WO2005037242A1 - Mittel enthaltend baldrian - Google Patents

Mittel enthaltend baldrian Download PDF

Info

Publication number
WO2005037242A1
WO2005037242A1 PCT/EP2004/011179 EP2004011179W WO2005037242A1 WO 2005037242 A1 WO2005037242 A1 WO 2005037242A1 EP 2004011179 W EP2004011179 W EP 2004011179W WO 2005037242 A1 WO2005037242 A1 WO 2005037242A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
cognis
alcohol
valerian
fatty
Prior art date
Application number
PCT/EP2004/011179
Other languages
English (en)
French (fr)
Inventor
Edith Bouchard
Dieter Goddinger
Jörg KAHRE
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP04765860A priority Critical patent/EP1675564A1/de
Publication of WO2005037242A1 publication Critical patent/WO2005037242A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/002Aftershave preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the invention relates to compositions containing valerian and the use of these compositions for cleaning and maintaining surfaces such as glass, porcelain, wood, leather, fibers and in particular keratin fibers and skin.
  • Cosmetics for the care and maintenance of the natural functions of skin and hair are becoming increasingly important.
  • the changed consumer habits and fashion trends contribute to this.
  • the intensive use of tanning salons has a lasting impact on the structure of skin and hair by UV light.
  • These impairments are shown on the skin and hair, for example, by a loss of elasticity.
  • Emulsions for skin care are further optimized in terms of their irritant potential by selecting suitable emulsifiers.
  • Mild surfactants are used to clean the skin and hair so as not to put additional strain on the skin and hair.
  • Refatting substances are used to avoid stimulating sebum production during cleaning.
  • UV protection agents and vitamins such as vitamin E are said to reduce the adverse effects of UV light.
  • Protein hydrolyzates are used to balance the internal structure of the skin and hair. With plant and algae extracts, for example, the moisture balance of skin and hair can be influenced.
  • cosmetic active ingredients are increasingly used in agents for cleaning and maintaining surfaces such as glass, porcelain, leather, textiles, floors of all kinds in the household and in trade, in order not to put additional strain on the skin of the user of such products.
  • Hand dishwashing detergents with nourishing additives such as proteins or lipid-replenishing substances are available on the market.
  • valerian extracts as an active ingredient in agents for cleaning and maintaining surfaces shows surprisingly good properties.
  • valerian the undesirable effects such as burning or itching of the skin, feelings of tension etc. occur Users of these funds no longer.
  • valerian in these agents completely eliminates the need for preservatives or at least the amount of preservatives can be reduced.
  • a first object of the invention is therefore agents for the care and cleaning of surfaces containing conventional constituents, in particular surfactants and emulsifiers, characterized in that valerian extract is contained as the active ingredient.
  • Valerian is a plant that has been known and cultivated since ancient times. Valerian is used in numerous preparations in homeopathy and pharmacy. The numerous known effects of valerian include both sedating and activating effects. Valerian also shows cell toxic properties. Another very well-known property is the bitter taste. Valerian ingredients can be used as bitter substances and are used to stimulate the appetite. Furthermore, the taste of medicines and foods can be modified with valerian.
  • valerian As examples of the pharmaceutical use of valerian, reference is made to US 20030096865 AI. An extraction method for producing a valerian extract from the root of the valerian can be found, for example, in US 20030017110 AI. The use of valerian as a flavoring is described for example in EP 1077034 AI.
  • Valerian extracts are well-known herbal extracts. These extracts are usually produced by extracting the entire plant. In individual cases, however, it may also be preferred to produce the extracts exclusively from flowers and / or leaves and / or roots and / or stems or stems of the plant. In principle, all methods known to those skilled in the extraction field can be used for the production.
  • valerian can be extracted with solvents, in particular water, steam and alcohols, but also particularly gently with supercritical CO 2 or other supercritical fluids. Mixtures of water, steam and alcohols can also be used as extractants for the production of the valerian extract.
  • alcohols lower alcohols such as ethanol and isopropanol, but in particular polyhydric alcohols such as ethylene glycol and propylene glycol, are preferred, both as the sole extracting agent and in a mixture with water.
  • polyhydric alcohols such as ethylene glycol and propylene glycol
  • Valerian extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • valerian ingredients can be used alone or in mixtures instead of the valerian extract.
  • these are preferably iridoids, in particular valtrate and valepotriate, sesquiterpenes such as in particular valeranone, terpene alkaloids such as, for example, actinidine, and valerian oil and tannins.
  • valeric acid is not preferred according to the invention. If valeric acid is used in accordance with the teaching of the present invention, then at least one further essential constituent of the valerian is also used.
  • valerian extract is also understood to be valerian oil obtained from the valerian plant in other ways.
  • the valerian extract can be used both in pure and in dilute form. If it is used in dilute form, it usually contains about 2 to 80% by weight of active substance and, as a solvent, the extractant or mixture of extractants used in its extraction.
  • valerian extract is used in the agents in amounts of 0.001 to 10% by weight, based on the total agent, preferably in amounts of 0.001 to 5% by weight and very particularly preferably in amounts of 0.005 to 3% by weight.
  • surfactants are understood to mean surface-active substances which form adsorption layers on surfaces and interfaces or which can aggregate in volume phases to form micelle colloids or lyotropic mesophases.
  • anionic surfactants consisting of a hydrophobic residue and a negatively charged hydrophilic head group
  • amphoteric surfactants which carry both a negative and a compensating positive charge
  • cationic surfactants which in addition to a hydrophobic residue have a positively charged hydrophilic group
  • nonionic surfactants which have no charges but strong dipole moments and are highly hydrated in aqueous solution.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surface-active substances suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups can be contained in the molecule.
  • suitable anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts with 2 to 4 carbon atoms in the alkanol group,
  • alkyl sulfates and alkyl polyglycol ether sulfates of the formula RO (CH 2 -CH 2 O) x -OSO 3 H, in which R is a preferably linear alkyl group with 8 to 30 C atoms and x 0 or 1 to 12, mixtures of surface-active hydroxysulfonates according to DE -A-3725 030, sulfated hydroxyalkyl polyethylene and / or hydroxyalkylene propylene glycol ethers according to DE-A-3723 354, sulfonates of unsaturated fatty acids with 8 to 24 C atoms and 1 to 6 double bonds according to DE-A-39 26 344,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms,
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adducts or their formulated with sulfuric acid trioxide.
  • Monoglyceride sulfates of the formula (VIII) are preferably used in which R CO represents a linear acyl radical having 8 to 18 carbon atoms.
  • Monoglyceride sulfates and monoglyceride ether sulfates are described, for example, in EP-Bl 0 561 825, EP-Bl 0 561 999, DE-Al 42 04 700 or by AKBiswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) and FUAhmed in J.Am.Oil.Chem.Soc. 67, 8 (1990).
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and sulfosuccinic acid and dialkyl esters with 8 to 18 carbon atoms in the alkyl group and sulfosuccinic acid mono-alkyl polyoxyethyl ester with 8 up to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one -COO (_)
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyl-dimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium- glycinates, for example the cocoacylaminopropyl dimethylammonium glycinate, and 2-alkyl-3-carboxymethyl-3-hydroxyethyl-imidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group, and also the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is that among the L CI name Cocamidopropyl Betaine known fatty acid amide derivative.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8 -C 24 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts .
  • suitable ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N- alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-
  • Alkyltaurines N-alkyl sarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each with about 8 to 24 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylammopropionate and C 12 -C 18 acyl sarcosine.
  • Nonionic surfactants contain z as a hydrophilic group.
  • B a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether group.
  • Such connections are, for example
  • Polyol fatty acid esters such as the commercial product Hydagen ® HSP (Cognis) or Sovermol - types (Cognis), alkoxylated triglycerides, alkoxylated fatty acid alkyl esters of the formula R 37 CO- (OCH 2 CHR 38) w OR 39, (IX) in which R 37 CO represents a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 38 represents hydrogen or methyl, R 39 represents linear or branched alkyl radicals having 1 to 4 carbon atoms and w represents numbers from 1 to 20, amine oxides,
  • Alkyl polygycosides according to the general formula RO- (Z) x where R is alkyl, Z is sugar and x is the number of sugar units.
  • the alkyl polyglycosides which can be used according to the invention can contain only one specific alkyl radical R. Usually, however, these compounds are made from natural fats and oils or mineral oils. In this case, the alkyl radicals are R Mixtures corresponding to the starting compounds or corresponding to the respective processing of these compounds.
  • Any mono- or oligosaccharides can be used as the sugar building block Z.
  • Sugar with 5 or 6 carbon atoms and the corresponding oligosaccharides are usually used.
  • sugars are glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, old rose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar components are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain on average 1.1 to 5 sugar units. Alkyl polyglycosides with x values from 1.1 to 2.0 are preferred. Alkyl glycosides in which x is 1.1 to 1.8 are very particularly preferred.
  • alkoxylated homologs of the alkyl polyglycosides mentioned can also be used in accordance with the invention. These homologues can contain an average of up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • the alkylene oxide adducts with saturated linear fatty alcohols and fatty acids, each with 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid, have proven to be preferred nonionic surfactants. Preparations with excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants. These connections are characterized by the following parameters.
  • the alkyl radical R contains 6 to 22 carbon atoms and can be either linear or branched. Primary linear and methyl-branched aliphatic radicals in the 2-position are preferred.
  • alkyl radicals examples include 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl.
  • 1-Octyl, 1-decyl, 1-lauryl, 1-myristyl are particularly preferred.
  • oxo alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the compounds with alkyl groups used as surfactant can each be uniform substances. However, it is generally preferred to start from natural vegetable or animal raw materials in the production of these substances, so that substance mixtures with different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrowed homolog distribution can be used.
  • “Normal” homolog distribution is understood to mean mixtures of homologs which are obtained as catalysts from the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates.
  • narrow homolog distributions are obtained if, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with a narrow homolog distribution can be preferred.
  • surfactants are used in amounts of 0.1-45% by weight, preferably 1-30% by weight and very particularly preferably 1-15% by weight, based on the total agent.
  • nonionic, zwitterionic and / or amphoteric surfactants and mixtures thereof can be preferred.
  • Cationic surfactants of the type of the quaternary ammonium compounds, the esterquats and the amidoamines can also be used according to the invention.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammomum chlorides and trialkylmethylammonium chlorides, e.g. B.
  • cetyl trimethylammonium chloride Stearyltri- methyl ammonium chloride, distearyl dimethyl ammonium chloride, lauryl dimethyl ammonium chloride, Lauryldimethylbenzylammom 'monium chloride and Tricetylmethyl- ammonium chloride, as well as under the FNCI names Quaternium-27 and Quaternium-83 imidazolium compounds known.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are sold, for example, under the trademarks Stepantex ® , Dehyquart ® and Armocare ® .
  • the alkylamidoamines are usually produced by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the cationic surfactants are preferably present in the agents used according to the invention in amounts of 0.05 to 10% by weight, based on the total agent. Amounts of 0.1 to 5% by weight are particularly preferred.
  • the compulsory surfactant and / or emulsifier components according to the invention also include the emulsifiers defined as follows: emulsifiers cause water or oil-stable adsorption layers to form at the phase interface, which protect the dispersed droplets against coalescence and thus stabilize the emulsion. Like surfactants, emulsifiers are therefore made up of a hydrophobic and a hydrophilic part of the molecule. Hydrophilic emulsifiers preferably form O / W emulsions and hydrophobic emulsifiers preferably form W / O emulsions.
  • An emulsion is to be understood as a droplet-like distribution (dispersion) of a liquid in another liquid with the use of energy to create stabilizing phase interfaces by means of surfactants.
  • the selection of these emulsifying surfactants or emulsifiers is based on the substances to be dispersed and the respective outer phase as well as the proportion of the emulsion. Further definitions and properties of emulsifiers can be found in "H.-D. Dörfler, interfacial and colloid chemistry, VCH Verlagsgesellschaft mbH. Weinheim, 1994 ".
  • Emulsifiers which can be used according to the invention are, for example: addition products of 4 to 30 mol of ethylene oxide and / or 0 to 5 mol of propylene oxide with linear fatty alcohols with 8 to 22 C atoms, with fatty acids with 12 to 22 C atoms and with alkylphenols 8 to 15 carbon atoms in the alkyl group, C 12 -C 22 fatty acid monoesters and diesters of adducts of 1 to 30 moles of ethylene oxide with polyols with 3 to 6 carbon atoms, in particular with glycerol, ethylene oxide and polyglycerol adducts with methylglucoside Fatty acid esters, fatty acid alkanolamides and fatty acid glucamides, C 8 -C 22 alkyl mono- and oligoglycosides and their ethoxylated analogs, degrees of oligomerization of 1.1 to 5, in particular 1.2 to 2.0, and glucose as the sugar component being preferred, mixtures of
  • Sterols are understood to be a group of steroids which carry a hydroxyl group on the C atom 3 of the steroid structure and are isolated both from animal tissue (zoosterols) and from vegetable fats (phytosterols). Examples of zoosterols are cholesterol and lanosterol. Examples of suitable phytosterols are ergosterol, stigmasterol and sitosterol. Sterols, the so-called mycosterols, are also isolated from mushrooms and yeasts. Phospholipids. These are understood above all to mean the glucose phospholipids which are obtained, for example, as lecithins or phosphatidylcholines from, for example, egg yolk or plant seeds (for example soybeans).
  • Fatty acid esters of sugars and sugar alcohols such as sorbitol, polyglycerols and polyglycerol derivatives such as polyglycerol poly-12-hydroxystearate (commercial product Dehymuls ® PGPH), linear and branched fatty acids with 8 to 30 C atoms and their Na, K, ammonium, Ca, Mg and Zn salts.
  • the agents according to the invention preferably contain the emulsifiers in amounts of 0.1-25% by weight, in particular 0.5-15% by weight, based on the total agent.
  • compositions according to the invention can preferably contain at least one nonionic emulsifier with an HLB value of 8 to 18, according to the 10th edition, Georg Thieme Verlag Stuttgart, New York, in the Römpp Lexicon Chemie (Ed. J. Falbe, M. Regitz). (1997), page 1764, contain the definitions listed.
  • Nonionic emulsifiers with an HLB value of 10-15 can be particularly preferred according to the invention.
  • the emulsifiers which contain no ethylene oxide and / or propylene oxide in the molecule can be very particularly preferred.
  • the effect can be increased further using polymers.
  • Polymers are understood to mean both natural and synthetic polymers which can be anionic, cationic, amphoteric or non-ionic.
  • Cationic polymers are understood to mean polymers which have groups in the main and / or side chain which can be “temporary” or “permanent” cationic.
  • "permanently cationic” means those polymers which have a cationic group irrespective of the pH of the agent. These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups Polymers in which the quaternary ammonium group is bonded via a C 1-4 hydrocarbon group to a polymer main chain composed of acrylic acid, methacrylic acid or their derivatives have proven to be particularly suitable.
  • R -H or -CH 3
  • R, R and R are independently selected from C 1- alkyl, alkenyl or hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n is a natural number
  • X is a physiologically acceptable organic or inorganic
  • Anion and copolymers consisting essentially of the monomer units listed in formula (DI) and nonionic monomer units are particularly preferred cationic polymers.
  • - R 1 R stands for a methyl group - R 19
  • R 20 and R 21 stand for methyl groups - m has the value 2.
  • Suitable physiologically acceptable counterions X " are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions.
  • halide ions in particular chloride, are preferred.
  • a particularly suitable homopolymer is the, if desired crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the L CI-
  • the crosslinking can be carried out with the aid of polyolefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylene bisacrylamide, diallyl ether, polyallylpolyglyceryl ether, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylene bisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (approx. 50% polymer content, further components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene ether (INCI name: PPG-1-Trideceth- 6)) and Salcare ® SC 96 (approx.
  • a preferred copolymer according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
  • cationic polymers are, for example, - quaternized cellulose derivatives, such as are available under the names of Celquat ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, - cationic alkyl polyglycosides according to DE-PS 44 13 686, - canonized honey, for example the commercial product Honeyquat ® 50, - cationic guar derivatives, such as in particular the products sold under the trade names cos media ® guar and Jaguar ®, - polysiloxanes with quaternary groups, such as the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethyl silylamodimethicon), Dow Corning ® 929 emulsion (containing a hydroxylamino-modified silicone, which is also known as amodimethicone), SM-2059 (
  • Goldschmidt diquaternary polydimethylsiloxanes, quaternium-80), - polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic ure.
  • the products commercially available under the names Merquat ® 100 (poly (dimethyldiallylammonium chloride)) and Merquat ® 550 (dimethyldiallylammomum chloride-acrylamide copolymer) are examples of such cationic polymers, Copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoalkyl acrylate and methacrylate, such as, for example, vinylpyrrolidone-dimethylaminoethyl methacrylate copolymers quaternized with diethyl sulfate.
  • Such compounds are available under the names Gafquat ® 734 and Gafquat ® 755 commercially, vinylpyrrolidone-vinyl imidazolium copolymers, such as those offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, quaternized polyvinyl alcohol, as well as the under the names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 known polymers with quaternary nitrogen atoms in the main polymer chain.
  • cationic polymers of the invention are the "temporarily cationic" polymers. These polymers usually contain an amino group present at certain pH values as a quaternary ammonium group and thus cationic are preferred, for example, chitosan and its derivatives, such as, for example, under the trade designations Hydagen ®. , Hydagen® ® HCMF, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially CMF. chitosans are deacetylated, in different degrees of deacetylation and varying degrees of degradation (molecular weights) are commercially available. Their preparation is, for example, in DE 44 40 625 AI and described in DE 1 95 03 465 AI. Chitosans which are particularly suitable have a degree of deacetylation of at least 80% and a molecular weight of 5 '10 5 to 5 "10 6 (g / mol).
  • the chitosan must be converted into the salt form. This can be done by dissolving in dilute aqueous acids.
  • Mineral acids such as e.g. Hydrochloric acid, sulfuric acid and phosphoric acid as well as organic acids, e.g. low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids are suitable.
  • Higher molecular weight alkylsulfonic acids or alkylsulfuric acids or organophosphoric acids can also be used, provided that they have the required physiological tolerance.
  • Suitable acids for converting the chitosan into the salt form are e.g.
  • Low molecular weight hydroxycarboxylic acids such as e.g. Glycolic acid or lactic acid is used.
  • anionic polymers which can support the action of the active ingredient according to the invention are anionic polymers which have carboxylate and / or sulfonate groups.
  • anionic monomers from which such polymers can consist are acrylic acid, methacrylic acid, crotonic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acidic groups can be present in whole or in part as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Anionic polymers which contain 2-acrylamido-2-methylpropanesulfonic acid as the sole or co-monomer have proven to be very particularly effective, it being possible for the sulfonic acid group to be present in whole or in part as a sodium, potassium, ammonium, mono- or triethanolammonium salt ,
  • the homopolymer of 2-acrylamido-2-methyl propane sulfonic acid for example, under the name Rheothik ®! 1-80 is commercially available.
  • copolymers of at least one anionic monomer and at least one nonionic monomer are acrylamide, methacrylamide, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, vinyl ether and vinyl ester.
  • Preferred anionic copolymers are acrylic acid-acrylamide copolymers and in particular polyacrylamide copolymers with monomers containing sulfonic acid groups.
  • a particularly preferred anionic copolymer consists of 70 to 55 mol% of acrylamide and 30 to 45 mol% of 2-acrylamido-2-methylpropanesulfonic acid, the sulfonic acid group being wholly or partly as sodium, potassium, ammonium, mono- or triethanolammonium Salt is present.
  • This copolymer can also be crosslinked, the preferred crosslinking agents being polyolefinically unsaturated compounds such as tetraallyloxyethane, allyl sucrose, allylpentaerythritol and methylene bisacrylamide.
  • Such a polymer is contained in the commercial product Sepigel ® 305 from SEPPIC.
  • anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene can be preferred crosslinking agents. Such compounds are for example available under the trademark Carbopol ® commercially. Copolymers of maleic anhydride and methyl vinyl ether, especially those with crosslinks, are also color-preserving polymers. A maleic acid-methyl vinyl ether copolymer crosslinked with 1,9-decadiene is commercially available under the name Stabileze ® QM.
  • amphoteric polymers can be used as a component to increase the activity of the active ingredient according to the invention.
  • amphoteric polymers includes both those polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, and also zwitterionic polymers which contain quaternary ammonium groups and -COO in the molecule Contain " - or -SO 3 " groups, and summarize those polymers which contain -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is that available under the name Amphomer ® acrylic resin which is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group acrylic acid, methacrylic and represents their simple esters.
  • Amphomer ® acrylic resin which is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group acrylic acid, methacrylic and represents their simple esters.
  • Amphoteric polymers which are preferably used are those polymers which essentially consist of one another
  • R 22 -CH CR 23 -CO-Z- (C n H 2n ) -N (+) R 24 R 25 R 26 A w (TV) in which R 22 and R 23 independently of one another represent hydrogen or a methyl group and R 24 , R 25 and R 26 independently of one another represent alkyl groups with 1 to 4 carbon atoms, Z is an NH group or an oxygen atom, n is an integer from 2 to 5 and A ⁇ is the anion of an organic or inorganic acid and
  • R 27 -CH CR 28 -COOH (V) in which R 27 and R 28 are independently hydrogen or methyl groups.
  • these compounds can be used both directly and in salt form, which is obtained by neutralizing the polymers, for example with an alkali metal hydroxide.
  • an alkali metal hydroxide for example, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium carbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium sulfate
  • the agents according to the invention can also contain nonionic polymers.
  • Suitable nonionic polymers include: vinyl pyrrolidone / Vinylester copolymers, as are marketed, for example under the trademark Luviskol ® (BASF). Luviskol ® VA 64 and Luviskol ® VA 73, each vinylpyrrolidone / vinyl acetate copolymers, are also preferred nonionic polymers. Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and methylhydroxypropyl cellulose, as sold for example under the trademark Culminal® ® and Benecel ® (AQUALON).
  • Siloxanes are both water-soluble and water-insoluble. Both volatile and non-volatile siloxanes are suitable, non-volatile siloxanes being understood to mean those compounds whose boiling point is above 200 ° C. at normal pressure.
  • Preferred siloxanes are polydialkylsiloxanes, such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups.
  • polydialkylsiloxanes such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups.
  • the preparations used contain several, in particular two different polymers of the same charge and / or each contain an ionic and an amphoteric and / or non-ionic polymer.
  • the term polymer is also understood to mean special preparations of polymers such as spherical polymer powders.
  • Various methods are known for producing such microspheres from different monomers, for example by special polymerization processes or by dissolving the polymer in a solvent and spraying it into a medium in which the solvent can evaporate or diffuse out of the particles.
  • Suitable polymers are, for example, polycarbonates, polyurethanes, polyacrylates, polyolefins, polyesters or polyamides.
  • Spherical polymer powders whose primary particle diameter is less than 1 ⁇ m are particularly suitable.
  • Such products based on a polymethacrylate copolymer are, for example, under the Trademark Polytrap ® Q5-6603 (Dow Corning) commercially.
  • Other polymer powders e.g. based on polyamides (nylon 6, nylon 12) are available with a particle size of 2 - 10 ⁇ m (90%) and a specific surface area of approx. 10 m 2 / g under the trade name Orgasol ® 2002 DU Nat Cos ( Atochem SA, Paris) available.
  • spherical polymer powders which are suitable for the purpose according to the invention are, for example, the polymethacrylates (Micropearl M) from SEPPIC or (Plastic Powder A) from NIKKOL, the styrene-divinylbenzene copolymers (Plastic Powder FP) from NIKKOL, the polyethylene and polypropylene Powder (ACCUREL EP 400) from AKZO, or also silicone polymers (Silicone Powder X2-1605) from Dow Corning or spherical cellulose powder.
  • the polymethacrylates (Micropearl M) from SEPPIC or (Plastic Powder A) from NIKKOL
  • Plastic Powder FP styrene-divinylbenzene copolymers
  • ACCUREL EP 400 polyethylene and polypropylene Powder
  • silicone polymers Silicone Powder X2-1605
  • the polymers are preferably present in the agents used according to the invention in amounts of 0.01 to 10% by weight, based on the total agent. Amounts from 0.1 to 5, in particular from 0.1 to 3% by weight are particularly preferred.
  • the effect can be further increased by using protein hydrolyzates and their derivatives.
  • Protein hydrolyzates are product mixtures that are obtained by acidic, basic or enzymatically catalyzed breakdown of proteins (proteins).
  • protein hydrolyzates of both vegetable and animal origin can be used.
  • Animal protein hydrolyzates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolyzates, which can also be in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois ® (Interorgana), Collapuron ® (Cognis), Nutrilan ® (Cognis), Gelita-Sol ® (Deutsche Gelatine Fabriken Stoess & Co), Lexein ® (Inolex) and Kerasol ® (Croda) sold.
  • protein hydrolysates of plant origin e.g. B. soybean, almond, rice, pea, potato and Wheat protein.
  • Such products are available, for example, under the trademarks Gluadin ® (Cognis), DiaMin ® (Diamalt), Lexein ® (Inolex) and Crotein ® (Croda).
  • the silk proteins sericin and fibroin and their derivatives can be very particularly preferred.
  • amino acid mixtures or individual amino acids such as arginine, lysine, histidine or pyrroglutamic acid, which have otherwise been obtained, can optionally be used in their place.
  • derivatives of the protein hydrolyzates for example in the form of their fatty acid condensation products. Such products are sold for example under the names Lamepon ® (Cognis), Gluadin ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or Crotein ® (Croda).
  • Cationized protein hydrolyzates can also be used according to the invention, the underlying protein hydrolyzate being derived from animals, for example from collagen, milk or keratin, from plants, for example from wheat, corn, rice, potatoes, soy or almonds, from marine life forms, for example from fish collagen or algae , or from biotechnologically obtained protein hydrolyzates.
  • the protein hydrolysates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acidic hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • the hydrolysis of proteins usually results in a protein hydrolyzate with a molecular weight distribution of approximately 100 daltons up to several thousand daltons.
  • Preferred cationic protein hydrolyzates are those whose underlying protein content has a molecular weight of 100 to 25,000 Daltons, preferably 250 to 5000 Daltons.
  • Cationic protein hydrolyzates also include quaternized amino acids and their mixtures. The quaternization of the protein hydrolyzates or the amino acids is frequently carried out using quaternary ammonium salts such as, for example, N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) -ammomumhalogeniden.
  • the cationic protein hydrolyzates can also be further derivatized.
  • inventive cationic protein hydrolysates and derivatives are under the INCI - th names in the "International Cosmetic Ingredient Dictionary and Handbook" (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 Street, NW, Suite 300, Washington , DC 20036-4702) and commercially available products: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice , Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl / Myristy
  • the agents used according to the invention contain the protein hydrolyzates and their derivatives in amounts of 0.01-10% by weight, based on the total agent. Amounts of 0.1 to 5% by weight, in particular 0.1 to 3% by weight, are very particularly preferred.
  • the action of the active ingredient according to the invention can be further optimized by means of fatty substances.
  • Fat substances are to be understood as meaning fatty acids, fatty alcohols, natural and synthetic waxes, which can be present both in solid form and in liquid form in aqueous dispersion, and natural and synthetic cosmetic oil components.
  • Linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms can be used as fatty acids.
  • Fatty acids with 10-22 carbon atoms are preferred.
  • isostearic as the commercial products Emersol ® 871 and Emersol ® 875
  • isopalmitic acids such as the commercial product Edenor ® IP 95, and all other products sold under the trade names Edenor ® (Cognis) fatty acids.
  • fatty acids are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, galeoacheneic acid, elenachearic acid and erucic acid and their technical mixtures, which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxosynthesis or in the dimerization of unsaturated fatty acids.
  • the fatty acid cuts which are obtainable from coconut oil or palm oil are usually particularly preferred; the use of stearic acid is generally particularly preferred.
  • the amount used is 0.1-15% by weight, based on the total agent. In a preferred embodiment, the amount is 0.5-10% by weight, with amounts of 1-5% by weight being very particularly advantageous.
  • Saturated, mono- or polyunsaturated, branched or unbranched fatty alcohols with C 6 -C 30 , preferably C 10 -C 22 and very particularly preferably C 12 -C 22 carbon atoms can be used as fatty alcohols.
  • the fatty alcohols derive from preferably natural fatty acids, and it can usually be assumed that they are obtained from the esters of the fatty acids by reduction.
  • suitable according to the invention are those fatty alcohol cuts which are produced by reducing naturally occurring triglycerides such as beef tallow, palm oil, peanut oil, rapeseed oil, cottonseed oil, soybean oil, sunflower oil and linseed oil or fatty acid esters formed from their transesterification products with corresponding alcohols, and thus represent a mixture of different fatty alcohols.
  • Such substances are, for example, under the names Stenol ® , for example Stenol ® 1618 or Lanette ® , for example Lanette ® O or Lorol ® , for example Lorol ® C8, Lorol ® C14, Lorol ® C18, Lorol ® C8-18, HD-Ocenol ® , Crodacol ® , e.g.
  • wool wax alcohols such as those commercially available under the names Corona ® , White Swan ® , Coronet ® or Fluilan ® , can also be used.
  • the fatty alcohols are used in amounts of 0.1-20% by weight, based on the entire preparation, preferably in amounts of 0.1-10% by weight.
  • Solid paraffins or isoparaffins, carnauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresin, walnut, sunflower wax, fruit waxes such as apple wax or citrus wax, microwaxes made of PE or PP can be used according to the invention as natural or synthetic waxes.
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • the natural and synthetic cosmetic oil bodies which can increase the effect of the active ingredient according to the invention include, for example: vegetable oils.
  • vegetable oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach seed oil and the liquid components of coconut oil.
  • Other triglyceride oils such as the liquid portions of beef tallow and synthetic triglyceride oils are also suitable.
  • Ester oils are understood to be the esters of C 6 -C 30 fatty acids with C 2 -C 30 fatty alcohols. The monoesters of fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • fatty acid constituents used in the esters are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linoleic acid, arenachic acid, araoleic acid, araoleic acid, araoleic acid, araelostic acid, elaostelic acid, elaoleic acid, elaostic acid, elaostic acid Erucic acid and its technical mixtures, which occur, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxosynthesis or in the dimerization of unsaturated fatty acids.
  • Fatty alcohol fractions in the ester oils are isopropyl alcohol, capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, elaidyl alcohol - nyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, which are obtained, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol tricaprylate, Kokosfettalkohol- caprinate / caprylate (Cetiol ® LC), n-butyl stearate, olerlerucate (Cetiol ® J 600), isopropyl palmitate (Rilanit ® IPP), oleyl oleates (Cetiol ® ), hexyl laurate (Cetiol ® A), di-n-butyl adipate (Cetiol ® B), myr
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecylacelate as well as diol esters such as ethylene glycol dioleate, ethylene glycol di-isotridecanoate, propylene glycol di (2 -ethylhexanoate), propylene glycol di-isostearate, propylene glycol di-pelargonate, butanediol di-isostearate, neopentyl glycol dicaprylate, symmetrical, asymmetrical or cyclic esters of carbonic acid with fatty alcohols, for example described in DE-OS 197 56 454, glyceryl carbonate or dicaprylic carbonate Cetiol ® CC),
  • Mono, - di- and tri-fatty acid esters of saturated and / or unsaturated linear and / or branched fatty acids with glycerin such as Monomuls ® 90-018, Monomuls ® 90-L12 or Cutina ® MD.
  • the amount used is 0.1-50% by weight, based on the total agent, preferably 0.1
  • the total amount of oil and fat components in the agents according to the invention is usually 6-45% by weight, based on the total agent. Amounts of 10-35% by weight are preferred according to the invention.
  • hydroxycarboxylic acid esters are full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • Other generally suitable hydroxycarboxylic acid esters are esters of ⁇ -hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols with 8-22 C atoms, for example fatty alcohols or synthetic fatty alcohols.
  • the esters of C 12 -C 15 fatty alcohols are particularly preferred.
  • Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • the amount of the hydroxycarboxylic acid esters used is 0.1-15% by weight, based on the composition, preferably 0.1-10% by weight and very particularly preferably 0.1-5% by weight.
  • Vitamins, pro-vitamins and vitamin precursors which are usually assigned to groups A, B, C, E, F and H are preferred according to the invention.
  • the group of substances called vitamin A includes retinol (vitamin Ai) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as palmitate and acetate come into consideration as vitamin A components.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the entire preparation.
  • the vitamin B group or the vitamin B complex include
  • Vitamin B 2 (riboflavin)
  • Vitamin B 3 The compounds nicotinic acid and nicotinamide (niacinamide) are often listed under this name. According to the invention, preference is given to nicotinic acid amide, which is preferably present in the agents used according to the invention in amounts of 0.05 to 1% by weight, based on the total agent.
  • Vitamin B 5 pantothenic acid and panthenol
  • panthenol is preferably used.
  • Derivatives of panthenol which can be used according to the invention are in particular the esters and ethers of panthenol, cationically derivatized panthenols and pantolactone.
  • Individual representatives are, for example, panthenol triacetate, panthenol monoethyl ether and its monoacetate and the cationic panthenol derivatives disclosed in WO 92/13829.
  • the compounds of the vitamin B 5 type mentioned are preferably present in the agents used according to the invention in amounts of 0.05-10% by weight, based on the total agent. Amounts of 0.1-5% by weight are particularly preferred.
  • Vitamin B 6 pyridoxine as well as pyridoxamine and pyridoxal.
  • Vitamin C (ascorbic acid). Vitamin C is preferably used in the agents used according to the invention in amounts of 0.1 to 3% by weight, based on the total agent. Use in the form of the palmitic acid ester, the glucosides or phosphates can be preferred. Use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the agents used according to the invention in amounts of 0.05-1% by weight, based on the total agent ,
  • Vitamin F usually means essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H The compound (3aS, 4S, 6ai?) - 2-oxohexa- hydrothienol [3,4-rf] -imidazole-4-valeric acid is designated as vitamin H, but for which the trivial name biotin has now become established.
  • Biotin is contained in the agents used according to the invention preferably in amounts of 0.0001 to 1.0% by weight, in particular in amounts of 0.001 to 0.01% by weight.
  • the agents used according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, E and H.
  • Panthenol and its derivatives as well as nicotinamide and biotin are particularly preferred.
  • extracts are usually produced by extracting the entire plant. In individual cases, however, it may also be preferred to produce the extracts exclusively from flowers and / or leaves of the plant.
  • the extracts from green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon are particularly suitable for the use according to the invention.
  • Alcohols and mixtures thereof can be used as extractants for the production of the plant extracts mentioned.
  • alcohols lower alcohols such as ethanol and isopropanol, but in particular polyhydric alcohols such as ethylene glycol and propylene glycol, are preferred, both as the sole extracting agent and as a mixture with water.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80% by weight of active substance and, as a solvent, the extractant or extractant mixture used in their extraction.
  • mixtures of several, in particular two, different plant extracts in the agents according to the invention may be preferred.
  • the action of the active ingredient according to the invention can be further increased in the compositions according to the invention in combination with substances which contain primary or secondary amino groups.
  • amino compounds are ammonia, monoethanolamine, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-propanediol and basic amino acids such as lysine, arginine or histidine.
  • these amines can also be in the form of the corresponding salts with inorganic and / or organic acids are used, such as ammonium carbonate, ammonium citrate, ammonium oxalate, ammonium tartrate or lysine hydrochloride.
  • the amines are used together with the active ingredient according to the invention in ratios of 1:10 to 10: 1, preferably 3: 1 to 1: 3 and very particularly preferably in stoichiometric amounts.
  • these preparations can in principle contain all further components known to those skilled in the art for such cosmetic compositions.
  • - Thickeners such as gelatin or vegetable gums, for example agar agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. As methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose, starch fractions and derivatives such as amylose, amylopectin and dextrins, clays and layered silicates such as.
  • B. bentonite or fully synthetic hydrocolloids such.
  • Solvents and intermediates such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerin and diethylene glycol,
  • active ingredients that improve fiber structure in particular mono-, di- and oligosaccharides such as, for example, glucose, galactose, fructose, fructose and lactose,
  • quaternized amines such as methyl 1-alkylamidoethyl-2-alkylimidazolime * um methosulfate,
  • anti-dandruff agents such as piroctone olamine, zinc omadine and climbazol, Light stabilizers, in particular derivatized benzophenones, cinnamic acid derivatives and triazines,
  • Swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates, hydrogen carbonates, guanidines, ureas and primary, secondary and tertiary phosphates,
  • Ceramides are understood to mean N-acylsphingosine (fatty acid amides of sphingosine) or synthetic analogs of such lipids (so-called pseudo-ceramides),
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers
  • Pearlescent agents such as ethylene glycol mono- and distearate and PEG-3 distearate,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • these preparations are, for example, creams, lotions, solutions, water, emulsions such as W / O, O / W, PIT emulsions (emulsions according to the Teaching of phase inversion, called PIT), microemulsions and multiple emulsions, coarse, unstable, single or multi-phase shake mixtures, gels, sprays, aerosols and foam aerosols.
  • emulsions such as W / O, O / W
  • PIT emulsions emulsions according to the Teaching of phase inversion, called PIT
  • microemulsions and multiple emulsions coarse, unstable, single or multi-phase shake mixtures
  • gels, sprays, aerosols and foam aerosols are usually formulated on an aqueous or aqueous alcohol basis.
  • Lower alkanols and polyols such as propylene glycol and glycerol are used as the alcoholic component. Ethanol and isopropanol are preferred alcohols
  • Water and alcohol can be present in the aqueous alcoholic base in a weight ratio of 1:10 to 10: 1.
  • Water and aqueous-alcoholic mixtures which contain up to 50% by weight, in particular up to 25% by weight, of alcohol, based on the alcohol / water mixture, can be preferred bases according to the invention.
  • the pH of these preparations can in principle be between 2 and 11. It is preferably between 2 and 7, values from 3 to 5 being particularly preferred. Virtually any acid or base that can be used for cosmetic purposes can be used to adjust this pH.
  • Food acids are usually used as acids.
  • Edible acids are those acids that are taken in as part of the usual food intake and have positive effects on the human organism.
  • Edible acids are, for example, acetic acid, lactic acid, tartaric acid, citric acid, malic acid, ascorbic acid and gluconic acid.
  • citric acid and lactic acid is particularly preferred.
  • Preferred bases are ammonia, alkali metal hydroxides, monoethanolamine, triethanolamine and N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine.
  • Preparations remaining on the skin and hair have proven to be particularly effective and can therefore represent preferred embodiments of the teaching according to the invention. Remaining on the skin and hair according to the invention are understood to mean those preparations which are not rinsed off or rinsed out of the skin or from the hair again in the course of the treatment after a period of a few seconds to an hour with the aid of water or an aqueous solution , Rather, the preparations remain on the skin or hair until the next wash. According to a preferred embodiment for use on the hair, these preparations are formulated as a hair treatment or hair conditioner.
  • the preparations according to the invention in accordance with this embodiment can be rinsed out with water or an at least predominantly water-containing agent after this exposure time has expired; however, as stated above, they are preferably left on the hair. It may be preferred to apply the preparation according to the invention to the hair before using a cleaning agent, a waving agent or other hair treatment agents. In this case, the preparation according to the invention serves as color protection for the subsequent applications.
  • the agents according to the invention can also be, for example, cleansing agents for skin and hair, such as shampoos, makeup removers, facial cleansers, nourishing agents for skin and hair, such as douches, day creams, night creams, face masks, or firming agents for the skin
  • cleansing agents for skin and hair such as shampoos, makeup removers, facial cleansers
  • nourishing agents for skin and hair such as douches, day creams, night creams, face masks, or firming agents for the skin
  • hair such as hair setting agents, foam setting agents, styling gels and hair dryer shafts
  • permanent shaping agents such as permanent wave and fixing agents, and in particular pretreatment agents or rinses used in the course of a permanent wave process or dyeing process.
  • microemulsions are also understood to be so-called “PIT” emulsions.
  • PIT phase inversion temperature
  • these emulsions are systems with the 3 components water, oil and emulsifier, which are present as an oil-in-water (O / W) emulsion at room temperature.
  • O / W oil-in-water
  • PIT phase inversion temperature
  • O / W emulsions are formed, which, however, also at room temperature as microemulsions with an average particle diameter of less than 400 nm, in particular with a particle diameter of about 100-300 nm, available. Details regarding these very stable, low-viscosity systems, for which the term “PIT emulsions” has become generally accepted, can be found in a large number of publications, for which the publications in Angew. Chem. 97, 655-669 (1985) and Adv. Colloid Interface Sei 58, 119-149 (1995).
  • those micro- or “PIT” emulsions can be preferred which have an average particle diameter of approximately 200 nm.
  • the microemulsions according to the invention can be prepared, for example, by first determining the phase inversion temperature of the system by heating a sample of the emulsion prepared in the customary manner and using a conductivity meter to determine the temperature at which the conductivity decreases sharply.
  • the decrease in the specific conductivity of the O / W emulsion initially present generally decreases over a temperature range of 2 to 8 ° C from originally more than 1 mS / cm to values below 0.1 mS / cm. This temperature range then corresponds to the phase inversion temperature range.
  • the emulsion initially produced as usual, from the oil component, nonionic emulsifier, at least parts of the water and, if appropriate, further components can be heated to a temperature which is within or above the phase inversion temperature range, then cooled and optionally add other components as well as the remaining water.
  • the microemulsion can also be produced directly at a temperature which is within or above the phase inversion temperature range. The microemulsion thus produced is then cooled to a temperature below the phase inversion temperature range, usually room temperature.
  • the active ingredient is used in agents for dyeing keratin fibers.
  • the active ingredient according to the invention can be added directly to the colorant.
  • the application is preferably carried out of the active ingredient on the dyed keratin fiber, but in a separate step either directly after the actual dyeing process or in separate treatments, if appropriate also days or weeks after the dyeing process.
  • the term dyeing process includes all processes known to the person skilled in the art, in which a dye is applied to the optionally moistened hair and either left on the hair for a period of between a few minutes and about 45 minutes and then with water or a surfactant-containing agent is rinsed out or left entirely on the hair.
  • a dye is applied to the optionally moistened hair and either left on the hair for a period of between a few minutes and about 45 minutes and then with water or a surfactant-containing agent is rinsed out or left entirely on the hair.
  • monographs e.g. B. Kh. Schrader, Fundamentals and Recipes of Cosmetics, 2nd edition, Hüthig Buch Verlag, Heidelberg, 1989, referring to the corresponding knowledge of the expert.
  • composition of the dye or tint is not subject to any principle
  • Oxidation dye precursors of the developer and coupler type
  • Primary aromatic amines with a further free or substituted hydroxy or amino group in the para or ortho position, diaminopyridine derivatives, heterocyclic hydrazones, 4-aminopyrazole derivatives and 2,4,5,6-tetraaminopyrimidine are usually used as oxidation dye precursors of the developer type and its derivatives used.
  • Suitable developer components are, for example, p-phenylenediamine, p-toluenediamine, p-aminophenol, o-aminophenol, 1- (2'-hydroxyethyl) - 2,5-diaminobenzene, N, N-bis- (2-hydroxyethyl) -p-phenylenediamine, 2- (2,5-diaminophenoxy) ethanol, 4-amino-3-methylphenol, 2,4, 5,6-tetraaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine, 2-dimethylamino-4,5, 6-triaminopyrimidine, 2-hydroxymethylamino-4-aminophenol, bis- (4-aminophenyl) amine, 4-amino-3-fluorophenol, 2-aminomethyl-4-aminophenol, 2-hydroxy
  • B. 4,5-diamino-l- (2'-hydroxyethyl) pyrazole Particularly advantageous developer components are p-phenylenediamine, p-toluenediamine, p-aminophenol, 1- (2'-hydroxyethyl) -2,5-diaminobenzene, 4-amino-3-methylphenol, 2-aminomethyl-4-aminophenol, 2,4 , 5, 6-tetraaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine.
  • M-Phenylenediamine derivatives, naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenol derivatives are generally used as oxidation dye precursors of the coupler type.
  • coupler components are m-aminophenol and its derivatives such as 5-amino-2-methylphenol, 5- (3-hydroxypropylamino) -2-methylphenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy -4-aminophenoxyethanol, 2,6-dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4-methoxy-2-methylphenol , 5- (2'-Hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) phenol, N-cyclopentyl-3-aminophenol, 1,3-dihydroxy-5- (methylamino) benzene, 3- (ethylamino ) -4-methylphenol and 2,4-dichloro-3-aminophenol, o-aminophenol and its derivatives, m-diaminobenzene and its derivatives,
  • Naphthalene derivatives such as 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxy naphthalene, 1, 7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene, morpholine derivatives such as 6-hydroxybenzomorpholine and 6-amino-benzomorpholine, quinoxaline derivatives such as 6-methyl-1, 2, 3, 4-tetrahydroquinoxaline, pyrazole derivatives such as l-phenyl-3-methylpyrazol-5-one,
  • coupler components are 1-naphthol, 1,5-, 2,7- and 1,7-dihydroxynaphthalene, 3-aminophenol, 5-amino-2-methylphenol, 2-amino-3-hydroxypyridine, resorcinol, 4-chlororesorcinol, 2-chloro-6-methyl-3-aminophenol, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol and 2,6-dihydroxy-3,4-dimethylpyridine.
  • Direct dyes are usually nitrophenylenediamines, nitroammophenols, azo dyes, anthraquinones or indophenols.
  • Particularly suitable direct dyes are those under the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99 , HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 and Basic Brown 17 known compounds as well as 1,4-bis (ß-hydroxyethyl) - amino-2-nitrobenzene, 4-amino-2 -nitrodiphenylamine-2'-carboxylic acid, 6-nitro-1,2,3,4-tetrahydroquinoxaline, hydroxyethyl-2-nitro-toluidine, picramic acid, 2-amino-6-chloro-4-nitrophenol, 4-ethylamino-3-
  • Directly occurring dyes found in nature include, for example, henna red, henna neutral, henna black, chamomile flowers, sandalwood, black tea, rotten tree bark, sage, blue wood, madder root, catechu, sedre and alkanna root.
  • oxidation dye precursors or the substantive dyes each represent uniform compounds. Rather, in the hair colorants according to the invention, due to the manufacturing process for the individual dyes, further components may be present in minor amounts, provided that these do not adversely affect the coloring result or for other reasons, e.g. B. toxicological, must be excluded.
  • indoles and indolines and their physiologically tolerable salts are used as precursors of nature-analogous dyes.
  • Those indoles and indolines are preferably used which have at least one hydroxyl or amino group, preferably as a substituent on the six-membered ring.
  • These groups can carry further substituents, e.g. B. in the form of etherification or esterification of the hydroxy group or an alkylation of the amino group.
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially that 5,6-dihydroxyindoline and N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole and in particular the 5 6-dihydroxyindole.
  • the h dolin and hidol derivatives in the colorants used in the process according to the invention both as free bases and in the form of their physiologically tolerable salts with inorganic or organic acids, for.
  • amino acids are amino carboxylic acids, especially ⁇ -amino carboxylic acids and ⁇ -amino carboxylic acids.
  • Arginine, lysine, ornithine and histidine are again particularly preferred among the ⁇ -aminocarboxylic acids.
  • a very particularly preferred amino acid is arginine, especially in free form, but also used as the hydrochloride.
  • Hair colorants in particular if the coloring is oxidative, be it with atmospheric oxygen or other oxidizing agents such as hydrogen peroxide, are usually set to slightly acidic to alkaline, ie to pH values in the range from about 5 to 11.
  • the colorants contain alkalizing agents, usually alkali or alkaline earth metal hydroxides, ammonia or organic amines.
  • Preferred alkalizing agents are monoethanolamine, monoisopropanolamine, 2-amino-2-methyl-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2 -methylbutanol and triethanolamine as well as alkali and alkaline earth metal hydroxides.
  • Monoethanolamine, triethanolamine and 2-amino-2-methyl-propanol and 2-amino-2-methyl-1,3-propanediol are particularly preferred in this group.
  • the use of ⁇ -amino acids such as ⁇ -aminocaproic acid as an alkalizing agent is also possible.
  • customary oxidizing agents such as in particular hydrogen peroxide or its adducts with urea, melamine or sodium borate, can be used.
  • oxidation with atmospheric oxygen as the only oxidizing agent can be preferred. It is also possible to carry out the oxidation with the aid of enzymes, the enzymes being used both for producing oxidizing per compounds and for enhancing the action of a small amount of oxidizing agents present, or also enzymes which release electrons from suitable developer components (reducing agents) Transmit atmospheric oxygen.
  • Oxidases such as tyrosinase, ascorbate oxidase and laccase are preferred, but also glucose oxidase, uricase or pyruvate oxidase. Furthermore, the procedure should be mentioned to increase the effect of small amounts (e.g. 1% and less, based on the total agent) of hydrogen peroxide by peroxidases.
  • the preparation of the oxidizing agent is then expediently mixed with the preparation with the dye precursors immediately before dyeing the hair.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the Range from 6 to 10. It is particularly preferred to use the hair dye in a weakly alkaline environment.
  • the application temperatures can be in a range between 15 and 40 ° C., preferably at the temperature of the scalp. After an exposure time of about 5 to 45, in particular 15 to 30, minutes, the hair dye is rinsed off the hair to be dyed. Washing with a shampoo is not necessary if a carrier with a high surfactant content, e.g. B. a coloring shampoo was used.
  • the preparation with the dye precursors can be applied to the hair without prior mixing with the oxidation component. After an exposure time of 20 to 30 minutes, the oxidation component is then applied, if necessary after an intermediate rinse. After a further exposure time of 10 to 20 minutes, rinsing is then carried out and, if desired, re-shampooing.
  • the corresponding agent is adjusted to a pH of about 4 to 7.
  • air oxidation is initially aimed for, the agent applied preferably having a pH of 7 to 10. In the subsequent accelerated postoxidation, the use of acidified peroxidisulfate solutions as the oxidizing agent can be preferred.
  • the formation of the color can be supported and increased by adding certain metal ions to the agent.
  • metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ .
  • Zn 2+ , Cu 2+ and Mn 2+ are particularly suitable.
  • the metal ions can be used in the form of any physiologically acceptable salt.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • the active ingredient combination according to the invention can also be used in products for cleaning surfaces such as glass, porcelain, plastic, textiles, leather, lacquer or wood.
  • the active ingredient is particularly suitable, for example, for use in manual and machine dishwashing detergents, glass cleaners, bathroom and toilet cleaners, and floor cleaners and care products.
  • Another object of the invention is the use of the compositions according to the invention for cleaning and maintaining surfaces.
  • Another object of the invention is the use of the compositions according to the invention for cleaning and care of the skin or keratin fibers.
  • EMULGADE ® SE mixture of glyceryl stearate (and) 4.0
  • CETIOL ® LC (Cognis) Capryl / Coco-Caprylate / Caprate 5.0 Capric acid esters of saturated fatty alcohols C 12 - C 18
  • Viscosity (mPas), Brook.RVF, 23 ° C, Sp.TE, 4 rpm, 150000 with Helipath Rich night care ingredient Chemical name INCI name% by weight
  • LANETTE ® O cetylstearyl alcohol Cetearyl Alcohol 4.0
  • CETIOL ® J 600 liquid wax ester oleyl erucate 4.0
  • CETIOL ® V oleic acid decyl ester decyl oleate 4.0
  • CETIOL ® OE Di-n-Octyl Ether Dicaprylyl Ether 4.0 MYRITOL ® 318 (Cognis) Capryl / Caprylic / Capric 3.5 Capric Acid Triglyceride Triglyceride Baysilon ® M 350 (Bayer) Dimethicone 0.5 COPHEROL ® F 1300 RRR- ( ⁇ ) -Toco ⁇ herol Tocopherol 1.0 (Cognis) water ad 100 glycerin 86% 3.0 Carbopol ® 981 2% carbomer 10.0 KOH 20% 0.3 LIPOCUTLN ® (Cognis) Aqua (and) lecithin 5.0 (and) Cholesterol (and) Decetyl Phosphate
  • Viscosity mPas
  • Brookfield RVF 23 ° C
  • Sp.TE 4 rpm
  • CETIOL ® OE (Cognis) Di-n-octyl ether Dicaprylyl Ether 5.0
  • Zinc stearate (Bärlocher) Zinc stearate 1.0
  • Viscosity (mPas), Brookfield RVF, 23 ° C, spindle TE, 4 rpm, with Helipath approx. 200000
  • Zincum ® N 29 (from zinc stearate Zinc Stearate 1.0
  • CETIOL ® OE (Cognis) Di-n-octyl ether Dicaprylyl Ether 3.0
  • CETIOL ® LC (Cognis) Capryl / Capric Acid Coco 6.0 from saturated Caprylate / Caprate fatty alcohols C 12 - C 18
  • Myritol ® 312 (Cognis) caprylic / Caprylic / Capric Triglyceride 8.0 capric triglyceride
  • Viscosity mPas
  • Brookfield RVF
  • spindle TE Spindle TE
  • Helipath 150000 Naturally toning day cream
  • EMULGADE ® SE mixture of partial glycerides, glyceryl stearate (and) 6.0
  • CETIOL ® OE (Cognis) Di-n-octyl ether Dicaprylyl Ether 5.0
  • Viscosity mPas
  • Brookfield RVF, 23 ° C, spindle TE, 4
  • Leave-on hair treatment ingredient Chemical name INCI - Name wt.% DEHYQUART ® F 75 mixture of esterquat distearoylethyl 0.7 (Cognis) and fatty alcohol hydroxyethylmomum methosulfate (and) cetearyl alcohol DEHYMULS ® PGPH polyglycerol poly-12-polyglyceryl-2 1 , 0 (Cognis) hydroxystearate dipolyhydroxystearate LANETTE ® O (Cognis) cetylstearyl alcohol Cetearyl Alcohol 3.0 EUTANOL ® G (Cognis) 2-octyldodecanol octyldodecanol 0.2 (Guerbet alcohol) CETIOL ® J 600 (Cognis) liquid wax ester Oleyl Erucate 0 1 PLANTACARE ® 1200 C 12 - C 16 Lauryl Glucoside 2.5 UP (Cognis) fatty alcohol glycoside (approx.
  • valerian oil 1.0 water ad 100 GLUADIN ® W 40 partial hydrolyzate from hydrolyzed wheat 2.0 (Cognis) wheat (approx. 40%) protein panthenol (50%) 0.7 pH value 4 viscosity (mPas) / Brookfield, RVF 23 ° C, spindle 5, 10 rpm 6800 4.
  • Leave-on hair treatment 1.0 water ad 100 GLUADIN ® W 40 partial hydrolyzate from hydrolyzed wheat 2.0 (Cognis) wheat (approx. 40%) protein panthenol (50%) 0.7 pH value 4 viscosity (mPas) / Brookfield, RVF 23 ° C, spindle 5, 10 rpm 6800 4.
  • CETIOL ® J 600 (Cognis) liquid wax ester oleyl erucate 0.5
  • Hair mask constituent Chemical name INCI name% by weight DEHYQUART ® F 75 hybrid of esterquat distearoylethyl 3.0 (Cognis) and fatty alcohol hydroxyethylmonium methosulfate (and) cetearyl alcohol LANETTE ® O (Cognis) cetylstearyl alcohol Cetearyl Alcohol 4.0 CUTINA ® GMS (Cognis) glycerol monostearate glyceryl stearate 1.0 EUMULG ⁇ N ® B 2 polyoxyethylene-20-ceteareth-20 1.5 (Cognis) cetylstearyl alcohol valerian oil 1.0 NUTRILAN ® KERATIN partial hydrolyzate from hydrolyzed keratin 5.0 W (Cognis) keratin (approx. 20%) panthenol 0.8 aloe vera gel 2.0 water ad 100
  • 2-in-l shampoo constituent Chem name INCI - name wt.% TEXAPON ® N 70 sodium lauryl ether sulfate Sodium Laureth Sulfate 12.0 (Cognis) with 2 mol EO (approx. 70%) DEHYTON ® PK 45 fatty acid amide Derivative with cocamidopropyl 2.5 (Cognis) betaine structure (approx. 45%) PLANTACARE ® 818 UP C 8 - C 16 fatty alcohol Coco Glucoside 3.0 (Cognis) glycoside (approx.
  • Viscosity (mPas), Brookfield RFT, 23 ° C, column 4, 10 rpm 6300
  • Conditioning shampoo constituent Chemical name INCI name Weight% TEXAPON ® N 70 sodium lauryl ether sulfate Sodium Laureth Sulfate 10.0 (Cognis) with 2 mol EO (approx. 70%) PLANTACARE ® 818 UP C 8 - C 16 fatty alcohol coco glucoside 4.0 (Cognis) glycoside (approx. 50%) DEHYTON ® K (Cognis) fatty acid amide derivative Cocamidopropyl Betaine 5.0 with betaine structure (approx.
  • Baby shampoo, without preservative Component Chemical name INCI name Weight% water ad 100 polymer ® JR 400 polyquaternium 10 0.4 (Amerchol) TEXAPON ® K 14 S sodium lauryl myristyl ether sodium myreth 11.0 special 70% (Cognis) sulfate ( 70%) sulfates DEHYTON ® PK 45 fatty acid amide derivative cocamidopropyl 5.0 (Cognis) with betaine structure (approx. betaines 45%) PLANTACARE ® 818 UP C 8 - C 16 fatty alcohol Coco Glucoside 5.0 (Cognis) glycoside (approx. 50%) LAMESOFT ® PO 65 Coco-Glucoside (and) Coco-Glucoside (and) 5.0 (Cognis) Glyceryl Oleate Glyceryl Oleate Herbasol Extract Valerian 5.0 Sodium Chloride 1.8
  • Viscosity (mPas), Brook.RVF, 23 ° C, spindle 4, 10 rpm 4100
  • Foam bath constituent Chemical name INCI name% by weight TEXAPON ® NSO sodium lauryl ether sulfate Sodium Laureth Sulfate 27.0 (approx. 28%) PLANTACARE ® 818 UP C 8 - C 16 fatty alcohol coco glucoside 9.0 glycoside (approx. 50%) DEHYTON ® PK 45 Real betaine, fatty acid cocamidopropyl 4.0 amide derivative with betaine betaine structure (approx. 45%) GLUADIN ® W 40 partial hydrolyzate from Hydrolyzed Wheat 4.0 wheat protein Herbasol extract valerian 1.0 sodium chloride sodium chloride 0.3 water ad 100
  • Cleansing milk ingredient Chemical name INCI name% by weight EMULGADE ® SE Mixture of partial glyceryl stearate (and) 6.0 (Cognis) glycerides, fatty alcohols, Ceteareth20 (and) wax esters and ethoxy-Cetearethl2 (and) lated fatty alcohols Cetearyl Alcohol (and) Cetyl Palmitate EUTANOL ® G (Cognis) 2-octyldodecanol octyldodecanol 7.0 (Guerbet alcohol) valerian oil 2.0
  • CETIOL ® 868 (Cognis) isooctyl Octyl Stearate 8.0 3.0 Glycerol 86% Carbopol ® carbomer 981/2% 10.0 (Goodrich) swelling NaOH 10% 0.8 water ad 100
  • Viscosity (mPas), Brookfield RVF, 23 ° C, spindle. 5, 10 rpm 8,000
  • Hand dishwashing detergent component Chemical name% by weight C 13/17 alkanesulfonate alkanesulfonate C 13/17 (approx. 60%) 19.5 TEXAPON ® N 70 (Cognis) lauiyl ether sulfate, Na salt (approx. 9.0 70%) DEHYTON ® K (Cognis) fatty acid amide derivative with 13.3 betaine structure approx. 30%> D, L-3,3-GLUCOPON ® 600 CS UP alkyl polyglucoside approx. 50% 14.0 (Cognis) Ethanol 5.0 Herbasol extract valerian 0.5 water ad 100 pH 5-6
  • Fabric softener ingredient Chemical name% by weight DEHYQUART ® AU 56 Esterquat (Cognis, approx. 80%) 16.7 Calcium Chloride (25%) 0.5 Herbasol extract valerian 0.65 Water ad 100
  • the coloring cream had a pH of 10.0. It caused an intense red tint of the hair.
  • Emulsifier TD9 / PEG40HCO 56 0.5 0.5 0.5

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Die Erfindung betrifft Zusammensetzungen zur Reinigung von Oberflächen enthaltend Baldrianextrakt zur Beruhigung der Haut des Anwenders während der Anwendung dieser Zusammensetzungen.

Description

.Mittel enthaltend Baldrian"
Die Erfindung betrifft Mittel enthaltend Baldrian sowie die Verwendung dieser Mittel zur Reinigung und Pflege von Oberflächen wie Glas, Porzellan, Holz, Leder, Fasern sowie insbesondere keratinischen Fasern und Haut.
Mit Mitteln zur Reinigung und Pflege der unterschiedlichsten Oberflächen kommt der Verbraucher heute in mannigfaltiger Weise in Berührung, beispielsweise beim Wischen des Bodens, beim Geschirrspülen, beim Wäsche waschen, aber auch bei der persönlichen Reinigung, dem Duschen oder dem Haarewaschen. In allen diesen Mitteln sind Tenside oder Emulgatoren als wesentliche die Reinigungsleistung tragende Inhaltsstoffe enthalten. Die wiederholte und häufige Exposition insbesondere der Hautoberfläche des Anwenders derartiger Mittel führt beim Anwender zu Reizungserscheinungen wie einem Brennen oder Jucken oder Spannungszuständen der Haut als auch zu Hautrauhigkeit und Hauttrockenheit.
Kosmetische Mittel zur Pflege und Erhalt der natürlichen Funktionen von Haut und Haar gewinnen mehr und mehr an Bedeutung. Dazu tragen unter anderem die veränderten Verbrauchergewohnheiten und Modetrends bei. So werden beispielsweise durch das intensive Nutzen von Sonnenstudios Haut und Haar in ihrer Struktur stärker durch UV- Licht nachhaltig beeinträchtigt. Diese Beeinträchtigungen zeigen sich auf der Haut wie dem Haar beispielsweise durch einen Verlust der Elastizität.
Weiterhin fuhrt die ausgiebige körperliche Betätigung in der Freizeit zu einer häufigen intensiven Reinigung von Haut und Haar. Dadurch kann der Schutzfilm aus Talg, welcher kontinuierlich von den zahlreichen Talgdrüsen produziert wird, oder aber die Sebumproduktion der Talgdrüsen selbst stark beeinträchtigt werden. Als Folge stellen sich eine fettige Haut und fettiges Haar ein. Auch die bereits beschriebenen Spannungszustände auf der Haut wie Brennen und Jucken sind hier zu nennen. Modetrends mit aktuellen Farben für „make-up", Lippenstifte zum Färben der Lippen und Maskara sowie Haarfärbe- und Wellmittel tragen bei beanspruchter Haut und vorbelastetem Haar ein übriges zur Beeinträchtigung des natürlichen Zustandes von Haut und Haar bei. Es ist daher nicht erstaunlich, wenn der Anteil der Verbraucher mit empfindlicher, wenig elastischer, spröder und gereizt reagierender Haut sowie einem in der Kämmbarkeit, dem Glanz, der Elastizität, der Sprödigkeit und der Höchstreißkraft beeinträchtigtem Haar stark zunimmt.
Es hat daher nicht an Versuchen gefehlt, diese Mißstände zu beheben. Dabei wurden u.a. Emulsionen zur Hautpflege bezüglich ihres Reizpotentiales durch die Auswahl geeigneter Emulgatoren weiter optimiert. Zur Reinigung von Haut und Haar werden milde Tenside eingesetzt, um Haut und Haar nicht zusätzlich zu belasten. Mit rückfettenden Substanzen wird versucht, die Anregung der Sebumproduktion bei der Reinigung zu vermeiden. UV- Schutzmittel und Vitamine wie beispielsweise Vitamin E sollen die nachteiligen Auswirkungen des UV-Lichtes mindern. Proteinhydrolysate werden zum Ausgleich der inneren Struktur von Haut und Haar eingesetzt. Mit Pflanzen- und Algenextrakten kann beispielsweise der Feuchtehaushalt von Haut- und Haar beeinflußt werden.
Weiterhin finden kosmetische Wirkstoffe zunehmend Verwendung in Mitteln zur Reinigung und Pflege von Oberflächen wie Glas, Porzellan, Leder, Textilien, Fußböden aller Art in Haushalt und Gewerbe, um die Haut des Anwenders derartiger Produkte nicht zusätzlich zu belasten. So sind Handgeschirrspülmittel mit pflegenden Zusätzen wie Proteinen oder rückfettenden Substanzen im Markt erhältlich.
Es besteht aber weiterhin ein Bedarf an Mitteln, welche Tenside oder Emulgatoren enthalten, die sich durch eine Verringerung der unerwünschten Beeinträchtigungen von Haut und Haar auszeichnen. Es wurde nunmehr gefunden, daß die Verwendung von Baldrianextrakten als Wirkstoff in Mitteln zur Reinigung und Pflege von Oberflächen überraschend gute Eigenschaften zeigt. Durch die Verwendung von Baldrian treten die unerwünschten Effekte wie Brennen oder Jucken der Haut, Spannungsgefühle etc. beim Anwender dieser Mittel nicht mehr auf. Weiterhin wurde gefunden, daß durch die Verwendung von Baldrian in diesen Mitteln auf Konservierungsmittel ganz verzichtet oder zumindest die Menge an Konservierungsmitteln verringert werden kann.
Ein erster Gegenstand der Erfindung sind daher Mittel zur Pflege und Reinigung von Oberflächen enthaltend übliche Bestandteile, insbesondere Tenside und Emulgatoren, dadurch gekennzeichnet, daß als Wirkstoff Baldrianextrakt enthalten ist.
Baldrian ist eine seit dem Altertum bekannte und kultivierte Pflanze. Baldrian wird in zahlreichen Präparaten in der Homöopathie und Pharmazie verwendet. Zu den zahlreichen bekannten Wirkungen des Baldrians zählen sowohl sedierende als auch aktivierende Wirkungen. Baldrian zeigt auch zelltoxische Eigenschaften. Eine weitere sehr bekannte Eigenschaft ist der bittere Geschmack. Baldrianbestandteile können als Bitterstoffe verwendet werden und finden Anwendung zur Appetitanregung. Weiterhin kann der Geschmack von Arzneimitteln und Lebensmitteln mit Baldrian modifiziert werden.
Als Beispiele für die pharmazeutische Verwendung von Baldrian sei auf die US 20030096865 AI verwiesen. Eine Extraktionsmethode zur Herstellung von eines Baldrianextraktes aus der Wurzel des Baldrianes findet sich beispielsweise in der US 20030017110 AI. Die Verwendung von Baldrian als Geschmacksstoff wird beispielsweise in der EP 1077034 AI beschrieben.
In keiner der zuvor genannten Schriften findet sich jedoch auch nur der geringste Hinweis auf die vorliegende Erfindung.
Baldrianextrakte sind bekannte pflanzliche Extrakte. Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern und/oder Wurzeln und/oder Stengeln bzw. Stielen der Pflanze herzustellen. Zur Herstellung können prinzipiell alle dem Fachmann auf dem Gebiet der Extraktion bekannten Verfahren angewendet werden. Insbesondere kann die Extraktion von Baldrian mit Lösemitteln, insbesondere Wasser, Wasserdampfund Alkoholen, aber auch besonders schonend mit überkritischem CO2 oder anderen überkritischen Fluiden erfolgen. Weiterhin können als Extraktionsmittel zur Herstellung des Baldrianextraktes auch Mischungen aus Wasser, Wasserdampf und Alkoholen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Baldrianextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die vorliegende Erfindung umfaßt auch die Lehre, daß wenngleich nicht unbedingt bevorzugt, anstelle des Baldrianextraktes die bekannten Inhaltsstoffe des Baldrianes allein oder in Mischungen eingesetzt werden können. Für den Fall, daß Inhaltsstoffe des Baldrianextraktes eingesetzt werden, sind dies bevorzugt Iridoide, insbesondere Valtrat und Valepotriate, Sesquiterpene wie insbesondere Valeranon, Terpenalkaloide wie beispielsweise Actinidin, sowie Baldrianöl und Gerbstoffe. Die alleinige Verwendung von Valeriansäure ist erfindungsgemäß nicht bevorzugt. Wenn Valeriansäure gemäß der Lehre der vorliegenden Erfindung verwendet wird, dann wird mindestens ein weiterer essentieller Bestandteil des Baldrianes mitverwendet. Erfindungsgemäß als Baldrianextrakt wird auch auf anderen Wegen aus der Baldrianpflanze gewonnenes Baldrianöl verstanden.
Der Baldrianextrakt kann erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern er in verdünnter Form eingesetzt wird, enthält er üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei seiner Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln sowohl den Baldrianextrakt als auch zusätzlich mindestens einen weiteren Inhaltsstoff des Baldrianextraktes einzusetzen. Der Baldrianextrakt wird in den Mitteln in Mengen von 0,001 bis 10 Gew.%, bezogen auf das gesamte Mittel, bevorzugt in Mengen von 0,001 bis 5 Gew.% und ganz besonders bevorzugt in Mengen von 0,005 bis 3 Gew.%» eingesetzt.
Eine weitere zwingende Komponente der vorliegenden Erfindung sind Tenside und/oder Emulgatoren. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in „H.-D .Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
Als anionische Tenside eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
- lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
- Ethercarbonsäuren der Formel R-O-(CH2-CH2θ)χ-CB2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist, - Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C- Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
- lineare Alkansulfonate mit 8 bis 24 C-Atomen,
- lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-3725 030, sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-3723 354, Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
- Alkyl- und/oder Alkenyletherphosphate der Formel (VI),
O R29(θCH2CH2)n-O — P - OR30 (VI) OX in der R bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R30 für Wasserstoff, einen Rest (CH2CH2O)„R29 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR31R32R33R34, mit R31 bis R34 unabhängig voneinander stehend für einen Ci bis C4 - Kohlenwasserstoffrest, steht, - sulfatierte Fettsäurealkylenglykolester der Formel (VII) R35CO(AlkO)„SO3M (VII) in der R35CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
- Monoglyceridsulfate und Monoglyceridethersulfate der Formel (VIII), CH2θ(CH2CH2θ)χ— COR36 CHO(CH2CH2θ)yH (VIII) CH2θ(CH2CH2θ)z— SO3X in der R3 CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (VIII) eingesetzt, in der R CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht. Monoglyceridsulfate und Monoglyceridethersulfate werden beispielsweise in der EP-Bl 0 561 825, der EP-Bl 0 561 999, der DE-Al 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben.
Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykol- ethergruppen im Molekül und Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C- Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammomumgruppe und mindestens eine -COO(_)
- oder -SO3" -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammonium- glycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2- Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethyl- glycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der L CI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8 - C24 - Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-
Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylammo- propionat und das C12 - C18 - Acylsarcosin.
Nichtionische Tenside enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
- Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, mit einem Methyl- oder C2 - C6 - Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol - Typen (Cognis), alkoxilierte Triglyceride, alkoxilierte Fettsäurealkylester der Formel R37CO-(OCH2CHR38)wOR39, (IX), in der R37CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R38 für Wasserstoff oder Methyl, R39 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht, Aminoxide,
Hydroxymischether, wie sie beispielsweise in der DE-OS 19738866 beschrieben sind, Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zucker- fettsäureester,
Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine, Fettsäure-N-alkylglucamide,
Alkylpolygykoside entsprechend der allgemeinen Formel RO-(Z)x wobei R für Alkyl, Z für Zucker sowie x für die Anzahl der Zuckereinheiten steht. Die erfindungsgemäß verwendbaren Alkylpolyglykoside können lediglich einen bestimmten Alkylrest R enthalten. Üblicherweise werden diese Verbindungen aber ausgehend von natürlichen Fetten und Ölen oder Mineralölen hergestellt. In diesem Fall liegen als Alkylreste R Mischungen entsprechend den Ausgangs Verbindungen bzw. entsprechend der jeweiligen Aufarbeitung dieser Verbindungen vor.
Besonders bevorzugt sind solche Alkylpolyglykoside, bei denen R
- im wesentlichen aus C8- und C10-Alkylgruppen,
- im wesentlichen aus C12- und C1 -Alkylgruppen,
- im wesentlichen aus C8- bis C16-Alkylgruppen oder
- im wesentlichen aus C12- bis C16-Alkylgruppen oder
- im wesentlichen aus C16 bis C18-Alkylgruppen besteht.
Als Zuckerbaustein Z können beliebige Mono- oder Oligosaccharide eingesetzt werden. Üblicherweise werden Zucker mit 5 bzw. 6 Kohlenstoffatomen sowie die entsprechenden Oligosaccharide eingesetzt. Solche Zucker sind beispielsweise Glucose, Fructose, Galactose, Arabinose, Ribose, Xylose, Lyxose, Allose, Altrose, Mannose, Gulose, Idose, Talose und Sucrose. Bevorzugte Zuckerbausteine sind Glucose, Fructose, Galactose, Arabinose und Sucrose; Glucose ist besonders bevorzugt.
Die erfindungsgemäß verwendbaren Alkylpolyglykoside enthalten im Schnitt 1,1 bis 5 Zuckereinheiten. Alkylpolyglykoside mit x- Werten von 1,1 bis 2,0 sind bevorzugt. Ganz besonders bevorzugt sind Alkylglykoside, bei denen x 1,1 bis 1,8 beträgt.
Auch die alkoxylierten Homologen der genannten Alkylpolyglykoside können er- fmdungsgemäß eingesetzt werden. Diese Homologen können durchschnittlich bis zu 10 Ethylenoxid- und/oder Propylenoxideinheiten pro Alkylglykosideinheit enthalten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten. Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo- Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alko- holate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Diese Tenside werden in Mengen von 0,1 - 45 Gew.%, bevorzugt 1 - 30 Gew.%o und ganz besonders bevorzugt von 1 - 15 Gew.%, bezogen auf das gesamte Mittel, eingesetzt. In einer bevorzugten Ausfuiirungsform können nicht-ionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen bevorzugt sein.
Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside vom Typ der quartären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quaternäre Ammoniumverbindungen sind Arnmoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammomumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltri- methylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethyl- ammoniumchlorid, Lauryldimethylbenzylammom'umchlorid und Tricetylmethyl- ammoniumchlorid, sowie die unter den FNCI-Bezeichnungen Quaternium-27 und Quater- nium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammomumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Trietha- nolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quater- nierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armo- care® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxy- ethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar. Die kationischen Tenside sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Zu den erfindungsgemäß zwingenden Tensid und/oder Emulgatorkomponenten sind auch die wie folgt definierten Emulgatoren zu zählen: Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W - Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O - Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Femteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in „H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise: Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin, Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid- Fettsäureester, Fettsäurealkanolamide und Fettsäureglucamide, C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oligomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind, Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen, zum Beispiel das im Handel erhältliche Produkt Montanov®68, Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl, Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen, Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert. Phospholipide. Hierunter werden vor allem die Glucose-Phospholipide, die z.B. als Lecithine bzw. Phosphatidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden. Fettsäureester von Zuckern und Zuckeralkoholen wie Sorbit, Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12- hydroxystearat (Handelsprodukt Dehymuls® PGPH), Lineare und verzweigte Fettsäuren mit 8 bis 30 C - Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn - Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp- Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10 - 15 können erfindungsgemäß besonders bevorzugt sein. Unter den genannten Emulgatoren-Typen können die Emulgatoren, welche kein Ethylenoxid und/oder Propylenoxid im Molekül enthalten, ganz besonders bevorzugt sein.
In einer bevorzugten Ausflihrungsform der erfindungsgemäßen Lehre kann die Wirkung mit Polymeren weiter gesteigert werden. Unter Polymeren sind sowohl natürliche als auch synthetische Polymere, welche anionisch, kationisch, amphoter geladen oder nichtionisch sein können, zu verstehen.
Unter kationischen Polymeren sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette Gruppen aufweisen, welche „temporär" oder „permanent" kationisch sein kann. Als „permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH- Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen. Homopolymere der allgemeinen Formel (IS),
R 18
-[CH2-C-]„ X" (HJ) I CO-O- CH^m-NVR^R21
in der R = -H oder -CH3 ist, R , R und R unabhängig voneinander ausgewählt sind aus C1- - Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X" ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (DI) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: - R 1 R steht für eine Methylgruppe - R19, R20 und R21 stehen für Methylgruppen - m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X" kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat- , Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der L CI-
Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxy- propylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-l-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propy- lenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propy- lene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-l-Trideceth-6)) im Handel erhältlich. Copolymere mit Monomereinheiten gemäß Formel (JS) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-C1-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopo- lymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise - quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate, - kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686, - kanonisierter Honig, beispielsweise das Handelsprodukt Honeyquat® 50, - kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cos- media®Guar und Jaguar® vertriebenen Produkte, - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl- silylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino- modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80), - polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Mer- quat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyl- diallylammomumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere, Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylamino- alkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich, Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden, quaternierter Polyvinylalkohol, sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeich-nungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten „temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH- Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind. Chitosane sind deacetylierte Chitine, die in unterschiedlichen Deacetylierungsgraden und unterschiedlichen Abbaugraden (Molekulargewichten) im Handel erhältlich sind. Ihre Herstellung ist z.B. in DE 44 40 625 AI und in DE 1 95 03 465 AI beschrieben. Besonders gut geeignete Chitosane weisen einen Deacetylierungsgrad von wenigstens 80 % und ein Molekulargewicht von 5 ' 105 bis 5 " 106 (g/mol) auf.
Zur Herstellung erfindungsgemäßer Zubereitungen muß das Chitosan in die Salzform überführt werden. Dies kann durch Auflösen in verdünnten wäßrigen Säuren erfolgen. Als Säuren sind sowohl Mineralsäuren wie z.B. Salzsäure, Schwefelsäure und Phosphorsäure als auch organische Säuren, z.B. niedermolekulare Carbonsäuren, Polycarbonsäuren und Hydroxycarbonsäuren geeignet. Weiterhin können auch höhermolekulare Alkylsulfonsäuren oder Alkylschwefelsäuren oder Organophosphorsäuren verwendet werden, soweit diese die erforderliche physiologische Verträglichkeit aufweisen. Geeignete Säuren zur ÜberfüTirung des Chitosans in die Salzform sind z.B. Essigsäure, Glycolsäure, Weinsäure, Apfelsäure, Citronensäure, Milchsäure, 2-Pyrrolidinon-5- carbonsäure, Benzoesäure oder Salicylsäure. Bevorzugt werden niedermolekulare Hydroxycarbonsäuren wie z.B. Glycolsäure oder Milchsäure verwendet.
Bei den anionischen Polymeren, welche die Wirkung des erfindungsgemäßen Wirkstoffes unterstützen können, handelt es sich um ein anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylproρansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2- methylpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®! 1-80 im Handel erhältlich ist. Innerhalb dieser Ausfuhrungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Ver- netzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich. Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Malemsäure-Methylvinylether-Copolymer ist unter der Bezeichnung Stabileze® QM im Handel erhältlich.
Weiterhin können als Polymere zur Steigerung der Wirkung des erfindungsgemäßen Wirkstoffes amphotere Polymere als Bestandteil eingesetzt. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO"- oder -SO3 "-Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert- Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
(a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (IV),
R22-CH=CR23-CO-Z-(CnH2n)-N(+)R24R25R26 Aw (TV) in der R22 und R23 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R24, R25 und R26 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoff-Atomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A^ das Anion einer organischen oder anorganischen Säure ist und
(b) monomeren Carbonsäuren der allgemeinen Formel (V),
R27-CH=CR28-COOH (V) in denen R27 und R28 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R24, R25 und R26 Methylgruppen sind, Z eine NH-Gruppe und A(_) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel können in einer dritten Variante weiterhin nichtionogene Polymere enthalten.
Geeignete nichtionogene Polymere sind beispielsweise: Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere. Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
- Schellack
- Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden. Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 °C liegt. Bevorzugte Siloxane sind Polydi- alkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten. Glycosidisch substituierte Silicone gemäß der EP 0612759 Bl .
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Unter dem Begriff Polymer sind erfindungsgemäß ebenfalls spezielle Zubereitungen von Polymeren wie sphärische Polymerpulver zu verstehen. Es sind verschiedene Verfahren bekannt, solche Mikrokugem aus verschiedenen Monomeren herzustellen, z.B. durch spezielle Polymerisationsverfahren oder durch Auflösen des Polymeren in einem Lösungsmittel und Versprühen in ein Medium, in dem das Lösungsmittel verdunsten oder aus den Teilchen herausdiffundieren kann. Ein solches Verfahren ist z.B. aus EP 466 986 Bl bekannt. Geeignete Polymerisate sind z.B. Polycarbonate, Polyurethane, Polyacrylate, Polyolefine, Polyester oder Polyamide. Besonders geeignet sind solche sphärischen Polymerpulver, deren Primärpartikeldurchmesser unter 1 μm liegt. Solche Produkte auf Basis eines Polymethacrylat-Copolymers sind z.B. unter dem Warenzeichen Polytrap®Q5-6603 (Dow Corning) im Handel. Andere Polymerpulver, z.B. auf Basis von Polyamiden (Nylon 6, Nylon 12) sind mit einer Teilchengröße von 2 - 10 μm (90 %) und einer spezifischen Oberfläche von ca. 10 m2/g unter der Handelsbezeichnung Orgasol® 2002 DU Nat Cos (Atochem S.A., Paris) erhältlich. Weitere sphärische Polymerpulver, die für den erfindungsgemäßen Zweck geeignet sind, sind z.B. die Polymethacrylate (Micropearl M) von SEPPIC oder (Plastic Powder A) von NIKKOL, die Styrol-Divinylbenzol-Copolymeren (Plastic Powder FP) von NIKKOL, die Polyethylen- und Polypropylen-Pulver (ACCUREL EP 400) von AKZO, oder auch Silikonpolymere (Silicone Powder X2-1605) von Dow Corning oder auch sphärische Cellulosepulver.
Die Polymere sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,01 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
In einer weiteren Ausfuhrungsform der erfindungsgemäßen Mittel kann die Wirkung durch die Verwendung von Proteinhydrolysaten und deren Derivaten weiter gesteigert werden. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex) und Crotein® (Croda) erhältlich. Ganz besonders bevorzugt kann der Einsatz der Seidenproteine Sericin und Fibroin sowie dessen Derivaten sein.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Gluadin® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Erfindungsgemäß einsetzbar sind auch kationisierte Proteinhydrolysate, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder von biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N- (2-hydroxy-3-chloro-n-propyl)-ammomumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im „International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HC1, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protem/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protem/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein. Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
In den erfindungsgemäß verwendeten Mitteln sind die Proteinhydrolysate und deren Derivate in Mengen von 0,01 - 10 Gew.-% bezogen auf das gesamte Mittel enthalten. Mengen von 0,1 bis 5 Gew.%, insbesondere 0,1 bis 3 Gew.-%, sind ganz besonders bevorzugt.
In einer weiteren bevorzugten Ausführungsform der Erfindung kann die Wirkung des erfindungsgemäßen Wirkstoffes durch Fettstoffe weiter optimiert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 - 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeo- stearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure. Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. In einer bevorzugten Ausfuhrungsform beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sind.
Als Fettalkohole können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6 - C30-, bevorzugt C10 - C22- und ganz besonders bevorzugt C12 - C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 - 20 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 10 Gew.-% eingesetzt. Als natürliche oder synthetische Wachse können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.
Zu den natürlichen und synthetischen kosmetischen Ölkörpern, welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen: - pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle. flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen l,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n- octylether (Cetiol® OE) können bevorzugt sein. Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalko- hol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behe- nylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
- Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol- di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat, symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
- Mono,- Di- und Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin, wie beispielsweise Monomuls® 90- O18, Monomuls® 90-L12 oder Cutina® MD.
Die Einsatzmenge beträgt 0,1 - 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1
- 20 Gew.% und besonders bevorzugt 0,1 - 15 Gew.% bezogen auf das gesamte Mittel. Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 6 - 45 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 10- 35 Gew.-% sind erfindungsgemäß bevorzugt.
Weiterhin hat sich gezeigt, daß die Wirkung des erfindungsgemäßen Wirkstoffes gesteigert werden kann, wenn er mit Hydroxycarbonsäureestern kombiniert wird. Bevorzugte Hydroxycarbonsäureester sind Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D- Gluconsäure, Zuckersäure, Schleimsäure oder Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Die Einsatzmenge der Hydroxycarbonsäureester beträgt dabei 0,1 - 15 Gew.% bezogen auf das Mittel, bevorzugt 0,1 - 10 Gew.% und ganz besonders bevorzugt 0,1 - 5 Gew.%.
Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro- Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin Ai) sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A- Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.- %, bezogen auf die gesamte Zubereitung. Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
• Vitamin B\ (Thiamin)
• Vitamin B2 (Riboflavin)
• Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
• Vitamin B5 (Pantothensäure und Panthenol) und dessen Vorstufe Pantolacton. Im Rahmen dieser Gruppe wird bevorzugt das Panthenol eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols, kationisch derivatisierte Panthenole sowie Pantolacton. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt.
• Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff „Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden. Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6ai?)-2-Oxohexa- hydrothienol[3,4-rf]-imidazol-4-valeriansäure bezeichnet, für die sich aber zwischenzeitlich der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H.
Panthenol und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung des Wirkstoffes auch durch den kombinierten Einsatz mit Pflanzenextrakten steigern.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt. Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Es wurde weiterhin gefunden, daß die Wirkung des erfindungsgemäßen Wirkstoffes in den erfindungsgemäßen Mitteln in Kombination mit Stoffen, welche primäre oder sekundäre Aminogruppen enthalten, weiter gesteigert werden kann. Als Beispiele für derartige Aminoverbindungen seien genannt Ammoniak, Monoethanolamin, 2-Amino-2- methyl-1-propanol, 2-Amino-2-methyl-propandiol sowie basische Aminosäuren wie beispielsweise Lysin, Arginin oder Histidin. Selbstverständlich können diese Amine auch in Form der entsprechenden Salze mit anorganischen und/oder organischen Säuren eingesetzt werden, wie beispielsweise als Ammoniumcarbonat, Ammoniumeitrat, Ammoniumoxalat, Ammoniumtartrat oder Lysinhydrochlorid. Die Amine werden mit dem erfindungsgemäßen Wirkstoff gemeinsam in Verhältnissen von 1:10 bis 10:1, bevorzugt 3:1 bis 1:3 und ganz besonders bevorzugt in stöchiometrischen Mengen, eingesetzt.
Neben dem erfindungsgemäß zwingend erforderlichen Wirkstoff und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise:
- Verdickungsmittel wie Gelatine oder Pflanzengumme, beispielsweise Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke- Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone und Schichtsilikate wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Po- lyvinylalkohol, die Ca-, Mg- oder Zn - Seifen,
- Strukturanten wie Maleinsäure und Milchsäure,
- Parfümöle,
- Dimethylisosorbid,
- Cyclodextrine,
- Lösungsmittel und -Vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
- faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
- quaternierte Amine wie Methyl- 1 -alkylamidoethyl-2-alkylimidazolim*um-methosulfat,
- Entschäumer wie Silikone,
- Farbstoffe zum Anfärben des Mittels,
- Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol, - Lichtschutzmittel, insbesondere derivatisierte Benzophenone, Zimtsäure-Derivate und Triazine,
- weitere Substanzen zur Einstellung des pH- Wertes, wie beispielsweise α- und ß- Hydroxycarbonsäuren,
- Wirkstoffe wie Allantoin und Bisabolol,
- Cholesterin,
- Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbo- nate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate,
- Ceramide. Unter Ceramiden werden N-Acylsphingosin (Fettsäureamide des Sphingosins) oder synthetische Analogen solcher Lipide (sogenannte Pseudo- Ceramide) verstanden,
- Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere,
- Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
- Pigmente,
- Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy- steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
- Antioxidantien,
- Desoxyzucker,
- Pflanzenglycoside,
- Polysaccharide wie Fucose oder Rhamnose.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die Monographie von Kh. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen.
Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, grobe, instabile, ein oder mehrphasige Schüttelmixturen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Diese werden in der Regel auf wäßriger oder wäßrigalkoholischer Basis formuliert. Als alkoholische Komponente kommen dabei niedere Alkanole sowie Polyole wie Propylenglykol und Glycerin zum Einsatz. Ethanol und Isopropanol sind bevorzugte Alkohole. Wasser und Alkohol können in der wäßrig alkoholischen Basis in einem Gewichtsverhältnis von 1 : 10 bis 10 : 1 vorliegen. Wasser sowie wäßrig-alkoholische Mischungen, die bis zu 50 Gew.-%, insbesondere bis zu 25 Gew.-%, Alkohol, bezogen auf das Gemisch Alkohol/Wasser, enthalten, können erfindungsgemäß bevorzugte Grundlagen sein. Der pH- Wert dieser Zubereitungen kann prinzipiell bei Werten von 2 - 11 liegen. Er liegt bevorzugt zwischen 2 und 7, wobei Werte von 3 bis 5 besonders bevorzugt sind. Zur Einstellung dieses pH- Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufhahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'- Tetrakis-(2-hydroxypropyl)-ethylendiamin.
Auf der Haut und dem Haar verbleibende Zubereitungen haben sich als besonders wirksam erwiesen und können daher bevorzugte Ausfuhrungsformen der erfindungsgemäßen Lehre darstellen. Unter auf der Haut und dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder von der Haut ab- oder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Wäsche auf der Haut oder dem Haar. Gemäß einer bevorzugten Ausführungsform für die Anwendung auf dem Haar werden diese Zubereitungen als Haarkur oder Haarconditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Ausfuhrungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumindest überwiegend wasserhaltigen Mittel ausgespült werden; bevorzugt werden sie jedoch, wie oben ausgeführt, auf dem Haar belassen. Dabei kann es bevorzugt sein, die erfindungsgemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die erfindungsgemäße Zubereitung als Farbschutz für die nachfolgenden Anwendungen.
Gemäß weiteren Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel für Haut und Haar wie Shampoos, Makeup - remover, Gesichtsreiniger, pflegende Mittel für Haut und Haar wie Spülungen, Tagescremes, Nachtcremes, Gesichtsmasken, oder um festigende Mittel für das Haar wie Haarfestiger, Schaumfestiger, Styling Gels und Fönwellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungsmittel oder Nachspülungen handeln.
In einer besonderen Ausfuhrungsform der erfindungsgemäßen Mittel kann es bevorzugt sein, wenn die Mittel als Mikroemulsion vorliegen. Unter Mikroemulsionen werden im Rahmen der Erfindung ebenfalls sogenannte „PIT'-Emulsionen verstanden. Bei diesen Emulsionen handelt es sich im Prinzip um Systeme mit den 3 Komponenten Wasser, Öl und Emulgator, die bei Raumtemperatur als Öl-in-Wasser(O/W)-Emulsion vorliegen. Beim Erwärmen dieser Systeme bilden sich in einem bestimmten Temperaturbereich (üblicherweise als Phaseninversiontemperatur oder „PIT" bezeichnet) Mikroemulsionen aus, die sich bei weiterer Erwärmung in Wasser-in-Öl(W/O)-Emulsionen umwandeln. Bei anschließendem Abkühlen werden wieder O/W-Emulsionen gebildet, die aber auch bei Raumtemperatur als Mikroemulsionen mit einem mittleren Teilchendurchmesser von kleiner als 400 nm, insbesondere mit einem Teilchendurchmesser von etwa 100-300 nm, vorliegen. Einzelheiten bezüglich dieser sehr stabilen, niedrigviskosen Systeme, für die sich die Bezeichnung „PIT-Emulsionen" allgemein durchgesetzt hat, sind einer Vielzahl von Druckschriften zu entnehmen, für die stellvertretend die Veröffentlichungen in Angew. Chem. 97, 655-669 (1985) und Adv. Colloid Interface Sei 58, 119-149 (1995) genannt werden.
Erfindungsgemäß können solche Mikro- oder „PIT"-Emulsionen bevorzugt sein, die einen mittleren Teilchendurchmesser von etwa 200 nm aufweisen.
Die Herstellung der erfindungsgemäßen Mikroemulsionen kann beispielsweise in der Art erfolgen, daß zunächst die Phaseninversionstemperatur des Systems bestimmt wird, indem man eine Probe der auf übliche Weise hergestellten Emulsion erhitzt und unter Verwendung eines Leitfähigkeitsmeßgerätes die Temperatur bestimmt, bei der die Leitfähigkeit stark abnimmt. Die Abnahme der spezifischen Leitfähigkeit der zunächst vorhandenen O/W-Emulsion nimmt dabei in der Regel über einen Temperaturbereich von 2 bis 8 °C von ursprünglich mehr als 1 mS/cm auf werte unterhalb von 0,1 mS/cm ab. Dieser Temperaturbereich entspricht dann dem Phaseninversions-Temperaturbereich. Nachdem somit der Phaseninversions-Temperaturbereich bekannt ist, kann man die zunächst wie üblich hergestellte Emulsion aus Ölkomponente, nichtionogenem Emulgator, zumindest Teilen des Wassers sowie gegebenenfalls weiteren Komponenten auf eine Temperatur erhitzen, die innerhalb oder oberhalb des Phaseninversions- Temperaturbereiches liegt, sodann abkühlen und gegebenenfalls weitere Komponenten sowie das restliche Wasser hinzufügen. Alternativ kann auch die Herstellung der Mikroemulsion direkt bei einer Temperatur erfolgen, die innerhalb oder oberhalb des Phaseninversions-Temperaturbereiches liegt. Die so hergestellte Mikroemulsion wird dann auf eine Temperatur unterhalb des Phaseninversions-Temperaturbereiches, üblicherweise Raumtemperatur, abgekühlt.
In einer ganz besonders bevorzugten Ausführung wird der Wirkstoff in Mitteln zum Färben keratinischer Fasern eingesetzt. Dabei kann der erfindungsgemäße Wirkstoff prinzipiell dem Färbemittel direkt zugegeben werden. Bevorzugt erfolgt das Aufbringen des Wirkstoffes auf die gefärbte keratinische Faser aber in einem getrennten Schritt entweder direkt im Anschluß an den eigentlichen Färbevorgang oder in getrennten Behandlungen, gegebenenfalls auch Tage oder Wochen nach dem Färbevorgang.
Der Begriff Färbevorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, Haar ein Färbemittel aufgebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. Kh. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.
Wie bereits zuvor erwähnt ist es im Rahmen der erfindungsgemäßen Lehre auch möglich, wenngleich weniger bevorzugt, den Wirkstoff direkt in die Färbe- oder Tönungsmittel einzuarbeiten.
Die Zusammensetzung des Färbe- oder Tönungsmittels unterliegt keinen prinzipiellen
Einschränkungen.
Als Farbstoff(vorprodukt)e können
• Oxidationsfarbstoffvorprodukte vom Entwickler- und Kuppler-Typ,
• natürliche und synthetische direktziehende Farbstoffe und
• Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phe- nylendiamin, p-Toluylendiamin, p-Aminophenol, o-Aminophenol, l-(2'-Hydroxyethyl)- 2,5-diaminobenzol, N,N-Bis-(2-hydroxy-ethyl)-p-phenylendiamin, 2-(2,5-Diamino- phenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy- 4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6- diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4- amino-phenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4- aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)- phenol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1 ,4-Bis-(4-aminophenyl)- diazacycloheptan, 1 ,3-Bis(N(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4- Amino-2-(2-hydroxyethoxy)-phenol, 1 , 10-Bis-(2,5-diaminophenyl)- 1 ,4,7, 10- tetraoxadecan sowie 4,5-Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-l-(2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, 1- (2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4- aminophenol, 2,4,5, 6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4- Hydroxy-2,5,6-triaminopyrimidin.
Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ werden in der Regel m-Phenylen- diaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m-Aminophe- nolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5- (3-Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hy- droxy-4-aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3- Trifluoroacetylamino-2-chlor-6-methylphenol, 5-Amino-4-chlor-2-methylphenol, 5- Amino-4-methoxy-2-methylphenol, 5-(2'-Hydroxyethyl)-amino-2-methylphenol, 3- (Diethylamino)-phenol, N-Cyclopentyl-3-aminophenol, l,3-Dihydroxy-5- (methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3- aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxy- ethanol, l,3-Bis-(2,4-diaminoρhenoxy)-proρan, l-Methoxy-2-amino-4-(2'-hydroxy- ethylamino)benzol, 1 ,3-Bis-(2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxy- ethylamino)-l-methylbenzol und l-Amino-3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-l-methylbenzol, Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Re- sorcinmonomethylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2- Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol, Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2-Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6- Dihydroxy-3 ,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3-Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin,
- Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-l-naphthol, 2-Hydroxy- methyl-1-naphthol, 2-Hydroxyethyl-l-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihy- droxynaphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxy- naphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxybenzomorpholin und 6-Amino-ben- zomorpholin, Chinoxalinderivate wie beispielsweise 6-Methyl- 1 ,2,3 ,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise l-Phenyl-3-methylpyrazol-5-on,
- Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxy- indol, Methylendioxybenzolderivate wie beispielsweise l-Hydroxy-3,4-methylendioxy- benzol, l-Amino-3,4-methylendioxybenzol und l-(2'-Hydroxyethyl)-amino-3,4-me- thylendioxybenzol,
Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7- Dihydroxynaphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3- hydroxypyridin, Resorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methyl- resorcin, 5-Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamme, Nitroammophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie l,4-Bis-(ß-hydroxyethyl)- amino-2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2' -carbonsäure, 6-Nitro- 1,2,3,4- tetrahydrochinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4- nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-l-hydroxy-4- nitrobenzol.
In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.
Bezüglich der in den erfindungsgemäßen Haarfärbe- und -tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe „Dermato- logy" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das „Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen. Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Sub- stituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N- Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxy- indolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxy- indolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6- dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6- dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4-Aminoindol.
Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5 ,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5 ,6-dihydroxy- indolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
Die h dolin- und hidol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
Bei der Verwendung von Farbstoff- Vorstufen vom Indolin- oder Indol-Typ kann es bevorzugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α-Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocar- bonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt. Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH- Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkalioder Erdalkalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl- propanol, 2-Amino-2-methyl-l,3-propandiol, 2-Amino-2-ethyl-l,3-propandiol, 2-Amino- 2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-l,3-propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω-Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Prozesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per- Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel, oder auch Enzyme die Elektronen aus geeigneten Entwicklerkomponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH- Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40 °C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorprodukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufgebracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachshampooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH- Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH- Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösungen als Oxidationsmittel bevorzugt sein.
Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispielsweise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden. Die erfindungsgemäße Wirkstoffkombination kann weiterhin in Produkten zur Reinigung von Oberflächen wie Glas, Porzellan, Kunststoff, Textilien, Leder, Lacken oder Holz verwendet werden. Besonders geeignet ist der Wirkstoff beispielsweise zur Verwendung in manuellen und maschinellen Geschirrspülmitteln, Glasreinigern, Bad- und Toilettenreinigern sowie Fußbodenreinigern und -Pflegemitteln.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzungen zur Reinigung und Pflege von Oberflächen.
Ebenfalls ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzungen zur Reinigung und Pflege der Haut oder keratinischer Fasern.
Beispiele
Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
1. Deo Roll-on
Bestandteil Chem. Bezeichnung LNCI - Bezeichnung Gew.% Methocel® E4M Premium Hydroxypropyl Hydroxypropyl 0,8 EP (DOW) Methylcellulose Methylcellulose Wasser 49,2 HYDAGEN® HCMF Chitosan Chitosan 0,2 (Cognis) Glycolsäure ( Fa. Merk ) Glycolsäure Glycolic acid 0,08 Wasser ad 100 Ethanol 25,0 Herbasol Extrakt Baldrian 0,5 CETIOL® HE (Cognis) Polyol-Fettsäure-Ester PEG -7 Glyceryl 3,0 Cocoate
. Deo - Pumpspray Bestandteil Chem. Bezeichnung INCI- Deklaration Gew.%o Ethanol 40,0 HYDAGEN® C.A.T. Triethylcitrat Triethyl Citrate 2,0 Wasser ad 100 Baldrianextrakt (mit CO2 3,0 extrahiert) Vitamin E 1,0 HYDAGEN® DCMF Chitosan Chitosan 0,1 Glykolsäure ( Fa. Merk ) Glycolic acid 0,04 pH - Wert 4,0 . After Shave Creme
Bestandteil Chem. Bezeichnung L CI- Deklaration Gew.%
EMULGADE® SE Gemisch von Glyceryl Stearate (and) 4,0
(Cognis) Partialglyceriden, Ceteareth-20 (and) Fettalkoholen, Ceteareth-12 (and) Wachsestern und Cetearyl Alcohol ethoxylierten (and) Cetyl Palmitate Fettalkoholen
LANETTE® O Cetylstearylalkohol Cetearyl Alcohol 1,0
(Cognis)
MYRITOL® 312 Capryl / Caprylic/Capric 3,0
(Cognis) Caprinsäuretriglycerid Triglyceride
CETIOL® PGL Hexyldecanol (and) 7,0
(Cognis) Hexyldecyl Laurate DC® 190 (Dow Dimethicone 0,5
Corning)
GLUADLN® AGP Partialhydrolysat aus Hydrolyzed Wheat 0,5
(Cognis) Weizen Protein
Allantoin 0,1
Panthenol (50%) 0,5
Wasser ad 100
Baldrianextrakt 0,5 ethanolisch
CETIOL® PGL Hexyldecanol (and) 1,0
(Cognis) Hexyldecyl Laurate
KOH, 20%ig Potasium Hydroxide 0,5
HYDAGEN® B Bisabolol 0,2
(Cognis)
Ethanol 10.0 Feuchtigkeitscreme mit Vitamin E
Bestandteil Chem. Bezeichnung INCI - Deklaration Gew.%
EMULGADE® PL Gemisch aus Cetearyl Glucoside 5,0
68/50 Alkylpolyglycosid und (and) Cetearyl Alcohol Cetylstearylalkohol
LANETTE® E Pulver Natriumcetylstearylsulfat Sodium Cetearyl Sulfate 0,25
(Cognis)
CUTΓNA® GMS Glycerinmonostearat Glyceryl Stearate 2,0
(Cognis)
MYRITOL® 312 Capryl / Caprylic/Capric 5,0
(Cognis) Caprinsäuretriglycerid Triglyceride
CETIOL® LC (Cognis) Capryl / Coco-Caprylate/Caprate 5,0 Caprinsäureester von gesättigten Fettalkoholen C 12 - C 18
EUTANOL® G 16 2-Hexyldecanol Hexyldecanol 2,0
(Cognis) (Guerbet-Alkohol)
COPHEROL® F 1300 RRR-(α)-Tocopherol Tocopherol 1,0
(Cognis)
Wacker Siliconoil AK Dimethicone 0,5
350 (Wacker)
Valeranon 0,5
Glycerin 86% 3,0
D-Panthenol USP 0,5
Wasser ad 100
Viskosität (mPas), Brook.RVF, 23°C, Sp.TE, 4 Upm, 150000 mit Helipath Reichhaltige Nachtpflege Bestandteil Chem. Bezeichnung INCI — Bezeichnung Gew.%
EMULGADE® PL 68/50 Gemisch aus Cetearyl Glucoside 3,0 Alkylpolyglycosid und (Cognis) (and) Cetearyl Alcohol Cetylstearylalkohol
LANETTE® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 4,0 CETIOL® J 600 (Cognis) Flüssiger Wachsester Oleyl Erucate 4,0 CETIOL® V (Cognis) Ölsäuredecylester Decyl Oleate 4,0
CETIOL® OE (Cognis) Di-n-Octyl Ether Dicaprylyl Ether 4,0 MYRITOL® 318 (Cognis) Capryl / Caprylic/Capric 3,5 Caprinsäuretriglycerid Triglyceride Baysilon® M 350 (Bayer) Dimethicone 0,5 COPHEROL® F 1300 RRR-(α)-Tocoρherol Tocopherol 1,0 (Cognis) Wasser ad 100 Glycerin 86 % 3,0 Carbopol® 981 2 %ig Carbomer 10,0 KOH 20 % 0,3 LIPOCUTLN® (Cognis) Aqua (and) Lecithin 5,0 (and) Cholesterol (and) Decetyl Phosphate
Valepotriat 0,2
Viskosität (mPas), Brookfield RVF, 23°C, Sp.TE, 4 Upm, mit Helipath 137500
Allzweckcreme
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.%
DEHYMULS® PGPH Polyglycerinpoly- 12- Polyglycerylpoly- 12 4,5
(Cognis) hydroxystearat hydroxystearate
MYRITOL® 331 (Cognis) Cocoglycerides 5,0
CETIOL® OE (Cognis) Di-n-octyl Ether Dicaprylyl Ether 5,0
Baldrianöl 1,0
Kamillenextrakt 1,0
Panthenol 0,5
Zinkstearat (Bärlocher) Zincstearate 1,0
Glycerin (86 %) 5,0
MgSO4 . 7 H2O 0,5
Wasser ad 100
Viskosität (mPas), Brookfield RVF, 23 °C, Spindel TE, 4 Upm, mit Helipath ca. 200000
Reichhaltige W/O Creme
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.%
DEHYMULS®PGPH Polyglycerinpoly- 12- Polyglycerylpoly- 12 3,0
(Cognis) hydroxystearat hydroxystearate
LAMEFORM® TGI Triglycerindiisostearat Polyglyceryl-3 3,0
(Cognis) Diisostearate
Bienenwachs 8100 (Fa. Bienenwachs Cera Alba 3,0
Kahl & Co.)
Zincum® N 29 (Fa. Zinkstearat Zinc Stearate 1,0
Bärlocher)
CETIOL® OE (Cognis) Di-n-octyl Ether Dicaprylyl Ether 3,0
CETIOL® LC (Cognis) Capryl / Caprinsäureester Coco 6,0 von gesättigten Caprylate/Caprate Fettalkoholen C 12 - C 18
MYRITOL® 312 (Cognis) Capryl / Caprylic/Capric 8,0 Caprinsäuretriglycerid Triglyceride
Almond Oil Mandelöl Almond Oil 8,0
Herbasol Extrakt Baldrian 1,0
COPHEROL® F 1300 RRR-( )-Tocoρherol Tocopherol 1,0
(Cognis)
Glycerin 5,0
MgSO4 x 7H2O 1,0
Wasser ad 100
Viskosität (mPas) / Brookfield, RVF, 23°C, Spindel TE, 4 Upm, mit Helipath 150000 . Natürlich tönende Tagescreme
Bestandteil Chem. Bezeichnung ESO - Bezeichnung Gew.%
EMULGADE® SE Gemisch von Partialglyceriden, Glyceryl Stearate (and) 6,0
(Cognis) Fettalkoholen, Wachsestern Ceteareth-20 (and) und ethoxylierten Ceteareth-12 (and) Fettalkoholen Cetearyl Alcohol (and) Cetyl Palmitate
CUTLNA® MD Gemisch aus Mono- und Glyceryl Stearate 2,0
(Cognis) Diglyceriden der Palmitin- und Stearinsäure
CETIOL® MM Myristylmyristat Myristyl Myristate 1,0
(Cognis)
MYRITOL® 312 Capryl/Caprinsäuretriglycerid Caprylic/Capric 5,0
(Cognis) Triglyceride
CETIOL® SN (Cognis) Ester einer verzweigten Cetearyl Isononanoate 5,0 Fettsäure mit gesättigten Fettalkoholen C 16 - C 18
CETIOL® OE (Cognis) Di-n-octyl Ether Dicaprylyl Ether 5,0
Grape Seed Oil Grape Seed Oil 0,5
Copherol® 1250 RRR -(α)-Tocopherylacetat Tocopheryl Acetate 1,0
(Cognis)
Baldrianextrakt (mit 2,0
Wasserdampf extrahiert)
Eusolex® 8020 (Merck) 4 Isopropyl 1,0 dibenzoylmethan
Vitamin A palmitat 0,2
Titandioxid 1,0
Talkum 1,0
Glycerin 86%ig 5,0
Wasser ad 100
KOH, 20%ig Potasium Hydroxide 0,3
Viskosität (mPas) / Brookfield, RVF, 23°C, Spindel TE, 4
Upm, mit Helipath 287500 pH - Wert 6 - 7
9. Lippenstift Bestandteil Chem. Bezeichnung INCI - Bezeichnung % MYRITOL® 318 (Cognis) Capryl / Caprylic/Capric 14,0 Caprinsäuretriglycerid Triglyceride MYRITOL® PC (Cognis) Propylenglycol-octanoat / Propylene Glycol 6,0 decanoat Dicaprylate /Dicaprate EUTANOL® G (Cognis) 2-Octyldodecanol Octyldodecanol 17,0 (Guerbet-Alkohol) Candelilla Wachs Candelilla cera 7,0 Carnauba Wachs Carnauba cera 5,5 Bienenwachs 8100 (Kahl) Cera alba 6,5 GENEROL® 122 N Raffiniertes Sojasterin Soybean (Glycine Soja) 2,5 (Cognis) Sterol MONOMULS® 90 L 12 Molekulardestilliertes Glyceryl Laurate 3,0 (Cognis) Laurinsäuremonoglycerid DEHYMULS® PGPH Polyglycerinpoly- 12- Polyglyceryl-2 4,0 (Cognis) hydroxystearat Dipolyhydroxystearate Castor oil Ricinus communis 18,0 Baldrianextrakt (aus der 1,0 Wurzel) Farbpigmente 2,0 HYDAGEN® CMF Chitosan Lösung Chitosan Glycolate 10,0 (Cognis) COPHEROL® F 1300 RRR-(α)-Tocopherol Tocopherol 2,0 (Cognis)
10. Kaltwellfixierung Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYTON® K Echtes Betain. Fettsäureamid- Cocamidopropyl 6,0 Derivat mit Betainstruktur (Cognis) Betaine (ca. 32%) NUTRILAN® H Eiweißpartialhydrolysat (ca. Hydrolyzed Collagen 5,0 (Cognis) 36%) LAMEQUAT® L Kanonisiertes Laurdimonium 3,0 (Cognis) Eiweißhydrolysat (ca. 36%) Hydroxypropyl Hydrolyzed Collagen Wasserstoffperoxid 7,5 35%ig Keltrol T Xanthan Gum 15,0 (l%Quellung) Wasser ad 100 Baldrianöl 1,0 PH - Wert 3,5 11. Kaltwellfixierung, emulsionsförmig Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® C 4046 Mischung aus Esterquat, Cetearyl Alcohol (and) 3,0 (r . . Fettalkohol und Dipalmitoylethyl ° nichtionischem Emulgator Hydroxyethylmomum Methosulfate (and) Ceteareth-20 Wasser ad 100 TURPINAL® SL (Cognis) Etidronic Acid 0.3 Hydrogen Peroxide (35%) Hydrogen Peroxide 7.5 PLANTACARE® 2000 C 8 - C 16 - Decyl Glucoside 1,0 UP (Cognis) Fettalkoholglycosid Baldrianextrakt (ganze 0,5 Pflanze) PH - Wert 2.7 Viskosität (mPas), Brookfield RVT, 23°C, Sp.TC, 10 Upm 3600
12. sprühbare Haarkur, leave-on Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% MONOMULS® 60-35 C Hydrierte Palm Hydrogenated Palm 1,24 (Cognis) Glyceride Glycerides EUMULGΓN® B I Polyoxyethylen- 12- Ceteareth-12 2,76 (Cognis) Cetylstearylalkohol CETIOL® S (Cognis) Kohlenwasserstoff Dioctylcyclohexane 9,0 CETIOL® OE (Cognis) Di-n-octyl Ether Dicaprylyl Ether 9,0 Dow Corning DC 345®, Cyclomethicone 2,0 (Dow Corning) Baldrianöl 2,0 Wasser ad 100 GLUADLN® WQ Kanonisiertes Laurdimonium 2,85 (Cognis) Weizenproteinhydrolysat Hydroxypropyl (ca. 31%) Hydrolyzed Wheat Protein PLANTACARE® 2000 C 8 - C 16 Decyl Glucoside 1,00 UP (Cognis) Fettalkoholglycosid (ca.
Viskosität mPas < 100
13. Leave-on Haarkur Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® F 75 Mischung aus Esterquat Distearoylethyl 0,7 (Cognis) und Fettalkohol Hydroxyethylmomum Methosulfate (and) Cetearyl Alcohol DEHYMULS® PGPH Polyglycerinpoly- 12- Polyglyceryl-2 1,0 (Cognis) hydroxystearat Dipolyhydroxystearate LANETTE® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 3,0 EUTANOL® G (Cognis) 2-Octyldodecanol Octyldodecanol 0,2 (Guerbet-Alkohol) CETIOL® J 600 (Cognis) Flüssiger Wachsester Oleyl Erucate 0,1 PLANTACARE® 1200 C 12 - C 16 Lauryl Glucoside 2,5 UP (Cognis) Fettalkoholglycosid (ca. 50%) Baldrianöl 1,0 Wasser ad 100 GLUADIN® W 40 Partialhydrolysat aus Hydrolyzed Wheat 2,0 (Cognis) Weizen (ca. 40%) Protein Panthenol (50%) 0,7 pH - Wert 4 Viskosität (mPas) / Brookfield, RVF 23° C, Spindel 5, 10 Upm 6800 4. Leave-on Haarkur
Bestandteil Chem. Bezeichnung LNCI - Bezeichnung Gew.%
Sepigel® 305 (Seppic) Polyacrylamide (and) 3,0 C13-14 Isoparaffin (and) Laureth-7
COMPERLAN® KD Kokosfettsäurediethanol- Cocamide DEA 2,0
(Cognis) amid
Baldrianöl 0,7
Wasser ad 100
PLANTACARE® 1200 C 12 - C 16 Lauryl Glucoside 0,5
UP (Cognis) Fettalkoholglycosid (ca. 50%)
CETIOL® J 600 (Cognis) Flüssiger Wachsester Oleyl Erucate 0,5
COPHEROL® 1250 RRR-( )- Tocopherol 0,2
(Cognis) Tocopherylacetat GLUADIN® ALMOND Partialhydrolysat aus Hydrolyzed Sweet 3,0 (Cognis) Mandeln (ca. 22%) Almond Protein GLUADIN® WQ Kationisiertes Laurdimonium 0,8 (Cognis) Weizenproteinhydrolysat Hydroxypropyl (ca. 31%) Hydrolyzed Wheat Protein Ethanol 10,0
pH - Wert 7
Viskosität (mPas)/ Brookfield RVF, 23°C, Spindel 4, 10 Upm 6700 5. Haarspülung Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® C 4046 Mischung aus Esterquat, Cetearyl Alcohol (and) 4,0 (Cognis) Fettalkohol und Dipalmitoylethyl nichtionischem Hydroxyethylmomum Emulgator Methosulfate (and) CetearetfώO CETIOL® SN (Cognis) Ester einer verzweigten Cetearyl Isononanoate 1,0 Fettsäure mit gesättigten Fettalkoholen C 16 - C 18 GLUADIN® ALMOND Partialhydrolysat aus Hydrolyzed Sweet 2,1 (Cognis) Mandeln (ca. 22%) Almond Protein Baldrianextrakt 1,5 Wasser ad 100
PH - Wert 3,5 Viskosität (mPas)/ Brookfield RVF, 23°C, Spindel 4, 10 Upm 4000
16. Haarkur
Bestandteil Chem. Bezeichnung LNCI - Bezeichnung Gew.% Dehyquart® L 80 (Cognis) Mischung aus Esterquat Dicocoylethyl 0,9 und Propylenglykol (ca. Hydroxyethylmomum 75%) Methosulfate (and) Propylene Glycol LANETTE® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 3,5 MONOMULS® 60-35 C Hydrierte Palm Glyceride Hydrogenated Palm 1,0 (Cognis) Glycerides EUMULGLN® B 2 Polyoxyethylen-20- Ceteareth-20 0,8 (Cognis) Cetylstearylalkohol COSMEDIA® GUAR Guarhydroxypropyl- Guar Hydroxypropyl 0,3 C 261 (Cognis) trimethyl-ammonium Trimonium Chloride Chlorid Baldrianextrakt (mit 2,0 Propylenglykol, Wasser extrahiert) Wasser ad 100 pH - Wert 3,5
17. Haarmaske Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® F 75 Mischling aus Esterquat Distearoylethyl 3,0 (Cognis) und Fettalkohol Hydroxyethylmonium Methosulfate (and) Cetearyl Alcohol LANETTE® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 4,0 CUTINA® GMS (Cognis) Glycerinmonostearat Glyceryl Stearate 1,0 EUMULGΓN® B 2 Polyoxyethylen-20- Ceteareth-20 1,5 (Cognis) Cetylstearylalkohol Baldrianöl 1,0 NUTRILAN® KERATIN Partialhydrolysat aus Hydrolyzed Keratin 5,0 W (Cognis) Keratin (ca. 20%) Panthenol 0.8 Aloe Vera Gel 2,0 Wasser ad 100
PH - Wert 3 - 4 18. Intensivhaarkur
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® L 80 Mischung aus Esterquat Dicocoylethyl 2,5 (Cognis) und Propylenglycol (ca. Hydroxyethylmonium 75%) Methosulfate (and) Propylene Glycol CUTLNA® GMS (Cognis) Glycerinmonostearat Glyceryl Stearate 0,5 LANETTE® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 4,0 HYDAGEN® HSP Trimethylolpropane- 0,5 (Cognis) Hydroxymethylstearate- Ether Herbasol Extrakt Baldrian 3,0 LAMESOFT® PO 65 Gemisch aus Coco-Glucoside (and) 2,5 (Cognis) Alkylpolyglycosid und Glyceryl Oleate Fettsäuremonoglycerid Wasser ad 100 pH - Wert 3,5 Viskosität (mPas), Brook.RVF, 23° C, Spindel 4, 10 Upm 4400
19. Haarspitzenfluid Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% HYDAGEN® HCMF Chitosan Pulver Chitosan 0,4 (Cognis) Glykolsäure ( Merck ) Glycolic acid 0,2 Glycerin 86% 55,0 Tylose® H 100.000 YP 0,4 (Hoechst)
Figure imgf000063_0001
GLUADIN® R (Cognis) Partialhydrolysat aus Hydrolyzed Rice Protein 4,0 Reis (ca. 27%) (and) Hydrolyzed Vegetable Protein Panthenol 50% 1,0 Ethanol 10,0 Wasser ad 100 pH - Wert 4,5
20. Leave-on Haarmilch
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% DEHYQUART® L 80 Mischung aus Dicocoylethyl 2,0 (Cognis) Avivagemittel und Hydroxyethylmomum Propylene Glycol (ca. Methosulfate (and) 75%) Propylene Glycol LAMESOFT® PO 65 Gemisch aus Coco Glucoside (and) 2,0 (Cognis) Alkylpolyglycosid und Glyceryl Oleate Fettsäuremonoglycerid Baldrianöl 0,5 Wasser ad 100 pH - Wert 3,5
21. Pumpspray-Festiger
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% HYDAGEN® HCMF Chitosan Pulver Chitosan 1,0 (Cognis) Glykolsäure ( Fa. Merk ) 0,4 Herbasol Extrakt Baldrian 0,5 PLANTACARE® 1200 C 12 - C 16 FettalkoLauryl Glucoside 0,2 UP (Cognis) holglycosid (ca. 50%>) GLUADLN® WQ Kationisiertes Laurdimonium 1,0 (Cognis) Weizenprotein- Hydroxypropyl Hydrolyzed hydrolysat Wheat Protein Ethanol 40,0 Wasser ad 100
PH -Wert 4,0
22. Schaumfestiger
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% HYDAGEN® HCMF Chitosan Pulver Chitosan 0,4 (Cognis) Glykolsäure (Merck) glycolic acid 0,2 Herbasol Extrakt Baldrian 1,0 DEHYQUART® A Cetyltrimethylammonium Cetrimonium Chloride 1,0 (Cognis) -chlorid (ca. 25%) GLUADIN® W 40 Partialhydrolysat aus Hydrolyzed Wheat 2,0 (Cognis) Weizen (ca. 40%) Protein Wasser ad 100 23. Styling-Wachs
Bestandteil Chem. Bezeichnung INCI - Bezeichnung % CUTL A® MD (Cognis) Gemisch aus Mono- und Glyceryl Stearate 5,0 Diglyceriden der Palmitin- und Stearinsäure EUMULGΓN® B I Polyoxyethylen- 12- Ceteareth-12 1,0 (Cognis) Cetylstearylalkohol CETIOL® V (Cognis) Ölsäuredecylester Decyl Oleate 5,0 Paraffin oil 10,0 HYDAGEN® HCMF Chitosan Pulver Chitosan 0,8 (Cognis) Glykolsäure (Merck) 0,4 Baldrianöl 1,0 Vitamin E 0,5 Wasser ad 100
24. 2-in-l Shampoo Bestandteil Chem: Bezeichnung INCI - Bezeichnung Gew.% TEXAPON® N 70 Natriumlaurylethersulfat Sodium Laureth Sulfate 12,0 (Cognis) mit 2 Mol EO (ca. 70%) DEHYTON® PK 45 Fettsäure-amid- Derivat mit Cocamidopropyl 2,5 (Cognis) Betain-struktur (ca. 45%) PLANTACARE® 818 UP C 8 - C 16 FettalkoholCoco Glucoside 3,0 (Cognis) glycosid (ca. 50%) LAMESOFT® PO 65 Coco-Glucoside (and) Coco-Glucoside (and) 3,0 (Cognis) Glyceryl Oleate Glyceryl Oleate COSMEDIA® GUAR C Guarhydroxypropyltri- Guar Hydroxypropyl 0,3 261 N (Cognis) methyl- ammonium Chlorid Trimom'um Chloride EUPERLAN® PK 1200 Flüssige Dispersion von Coco-Glucoside (and) 5,0 (Cognis) Perlglanzgebenden Glycol Distearate (and) Substanzen und Hilfsmittel Glycerin Natriumchlorid 1,2 Herbasol Extrakt Baldrian 0,3 Euxyl® K 400 (Schülke & 0,1 Mayr) Wasser ad 100 pH - Wert 5,5
Viskosität (mPas), Brookfield RFT, 23°C, Sp.4, 10 Upm 6300
25. Konditioniershampoo Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% TEXAPON® N 70 Natriumlaurylethersulfat Sodium Laureth Sulfate 10,0 (Cognis) mit 2 Mol EO (ca. 70%) PLANTACARE® 818 UP C 8 - C 16 Fettalkohol- Coco Glucoside 4,0 (Cognis) glycosid (ca. 50%) DEHYTON® K (Cognis) Fettsäure-amid- Derivat Cocamidopropyl Betaine 5,0 mit Betain-struktur (ca. 30%) LAMESOFT® PO 65 Coco-Glucoside (and) Coco Glucoside (and) 1,5 (Cognis) Glyceryl Oleate Glyceryl Oleate EUPERLAN® PK 3000 Flüssige Dispersion von Glycol Distearate (and) 3,2 AM (Cognis) perlglanzgebenden Laureth 4 (and) Substanzen und Cocamidopropyl Betaine Amphotensid Herbasol Extrakt Baldrian 1 ,5 Polymer JR® 400 Polyquaternium 10 0,3 (Amerchol) Natriumchlorid 1,5 Wasser ad 100 pH - Wert 5,5 Viskosität (mPas), Brookfield RVF, 23°C, Spindel 4, 10 Upm 8500
26. Babyshampoo, ohne Konservierungsmittel Bestandteil Chem. Bezeichnung INCI Bezeichnung Gew.% Wasser ad 100 Polymer® JR 400 Polyquaternium- 10 0,4 (Amerchol) TEXAPON® K 14 S Natriumlaurylmyristylether Sodium Myreth 11,0 Special 70% (Cognis) sulfat (ca. 70%) Sulfate DEHYTON® PK 45 Fettsäure-amid- Derivat Cocamidopropyl 5,0 (Cognis) mit Betain-struktur (ca. Betaine 45%) PLANTACARE® 818 UP C 8 - C 16 FettalkoholCoco Glucoside 5,0 (Cognis) glycosid (ca. 50%) LAMESOFT® PO 65 Coco-Glucoside (and) Coco-Glucoside (and) 5,0 (Cognis) Glyceryl Oleate Glyceryl Oleate Herbasol Extrakt Baldrian 5,0 Natriumchlorid 1,8
PH - Wert 5,5 Viskosität (mPas), Brookfield RVF, 23 °C, Spindel 4, 10 Upm 3900 7. Perlglänzendes Pflegeshampoo
Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.%
TEXAPON® NSO Natriumlaurylethersulfat Sodium Laureth Sulfate 29,0
(Cognis) (ca. 28%)
PLANTACARE® 818 UP C 8 - C 16 Fettalkohol- Coco Glucoside 5,0
(Cognis) glycosid (ca. 50%)
TEXAPON® SB 3 KC Sulfobernsteinsäurehalb- Disodium Laureth 3,8
(Cognis) ester auf Basis eines Sulfosuccinate Alkylpolyglycolethers, Di-Na-Salz (ca. 40%)
HYDAGEN® HSP Trimethylolpropane- 0,5
(Cognis) Hydroxymethylstearate- Ether
EUPERLAN® PK 3000 Flüssige Dispersion von Glycol Distearate (and) 3,0
AM (Cognis) perlglanzgebenden Laureth-4 (and) Substanzen und Cocamidopropyl Amphotensid Betaine
Herbasol Extrakt Baldrian 2,0
NaCl ad 100 Wasser
PH - Wert 5,5
Viskosität (mPas), Brook.RVF, 23° C, Spindel 4, 10 Upm 4100
8. Cremehaarfarbe Bestandteil Chem. Bezeichnung INCI - Bezeichnung Gew.% Lanette® O (Cognis) Cetylstearylalkohol Cetearyl Alcohol 17,0 CUTINA® AGS (Cognis) Ethylenglycoldistearat Glycol Distearate 1,5 EUMULGIN® B2 Polyoxyethylen-20- Ceteareth-20 3,0 (Cognis) Cetylstearylalkohol EUMULGLN® B1 Polyoxyethylen- 12- Ceteareth-12 3,0 (Cognis) Cetylstearylalkohol EUMULGIN® 05 Polyoxyethylen-5- Oleth-5 1,0 (Cognis) Oleylcetylalkohol Eumulgin® O10 (Cognis) Polyoxyethylen- 10- Oleth-10 1,0 Oleylcetylalkohol COMPERLAN® KD Kokosfettsäurediethanol- Cocamide DEA 5,0 (Cognis) amid Wasser ad 100 DEHYQUART® L 80 Mischung aus Esterquat Dicocoylethyl 1,5 (Cognis) und Propylene Glycol Hydroxyethylmonium Methosulfate (and) Propylene Glycol Propylenglycol 5,0 p-Aminophenol 0,35 p-Toluylendiamin 0,85 2-Methylresorcin 0,14 6-Methyl-m-aminophenol 0,42 Baldrianöl 1,0 Natriumsulfit 0,6 EDTA Tetrasodium EDTA 0,2 Ammoniak, 28% 5,0 29. Schaumbad Bestandteil Chem. Bezeichnung INCI Bezeichnung Gew.% TEXAPON® NSO Natriumlaurylethersulfat Sodium Laureth Sulfate 27.0 (ca. 28%) PLANTACARE® 818 UP C 8 - C 16 Fettalkohol- Coco Glucoside 9.0 glycosid (ca. 50%) DEHYTON® PK 45 Echtes Betain, Fettsäure- Cocamidopropyl 4.0 amid- Derivat mit Betaine Betain-struktur (ca. 45%) GLUADIN® W 40 Partialhydrolysat aus Hydrolyzed Wheat 4.0 Weizen Protein Herbasol Extrakt Baldrian 1,0 Natriumchlorid Sodium Chloride 0,3 Wasser ad 100
30. Reinigungsmilch Bestandteil Chem. Bezeichnung INCI Bezeichnung Gew.% EMULGADE® SE Gemisch von Partial- Glyceryl Stearate (and) 6,0 (Cognis) glyceriden, Fettalkoholen, Ceteareth20 (and) Wachsestern und ethoxy- Cetearethl2 (and) lierten Fettalkoholen Cetearyl Alcohol (and) Cetyl Palmitate EUTANOL® G (Cognis) 2-Octyldodecanol Octyldodecanol 7,0 (Guerbet-Alkohol) Baldrianöl 2,0
CETIOL® 868 (Cognis) Isooctylstearat Octyl Stearate 8,0 Glycerin 86 % 3,0 Carbopol® 981 Carbomer / 2 % 10,0 (Goodrich) Quellung NaOH 10 % 0,8 Wasser ad 100
Viskosität (mPas), Brookfield RVF, 23 °C, Spindel.5, 10 Upm 8.000
31. Allzweckreiniger
Bestandteil Chem. Bezeichnung Gew.% GLUCOPON® 215 CS UP Alkylpolyglycosid 3,5 (Cognis) DEHYDOL® O4 DEO Fettalkoholethoxylat 1,7 (Cognis) Citronensäure 9,6 Essigsäure 2,4 Herbasol Extrakt Baldrian 3,0 Wasser ad 100 pH-Wert 2,0-2,5
32. Handgeschirrspülmittel Bestandteil Chemische Bezeichnung Gew.% C 13/17Alkansulphonat Alkansulphonat C 13/17 ( ca. 60 %) 19,5 TEXAPON® N 70 (Cognis) Lauiylethersulphat, Na-Salz (ca. 9,0 70%) DEHYTON® K (Cognis) Fettsäureamidderivat mit 13,3 Betainstruktur ca 30%>D,L-3,3- GLUCOPON® 600 CS UP Alkylpolyglucosid ca. 50% 14,0 (Cognis) Ethanol 5,0 Herbasol Extrakt Baldrian 0,5 Wasser ad 100 pH - Wert 5 - 6
33. Weichspülmittel Bestandteil Chem. Bezeichnung Gew. % DEHYQUART® AU 56 Esterquat (Cognis, ca. 80%) 16,7 Calcium Chloride (25%) 0,5 Herbasol Extrakt Baldrian 0,65 Wasser ad 100
34. Fußbodenreiniger Bestandteil Chem. Bezeichnung Gew.% DEHYPON® LS 54 Fettalkoholalkoxylat 7,0 (Cognis) DEHYPON® LT 104 Fettalkoholalkoxylat, 2,0 (Cognis) endgruppenverschlossen Butyldiglycol 10,0 Na-Cumolsulfonat (40%) 3,0 Baldrianextrakt 0,3 Wasser ad 100 pH - Wert 6,5-7,5
35. Haarspülung
Eumulgin® B21 0,3
Cetyl/Stearylalkohol 3,3 Isopropylmyristat 0,5
Paraffmöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®A-CA2 2,0
Salcare®SC 963 1,0
Citronensäure 0,4
Gluadin® WQ4 2,0
Baldrianöl 0,5
Phenonip®5 0,8
Wasser ad 100
1 Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth-20) (COGNIS)
2 Trimethylhexadecylammoniumchlorid ca. 25% Aktivsubstanz (INCI-Bezeichnung: Cetrimonium Chloride) (COGNIS)
3 N,N,N-Trimethyl-2[(methyl-l-oxo-2-propenyl)oxy]-Ethanaminiumchlorid-Homo- polymer (50 % Aktivsubstanz; INCI-Bezeichnung: Polyquaternium-37 (and) Propylenglycol Dicaprilate Dicaprate (and) PPG-1 Trideceth-6) (ALLIED COLLOIDS)
4 Kationisiertes Weizenproteinhydrolysat ca. 31% Aktivsubstanz (INCI-Bezeichnung: Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein) (COGNIS)
5 Hydroxybenzoesäuremethylester-Hydroxybenzoesäureethylester-Hydroxybenzoe- säurepropylester-Hydroxybenzoesäurebutylester-Phenoxyethanol-Gemisch (ca. 28 % Aktivsubstanz; INCI-Bezeichnung: Phenoxyethanol, Methylparaben, Ethylpa- raben, Propylparaben, Butylparaben) (NIPA)
36. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffmöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®L 806 0,4
Cosmedia Guar® C 261 7 1,5
Promois® Milk-CAQ8 3,0
Baldrianöl 0,5 Citronensäure 0,4
Phenonip® 0,8
Wasser ad 100
6 Bis(cocoylethyl)-hydroxyethyl-methyl-ammonium-methosulfat (ca. 76 % Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Dicocoylethyl Hydroxyethylmonium Methosulfat, Propylene Glycol) (COGNIS)
•η Guarhydroxypropyltrimethylammonium Chlorid; ESO-Bezeichnung: Guar Hydroxypropyl Trimonium Chloride (COGNIS)
8 INCI-Bezeichnung: Cocodimonium Hydroxypropyl Hydrolyzed Casein (SEIWA KASEI)
37. Haarkur
Dehyquart® F759 4,0
Cetyl/Stearylalkohol 4,0
Paraffmöl perliquidum 15 cSt DAB 9 1,5
Dehyquart®A-CA 4,0
Salcare®SC 96 1,5
Amisafe-LMA-60®10 1,0
Gluadin®W 2011 3,0
Baldrianöl 0,5
Sericin 0,5
Fibroin 0,3
Pantolacton 0,3
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
9 Fettalkohole-Methyltriethanola moniummethylsulfatdialkylester-Gemisch (INCI- Bezeichnung: Distearoylethyl Hydroxyethylmonium Methosulfate, Cetearyl Alcohol) (COGNIS)
10 INCI-Bezeichnung Hydroxypropyl Arginine Lauryl/Myristyl EtherHCl (Ajinomoto) 11 Weizenproteinhydrolysat (20 % Aktivsubstanz in Wasser; INCI-Bezeichnung: Aqua (and) Hydrolized Wheat Protein (and) Sodium Benzoate (and) Phenoxyethanol (and) Methylparaben (and) Propylparaben) (COGNIS)
38. Haarkur
Dehyquart® L80 2,0
Cetyl/Stearylalkohol 6,0
Paraffmöl perliquidum 15 cSt DAB 9 2,0
Rewoquat®W 7512 2,0
Baldrianöl 0,5
Cosmedia Guar® C261 0,5
Sepigel®30513 3,5
Honeyquat® 5014 1,0
Gluadin® WQ 2,5
Gluadin®W 20 3,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
12 l-Methyl-2-nortalgalkyl-3-talgfettsäureamidoethylimidazolinium-methosulfat (ca. 75 % Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Quaternium-27, Propylene Glycol) (WITCO)
13 Copolymer aus Acrylamid und 2-Acrylamido-2-methylpropansulfonsäure (INCI- Bezeichnung: Polyacrylamide (and) C13-C14 Isoparaffin (and) Laureth-7) (SEPPIC)
14 INCI - Bezeichnung: Hydroxypropyltrimonium Honey (BROOKS)
39. Haarkur
Dehyquart® F75 0,3
Salcare®SC 96 5,0
Gluadin® WQ 1,5
Dow Corning®200 Fluid, 5 cSt.15 1,5
Herbasol Extrakt Baldrian 0,5 Gafquat®755N16 1,5
Biodocarb® 0,02
Parfümöl 0,25
Wasser ad 100
15 Polydimethylsiloxan (LNCI-Bezeichnung: Dimethicone) (DOW CORNING)
16 Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymer, mit Diethylsulfat quaterniert (19 % Aktivsubstanz in Wasser; INCI-Bezeichnung: Polyquaternium- 11) (GAF)
17 3-Iod-2-propinyl-n-butylcarbamat (LNCI-Bezeichnung: lodopropynyl Butylcarba- mate) (MLLKER & GRÜNLNG)
40. Haarkur
Sepigel®305 5,0
Dow Corning®Q2-522018 1,5
Promois® Milk Q19 3,0
Polymer P 1 entsprechend DE 3929173 0,6
Baldrianextrakt (mit CO2 extrahiert) 0,5
Genamin®DSAC20 0,3
Phenonip® 0,8
Parfümöl 0,25
Wasser ad 100
1 o Silicon-Glykol-Copolymer (LNCI-Bezeichnung: Dimethicone Copolyol) (DOW CORNING)
19 LNCI-Bezeichnung Hydroxypropyltrimonium Hydrolyzed Casein ca. 30% Aktivsubstanz (SEIWA KASEI)
20 Dimethyldistearylammoniumchlorid (LNCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
41. Shampoo
Texapon® NSO21 40,0 Dehyton® G22 6,0
Polymer JR 400®23 0,5
Cetiol® HE24 0,5
Ajidew® NL 5025 1,0
Gluadin® WQT26 2,5
Baldrianöl 0,5
Gluadin® W 20 0,5
Panthenol (50%) 0,3
Vitamin E 0,1
Vitamin H 0,1
Citronensäure 0,5
Natriumbenzoat 0,5
Parfüm 0,4
NaCl 0,5
Wasser ad 100
21 Natriumlaurylethersulfat ca. 28% Aktivsubstanz (INCI - Bezeichnung: Sodium Laureth Sulfate) (COGNIS)
22 INCI - Bezeichnung: Sodium Cocoamphoacetate ca. 30% Aktivsubstanz (COGNIS)
23 quaternierte Hydroxyethylcellulose (LNCI - - Bezeichnung: Polyquaternium- 10) (UNION CARBIDE)
24 Polyol-Fettsäure-Ester (LNCI - Bezeichnun g: PEG-7 Glyceryl Cocoate) (COGNIS)
25 Natrium-Salz der 2-Pyrrolidinon-5-carbonsäure (AJLNOMOTO) LNCI-Bezeichnung: Hydroxypropyltrimonium Hydrolyzed Wheal t Protein (COGNIS)
42. Shampoo
Texapon® NSO 43,0
Dehyton® K27 10,0
Plantacare® 1200 UP28 4,0
Euperlan®PK 300029 1,6 Arquad®31630 0,8
Polymer JR® 400 0,3
Gluadin® WQ 4,0
Glucamate®DOE 12031 0,5
Herbasol Extrakt Baldrian 0,5
Valeriansäure 0,3
Natriumchlorid 0,2
Wasser ad 100
27 LNCI - Bezeichnung: Cocamidopropyl Betaine ca. 30% Aktivsubstanz (COGNIS) 28 C 12 - C 16 Fettalkoholglycosid ca. 50% Aktivsubstanz (LNCI - Bezeichnung: Lauryl Glucoside) (COGNIS)
29 Flüssige Dispersion von perlglanzgebenden Substanzen und Amphotensid (ca. 62 % Aktivsubstanz; CTFA-Bezeichnung: Glycol Distearate (and) Glycerin (and) Laureth- 4 (and) Cocoamidopropyl Betaine) (COGNIS)
30 Tri-C ι g-alkylmethylammoniumchlorid (AKZO)
31 ethoxyliertes Methylglucosid-dioleat (CTFA-Bezeichnung: PEG-120 Methyl Glucose Dioleate) (AMERCHOL)
43. Shampoo
Texapon®N 7032 21,0 Plantacare® 1200 UP 8,0
Gluadin® WQ 1,5
Cutina® EGMS33 0,6
Honeyquat® 5034 2,0
Ajidew® NL 50 2,8
Antil® 14135 1,3
Herbasol Extrakt Baldrian 0,5
Natriumchlorid 0,2
Magnesiumhydroxid ad pH 4,5
Wasser ad 100 32 Natriumlaurylethersulfat mit 2 Mol EO ca. 70% Aktivsubstanz (LNCI - Bezeichnung: Sodium Laureth Sulfate) (COGNIS)
33 Ethylenglykolmonostearat (ca. 25-35%) Monoester, 60-70% Diester; LNCLBezeichnung: Glycol Stearate) (COGNIS)
34 LNCI-Bezeichnung: Hydroxypropyltrimonium Honey (ca. 50%> Aktivsubstanz) (BROOKS)
35 Polyoxyethylen-propylenglykoldioleat (40 % Aktivsubstanz; LNCI - Bezeichnung: Propylene Glycol (and) PEG-55 Propylene Glycol Oleate) (GOLDSCHMLDT)
44. Shampoo
Texapon® K 14 S36 50,0
Dehyton® K 10,0
Plantacare® 818 UP37 4,5
Polymer P 1 , entsprechend DE 39 29 973 0,6
Cutina® AGS38 2,0
D-Panthenol 0,5
Glucose 1,0
Herbasol Extrakt Baldrian 0,5
Salicylsäure 0,4
Natriumchlorid 0,5
Gluadin® WQ 2,0
Wasser ad 100
36 Natriumlaurylmyristylethersulfat ca 28% Aktivsubstanz (LNCI - Bezeichnung: Sodium Myreth Sulfate) (COGNIS)
37 C 8 - C 16 Fettalkoholglycosid ca. 50% Aktivsubstanz (LNCI - Bezeichnung: Coco Glucoside) (COGNIS)
38 Ethylenglykolstearat (ca. 5-15%o Monoester, 85-95%) Diester; LNCI - Bezeichnung: Glycol Distearate) (COGNIS)
45. Haarkur
Celquat® L 20039 0,6 Luviskol® K3040 0,2
D-Panthenol 0,5
Polymer P 1 , entsprechend DE 39 29 973 0,6
Dehyquart® A-CA41 1,0
Gluadin® W 4042 1,0
Natrosol® 250 HR43 1,1
Herbasol Extrakt Baldrian 0,5
Gluadin® WQ 2,0
Wasser ad 100
39 quatemiertes Cellulose-Derivat (95 %> Aktivsubstanz; CTFA-Bezeichnung: Polyquaternium-4) (DELFT NATIONAL)
40 Polyvinylpyrrolidon (95 % Aktivsubstanz; CTFA-Bezeichnung: PVP) (BASF) 41 Cetyltrimethylammoniumchlorid (LNCI - Bezeichnung: Cetrimonium Chloride) (COGNIS)
42 Partialhydrolysat aus Weizen ca. 40% Aktivsubstanz (LNCI - Bezeichnung: Hydrolyzed Wheat Gluten Hydrolyzed Wheat Protein) (COGNIS)
43 Hydroxyethylcellulose (AQUALON)
46. Färbecreme
Figure imgf000081_0001
Lanette® O44 4,0
Eumulgin® B 2 0,8
Cutina® KD 1645 2,0
Natriumsulfit 0,5
L(+)-Ascorbinsäure 0,5
Ammoniumsulfat 0,5
1,2-Propylenglykol 1,2
Polymer JR®400 0,3 p-Aminophenol 0,35 p-Toluylendiamin 0,85
2-Methylresorcin 0,14 6-Methyl-m-aminophenol 0,42
Cetiol® OE46 0,5
Baldrianöl 0,5
Honeyquat® 50 1,0
Ajidew® NL 50 1,2
Gluadin® WQ 1,0
Ammoniak 1,5
Wasser ad 100
44 Cetylstearylalkohol (LNCI - Bezeichnung: Cetearyl Alcohol) (COGNIS)
45 Selbstemulgierendes Gemisch aus Mono- / Diglyceriden höherer gesättigter Fettsäuren mit Kaliumstearat (LNCI - Bezeichnung: Glyceryl Stearate SE)
(COGNIS)
46 Di-n-octylether (LNCI - Bezeichnung: Dicaprylyl Ether) (COGNIS)
47. Entwicklerdispersion für Färbecreme 12.
Texapon® NSO 2,1
Wasserstoffperoxid (50%>ig) 12,0
Turpinal® SL47 1,7
Latekoll® D48 12,0
Baldrianöl 0,5
Gluadin® WQ 0,3
Salcare® SC 96 1,0
Wasser ad 100
47 l-Hydroxyethan-l,l-diphosphonsäure (60 % Aktivsubstanz; LNCI - Bezeichnung: Etidronic Acid) (COGNIS)
48 Acrylester-Methacrylsäure-Copolymer (25 % Aktivsubstanz) (BASF)
Die Färbecreme hatte einen pH- Wert von 10,0. Sie bewirkte eine intensive rote Tönung des Haares.
48. Tönungsshampoo Texaρon® N 70 14,0
Dehyton® K 10,0
Akypo® RLM 45 NV49 14,7
Plantacare® 1200 UP 4,0
Polymer P 1 , entsprechend DE 39 29 973 0,3
Cremophor® RH 4050 0,8
Farbstoff C.I. 12 719 0,02
Farbstoff C.I. 12 251 0,02
Farbstoff C.I. 12 250 0,04
Herbasol Extrakt Baldrian 0,5
Farbstoff C.I. 56 059 0,03
Konservierung 0,25
Parfümöl q.s.
Eutanol® G51 0,3
Gluadin® WQ 1,0
Honeyquat® 50 1,0
Salcare® SC 96 0,5
Wasser ad 100
49 Laurylalkohol+4,5 Ethylenoxid-essigsäure-Natriumsalz (20,4 %> Aktivsubstanz) (CHEM-Y)
50 Rizinus-Öl, hydriert + 45 Ethylenoxid (LNCI - Bezeichnung: PEG-40 Hydrogenated Castor Oil) (BASF)
51 2-Octyldodecanol (Guerbet-Alkohol) (LNCI - Bezeichnung: Octyldodecanol) (COGNIS)
Beim Waschen der Haare mit diesem Tönungs-Shampoo erhalten diese einen glänzenden, hellblonden Farbton.
49. Cremedauerwelle
Wellcreme
Plantacare® 810 UP52 5,0
Thioglykolsäure 8,0 Turpinal® SL 0,5
Ammoniak (25%>ig) 7,3
Ammoniumcarbonat 3,0
Cetyl/Stearyl-Alkohol 5,0
Guerbet-Alkohol 4,0
Herbasol Extrakt Baldrian 0,5
Salcare® SC 96 3,0
Gluadin® WQ 2,0
Parfümöl q.s.
Wasser ad 100
52 Cg-C^Q-Alkylglucosid mit Oligomerisationsgrad 1,6 (ca. 60% Aktivsubstanz) (COGNIS)
Fixierlösung
Plantacare® 810 UP 5,0 gehärtetes Rizinusöl 2,0
Kaliumbromat 3,5
Nitrilotriessigsäure 0,3
Zitronensäure 0,2
Herbasol Extrakt Baldrian 0,5
Merquat® 55053 0,5
Hydagen® HCMF54 0,5
Gluadin® WQ 0,5
Parfümöl q.s.
Wasser ad 100
53 Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer (8 %> Aktivsubstanz; LNCI - Bezeichnung: Polyquarternium 7) (MOBIL OLL)
54 Chitosan Pulver (LNCI - Bezeichnung: Chitosan) (COGNIS) 50. Gesichtswässer 50.1 50.2 50.3
Pluronic®L 6455 3,0 4,0 5,0
Herbasol Extrakt Baldrian 0,25 0,25 0,25
Dipropylenglycol 10,0 10,0 10,0
Emulgator TD9/PEG40HCO56 0,5 0,5 0,5
Duftstoff 0,2 0,2 0,2
Zn-Gluconat 0,05 0,07 0,10
Hydagen®CMF57 3,5 6,0 9,5
Wasser (NaOH bis pH = 5) ad 100 ad 100 ad 100
55 EO-PO-EO-Blockpolymer (EO=40 Gew.-%), OHZ = 39,1
56 Trideceth 9 und PEG40-hydrogenated castor oil
57 Lösung von Chitosan (ca. 1 Gew.-%) in einer 0,4 %>igen wäßrigen Glycolsäure-Lösung
51. Hydrogele 51.1 51.2
Pluronic®L64 3,0 3,0
Methocel®E4M58 0,3 0,20
Baldrianöl 0,25 0,25
Dipropylenglycol 10,0 10,0
Emulgator TD9 PEG40HCO 0,5 0,50
Riechstoff 0,2 0,20
Cu-Gluconat 0,05 0,10
Hydagen® CMF 3,5 8,0
Wasser (NaOH bis pH = 5) ad 100 ad 100
58 Methyl-hydroxypropyl-cellulose (DOW)
52. Hautemulsionen (O/W) Gluadin Almond 0,3 0,3
Emulgade®SE59 8,0 8,0
Cutina®MD-A60 1,5 1,5
Cetyl-/Stearylalkohol 1,5 1,5
Myritol®31861 10,0 10,0
2-Ethylhexyl-Stearat 5,0 5,0
Dimethylpolysiloxan (350 at) 1,0 1,0
Controx®KS62 0,05 0,05
PHB-Propylester 0,2 0,2
PHB-Methylester 0,2 0,2
Baldrianöl 0,5 0,25
1 ,2-Propylenglycol 3,0 3,0
Hydagen®CMF 3,0 8,0
Cu-Gluconat 0,04 0,10
Wasser (NaOH bis pH = 5) ad 100 Ad 100
59 Gemisch aus: Glyceryl Stearate, Ceteareth-20, Ceteareth-12, Cetearyl Alcohol und Cetylpalmitat (COGNIS)
60 Glyceryl Stearate (COGNIS)
61 Caprylic/Capric-Triglyceride (COGNIS)
62 Tocopherol und Hydrogenated Tallow Glycerides Citrate (COGNIS)

Claims

P a t e n t a n s p r tt c h e
1. Zusammensetzung zur Reinigung und Pflege von Oberflächen enthaltend Baldrianextrakt und Tenside und/oder Emulgatoren.
2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich Polymere enthalten sind.
3. Zusammensetzung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß zusätzlich eine Verbindung ausgewählt aus der Gruppe der Vitamine und deren Vorstufen enthalten ist.
4. Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Vitamin oder dessen Vorstufe Vitamin E und oder mindestens einem Vitamin der B-Gruppe ausgewählt ist.
5. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 4 zur Reinigung und Pflege von Oberflächen.
6. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 4 zur Reinigung und Pflege der Haut oder keratinischer Fasern.
7. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 4 zur Vermeidung von Spannungszuständen der Haut bei der Anwendung der Zusammensetzungen.
PCT/EP2004/011179 2003-10-15 2004-10-06 Mittel enthaltend baldrian WO2005037242A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04765860A EP1675564A1 (de) 2003-10-15 2004-10-06 Mittel enthaltend baldrian

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10348680.1 2003-10-15
DE10348680A DE10348680A1 (de) 2003-10-15 2003-10-15 Mittel enthaltend Baldrian

Publications (1)

Publication Number Publication Date
WO2005037242A1 true WO2005037242A1 (de) 2005-04-28

Family

ID=34428481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011179 WO2005037242A1 (de) 2003-10-15 2004-10-06 Mittel enthaltend baldrian

Country Status (3)

Country Link
EP (1) EP1675564A1 (de)
DE (1) DE10348680A1 (de)
WO (1) WO2005037242A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028571A1 (de) * 2005-09-07 2007-03-15 Henkel Kommanditgesellschaft Auf Aktien Hautpflegendes handgeschirrspülmittel
US8323633B2 (en) 2006-02-09 2012-12-04 Gojo Industries, Inc. Antiviral method
US8450378B2 (en) 2006-02-09 2013-05-28 Gojo Industries, Inc. Antiviral method
JP2013535251A (ja) * 2010-07-19 2013-09-12 ブラセルズ ベンチャーズ コーポレーション エーテルヒドロキシエチルセルロースを含む抗微生物医療用ジェル
EP2617407A3 (de) * 2011-12-22 2014-06-18 Henkel AG&Co. KGAA Mildes Gesichtsreinigungsmittel mit Haut pflegenden Eigenschaften
US9629361B2 (en) 2006-02-09 2017-04-25 Gojo Industries, Inc. Composition and method for pre-surgical skin disinfection
US10391071B2 (en) * 2015-04-28 2019-08-27 Cutech Srl Compositions comprising valerian extracts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133897A2 (de) * 2005-06-13 2006-12-21 Gerd-Rudolf Meilke Oberflächenbehandlungsmittel und verfahren zu seiner herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470885A (de) * 1964-09-11 1969-04-15 Huber Xaver Verfahren zur Herstellung eines Badezusatzes
EP0183436A2 (de) * 1984-11-14 1986-06-04 INTERNATIONAL FLAVORS &amp; FRAGRANCES INC. Verfahren, Zusammensetzungen und ihre Anwendungen gegen Stress
FR2730634A1 (fr) * 1995-02-17 1996-08-23 Khayat Hanna Produits cosmetiques a pouvoir calmant
US5578312A (en) * 1993-05-05 1996-11-26 Parrinello; Vincene M. Skin care system and method for improving moisture retention in skin
EP0988856A2 (de) * 1998-09-25 2000-03-29 Shiseido Company Limited Zusammensetzung zur Wiederherstellung und Stimulierung der Hautbarrierefunktion
WO2002047617A1 (de) * 2000-12-15 2002-06-20 Merz Pharma Gmbh & Co. Kgaa Vesikelbildende hautöle enthaltend w/o-emulgatoren mit einem hlb-wert von 2-6, herstellungsverfahren und verwendung
EP1293554A1 (de) * 2000-06-20 2003-03-19 Shiseido Co., Ltd. Stressabbauende duftstoffe sowie stressabbauende duftstoffzusammensetzungen enthaltend dieselben

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470885A (de) * 1964-09-11 1969-04-15 Huber Xaver Verfahren zur Herstellung eines Badezusatzes
EP0183436A2 (de) * 1984-11-14 1986-06-04 INTERNATIONAL FLAVORS &amp; FRAGRANCES INC. Verfahren, Zusammensetzungen und ihre Anwendungen gegen Stress
US5578312A (en) * 1993-05-05 1996-11-26 Parrinello; Vincene M. Skin care system and method for improving moisture retention in skin
FR2730634A1 (fr) * 1995-02-17 1996-08-23 Khayat Hanna Produits cosmetiques a pouvoir calmant
EP0988856A2 (de) * 1998-09-25 2000-03-29 Shiseido Company Limited Zusammensetzung zur Wiederherstellung und Stimulierung der Hautbarrierefunktion
EP1293554A1 (de) * 2000-06-20 2003-03-19 Shiseido Co., Ltd. Stressabbauende duftstoffe sowie stressabbauende duftstoffzusammensetzungen enthaltend dieselben
WO2002047617A1 (de) * 2000-12-15 2002-06-20 Merz Pharma Gmbh & Co. Kgaa Vesikelbildende hautöle enthaltend w/o-emulgatoren mit einem hlb-wert von 2-6, herstellungsverfahren und verwendung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028571A1 (de) * 2005-09-07 2007-03-15 Henkel Kommanditgesellschaft Auf Aktien Hautpflegendes handgeschirrspülmittel
US8323633B2 (en) 2006-02-09 2012-12-04 Gojo Industries, Inc. Antiviral method
US8450378B2 (en) 2006-02-09 2013-05-28 Gojo Industries, Inc. Antiviral method
US9629361B2 (en) 2006-02-09 2017-04-25 Gojo Industries, Inc. Composition and method for pre-surgical skin disinfection
US10130655B2 (en) 2006-02-09 2018-11-20 Gojo Industries, Inc. Composition and method for pre-surgical skin disinfection
JP2013535251A (ja) * 2010-07-19 2013-09-12 ブラセルズ ベンチャーズ コーポレーション エーテルヒドロキシエチルセルロースを含む抗微生物医療用ジェル
EP2617407A3 (de) * 2011-12-22 2014-06-18 Henkel AG&Co. KGAA Mildes Gesichtsreinigungsmittel mit Haut pflegenden Eigenschaften
US10391071B2 (en) * 2015-04-28 2019-08-27 Cutech Srl Compositions comprising valerian extracts

Also Published As

Publication number Publication date
DE10348680A1 (de) 2005-05-12
EP1675564A1 (de) 2006-07-05

Similar Documents

Publication Publication Date Title
US6858216B2 (en) Cosmetic agent containing 2-furanone derivatives
EP1326577B2 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1276451B2 (de) Verwendung von zuckertensiden und fettsäurepartialglyceriden
EP1326579B1 (de) Neue verwendung von kurzkettigen carbonsäuren
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
EP1179339B1 (de) Kosmetische Mittel enthaltend Malvaceae-Samenextrakte
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
WO2002030373A2 (de) Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen
EP1232739A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
EP1339379A2 (de) Neue verwendung von proteinhydrolysaten
EP1827354A1 (de) Haarfarbveränderndes shampoo
WO2002045665A1 (de) Neue verwendung von polyhydroxyverbindungen
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
EP1250906A2 (de) Mittel zur Behandlung der Haare und/oder der Haut
WO2005037242A1 (de) Mittel enthaltend baldrian
EP1513484B1 (de) Verwendung von ectoin und ectoinderivaten zur behandlung von haaren
EP1438007A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
WO2002045664A1 (de) Verwendung von phospholipiden in haarbehandlungsmitteln
EP1786382A1 (de) Extrakte als strukturanten
DE102004024511A1 (de) Verwendung von Polysulfiden zur Farbstabilisierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004765860

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004765860

Country of ref document: EP