WO2005034236A1 - Plastisch verformbarer kühlkörper für elektrische und/ oder elektronische bauelemente - Google Patents

Plastisch verformbarer kühlkörper für elektrische und/ oder elektronische bauelemente Download PDF

Info

Publication number
WO2005034236A1
WO2005034236A1 PCT/EP2004/052234 EP2004052234W WO2005034236A1 WO 2005034236 A1 WO2005034236 A1 WO 2005034236A1 EP 2004052234 W EP2004052234 W EP 2004052234W WO 2005034236 A1 WO2005034236 A1 WO 2005034236A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
sink according
heat
thermally
deformable
Prior art date
Application number
PCT/EP2004/052234
Other languages
English (en)
French (fr)
Inventor
Wolfgang Von Gentzkow
Dieter Heinl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04766823A priority Critical patent/EP1668698A1/de
Publication of WO2005034236A1 publication Critical patent/WO2005034236A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/091Locally and permanently deformed areas including dielectric material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0064Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate

Definitions

  • the invention relates to a heat sink for electrical and / or electronic components, in particular printed circuit boards, which is deformable.
  • heat sinks There are several heat sinks known which are attached to the circuit board or individual components for cooling 0 printed circuit boards and which generally comprise aluminum as a light and very thermally conductive material. These elements are known internationally under the name “heat sinks for thermal management in electronics” .5 The problem with these heat sinks is that they are mainly mounted on the circuit board and the heat released in the components must be dissipated via the poorly heat-conductive circuit board.
  • deformable heat sinks are now known from documents DE 197 04 549 AI and DE 196 24 475 AI. Although these heat sinks offer considerable advantages over the known rigid heat sinks, they also have a considerable disadvantage that they are constructed in several pieces, that is to say they have at least two materials, an outer material and a filling. This multiple structure of the materials on the one hand creates a barrier in the heat dissipation of the heat sink and on the other hand a higher manufacturing effort.
  • the invention relates to a heat sink for electrical and / or electronic components, which is deformable, characterized in that it can be produced using only one material, the material being present in several modifications in the finished heat sink.
  • Such a heat sink is solid but plastically deformable. It consists of a UV-curable reaction resin that contains thermally conductive fillers. The surface of this heat sink is hardened or hardened by UV radiation. This creates a skin that, depending on the curing conditions, can be low-tack to non-tacky and enables problem-free handling of the heat sink.
  • Such a heat sink is technically uniform, although it is grip-resistant on the outside and plastically and / or elastically deformable on the inside.
  • a heat sink with a stable outer skin can be produced, which is in the form of an attenuator and which, on the inside, comprises non-crosslinked heat-conducting material.
  • the heat sink in its partially cross-linked form is sticky on the surface and can therefore be applied to the component in a self-adhesive and deformable manner.
  • the invention is implemented by a reaction resin which is highly filled with thermally conductive fillers and which comprises a mixture of photoinitiators and thermally excitable cationic polymerization initiators. After shaping, this is crosslinked externally by radiation, so that it is stable on the outside but deformable on the inside.
  • UV radiation penetrates through some fillers and can also harden through highly filled materials, it was found that the radiation only causes external crosslinking because it does not penetrate due to the high filler content of the reactive resin the inside of the body penetrates.
  • the grip-resistant and deformable, possibly also self-adhesive, multi-layer structure is therefore made of one material, but includes different states or modifications of this material.
  • reaction resin for example epoxy resins and / or acrylate resins or mixtures of these resins can be used.
  • the resin system is advantageously based on cationically hardenable epoxy resin systems. UV and thermally hardenable one-component 200314931
  • Epoxy resin systems for use.
  • the epoxy resin systems can contain vinyl ethers and / or polyols, which in particular promote their thermal curing.
  • the epoxy resin systems also contain thermally conductive fillers as well as initiators and catalysts for UV and thermally initiated cationic polymerisation and possibly common additives such as e.g. Dyes, pigments, stabilizers, thixotropic agents, flexibilizers, wetting agents, adhesion promoters and processing aids.
  • Linear aliphatic epoxides with cycloalkylene structure such as epoxidized olefins, diolefins and / or polyolefins, aromatic, aliphatic and cycloaliphatic di- or polyglycidyl ethers are suitable as epoxy compounds.
  • epoxy resins with cycloalkylene oxide structures are bis (2,3-epoxycyclopentyl) ether, 2,3-epoxycyclopentyl glycidyl ether, 1,2-bis (2,3-epoxycyclopentyl) ethane, vinylcyclohexene dioxide, 3,4- epoxycyclohexylmethyl-3 ⁇ , ⁇ 4 -epoxycyclo- hexan-carboxylate, 3, 4-epoxy-6-methylcyclohexylmethyl-3, 4 '- epoxy-6-methyl-cyclohexane carboxylate, bis (3, 4-epoxycyclo- hexylmethyl) adipate, and Bis (3,4-epoxy- ⁇ -methylcyclohexylmethyl) adipate.
  • aromatic di- or polyglycidyl ethers used are bisphenol F diglycidyl ether and bisphenol A diglycidyl ether.
  • Cycloaliphatic glycidyl compounds and ⁇ -methylglycidyl compounds are used as aliphatic di- or polyglycidyl ethers. These are glycidyl esters and ⁇ -methyl glycidyl esters of cycloaliphatic polycarboxylic acids such as tetrahydrophthalic acid, 4-methyl-tetrahydrophthalic acid, hexahydrophthalic acid, 3-methyl-hexahydrophthalic acid and 4-methylhexahydrophthalic acid.
  • Suitable cycloaliphatic epoxy resins are the diglycidyl ether and ⁇ -methyl-glycidyl ether of cycloaliphatic alcohols, such as 1,2-diglycidyl ether of 1,3-dihydroxycyclo-hexane and 1,4-dihydroxycyclohexane, 1,4-cyclohexanedimethanol, 1,1- Bis (hydroxy-methyl) cyclohex-3-ene, bis (4-hydroxycyclo-hexyl) methane, 2,2-bis (4-hydroxycyclohexyl) propane and bis (4-hydroxy-cyclohexyl) sulfone.
  • 1,2-diglycidyl ether of 1,3-dihydroxycyclo-hexane and 1,4-dihydroxycyclohexane 1,4-cyclohexanedimethanol
  • 1,1- Bis (hydroxy-methyl) cyclohex-3-ene bis (4-hydroxycyclo-hexyl) methane
  • Preferred cycloaliphatic epoxy resins are bis (4-hydroxycyclohexyl) methane diglycidyl ether, 2, 2-bis (4-hydroxycyclohexyl) propane diglycidyl ether, tetrahydrophthalic acid diglycidyl ester, 4-methyltetrahydrophthalic acid diglycidyl ester, 4-methyl-hexoxy-methylahydylcidyl ester, 4-methyl-hexoxy-methyl-hexahydyl-3-methyl-hexahydroxyl 3 ⁇ - epoxycyclohexane carboxylate and especially hexahydrophthalic acid diglycidyl ester.
  • the cycloaliphatic epoxy resins can also be used in combination with aliphatic epoxy resins.
  • Epoxidation products of unsaturated fatty acid esters can be used as "aliphatic epoxy resins".
  • vinyl ether-functionalized hydroxyl compounds are suitable as vinyl ether-functional compounds.
  • Suitable compounds are in particular cyclohexanedi- methyldivinyl ether, triethylene glycol dininyl ether, butanediol divinyl ether, bis (4-vinyloxybutyl) isophthalate, bis (4-vinyloxybutyl) succinate, bis (4-vinyloxymethylcyclohexylmethyl) glutarate, and hydroxybutylmonovinyl ether or vinyl ether-functionalized hydroxypurylated aliphatic polyether.
  • Vinyl ethers with> 2 vinyl ether groups per molecule are preferred.
  • polystyrene resin Compounds which are obtained by reaction of epoxy compounds with alcohols or phenols are preferably used as the polyol component.
  • polyvalent aliphatic or cycloaliphatic alcohols such as e.g. Glycols
  • trifunctional or tetrafunctional alcohols such as e.g. Trimethylolpropane or ethers of glycols with phenols or bisphenols as well as polymer polyols are used.
  • a mixture of UV-reactive and thermally reactive components is preferably used to initiate the cationic curing.
  • a cationic photoinitiator or a cationic photoinitiator system is used to initiate cationic curing. Its share in the total epoxy resin system can be 0.1 to 5%, advantageously 1 to 3%.
  • these photoinitiators release reactive cations, eg protons, which initiate the cationic curing process of the epoxy resin.
  • the photoinitiators are derived from stable organic onium salts, in particular with nitrogen, phosphorus, oxygen, sulfur, selenium or iodine as the central atom of the cation.
  • Aromatic sulfonium and iodonium salts with complex anions have proven to be particularly advantageous.
  • a photoinitiator releasing a Lewis acid is also possible.
  • Phenacylsulfonium salts, hydroxylphenylsulfonium salts and sulfonium salts are also to be mentioned.
  • Onium salts can also be used, which are not stimulated directly but via a sensitizer to form acids.
  • Organic silicon compounds that are exposed to UV radiation in the presence of organoaluminum compounds bonds release a silanol can be used.
  • Thiolanium salts such as those described in DE 197 50 147 are used as latent thermal initiators for cationic polymerisation.
  • Unsubstituted benzylthiolanium salts are preferably used, in particular benzylthiolanium hexafluoroantimonate.
  • So-called dual-cure catalysts can also be used. These initiate the curing of epoxy resins both when irradiated with UV light and thermally. When irradiated at room temperature, no hardening takes place in shaded areas. However, curing can take place in a subsequent process by increasing the temperature.
  • the curing temperatures are generally between 80 and 150 ° C.
  • UV sources such as xenon, tungsten, mercury and metal halide emitters, can be used for UV radiation.
  • the use of UV lasers is also possible.
  • Metal oxides such as silicon oxide, aluminum oxide, boron nitride, tungsten oxide, titanium oxide, metal nitrides such as aluminum nitride or metals are suitable as heat-conductive fillers.
  • the fillers can be in the form of multimodal mixtures of finely divided powders of spherical, splintery, flaky and / or needle-shaped powder particles.
  • the heat-conductive fillers come in concentrations of 40 to 80 vol.%, Advantageously in concentrations of 60 to 70 vol. - % for use.
  • An epoxy resin filled with thermally conductive material and photoinitiator is rolled on a roller mill between 2 waxed carrier foils to form an approx. 3 mm thick layer.
  • Mats or pillows adapted to the area to be cooled are largely cut or punched out of this layer and surface-crosslinked at room temperature by UV radiation. This creates a grip-resistant, not or only "self-adhesive" sticky multi-layer structure. Since there is no crosslinking due to the high proportion of filler inside the mat, the mat is plastically and / or elastically deformable thanks to the material that is still not crosslinked on the inside, but is uniform in terms of material technology.
  • the material can be adjusted so that when the mat is used for heat removal, it is slowly cross-linked and / or that additional heating of the mat through thermal cross-linking results in a stable, contour-conforming shape after the cooling body has been applied. This is an advantage with regard to maintenance and repair work because the cross-linked heat sink then stabilizes the topography of the components and if necessary, e.g. can be removed without residue for repair purposes.
  • the invention relates to a heat sink for electrical and / or electronic components and printed circuit boards, characterized in that it is produced using a chemically uniform material which is highly filled with thermally conductive fillers and is based on UV and thermally curable reactive resins UV curing maintains a low-tack to tack-free surface and is therefore easy and easy to handle, the inside consists of uncrosslinked, thermally curable material and is therefore flexible and deformable, and can be adapted to different topographies and - can also be thermally hardened on the inside if heat is applied.
  • the invention discloses a heat sink for electrical and / or electronic components, in particular flat assemblies.
  • the heat sink consists of a chemically uniform material that is cross-linked on the outside and is therefore low-tack or tack-free and plastically deformable on the inside and can therefore be adapted to the contour of the structural elements or printed circuit boards to be cooled.
  • the heat sink can be hardened through thermal post-crosslinking.

Abstract

Die Erfindung offenbart einen Kühlkörper für elektrische und/oder elektronische Bauelemente, insbesondere Flachbaugruppen. Der Kühlkörper besteht aus einem chemisch einheitlichen Material, das außen vernetzt und dadurch klebarm oder klebfrei und innen plastisch verformbar ist und damit der Kontur der zu kühlenden Baulelementen oder Flachbaugruppen angepasst werden kann. Der Kühlkörper kann durch thermische Nachvernetzung durchgehärtet werden.

Description

Beschreibung
PLASTISCH VERFORMBARER KÜHLKÖRPER FÜR ELEKTRISCHE UND/ODER ELEKTRONISCHE BAUELEMENTE
5 Die Erfindung betrifft einen Kühlkörper für elektrische und/oder elektronische Bauelemente, insbesondere Flachbaugruppen, der verformbar ist.
Durch zunehmende Miniaturisierung und Integration elektroni-0 scher Bauteile und Baugruppen ist ein stetiges Anwachsen der Leistungsdichte in elektrischen und/oder elektronischen Bauelementen zu verzeichnen. Dadurch entsteht eine höhere Verlustleistung pro Bauelement, die hauptsächlich in Form thermischer Leistung anfällt und durch Kühlung abgeführt werden5 muss, damit sie nicht zu einer unerwünschten Erwärmung des elektrischen und/oder elektronischen Bauelements oder gar zu dessen thermischer Zerstörung führt.
Es sind mehrere Kühlkörper bekannt, die zur Kühlung von 0 Flachbaugruppen an der Leiterplatte oder einzelnen Bauelementen befestigt werden und in der Regel Aluminium als leichtes und sehr wärmeleitfähiges Material umfassen. Diese Elemente sind international bekannt unter der Bezeichnung "heat sinks for thermal management in electronics" .5 Problematisch an diesen Kühlkörpern ist, dass sie vorwiegend auf der Leiterplatte montiert werden und die in den Bauteilen frei werdende Wärme über die schlecht wärmeleitfähige Leiterplatte abgeführt werden muss. Für die Montage auf den Bauele-0 menten sind sie im Normalfall nicht geeignet, da sie steif sind und sich nicht der jeweiligen Anordnung der Einzelteile (also der "Skyline") der elektrischen und/oder elektronischen Bauelemente anpassen können und daher entweder für jedes Einzelteil eines elektrischen und/oder elektronischen Bauele-5 ments einzeln geformt und fixiert werden müssen und/oder zum Teil nicht direkt an das zu kühlende Teil des elektrischen und/oder elektronischen Bauelements anschließen. Um diese Nachteile zu verhindern sind mittlerweile verformbare Kühlkörper aus den Dokumenten DE 197 04 549 AI und DE 196 24 475 AI bekannt. Diese Kühlkörper bringen zwar er- hebliche Vorteile gegenüber den bekannten steifen Kühlkörpern, aber haben noch einen erheblichen Nachteil, dass sie mehrstückig aufgebaut sind, also zumindest zwei Materialien, ein Außenmaterial und eine Füllung haben. Diese Mehrgliedrig- keit der Materialien bewirkt zum einen eine Barriere im Wär- meabfluss des Kühlkörpers und zum anderen einen höheren Herstellungsaufwand.
Daher ist es Aufgabe der Erfindung, diese Nachteile zu überwinden und einen Kühlkörper der eingangs erwähnten verformba- ren Art zu schaffen, der im wesentlichen aus einem Material gefertigt ist, an die Topographie der auf der Leiterplatte montierten Bauelemente angepasst, danach durch Härtung stabilisiert und - falls erforderlich - rückstandsfrei wieder entfernt werden kann .
Diese Aufgabe wird durch den Gegenstand des Hauptanspruchs 1 und/oder der Unteransprüche gelöst.
Gegenstand der Erfindung ist ein Kühlkörper für elektrische und/oder elektronische Bauelemente, der verformbar ist, gekennzeichnet dadurch, dass er unter Verwendung nur eines Materials herstellbar ist, wobei im fertigen Kühlkörper das Material in mehreren Modifikationen vorliegt.
Ein solcher Kühlkörper ist zwar fest aber plastisch verformbar. Er besteht aus einem UV-härtbaren Reaktionsharz, das wärmeleitfähige Füllstoffe enthält. Die Oberfläche dieses Kühlkörpers ist durch UV-Bestrahlung angehärtet oder gehärtet. Dadurch bildet sich eine Haut, die je nach Härtungsbe- dingungen klebarm bis klebfrei sein kann und eine problemfreie Handhabung des Kühlkörpers ermöglicht . Solch ein Kühlkörper ist materialtechnisch einheitlich, obwohl er außen grifffest und innen plastisch und/oder elastisch verformbar ist.
In diesem Zusammenhang kann beispielsweise ein Kühlkörper mit einer stabilen Außenhaut hergestellt werden, der attenformig ist und innen noch unvernetztes warmeleitfahiges Material um- fasst .
Nach einer Ausfuhrungsform ist der Kühlkörper in seiner teilvernetzten Form oberflächlich klebrig und kann somit selbsthaftend und verformbar auf das Bauelement aufgebracht werden.
Die Erfindung wird realisiert durch ein mit warmeleitfahigen Füllstoffe hochgefulltes Reaktionsharz, das ein Gemisch aus Photoinitiatoren und thermisch anregbaren kationischen Polymerisationsinitiatoren umfasst. Dieses wird nach der Formgebung durch Strahlung äußerlich anvernetzt, so dass es zwar außen stabil aber innen verformbar ist. Obwohl aus der Lite- ratur bekannt ist, dass UV-Strahlung durch einige Füllstoffe hindurch dringt und auch hoch gefüllte Werkstoffe durchharten kann, wurde gefunden dass hier die Strahlung nur eine äußerliche Anvernetzung bewirkt, da sie durch den hohen Fullstoff- anteil des Reaktionsharzes nicht in das Innere des Korpers dringt. Der grifffeste und verformbare, eventuell auch selbsthaftende, Mehrlagenaufbau (vernetzt, unvernetzt, vernetzt) ist also aus einem Material aufgebaut, aber umfasst unterschiedliche Zustande oder Modifikationen dieses Materials.
Als Reaktionsharz werden verschiedene Harze eingesetzt, so können beispielsweise Epoxidharze und/oder Acrylatharze bzw. Mischungen dieser Harze zum Einsatz kommen.
Vorteilhafterweise basiert das Harzsystem auf kationisch h rtbaren Epoxidharzsystemen. Besonders vorteilhaft kommen dabei UV- und thermisch hartbare Einkomponenten- 200314931
Epoxidharzsyteme zum Einsatz. Die Epoxidharzsysteme können dabei neben den Epoxidkomponenten Vinylether und/oder Polyole enthalten, die insbesondere ihre thermische Härtung begünstigen. Die Epoxidharzsysteme enthalten des weiteren warmeleit- fahige Füllstoffe sowie Initiatoren und Katalysatoren für die UV- und thermisch initiierte kationische Polymerisation und ggf. gangige Additive wie z.B. Farbstoffe, Pigmente, Stabilisatoren, Thixotropiermittel, Flexibilisatoren, Benetzungsmittel, Haftvermittler und Verarbeitungshilfsmittel.
Als Epoxidverbindungen eignen sich lineare aliphatische Epo- xide mit cycloalkylenstruktur wie epoxidierte Olefine, Diole- fine, und/oder Polyolefine, aromatische, aliphatische und cycloaliphatische Di- oder Polyglycidylether .
Beispiele für Epoxidharze mit Cycloalkylenoxid-Strukturen sind Bis (2, 3-epoxycycloρentyl) ether, 2, 3-Epoxycyclopentyl- glycidyl-ether, 1, 2-Bis (2, 3-epoxycyclopentyl) ethan, Vinylcyc- lohexendioxid, 3, 4-Epoxycyclohexylmethyl-3 λ , 4 λ-epoxycyclo- hexan-carboxylat, 3, 4-Epoxy-6-methylcyclohexylmethyl-3 , , 4 '- epoxy-6 -methyl-cyclohexancarboxylat, Bis (3, 4-epoxycyclo- hexylmethyl) adipat und Bis (3, 4-epoxy-β-methylcyclohexyl- methyl) adipat .
Als aromatische Di- oder Polyglycidylether kommen zum Beispiel Bisphenol-F-diglycidylether und Bisphenol-A-diglycidyl- ether zum Einsatz. Als aliphatische Di- oder Polyglycidylether finden cycloaliphatische Glycidylverbindungen und ß- Methylglycidyl-verbindungen Verwendung. Dies sind Glycidy- lester und ß-Methylglycidylester von cycloaliphatischen Poly- carbonsauren wie Tetrahydrophthalsaure, 4-Methyl-tetrahydro- phthalsaure, Hexahydrophthalsaure, 3-Methyl-hexahydrophthal- saure und 4-Methylhexahydrophthalsaure. Weitere geeignete cycloaliphatische Epoxidharze sind die Diglycidylether und ß- Methyl-glycidylether von cycloaliphatischen Alkoholen, wie 1, 2-Diglycidylether von 1, 3-Dihydroxycyclo-hexan und 1,4- Dihydroxycyclohexan, 1, 4-Cyclohexandimethanol, 1,1- Bis (hydroxy-methyl) cyclohex-3-en, Bis (4-hydroxycyclo-hexyl) - methan, 2, 2-Bis (4-hydroxycyclohexyl) propan und Bis (4-hydroxy- cyclohexyl) sulfon .
Bevorzugte cycloaliphatische Epoxidharze sind Bis (4-hydroxy- cyclohexyl)methandiglycidylether, 2, 2-Bis (4-hydroxycyclo- hexyl) propandiglycidylether, Tetrahydrophthalsaurediglycidyl- ester, 4-Methyltetrahydrophthalsaurediglycidylester, 4-Methyl-hexahydrophthalsaurediglycidylester, 3, 4-Epoxy- cyclohexylmethyl-3 Λ-epoxycyclohexancarboxylat und insbesondere Hexahydrophthalsaurediglycidylester .
Die cycloaliphatischen Epoxidharze können auch in Kombination mit aliphatischen Epoxidharzen verwendet werden. Als "alipha- tische Epoxidharze" lassen sich Epoxidierungsprodukte von ungesättigten Fettsaureestern einsetzen. Vorzugsweise werden epoxidhaltige Verbindungen eingesetzt, die sich von Mono- und Polyfettsauren mit 12 bis 22 C-Atomen und einer Iodzahl zwischen 30 und 400 ableiten, wie zum Beispie] Olsaure, Gado- leinsaure, Erukasaure, Ricinolsaure, Linolsaure, Linolensau- re, Elaidinsaure, Likansaure, Arachidonsaure und Clupanodon- saure. Geeignet sind beispielsweise die Epoxidierungsprodukte von Sojaol, Leinöl, Mohnöl, Hanföl, Baumwollsamenol, Sonnenblumenöl, Rapsöl, mehrfach ungesättigte Triglyceride, Trigly- ceride aus Euphorbia-Gewachsen, Erdnussol, Olivenöl, Oliven- kernol, Mandelöl, Kapokol, Haselnussol, Aprikosenol, Buch- eckernol, Lupinenol, Maisöl, Sesamol, Traubenkernol, Ricinu- söl, Heringol, Sardinenol, Menhadenol, Walol, Tallol und davon abgeleitete Derivate.
Weiterhin sind auch hoher ungesättigte Derivate geeignet, die durch nachtragliche Dehydrierungsreaktionen dieser Ole erhalten werden.
Als vinyletherfunktionelle Verbindungen kommen grundsatzlich alle vinyletherfunktionalisierten Hydroxylverbindungen in Frage. Geeignete Verbindungen sind insbesondere Cyclohexandi- mezhyloldivinylether, Triethylenglykoldininylether, Butandi- oldivinylether, Bis (4-vinyloxybutyl) -isophthalat, Bis (4- vinyloxybutyl) -succinat, Bis (4-vinyloxymethylcyclohexyl- methyl) -glutarat und Hydroxybutylmonovinylether oder vinyl- ether funktionalisierte Hydroxypolyurethanemit aliphatischer oder aromatischer Grundstruktur. Bevorzugt sind Vinylether mit > 2 Vinylethergruppen pro Molekül.
Als Polyolkomponente werden bevorzugt Verbindungen einge- setzt, die durch Reaktion von Epoxidverbindungen mit Alkoholen oder Phenolen erhalten werden. Des weiteren kommen mehrwertige aliphatische oder cycloaliphatische Alkohole wie z.B. Glykole, tri- oder tetrafunktionelle Alkohole wie z.B. Tri- methylolpropan oder Ether von Glykolen mit Phenolen oder Bisphenolen sowie Polymerpolyole zum Einsatz.
Zur Initiierung der kationischen Härtung wird bevorzugt eine Mischung aus UV-reaktiver und thermisch reaktiver Komponente eingesetzt, wie sie in der EP 504 569 beschrieben ist. Zur Initiierung der kationischen Härtung wird ein kationischer Photoinitiator oder ein kationisches Photoinitiatorsystem verwendet. Dessen Anteil am gesamtem Epoxidharzsystem kann 0,1 bis 5 %, vorteilhaft 1 bis 3 % betragen. Diese Photoinitiatoren setzen bei UV-Bestrahlung reaktive Kationen, z.B. Protonen frei, die den kationischen Härtungsprozess des Epoxidharzes initiieren. Die Photoinitiatoren sind dabei von stabilen organischen Oniumsalzen abgeleitet, insbesondere mit Stickstoff, Phosphor, Sauerstoff, Schwefel, Selen oder Jod als Zentralatom des Kations. Als besonders vorteilhaft haben sich aromatische Sulfonium- und Jodoniumsalze mit komplexen Anionen erwiesen. Auch ein eine Lewissäure freisetzender Photoinitiator ist möglich. Weiterhin zu nennen sind Phenacyl- sulfoniumsalze, Hydroxylphenylsulfoniumsalze, sowie Sulfoni- umsalze. Einsetzbar sind weiterhin Oniumsalze, die nicht di- rekt, sondern über einen Sensibilisator zur Säurebildung angeregt werden. Auch organische Siliziumverbindungen, die bei UV-Bestrahlung in Anwesenheit von aluminiumorganischen Ver- bindungen ein Silanol freisetzen, könne eingesetzt werdeen.
Als latenter thermischer Initiator für die kationische Pola- merisation werden Thiolaniumsalze verwendet, wie sie in der DE 197 50 147 beschrieben sind. Bevorzugt werden dabei unsub- stituierte Benzylthiolaniumsalze eingesetzt, insbesondere das Benzylthiolaniumhexafluoroantimonat .
Des weiteren können sogenannte Dual-Cure-Katalysatoren einge- setzt werden. Diese initiieren die Härtung von Epoxidharzen sowohl bei Bestrahlung mit UV-Licht als auch thermisch. Bei Bestrahlung bei Raumtemperatur findet in abgeschatteten Bereichen keine Härtung statt. Die Härtung kann allerdings in einem nachfolgenden Prozess durch Temperaturerhöhung erfol- gen. Die Härtungstemperaturen liegen dabei im allgemeinen zwischen 80 und 150 °C.
Zur UV-Bestrahlung können prinzipiell alle üblichen UV- Quellen eingesetzt werden, wie Xenon-, Wolfram-, Quecksilber- und Metallhalogenidstrahler. Ferner ist der Einsatz von UV- Lasern möglich.
Als wärmeleitfähige Füllstoffe kommen Metalloxide wie Silici- umoxid, Aluminiumoxid, Bornitrid, Wolframoxid, Titanoxid, Me- tallnitride wie Aluminiumnitrid oder Metalle in Frage. Die Füllstoffe können dabei in Form multimodaler Gemische fein- teiliger Pulver sphärischer, splittriger, blättchenför iger und/oder nadeiförmiger Pulverpartikel vorliegen. Die wärme- leitfähigen Füllstoffe kommen in Konzentrationen von 40 bis 80 Vol.-%, vorteilhaft in Konzentrationen von 60 bis 70 Vol . - % zum Einsatz.
Das folgende Beispiel soll die Erfindung erläutern. Beispiel :
Auf einem Walzenstuhl wird ein mit warmeleitfahigem Material und Photoinitiator gefülltes Epoxidharz zwischen 2 gewachsten Tragerfolien zu einer ca. 3 mm dicken Schicht gewalzt. Aus dieser Schicht werden großenmaßig an die zu kühlende Flache angepasste Matten oder Kissen ausgeschnitten oder ausgestanzt und bei Raumtemperatur oberflachig durch UV-Bestrahlung anvernetzt. Dadurch entsteht ein grifffester, nicht oder nur "selbsthaftend" klebriger Mehrlagenaufbau. Da durch den hohen Füllstoffanteil im Innern der Matte keine Vernetzung erfolgt, ist die Matte Dank des im Inneren noch unvernetzten Materials plastisch und/oder elastisch verformbar, jedoch materialtechnisch einheitlich.
Das Material kann so eingestellt werden, dass wahrend der Nutzung der Matte für die Entwarmung diese langsam vernetzt wird und/oder dass durch ein zusatzliches Erwarmen der Matte durch thermische Vernetzung nach dem Aufbringen des Kuhlkor- pers ein stabiler, konturengerechter Formkorper resultiert. Dies ist hinsichtlich Wartungs- und Reparaturarbeiten ein Vorteil da der dann durchvernetzte Kühlkörper die Topographie der Bauelemente stabilisiert und bei Bedarf, z.B. zu Reparaturzwecken ruckstandsfrei entfernt werden kann.
Der entscheidende Vorteil des Kühlkörpers nach der Erfindung vor den klassischen bekannten "heat sinks" ist, dass die Anbringung nicht an ein elektrisches und/oder elektronisches Bauelement gebunden ist. Vielmehr lassen sich komplette Flachbaugruppen durch das oberlfachliche Applizieren des
Kühlkörpers entwarmen, also kühlen, wobei dem Designer des lay-outs des elektrischen und/oder elektronischen Bauelements mehr Gestaltungsfreiraum bleibt. Durch die Verwendung von nur einem Material wird dabei zusatzlich die Gesamtwarmeleitfä- higkeit verbessert, da schon die vernetzte Aussenschicht oder Aussenhaut des Kühlkörpers ein gut warmeleitfahiges Material umfasst und keine zusätzlichen thermischen Widerstände an den Grenzflächen Hülle/Wärmemedium auftreten.
Des weiteren bietet die Möglichkeit der Überführung des Mate- rials in einen festen und stabilen Formkörper zusätzliche Vorteile.
Schließlich wird durch die Vermeidung verschiedener Materialkomponenten sowohl logistisch als auch verfahrenstechnisch eine sehr viel kostengünstigere Herstellung möglich, als dies nach dem Stand der Technik angeboten wird.
Die Erfindung betrifft einen Kühlkörper für elektrische und/oder elektronische Bauelemente sowie Flachbaugruppen, gekennzeichnet dadurch, dass er unter Verwendung eines mit wärmeleitfähigen Füllstoffen hoch gefüllten, chemisch einheitlichen Materials auf Basis UV- und thermisch härtbarer Reaktionsharze her- ge-stellt wird, - eine durch UV-Härtung klebarme bis klebfreie Oberfläche erhält und dadurch gut und problemlos handhabbar ist, innen aus unvernetztem, thermisch härtbarem Material besteht und dadurch flexibel und verformbar ist, sowie an unterschiedliche Topographien angepasst werden kann und - bei Wärmezufuhr auch innen thermisch gehärtet werden kann.
Die Erfindung offenbart einen Kühlkörper für elektrische und/oder elektronische Bauelemente, insbesondere Flachbau- gruppen. Der Kühlkörper besteht aus einem chemisch einheitlichen Material, das außen vernetzt und dadurch klebarm oder klebfrei und innen plastisch verformbar ist und damit der Kontur der zu kühlenden Baulelementen oder Flachbaugruppen angepasst werden kann. Der Kühlkörper kann durch thermische Nachvernetzung durchgehärtet werden.

Claims

Patentanspr che
1. Kühlkörper für elektrische und/oder elektronische Bauelemente, der verformbar ist, dadurch gekennzeichnet, dass er unter Verwendung nur eines Materials herstellbar ist, wobei im fertigen Kühlkörper das Material in mehreren Modifikationen vorliegt.
2. Kühlkörper nach Anspruch 1, dadurch gekennzeich- n e t , dass er unter Verwendung eines mit warmeleitfahigen Füllstoffen hoch gefüllten, chemisch einheitlichen Materials auf Basis UV- und thermisch hartbarer Reaktionsharze hergestellt wird.
3. Kühlkörper nach einem der Anspr che 1 oder 2, dadurch gekennzeichnet, dass er - eine durch UV-Hartung klebarme bis klebfreie Oberflache erhalt.
4. Kühlkörper nach einem der vorstehenden Ansprüche, d dadurch gekennzeichnet, dass er innen aus unvernetztem, thermisch h rtbarem Material besteht und dadurch flexibel und verformbar ist und an unterschiedliche Topographien angepasst werden kann.
5. Kühlkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er bei Wärmezufuhr auch innen thermisch gehartet werden kann.
6. Kühlkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das verwendete Reaktionsharz aus einem Epoxidharz oder einer Mischung verschiedener Epoxidharze besteht.
7. Kühlkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Epoxidharz Polyole und/oder Vinylether umfasst.
8. Kühlkörper nach einem der vorstehenden Anspr che, dadurch gekennzeichnet, dass das verwendete Reaktions- harz Acrylatgruppen und/oder Methacrylatgruppen umfasst.
9. Kühlkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das verwendete Reaktionsharz sowohl Photoinitiatoren als auch thermische Initiatoren umfasst.
10. Kuh-lkorper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die verwendeten Photoinitiatoren gleichzeitig auch als auch thermische Initiatoren wirken.
11. Kühlkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Reaktionsharz warme- leitfahige sphärische, splittrige, blattchenformige und/oder nadelformige Füllstoffe oder Fullstoffgemische auf der Basis von Metallen und/oder Metalloxiden und/oder Metallnitriden umfasst .
12. Verwendung eines Kühlkörpers nach einem der Ansprüche 1 bis 11 in einem elektrischen und/oder elektronischen Bauelement und/oder in einer Flachbaugruppe.
PCT/EP2004/052234 2003-09-29 2004-09-17 Plastisch verformbarer kühlkörper für elektrische und/ oder elektronische bauelemente WO2005034236A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04766823A EP1668698A1 (de) 2003-09-29 2004-09-17 Plastisch verformbarer kühlkörper für elektrische und/oder elektronische bauelemente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345222 2003-09-29
DE10345222.2 2003-09-29

Publications (1)

Publication Number Publication Date
WO2005034236A1 true WO2005034236A1 (de) 2005-04-14

Family

ID=34399041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052234 WO2005034236A1 (de) 2003-09-29 2004-09-17 Plastisch verformbarer kühlkörper für elektrische und/ oder elektronische bauelemente

Country Status (2)

Country Link
EP (1) EP1668698A1 (de)
WO (1) WO2005034236A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368173B2 (en) 2003-05-23 2008-05-06 Dow Corning Corporation Siloxane resin-based anti-reflective coating composition having high wet etch rate
US8241707B2 (en) 2008-03-05 2012-08-14 Dow Corning Corporation Silsesquioxane resins
US8304161B2 (en) 2008-03-04 2012-11-06 Dow Corning Corporation Silsesquioxane resins
US8318258B2 (en) 2008-01-08 2012-11-27 Dow Corning Toray Co., Ltd. Silsesquioxane resins
US8809482B2 (en) 2008-12-10 2014-08-19 Dow Corning Corporation Silsesquioxane resins
US9023433B2 (en) 2008-01-15 2015-05-05 Dow Corning Corporation Silsesquioxane resins and method of using them to form an antireflective coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504569A2 (de) * 1991-02-18 1992-09-23 Siemens Aktiengesellschaft Verfahren zur Beschichtung oder Verklebung von elektronischen Bauelementen und Baugruppen
US5254500A (en) * 1991-02-05 1993-10-19 Advanced Micro Devices, Inc. Method for making an integrally molded semiconductor device heat sink
US5371404A (en) * 1993-02-04 1994-12-06 Motorola, Inc. Thermally conductive integrated circuit package with radio frequency shielding
US5424251A (en) * 1991-03-20 1995-06-13 Fujitsu Limited Method of producing semiconductor device having radiation part made of resin containing insulator powders
EP0903386A1 (de) * 1996-05-30 1999-03-24 Nitto Denko Corporation Druckempfindlicher klebstoff mit ausgezeichneter wärmebeständigkeit und wärmeleitfähigkeit, klebstoffschichten und verfahren zur sicherung von elektronischen komponenten gegen wärmeausstrahlende komponenten unter verwendung desselben
WO1999026286A1 (en) * 1997-11-13 1999-05-27 Bp Amoco Corporation Heat pipe thermal management apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254500A (en) * 1991-02-05 1993-10-19 Advanced Micro Devices, Inc. Method for making an integrally molded semiconductor device heat sink
EP0504569A2 (de) * 1991-02-18 1992-09-23 Siemens Aktiengesellschaft Verfahren zur Beschichtung oder Verklebung von elektronischen Bauelementen und Baugruppen
US5424251A (en) * 1991-03-20 1995-06-13 Fujitsu Limited Method of producing semiconductor device having radiation part made of resin containing insulator powders
US5371404A (en) * 1993-02-04 1994-12-06 Motorola, Inc. Thermally conductive integrated circuit package with radio frequency shielding
EP0903386A1 (de) * 1996-05-30 1999-03-24 Nitto Denko Corporation Druckempfindlicher klebstoff mit ausgezeichneter wärmebeständigkeit und wärmeleitfähigkeit, klebstoffschichten und verfahren zur sicherung von elektronischen komponenten gegen wärmeausstrahlende komponenten unter verwendung desselben
WO1999026286A1 (en) * 1997-11-13 1999-05-27 Bp Amoco Corporation Heat pipe thermal management apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368173B2 (en) 2003-05-23 2008-05-06 Dow Corning Corporation Siloxane resin-based anti-reflective coating composition having high wet etch rate
US8318258B2 (en) 2008-01-08 2012-11-27 Dow Corning Toray Co., Ltd. Silsesquioxane resins
US9023433B2 (en) 2008-01-15 2015-05-05 Dow Corning Corporation Silsesquioxane resins and method of using them to form an antireflective coating
US8304161B2 (en) 2008-03-04 2012-11-06 Dow Corning Corporation Silsesquioxane resins
US8241707B2 (en) 2008-03-05 2012-08-14 Dow Corning Corporation Silsesquioxane resins
US8809482B2 (en) 2008-12-10 2014-08-19 Dow Corning Corporation Silsesquioxane resins

Also Published As

Publication number Publication date
EP1668698A1 (de) 2006-06-14

Similar Documents

Publication Publication Date Title
EP0504569B1 (de) Verfahren zur Beschichtung oder Verklebung von elektronischen Bauelementen und Baugruppen
DE112004001768B4 (de) Gemischtes leitendes Pulver und dessen Verwendung
DE3624629C2 (de)
EP0330909B1 (de) Verfahren zum Befestigen von Bauteilen auf einer Leiterplatte
DE3643660C2 (de)
DE112018002911T5 (de) Thermisch leitende und elektrisch leitende Adhäsivzusammensetzung
EP0176475B1 (de) Pulverbeschichtungsmassen
DE3613107A1 (de) Resistfarbenzusammensetzung
DE3233476A1 (de) Epoxy-klebstoffe
EP0514630B1 (de) Durch Strahlung vernetzbare Beschichtungsmittel und ihre Verwendung
DE102011122672A1 (de) Aktive Harzzusammensetzung, Verfahren zur Oberflächenmontage und gedruckte Leiterplatte
DE60217109T2 (de) Durch uv-strahlung aktivierbare klebefolie
EP3363029B1 (de) Kompakter trockentransformator mit einer elektrischen wicklung und verfahren zur herstellung einer elektrischen wicklung
EP1668698A1 (de) Plastisch verformbarer kühlkörper für elektrische und/oder elektronische bauelemente
EP0194360B1 (de) Durch Strahlung vernetzbare Bindemittel und ihre Verwendung
DE112014001422T5 (de) Wärmeleitfähige Isolierschicht, Leistungsmodul und Herstellungsverfahren für diese
EP0318020A1 (de) Strahlenschutzabdeckung für elektronische Bauelemente
EP0865653A2 (de) Elektrisch leitfähige reaktionsharzmischung
EP3363030B1 (de) Elektrischen wicklung fuer einen trockentransformator und verfahren zur herstellung einer elektrischen wicklung fuer einen trockentransformator
EP1753820A1 (de) Tränkharzformulierung
EP1478688A1 (de) Hochgefülltes giessharzsystem
EP0818061A1 (de) System und verfahren zur erzeugung elektrisch leitfähiger verbindungsstrukturen sowie verfahren zur herstellung von schaltungen und von bestückten schaltungen
JPS63251416A (ja) 樹脂組成物及びソルダ−レジスト用樹脂組成物
WO2007017307A1 (de) Uv- und thermisch härtbarer epoxidharzlack für elektronische baugruppen in feuchträumen
JPH02199179A (ja) 塗料の硬化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004766823

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004766823

Country of ref document: EP