WO2005032782A1 - Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels - Google Patents
Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels Download PDFInfo
- Publication number
- WO2005032782A1 WO2005032782A1 PCT/US2004/028401 US2004028401W WO2005032782A1 WO 2005032782 A1 WO2005032782 A1 WO 2005032782A1 US 2004028401 W US2004028401 W US 2004028401W WO 2005032782 A1 WO2005032782 A1 WO 2005032782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibers
- layer
- slurry
- fiber
- layers
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000008569 process Effects 0.000 title claims abstract description 51
- 239000000835 fiber Substances 0.000 claims abstract description 190
- 239000002002 slurry Substances 0.000 claims abstract description 89
- 238000000151 deposition Methods 0.000 claims abstract description 32
- 230000008021 deposition Effects 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 5
- 238000004898 kneading Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 239000011120 plywood Substances 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002028 premature Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 241001494479 Pecora Species 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- -1 accelerators Substances 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/30—Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/522—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/526—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement by delivering the materials on a conveyor of the endless-belt type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B5/00—Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
- B28B5/02—Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type
- B28B5/026—Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length
- B28B5/027—Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length the moulding surfaces being of the indefinite length type, e.g. belts, and being continuously fed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
Definitions
- This invention relates to a continuous process and related apparatus for producing structural panels using a settable slurry, and more specifically, to a process for manufacturing reinforced cementitious panels, referred to herein as structural cementitious panels (SCP) (also known as structural cement panels), in which discrete fibers are combined with a quick-setting slurry for providing flexural strength and toughness.
- SCP structural cementitious panels
- the invention also relates to a SCP panel produced according to the present process.
- Cementitious panels have been used in the construction industry to form the interior and exterior walls of residential and/or commercial structures. The advantages of such panels include resistance to moisture compared to standard gypsum-based wallboard.
- the present state-of-the-art cementitious panels include at least one hardened cement or plaster composite layer between layers of a reinforcing or stabilizing material.
- the reinforcing or stabilizing material is continuous fiberglass mesh or the equivalent, while in other instances, short, discrete fibers are used in the cementitious core as reinforcing material.
- the mesh is usually applied from a roll in sheet fashion upon or between layers of settable slurry. Examples of production techniques used in conventional cementitious panels are provided in U.S. Patent Nos.
- the above-described need for cementitious structural panels also referred to as SCP's, that are configured to behave in the construction environment similar to plywood and OSB, means that the panels are nailable and can be cut or worked using conventional saws and other conventional carpentry tools.
- the SCP panels should meet building code standards for shear resistance, load capacity, water-induced expansion and resistance to combustion, as measured by recognized tests, such as ASTM E72, ASTM 661, ASTM C 1185 and ASTM E136 or equivalent, as applied to structural plywood sheets.
- the above-listed needs are met or exceeded by the present invention that features a multi-layer process for producing structural cementitious panels (SCP's or SCP panels), and SCP's produced by such a process.
- SCP's or SCP panels structural cementitious panels
- An embedment device mixes the recently deposited fibers into the slurry, after which additional layers of slurry, then chopped fibers are added, followed by more embedment. The process is repeated for each layer of the board, as desired.
- the board Upon completion, the board has a more evenly distributed fiber component, which results in relatively strong panels without the need for thick mats of reinforcing fibers, as are taught in prior art production techniques for cementitious panels.
- the invention relates to a multi-layer process for producing structural cementitious panels, including: (a.) providing a moving web; (b.) one of depositing a first layer of loose fibers and (c.) depositing a layer of settable slurry upon the web; (d.) depositing a second layer of loose fibers upon the slurry; (e.) embedding said second layer of fibers into the slurry; and (f.) repeating the slurry deposition of step (c.) through step (d.) until the desired number of layers of settable fiber-enhanced slurry in the panel is obtained.
- SCP structural cementitious panel
- FIG. 1 is a diagrammatic elevational view of an apparatus which is suitable for performing the present process
- FIG. 2 is a perspective view of a slurry feed station of the type used in the present process
- FIG. 3 is a fragmentary overhead plan view of an embedment device suitable for use with the present process
- FIG. 4 is a fragmentary vertical section of a structural cementitious panel produced according to the present procedure
- FIG. 5 is a diagrammatic elevational view of an alternate apparatus used to practice an alternate process to that embodied in FIG. 1.
- the production line 10 includes a support frame or forming table 12 having a plurality of legs 13 or other supports. Included on the support frame 12 is a moving carrier 14, such as an endless rubber-like conveyor belt with a smooth, water-impervious surface, however porous surfaces are contemplated. As is well known in the art, the support frame 12 may be made of at least one table-like segment, which may include designated legs 13.
- the support frame 12 also includes a main drive roll 16 at a distal end 18 of the frame, and an idler roll 20 at a proximal end 22 of the frame.
- At least one belt tracking and/or tensioning device 24 is preferably provided for maintaining a desired tension and positioning of the carrier 14 upon the rolls 16, 20.
- a web 26 of kraft paper, release paper, and/or other webs of support material designed for supporting a slurry prior to setting may be provided and laid upon the carrier 14 to protect it and/or keep it clean.
- the panels produced by the present line 10 are formed directly upon the carrier 14.
- at least one belt washing unit 28 is provided.
- the carrier 14 is moved along the support frame 12 by a combination of motors, pulleys, belts or chains which drive the main drive roll 16 as is known in the art.
- the speed of the carrier 14 may vary to suit the application.
- structural cementitious panel production is initiated by one of depositing a layer of loose, chopped fibers 30 or a layer of slurry upon the web 26.
- An advantage of depositing the fibers 30 before the first deposition of slurry is that fibers will be embedded near the outer surface of the resulting panel.
- a variety of fiber depositing and chopping devices are contemplated by the present line 10, however the prefened system employs at least one rack 31 holding several spools 32 of fiberglass cord, from each of which a cord 34 of fiber is fed to a chopping station or apparatus, also referred to as a chopper 36.
- the chopper 36 includes a rotating bladed roll 38 from which project radially extending blades 40 extending transversely across the width of the carrier 14, and which is disposed in close, contacting, rotating relationship with an anvil roll 42.
- the bladed roll 38 and the anvil roll 42 are disposed in relatively close relationship such that the rotation of the bladed roll 38 also rotates the anvil roll 42, however the reverse is also contemplated.
- the anvil roll 42 is preferably covered with a resilient support material against which the blades 40 chop the cords 34 into segments. The spacing of the blades 40 on the roll 38 determines the length of the chopped fibers. As is seen in FIG.
- the chopper 36 is disposed above the carrier 14 near the proximal end 22 to maximize the productive use of the length of the production line 10.
- the fibers 30 fall loosely upon the carrier web 26.
- a slurry feed station, or a slurry feeder 44 receives a supply of slurry 46 from a remote mixing location 47 such as a hopper, bin or the like. It is also contemplated that the process may begin with the initial deposition of slurry upon the carrier 14. While a variety of settable slurries are contemplated, the present process is particularly designed for producing structural cementitious panels.
- the slurry is preferably comprised of varying amounts of Portland cement, gypsum, aggregate, water, accelerators, plasticizers, foaming agents, fillers and/or other ingredients well known in the art, and described in the patents listed above which have been incorporated by reference.
- the relative amounts of these ingredients may vary to suit the application. While various configurations of slurry feeders 44 are contemplated which evenly deposit a thin layer of slurry 46 upon the moving carrier 14, the prefened slurry feeder 44 includes a main metering roll 48 disposed transversely to the direction of travel of the carrier 14.
- a companion or back up roll 50 is disposed in close parallel, rotational relationship to the metering roll 48 to form a nip 52 therebetween.
- a pair of sidewalls 54 preferably of non-stick material such as Teflon® brand material or the like, prevents slurry 46 poured into the nip 52 from escaping out the sides of the feeder 44.
- An important feature of the present invention is that the feeder 44 deposits an even, relatively thin layer of the slurry 46 upon the moving carrier 14 or the carrier web 26. Suitable layer thicknesses range from about 0.05 inch to 0.20 inch. However, with four layers prefened in the prefened structural panel produced by the present process, and a suitable building panel being approximately 0.5 inch, an especially prefened shiny layer thickness is approximately 0.125 inch.
- the sluny is delivered to the feeder 44 through a hose 56 located in a laterally reciprocating, cable driven, fluid powered dispenser 58 of the type well known in the art. Sluny flowing from the hose 56 is thus poured into the feeder 44 in a laterally reciprocating motion to fill a reservoir 59 defined by the rolls 48, 50 and the sidewalls 54. Rotation of the metering roll 48 thus draws a layer of the slurry 46 from the reservoir.
- a thickness monitoring or thickness control roll 60 is disposed slightly above and/or slightly downstream of a vertical centerline of the main metering roll 48 to regulate the thickness of the slurry 46 drawn from the feeder reservoir 57 upon an outer surface 62 of the main metering roll 48.
- Another related feature of the thickness control roll 60 is that it allows handling of slurries with different and constantly changing viscosities.
- the main metering roll 48 is driven in the same direction of travel 'T' as the direction of movement of the carrier 14 and the carrier web 26, and the main metering roll 48, the backup roll 52 and the thickness monitoring roll 58 are all rotatably driven in the same direction, which minimizes the opportunities for premature setting of sluny on the respective moving outer surfaces.
- a transverse stripping wire 64 located between the main metering roll 48 and the carrier web 26 ensures that the sluny 46 is completely deposited upon the carrier web and does not proceed back up toward the nip 52 and the feeder reservoir 59.
- the stripping wire 64 also helps keep the main metering roll 48 free of prematurely setting slurry and maintains a relatively uniform curtain of slu y.
- a second chopper station or apparatus 66 preferably identical to the chopper 36, is disposed downstream of the feeder 44 to deposit a second layer of fibers 68 upon the slurry 46.
- the chopper apparatus 66 is fed cords 34 from the same rack 31 that feeds the chopper 36.
- racks 31 could be supplied to each individual chopper, depending on the application.
- an embedment device, generally designated 70 is disposed in operational relationship to the sluny 46 and the moving carrier 14 of the production line 10 to embed the fibers 68 into the slurry 46.
- the embedment device 70 includes at least a pair of generally parallel shafts 72 mounted transversely to the direction of travel 'T' of the carrier web 26 on the frame 12.
- Each shaft 72 is provided with a plurality of relatively large diameter disks 74 which are axially separated from each other on the shaft by small diameter disks 76.
- the shafts 72 and the disks 74, 76 rotate together about the longitudinal axis of the shaft.
- either one or both of the shafts 72 may be powered, and if only one is powered, the other may be driven by belts, chains, gear drives or other known power transmission technologies to maintain a conesponding direction and speed to the driving roll.
- the respective disks 74, 76 of the adjacent, preferably parallel shafts 72 are intermeshed with each other for creating a "kneading" or “massaging” action in the sluny, which embeds the fibers 68 previously deposited thereon.
- the close, intermeshed and rotating relationship of the disks 72, 74 prevents the buildup of slurry 46 on the disks, and in effect creates a "self-cleaning" action which significantly reduces production line downtime due to premature setting of clumps of sluny.
- the intermeshed relationship of the disks 74, 76 on the shafts 72 includes a closely adjacent disposition of opposing peripheries of the small diameter spacer disks 76 and the relatively large diameter main disks 74, which also facilitates the self-cleaning action. As the disks 74, 76 rotate relative to each other in close proximity (but preferably in the same direction), it is difficult for particles of slurry to become caught in the apparatus and prematurely set.
- the slurry 46 is subjected to multiple acts of disruption, creating a "kneading" action which further embeds the fibers 68 in the slurry 46.
- a first layer 77 of the SCP panel is complete.
- the height or thickness of the first layer 77 is in the approximate range of .05-.20 inches. This range has been found to provide the desired strength and rigidity when combined with like layers in a SCP panel.
- other thicknesses are contemplated depending on the application. To build a structural cementitious panel of desired thickness, additional layers are needed.
- a second sluny feeder 78 which is substantially identical to the feeder 44, is provided in operational relationship to the moving carrier 14, and is disposed for deposition of an additional layer 80 of the sluny 46 upon the existing layer 77.
- an additional chopper 82 substantially identical to the choppers 36 and 66, is provided in operational relationship to the frame 12 to deposit a third layer of fibers 84 provided from a rack (not shown) constructed and disposed relative to the frame 12 in similar fashion to the rack 31.
- the fibers 84 are deposited upon the slurry layer 80 and are embedded using a second embedment device 86.
- the second embedment device 86 is mounted slightly higher relative to the moving carrier web 14 so that the first layer 77 is not disturbed, hi this lnanner, the second layer 80 of sluny and embedded fibers is created.
- an additional sluny feeder station 44, 78 followed by a fiber chopper 36, 66, 82 and an embedment device 70, 86 is provided on the production line 10.
- four total layers 77, 80, 88, 90 are provided to form the SCP panel 92.
- a forming device 94 (FIG. 1) is preferably provided to the frame 12 to shape an upper surface 96 of the panel 92.
- Such forming devices 94 are known in the settable slurry/board production art, and typically are spring-loaded or vibrating plates which conform the height and shape of the multi-layered panel to suit the desired dimensional characteristics.
- An important feature of the present invention is that the panel 92 consists of multiple layers 77, 80, 88, 90 which upon setting, form an integral, fiber-reinforced mass.
- a cutting device 98 which in the prefened embodiment is a water jet cutter.
- Other cutting devices including moving blades, are considered suitable for this operation, provided that they can create suitably sharp edges in the present panel composition.
- the cutting device 98 is disposed relative to the line 10 and the frame 12 so that panels are produced having a desired length, which may be different from the representation shown in FIG. 1.
- the cutting device 98 may be mounted to cut perpendicularly to the direction of travel of the web 14. With faster production speeds, such cutting devices are known to be mounted to the production line 10 on an angle to the direction of web travel. Upon cutting, the separated panels 92 are stacked for further handling, packaging, storage and/or shipment as is well known in the art. Referring now to FIGs. 4 and 5, an alternate embodiment to the production line 10 is generally designated 100.
- the line 100 shares many components with the line 10, and these shared components have been designated with identical reference numbers.
- the main difference between the line 100 and the line 10 is that in the line 10, upon creation of the SCP panels 92, an underside 102 or bottom face of the panel will be smoother than the upper side or top face 96, even after being engaged by the forming device 94. hi some cases, depending on the application of the panel 92, it may be preferable to have a smooth face and a relatively rough face. However, in other applications, it may be desirable to have a board in which both faces 96, 102 are smooth. Since the smooth texture is generated by the contact of the slurry with the smooth carrier 14 or the carrier web 26, to obtain a SCP panel with both faces or sides smooth, both upper and lower faces 96, 102 need to be formed against the carrier 14 or the release web 26.
- the production line 100 includes sufficient fiber chopping stations 36, 66, 82, sluny feeder stations 44, 78 and embedment devices 70, 86 to produce at least three layers 77, 80 and 88. Additional layers may be created by repetition of stations as described above in relation to the production line 10.
- an upper deck 106 is provided having a reverse rotating web 108 looped about main rolls 110, 112 (one of which is driven) which deposits a layer of sluny and fibers 114 with a smooth outer surface upon the moving, multi- layered slu y 46.
- the upper deck 106 includes an upper fiber deposition station 116 similar to the fiber deposition station 36, an upper sluny feeder station 118 similar to the feeder station 44, a second upper fiber deposition station 120 similar to the chopping station 66 and an embedment device 122 similar to the embedment device 70 for depositing the covering layer 114 in inverted position upon the moving slurry 46.
- the resulting SCP panel 124 has smooth upper and lower surfaces 96, 102.
- Another feature of the present invention is that the resulting SCP panel 92,124 is constructed so that the fibers 30, 68, 84 are uniformly distributed throughout the panel. This has been found to enable the production of relatively stronger panels with relatively less, more efficient use of fibers.
- the percentage of fibers relative to the volume of sluny in each layer preferably constitutes approximately in the range of 1.5% to 3% by volume of the slurry layers 77, 80, 88, 90, 114.
- the influence of the number of fiber and sluny layers, the volume fraction of fibers in the panel, and the thickness of each slurry layer, and fiber strand diameter on fiber embedment efficiency has been investigated and established as part of this invention.
- Total composite volume/layer Total sluny volume/layer + Total fiber volume/layer
- n f ⁇ l Assuming fibers to have cylindrical shape, total number of fiber strands/layer, n f ⁇ l is equal to: v T * V f
- d f is the equivalent fiber strand diameter.
- the projected surface area of a cylindrical fiber is equal to the product of its length and diameter. Therefore, the total projected surface area of all fibers contained in a fiber layer is equal to
- Projected fiber surface area fraction, S f is defined as follows Projected surface area of fibers/layer, s fj s fj - Projected surface area of the slurry layer, s j
- t s l and v. are the thickness and volume of the individual slurry layer, respectively.
- the projected fiber surface area fraction, S f can be written as:
- the projected fiber surface area fraction, S P j can also be derived in the following form from Equation 7 as follows:
- t s> is the thickness of distinct slurry layer and t, is the thickness of the individual layer including slurry and fibers.
- the projected fiber surface area fraction, S f p can also be written as:
- Equations 8 and 10 depict dependence of the parameter projected fiber surface area fraction, S j on several other variables in addition to the variable total fiber volume fraction, V f .
- the projected fiber surface area fraction, S p of a layer of fiber network being deposited over a distinct sluny layer is given by the following mathematical relationship:
- V f is the total panel fiber volume fraction
- t is the total panel thickness
- d f is the diameter of the fiber strand
- N is the total number of fiber layers
- t sJ is the thickness of the distinct slurry layer being used.
- the projected fiber surface area fraction, S p is inversely proportional to the total number of fiber layers, ⁇ / / . Accordingly, for a given fiber diameter, panel thickness and fiber volume fraction, an increase in the total number of fiber layers, ⁇ / / , lowers the projected fiber surface area fraction, S P j and vice- versa.
- the projected fiber surface area fraction, S P j is directly proportional to the thickness of the distinct slurry layer thickness, t s . Accordingly, for a given fiber strand diameter and fiber volume fraction, an increase in the distinct slurry layer thickness, if s,/ , increases the projected fiber surface area fraction, S f p J and vice-versa.
- the projected fiber surface area fraction, S f is inversely proportional to the fiber strand diameter, df. Accordingly, for a given panel thickness, fiber volume fraction and total number of fiber layers, an increase in the fiber strand diameter, d f , lowers the projected fiber surface area fraction, S P j and vice- versa.
- the projected fiber surface area fraction, S P j is directly proportional to volume fraction of the fiber, V f . Accordingly, for a given fiber panel thickness, fiber strand diameter and total number of fiber layers, the projected fiber surface area fraction, S P j increases in proportion to increase in the fiber volume fraction, V f and vice- versa.
- the projected fiber surface area fraction, S fj is directly proportional to the total panel thickness, t. Accordingly, for a given fiber strand diameter, fiber volume fraction and total number of fiber layers, increase in the total panel thickness, t, increases the projected fiber surface area fraction, S f p J and vice-versa.
- the projected fiber surface area fraction can be tailored to achieve good fiber embedment efficiency.
- Different variables that affect the magnitude of projected fiber surface area fraction are identified and approaches have been suggested to tailor the magnitude of "projected fiber surface area fraction" to achieve good fiber embedment efficiency.
- These approaches involve varying one or more of the following variables to keep projected fiber surface area fraction below a critical threshold value: number of distinct fiber and sluny layers, thickness of distinct slurry layers and diameter of fiber strand.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Producing Shaped Articles From Materials (AREA)
- Laminated Bodies (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Paper (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0414550-0A BRPI0414550B1 (en) | 2003-09-18 | 2004-09-01 | Process for manufacturing binder panels. |
EP20040782817 EP1663594B1 (en) | 2003-09-18 | 2004-09-01 | Multi-layer process for producing high strength fiber-reinforced structural cementitious panels |
MXPA06002474A MXPA06002474A (en) | 2003-09-18 | 2004-09-01 | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels. |
CA 2534998 CA2534998C (en) | 2003-09-18 | 2004-09-01 | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
JP2006526915A JP5003157B2 (en) | 2003-09-18 | 2004-09-01 | Multilayer method and apparatus for producing high strength structural cement panels reinforced by fibers |
IL173647A IL173647A (en) | 2003-09-18 | 2006-02-09 | Multi-layer process for producing high strength fiber-reinforced structural cementitious panels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/666,294 US7445738B2 (en) | 2003-09-18 | 2003-09-18 | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
US10/666,294 | 2003-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005032782A1 true WO2005032782A1 (en) | 2005-04-14 |
Family
ID=34313067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/028401 WO2005032782A1 (en) | 2003-09-18 | 2004-09-01 | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
Country Status (11)
Country | Link |
---|---|
US (2) | US7445738B2 (en) |
EP (1) | EP1663594B1 (en) |
JP (1) | JP5003157B2 (en) |
CN (1) | CN100563961C (en) |
AR (1) | AR050220A1 (en) |
BR (1) | BRPI0414550B1 (en) |
CA (2) | CA2798500C (en) |
IL (1) | IL173647A (en) |
MX (1) | MXPA06002474A (en) |
RU (1) | RU2359821C2 (en) |
WO (1) | WO2005032782A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009111292A3 (en) * | 2008-03-03 | 2009-10-29 | United States Gypsum Company | Cement based laminated armor panels |
WO2009111302A3 (en) * | 2008-03-03 | 2009-10-29 | United States Gypsum Company | Cement based armor panel system |
JP2010508174A (en) * | 2006-11-01 | 2010-03-18 | ユナイテッド・ステイツ・ジプサム・カンパニー | Multilayer method and apparatus for producing structural cement-based panels containing high strength reinforcing fiber components reinforced by fibers |
US8030377B2 (en) | 2008-03-03 | 2011-10-04 | United States Gypsum Company | Self-leveling cementitious composition with controlled rate of strength development and ultra-high compressive strength upon hardening and articles made from same |
US8061257B2 (en) | 2008-03-03 | 2011-11-22 | United States Gypsum Company | Cement based armor panel system |
US8137490B2 (en) | 2008-03-03 | 2012-03-20 | United States Gypsum Company | Process of manufacturing cement based armor panels |
CN102493617A (en) * | 2011-11-25 | 2012-06-13 | 梅志江 | Production method of fiber cement-stone compound plate and product thereof |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3868757B2 (en) * | 2001-04-25 | 2007-01-17 | 株式会社神戸製鋼所 | Rubber composition kneading apparatus and kneading method |
US7513768B2 (en) | 2003-09-18 | 2009-04-07 | United States Gypsum Company | Embedment roll device |
US6986812B2 (en) * | 2003-09-18 | 2006-01-17 | United States Gypsum Company | Slurry feed apparatus for fiber-reinforced structural cementitious panel production |
US7445738B2 (en) * | 2003-09-18 | 2008-11-04 | United States Gypsum Company | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
US7182589B2 (en) * | 2003-09-18 | 2007-02-27 | United States Gypsum Company | Embedment device for fiber-enhanced slurry |
US7732032B2 (en) * | 2004-12-30 | 2010-06-08 | United States Gypsum Company | Lightweight, fiber-reinforced cementitious panels |
US7849648B2 (en) * | 2004-12-30 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
US7841148B2 (en) * | 2005-01-27 | 2010-11-30 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US7849650B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US7849649B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
US7670130B2 (en) * | 2005-10-06 | 2010-03-02 | Tapco International Corporation | Cement shutter |
US7845130B2 (en) | 2005-12-29 | 2010-12-07 | United States Gypsum Company | Reinforced cementitious shear panels |
US7870698B2 (en) * | 2006-06-27 | 2011-01-18 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for building foundations |
US20080003398A1 (en) * | 2006-06-29 | 2008-01-03 | Tapco International Corporation | Foam core cement shutter |
US20080028711A1 (en) * | 2006-08-07 | 2008-02-07 | Logan J Richard | Cement shutter hanging system |
US20080099133A1 (en) * | 2006-11-01 | 2008-05-01 | United States Gypsum Company | Panel smoothing process and apparatus for forming a smooth continuous surface on fiber-reinforced structural cement panels |
US7513963B2 (en) * | 2006-11-01 | 2009-04-07 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
US7524386B2 (en) * | 2006-11-01 | 2009-04-28 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
US7754052B2 (en) * | 2006-11-01 | 2010-07-13 | United States Gypsum Company | Process and apparatus for feeding cementitious slurry for fiber-reinforced structural cement panels |
US20080141608A1 (en) * | 2006-12-19 | 2008-06-19 | Logan J Richard | Foam core cement and urethane shutters |
KR100823847B1 (en) * | 2006-12-20 | 2008-04-21 | 동부일렉트로닉스 주식회사 | Method for patterning a semiconductor device |
US7794221B2 (en) | 2007-03-28 | 2010-09-14 | United States Gypsum Company | Embedment device for fiber reinforced structural cementitious panel production |
US20080292868A1 (en) * | 2007-05-21 | 2008-11-27 | Logan J Richard | Foam core gypsum shutter |
US8163352B2 (en) * | 2007-06-29 | 2012-04-24 | United States Gypsum Company | Method for smoothing cementitious slurry in the production of structural cementitious panels |
WO2010083506A1 (en) * | 2009-01-19 | 2010-07-22 | Tapco International Corporation | Molded siding having longitudinally-oriented reinforcement fibers, and system and method for making the same |
US8770139B2 (en) * | 2009-03-03 | 2014-07-08 | United States Gypsum Company | Apparatus for feeding cementitious slurry onto a moving web |
WO2010121248A1 (en) * | 2009-04-17 | 2010-10-21 | Tapco International Corporation | Molded siding having integrally-formed i-beam construction |
US7984594B1 (en) * | 2010-01-20 | 2011-07-26 | Propst Family Limited Partnership, Llc | Composite building and panel systems |
US8695299B2 (en) | 2010-01-20 | 2014-04-15 | Propst Family Limited Partnership | Building panel system |
US9027300B2 (en) | 2010-01-20 | 2015-05-12 | Propst Family Limited Partnership | Building panel system |
US20140150362A1 (en) | 2010-01-20 | 2014-06-05 | Propst Family Limited Partnership | Building panels and method of forming building panels |
US9032679B2 (en) | 2010-01-20 | 2015-05-19 | Propst Family Limited Partnership | Roof panel and method of forming a roof |
US20120238841A1 (en) * | 2010-04-15 | 2012-09-20 | Mark Castle | Sample capture in one step for test strips |
KR101480778B1 (en) * | 2010-10-22 | 2015-01-12 | 지 컹 제임스 림 | Mobile production system for cement panel |
US8038790B1 (en) * | 2010-12-23 | 2011-10-18 | United States Gypsum Company | High performance non-combustible gypsum-cement compositions with enhanced water durability and thermal stability for reinforced cementitious lightweight structural cement panels |
UA115550C2 (en) | 2012-02-17 | 2017-11-27 | Юнайтед Стейтс Джипсум Компані | Gypsum products with high efficiency heat sink additives |
US9499994B2 (en) | 2012-11-01 | 2016-11-22 | Propst Family Limited Partnership | Tools for applying coatings and method of use |
DE102013100053A1 (en) * | 2013-01-04 | 2014-07-10 | Groz-Beckert Kg | Concrete precast element with textile reinforcement and holders |
US10562271B2 (en) | 2013-03-15 | 2020-02-18 | United States Gypsum Company | Exterior sheathing panel with integrated air/water barrier membrane |
US10336036B2 (en) | 2013-03-15 | 2019-07-02 | United States Gypsum Company | Cementitious article comprising hydrophobic finish |
US9499980B2 (en) | 2013-09-16 | 2016-11-22 | National Gypsum Properties, Llc | Lightweight cementitious panel possessing high durability background |
US9914245B2 (en) * | 2013-09-16 | 2018-03-13 | National Gypsum Properties, Llc | Controlling the embedding depth of reinforcing mesh to cementitious board |
US9757747B2 (en) | 2014-05-27 | 2017-09-12 | Palo Alto Research Center Incorporated | Methods and systems for creating aerosols |
US9527056B2 (en) * | 2014-05-27 | 2016-12-27 | Palo Alto Research Center Incorporated | Methods and systems for creating aerosols |
US10309771B2 (en) | 2015-06-11 | 2019-06-04 | United States Gypsum Company | System and method for determining facer surface smoothness |
US10421250B2 (en) | 2015-06-24 | 2019-09-24 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US10662112B2 (en) | 2015-10-01 | 2020-05-26 | United States Gypsum Company | Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries |
US10407344B2 (en) | 2015-10-01 | 2019-09-10 | United States Gypsum Company | Foam modifiers for gypsum slurries, methods, and products |
CN105522652A (en) * | 2016-01-08 | 2016-04-27 | 泰山石膏股份有限公司 | Automatic production line for perforated decorating gypsum plates for sound absorption |
WO2017127007A1 (en) | 2016-01-20 | 2017-07-27 | Poypeptide Laboratories Holding (Ppl) Ab | METHOD FOR PREPARATION OF PEPTIDES WITH psWANG LINKER |
EP3222795B1 (en) * | 2016-03-23 | 2022-07-27 | Li & Co AG | Wall or floor covering element |
US10272399B2 (en) | 2016-08-05 | 2019-04-30 | United States Gypsum Company | Method for producing fiber reinforced cementitious slurry using a multi-stage continuous mixer |
US11224990B2 (en) | 2016-08-05 | 2022-01-18 | United States Gypsum Company | Continuous methods of making fiber reinforced concrete panels |
US11173629B2 (en) | 2016-08-05 | 2021-11-16 | United States Gypsum Company | Continuous mixer and method of mixing reinforcing fibers with cementitious materials |
US10981294B2 (en) | 2016-08-05 | 2021-04-20 | United States Gypsum Company | Headbox and forming station for fiber-reinforced cementitious panel production |
US11225046B2 (en) | 2016-09-08 | 2022-01-18 | United States Gypsum Company | Gypsum board with perforated cover sheet and system and method for manufacturing same |
RU185228U1 (en) * | 2016-10-18 | 2018-11-29 | Владимир Максович Цырлин | CONCRETE PLATE |
US10066390B2 (en) | 2016-11-02 | 2018-09-04 | United States Gypsum Company | Two-hour fire-rated modular floor/ceiling assembly |
US10493483B2 (en) | 2017-07-17 | 2019-12-03 | Palo Alto Research Center Incorporated | Central fed roller for filament extension atomizer |
US10464094B2 (en) | 2017-07-31 | 2019-11-05 | Palo Alto Research Center Incorporated | Pressure induced surface wetting for enhanced spreading and controlled filament size |
EA201992222A1 (en) | 2017-09-28 | 2020-02-10 | Юнилин, Бвба | PLATE AND METHOD FOR MAKING A PLATE |
US11002033B2 (en) | 2019-02-09 | 2021-05-11 | United States Gypsum Company | Blast protection wall including cementitious panel |
US20200399889A1 (en) | 2019-06-18 | 2020-12-24 | United States Gypsum Company | Shipping container noncombustible building fire design |
US11674317B2 (en) | 2019-12-23 | 2023-06-13 | United States Gypsum Company | Apparatus and process with a vibratory angled plate and/or fixed horizontal plate for forming fiber-reinforced cementitious panels with controlled thickness |
CA3082154A1 (en) | 2020-03-06 | 2021-09-06 | United States Gypsum Company | Composite structure including a structural panel and a metal support |
MX2023008078A (en) | 2021-02-05 | 2023-07-18 | United States Gypsum Co | Constrained layer floor and wall damping systems using high-density reinforced cement panels. |
MX2023008654A (en) | 2021-02-11 | 2023-08-01 | United States Gypsum Co | Modular construction including fire-suppressing gasket. |
US12077961B2 (en) | 2021-02-11 | 2024-09-03 | United States Gypsum Company | Modular construction including fire-suppressing gasket |
CN113442268A (en) * | 2021-06-17 | 2021-09-28 | 长春市建林教育咨询有限公司 | Production line and application of double-sided fiber mesh cement board |
US20240068229A1 (en) | 2021-09-17 | 2024-02-29 | United States Gypsum Company | Structural load-bearing wall |
MX2024009963A (en) | 2022-02-25 | 2024-08-26 | United States Gypsum Company | Load bearing wall construction system using hollow structural sections. |
WO2024137361A1 (en) | 2022-12-22 | 2024-06-27 | United States Gypsum Company | Structural laminated fiber-reinforced cement beams and columns |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51115523A (en) * | 1975-04-03 | 1976-10-12 | Kubota Ltd | Production of glass fibreereinforced cement boards |
US4344804A (en) * | 1978-11-21 | 1982-08-17 | Stamicarbon B.V. | Process and apparatus for the manufacture of fiber-reinforced hydraulically bound articles such as cementitious articles |
US4450128A (en) * | 1979-10-03 | 1984-05-22 | Kurimoto Iron Works, Ltd. | Glass fiber-reinforced cement plates |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US32037A (en) * | 1861-04-16 | Improvement in binder-guides for sewing-machines | ||
US32038A (en) * | 1861-04-16 | Operating pumps | ||
US2446644A (en) * | 1941-10-06 | 1948-08-10 | Albert C Fischer | Method and apparatus for compacting fibrous material |
US3115431A (en) * | 1959-09-10 | 1963-12-24 | Abitibi Power & Paper Co | Method and apparatus for making oriented wood particle board |
AT220533B (en) * | 1960-02-22 | 1962-03-26 | Oesterr Amerikan Magnesit | Process for the continuous production of wood wool lightweight boards with support layers and device for its implementation |
US3271215A (en) * | 1961-02-27 | 1966-09-06 | Roy E Raney | Method of continuously forming reinforced resinous sheet material |
US3289371A (en) * | 1961-09-01 | 1966-12-06 | Owens Corning Fiberglass Corp | Reinforced composites and method for producing the same |
US3284980A (en) * | 1964-07-15 | 1966-11-15 | Paul E Dinkel | Hydraulic cement panel with low density core and fiber reinforced high density surface layers |
US3615979A (en) * | 1968-07-01 | 1971-10-26 | Owens Corning Fiberglass Corp | Process of making sheet molding compound and materials thereof |
US3895988A (en) * | 1971-05-24 | 1975-07-22 | Owens Corning Fiberglass Corp | Method of making inlaid resins |
US3957556A (en) * | 1972-01-06 | 1976-05-18 | Owens-Corning Fiberglas Corporation | Method for producing sheet molding composite |
JPS5328932B2 (en) * | 1973-05-21 | 1978-08-17 | ||
JPS5354219A (en) * | 1976-10-28 | 1978-05-17 | Asahi Glass Co Ltd | Continuous process for production of f r c and apparatus therefor |
USRE32037E (en) | 1978-03-16 | 1985-11-26 | Methods for manufacturing cementitious reinforced panels | |
US4203788A (en) * | 1978-03-16 | 1980-05-20 | Clear Theodore E | Methods for manufacturing cementitious reinforced panels |
USRE32038E (en) | 1978-03-16 | 1985-11-26 | Methods for manufacturing cementitious reinforced panels | |
US4379729A (en) * | 1979-08-09 | 1983-04-12 | Tarmac Industrial Holdings Limited | Method and apparatus for the production of composite sheet material and a sheet material produced thereby |
US4420295A (en) * | 1979-09-26 | 1983-12-13 | Clear Theodore E | Apparatus for manufacturing cementitious reinforced panels |
JPS5724249A (en) * | 1980-07-18 | 1982-02-08 | Kurimoto Ltd | Hollow glass fiber reinforced cement board and its manufacture |
US4450022A (en) * | 1982-06-01 | 1984-05-22 | United States Gypsum Company | Method and apparatus for making reinforced cement board |
US4504335A (en) * | 1983-07-20 | 1985-03-12 | United States Gypsum Company | Method for making reinforced cement board |
DE3483044D1 (en) * | 1984-09-21 | 1990-09-27 | Schenck Ag Carl | METHOD FOR LENGTH ORIENTING CHIPS AND DEVICE THEREFOR. |
US5221386A (en) * | 1986-02-20 | 1993-06-22 | United States Gypsum Company | Cement board having reinforced edges |
US4778718A (en) * | 1987-03-26 | 1988-10-18 | University Of Delaware | Fabric-reinforced cementitious sheet-like structures and their production |
US4793892A (en) * | 1987-09-24 | 1988-12-27 | Glascrete, Inc. | Apparatus for producing reinforced cementitious panel webs |
US4816091A (en) * | 1987-09-24 | 1989-03-28 | Miller Robert G | Method and apparatus for producing reinforced cementious panel webs |
CN2073000U (en) * | 1990-07-28 | 1991-03-13 | 北京新型建筑材料总厂 | Compound plaster fire board for building |
US5961900A (en) * | 1992-10-10 | 1999-10-05 | Wedi; Helmut | Method of manufacturing composite board |
CN1042114C (en) * | 1993-10-18 | 1999-02-17 | 哈尔滨现代化工建材有限公司 | Method for making coloured glaze-type composite tile and equipment thereof |
US5858083A (en) | 1994-06-03 | 1999-01-12 | National Gypsum Company | Cementitious gypsum-containing binders and compositions and materials made therefrom |
US5685903A (en) | 1994-06-03 | 1997-11-11 | National Gypsum Company | Cementitious gypsum-containing compositions and materials made therefrom |
GB9626320D0 (en) * | 1996-12-19 | 1997-02-05 | Ecc Int Ltd | Cementitious compositions |
CA2211984C (en) * | 1997-09-12 | 2002-11-05 | Marc-Andre Mathieu | Cementitious panel with reinforced edges |
US6176920B1 (en) * | 1998-06-12 | 2001-01-23 | Smartboard Building Products Inc. | Cementitious structural panel and method of its manufacture |
CN1416390A (en) * | 2000-01-05 | 2003-05-07 | 美国圣戈班技术织物有限公司 | Smooth reinforced cementitious boards and methods of making same |
AUPR521401A0 (en) * | 2001-05-23 | 2001-06-14 | Stephens, Anthony Leon | A mobile dry to wet concrete system |
US7435369B2 (en) * | 2001-06-06 | 2008-10-14 | Bpb Plc | Method for targeted delivery of additives to varying layers in gypsum panels |
DE10139420B4 (en) * | 2001-08-17 | 2006-07-27 | Grenzebach Bsh Gmbh | Method and device for producing plasterboard |
CN1173105C (en) * | 2002-02-08 | 2004-10-27 | 龚卓夫 | Composite wall plate with waste textile fibre reinforced concrete side surface and its producing method |
MXPA05009968A (en) * | 2003-03-19 | 2005-11-04 | United States Gypsum Co | Acoustical panel comprising interlocking matrix of set gypsum and method for making same. |
US6986812B2 (en) * | 2003-09-18 | 2006-01-17 | United States Gypsum Company | Slurry feed apparatus for fiber-reinforced structural cementitious panel production |
US7182589B2 (en) * | 2003-09-18 | 2007-02-27 | United States Gypsum Company | Embedment device for fiber-enhanced slurry |
US7445738B2 (en) * | 2003-09-18 | 2008-11-04 | United States Gypsum Company | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
US7670520B2 (en) * | 2003-09-18 | 2010-03-02 | United States Gypsum Company | Multi-layer process for producing high strength fiber-reinforced structural cementitious panels with enhanced fiber content |
US7320539B2 (en) * | 2004-04-05 | 2008-01-22 | Mcneilus Truck And Manufacturing, Inc. | Concrete batching facility and method |
US7732032B2 (en) * | 2004-12-30 | 2010-06-08 | United States Gypsum Company | Lightweight, fiber-reinforced cementitious panels |
US7849649B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
US7849650B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
-
2003
- 2003-09-18 US US10/666,294 patent/US7445738B2/en not_active Expired - Lifetime
-
2004
- 2004-09-01 CA CA 2798500 patent/CA2798500C/en not_active Expired - Lifetime
- 2004-09-01 CA CA 2534998 patent/CA2534998C/en not_active Expired - Lifetime
- 2004-09-01 WO PCT/US2004/028401 patent/WO2005032782A1/en active Application Filing
- 2004-09-01 JP JP2006526915A patent/JP5003157B2/en not_active Expired - Lifetime
- 2004-09-01 EP EP20040782817 patent/EP1663594B1/en not_active Expired - Lifetime
- 2004-09-01 MX MXPA06002474A patent/MXPA06002474A/en active IP Right Grant
- 2004-09-01 RU RU2006112830A patent/RU2359821C2/en active
- 2004-09-01 CN CNB2004800267708A patent/CN100563961C/en not_active Expired - Lifetime
- 2004-09-01 BR BRPI0414550-0A patent/BRPI0414550B1/en active IP Right Grant
- 2004-09-17 AR ARP040103339 patent/AR050220A1/en active IP Right Grant
-
2006
- 2006-02-09 IL IL173647A patent/IL173647A/en active IP Right Grant
-
2008
- 2008-06-05 US US12/133,657 patent/US7789645B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51115523A (en) * | 1975-04-03 | 1976-10-12 | Kubota Ltd | Production of glass fibreereinforced cement boards |
US4344804A (en) * | 1978-11-21 | 1982-08-17 | Stamicarbon B.V. | Process and apparatus for the manufacture of fiber-reinforced hydraulically bound articles such as cementitious articles |
US4450128A (en) * | 1979-10-03 | 1984-05-22 | Kurimoto Iron Works, Ltd. | Glass fiber-reinforced cement plates |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section Ch Week 197904, Derwent World Patents Index; Class L02, AN 1979-06996B, XP002311547 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010508174A (en) * | 2006-11-01 | 2010-03-18 | ユナイテッド・ステイツ・ジプサム・カンパニー | Multilayer method and apparatus for producing structural cement-based panels containing high strength reinforcing fiber components reinforced by fibers |
JP2014028523A (en) * | 2006-11-01 | 2014-02-13 | Usg Corp | Multilayer method and apparatus producing cement-base panel for structure including high intensity reinforcement fiber component reinforced by fiber |
US8061257B2 (en) | 2008-03-03 | 2011-11-22 | United States Gypsum Company | Cement based armor panel system |
CN101970975A (en) * | 2008-03-03 | 2011-02-09 | 美国石膏公司 | Cement based laminated armor panels |
CN101970976A (en) * | 2008-03-03 | 2011-02-09 | 美国石膏公司 | Cement based armor panel system |
US8030377B2 (en) | 2008-03-03 | 2011-10-04 | United States Gypsum Company | Self-leveling cementitious composition with controlled rate of strength development and ultra-high compressive strength upon hardening and articles made from same |
WO2009111292A3 (en) * | 2008-03-03 | 2009-10-29 | United States Gypsum Company | Cement based laminated armor panels |
US8062741B2 (en) | 2008-03-03 | 2011-11-22 | U.S. Gypsum Company | Cement based laminated armor panels |
US8137490B2 (en) | 2008-03-03 | 2012-03-20 | United States Gypsum Company | Process of manufacturing cement based armor panels |
CN101970976B (en) * | 2008-03-03 | 2013-08-28 | 美国石膏公司 | Cement based armor panel system |
WO2009111302A3 (en) * | 2008-03-03 | 2009-10-29 | United States Gypsum Company | Cement based armor panel system |
CN102493617A (en) * | 2011-11-25 | 2012-06-13 | 梅志江 | Production method of fiber cement-stone compound plate and product thereof |
CN102493617B (en) * | 2011-11-25 | 2013-08-21 | 梅志江 | Production method of fiber cement-stone compound plate and product thereof |
Also Published As
Publication number | Publication date |
---|---|
US7789645B2 (en) | 2010-09-07 |
CA2534998A1 (en) | 2005-04-14 |
IL173647A0 (en) | 2006-07-05 |
RU2006112830A (en) | 2006-08-10 |
RU2359821C2 (en) | 2009-06-27 |
EP1663594A1 (en) | 2006-06-07 |
IL173647A (en) | 2011-10-31 |
US20050064164A1 (en) | 2005-03-24 |
US7445738B2 (en) | 2008-11-04 |
CA2534998C (en) | 2013-11-05 |
CA2798500A1 (en) | 2005-04-14 |
BRPI0414550B1 (en) | 2015-05-19 |
US20090011212A1 (en) | 2009-01-08 |
EP1663594B1 (en) | 2014-01-15 |
MXPA06002474A (en) | 2006-06-20 |
CN100563961C (en) | 2009-12-02 |
CN1852792A (en) | 2006-10-25 |
CA2798500C (en) | 2014-08-19 |
JP5003157B2 (en) | 2012-08-15 |
AR050220A1 (en) | 2006-10-11 |
BRPI0414550A (en) | 2006-11-07 |
JP2007505767A (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7789645B2 (en) | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels | |
CA2668122C (en) | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels with enhanced fiber content | |
US6986812B2 (en) | Slurry feed apparatus for fiber-reinforced structural cementitious panel production | |
US8163352B2 (en) | Method for smoothing cementitious slurry in the production of structural cementitious panels | |
US8770139B2 (en) | Apparatus for feeding cementitious slurry onto a moving web | |
US7794221B2 (en) | Embedment device for fiber reinforced structural cementitious panel production | |
JP2023507271A (en) | Apparatus and process with oscillating angled plates and/or fixed horizontal plates for forming fiber reinforced cement panels with controlled thickness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480026770.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2534998 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 173647 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006526915 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004782817 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/002474 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006112830 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004782817 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0414550 Country of ref document: BR |