antenna member 51 and the antenna body 50, there is provided a retardation plate 53 made of a low-loss dielectric material such as alumina, silicon oxide, silicon nitride or the like. . The retardation plate 53 shortens the wavelength of the microwave described later to shorten the guide wavelength in the circular waveguide. In this embodiment, a radial line slot antenna (RLSA) is constituted by the antenna body 50, the planar antenna member 51, and the retardation plate 53! RU
[0026] このように構成されたアンテナ部 5は、平面アンテナ部材 51が石英プレート 4に密 接するように、図示しないシール部材を介して処理容器 1に装着されている。そして、 このアンテナ部 5は、同軸導波管 41を介して外部のマイクロ波発生手段 42と接続さ れ、例えば周波数が 2. 45GHzあるいは 8. 4GHzのマイクロ波が供給されるようにな つている。この際、同軸導波管 41を構成する外側の導波管 41Aがアンテナ本体 50 に接続され、中心導体 41Bが遅相板 53に形成された開口部を介して平面アンテナ 部材 51に接続されている。  The antenna unit 5 configured as described above is mounted on the processing container 1 via a sealing member (not shown) such that the planar antenna member 51 comes into close contact with the quartz plate 4. The antenna section 5 is connected to an external microwave generation means 42 via a coaxial waveguide 41, so that a microwave having a frequency of, for example, 2.45 GHz or 8.4 GHz is supplied. . At this time, the outer waveguide 41A constituting the coaxial waveguide 41 is connected to the antenna main body 50, and the center conductor 41B is connected to the planar antenna member 51 via the opening formed in the retardation plate 53. I have.
[0027] 前記平面アンテナ部材 51は、例えば厚さ 0. 3— lmm程度の銅板からなる。当該 平面アンテナ部材 51には、図 3に示すように、例えば円偏波を発生させるための多 数のスロット 54が形成されている。具体的には、略 T字状に僅かに離間させて配置さ れた対のスロット 54a, 54bの複数力 平面アンテナ部材 51の中央部を中心として周 方向に沿って例えば同心円状や渦巻き状に形成されている。なお、スロットの対は、 略八字状に僅かに離間させて配置されてもょ 、。スロット 54aとスロット 54bとが相互 に略直交するような関係で配置されているので、 2つの直交する偏波成分を含む円 偏波が放射される。スロット対 54a, 54bが遅相板 53により圧縮されるマイクロ波の波 長に対応した間隔で配列されるならば、マイクロ波は平面アンテナ部材 51より略平面 波として放射される。 The flat antenna member 51 is made of, for example, a copper plate having a thickness of about 0.3 to 1 mm. As shown in FIG. 3, the planar antenna member 51 has a large number of slots 54 for generating, for example, circularly polarized waves. More specifically, a plurality of pairs of slots 54a, 54b arranged slightly apart in a substantially T-shape, for example, concentrically or spirally along the circumferential direction around the center of the planar antenna member 51. Is formed. Note that the pair of slots may be arranged slightly apart in an approximately octagonal shape. Since the slots 54a and 54b are arranged so as to be substantially orthogonal to each other, circularly polarized waves including two orthogonally polarized components are emitted. If the slot pairs 54a and 54b are arranged at intervals corresponding to the wavelength of the microwave compressed by the retardation plate 53, the microwave is substantially planar from the planar antenna member 51. Radiated as waves.
[0028] より具体的には、この例では、各スロット 54a, 54bのスロット長は、平面アンテナ部 材 51における同軸導波管 41側のマイクロ波の波長の 1Z2以下であって、かつ、平 面アンテナ部材 51におけるプラズマ発生空間(処理容器 2内)側のマイクロ波の波長 の 1/2よりも大きい寸法に設定されている。これにより、マイクロ波は、スロット 54を通 つてプラズマ空間に入った後、同軸導波管 41側に戻らない。なお、スロットは、マイク 口波が円偏波ではなく直線偏波で放射されるように形成されてもょ ヽ。  More specifically, in this example, the slot length of each of the slots 54a and 54b is 1Z2 or less of the microwave wavelength on the coaxial waveguide 41 side of the planar antenna member 51, and The dimension is set to be larger than 1/2 of the wavelength of the microwave on the plasma generation space (inside the processing vessel 2) of the surface antenna member 51. As a result, the microwave does not return to the coaxial waveguide 41 after entering the plasma space through the slot 54. Note that the slot may be formed so that the microphone mouth wave is radiated not in circular polarization but in linear polarization.
[0029] 続いて、半導体装置の製造プロセスの一部である、上記のプラズマ処理装置により 実施されるエッチングプロセスの一例にっ 、て説明する。半導体装置を製造するた めの基板であるウェハ Wは、図 4 (a)に示すように、エッチングの対象となっているフ ッ素添加カーボン膜 (CF膜) 61の上に例えば SiCN力 なるハードマスク 62が積層 され、更にその上にパターンを形成するレジスト膜 (レジストパターン) 63が形成され ている。また、フッ素添加カーボン膜 61の下には、 SiCNからなるハードマスク 64を 介してフッ素添加カーボン膜 65が形成されている。即ち、この例では、フッ素添加力 一ボン膜 65及び 61が夫々 n段目及び n+ 1段目の層間絶縁膜に相当する。フッ素 添加カーボン膜 65、 61及びハードマスク 62、 64は、いずれも、マイクロ波により発生 されるプラズマを用いて CVDにより成膜される。フッ素添加カーボン膜 65、 61の膜 厚は、例えば 500θΑ、ハードマスク 62、 64の膜厚は、例えば 1000Aである。  Next, an example of an etching process performed by the above-described plasma processing apparatus, which is a part of a semiconductor device manufacturing process, will be described. As shown in FIG. 4 (a), a wafer W, which is a substrate for manufacturing semiconductor devices, has a SiCN force on a fluorine-added carbon film (CF film) 61 to be etched. A hard mask 62 is laminated, and a resist film (resist pattern) 63 for forming a pattern is further formed thereon. Further, a fluorine-added carbon film 65 is formed under the fluorine-added carbon film 61 via a hard mask 64 made of SiCN. That is, in this example, the fluorine additive films 65 and 61 correspond to the n-th and n + 1-th interlayer insulating films, respectively. Each of the fluorine-added carbon films 65 and 61 and the hard masks 62 and 64 is formed by CVD using plasma generated by microwaves. The thickness of the fluorine-added carbon films 65 and 61 is, for example, 500θ 500, and the thickness of the hard masks 62, 64 is, for example, 1000A.
[0030] 先ず、前記ウェハ W力 図示されな 、ロードロック室から図示されな 、搬送口を介し て処理容器 1内に搬入され、載置台 2上に載置される。続いて、ガス供給部 3から CF ガス及び Arガスが所定の流量で供給されながら、処理容器 1の内部が真空排気さ First, the wafer W is loaded into the processing container 1 from a load lock chamber (not shown) through a transfer port (not shown), and is placed on the mounting table 2. Subsequently, while the CF gas and the Ar gas are supplied at predetermined flow rates from the gas supply unit 3, the inside of the processing vessel 1 is evacuated.
4 Four
れて所定の圧力に維持される。一方、マイクロ波発生手段 42から例えば 2. 45GHz 、 1500Wの高周波(マイクロ波)が供給されると共に、高周波電源部 27から例えば 1 3. 56MHz, 1250Wのバイアス用高周波電力が載置台 2に供給される。  To maintain a predetermined pressure. On the other hand, a high frequency (microwave) of, for example, 2.45 GHz and 1500 W is supplied from the microwave generation means 42, and a high frequency power for bias of, for example, 13.56 MHz and 1250 W is supplied to the mounting table 2 from the high frequency power supply unit 27. You.
[0031] マイクロ波は、 TMモード或いは TEモード或いは TEMモードで同軸導波管 41内を 伝搬して、アンテナ部 5の平面アンテナ部材 51に到達する。そして、平面アンテナ部 材 51の中心部力も周縁領域に向けて放射状に伝搬される間に、スロット対 54a, 54b から、マイクロ波は、石英プレート 4を介して下方側の処理空間に向けて放出される。 [0032] このとき、既述のようなスロット対 54a, 54bの配列のために、円偏波が平面アンテナ 部材 51の平面に亘つて均一に放出され、この下方の空間における電界密度が均一 化される。一方、ガス供給部 3から処理容器 1内に供給された CF ガス及び Arガス The microwave propagates in the coaxial waveguide 41 in the TM mode, the TE mode, or the TEM mode, and reaches the planar antenna member 51 of the antenna unit 5. Then, while the central force of the planar antenna member 51 is also propagated radially toward the peripheral region, the microwaves are emitted from the pair of slots 54a and 54b through the quartz plate 4 toward the lower processing space. Is done. At this time, due to the arrangement of the pair of slots 54a and 54b as described above, the circularly polarized wave is uniformly emitted over the plane of the planar antenna member 51, and the electric field density in the space below this is made uniform. Is done. On the other hand, the CF gas and Ar gas supplied into the processing vessel 1 from the gas supply unit 3
4  Four
は、ガス供給部 3の開口部 34 (図 2参照)を介して上方側に回り込み、前記マイクロ波 のエネルギーによりプラズマ化される。このプラズマは、前記開口部 34を介してガス 供給部 3の下方側の処理空間に流れ込んで行く。これにより、露出されているハード マスク 62がプラズマ中の活性種によりエッチングされる。具体的には、後述の実験例 からも推測されるように、 CF化合物がハードマスク 62の表面に付着して、ハードマス ク 62はこの化合物と共に除去されて 、く。  The gas flows upward through the opening 34 (see FIG. 2) of the gas supply unit 3 and is turned into plasma by the microwave energy. This plasma flows into the processing space below the gas supply unit 3 through the opening 34. Thus, the exposed hard mask 62 is etched by the active species in the plasma. Specifically, as can be inferred from the experimental examples described later, the CF compound adheres to the surface of the hard mask 62, and the hard mask 62 is removed together with this compound.
[0033] 図 4 (b)に示すように、露出されて 、るハードマスク 62が全部エッチングされる前に おいて、例えばノヽードマスク 62の膜厚が元の膜厚の 1/4程度になったときに、ガス の供給及び電力の供給が止められてプロセスがー且停止される。そして、レジスト膜 63のエッチング(アツシング)プロセスに切り替えられる。このエッチングプロセスにお いては、 Arガス、 O ガス及び N ガスがガス供給部 3から処理容器 1内に供給される As shown in FIG. 4B, before the hard mask 62 is completely exposed and is completely etched, for example, the thickness of the node mask 62 becomes about 程度 of the original thickness. When the gas supply and the power supply are stopped, the process is stopped. Then, the process is switched to the etching (assisting) process of the resist film 63. In this etching process, Ar gas, O gas and N gas are supplied from the gas supply unit 3 into the processing vessel 1.
2 2  twenty two
と共に、平面アンテナ部材 51からマイクロ波が放出され、また、載置台 2に高周波バ ィァスが供給される。これにより、前記ガスの混合ガスがマイクロ波のエネルギーによ りプラズマ化され、プラズマ中の酸素活性種である酸素ラジカルによりレジスト膜 63が 灰化 (アツシング)されて除去される(図 4 (c) )。  At the same time, microwaves are emitted from the planar antenna member 51, and a high-frequency bias is supplied to the mounting table 2. As a result, the gas mixture is converted into plasma by the energy of microwaves, and the resist film 63 is ashed (ashed) by oxygen radicals, which are active oxygen species in the plasma, and removed (FIG. 4 (c)). )).
[0034] し力る後、ガスの供給及び電力の供給が止められてプロセスがー且停止される。そ して、フッ素添加カーボン膜 61のエッチングプロセスに切り替えられる。このエツチン グプロセスは、先のハードマスク 62のエッチングプロセスと同じ条件で行われる。この エッチングでは、後述の実験例から推測されるように、プラズマ中に Fの活性種や CF の活性種が発生し、これらの活性種がフッ素添加カーボン膜 61と反応し、当該膜は CF や CF といった揮発性のガスとなって除去されていく。こうして、フッ素添加カーAfter pressing, the gas supply and the power supply are stopped, and the process is stopped. Then, the process is switched to the etching process of the fluorine-added carbon film 61. This etching process is performed under the same conditions as the etching process of the hard mask 62 described above. In this etching, active species of F and active species of CF are generated in the plasma, and these active species react with the fluorinated carbon film 61, as estimated from an experimental example described later, and the film is formed of CF or CF. It is removed as volatile gas such as CF. Thus, the fluorine-added car
2 3 twenty three
ボン膜 61がエッチングされ、図 4 (d)に示すように下地のハードマスク 64が露出され る。  The bon film 61 is etched, exposing the underlying hard mask 64 as shown in FIG.
[0035] 上述の実施の形態によれば、後述の実験例からも明らかなように、フッ素添加カー ボン膜 61の良好なエッチング形状つまり垂直性の高いエッチング形状が得られる。 そして C F ガス例えば CF ガスを用いて、水素ガスを使用しないので、エッチング According to the above-described embodiment, as is clear from an experimental example described later, a favorable etching shape of the fluorine-added carbon film 61, that is, an etching shape with high perpendicularity can be obtained. Then, use CF gas, for example CF gas, and do not use hydrogen gas.
4  Four
により形成されるフッ素添加カーボン膜の凹部の側壁面に、エッチングに起因して水 素が入り込むということがない。このため、次工程で当該凹部に形成されるバリアメタ ル膜ゃ当該凹部に埋め込まれるメタル膜にダメージが生ずるおそれがなぐ予定通り の電気的特性を得ることができる。  Hydrogen does not enter the side wall surface of the concave portion of the fluorine-added carbon film formed by the etching due to the etching. For this reason, it is possible to obtain the expected electrical characteristics without damaging the barrier metal film formed in the concave portion in the next step and the metal film embedded in the concave portion.
[0036] また、ハードマスクである SiCN膜 62のエッチング速度に対するフッ素添加カーボ ン膜 61のエッチング速度の比 (選択比)を大きくとれる。従って、露出されているハー ドマスク 62を全部エッチングせずに薄く残してレジスト膜 63をエッチングし、その後残 りのハードマスク 62及びフッ素添加カーボン膜 61をエッチングするという手法を採用 できる。この場合、レジスト膜 63のエッチング時に、酸素ガスのプラズマがフッ素添カロ カーボン膜 61に照射されない。従って、既述のアンダーカット (側壁が膨らんでエツ チングされること)が起こらず、垂直性の高い良好なエッチング形状が得られる。  Further, the ratio (selectivity) of the etching rate of the fluorine-added carbon film 61 to the etching rate of the SiCN film 62 as a hard mask can be increased. Therefore, it is possible to employ a method of etching the resist film 63 while leaving the exposed hard mask 62 thin without etching it, and thereafter etching the remaining hard mask 62 and the fluorine-added carbon film 61. In this case, when etching the resist film 63, the plasma of oxygen gas is not irradiated to the fluorinated carocarbon film 61. Therefore, the undercut (expansion of the side wall swelling and etching) does not occur, and a favorable etching shape with high perpendicularity can be obtained.
[0037] そしてまた、上述のプラズマ処理装置によれば、円偏波が平面アンテナ部材 51の 平面に亘つて均一に放出され、この下方の処理空間の電界密度が均一化され、この マイクロ波のエネルギーにより広い処理空間の全域に亘つて高密度で均一なプラズ マが励起される。このため、高いエッチング速度で均一な処理を行うことができる。  Further, according to the above-described plasma processing apparatus, the circularly polarized wave is uniformly emitted over the plane of the planar antenna member 51, and the electric field density in the processing space below this is made uniform. The energy excites high-density and uniform plasma over the entire processing space. Therefore, uniform processing can be performed at a high etching rate.
[0038] 更に、本発明の他の実施の形態について図 5を参照しながら述べる。この実施の形 態でも、先の実施の形態で用いたと同様の表面構造 (図 5 (a) )を備えたウェハが用 いられ、 CF ガス及び Arガスをプラズマ化してエッチングが行われるが、ハードマス Further, another embodiment of the present invention will be described with reference to FIG. Also in this embodiment, a wafer having the same surface structure as that used in the previous embodiment (FIG. 5 (a)) is used, and etching is performed by converting CF gas and Ar gas into plasma. Hard trout
4  Four
ク 62のエッチングが途中で止められずに全部エッチングされ(図 5 (b) )、更に連続し てフッ素添加カーボン膜 61がエッチングされて除去される(図 5 (c) )。し力る後、酸素 の活性種を含むプラズマが発生されながら(例えば Arガス、 N ガス及び O ガスの  The etching of the mask 62 is not stopped, but is completely etched (FIG. 5B), and the fluorine-added carbon film 61 is continuously etched and removed (FIG. 5C). Then, a plasma containing active species of oxygen is generated (for example, Ar gas, N gas and O gas).
2 2 プラズマが発生されながら)、載置台 2に例えば 500W— 1000W程度のバイアス電 力が印加されてレジスト膜 63のエッチングが行われる。  While a plasma is being generated), a bias power of, for example, about 500 W to 1000 W is applied to the mounting table 2 to etch the resist film 63.
[0039] この実施の形態では、酸素の活性種によりレジスト膜 63がエッチング (アツシング)さ れて除去される。また、 Arイオンがフッ素添加カーボン膜 61の下地膜であるハードマ スク 64をスパッタし、そのスパッタ物がフッ素添加カーボン膜 61の凹部の側壁に付着 する。この付着したスパッタ物がいわば保護膜の役割を果たす。これにより、酸素ラジ カルが当該側壁をエッチングする作用が抑えられ、凹部がアンダーカット形状になら ずに良好な形状を維持できる。なお、この実施の形態において、 Arガスの代わりに 他の希ガスを添カ卩してもよ 、。 In this embodiment, the resist film 63 is removed by etching (assisting) with an active species of oxygen. In addition, Ar ions sputter the hard mask 64 which is a base film of the fluorinated carbon film 61, and the sputter adheres to the side wall of the concave portion of the fluorinated carbon film 61. The attached spatter serves as a so-called protective film. This allows the oxygen radio The action of the cull to etch the side wall is suppressed, and the recess can be maintained in a good shape without becoming an undercut shape. In this embodiment, another rare gas may be added instead of Ar gas.
[0040] 以上において、本発明にて用いられる C F ガスとしては、 CF ガスに限らず、 C  In the above, the CF gas used in the present invention is not limited to CF gas,
4 2 4 2
F ガス、 C F ガス、 C F ガス及び C F ガスなどを用いることができる。また、ハF gas, CF gas, CF gas and CF gas can be used. Also, c
6 3 8 3 9 4 8 6 3 8 3 9 4 8
ードマスクとしては、 SiCN膜に限らず、 SiO 膜、 SiOF膜、 SiCO膜、 SiCOH膜ある  Not only SiCN film but also SiO mask, SiOF film, SiCO film, SiCOH film
2  2
いは Si N 膜などの絶縁膜であってもよい。これら絶縁膜は CF ガスなどの C F Alternatively, an insulating film such as a SiN film may be used. These insulating films are made of CF
3 4 4 3 4 4
ガスによりエッチングされ得る。更にまた、ハードマスクは、絶縁膜の代わりに TiNや T iWなどの導電膜であつもよい。この場合、ハードマスクのエッチングを行うためのガス としては、例えば BC1 ガスが用いられ得る。  It can be etched by gas. Furthermore, the hard mask may be a conductive film such as TiN or TiW instead of the insulating film. In this case, as a gas for etching the hard mask, for example, BC1 gas can be used.
3  Three
[0041] レジスト膜 63をエッチングして除去する工程は、ハードマスク 62が残っている状態 で行われることが好ましい。し力し、ハードマスク 62及びフッ素添加カーボン膜 61を エッチングにより除去した後に行われてもよ 、。  The step of etching and removing the resist film 63 is preferably performed in a state where the hard mask 62 remains. Alternatively, it may be performed after the hard mask 62 and the fluorine-added carbon film 61 are removed by etching.
[0042] なお、フッ素添加カーボン膜 61をエッチングするときに用いられる希ガスとしては、 Arガスに限らず、 Xeガスや Krガスなどであってもよ!/、。  The rare gas used when etching the fluorine-added carbon film 61 is not limited to Ar gas, but may be Xe gas or Kr gas!
[0043] 本発明の効果を確認するために行われた実験結果について、以下に説明する。  The results of experiments performed to confirm the effects of the present invention will be described below.
[0044] (A.プラズマ処理装置における電子密度)  (A. Electron Density in Plasma Processing Apparatus)
図 1のプラズマ処理装置の処理容器 1内に Arガスが供給され、圧力が夫々 6. 7Pa 、 67Pa及び 133Paに設定され、マイクロ波パワーが 2000Wに設定されて、石英プ レート 4の下方 60mmの位置にてラングミュアプローブを用いて電子密度が計測され た。結果は図 6に示すとおりである。なお、横軸のゼロは、載置台 2上の中心位置に 相当する。この結果から分かるように、電子密度がおよそ 1 X 1012 (個 /cm3 )であり 、平行平板型プラズマ装置に比べておよそ 10倍の大きさになっている。また、電子温 度は同位置において 1. 5eVであった。従って、高密度、低電子温度のプラズマが得 られたことが分かる。 Ar gas was supplied into the processing vessel 1 of the plasma processing apparatus shown in Fig. 1, the pressure was set to 6.7 Pa, 67 Pa, and 133 Pa, the microwave power was set to 2000 W, and 60 mm below the quartz plate 4 was set. Electron density was measured at the position using a Langmuir probe. The results are as shown in FIG. Note that zero on the horizontal axis corresponds to the center position on the mounting table 2. As can be seen from the result, the electron density is about 1 × 10 12 (pieces / cm 3 ), which is about 10 times as large as that of the parallel plate type plasma apparatus. The electron temperature was 1.5 eV at the same position. Therefore, it is understood that high-density plasma with a low electron temperature was obtained.
[0045] (B.エッチングによるフッ素添加カーボン膜の組成変化)  (B. Change in composition of fluorine-added carbon film due to etching)
フッ素添加カーボン膜をエッチングするための処理ガスに関して、 CF ガス及び Ar  Regarding the processing gas for etching the fluorinated carbon film, CF gas and Ar
4  Four
ガスの混合ガス (Arガス ZCF ガス)を用いた場合と、既述の文献 (Materials Research Society Conference Proceedings ^ Volume V— 14、 Advanced Metallization Conference in 1998)に記載されている H ガス及び N ガスの混合ガス(H ガス ZN Gas mixture gas (Ar gas ZCF gas) and the literature (Materials A mixture gas of H gas and N gas (H gas ZN) described in Research Society Conference Proceedings ^ Volume V-14, Advanced Metallization Conference in 1998)
2 2 2 ガス)を用いた場合との、エッチングにより形成された凹部の側壁面の組成の違 ヽ The difference in the composition of the side wall surface of the recess formed by etching compared to the case of using 222 gas)
2 2
が評価された。この評価のために、図 4に示したウェハではなぐ表面全体にフッ素 添加カーボン膜が成膜された基板 (ウエノ、)が用いられた。すなわち、この基板が上 記のプラズマ処理装置内に搬入され、 2通りの処理ガスのプラズマが各々発生され、 フッ素添加カーボン膜のエッチングが行われた。 2通りの処理ガスは、流量 200Z20 Osccmに設定された H ガス ZN ガスと流量 400Zl00sccmに設定された Arガス  Was evaluated. For this evaluation, a substrate (Ueno) with a fluorine-added carbon film formed on the entire surface other than the wafer shown in Fig. 4 was used. That is, this substrate was carried into the above-described plasma processing apparatus, and two types of plasmas of the processing gas were respectively generated to etch the fluorine-added carbon film. The two types of processing gases are H gas ZN gas set at a flow rate of 200Z20 Osccm and Ar gas set at a flow rate of 400Zl00sccm.
2 2  twenty two
/CF ガスであった。このときのマイクロ波パワーは 2000Wに設定され、圧力は 1.  / CF gas. At this time, the microwave power was set to 2000W and the pressure was 1.
4  Four
33Pa (10mTorr)に設定され、プラズマの照射時間は 30秒であった。実際のエッチ ングにより形成される凹部の側壁には、加速されたイオンは衝突しない。この側壁を モデルィ匕するために、載置台 2に高周波バイアスを印加せずにエッチングが行われ た。  The pressure was set to 33 Pa (10 mTorr), and the plasma irradiation time was 30 seconds. The accelerated ions do not collide with the side walls of the recess formed by the actual etching. In order to model this side wall, etching was performed without applying a high frequency bias to the mounting table 2.
[0046] そして、エッチングが行われる前のフッ素添加カーボン膜の表面部、(H ガス ZN  Then, the surface portion of the fluorine-added carbon film before etching is performed (H gas ZN
2 2 ガス)によるエッチングが行われたときのフッ素添加カーボン膜の表面部、及び (Ar ガス ZCF ガス)によるエッチングが行われたときのフッ素添加カーボン膜の表面部  22 The surface of the fluorinated carbon film when etched by 2 gas) and the surface of the fluorinated carbon film when etched by (Ar gas ZCF gas)
4  Four
について、夫々、 XPS (X線光電子分光装置)により CFの結合状態が調べられた。こ の結果、図 7 (a)—図 7 (c)に示す結果が得られた。  In each case, the bonding state of CF was examined by XPS (X-ray photoelectron spectroscopy). As a result, the results shown in FIGS. 7 (a) to 7 (c) were obtained.
[0047] H ガス ZN ガスを用いた場合には、図 7 (a)に示すエッチング処理前のプロファ When H gas and ZN gas are used, the profile before etching shown in FIG.
2 2  twenty two
ィルに対し、図 7 (b)に示すように、 CF 、 CF が減少する一方、 C Cあるいは C H  As shown in Fig. 7 (b), while CF and CF decrease, C C or C H
2 3  twenty three
の結合が増加していることが分かる。そこで、その表面部について、 RBS (ラザフォー ドバックスキヤッタリング)により、膜中への H (水素)の侵入深さが調べられたところ、 図 8に示す結果が得られた。この結果力 わ力るように、 H ガス ZN ガスのプラズ  It can be seen that the coupling of Then, the penetration depth of H (hydrogen) into the film was examined for the surface by RBS (Raza-Forward Back Scattering), and the result shown in Fig. 8 was obtained. As a result, the H gas ZN gas plasma
2 2  twenty two
マを照射することで、最表面から 1000A程度の深さにおいて H原子の濃度がおよそ 2. 5倍増加している。なお、図 8には示されていないが、 N (窒素)原子は最表面で観 察されるだけでフッ素添加カーボン膜中には侵入していなった。これに対して、水素 は、原子半径が小さいため、膜中に容易に侵入し拡散していると推察される。以上に より、フッ素添加カーボン膜に水素プラズマを照射するだけで水素が膜中深く侵入し 、膜組成を変化させてしまうことが分かった。 Irradiation increases the concentration of H atoms by about 2.5 times at a depth of about 1000A from the outermost surface. Although not shown in FIG. 8, N (nitrogen) atoms were only observed on the outermost surface and had not penetrated into the fluorine-added carbon film. On the other hand, it is presumed that hydrogen easily penetrates and diffuses into the film due to its small atomic radius. As described above, hydrogen only penetrates deep into the fluorine-added carbon film simply by irradiating it with hydrogen plasma. It was found that the film composition was changed.
[0048] 一方、 Arガス ZCF ガスのプラズマを照射した場合には、図 7 (c)に示すように、表  [0048] On the other hand, when the plasma of Ar gas and ZCF gas was irradiated, as shown in FIG.
4  Four
面部の CF結合状態のプロファイルはほとんど変化していない。従って、エッチング後 に形成される膜に対して水素によるダメージのおそれがな 、。  The profile of the CF bonding state on the surface has hardly changed. Therefore, the film formed after the etching is not likely to be damaged by hydrogen.
[0049] (C. Arガス ZCF ガスの流量比とエッチング特性との関係) (C. Relationship between Flow Ratio of Ar Gas and ZCF Gas and Etching Characteristics)
4  Four
CF ガスによるフッ素添加カーボン膜のエッチングのメカニズムを調べるために、 A To investigate the mechanism of etching the fluorinated carbon film by CF gas,
4 Four
rガス ZCF ガスの流量比とエッチング速度との関係が調べられたところ、図 9に示す  r The relationship between the flow rate ratio of the ZCF gas and the etching rate was examined.
4  Four
結果が得られた。その他のプロセス条件については、マイクロ波パワー及びバイアス パワーが夫々 1500W及び 1250Wであり、圧力が 1. 33Paであり、ウェハ温度力 0 °Cであった。  The result was obtained. For other process conditions, the microwave power and the bias power were 1500 W and 1250 W, respectively, the pressure was 1.33 Pa, and the wafer temperature was 0 ° C.
[0050] 図 9から分力るように、 CF ガスの流量が少ないとエッチング速度が遅ぐ CF ガス  [0050] As can be seen from Fig. 9, when the flow rate of CF gas is small, the etching rate is slow.
4 4 の添加量を増やして 、くとエッチング速度は急激に増加する。 Arガスだけではスパッ タ作用し力なぐケミカルな反応によるエッチングは全く起こらず、また一般に C (炭素 )は吸着係数が高ぐ F (フッ素)は揮発性が高いことが知られている。今回用いたフッ 素添加カーボン膜の CZF比は 1程度と Cの比率が高いことから、 Arのスパッタだけ ではガス化があまり起こらないと考えられる。そして、 CF ガスが添加されていくことで  Increasing the addition amount of 44 increases the etching rate sharply. It is known that Ar gas alone does not cause any etching due to chemical reaction that acts as a spatter, and that C (carbon) generally has a high adsorption coefficient and F (fluorine) has high volatility. Since the C ratio of C is as high as about 1 in the fluorine-added carbon film used in this study, it is considered that gasification does not occur much by sputtering of Ar alone. And by adding CF gas,
4  Four
、プラズマ中に Fや CFと!、つたエッチング種が発生してフッ素添加カーボン膜のエツ チングが促進される。すなわち、膜表面部が CF や CF といった揮発性のガスとな  In addition, etching species such as F and CF are generated in the plasma to accelerate the etching of the fluorine-added carbon film. That is, the film surface becomes volatile gas such as CF or CF.
2 3  twenty three
つて脱離することが促進される、と推測される。  It is presumed that desorption is promoted.
[0051] (D.高周波電力とエッチング特性との関係)  [0051] (D. Relationship between high frequency power and etching characteristics)
マイクロ波パワーとバイアスパワーとが変えられながら、フッ素添加カーボン膜のェ ツチング速度について等速度となるポイントがプロットされて等速度線が求められたと ころ、図 10に示す結果が得られた。その他のプロセス条件は、上記の項目 C. D.に 記載した条件と同じとされた。この結果から分かるように、エッチング速度は、マイクロ 波パワー及びバイアスパワーの 、ずれを大きくしても増加するが、特にマイクロ波パ ヮーを大きくすることで急激に増加する。これは、高密度プラズマによって CF の解  While the microwave power and the bias power were changed, the points at which the etching speed of the fluorine-added carbon film became constant were plotted to obtain the constant velocity line. The results shown in FIG. 10 were obtained. Other process conditions were the same as those described in item C.D. above. As can be seen from this result, the etching rate increases even when the deviation between the microwave power and the bias power is increased, but increases sharply especially when the microwave power is increased. This is because CF is solved by high-density plasma.
4 離が促進され、エッチング種の量が増加するためと考えられる。  It is considered that the separation is promoted and the amount of etching species increases.
[0052] また、同様にして、ハードマスクである SiCN膜についてもエッチング速度の等速度 線が求められたところ、図 11に示す結果が得られた。 SiCN膜のエッチング速度は、 フッ素添加カーボン膜のエッチング速度と異なり、プラズマ密度にはあまり依存せず バイアスパワーに大きく依存していることが分かる。この結果から、 SiCN膜のエツチン グは、イオンの密度よりもイオンスパッタのエネルギーに支配されているといえる。 [0052] Similarly, for the SiCN film as a hard mask, the etching speed is constant. When the line was obtained, the result shown in FIG. 11 was obtained. It can be seen that, unlike the etching rate of the fluorine-added carbon film, the etching rate of the SiCN film does not depend so much on the plasma density but largely depends on the bias power. From this result, it can be said that the etching of the SiCN film is governed by the energy of ion sputtering rather than the ion density.
[0053] また、図 12は、図 10及び図 11の関係力も導き出された選択比(フッ素添加カーボ ン膜のエッチング速度 ZSiCN膜のエッチング速度)について、等選択比となるボイ ント群を結んだマップである。この結果から、フッ素添加カーボン膜のエッチングを高 速で行!、かつ高選択比を得るためには、マイクロ波パワー即ち高密度プラズマが必 要で、バイアスパワーはほとんど関与しないことが分力つた。従って、図 1に示したプ ラズマ処理装置は、フッ素添加カーボン膜のエッチングを行うための装置として有効 であることが理解される。 Further, FIG. 12 shows the results of connecting the groups of the selectivity ratios (the etching rate of the fluorine-added carbon film and the etching rate of the ZSiCN film) from which the relational forces of FIGS. It is a map. From these results, it was concluded that microwave power, that is, high-density plasma was required to perform high-speed etching of the fluorine-added carbon film and to obtain a high selectivity, and that bias power was hardly involved. . Therefore, it is understood that the plasma processing apparatus shown in FIG. 1 is effective as an apparatus for etching a fluorine-added carbon film.
[0054] (E.ウェハ温度とエッチング特性との関係) (E. Relationship between Wafer Temperature and Etching Characteristics)
マイクロ波パワー及びバイアスパワーが夫々 1500W及び 1250Wに設定され、圧 力が 1. 33Paに設定され、 Arガス ZCF ガスの流量力 OOZlOOsccmに設定され  The microwave power and bias power were set to 1500 W and 1250 W, respectively, the pressure was set to 1.33 Pa, and the flow force of Ar gas ZCF gas was set to OOZlOOsccm.
4  Four
、ウェハの温度が 0°Cと 40°Cとの 2通りに設定されて前記選択比及びエッチングされ た凹部の側壁の角度が調べられたところ、図 13及び図 14に示す結果が得られた。  When the wafer temperature was set at 0 ° C. and 40 ° C. and the selectivity and the angle of the side wall of the etched recess were examined, the results shown in FIGS. 13 and 14 were obtained. .
[0055] 図 13から分力るように、ウェハの温度を高くすると選択比が向上する。これは、 SiC N膜のエッチング速度がウェハの温度上昇に伴って減少したためである。即ち、ゥェ ハ温度の上昇に伴!、、エッチング時における SiCN膜表面のデポジション (堆積物) の量が減少し、それによつてエッチング反応が抑制されたためと考えられる。ここで、 もしその堆積物が保護膜として働くならば、ウェハ温度の上昇により堆積物が薄くな ると SiCN膜のエッチング速度が大きくなり選択比は小さくなるはずである。しかし、図 13の結果は逆である。従って、 SiCN膜のエッチングにおいては、 SiCN膜の表面に 付着した堆積物が保護膜として働くのではなぐ SiO のエッチングのメカニズムのよ As can be seen from FIG. 13, increasing the temperature of the wafer improves the selectivity. This is because the etching rate of the SiCN film decreased as the wafer temperature increased. That is, it is considered that the amount of deposition (deposit) on the surface of the SiCN film at the time of etching was reduced with an increase in the wafer temperature, and the etching reaction was thereby suppressed. Here, if the deposit acts as a passivation layer, as the deposit becomes thinner as the wafer temperature increases, the etch rate of the SiCN film should increase and the selectivity should decrease. However, the result in Figure 13 is the opposite. Therefore, in the etching of the SiCN film, the mechanism of SiO etching is not a function of the deposit attached to the surface of the SiCN film as a protective film.
2  2
うに、 SiCN膜の表面に CFィ匕合物が堆積し、その堆積物と一緒に SiCN膜が剥がれ ていくものと推測される。  Thus, it is presumed that the CF film is deposited on the surface of the SiCN film, and the SiCN film is peeled off together with the deposit.
[0056] また、図 14力も分力るように、ウェハ温度が高くなると凹部の側壁のウェハ表面に 対する角度が垂直に近づいてくる。これは、温度が上昇することでエッチング生成物 がエッチングされた部分の側壁に吸着せずに排気され易くなるためと思われる。 As shown in FIG. 14, as the force is increased, the angle of the side wall of the concave portion with respect to the wafer surface becomes closer to the vertical when the wafer temperature is increased. This is because the temperature increases and the etching products It is considered that the gas is easily exhausted without being adsorbed on the side wall of the etched portion.
[0057] (F.エッチング形状の観察及び他の処理ガスによるエッチング)  (F. Observation of Etching Shape and Etching with Other Processing Gas)
マイクロ波パワー及びバイアスパワーが夫々 1500W及び 1250Wに設定され、圧 力が 1. 33Paに設定され、 Arガス ZCF ガスの流量力 OOZlOOsccmに設定され  The microwave power and bias power were set to 1500 W and 1250 W, respectively, the pressure was set to 1.33 Pa, and the flow force of Ar gas ZCF gas was set to OOZlOOsccm.
4  Four
、ウェハの温度が 40°Cに設定されて、先ずフッ素添加カーボン膜の上に形成されて V、るハードマスクである SiCN膜がエッチングされて除去され、次!、でフッ素添加カー ボン膜がエッチングされた。フッ素添加カーボン膜及びノヽードマスクの膜厚は、夫々 、 5000 A及び 1000 Aであった。このプロセスを実施例 F— 1とする。  Then, the temperature of the wafer is set to 40 ° C., first, the SiCN film which is a hard mask formed on the fluorinated carbon film is etched and removed, and then the fluorinated carbon film is formed in the next step. Etched. The thicknesses of the fluorine-added carbon film and the node mask were 5000 A and 1000 A, respectively. This process is referred to as Example F-1.
[0058] CF ガスの代わりに C F ガスが用いられ、更に Arガス及び O ガスが用いられ、 [0058] Instead of CF gas, CF gas is used, and further, Ar gas and O gas are used.
4 4 8 2  4 4 8 2
Arガス ZC F ガス ZO ガスの流量が 1000Zl5Zl0sccmに設定されると共に  Ar gas ZC F gas ZO gas flow rate is set to 1000Zl5Zl0sccm and
4 8 2  4 8 2
圧力が 2. 66Paに設定され、その他は実施例 F-1と同様にしてエッチングが行われ た。このプロセスを実施例 F-2とする。  The etching was performed in the same manner as in Example F-1, except that the pressure was set to 2.66 Pa. This process is referred to as Example F-2.
[0059] O ガスの代わりに N ガスが用いられ、その他は実施例 F— 2と同様にしてエツチン [0059] N gas was used instead of O gas, and the other conditions were the same as in Example F-2.
2 2  twenty two
グが行われた。このプロセスを実施例 F-3とする。  Was done. This process is referred to as Example F-3.
[0060] 実施例 F— 1にお ヽて得られた凹部の断面は、 SEM (走査型電子顕微鏡)で確認し たところ、図 15に示すような形状であり、側壁の角度 Θは 87度と高い垂直性が得ら れた。また、実施例 F— 2及び実施例 F— 3についても、同等の結果が得られた。各例 におけるエッチング速度 (エッチングレート)及び選択比については以下の通りであつ た。エッチング速度の単位は AZ分である。 [0060] The cross section of the concave portion obtained in Example F-1 was confirmed by SEM (scanning electron microscope), and had a shape as shown in Fig. 15, and the angle の of the side wall was 87 degrees. High verticality was obtained. Further, the same results were obtained for Example F-2 and Example F-3. The etching rate (etching rate) and selectivity in each example were as follows. The unit of the etching rate is AZ.
[0061] CF膜のエッチレート SiCN膜のエッチレート 選択比 [0061] Etch rate of CF film Etch rate of SiCN film Selectivity
実施例 F— 1 10040 2090 4. 8  Example F—1 10040 2090 4.8
実施例 F— 2 3274 496 6. 6  Example F—2 3274 496 6.6
実施例 F— 3 2301 318 7. 2  Example F—3 2301 318 7.2
(G.レジスト膜のエッチングによるフッ素添加カーボン膜への影響)  (G. Effect of etching of resist film on fluorine-added carbon film)
実施例 F— 1のようにしてフッ素添加カーボン膜が除去された後、 Arガス、 N ガス  After removing the fluorine-containing carbon film as in Example F-1, Ar gas, N gas
2 及び O ガスが夫々 400sccm、 lOOsccm及び 50sccmの流量で処理容器内に供 2 and O gas are supplied into the processing vessel at flow rates of 400 sccm, 100 sccm and 50 sccm, respectively.
2 2
給されると共に圧力が 2. 66Pa〖こ設定され、マイクロ波パワー及びバイアスパワーが 夫々 1500W及び 500Wに設定され、ウェハの温度力 S40°Cに設定されてレジスト膜 がエッチングされ除去された。フッ素添加カーボン膜の凹部について形状が調べら れたところ、レジスト膜のエッチング前とほぼ同じ形状で、アンダーカットは起こってい なかった。この実験は、図 5に示す実施の形態に対応している。この実験結果から、 レジスト膜のエッチング時にバイアス電力を載置台に印加することが有効であることが 分かる。 At the same time, the pressure is set at 2.66 Pa, the microwave power and bias power are set at 1500 W and 500 W, respectively, and the wafer temperature is set at S40 ° C, and the resist film is set. Was etched and removed. When the shape of the concave portion of the fluorine-containing carbon film was examined, the shape was almost the same as that before etching the resist film, and no undercut occurred. This experiment corresponds to the embodiment shown in FIG. These experimental results show that it is effective to apply bias power to the mounting table when etching the resist film.
以上の実験結果は、フッ素添加カーボン膜を C F (x、yは自然数)ガスのプラズ マによりエッチングすれば、良好な凹部の形状が得られ、水素の混入による問題もな く、ハードマスクに対しても高 、選択比が得られると 、うことを裏付けて 、る。  The above experimental results show that if the fluorine-added carbon film is etched with plasma of CF (x and y are natural numbers) gas, a good concave shape can be obtained, and there is no problem due to hydrogen contamination, However, if a high selectivity can be obtained, it will be confirmed that this has been achieved.

Claims

請求の範囲 The scope of the claims
[1] C F ガス (x、yは自然数)を含む処理ガスのプラズマを発生させる工程と、  [1] generating a plasma of a processing gas containing a C F gas (x and y are natural numbers);
基板上に予め形成されたフッ素添加カーボン膜を、前記プラズマによってエツチン グする工程と、  Etching a fluorine-added carbon film previously formed on the substrate by the plasma;
を備えたことを特徴とするプラズマエッチング方法。  A plasma etching method comprising:
[2] 前記 C F ガス (x、yは自然数)を含む処理ガスは、希ガスが添加されている ことを特徴とする請求項 1に記載のプラズマエッチング方法。  [2] The plasma etching method according to claim 1, wherein a rare gas is added to the processing gas containing the CF gas (x and y are natural numbers).
[3] フッ素添加カーボン膜、ハードマスク膜、及び、所望のパターンに形成されたレジス ト膜が当該順序で積層された基板をエッチングする方法であって、  [3] A method of etching a substrate on which a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are stacked in the above order,
前記レジスト膜のパターンに基づいて露出されたノヽードマスク膜の露出部分をエツ チングして除去するハードマスク除去工程と、  A hard mask removing step of etching and removing an exposed portion of the node mask film exposed based on the pattern of the resist film;
前記ハードマスク除去工程の後に、前記ハードマスク除去工程によって除去された ハードマスク膜の下方のフッ素添加カーボン膜を、 C F ガス (x、yは自然数)を含 む処理ガスのプラズマによってエッチングする主エッチング工程と、  After the hard mask removing step, the main etching for etching the fluorine-added carbon film below the hard mask film removed by the hard mask removing step by plasma of a processing gas containing CF gas (x and y are natural numbers). Process and
を備えたことを特徴とするプラズマエッチング方法。  A plasma etching method comprising:
[4] 前記ハードマスク除去工程において、 C F ガス (x、yは自然数)を含む処理ガス のプラズマが用いられる  [4] In the hard mask removing step, a plasma of a processing gas containing a CF gas (x and y are natural numbers) is used.
ことを特徴とする請求項 3に記載のプラズマエッチング方法。  4. The plasma etching method according to claim 3, wherein:
[5] 前記ハードマスク除去工程は、 [5] In the hard mask removing step,
前記ハードマスク膜の露出部分を途中まで除去する第 1工程と、  A first step of partially removing the exposed portion of the hard mask film,
前記第 1工程で途中まで除去されたノ、ードマスク膜の露出部分を完全に除去する 第 2工程と、  A second step of completely removing the exposed portion of the node mask film partially removed in the first step,
に分かれており、  Is divided into
前記第 1工程及び前記第 2工程の間に、前記レジスト膜をエッチングするレジスト膜 除去工程が実施される  A resist film removing step of etching the resist film is performed between the first step and the second step.
ことを特徴とする請求項 3または 4に記載のプラズマエッチング方法。  5. The plasma etching method according to claim 3, wherein:
[6] 前記レジスト膜除去工程において、酸素の活性種を含むプラズマが用いられる ことを特徴とする請求項 5に記載のプラズマエッチング方法。 6. The plasma etching method according to claim 5, wherein a plasma containing an active species of oxygen is used in the resist film removing step.
[7] 下地膜、フッ素添加カーボン膜、ハードマスク膜、及び、所望のパターンに形成さ れたレジスト膜が当該順序で積層された基板をエッチングする方法であって、 前記レジスト膜のパターンに基づいて露出されたノヽードマスク膜の露出部分をエツ チングして除去するハードマスク除去工程と、 [7] A method of etching a substrate on which an underlayer film, a fluorine-added carbon film, a hard mask film, and a resist film formed in a desired pattern are laminated in the above order, based on the pattern of the resist film. A hard mask removing step of etching and removing an exposed portion of the node mask film exposed by
前記ハードマスク除去工程の後に、前記ハードマスク除去工程によって除去された ハードマスク膜の下方のフッ素添加カーボン膜を、 C F ガス (x、yは自然数)を含 む処理ガスのプラズマによってエッチングする主エッチング工程と、  After the hard mask removing step, the main etching for etching the fluorine-added carbon film below the hard mask film removed by the hard mask removing step by plasma of a processing gas containing CF gas (x and y are natural numbers). Process and
前記主工程の後に、前記レジスト膜を、酸素の活性種を含むプラズマによってエツ チングするレジスト膜除去工程と、  A resist film removing step of etching the resist film with a plasma containing an active species of oxygen after the main step;
を備え、  With
前記レジスト膜除去工程中、前記基板にバイアス電力が印加されて、前記下地膜 がプラズマ中の活性種によりスパッタされる  During the resist film removing step, bias power is applied to the substrate, and the underlying film is sputtered by active species in plasma.
ことを特徴とするプラズマエッチング方法。  A plasma etching method characterized by the above-mentioned.
[8] 前記主エッチング工程は、 C F ガス (x、yは自然数)と希ガスとを含む処理ガスの プラズマによって行われる  [8] The main etching step is performed by a plasma of a processing gas containing a CF gas (x and y are natural numbers) and a rare gas.
ことを特徴とする請求項 3乃至 7のいずれかに記載のプラズマエッチング方法。  The plasma etching method according to any one of claims 3 to 7, wherein:
PCT/JP2004/015256 2003-10-16 2004-10-15 Plasma etching method WO2005038896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-356880 2003-10-16
JP2003356880A JP2005123406A (en) 2003-10-16 2003-10-16 Plasma etching method

Publications (1)

Publication Number Publication Date
WO2005038896A1 true WO2005038896A1 (en) 2005-04-28

Family

ID=34463228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015256 WO2005038896A1 (en) 2003-10-16 2004-10-15 Plasma etching method

Country Status (2)

Country Link
JP (1) JP2005123406A (en)
WO (1) WO2005038896A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101094953B1 (en) 2005-06-02 2011-12-15 주식회사 하이닉스반도체 Method for forming micropattern in semiconductor device
JP4919871B2 (en) 2007-02-09 2012-04-18 東京エレクトロン株式会社 Etching method, semiconductor device manufacturing method, and storage medium
WO2008096752A1 (en) * 2007-02-09 2008-08-14 Tokyo Electron Limited Etching method and recording medium
JP5369733B2 (en) * 2008-02-27 2013-12-18 東京エレクトロン株式会社 Plasma processing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236517A (en) * 1995-02-23 1996-09-13 Nec Corp Fluorinated amorphous carbon film material and manufacture thereof and semiconductor device
JPH09246242A (en) * 1996-03-07 1997-09-19 Nec Corp Semiconductor device and manufacture of the same
JPH10144676A (en) * 1996-11-14 1998-05-29 Tokyo Electron Ltd Manufacturing semiconductor element
JPH11126779A (en) * 1997-08-01 1999-05-11 Siemens Ag Method of stracturalizaion
JPH11340217A (en) * 1998-05-22 1999-12-10 Tokyo Electron Ltd Plasma film formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236517A (en) * 1995-02-23 1996-09-13 Nec Corp Fluorinated amorphous carbon film material and manufacture thereof and semiconductor device
JPH09246242A (en) * 1996-03-07 1997-09-19 Nec Corp Semiconductor device and manufacture of the same
JPH10144676A (en) * 1996-11-14 1998-05-29 Tokyo Electron Ltd Manufacturing semiconductor element
JPH11126779A (en) * 1997-08-01 1999-05-11 Siemens Ag Method of stracturalizaion
JPH11340217A (en) * 1998-05-22 1999-12-10 Tokyo Electron Ltd Plasma film formation method

Also Published As

Publication number Publication date
JP2005123406A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4256763B2 (en) Plasma processing method and plasma processing apparatus
JP5233975B2 (en) Manufacturing method of semiconductor device
KR100854609B1 (en) A method of etching a feature
JP4361625B2 (en) Semiconductor device and manufacturing method thereof
JP4715207B2 (en) Semiconductor device manufacturing method and film forming system
KR19990077209A (en) Plasma Deposition Method and Plasma Deposition Apparatus
US8138096B2 (en) Plasma etching method
TW200818269A (en) Method of forming film, film forming device and memory medium as well as semiconductor device
KR101110103B1 (en) Film forming method, film forming apparatus, recording medium, and semiconductor device
US6576569B1 (en) Method of plasma-assisted film deposition
Oehrlein et al. Surface science issues in plasma etching
JP2988455B2 (en) Plasma etching method
KR100382387B1 (en) Method of plasma processing
JPH11340211A (en) Treatment method and apparatus for substrate
US6699531B1 (en) Plasma treatment method
JP5119606B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3472196B2 (en) Etching method and method of manufacturing semiconductor device using the same
WO2005038896A1 (en) Plasma etching method
JP5925898B2 (en) Method for forming a metal carbide barrier layer for fluorocarbon
JP3326864B2 (en) Dry etching method
JP4585719B2 (en) Etching method
JPH0817796A (en) Method and apparatus for dry etching and semiconductor device
JP2011071510A (en) Film forming method, and semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase