WO2005036617A1 - Work single wafer processing system - Google Patents

Work single wafer processing system Download PDF

Info

Publication number
WO2005036617A1
WO2005036617A1 PCT/JP2003/013131 JP0313131W WO2005036617A1 WO 2005036617 A1 WO2005036617 A1 WO 2005036617A1 JP 0313131 W JP0313131 W JP 0313131W WO 2005036617 A1 WO2005036617 A1 WO 2005036617A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
controller
processing
station
sheet
Prior art date
Application number
PCT/JP2003/013131
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Nakazawa
Original Assignee
Fuji Research Institute Corporation
Hayashi, Takehide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Research Institute Corporation, Hayashi, Takehide filed Critical Fuji Research Institute Corporation
Priority to JP2004571956A priority Critical patent/JP4083748B2/en
Priority to PCT/JP2003/013131 priority patent/WO2005036617A1/en
Priority to AU2003271187A priority patent/AU2003271187A1/en
Publication of WO2005036617A1 publication Critical patent/WO2005036617A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to, for example, the supply and recovery of wafers to a manufacturing apparatus in a semiconductor light production process, which is usually performed using a cassette of 25 sheets or a FOUP (hermetic closure).
  • a single-wafer processing system in which the transfer tunnel of the clean form, ie, the equipment front end module (EFEM), is formed by clean tunnels, the specific processing procedure of the single-wafer processing system is described. It is to clarify.
  • the work is not limited to a semiconductor wafer, but includes a display substrate, a magnetic hard disk, and so on.
  • BACKGROUND ART Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 3 155475 1, handling of transfer of a wafer in a pre-processing step of a semiconductor manufacturing plant is
  • the first wafer to be processed first had to wait within the FOUP until the remaining 24 wafers were processed. That is, all wafers have to wait until the other wafers in the FOUP are processed, Work-in-progress products such as waiting wafers were generated in all semiconductor manufacturing equipment that spans more than 500 units and more than 500 steps.
  • the manufacturing equipment also needed a mechanism to load the wafers into the FOUP after taking it out of the FOUP or processing in the equipment.
  • Semiconductor wafers have shifted from 200 mm diameter to 300 mm diameter, and the production equipment corresponding to 300 mm has also been changed from the patch processing method of the 200 mm generation to the single wafer processing method.
  • the goal of the industry is to increase production efficiency through single-fed manufacturing equipment and transportation. Also in the case of display substrates such as liquid crystals, the trend is to increase their size.
  • the present invention is intended to clarify the specific processing procedure of the system in realizing single-wafer transfer by using a connection type EFEM in semiconductor manufacturing and the like. Disclosure of the Invention
  • the present invention relates to a single wafer processing system being represented by a semiconductor manufacturing process, and an example of the configuration thereof is disclosed. However, as described above, the present invention is also applicable to a liquid crystal device manufacturing process.
  • the present invention consists of the following five components.
  • the semiconductor wafer 2 is supplied into the bay in units of single wafers from the FOUP or cassette (hereinafter represented by FOUP and represented by 1) transferred by the inter-process transfer means, or the processing is completed.
  • Control the operation of each equipment and manufacturing device 50 to 54 that compose the single-wafer compa- rator 3 that continuously transports the wafer 2 in this clean tunnel 7, and the E-f-sheet compa It consists of a control system CS to control.
  • one bay is formed by A to D, and the EF EM in a linked form in which the EF EM group is linked is in contact with the outside of the EF EM in a linked form via the above-mentioned station 4.
  • the wafer 2 is transported and transferred as a single wafer in the EFEM in the connected form, and the wafer 2 is transported and transferred in FOUP units outside the EFEM in the connected form.
  • Wafer 4 in FOUP 1 is stacked or packed into FOUP 1 by robot 4 0 at station 4, which is the contact point between the wafer unit and the FOUP unit.
  • a package for temporarily storing the empty FOUP The Far Station 4 1 is incorporated, and the Snow Station 4 1 is connected to the small batch carrier 8.
  • the EFEM 6 is a wafer transfer robot 60, a code, an alphanumeric reading device 61, an automatic operation buffer cassette 62, a manual operation FOUP 6 3 and a FOUP opener 6 4 And the clean tunnel 7 is connected to the clean area. (Fig. 1 oblique line) '
  • the robot 60 in the EFEM 6 is provided with a holding unit 60 a that holds only the outer peripheral edge of the wafer 2, and is a single-wafer compensator 3, a manufacturing apparatus 50-54, and a notch cassette 62 And make a transition between FOUP 6 3 5.
  • the wafer number is read and the wafer is appropriate. It is most desirable to report to the control system CS and direct the wafer 2 to the position of the equipment stage 65 as determined by the manufacturing equipment 50-54.
  • the robot hand 60 b holds the outer edge of the Ueno 2 and the wafer 2 is transferred during the transfer operation of the robot hand 60 b. It has a mechanism to rotate, detect and stop V notch and Oriental flat, and take out a predetermined position and read the alphanumeric and bar code of wafer 2.
  • the clean tunnel 7 only needs to be able to form the minimum space necessary to transport the single wafer 2 by means of the single wafer compa- rator 3.
  • the interior of the clean tunnel 7 is maintained in an extremely clean state, for example, under a nitrogen atmosphere, and is almost completely isolated from the atmosphere outside the tunnel, that is, the atmosphere of the worker area.
  • the sheet-fed compensator 3 has a loop shape and is continuously driven by a compa- belt 30.
  • the block 3 2 on the LM guide rail 3 1 has a wafer 3 placed thereon at a fixed interval. 3 is attached. Since the develop 30 occurs after a certain period of time, the take-up mechanism 3 4 and the adjustment rail replacement point 3 5 for stretching the receive 30 on a part of the LM guide rail 3 1 (See Fig. 3 (a) (b)). In addition, when the cover 30 is extended, it is replaced with the adjustment LM guide added with the extended dimension, and the finger 33 of the single-wafer conveyor 3 has a minimum contact with the wafer 2 The holding portion 3 3 a for fixing is attached to hold only the outer peripheral edge of the wafer 2.
  • the sheet fan 3 is an exhaust fan for making the inside of the sheet conditioner 3 negative pressure so that dust generated by the drive does not affect the degree of clean in the clean tunnel 7. It is a cleaner equipped with 3 and 7 attached, connected to exhaust duct 3 8 and exhausting air through a gas filter.
  • the control system cs advances and manages the wafer 2 for each grouping parameter (type / process, lot No etc.) or cooperates with the bay controller CS 2 based on the instruction from the core business system.
  • the controller CS 1 Management of the status of each source (each connected device, FOUP, operator, etc.) and history management, as well as the single-wafer management controller CS 1 that performs recipe setting management at the single-wafer level,
  • the controller CS 1 is connected, and at the lower level, the above-mentioned single-wafer computer 3, the above-mentioned equipment of the station 4 or the EF EM 6, and the various processing units CS 0-CS 4 of the various processing units 50 are connected.
  • FIG. 1 is a plan view showing the relationship between the EF EM in the connection form and the peripheral equipment, FIG.
  • FIG. 2 is a cross-sectional view of the EF EM in the connection form
  • FIG. Fig. 4 (b) Longitudinal section of sheet-fed conveyor
  • Fig. 4 is a plan view of EF EM
  • Fig. 5 is a sectional view of EF EM.
  • Fig. 6 is a detailed cross-sectional view of a roller-type sheet-fed fabric complier and a sheet-fed robot.
  • Fig. 7 is a detailed plan view of the sheet-fed compa and robot
  • Fig. 8 is a detailed cross-sectional view of the sheet-fed conveyor and robot.
  • Fig. 9 is a side view of the handle rotation mechanism and reader of the rod pot
  • Fig. 10 is a plan view of the wafer rotation mechanism type I
  • Fig. 11 is a sectional view of the wafer rotation mechanism type I
  • Fig. 12 The figure is a plan view of the wafer rotation mechanism type ⁇
  • FIG. 13 is a cross-sectional view of the wafer rotation mechanism type ⁇ .
  • FIG. 14 is a cross-sectional view of a multistage compensator and a multistage single wafer robot for transporting and transferring a plurality of wafers.
  • Fig. 15 is a flow chart
  • Fig. 16 is inventory value calculation.
  • FIG. 17 is a system configuration diagram
  • FIGS. 18 and 22 are control flow diagrams.
  • BEST MODE FOR CARRYING OUT THE INVENTION In order to describe the present invention in detail, this will be described according to the attached drawings.
  • the single-wafer processing system is capable of transferring a wafer 2 as a work from a FOUP 1 transferred by a small batch transfer machine 8 as an inter-process transfer means.
  • the Station 4 is a station serving as an interface between the outside of the Bay and the inside of the Bay, and the robot 40, the nose fairing 4 1 and the FOUP opener 4 2 And have.
  • a downward laminar flow is formed from the top of the station 4 downward to maintain cleanliness.
  • Buffer station 41 is used when the timing of single wafer transfer of wafer 2 in FOUP 1 transferred by small patch transfer machine 8 does not match the processing time of manufacturing apparatus 50-54. Once, it is a storage for FOUP 1.
  • Control system CS instructs FOUP 1 to be transferred from buffer station 4 to load station 4 3 when it becomes convenient for manufacturing equipment 5 0-5 4 It is transported to the EF EM 6 by the leaf compensator 3.
  • the EF EM 6 usually belongs to the class 1 super clean area and class 1 0 0 0 degree area of the clean degree class, and it is a class 1 class.
  • the transfer robot 60, the knocker cassette 62 and the manufacturing equipment storage 65 have approximately class 1 as shown in Fig.4 and Fig.5.
  • the area of 0 0 0 is equipped with FOUP 6 3 and FOUP 4 6.
  • the buffer / power set 62 is used to temporarily place wafers 2 loaded on a single wafer processing robot 3 by means of a robot 60.
  • the wafer 2 is directly attached to a manufacturing apparatus stage 65. It is not used when delivering.
  • the FOUP 6 3 is used by the operator to manually transport the FOUP in case of trouble in the transport system and for special emergency handling in the semiconductor manufacturing equipment, and should be used during normal automatic operation. There is no.
  • the normal EF EMs are all processed in FOUP units, and the EF EM 6 of the present invention differs from the normal EF EMs in that it corresponds to both the knocker cassette 62 and the FOUP 6 3.
  • About clean tunnel 7 Clean tunnel 7 is illustrated in Figures 1 and 2. It is provided along the single-wafer conveyor 3 and so as to cover the upper side thereof.
  • a HEPA filter 72 is mounted on the top of the clean tunnel 7 as shown in FIG. 2 so as to supply clean air into the tunnel 7. .
  • the side of the clean tunnel 7 is partitioned by a predetermined member, for example, a synthetic resin sheet, etc., except for the area connected to the above-mentioned station 4 and EF EM 6. There is.
  • a predetermined member for example, a synthetic resin sheet, etc.
  • the EFEM 6 and the station 4 are connected to the clean tunnel 7 to form a clean degree class 1 area, and this cleanness class including the equipment stage 65 is In the area 1 all wafers 2 are carried individually, and except in the case of an emergency operation, wafer 2 is refilled into FOUP 1 only via station 4 Ru.
  • the single-wafer compensator 3 is a continuous traveling type driven by an endless loop-shaped competitor 30.
  • This sheet-fed computer 3 is not limited to this continuous running type. Any configuration may be used.
  • the drive roller 30a, the pallet 30b driven by the drive roller 30a, and the pallet 30b in the inside of the conveyor body 36 having a substantially mouth-shaped cross section It may be equipped with a lift type stopper 30 c that stops pallet 30 b at a predetermined position.
  • the pallets 30 b are fixed at fixed intervals to the hangers 33 on which the wafers 2 are loaded, and the base end of the fan 33 is formed on the upper surface of the conveyor body 3 6. It can move along the gap 3 6 a.
  • Attached to the above-mentioned finger 33 is a holding portion 33 a for minimizing contact with the wafer 2, and holds only the outer peripheral edge of the wafer 2.
  • Ueno 2 in FOUP 1 transported by small-batch transport machine 8 is fed to sheet-fed carrier 3 by robot 40.
  • Wafer 2 which is stored in sheet-fed copier 3, is not supplied directly to manufacturing apparatus stage 6 5 by robot 60 in EFEM 6 in a predetermined manufacturing apparatus 50-54.
  • Ffakase' DOO 6 2 c manufacturing device 5 0 which is temporarily placed - 5 4 wafer 2 processing is finished in the robot 6 0, is placed on the sheet Konpeya 3 next device 5 0 - is transported to 5 4 Ru.
  • FIGS. 7 and 8 the operational relationship in which the wafer 2 transported by the single-wafer carrier 3 is supplied to and recovered from the manufacturing apparatus 50-54 will be described.
  • the sheet-fed compensator 3 is a continuously traveling type compensator driven in the direction of A.
  • the robot hand 60 b is moved when the wafer 2 placed on the four holding parts 33 a of the sheeter 3 3 in the sheet-fed machine 3 is placed in front of a predetermined manufacturing device 50-54. Go in the direction of A. While synchronized with the traveling speed of the sheet-fed compara- tor 3, go under the finger 3 3 and move in the direction B of the robot node 6 b and the direction 3 of the finger 3 3.
  • the wafer 2 is placed on the four holding parts 60 a on the robot node 60 b by raising the robot main body 60 in the direction of C at an equal speed.
  • the robot node 60 b on which the wafer 2 is placed on the holding unit 60 a is A of
  • the robot hand 60b moves downward in the direction D while moving in the direction B along with the finger 33 on the finger 33 moving in the direction, the movement of A and B is equalized.
  • Transfer by means of Positioning of V-notch or Oriental flat on wafer 2 and reading of percode and alphanumeric characters imprinted on wafer 2 is a rotary wafer positioning-only device conventionally installed near a robot (Liner 1)
  • the robot hand can be equipped with a rotation mechanism to eliminate the transfer and shorten the operation time.
  • the robot mounted on the robot 60 can be used either when picking up the wafer 2 from the single wafer processing 3 or when placing it on the single wafer processing 3 after the processing of the manufacturing apparatus 5 0-5 4 is completed.
  • Ha-Annpa reader 6 1 (FIG. 7) can read alphanumeric characters and barcodes imprinted on wafer 2.
  • transfer of wafer 2 has a small area in contact with wafer 2 and is a method in which chipping of wafer 2 is the least, and the holding portion 3 3 a of single wafer compensator 3 3 and the holding portion of robot node 6 0 a Through Ueno, 2 is done by holding the outer rim.
  • the method of stopping the speaker 33 of the competitor may be used in front of the apparatus stage 65, as shown in FIG. 6 described above.
  • the fanger 33 is attached to the pallet 30 b and travels with the drive wheel 30 a.
  • pallet 30 b is stopped by the rise of lift type stopper 3 0 c.
  • the robot hand 6 0 b gets under the door 2 and lifts it to scoop the wafer 2.
  • the lift type stand 3 0 c descends, it is removed.
  • the toe 30 b travels again by the action of the drive roller 3 0 a.
  • the same method can be achieved by stopping the pallet with an actuator with an accommodation function and using a stopper type stopper.
  • the manufacturing equipment 50, 51, 52, 53 and 54 In front of the manufacturing equipment 50, 51, 52, 53 and 54, read the wafer 2's par code and alphanumeric characters, and when contacting the control system, rotate the wafer 2 on the robot hand 60 b. Install the mechanism to
  • FIG. 9 shows the rotation mechanism of the robot 60, the wafer pick-up reader 61 and the robot hand 60 b.
  • the pot 60 is a type of rotating the rotating hand 60 c of the tip of the hand 60 b while holding the wafer 2.
  • Figures 1 0 and 1 1 show the wafer rotation types on the robot node 60 b, and although there are two types, they have the same function.
  • Fig.10 and Fig.1 1 type I is moving robot robot 6 0 b in synchronization with the speed of finger 3 3 of traveling single wafer compa 3 and robot robot 6 0 b
  • the outer peripheral edge of wafer 2 is received by the inclined surface of rotating drive roller 60 d and free roller (60 e, 60 f), and rotating drive roller 60 d is moved in the direction of E while rotating.
  • Wafer 2 is sandwiched between the vertical part of the free roller (60e, 60f) and the vertical part of the rotary drive roller 60d.
  • Fig.12 and Fig.13 ⁇ is the outer peripheral edge of wafer 2 by four free rollers (60 g to 60 j), and the rotational drive roller 60 d Move the wafer in the direction of E and sandwich the wafer 2.
  • the roller 1 60 d, 60 e to 60 j
  • the wafer 2 is rotated while climbing the inclined portion of the roller. Friction can be prevented.
  • the transfer dimensional error between the compander 3 3 and robot roller (60 d, 60 e to 60 j) is within 1 and 3 mm
  • the rotational drive roller (40 d) The stroke in the E direction is also small, and the positioning time of the V notch etc. of wafer 2 and the reading time of alphanumeric characters are within 3 seconds. Since the wafer positioning and reading using the conventional positioning-only linerr requires 2 seconds or more, the processing time reduction effect is extremely large.
  • the chuck mechanism enables high-speed rotation of the wafer 2.
  • this chucking mechanism enables wafer 2 to be positioned even if the robot hand is moving.
  • Fig. 14 shows the specifications for cases in which the transfer frequency is high and it is sufficient to simply transfer the wafer, and when it is not possible to transfer the wafer 2 by one unit, the finger 3 3 and robot arm 6 0 Multiple b can be transported.
  • Wafer 2 is placed on the 2nd and 3rd stages of wafer 2 simultaneously on carrier finger 33 with multistage holding parts in the vertical direction and transferred, and also when transferring, robot hand 60 b is vertically multistaged To transfer This increases the transport capacity. Double-stage transfer and transfer can be achieved by setting the multistage compensator 33 and the multistage robot node 60 b on which the wafer 2 is loaded to two stages, and three-stage system improves the capacity by three times.
  • the EFEMs connect 10 or more semiconductor or liquid crystal manufacturing apparatuses, so the sheet-fed comparator 3 needs to have a carrying capacity of 500 to 100 sheets per hour.
  • the sheet-fed compara- tor 3 of the present invention is capable of transporting 120 2 sheets per hour at a finger pitch of 500 mm and a compara- s speed of 10 m / min, and the capacity is further improved. You can also
  • Ueno 2 that has been sent to Station 4 from EF EM 6 can set the timing for packing Wafer 2 into FOUP 1 at Station 4 at any small batch. For example, when a predetermined time has passed and the number of sheets reached, the lid of FOUP 1 is automatically closed and the small patch conveyor 9 automatically sends it to EFEM of another connection form or the like. Even if there is no wafer processing waiting time in single-sheet transfer within the EFEM in the connection mode, if the batch transfer is performed between the EFEMs in the connection mode, the effect of single-wafer transfer will be reduced, so small patches will be made Set the required time and the number of sheets, and carry out small increments.
  • the control system CS groups the wafer 2 into group parameters (type / process, lot, etc.) in cooperation with the bay controller CS 2 based on the instructions from the core business system such as ERP (Entprise R source P 1 anning).
  • ERP Entprise R source P 1 anning
  • a sheet processing controller that performs progress management for each No, etc., manages status of resources (each connected device, FOUP, operator, etc.), manages history, and manages recipe settings at the wafer level.
  • the above-mentioned single-wafer processing controller CS 1 is connected to the upper level, and the lower-level single-sheet processing controller 3, the station 4 and the EF EM 6 devices and the on-line control controllers 50 to 54 are connected to the lower level.
  • the crawlers CS3 to CS6 connected, the wafer 2 flows smoothly through the bay by controlling the proper injection of the wafer 2 and the collection of wafer 2 to the station 4.
  • a station controller C S 3 that performs status management of the above-mentioned station 4, history management, material transfer instruction for station loading and unloading, evacuation processing, etc.
  • EF EM controller and CS 5 that perform status management of the EF EM 6, history management, and material transport instructions for loading and unloading of the EF EM, It has equipment controller CS6 that performs status control and history management of equipment 50 to 54, on-line control by HSMSSEMIE 37 and GEM SEMIE 30.
  • a CPU central processing unit
  • a ROM read only memory
  • an RAM read / write memory
  • an interface between each controller for example, are used as serial interfaces, respectively.
  • a clock pulse generation circuit for generating a reference clock pulse, a frequency divider, and the like are provided, and each CPU executes various processing in accordance with programs stored in the ROM.
  • the control system CS configured in this way, for example, when it is applied to the bay of the patterning step in the manufacturing process of the semiconductor, for example, the transfer between the bay of the other processes is generally controlled.
  • a transport system controller CS 8 is connected to the system CS, and an inter-process transport machine, a station, a sheet-fed transport machine, an EF EM, etc. are connected via the transport system controller CS 8.
  • Control system with control system CS Normal processing
  • control system CS Next, an example of control by the control system CS will be described.
  • the bay controller CS 2 When the bay controller CS 2 receives the arrival signal of the FOUP station from the station controller CS 3 (step 1), it updates the FOUP status and requests wafer information acquisition for a single wafer. Send to controller CS 1 (step 2).
  • the bay controller CS 2 adds and updates the wafer information etc. received from the single wafer management controller CS 1 (step 3), and if the scheduling execution conditions are met, the scheduling process is executed to the scheduler server 7. Send a request and receive the result (Step 4, Step 5).
  • the bay controller CS 2 executes the closing instruction (step 6), and the station controller CS 3 moves the FOUP in which the corresponding wafer exists to the closing stage, and the wafer is transported by the single wafer conveyor. It is transferred to 3.
  • the Bayer C S 2 assigns a virtual load port.
  • Step 7 Processing start received from equipment controller CS 6 (Step 7)
  • Bay controller CS 2 updates the wafer status and equipment status, and requests processing start transaction request to single wafer management controller CS 1 Send (Step 8).
  • the bay controller CS 2 When receiving the processing end notification from the device controller CS 6 (Step 9), the bay controller CS 2 updates the wafer and device status, and sends a dispatch start request to the scheduler dispatcher CS 7 and receives the result Perform (Step 10, Step 1 1), and send a processing completion transaction request to the single-wafer management controller CS 1 (Step 1 2).
  • the Bayer controller CS 2 executes the wafer status update and recovery check, and then executes the transfer instruction (step 1 3). Thereafter, the wafer on which the next-step processing exists is transferred to the next-step processing device, and the flow of wafer loading and unloading is repeated.
  • the bay controller C S 2 receives the process end notification from the apparatus controller C S 6 (step 1 0 1).
  • the Bayer controller CS 2 updates the wafer and equipment status, sends a dispatch activation request to the scheduler / dispatcher CS 7 (step 1 0 2) and receives the result (step 1 0 3), Send a processing end transaction request (steps 1 0 4) to the single-wafer management controller CS 1.
  • the bay controller CS 2 updates the device status, and the single-wafer management controller Send a device state change request to CS 1 (step 1 0 6).
  • the bay controller CS2 checks whether the corresponding wafer can be processed by another device in its own bay. If there is a device that can be processed, determine the next device according to the next device decision logic. If there are no other devices that can be processed in the own bay, execute collection instructions to the station (steps 10 7 to 10 9). In this case, the stopped device Prepare a separate FOUP.
  • the beacon controller C S 2 After receiving the collection completion notice (step 1 1 0), the beacon controller C S 2 updates the wafer status and sends a collection completion notice to the single wafer management controller 1 (step 1 1 1). Also, execute the transfer instruction to the alternate Bay (step 1 1 2).
  • the manufacturing apparatuses 5 0-5 4 in the above-mentioned Bay are arranged in a flow-shop type, even if one manufacturing apparatus breaks down, they can be transported to another Bay for further processing. Can avoid getting stuck.
  • the other B a y may be a system similar to the present invention, or may be a system that processes in units of F O U U P. Efficient collection of wafers
  • Fig. 20 (A) when the delay of the wafer to be collected is automatically recognized and the next bay transfer of the recovery incomplete FOUP is instructed. It explains based on (B).
  • the collected wafer is automatically transferred to the next B a V automatically. That is, as shown in FIG. 20 (A), when the apparatus is on-line, automatic stop of the apparatus is automatically recognized and conveyance is started, and the bay controller CS 2 instructs the wafer collection (step 20 1) After that, when the device with recovered wafers stops, Bay Controller CS 2 receives a device shutdown report from Device Controller CS 6 (Step 202).
  • the Bay Controller CS 2 then updates the device status and Report the equipment stop (Step 2 0 3) to the management controller CS 1, send a partial collection completion report of the wafers to be collected (Step 2 0 4), and execute the next Bay transfer instruction (Step 2 0 5) Do.
  • the Bayer controller CS 2 instructs the wafer collection (step 2 0 6) After that, monitor the collection interval by timer.
  • a time interval occurs in the recovery interval
  • a partial recovery completion report of the wafer to be recovered is sent to the single wafer management controller c S 1 (step 2 0 7), and the transfer instruction to the next Bay is executed ( Do step 2 0 8).
  • This process adapts the processing of each leaf to the processing procedure of FOUP, which is the current standard.
  • the EF EM controller CS 5 executes assignment of virtual load port and virtual FOUP to the equipment controller CS 6 ( Step 3 0 2).
  • Virtual load port, equipment controller with virtual FOUP assigned CS 6 is also related to operation without actual FOUP. However, it is possible to send event reports related to Carrier Management System (CMS) to the banner controller CS2.
  • CMS Carrier Management System
  • the EF EM controller CS 5 performs FOUP related operation instruction communication and the like with the device controller CS 6 (step 3 0 3), and further receives a wafer transfer instruction (step 3 0) Four ).
  • the processed wafers are stored in each EF EM 6 wafer cassette 62 until the processing of one group of wafers is completed, and when the final processing of each wafer is completed, all at once.
  • the procedure for processing each controller and the procedure for communication between controllers when the processed wafers are placed on the single-wafer conveyor 3 and collected in the vacant FOUP of the station will be described based on FIG.
  • E F EM controller C S 5 instructs the robot 60 to transfer the processed wafer to the buffer power set 62 (step 401).
  • Each EF EM controller CS 5 sends a process end notification to the bay controller CS 2 when all wafers have been processed (step 402), and the bay controller CS 2 Update the wafer and device status, and send a single transaction control request (step 402) to the single wafer management controller CS1.
  • Step 04 receives the recovery instruction from Bayer controller CS 2 and executes the recovery instruction.
  • the Bay Controller CS2 receiving the collection completion notification updates the wafer status, sends the single wafer management controller 1 the collection completion notification, and sends it to the next Bay. Execute the transport instruction of.
  • the single wafer processing system is represented to the semiconductor manufacturing process and the example of composition was indicated, it is a system applicable also to other work manufacturing processes, for example, a liquid crystal manufacturing process etc. It can be applied to the sixth generation (150 0 mm x 180 mm) where the size of the substrate has been increased, and further to the seventh generation (1 800 mm x 20 0 O mm) above it. System.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A work single wafer processing system comprising a station (4) for feeding a single wafer into a BAY or repacking it to an FOUP, an EFEM (6) fixed to a semiconductor production system, a clean tunnel (7) sharing a clean region between the EFEM and the station, a single wafer conveyor (3) conveying a wafer in the clean tunnel, and a control system CS for controlling the single wafer conveyor (3), the station (4), the EFEM (6) and the production systems (50-54), in which alternative BAY processing, high efficiency wafer collection processing, imaginary load port processing and simultaneous wafer collection processing can be controlled in addition to normal processing and a concrete processing procedure is defined.

Description

ワーク枚葉処理システム Work piece sheet processing system
技術分野 この発明は、 例えば半導体明製造工程において、 製造装置へのゥェ ハの供給回収を、 通常 2 5枚入り田のカセッ トゃ F O U P (密閉ボッ タス) を使用して行われていたものを、 ク リーン ト ンネルによって 連結形態の移載設備、 即ち、 E F E M (Equipment Front End Module) を構成し、 ウェハを枚葉搬送移載する枚葉処理システムに おいて、 その具体的な処理手順を明確化するものである。 TECHNICAL FIELD The present invention relates to, for example, the supply and recovery of wafers to a manufacturing apparatus in a semiconductor light production process, which is usually performed using a cassette of 25 sheets or a FOUP (hermetic closure). In the single-wafer processing system, in which the transfer tunnel of the clean form, ie, the equipment front end module (EFEM), is formed by clean tunnels, the specific processing procedure of the single-wafer processing system is described. It is to clarify.
このシステムにおいては、 ワーク (加工対象物) は半導体ウェハ に限られるものではなく 、 ディスプレイ用基板、 磁気ハー ドデイス ク等も含まれる。 背景技術 従来から、例えば特開平 3 — 1 5 4 7 5 1 に開示されているよ う に、半導体製造工場前処理工程におけるウェハの搬送の取り扱いは In this system, the work (workpiece) is not limited to a semiconductor wafer, but includes a display substrate, a magnetic hard disk, and so on. BACKGROUND ART Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 3 155475 1, handling of transfer of a wafer in a pre-processing step of a semiconductor manufacturing plant is
2 5枚入りのカセッ トゃ 011? (密閉ボックス) にウェハを入れ て、 製造装置に供給、 回収を行っていた。 2 5 pieces of cassette 011? The wafers were placed in a (hermetically sealed box) and supplied to and recovered from the manufacturing equipment.
このために F O U Pに入った 2 5枚のウェハの内、最初に処理が 終了した 1枚目は、 残り の 24枚が処理されるまで、 F O U P内な どで待たねばならなかった。 即ち、 全てのウェハは F O U P内の他 のウェハが処理されるまで待ち続けなければならなく なり、 1 0 0 台以上、 5 0 0ステ ップ以上にも及ぶ半導体の全製造装置に処理待 ちウェハという仕掛品が発生していた。 To this end, of the 25 wafers in the FOUP, the first wafer to be processed first had to wait within the FOUP until the remaining 24 wafers were processed. That is, all wafers have to wait until the other wafers in the FOUP are processed, Work-in-progress products such as waiting wafers were generated in all semiconductor manufacturing equipment that spans more than 500 units and more than 500 steps.
また製造装置には F OU Pからウェハを取り 出したり、装置での 処理の後、 再ぴ F O U Pにウェハを入れる機構が必要であった。  The manufacturing equipment also needed a mechanism to load the wafers into the FOUP after taking it out of the FOUP or processing in the equipment.
また、 カセッ トゃ F OU Pを自動搬送、 自動保管するには、 これ らの寸法、重量に合わせた大きいスペース と高価な物流システムが 必要であった。  In addition, to automatically transport and store cassettes and FOUPs, it was necessary to have a large space and an expensive logistics system according to these dimensions and weights.
一方、 生産効率向上のためにウェハ寸法は大口径化しており、 こ の大口径化に対応させるためのカセッ トや F O U Pの大型化は高 額投資を要するク リーンルーム工場建設経費増大要因の一つにな つている。  On the other hand, the wafer size has been increased to improve production efficiency, and increasing the size of cassettes and FOUPs to cope with this increase in diameter is one of the factors that increase the construction cost of a clean room factory that requires high investment. It is
半導体ウェハは 2 0 O mm径から 3 0 O mm径に移行しており、 3 0 0 mmに対応する製造装置も 2 0 0 mm世代のパッチ処理方 式から大半が枚葉処理方式に変わっており、製造装置と搬送の枚葉 化によって、 生産効率を上げることが業界の目標になっている。 液 晶等のディスプレイ基板においても、その大型化が時代の動向であ る。  Semiconductor wafers have shifted from 200 mm diameter to 300 mm diameter, and the production equipment corresponding to 300 mm has also been changed from the patch processing method of the 200 mm generation to the single wafer processing method. The goal of the industry is to increase production efficiency through single-fed manufacturing equipment and transportation. Also in the case of display substrates such as liquid crystals, the trend is to increase their size.
そこで、 出願人は、 ウェハ等のワークを極小ク リーン域で枚葉連 続搬送するこ とによって、製造装置間をワーク単体で結びつけるシ ステムを P C TZ J P/ 0 5 9 3 9で提供し、従来の技術の欠点を 補い、 枚葉製造の実現化を提案している。  Therefore, the applicant has provided a system using PC TZ JP / 0 593 9 to connect the manufacturing equipment as a single workpiece by continuously transporting wafers and other workpieces in a very clean area. We have proposed the realization of single-wafer manufacturing, compensating for the shortcomings of the conventional technology.
この提案を具体的に構築するためには、半導体工場等の生産管理 を口 Jる ME S (M a n u f a c t u r i n g E x e c u t i o n S y s t e m) との整合性を図るシステムが必要がある。 また、 一 台のカセッ トゃ F O U Pを口 ッ ト単位とする従来の処理手順をそ のまま流用できず、 独自に開発が必要な処理手順もある。 そこで、本発明は半導体製造等において連結形態の E F E Mによ り、 枚葉搬送を実現するに当たり、 システムの具体的な処理手順を 明確化するものである。 発明の開示 本発明は、 ワーク枚葉処理システムを半導体製造工程に代表させ て、 その構成例を開示するが、 上述の通り液晶ディバイス製造工程 等においても適用できるシステムである。 本発明は、 次の 5つの構成要素から成り立つている。 In order to build this proposal specifically, it is necessary to have a system that ensures consistency in production management of semiconductor factories etc. with ME S (Manufacturing Execution System). In addition, there is a processing procedure that can not be diverted as it is from the conventional processing procedure that uses one cassette or FOUP as an oral unit, and there is a processing procedure that requires its own development. Therefore, the present invention is intended to clarify the specific processing procedure of the system in realizing single-wafer transfer by using a connection type EFEM in semiconductor manufacturing and the like. Disclosure of the Invention The present invention relates to a single wafer processing system being represented by a semiconductor manufacturing process, and an example of the configuration thereof is disclosed. However, as described above, the present invention is also applicable to a liquid crystal device manufacturing process. The present invention consists of the following five components.
A 工程間搬送手段によ り搬送される F O U Pやカセッ ト (以下 F O U Pに代表させ、 また符号は 1 とする)から半導体ウェハ 2 を 枚葉単位で B a y内に供給したり、処理が終了した枚葉単位のゥェ ハ 2を F O U P 1 に詰替えする詰替えステーショ ン(以下、 単にス テーシヨ ンという) 4 と、 B 半導体製造装置 5 0〜 5 4の前に設 けられた特殊 E F EM ( E q u i p m e n t F r o n t E n d M o d u 1 e、 以下、 単に E F EMと もいう) 6 と、 C これらの E F EM 6 とステーショ ン 4 とのク リーン域を共通にするク リ ー ン トンネノレ 7 と、 D このク リーン トンネル 7内でウェハ 2を連続 搬送する枚葉コンペャ 3 と、 E 枚葉コンペャ 3、ステーショ ン 4、 E F E M 6 を構成する各機器及び製造装置 5 0〜 5 4 の動作を制 御する制御システム C Sからなつている。  A. The semiconductor wafer 2 is supplied into the bay in units of single wafers from the FOUP or cassette (hereinafter represented by FOUP and represented by 1) transferred by the inter-process transfer means, or the processing is completed. A refill station (hereinafter simply referred to as a station) 4 for refilling a wafer unit 2 to a FOUP 1 and a special EF EM installed in front of a B semiconductor manufacturing apparatus 5 0 to 5 4 (Equipment F ront End M odu 1 e, hereinafter, also simply referred to as EF EM) 6 C, clean tone sensor 7 sharing clean area between these EF EM 6 and station 4 , D Control the operation of each equipment and manufacturing device 50 to 54 that compose the single-wafer compa- rator 3 that continuously transports the wafer 2 in this clean tunnel 7, and the E-f-sheet compa It consists of a control system CS to control.
そして A〜Dで 1 つの B a yを形成し、 E F EM群を連結した形 態と した連結形態の E F EMは前記ステーショ ン 4 を介して連結 形態の E F EMの外部と接している。 連結形態の E F EM内ではウェハ 2を枚葉で搬送移載し、連結形 態の E F E M外部ではウェハ 2を F O U P単位で搬送移載する。 ウェハ枚葉単位と F O U P単位の接点であるステーショ ン 4で そのロボッ ト 4 0 によって F O U P 1 内のウェハ 2 を枚葉にした り 、 F O U P 1 に詰めたりするが、 実空 F O U Pを仮収納するパッ フ ァーステ—ショ ン 4 1 が組み込まれており 、ノ ッ フ ァーステーシ ヨ ン 4 1 は小バッチ搬送機 8に繋がっている。 E F E M 6はウェハ移载用ロボッ ト 6 0 と、 ノ ーコー ド、 英数字 の読み取り機器 6 1 と、 自動運転用バッファーカセッ ト 6 2 と、 マ ニュアル運転用 F O U P 6 3及ぴ F O U Pオープナー 6 4 とを備 え、 ク リーン ト ンネル 7でク リーン域を接続している。 (第 1 図斜 線部) ' Then, one bay is formed by A to D, and the EF EM in a linked form in which the EF EM group is linked is in contact with the outside of the EF EM in a linked form via the above-mentioned station 4. The wafer 2 is transported and transferred as a single wafer in the EFEM in the connected form, and the wafer 2 is transported and transferred in FOUP units outside the EFEM in the connected form. Wafer 4 in FOUP 1 is stacked or packed into FOUP 1 by robot 4 0 at station 4, which is the contact point between the wafer unit and the FOUP unit. However, a package for temporarily storing the empty FOUP The Far Station 4 1 is incorporated, and the Snow Station 4 1 is connected to the small batch carrier 8. The EFEM 6 is a wafer transfer robot 60, a code, an alphanumeric reading device 61, an automatic operation buffer cassette 62, a manual operation FOUP 6 3 and a FOUP opener 6 4 And the clean tunnel 7 is connected to the clean area. (Fig. 1 oblique line) '
E F E M 6内のロボッ ト 6 0は、 ウェハ 2の外周縁部のみを保持 する保持部 6 0 aを備え、 枚葉コンペャ 3 と、 製造装置 5 0 — 5 4 と、 ノ ッ フ ァーカセッ ト 6 2 と、 F O U P 6 3 との間の移载を行な 5。  The robot 60 in the EFEM 6 is provided with a holding unit 60 a that holds only the outer peripheral edge of the wafer 2, and is a single-wafer compensator 3, a manufacturing apparatus 50-54, and a notch cassette 62 And make a transition between FOUP 6 3 5.
製造装置 5 0 - 5 4にウェハ 2を掛ける前、即ち E F EM 6内の ロポッ ト 6 0が枚葉コンペャ 3からウェハ 2 を掬い取った時点で、 ウェハナンバーを読み取って、然るべきウェハであるこ とを制御シ ステム C Sに報告して、製造装置 5 0 — 5 4によって決められた装 置ステージ 6 5 の位置にウェハ 2 の向きを合わせて渡すこ とが最 も望ましい。  Before the wafer 2 is put on the manufacturing equipment 50-54 4, that is, when the pot 60 in the EF EM 6 fetches the wafer 2 from the single-wafer compensator 3, the wafer number is read and the wafer is appropriate. It is most desirable to report to the control system CS and direct the wafer 2 to the position of the equipment stage 65 as determined by the manufacturing equipment 50-54.
本仕様を満たすためにロボッ トハン ド 6 0 b はウエノ、 2の外周 縁部を保持して、 ロボッ トハン ド 6 0 b の移載動作中にウェハ 2 を 回転させて、 Vノ ツチやオリエンタルフラッ トを検出して停止させ て、所定の位置を出してウェハ 2の英数字やバーコー ドを読み取る 機構を備える。 ク リーン ト ンネル 7は、枚葉コンペャ 3によ り枚葉のウェハ 2を 搬送できる、 必要最少限のスペースを形成できればよい。 ク リーン ト ンネル 7の内部は、例えば窒素雰囲気下の極めて清浄な状態に維 持され、 ト ンネル外部の雰囲気、 すなわち作業者エリ アの雰囲気と は略完全に遮断されている。 枚葉コンペャ 3はループ状の形状をして、 コンペャベルト 3 0で 駆動する連続走行式であり、 LM ガイ ドレール 3 1上のブロ ック 3 2には一定間隔でウェハ 2 を載せるフ ィ ンガー 3 3 を取り付けて いる。 コ ンペャベル ト 3 0は一定期間が経過すれば伸びが発生する ので、 LM ガイ ドレール 3 1 の一部にコ ンペャベル ト 3 0を張るた めのテークア ッ プ機構 3 4 と調整レール取替え箇所 3 5 を設けて いる (第 3図 ( a ) ( b ) 参照)。 また、 コ ンペャベル ト 3 0が延ぴ た際には延びた寸法分を継ぎ足した調整用 LMガイ ドに取り替える, 枚葉コンべャ 3 のフ ィ ンガー 3 3 にはウェハ 2 への接触を最小 限にするための保持部 3 3 aを取り付けて、 ウェハ 2の外周縁部の みを保持する。 In order to satisfy this specification, the robot hand 60 b holds the outer edge of the Ueno 2 and the wafer 2 is transferred during the transfer operation of the robot hand 60 b. It has a mechanism to rotate, detect and stop V notch and Oriental flat, and take out a predetermined position and read the alphanumeric and bar code of wafer 2. The clean tunnel 7 only needs to be able to form the minimum space necessary to transport the single wafer 2 by means of the single wafer compa- rator 3. The interior of the clean tunnel 7 is maintained in an extremely clean state, for example, under a nitrogen atmosphere, and is almost completely isolated from the atmosphere outside the tunnel, that is, the atmosphere of the worker area. The sheet-fed compensator 3 has a loop shape and is continuously driven by a compa- belt 30. The block 3 2 on the LM guide rail 3 1 has a wafer 3 placed thereon at a fixed interval. 3 is attached. Since the develop 30 occurs after a certain period of time, the take-up mechanism 3 4 and the adjustment rail replacement point 3 5 for stretching the receive 30 on a part of the LM guide rail 3 1 (See Fig. 3 (a) (b)). In addition, when the cover 30 is extended, it is replaced with the adjustment LM guide added with the extended dimension, and the finger 33 of the single-wafer conveyor 3 has a minimum contact with the wafer 2 The holding portion 3 3 a for fixing is attached to hold only the outer peripheral edge of the wafer 2.
枚葉コ ンペャ 3は、その駆動に伴う発塵がク リ ーン ト ンネル 7内 のク リーン度に影響しないよ う に、枚葉コ ンペャ 3内部を負圧にす るための排気ファ ン 3 7を取り付けて、 排気ダク ト 3 8 に繋ぎ、 ェ ァーフ ィ ルターを介して空気を排出するク リ ーン対策をしたコ ン べャである。 前記制御システム c sは、 基幹業務システムからの指示に基き、 ベイコン トローラ C S 2 と連携しながら、 ウェハ 2をグルーピング パラメータ (品種/工程、 ロ ッ ト Noなど)毎に進埗管理したり 、 リ ソ ース(各接続装置、 F O U P、 オペレータなど)のステータス管理や 履歴管理を行ったり、枚葉レベルでの レシピ設定管理を行う枚葉管 理コ ン ト ローラ C S 1 と、上位に前記枚葉管理コン トローラ C S 1 が接続され、 下位に前記枚葉コ ンペャ 3、 前記ステーショ ン 4又は E F EM 6 の各機器、各種処理装置 5 0 - 5 4の各コ ン ト ローラ C S 3〜 C S 6が接続される と共に、 ウェハ 2 の適正投入や前記ステ ーショ ン 4へのウェハ 2の回収の制御を行い、 ウェハ 2が B a y内 をスムースに流れるように制御するべイ コ ン トローラ C S 2 と、 こ のべイコン トローラ C S 2に接続され、 且つ、 ウエノヽ 2 の枚葉コン べャ 3への投入順番と各処理装置 5 0 〜 5 4 での処理順番を決定 するスケジューラ Zディ スパッチャ C S 7 と 、前記ステーシ ョ ン 4 のステータス管理、履歴管理、ステーショ ン入出庫の材料搬送指示、 退避処理などを行うステーショ ンコ ン トローラ C S 3 と、枚葉コン べャ 3 のステータス管理、 履歴管理、 装置 5 0〜 5 4 -装置 5 0〜 5 4間あるいは装置 5 0〜 5 4 -ステーショ ン 4間の材料搬送指示 を行う枚葉搬送機コ ン ト ローラ C S 4 と、 E F EM 6 のステータス 管理、 履歴管理、 E F EM搬入出の材料搬送指示を行う E F EMコ ン トローラ C S 5 と、 各処理装置 5 0〜 5 4のステータス管理、 履 歴管理、 HSMS SEMI E 3 7、 GEM SEMI E 3 0によるオンライ ンコ ン トロールを行う装置コン トローラ C S 6を備えている。 半導体ウェハの製造工程は、一般的にウェハ上に配線や絶縁膜等 の層を形成する工程、 レジス トを塗布し、 露光、 現像してウェハ上 にレジス トのパターンを形成する工程、 ウェハ上の不要な部分をェ ツチングする工程、 ウェハにイオンを打ち込む工程、 レジス トを除 去する工程、 各工程間の洗浄工程、 検査工程とに分けることができ るが、 上記ワーク枚葉処理システムは、 どの工程においても適用で きる。 図面の簡単な説明 第 1 図は連結形態の E F EMと周辺設備の関係を示す平面図、第 2図は連結形態の E F EMの断面図、 第 3図は ( a ) 枚葉コンベア の要部図、 ( b ) 枚葉コンベアの縦断面図、第 4図は E F EMの平面 図、 第 5図は E F EMの断面図である。 The sheet fan 3 is an exhaust fan for making the inside of the sheet conditioner 3 negative pressure so that dust generated by the drive does not affect the degree of clean in the clean tunnel 7. It is a cleaner equipped with 3 and 7 attached, connected to exhaust duct 3 8 and exhausting air through a gas filter. The control system cs advances and manages the wafer 2 for each grouping parameter (type / process, lot No etc.) or cooperates with the bay controller CS 2 based on the instruction from the core business system. Management of the status of each source (each connected device, FOUP, operator, etc.) and history management, as well as the single-wafer management controller CS 1 that performs recipe setting management at the single-wafer level, The controller CS 1 is connected, and at the lower level, the above-mentioned single-wafer computer 3, the above-mentioned equipment of the station 4 or the EF EM 6, and the various processing units CS 0-CS 4 of the various processing units 50 are connected. At the same time, it controls the proper loading of wafer 2 and the recovery of wafer 2 to the above-mentioned stage 4 to control wafer 2 to flow smoothly in the bay, as well as the control roller CS 2, and Baikonto A scheduler, which is connected to the la CS 2 and determines the processing order of the processing units 50 to 54, and the processing order of the processing units 50 to 54, and the stasis Station controller CS3 that performs status management, history management, material transfer instruction for station loading and unloading, evacuation processing for sheet controller 3 and status management of sheet-fed material controller 3, history management, devices 50 to 5 4-Equipment 5 0-5 4 or Equipment 5 0-4 4-Station 4 Sheet material conveyance controller CS 4 that instructs material conveyance and status management of EF EM 6, history management, EF On-line control using the EF EM controller CS 5 that instructs the material transfer of EM loading and unloading, status management and history management of each processing unit 50 to 54, HSMS SEMI E 37, GEM SEMI E 30 Equipment controller CS 6 . In general, the process of manufacturing a semiconductor wafer involves wiring, an insulating film, etc. on the wafer. Forming a resist layer, applying a resist, exposing and developing the resist pattern to form a resist pattern on the wafer, etching an unnecessary portion on the wafer, implanting ions into the wafer, resist The process can be divided into the process of removing the grit, the cleaning process between the processes, and the inspection process, but the above-mentioned workpiece single wafer processing system can be applied to any process. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing the relationship between the EF EM in the connection form and the peripheral equipment, FIG. 2 is a cross-sectional view of the EF EM in the connection form, and FIG. Fig. 4, (b) Longitudinal section of sheet-fed conveyor, Fig. 4 is a plan view of EF EM, Fig. 5 is a sectional view of EF EM.
第 6 図はローラー式枚葉コンペャと枚葉ロボッ トの詳細断面図 である'。  Fig. 6 is a detailed cross-sectional view of a roller-type sheet-fed fabric complier and a sheet-fed robot.
第 7図は枚葉コンペャとロボッ トの詳細平面図、第 8図は枚葉コ ンべャと ロボッ トの詳細断面図である。  Fig. 7 is a detailed plan view of the sheet-fed compa and robot, and Fig. 8 is a detailed cross-sectional view of the sheet-fed conveyor and robot.
第 9図はロポッ トのハン ド部回転機構と読取り装置の側面図、第 1 0図はウェハ回転機構タイプ I の平面図、第 1 1図はウェハ回転 機構タイプ I の断面図、第 1 2図はウェハ回転機構タイプ Πの平面 図、 第 1 3図はウェハ回転機構タイプ Πの断面図である。  Fig. 9 is a side view of the handle rotation mechanism and reader of the rod pot, Fig. 10 is a plan view of the wafer rotation mechanism type I, Fig. 11 is a sectional view of the wafer rotation mechanism type I, Fig. 12 The figure is a plan view of the wafer rotation mechanism type Π, and FIG. 13 is a cross-sectional view of the wafer rotation mechanism type Π.
第 1 4図は複数枚のウェハ搬送、移載を行う多段式コンペャと多 段式枚葉ロボッ トの断面図である。  FIG. 14 is a cross-sectional view of a multistage compensator and a multistage single wafer robot for transporting and transferring a plurality of wafers.
第 1 5図はフロー図、 第 1 6図は在庫金額計算である。  Fig. 15 is a flow chart, and Fig. 16 is inventory value calculation.
第 1 7図はシステム構成図、第 1 8図から第 2 2図は制御フロー 図である。 発明を実施するための最良の形態 本発明を詳細に説述するために、添付の図面に従ってこれを説明 する。 FIG. 17 is a system configuration diagram, and FIGS. 18 and 22 are control flow diagrams. BEST MODE FOR CARRYING OUT THE INVENTION In order to describe the present invention in detail, this will be described according to the attached drawings.
第 1図に示したよ うに、本発明に係るワーク枚葉処理システムは. 工程間搬送手段と しての小バッチ搬送機 8 によ り搬送される F O U P 1 からワーク と してのウェハ 2 を枚葉単位で枚葉コンペャ 3 に供給したり、枚葉単位のウェハ 2を枚葉コンペャ 3から F O U P 1 に回収するステーショ ン 4 と、半導体製造装置 5 0〜 5 4の前に 設けられた E F EM 6 と、 これらの E F EM 6 とステーショ ン 4 と のク リーン域を共通にするク リ ーン トンネル 7 と、 このク リ ーン ト ンネル 7 内でウェハ 2 を連続搬送する前記枚葉コンペャ 3からな つている。 ステーショ ン 4 について 前記ステーショ ン 4は、 B a y外と B a y内の間のインターフエ イス となるステーショ ンであって、 ロボッ ト 4 0 と、 ノ ッファース テーシヨ ン 4 1 と、 F O U Pオープンナー 4 2 とを備えている。  As shown in FIG. 1, the single-wafer processing system according to the present invention is capable of transferring a wafer 2 as a work from a FOUP 1 transferred by a small batch transfer machine 8 as an inter-process transfer means. A station 4 for supplying a single wafer to the single wafer compa 3 in leaf units or recovering a single wafer 2 in a single wafer to the FOUP 1 and an EF EM provided in front of the semiconductor manufacturing apparatus 50 to 54 6 and a clean tunnel 7 sharing the clean area of the EF EM 6 and the station 4 in common, and the above-described single-wafer competition 3 in which the wafer 2 is continuously transported in the clean tunnel 7. It is connected. About the Station 4 The Station 4 is a station serving as an interface between the outside of the Bay and the inside of the Bay, and the robot 40, the nose fairing 4 1 and the FOUP opener 4 2 And have.
なお、 前記ステーシヨ ン 4の上部から下方に向って、 清浄度を保 つためにダウン層流が形成されている。  A downward laminar flow is formed from the top of the station 4 downward to maintain cleanliness.
バッファーステーショ ン 4 1 は、小パッチ搬送機 8 によって搬送 されてきた F O U P 1 内のウェハ 2 の枚葉搬送のタイ ミ ングが製 造装置 5 0 - 5 4の処理タイ ミ ングと合わない場合に、 一旦、 F O U P 1 をス ト レージするものである。 制御システム C Sの指示で製造装置 5 0 - 5 4にとつて都合の 良い状態になれば F O U P 1 はバッ フ ァ ーステーシ ョ ン 4 1 から ロードステーショ ン 4 3 に移され、枚葉化されて枚葉コンペャ 3で 前記 E F EM 6に搬送される。 Buffer station 41 is used when the timing of single wafer transfer of wafer 2 in FOUP 1 transferred by small patch transfer machine 8 does not match the processing time of manufacturing apparatus 50-54. Once, it is a storage for FOUP 1. Control system CS instructs FOUP 1 to be transferred from buffer station 4 to load station 4 3 when it becomes convenient for manufacturing equipment 5 0-5 4 It is transported to the EF EM 6 by the leaf compensator 3.
E F EM 6につレヽて 前記 E F EM 6 は、通常ク リ ーン度ク ラス 1 のスーパーク リ ーン 域とクラス 1 0 0 0程度のタ リ -ン域に属しており、 クラス 1 の区 域(図 1 の斜線部)には第 2図第 4図及び第 5図に示したよ う に、移 载ロボッ ト 6 0 とノ ッファーカセッ ト 6 2 と製造装置スデージ 6 5が、 クラス約 1 0 0 0の区域には F O U P 6 3及ぴ F O U Pォー プンナ一 6 4が備わっている。 According to EF EM 6 The EF EM 6 usually belongs to the class 1 super clean area and class 1 0 0 0 degree area of the clean degree class, and it is a class 1 class. In the area (shaded area in Fig. 1), as shown in Fig.2 and Fig.4, the transfer robot 60, the knocker cassette 62 and the manufacturing equipment storage 65 have approximately class 1 as shown in Fig.4 and Fig.5. The area of 0 0 0 is equipped with FOUP 6 3 and FOUP 4 6.
前記バッファ一力セ ッ ト 6 2は、枚葉コ ンペャ 3に載せられたゥ ェハ 2をロボッ ト 6 0によって、 仮置きするもので、 製造装置ステ ージ 6 5に、 直接ウェハ 2を受け渡す場合には、 使用されない。 前記 F O U P 6 3 は、 搬送系統に支障がある場合と、 半導体製造 装置での特別緊急処理のために作業者が F O U Pを人手で搬送す るためのものであり 、 通常の自動運転時に使用することはない。 通常の E F EMは全て F O U P単位で処理されており、本発明の E F EM 6 はノ ッ フ ァーカセッ ト 6 2 と F O U P 6 3 め両方に対 応する点で通常の E F EMと異なる。 ク リーン ト ンネル 7について ク リーン ト ンネル 7は、第 1 図及び第 2図に図示されているよ う に、 枚葉コンベア 3に沿い、 且つ、 その上方を覆う よ う に設けられ ている。 The buffer / power set 62 is used to temporarily place wafers 2 loaded on a single wafer processing robot 3 by means of a robot 60. The wafer 2 is directly attached to a manufacturing apparatus stage 65. It is not used when delivering. The FOUP 6 3 is used by the operator to manually transport the FOUP in case of trouble in the transport system and for special emergency handling in the semiconductor manufacturing equipment, and should be used during normal automatic operation. There is no. The normal EF EMs are all processed in FOUP units, and the EF EM 6 of the present invention differs from the normal EF EMs in that it corresponds to both the knocker cassette 62 and the FOUP 6 3. About clean tunnel 7 Clean tunnel 7 is illustrated in Figures 1 and 2. It is provided along the single-wafer conveyor 3 and so as to cover the upper side thereof.
このク リーン ト ンネル 7 の上部には、第 2図に図示されているよ う に、 H E P Aフ ィルター 7 2が取付けられ、 清浄化されたエアー を ト ンネル 7内に供給するよ うになつている。  A HEPA filter 72 is mounted on the top of the clean tunnel 7 as shown in FIG. 2 so as to supply clean air into the tunnel 7. .
また、 ク リーン ト ンネル 7 の側部は、 前記ステーショ ン 4及ぴ E F EM 6 に接続している領域を除き、 所定の部材、 例え'ば合成樹脂 製シー ト等によ り、 仕切られている。  Further, the side of the clean tunnel 7 is partitioned by a predetermined member, for example, a synthetic resin sheet, etc., except for the area connected to the above-mentioned station 4 and EF EM 6. There is.
さ らに、 ク リーン ト ンネノレ 7 の下部は、 枚葉コンベア本体 3 6 に よって、 区間されている。  In addition, the lower part of the clean tunnel 7 is sectioned by the single-wafer conveyor body 3 6.
E F E M 6 と ステーシ ョ ン 4はク リ ーン ト ンネル 7 と接続して ク リ ーン度クラス 1 の区域を構成しており、装置ステージ 6 5 を含 めてこのク リ一ン度ク ラス 1 の区域内でウェハ 2 は全て枚葉で搬 送移載され、 緊急処理の人手操作の場合を除いて、 ウェハ 2が F O U P 1 に詰替えられるのは、ステーショ ン 4を介する場合だけであ る。  The EFEM 6 and the station 4 are connected to the clean tunnel 7 to form a clean degree class 1 area, and this cleanness class including the equipment stage 65 is In the area 1 all wafers 2 are carried individually, and except in the case of an emergency operation, wafer 2 is refilled into FOUP 1 only via station 4 Ru.
即ち、 ウェハ 2 の F O U P化、 枚葉化がステーショ ン 4の一箇所 であると ころから、 E F EM 6 を接続した連結 E F EMの形態を構 成している。 枚葉コンペャ 3 _について 枚葉コ ンペャ 3は、 第 1 図及び第 3図に示したよ う に、 エン ドレ スのループ状の形状のコンペャベル ト 3 0で駆動する連続走行式 である。  That is, from the fact that F 2 O 2 U P wafer 2 and single wafer processing are one place of station 4, a form of connected E F E M where E F EM 6 is connected is configured. About the single-wafer compensator 3 _ As shown in FIGS. 1 and 3, the single-wafer compensator 3 is a continuous traveling type driven by an endless loop-shaped competitor 30.
この枚葉コ ンペャ 3は、 この連続走行式に限定されるものではな く 、 どのよ う な構成でもよい。 例えば図 6に示したよ うに、 断面が 略口状のコ ンベア本体 3 6の内部に、 駆動ローラー 3 0 a と、 この 駆動ローラー 3 0 a によ り駆動されるパレツ ト 3 0 b と、 このパレ ッ ト 3 0 b を所定の位置で停止させる リ フ ト式ス ト ッパー 3 0 c を備えているものでもよい。 This sheet-fed computer 3 is not limited to this continuous running type. Any configuration may be used. For example, as shown in FIG. 6, the drive roller 30a, the pallet 30b driven by the drive roller 30a, and the pallet 30b in the inside of the conveyor body 36 having a substantially mouth-shaped cross section It may be equipped with a lift type stopper 30 c that stops pallet 30 b at a predetermined position.
前記パレッ ト 3 0 b には、一定間隔でウェハ 2を載せるフ ァ ンガ 一 3 3が固定され、 このフ ァ ンガー 3 3の基端部が、 前記コンベア 本体 3 6 の上面に形成された走行隙間 3 6 a に沿って、移動できる よ う になつている。  The pallets 30 b are fixed at fixed intervals to the hangers 33 on which the wafers 2 are loaded, and the base end of the fan 33 is formed on the upper surface of the conveyor body 3 6. It can move along the gap 3 6 a.
前記フ ィ ンガー 3 3 にはウェハ 2 への接触を最小限にするため の保持部 3 3 a を取り付けて、 ウェハ 2の外周縁部のみを保持する, 枚葉コンペャ 3の駆動に伴う発塵がク リーン トンネル 7内のク リ ーン度に影響しないよ う に、 コンペャ本体 3 6 の下面には ·、 枚葉 コンペャ 3内部を負圧にするための排気ファン 3 7を取り付けて、 排気ダク ト 3 8に繋ぎ、エアーフィルターを介して空気を排出する ク リーン対策を施している。 動作例について 以上のよ う に構成されたワーク枚葉処理システムの動作例を 説明する。 ステーショ ン 4において、小バッチ搬送機 8によって搬送されて きた F O U P 1 内のウエノ、 2は、 ロボッ ト 4 0によ り枚葉コンペャ 3に投入される。 枚葉コ ンペャ 3 に载せられたウェハ 2は所定の製造装置 5 0 — 5 4前の E F E M 6内のロボッ ト 6 0によって、直接製造装置ステ ージ 6 5 に供給される力、、ノ ッファーカセッ ト 6 2に仮置きされる c 製造装置 5 0 - 5 4で加工が終わったウェハ 2はロボッ ト 6 0 によって、枚葉コンペャ 3 に載せられて次の装置 5 0 - 5 4に搬送 される。 第 7図及び第 8図に基き、枚葉コンペャ 3によって搬送されてき たウェハ 2が製造装置 5 0— 5 4に供給、回収される動作関係を説 明する。 Attached to the above-mentioned finger 33 is a holding portion 33 a for minimizing contact with the wafer 2, and holds only the outer peripheral edge of the wafer 2. Install an exhaust fan 3 7 on the underside of the main body 3 6 so that the pressure inside the single sheet competitor 3 can be negative, so that the pressure on the clean tunnel 7 does not affect the degree of clean in the tunnel 7. It is connected to duct 38, and clean measures to discharge air through the air filter are taken. Operation Example An operation example of the work-piece processing system configured as described above will be described. At station 4, Ueno 2 in FOUP 1 transported by small-batch transport machine 8 is fed to sheet-fed carrier 3 by robot 40. Wafer 2, which is stored in sheet-fed copier 3, is not supplied directly to manufacturing apparatus stage 6 5 by robot 60 in EFEM 6 in a predetermined manufacturing apparatus 50-54. Ffakase' DOO 6 2 c manufacturing device 5 0 which is temporarily placed - 5 4 wafer 2 processing is finished in the robot 6 0, is placed on the sheet Konpeya 3 next device 5 0 - is transported to 5 4 Ru. Based on FIGS. 7 and 8, the operational relationship in which the wafer 2 transported by the single-wafer carrier 3 is supplied to and recovered from the manufacturing apparatus 50-54 will be described.
枚葉コンペャ 3は、 Aの方向へ駆動する連続走行式コンペャであ る。  The sheet-fed compensator 3 is a continuously traveling type compensator driven in the direction of A.
枚葉コ ンペャ 3 のフィ ンガー 3 3 の 4つの保持部 3 3 a に載せ られたウェハ 2が所定の製造装置 5 0 - 5 4の前にさ し掛かった 時に、 ロボッ トハン ド 6 0 bは Aの方向へ進む枚葉コンペャ 3の走 行速度に同期しながら、 フィ ンガー 3 3 の下にもぐり込み、 ロボッ ト ノヽン ド 6 0 b の B方向の速度とフィ ンガー 3 3の A方向の速度 を等速にして、 ロボッ ト本体 6 0が Cの方向に上昇することによつ てウェハ 2 をロボッ ト ノヽン ド 6 0 b 上の 4つの保持部 6 0 a に載 せる。  The robot hand 60 b is moved when the wafer 2 placed on the four holding parts 33 a of the sheeter 3 3 in the sheet-fed machine 3 is placed in front of a predetermined manufacturing device 50-54. Go in the direction of A. While synchronized with the traveling speed of the sheet-fed compara- tor 3, go under the finger 3 3 and move in the direction B of the robot node 6 b and the direction 3 of the finger 3 3 The wafer 2 is placed on the four holding parts 60 a on the robot node 60 b by raising the robot main body 60 in the direction of C at an equal speed.
一方、 ウェハ 2をコンペャに載せる時は空のフィンガー 3 3が製 造装置の所定の位置に来れば、 ウェハ 2を保持部 6 0 a上に載せた ロボッ ト ノヽン ド 6 0 b は Aの方向に進むフィ ンガー 3 3上を前記 フィ ンガー 3 3に連動して Bの方向に動き、 Aと Bの動きを等速に してロボッ トハン ド 6 0 b が Dの方向へ下降するこ とによって移 载を行なう。 ウェハ 2の Vノ ツチまたはオリエンタルフラッ トの位置出しと、 ウェハ 2に刻印されたパーコー ドや英数字の読み取り は、従来ロボ ッ ト の近く に設置した回転式ウェハ位置出し専用装置 (ァライナ 一) とナンバー読み取り装置とを介して行っていたが、 ロボッ トハ ン ド 6 0 b に回転機構を組み込み、移し替えをなく して動作時間を 短縮することができる。 この場合は枚葉コンペャ 3からウェハ 2を 掬い取る時と、製造装置 5 0 - 5 4 の加工が終わって枚葉コ ンペャ 3に載せる時のいずれにおいても、 ロボッ ト 6 0に搭載されたゥハ エーナンパ一読取装置 6 1 (第 7図) はウェハ 2に刻印された英数 字やバー コー ドを読取ることができる。 On the other hand, when placing the wafer 2 on the compara- tor, if the empty finger 33 comes to the predetermined position of the manufacturing apparatus, the robot node 60 b on which the wafer 2 is placed on the holding unit 60 a is A of When the robot hand 60b moves downward in the direction D while moving in the direction B along with the finger 33 on the finger 33 moving in the direction, the movement of A and B is equalized. Transfer by means of Positioning of V-notch or Oriental flat on wafer 2 and reading of percode and alphanumeric characters imprinted on wafer 2 is a rotary wafer positioning-only device conventionally installed near a robot (Liner 1) The robot hand can be equipped with a rotation mechanism to eliminate the transfer and shorten the operation time. In this case, the robot mounted on the robot 60 can be used either when picking up the wafer 2 from the single wafer processing 3 or when placing it on the single wafer processing 3 after the processing of the manufacturing apparatus 5 0-5 4 is completed. Ha-Annpa reader 6 1 (FIG. 7) can read alphanumeric characters and barcodes imprinted on wafer 2.
ウェハ 2 の位置出しと読み取り に際してはロボッ トノヽン ド 6 0 b に内蔵されている回転機構を利用する。  When positioning and reading wafer 2, use the rotation mechanism built in robot node 60 b.
またウェハ 2の移載はウェハ 2に接触する面積が少なく 、 ウェハ 2の欠けが最も少ない方法である枚葉コンペャフィ ンガー 3 3 の 保持部 3 3 a とロボッ ト ノヽン ドの保持部 6 0 a を介して、 ウエノ、 2 の外周縁部を保持して行われる。 また、 上記連続走行式のコンペャに対して、 上述の第 6図に示し たよ う に、装置ステージ 6 5の前でー且コンペャのフィ ンガー 3 3 を停止させる方法でもよい。  In addition, transfer of wafer 2 has a small area in contact with wafer 2 and is a method in which chipping of wafer 2 is the least, and the holding portion 3 3 a of single wafer compensator 3 3 and the holding portion of robot node 6 0 a Through Ueno, 2 is done by holding the outer rim. Further, as shown in FIG. 6 described above, the method of stopping the speaker 33 of the competitor may be used in front of the apparatus stage 65, as shown in FIG. 6 described above.
即ち、 ファ ンガー 3 3はパレツ ト 3 0 bに取り付けられ、 駆動口 一ラー 3 0 a によつて走行する。 パレッ ト 3 0 bが所定の位置に到 達すると リ フ ト式ス トッパー 3 0 c が上昇することによって、パレ ッ ト 3 0 bは停止する。停止と同時にロボッ トハン ド 6 0 b はゥェ ノヽ 2の下にもぐり込み、上昇するこ とによってウェハ 2を掬い取る 掬い取った時点でリ フ ト式ス ト ッパー 3 0 c は下降するのでパレ ッ ト 3 0 bは駆動ローラー 3 0 aの働きによって、 再ぴ走行する。 フ ィ ンガー 3 3 上に ウエノ、 2 を置く場合もノ レツ ト 3 0 b の動 きは同様であり、 ロボッ ト 6 0の動きは第 7図, 第 8図の説明と同 様である。 That is, the fanger 33 is attached to the pallet 30 b and travels with the drive wheel 30 a. When pallet 30 b reaches a predetermined position, pallet 30 b is stopped by the rise of lift type stopper 3 0 c. As soon as the robot stops, the robot hand 6 0 b gets under the door 2 and lifts it to scoop the wafer 2. When the lift type stand 3 0 c descends, it is removed. The toe 30 b travels again by the action of the drive roller 3 0 a. When Ueno and 2 are placed on the finger 3 3, the movement of the notch 3 0 b is the same, and the movement of the robot 6 0 is similar to the explanation of FIGS. 7 and 8.
このパレッ ト停止方法はアキユーム レーショ ン機能付き駆動口 一ラーを使い、当て止め式ス ト ッパーを働かせることによっても同 様の機能が達成できる。 製造装置 5 0, 5 1, 5 2, 5 3 , 5 4の前で、 ウェハ 2のパー コー ドや英数字を読み取り、制御システムへ連絡する場合はロボッ トハン ド 6 0 bにウェハ 2を回転させる機構を取り付ける。  The same method can be achieved by stopping the pallet with an actuator with an accommodation function and using a stopper type stopper. In front of the manufacturing equipment 50, 51, 52, 53 and 54, read the wafer 2's par code and alphanumeric characters, and when contacting the control system, rotate the wafer 2 on the robot hand 60 b. Install the mechanism to
第 9図はロボッ ト 6 0、 ウェハナンパ一読取装置 6 1及びロボッ トハン ド 6 0 b の回転機構を示すものである。  FIG. 9 shows the rotation mechanism of the robot 60, the wafer pick-up reader 61 and the robot hand 60 b.
ロポッ ト 6 0 はウェハ 2 を持ったままハン ド 6 0 b の先端部の 回転ハン ド 6 0 c を回転させるタイプである。  The pot 60 is a type of rotating the rotating hand 60 c of the tip of the hand 60 b while holding the wafer 2.
第 1 0 図と第 1 1 図はロボッ トノヽン ド 6 0 b上のウェハ回転タ ィプであり、 2種類あるが、 同じ機能を有する。  Figures 1 0 and 1 1 show the wafer rotation types on the robot node 60 b, and although there are two types, they have the same function.
第 1 0図、第 1 1 図のタイプ I は走行する枚葉コンペャ 3のフィ ンガー 3 3の速度に同期してロボッ トノヽンド 6 0 b を動かし、 ロ ボ ッ トノヽン ド 6 0 b でウェハ 2 の外周縁部を回転駆動ローラー 6 0 d とフ リ ーローラー ( 6 0 e , 6 0 f ) の傾斜面部で受け、 回転駆 動ローラー 6 0 dを回転させながら Eの方向に移動させ、 ウェハ 2 をフリーローラー ( 6 0 e , 6 0 f ) の垂直部と回転駆動ローラー 6 0 dの垂直部の間に挟み込む。  In Fig.10 and Fig.1 1 type I is moving robot robot 6 0 b in synchronization with the speed of finger 3 3 of traveling single wafer compa 3 and robot robot 6 0 b At the same time, the outer peripheral edge of wafer 2 is received by the inclined surface of rotating drive roller 60 d and free roller (60 e, 60 f), and rotating drive roller 60 d is moved in the direction of E while rotating. , Wafer 2 is sandwiched between the vertical part of the free roller (60e, 60f) and the vertical part of the rotary drive roller 60d.
第 1 2図、 第 1 3図のタイプ Πは 4つのフ リーローラー ( 6 0 g 〜 6 0 j ) でウェハ 2の外周縁部を受け、 回転駆動ローラー 6 0 d を Eの方向に移動させウェハ 2をはさみ込む。両タイプともローラ 一 ( 6 0 d , 6 0 e 〜 6 0 j ) が回転しながら挟み込むことによつ て、 ウェハ 2は回転しながらローラーの傾斜部を登ることになるの で、 ウェハ 2の擦れが防止できる。 また、 コンペャフィ ンガー 3 3 と ロボッ トノヽンドのローラー ( 6 0 d, 6 0 e 〜 6 0 j ) 間の移載 寸法誤差.は 1 , 3 mm以内であり、 回転駆動ローラー ( 4 0 d ) の E方向へのス トロークも小さく、ウェハ 2の Vノ ツチなどの位置出 しとパーコ一 ドゃ英数字の読み取り時間も 3秒以内である。従来の 位置出し専用ァライナーを用いたウェハの位置出しと、読み取り を すれば、 2 ◦秒以上を要するので、 処理時間短縮効果は極めて大き レヽ o The types in Fig.12 and Fig.13 Π is the outer peripheral edge of wafer 2 by four free rollers (60 g to 60 j), and the rotational drive roller 60 d Move the wafer in the direction of E and sandwich the wafer 2. In both types, when the roller 1 (60 d, 60 e to 60 j) is rotated and pinched, the wafer 2 is rotated while climbing the inclined portion of the roller. Friction can be prevented. In addition, the transfer dimensional error between the compander 3 3 and robot roller (60 d, 60 e to 60 j) is within 1 and 3 mm, and the rotational drive roller (40 d) The stroke in the E direction is also small, and the positioning time of the V notch etc. of wafer 2 and the reading time of alphanumeric characters are within 3 seconds. Since the wafer positioning and reading using the conventional positioning-only linerr requires 2 seconds or more, the processing time reduction effect is extremely large.
また、 ウエノ、 2 をフリーローラー ( 6 0 e〜 6 0 j ) の垂直部と 回転駆動ローラー ( 6 0 d ) の垂直部の間に挟み込むチャック機構 であるこ とから、動いている枚葉コンペャ 3のフィ ンガー 3 3から のウェハ 2のすく い取り に必要なローラー 6 0 d間にウェハ 2 + αの間隔が形成されることになる。  In addition, because it is a chuck mechanism that sandwiches Ueno, 2 between the vertical part of the free roller (60 e to 60 j) and the vertical part of the rotary drive roller (60 d), the moving single-wa A gap of wafer 2 + α will be formed between the rollers 60 d required to pick up the wafer 2 from the finger 3 of 3.
また、 このチャック機構によ り、 高速なウェハ 2の回転が可能に なる。  In addition, the chuck mechanism enables high-speed rotation of the wafer 2.
さ らに、 このチャ ック機構によ り、 ロボッ トハン ドが動いていて も、 ウェハ 2 の位置出しが可能になる。  In addition, this chucking mechanism enables wafer 2 to be positioned even if the robot hand is moving.
第 1 4図は搬送頻度が高く 、単にウェハを搬送だけすれば良い場 合の仕様あり、 ウェハ 2を一枚単位で運んでいては間に合わない場 合に、 フィ ンガー 3 3 とロボッ トアーム 6 0 b を複数搬送可能にし たものである。 ウェハ 2を縦方向に多段の保持部を有するコンペャ フィンガー 3 3にウェハ 2を 2段、 3段に同時に載せて搬送し、 移 載の際もロボッ トハン ド 6 0 b を縦方向に多段式にして移載する ことによって搬送能力が増える。 ウェハ 2 を載せる多段式コンペャ フィ ンガー 3 3 と多段式ロボッ トノヽン ド 6 0 b を 2段式にすれば 2倍の搬送及び移載ができ、 3段式にすれば 3倍の能力向上になる, 連結形態の E F E Mは半導体または液晶製造装置を 1 0台以上 と接続するこ と になるので、枚葉コンペャ 3は時間当たり 5 0 0か ら 1 0 0 0枚程度の搬送能力が必要となるが、本発明の枚葉コンペ ャ 3 はフィ ンガーピッチ 5 0 0 mm、 コンペャ速度が 1 0 m/分の 場合で、 時間当たり 1 2 0 0枚の搬送が可能であり、 更に能力を上 げることもできる。 Fig. 14 shows the specifications for cases in which the transfer frequency is high and it is sufficient to simply transfer the wafer, and when it is not possible to transfer the wafer 2 by one unit, the finger 3 3 and robot arm 6 0 Multiple b can be transported. Wafer 2 is placed on the 2nd and 3rd stages of wafer 2 simultaneously on carrier finger 33 with multistage holding parts in the vertical direction and transferred, and also when transferring, robot hand 60 b is vertically multistaged To transfer This increases the transport capacity. Double-stage transfer and transfer can be achieved by setting the multistage compensator 33 and the multistage robot node 60 b on which the wafer 2 is loaded to two stages, and three-stage system improves the capacity by three times. In the connected form, the EFEMs connect 10 or more semiconductor or liquid crystal manufacturing apparatuses, so the sheet-fed comparator 3 needs to have a carrying capacity of 500 to 100 sheets per hour. However, the sheet-fed compara- tor 3 of the present invention is capable of transporting 120 2 sheets per hour at a finger pitch of 500 mm and a compara- s speed of 10 m / min, and the capacity is further improved. You can also
また、 E F EM 6 力 らステーショ ン 4 に送られてきたウエノ、 2 は ステーシ ョ ン 4で F O U P 1 にウェハ 2 を詰めて発送するタイ ミ ングを任意の小バツチに設定できる。 例えば、 決められた時間が経 過する力 、決められた枚数に達すれば F O U P 1 の蓋を自動で閉め て小パッチ搬送機 9で他の連結形態の E F EM等に自動発送する。 連結形態の E F E M内を枚葉搬送してウェハ処理の待ち時間を なく しても連結形態の E F E M間でバッチ搬送していれば、枚葉搬 送の効果が削減されるので、小パツチにするための時間と枚数を設 定して、 小刻みな搬送を行なう。 結果的に、 連結形態の E F EM間 を枚葉コンペャで搬送すれば毎分 1 O mから 1 5 mの速度の場合、 1 5 O m長さの工場の場合で一周に 2 0分から 3 0分を要するが、 小バッチ搬送機 8は毎分 1 5 0 mの速度が出せるので一周の時間 は 2分で良く 、連結形態の E F EM内の枚葉搬送の効果が削減され ることはなレ、。 全体のフローは第 1 5図に示す通りである。 制御システムについて 次に、 図 1 7に基いて、 前記制御システムの構成例を説明する。 制御システム C Sは、 E R P (E n t e r p r i s e R e s o u r c e P 1 a n n i n g )等の基幹業務システムからの指示に 基き、 ベイ コ ン トローラ C S 2 と連携しながら、 ウェハ 2をグルー ビングパラメータ (品種/工程、 ロッ ト Noなど)毎に進渉管理したり、 リ ソース(各接続機器、 F O U P、 オペレータなど)のステータス管 理ゃ履歴管理を行つたり、枚葉レベルでの レシピ設定管理を行う枚 葉処理コン トローラ C S 1 と、 In addition, Ueno 2 that has been sent to Station 4 from EF EM 6 can set the timing for packing Wafer 2 into FOUP 1 at Station 4 at any small batch. For example, when a predetermined time has passed and the number of sheets reached, the lid of FOUP 1 is automatically closed and the small patch conveyor 9 automatically sends it to EFEM of another connection form or the like. Even if there is no wafer processing waiting time in single-sheet transfer within the EFEM in the connection mode, if the batch transfer is performed between the EFEMs in the connection mode, the effect of single-wafer transfer will be reduced, so small patches will be made Set the required time and the number of sheets, and carry out small increments. As a result, if a single-sheet compa- lier transports between the EF EMs in the connection form, at a speed of 1 O m to 15 m per minute, in the case of a 15 O m-long factory, 20 minutes to 30 minutes per round Although it takes a minute, the small batch conveyor 8 can deliver a speed of 150 m per minute, so it takes only 2 minutes for one round, and the effect of single wafer conveyance within the EFEM in the connected form is not reduced. Les. The overall flow is as shown in Figure 15. About control system Next, a configuration example of the control system will be described based on FIG. The control system CS groups the wafer 2 into group parameters (type / process, lot, etc.) in cooperation with the bay controller CS 2 based on the instructions from the core business system such as ERP (Entprise R source P 1 anning). A sheet processing controller that performs progress management for each No, etc., manages status of resources (each connected device, FOUP, operator, etc.), manages history, and manages recipe settings at the wafer level. CS 1 and
上位に前記枚葉処理コン トローラ C S 1が接続され、下位に前記 枚葉コ ンペャ 3、 ステーシ ョ ン 4、 E F EM 6 の各機器及ぴ製造装 置 5 0〜 5 4 のオンライ ン制御コ ン ト ローラ C S 3 〜 C S 6 が接 続されると共に、 ウェハ 2 の適正投入や前記ステーシ ョ ン 4へのゥ ェハ 2の回収の制御を行い、 ウェハ 2が B a y内をスムースに流れ るよ う に制御するべイ コ ン トローラ C S 2 と、  The above-mentioned single-wafer processing controller CS 1 is connected to the upper level, and the lower-level single-sheet processing controller 3, the station 4 and the EF EM 6 devices and the on-line control controllers 50 to 54 are connected to the lower level. With the crawlers CS3 to CS6 connected, the wafer 2 flows smoothly through the bay by controlling the proper injection of the wafer 2 and the collection of wafer 2 to the station 4. And the Bay Controller CS 2 to control
このべイ コ ン トローラ C S 2に接続され、 且つ、 ウェハ 2の枚葉 コンペャ 3への投入順番と各処理装置での処理順番を決定する ス ケジユーラ C S 7 と  It is connected to this Bayer controller C S 2 and determines the order of loading the wafer 2 into the single wafer processing 3 and the order of processing in each processing unit
前記ステーシ ョ ン 4のステータス管理、 履歴管理、 ステーショ ン 入出庫の材料搬送指示、退避処理などを行うステーショ ンコ ン ト口 ーラ C S 3 と  A station controller C S 3 that performs status management of the above-mentioned station 4, history management, material transfer instruction for station loading and unloading, evacuation processing, etc.
枚葉コ ンペャ 3 のステータス管理、 履歴管理、 装置 5 0〜 5 4 - 装置 5 0〜 5 4間あるいは装置 5 0〜 5 4 -ステーショ ン 3間の材 料搬送指示を行う枚葉搬送機コン トローラ C S 4 と、  Status management of sheet-fed copier 3, history management, device 5 0-5 4-device 5 0-5 4 or device 50 0-5 4-station 3. With the Trolla CS 4,
E F EM 6のステータス管理、 履歴管理、 E F EM搬入出の材料 搬送指示を行う E F EMコ ン ト ローラと C S 5 と、 装置 5 0〜 5 4のステータス管理、 履歴管理、 H S M S S E M I E 3 7、 G EM S E M I E 3 0 によるオンライ ンコン ト ロー ルを行う装置コン トローラ C S 6を備えている。 With the EF EM controller and CS 5 that perform status management of the EF EM 6, history management, and material transport instructions for loading and unloading of the EF EM, It has equipment controller CS6 that performs status control and history management of equipment 50 to 54, on-line control by HSMSSEMIE 37 and GEM SEMIE 30.
前記 C S :! 〜 C S 6には、 それぞれ C P U (中央処理装置)、 R O M (読み出し専用メモリ)、 R AM (読み書き可能メモリ)、 各コン ト ローラ間のイ ンターフェイス と して例えばシリ アルイ ンターフエ イス、基準クロ ックパルスを発生するクロ ックパルス発生回路及び 分周器等を備えており、それぞれ R O Mに記憶されたプログラムに 従って、 各 C P Uが各種処理を実行するよ う になっている。 このよ う に構成された制御システム C Sにおいて、例えば半導体 の製造工程の内、例えばパターン形成工程の B a yに適用されてい る場合、他の工程の B a y間との搬送を全般的にコン トロールする 搬送システムコン ト ローラ C S 8がこのシステム C Sに接続され、 この搬送システムコン トローラ C S 8 を介して工程間搬送機、ステ ーシヨ ン、 枚葉搬送機、 E F EM等が接続されている。 制御システム C Sによる制御例について 正常処理  In the above CS:! To CS6, a CPU (central processing unit), a ROM (read only memory), an RAM (read / write memory), and an interface between each controller, for example, are used as serial interfaces, respectively. A clock pulse generation circuit for generating a reference clock pulse, a frequency divider, and the like are provided, and each CPU executes various processing in accordance with programs stored in the ROM. In the control system CS configured in this way, for example, when it is applied to the bay of the patterning step in the manufacturing process of the semiconductor, for example, the transfer between the bay of the other processes is generally controlled. A transport system controller CS 8 is connected to the system CS, and an inter-process transport machine, a station, a sheet-fed transport machine, an EF EM, etc. are connected via the transport system controller CS 8. Control system with control system CS: Normal processing
次に、 制御システム C Sによる制御例を説明する。  Next, an example of control by the control system CS will be described.
まず、 B a y内が正常に処理されている場合の各コン トローラの 制御例を図 1 8に基いて説明する。  First, an example of control of each controller when the inside of B a y is normally processed will be described based on FIG.
ベイ コン ト ローラ C S 2は、ステーショ ンコン ト ローラ C S 3 か ら、 F O U Pのステーショ ンの到着信号を受信する (ステップ 1 ) と、 F O U Pステータスを更新し、 ウェハ情報取得要求を枚葉管理 コン トローラ C S 1 に送信する(ステップ 2 )。 When the bay controller CS 2 receives the arrival signal of the FOUP station from the station controller CS 3 (step 1), it updates the FOUP status and requests wafer information acquisition for a single wafer. Send to controller CS 1 (step 2).
次に、ベイコン トローラ C S 2は枚葉管理コン トローラ C S 1か ら受信したウェハ情報などを追加、 更新し (ステップ 3 )、 スケジ ユーリ ング実行条件に合致すればスケジューラノディスパッチャ C S 7にスケジユーリ ング実行要求を送信し、その結果を受信する (ステ ップ 4、 ステ ップ 5 )。  Next, the bay controller CS 2 adds and updates the wafer information etc. received from the single wafer management controller CS 1 (step 3), and if the scheduling execution conditions are met, the scheduling process is executed to the scheduler server 7. Send a request and receive the result (Step 4, Step 5).
次に、スケジユーリ ング結果を受信したベイコン トローラ C S 2 は投入指示を実行する (ステップ 6 ) と、 ステーショ ンコン トロー ラ C S 3は該当ウェハの存在する F O U Pを投入ステージに移動 し、 ウェハが枚葉コンベア 3に移載される。  Next, when receiving the scheduling result, the bay controller CS 2 executes the closing instruction (step 6), and the station controller CS 3 moves the FOUP in which the corresponding wafer exists to the closing stage, and the wafer is transported by the single wafer conveyor. It is transferred to 3.
枚葉コンベア 3に搬送されたウェハが、所定の E F EM 6に移載 され、 処理装置のミニノ ッファにロー ドされると、 ベイ コン トロー ラ C S 2は仮想ロー ドポー トをアサインする。  When the wafer transferred to the single wafer conveyor 3 is transferred to a predetermined E F EM 6 and loaded onto the processing system mini-loader, the Bayer C S 2 assigns a virtual load port.
装置コ ン ト ローラ C S 6から処理開始を受信した (ステ ップ 7 ) ベイ コ ン トローラ C S 2は、 ウェハステータスや装置ステータスを 更新し、枚葉管理コン トローラ C S 1 に処理開始 トランザクショ ン 要求を送信する (ステ ップ 8 )。  Processing start received from equipment controller CS 6 (Step 7) Bay controller CS 2 updates the wafer status and equipment status, and requests processing start transaction request to single wafer management controller CS 1 Send (Step 8).
装置コ ン ト ローラ C S 6から処理終了通知を受信すると (ステツ プ 9 )、 ベイ コ ン トローラ C S 2はウェハや装置ステータスを更新 し、スケジューラ ディスパッチャ C S 7へディスパッチ起動要求 の送信及びその結果の受信(ステップ 1 0、ステップ 1 1 )を行い、 枚葉管理コン トローラ C S 1 に処理終了 トランザクショ ン要求を それぞれ送信する (ステップ 1 2 )。  When receiving the processing end notification from the device controller CS 6 (Step 9), the bay controller CS 2 updates the wafer and device status, and sends a dispatch start request to the scheduler dispatcher CS 7 and receives the result Perform (Step 10, Step 1 1), and send a processing completion transaction request to the single-wafer management controller CS 1 (Step 1 2).
ベイ コ ン トローラ C S 2がミニバッファ ウェハ搬入通知を受信 すると、 ウェハステータス更新、 回収チェックを実行後、 搬送指示 を実行する (ステ ップ 1 3 )。 その後、次工程処理が存在するウェハは次工程処理装置に搬送さ れ、 ウェハの装置搬入〜装置搬出のフローを繰り返す。 When receiving the mini-buffer wafer loading notification, the Bayer controller CS 2 executes the wafer status update and recovery check, and then executes the transfer instruction (step 1 3). Thereafter, the wafer on which the next-step processing exists is transferred to the next-step processing device, and the flow of wafer loading and unloading is repeated.
最終工程の処理が終了したウェハは、ステーショ ンに回収された のち、 次 B a yに搬送される (ステップ 1 4〜 1 6 )。 代替 B a y処理  After the final process has been completed, the wafer is collected at the station and transferred to the next bay (steps 1 to 16). Alternative B a y processing
次に、 B a y内処理装置で異常が発生し、 代替 B a yにて処理を 続行せざるを得ない場合の、各コン トローラ処理手順とコン トロー ラ間の通信手順を図 1 9に基き説明する。 ウェハがある装置での処理を終了した場合、ベイコン トローラ C S 2は装置コ ン ト ローラ C S 6から処理終了通知を受信する (ステ ップ 1 0 1 )。 ベイ コ ン ト ローラ C S 2はウェハや装置ステータス を更新し、スケジューラ/ディスパッチャ C S 7へディスパッチ起 動要求の送信し (ステップ 1 0 2 ) すると共に、 その結果を受信し (ステップ 1 0 3 )、 枚葉管理コン トローラ C S 1 に処理終了 トラ ンザクショ ン要求 (ステップ 1 0 4 ) をそれぞれ送信する。  Next, each controller processing procedure and communication procedure between the controllers are explained based on Fig. 19 when an abnormality occurs in the processor in Bay and processing must be continued in the alternative Bay. Do. When the wafer processing is completed in the apparatus, the bay controller C S 2 receives the process end notification from the apparatus controller C S 6 (step 1 0 1). The Bayer controller CS 2 updates the wafer and equipment status, sends a dispatch activation request to the scheduler / dispatcher CS 7 (step 1 0 2) and receives the result (step 1 0 3), Send a processing end transaction request (steps 1 0 4) to the single-wafer management controller CS 1.
処理終了した後の次装置への搬送(排出)待ちのウェハに対し、次 装置が停止した場合 (ステップ 1 0 5 )、 ベイコン トローラ C S 2 は装置ステータスを更新し、枚葉管理コ ン ト ローラ C S 1 に装置状 態変更要求を送信 (ステ ップ 1 0 6 ) する。  When the next device stops for the wafer waiting for transfer (discharge) to the next device after the processing is completed (Step 1 0 5), the bay controller CS 2 updates the device status, and the single-wafer management controller Send a device state change request to CS 1 (step 1 0 6).
また、ベイ コ ン トローラ C S 2は該当ウェハが自 B a y内の他の 装置で処理できるかをチェックする。処理できる装置が存在する場 合は、 次装置決定ロジックに従って次装置を決定する。 他に処理で きる装置が自 B a y内に無い場合には、ステーショ ンへの回収指示 を実行 (ステップ 1 0 7〜 1 0 9 ) する。 この場合、 停止した装置 別に回収 F O U Pを用意する。 In addition, the bay controller CS2 checks whether the corresponding wafer can be processed by another device in its own bay. If there is a device that can be processed, determine the next device according to the next device decision logic. If there are no other devices that can be processed in the own bay, execute collection instructions to the station (steps 10 7 to 10 9). In this case, the stopped device Prepare a separate FOUP.
回収完了通知を受信 (ステップ 1 1 0 ) したべイコン トローラ C S 2は、 ウェハステータスを更新し、 枚葉管理コ ン ト ローラ 1 に回 収完了通知を送信する (ステ ップ 1 1 1 )。 また代替 B a yへの搬 送指示を実行 (ステ ップ 1 1 2 ) する。  After receiving the collection completion notice (step 1 1 0), the beacon controller C S 2 updates the wafer status and sends a collection completion notice to the single wafer management controller 1 (step 1 1 1). Also, execute the transfer instruction to the alternate Bay (step 1 1 2).
上記 B a y内の製造装置 5 0 - 5 4が、例えばフローショ ップ式 に配置されている場合に、 ある製造装置が故障した場合でも、 他の B a yに搬送することで、それ以降の処理が滞ることを避けること ができる。  For example, when the manufacturing apparatuses 5 0-5 4 in the above-mentioned Bay are arranged in a flow-shop type, even if one manufacturing apparatus breaks down, they can be transported to another Bay for further processing. Can avoid getting stuck.
なお、 この場合、 他の B a yは、 本発明と同様なシステムでもよ いし、 F O U P単位で処理するシステムでもよい。 ウェハの高効率回収  In this case, the other B a y may be a system similar to the present invention, or may be a system that processes in units of F O U U P. Efficient collection of wafers
次に、 回収予定ウェハの遅延を自動認識し、 回収未完了 F O U P の次 B a y搬送を指示する場合の、各コ ン ト ローラ処理手順と コ ン トローラ間の通信手順を図 2 0 ( A) ( B ) に基いて説明する。 回収中の F O U Pにおいて回収予定ウェハの到着が遅れるケー スでは、 自動的に既回収ウェハを先に次 B a Vへ搬送させる。 即ち、 図 2 0 ( A) に示したよ う に、 装置がオンラインの場合、 装置停止を自動認識して搬送を開始するもので、ベイ コ ントローラ C S 2がウェハ回収を指示 (ステップ 2 0 1 ) した後、 回収ウェハ の存在する装置が停止する と、ベイ コ ン トローラ C S 2は装置コ ン トローラ C S 6から装置停止報告を受信する (ステ ップ 2 0 2 )。 次に、 ベイ コ ントローラ C S 2は装置ステータスを更新し、 枚葉 管理コン トローラ C S 1 に装置停止報告 (ステップ 2 0 3 ) し、 回 収予定ウェハの一部回収完了報告 (ステップ 2 0 4 ) を送信し、 次 B a y搬送指示を実行 (ステップ 2 0 5 ) する。 また、 回収間隔をタイマ監視して、 タイムアウ ト発生時に搬送を 開始する場合には、 図 2 0 ( B ) に示したよ う に、 ベイコン トロー ラ C S 2はウェハ回収を指示 (ステップ 2 0 6 ) した後、 回収間隔 をタイマ監視する。 回収間隔にタイムァゥ トが発生すると、 枚葉管 理コン トローラ c S 1 に回収予定ウェハの一部回収完了報告を送 信 (ステップ 2 0 7 ) .し、 次 B a yへの搬送指示を実行 (ステップ 2 0 8 ) する。 Next, the controller processing procedure and the communication procedure between the controllers are shown in Fig. 20 (A) when the delay of the wafer to be collected is automatically recognized and the next bay transfer of the recovery incomplete FOUP is instructed. It explains based on (B). In the case where the arrival of the to-be-collected wafer is delayed in the FOUP being collected, the collected wafer is automatically transferred to the next B a V automatically. That is, as shown in FIG. 20 (A), when the apparatus is on-line, automatic stop of the apparatus is automatically recognized and conveyance is started, and the bay controller CS 2 instructs the wafer collection (step 20 1) After that, when the device with recovered wafers stops, Bay Controller CS 2 receives a device shutdown report from Device Controller CS 6 (Step 202). The Bay Controller CS 2 then updates the device status and Report the equipment stop (Step 2 0 3) to the management controller CS 1, send a partial collection completion report of the wafers to be collected (Step 2 0 4), and execute the next Bay transfer instruction (Step 2 0 5) Do. In addition, when the collection interval is timer-monitored and the transfer is started when the timeout occurs, as shown in Fig. 20 (B), the Bayer controller CS 2 instructs the wafer collection (step 2 0 6) After that, monitor the collection interval by timer. When a time interval occurs in the recovery interval, a partial recovery completion report of the wafer to be recovered is sent to the single wafer management controller c S 1 (step 2 0 7), and the transfer instruction to the next Bay is executed ( Do step 2 0 8).
以上のよ うな処理によ り、 ステーシ ョ ン 4において、 ウェハの無 駄な待ち時間の発生を防ぐことができる。 仮想ロー ドポー ト、 仮想 F O U Pを実装  By the above processing, it is possible to prevent the occurrence of unnecessary waiting time of the wafer at the stage 4. Implement virtual load port and virtual FOUP
次に、 仮想ロー ドポー ト、 仮想 F O U Pを実装した場合の、 各コ ン トローラ処理手順とコン トローラ間の通信手順を図 2 1 に基き、 説明する。  Next, based on Fig. 21 we explain each controller processing procedure and communication procedure between controllers when virtual load port and virtual FOUP are installed.
この処理は、現在のスタンダー ドとなっている F O U P単位の処 理手順に枚葉単位の処理を適合させるものである。 ベイ コン トローラ C S 2からウェハ搬送指示を受信(ステップ 3 0 1 ) した E F EMコ ン ト ローラ C S 5は、 装置コ ン ト ローラ C S 6に対して仮想ロー ドポー ト、 仮想 F O U Pのアサインを実行 (ス テツプ 3 0 2 ) する。 仮想ロー ドポー ト、 仮想 F O U Pをアサイン された装置コントローラ C S 6では、実 F O U P無しの操業にも関 わらず, CM S ( C a r r i e r M a n a g e m e n t S y s t e m)関連のイベン ト報告をべイ コ ン ト ローラ C S 2に送信するこ とが可能となる。 This process adapts the processing of each leaf to the processing procedure of FOUP, which is the current standard. After receiving the wafer transfer instruction from the bay controller CS 2 (step 3 0 1), the EF EM controller CS 5 executes assignment of virtual load port and virtual FOUP to the equipment controller CS 6 ( Step 3 0 2). Virtual load port, equipment controller with virtual FOUP assigned CS 6 is also related to operation without actual FOUP. However, it is possible to send event reports related to Carrier Management System (CMS) to the banner controller CS2.
また、 E F EMコ ン ト ローラ C S 5は、 装置コン トローラ C S 6 との間で、 F O U P関連動作指示通信等を行い(ステップ 3 0 3 )、 さ らにウェハ搬送指示を受信する (ステップ 3 0 4 )。  In addition, the EF EM controller CS 5 performs FOUP related operation instruction communication and the like with the device controller CS 6 (step 3 0 3), and further receives a wafer transfer instruction (step 3 0) Four ).
ステーシ ョ ンの F O U Pへのウェハの一斉回収 Collecting wafers to the station's FOUP
次に、 一つのグループのウェハの処理が終了するまで、 処理済み の ウエノヽを各 E F EM 6 のノくッファーカセッ ト 6 2に貯めておき、 各ウェハの最終処理が完了した段階で、一斉に処理済みウェハを枚 葉コンベア 3 に載せて、ステーショ ンの空き F O U Pに回収する場 合の、各コン ト口ーラ処理手順と コン トローラ間の通信手順を図 2 2に基き説明する。  Next, the processed wafers are stored in each EF EM 6 wafer cassette 62 until the processing of one group of wafers is completed, and when the final processing of each wafer is completed, all at once. The procedure for processing each controller and the procedure for communication between controllers when the processed wafers are placed on the single-wafer conveyor 3 and collected in the vacant FOUP of the station will be described based on FIG.
E F EMコン トローラ C S 5は、そのロボッ ト 6 0に処理済みゥ ェハのバッファ一力セッ ト 6 2への受け渡しを指示する (ステップ 4 0 1 )。 E F EM controller C S 5 instructs the robot 60 to transfer the processed wafer to the buffer power set 62 (step 401).
各 E F EMコ ン ト ローラ C S 5は、全てのウェハの処理が終了し た時点で、 ベイ コ ン トローラ C S 2に処理終了通知を送信する (ス テツプ 4 0 2 ) と、 ベイコン トローラ C S 2はウェハや装置ステー タスを更新し、枚葉管理コン トローラ C S 1 に処理終了 トランザク シヨ ン要求 (ステップ 4 0 2 ) をそれぞれ送信する。  Each EF EM controller CS 5 sends a process end notification to the bay controller CS 2 when all wafers have been processed (step 402), and the bay controller CS 2 Update the wafer and device status, and send a single transaction control request (step 402) to the single wafer management controller CS1.
次に、 ベイ コン トローラ C S 2から、 ウェハの搬送の指示を受信 した E F EMコン トローラ C S 5は、 ウェハを一斉に枚葉コンベア 3に載せる (ステップ 4 0 3 )。 ベイ コン トローラ C S 2から回収指示を受けたステーショ ン C S 3 (ステップ 4 0 4 ) は、 その回収指示を実行する。 Next, upon receiving a wafer transfer instruction from the bay controller CS2, the EF EM controller CS5 places the wafers on the single-wafer conveyor 3 simultaneously (step 403). Station CS 3 (Step 04) receives the recovery instruction from Bayer controller CS 2 and executes the recovery instruction.
その後、 上記各処理と同様に、 回収完了通知を受信したベイ コン トローラ C S 2は、 ウェハステータスを更新し、 枚葉管理コン ト口 —ラ 1 に回収完了通知を送信する し、次 B a yへの搬送指示を実行 する。  After that, as with the above processes, the Bay Controller CS2 receiving the collection completion notification updates the wafer status, sends the single wafer management controller 1 the collection completion notification, and sends it to the next Bay. Execute the transport instruction of.
この処理によ り、一つのグループのウェハの処理が円滑に行われ る。 産業上の利用可能性  This process facilitates the processing of one group of wafers. Industrial applicability
以上、 ワーク枚葉処理システムを半導体製造工程に代表させて、 その構成例を開示したが、 その他のワーク製造工程、 例えば液晶製 造工程等においても適用できるシステムである。基板のサイズが大 型化してきた第 6世代 ( 150 0 mm X 1 8 0 0 mm)、 さ らにその 上の第 7世代 ( 1 8 0 0 mm X 2 0 0 O mm) においても適用でき るシステムである。 As mentioned above, although the single wafer processing system is represented to the semiconductor manufacturing process and the example of composition was indicated, it is a system applicable also to other work manufacturing processes, for example, a liquid crystal manufacturing process etc. It can be applied to the sixth generation (150 0 mm x 180 mm) where the size of the substrate has been increased, and further to the seventh generation (1 800 mm x 20 0 O mm) above it. System.

Claims

請求の範囲 The scope of the claims
1 . 工程間搬送手段によ り搬送される F OU P等からワークを枚 葉単位で枚葉コンべャに供給したり 、枚葉単位のワークを枚葉コン べャから F O U P等に回収するステーショ ンと、製造装置の前に設 けられた E F EMと、 これらの E F EMとステーショ ンとのク リー ン域を共通にするク リーン トンネルと、 このク リーン トンネル内で ワークを搬送する前記枚葉コ ンペャからなるワーク枚葉処理シス テムにおいて、 1. Supply work piece by sheet to sheet conveyors from F OU P, etc. conveyed by inter-process conveyance means, or collect sheet work pieces from sheet conveyor to FOUP etc. A station, an EF EM installed in front of a manufacturing apparatus, a clean tunnel having a clean area common to these EF EMs and the station, and the above-mentioned that transports a work in the clean tunnel In a single wafer processing system consisting of single wafer processing,
ベイコン トローラと連携しながら、 ワークをグルーピングパラメ ータ毎に進渉管理したり 、 リ ソースのステータス管理や履歴管理を 行ったり 、枚葉レベルでのレシピ設定管理を行う枚葉処理コン ト 口 ーラ と、  Works with the Bayer controller to perform work progress management for each grouping parameter, to manage resource status and history, and to control the recipe settings at the wafer level. La,
上位に前記枚葉処理コン トローラが接続され、 ワークの適正投入 や前記ステーショ ンへのワークの回収の制御を行い、 ワークが B a y内をスムースに流れるよ うに制御するべィ コン トローラ と、 このべイ コントローラに接続され、 且つ、 ワークの枚葉コンペャ への投入順番と各処理装置での処理順番を決定するスケジューラ と、  The above-mentioned single-wafer processing controller is connected to the upper layer, controls the proper input of the work and the collection of the work to the above-mentioned station, and controls the work to flow smoothly in the bay. A scheduler connected to the bay controller and determining the order in which the workpieces are to be fed into the sheet-fed complier and the processing order in each processing device;
前記べイ コン トローラの下位に接続され、 且つ、 前記ステーショ ンのステータス管理、 履歴管理、 ステーショ ン入出庫の材料搬送指 示、 退避処理などを行うステーショ ンコン トローラと、  A station controller connected to the lower level of the bay controller and performing status management of the station, history management, material transfer instruction of the station loading and unloading, evacuation processing, and the like;
前記べイ コン ト ローラの下位に接続され、 且つ、 前記枚葉コンペ ャのステータス管理、 履歴管理、 装置-装置間あるいは装置-ステー ショ ン間の材料搬送指示を行う枚葉搬送機コン トローラと、 前記べイ コントローラの下位に接続され、 且つ、 前記 E F EMの ステータス管理、 履歴管理、 E F EM搬入出の材料搬送指示を行う E F EMコ ン ト ローラと、 A sheet-fed transfer machine controller connected under the image controller and instructing the sheet-fed machine status management, history management, device-machine or machine-station material transfer instruction, and Connected to the lower side of the bay controller, and of the EF EM An EF EM controller that performs status management, history management, and material transport instructions for loading and unloading of EF EM;
前記べイ コ ン トローラの下位に接続され、 且つ、 前記装置のステ 一タス管理、履歴管理を行う装置コ ン トローラを備えているこ とを 特徴とするワーク枚葉処理システム。  A work-piece-by-piece processing system, comprising: an apparatus controller connected to a lower level of the controller and performing status management and history management of the apparatus.
2. 処理が終了した後の次装置への搬送待ちのウェハに対し、 故 障等によ り、 次装置が停止した場合、 前記べイ コ ン トローラは、 前 記ウェハが B a y内の他の装置で処理できるかをチェックする と 共に、 処理できる装置が存在する場合は、 次装置決定ロジックに従 つて次装置を決定し、他に処理できる装置が B a y内に無い場合に は、前記ステーショ ンへの回収指示を実行するこ とを特徴とする請 求項 1 に記載のワーク枚葉処理システム。 2. When the next device is stopped due to a failure or the like with respect to the wafer waiting to be transferred to the next device after the processing is completed, the above-mentioned wafer controller is said to be other than the one in Bay. both checking whether can be processed by the device, if the processing apparatus capable exists, when determining the Supporting connexion next device in the next unit decision logic can be processed in another device is not in the B a y is The workpiece single-wafer processing system according to claim 1, wherein a collection instruction to the station is executed.
3. 前記べイ コ ン トローラはウェハ回収を指示した後、 回収間隔 をタイマ監視し、 回収間隔にタイムァゥ トが発生すると、 枚葉管理 コ ン ト ローラに回収予定ウェハの一部回収完了報告を送信する と 共に、次 B a yへの搬送指示を実行するこ とを特徴とする請求項 1 に記載のワーク枚葉処理システム。 3. After instructing the wafer recovery, the baince controller monitors the recovery interval by a timer, and when a timeout occurs in the recovery interval, the single wafer management controller reports a partial recovery completion of the wafer to be recovered. The work sheet processing system according to claim 1, characterized in that, together with transmission, a transfer instruction to the next Bay is executed.
4. 前記べイ コン トローラからウェハ搬送指示を受信した E F E Mコン トローラは、 装置コン トローラに対して仮想ロードポー ト、 仮想 F O U Pのアサイ ンを実行するこ と を特徴とする請求項 1 に 記載のワーク枚葉処理システム。 4. The work according to claim 1, wherein the EFEM controller that has received the wafer transfer instruction from the vane controller executes virtual load port and virtual FOUP assignment to the device controller. Sheet-fed processing system.
5. —つのグループのウェハの処理が終了するまで、 各 E F EM コン トローラは、そのバッファ一力セッ トに処理済みのウェハを貯 留し、 各ウェハの最終処理が完了した段階で、 前記べイコン トロー ラからの指示に基き、一斉に処理済みウェハを枚葉コンベアに载せ て、ステーシ ョ ンの空き F O U Pに回収することを特徴とする請求 項 1 に記載のワーク枚葉処理システム。 5. — Each EF EM until processing of one group of wafers is complete The controller stores the processed wafers in its buffer set, and when the final processing of each wafer is completed, the processed wafers are simultaneously transferred according to the instruction from the wafer controller. The work sheet processing system according to claim 1, wherein the work is transferred to a conveyor and collected into a vacant FOUP of a station.
PCT/JP2003/013131 2003-10-14 2003-10-14 Work single wafer processing system WO2005036617A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004571956A JP4083748B2 (en) 2003-10-14 2003-10-14 Workpiece single wafer processing system
PCT/JP2003/013131 WO2005036617A1 (en) 2003-10-14 2003-10-14 Work single wafer processing system
AU2003271187A AU2003271187A1 (en) 2003-10-14 2003-10-14 Work single wafer processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/013131 WO2005036617A1 (en) 2003-10-14 2003-10-14 Work single wafer processing system

Publications (1)

Publication Number Publication Date
WO2005036617A1 true WO2005036617A1 (en) 2005-04-21

Family

ID=34430872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013131 WO2005036617A1 (en) 2003-10-14 2003-10-14 Work single wafer processing system

Country Status (3)

Country Link
JP (1) JP4083748B2 (en)
AU (1) AU2003271187A1 (en)
WO (1) WO2005036617A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918977A3 (en) * 2006-10-30 2009-12-02 Applied Materials, Inc. Workpiece rotation apparatus for a plasma reactor system
JP2013016665A (en) * 2011-07-05 2013-01-24 Dainippon Screen Mfg Co Ltd Control device, substrate processing method, substrate processing system, using method of substrate processing system, load port control device, and substrate processing system provided with the same
JP2013198960A (en) * 2012-03-26 2013-10-03 Disco Corp Robot hand
JP2017076686A (en) * 2015-10-14 2017-04-20 株式会社ディスコ Wafer processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288990A (en) * 1998-04-01 1999-10-19 Hitachi Ltd Processing method and device thereof, and semiconductor production line and transfer method of processed substrate thereof
JP2001102427A (en) * 1999-10-01 2001-04-13 Hitachi Ltd Process treating method, device thereof, semicoductor manufacturing line and transfer method of substrate to be treated in semiconductor manufacturing line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288990A (en) * 1998-04-01 1999-10-19 Hitachi Ltd Processing method and device thereof, and semiconductor production line and transfer method of processed substrate thereof
JP2001102427A (en) * 1999-10-01 2001-04-13 Hitachi Ltd Process treating method, device thereof, semicoductor manufacturing line and transfer method of substrate to be treated in semiconductor manufacturing line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918977A3 (en) * 2006-10-30 2009-12-02 Applied Materials, Inc. Workpiece rotation apparatus for a plasma reactor system
JP2013016665A (en) * 2011-07-05 2013-01-24 Dainippon Screen Mfg Co Ltd Control device, substrate processing method, substrate processing system, using method of substrate processing system, load port control device, and substrate processing system provided with the same
KR101423377B1 (en) * 2011-07-05 2014-07-24 다이닛뽕스크린 세이조오 가부시키가이샤 Control apparatus, a substrate treating method, a substrate treating system, a method of operating a substrate treating system, a load port control apparatus, and a substrate treating system having the load port control apparatus
US8868233B2 (en) 2011-07-05 2014-10-21 Dainippon Screen Mfg. Co., Ltd. Control apparatus, a substrate treating method, a substrate treating system, a method of operating a substrate treating system, a load port control apparatus, and a substrate treating system having the load port control apparatus
JP2013198960A (en) * 2012-03-26 2013-10-03 Disco Corp Robot hand
JP2017076686A (en) * 2015-10-14 2017-04-20 株式会社ディスコ Wafer processing method

Also Published As

Publication number Publication date
JP4083748B2 (en) 2008-04-30
AU2003271187A1 (en) 2005-04-27
JPWO2005036617A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US7221993B2 (en) Systems and methods for transferring small lot size substrate carriers between processing tools
US7778721B2 (en) Small lot size lithography bays
TWI434797B (en) Integrated systems for interfacing with substrate container storage systems
TWI355572B (en) Methods and apparatus for integrating large and sm
TW200403181A (en) Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists
US20040234360A1 (en) System for conveying and transferring semiconductor or liquid crystal wafer one by one
US9632499B2 (en) Work-in-progress substrate processing methods and systems for use in the fabrication of integrated circuits
JP3212087B2 (en) Multi-product transfer method and device
JPWO2015107955A1 (en) Substrate processing method and substrate processing apparatus
JP2000091401A (en) Cassette carrying system, semiconductor aligner, and reticle-carrying method
JP4090990B2 (en) Semiconductor or liquid crystal wafer single wafer transfer and transfer system
WO2005036617A1 (en) Work single wafer processing system
JP5183861B2 (en) Method of using a small lot size substrate carrier and semiconductor device manufacturing facility
JP4100585B2 (en) Pod supply device in semiconductor manufacturing equipment
JPH08148538A (en) Method and system for producing semiconductor device and carrier case
TWI220420B (en) System for conveying and transferring semiconductor or liquid crystal wafer one by one
JP3971526B2 (en) Substrate loading / unloading apparatus and transfer system
JP2002334917A (en) Transfer facility consisting of pallet-type single-wafer transfer conveyor holding end face of semiconductor wafer, transfer robot, id reader, and buffer station
WO2002059961A1 (en) Single semiconductor wafer transfer system and transfer unit
JP2009146975A (en) Substrate treating device
JPH04298059A (en) Vacuum processor
JPH11145243A (en) Production of semiconductor
JPH0446742A (en) Method and device for carrying multi-kind of works
JPH0334441A (en) System for continuously processing semiconductor substrates
JPS61173849A (en) Article conveying system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004571956

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase