WO2005031939A1 - 電動機駆動システム - Google Patents

電動機駆動システム Download PDF

Info

Publication number
WO2005031939A1
WO2005031939A1 PCT/JP2003/012327 JP0312327W WO2005031939A1 WO 2005031939 A1 WO2005031939 A1 WO 2005031939A1 JP 0312327 W JP0312327 W JP 0312327W WO 2005031939 A1 WO2005031939 A1 WO 2005031939A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
phase
converter
distribution bus
carrier frequency
Prior art date
Application number
PCT/JP2003/012327
Other languages
English (en)
French (fr)
Inventor
Masaru Toyoda
Original Assignee
Toshiba Mitsubishi-Electric Industrial Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi-Electric Industrial Systems Corporation filed Critical Toshiba Mitsubishi-Electric Industrial Systems Corporation
Priority to JP2005509184A priority Critical patent/JPWO2005031939A1/ja
Priority to EP03818786A priority patent/EP1677403A4/en
Priority to PCT/JP2003/012327 priority patent/WO2005031939A1/ja
Publication of WO2005031939A1 publication Critical patent/WO2005031939A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • a power conversion device in which a plurality of generators using a mechanical power generation device as a power source are connected in parallel to a common distribution bus, and the plurality of AC motors driving a load machine are operated at a variable speed.
  • the present invention relates to a motor drive system connected in parallel to the common distribution bus.
  • FIG. 5 is a configuration diagram showing an example of a conventional motor drive system for electric propulsion of a marine vessel disclosed in International Publication No. WO 02/1007 16A1.
  • the screws 33 to 36 are driven at variable speeds by induction motors 23 to 26 via rotary shafts 28 to 31, respectively.
  • the induction motors 23 to 26 are driven at variable speeds by the power converters 18 to 21, respectively, and the power required for variable speed drive is supplied from the common distribution buses 12 and 13 via the transformer 37. Supplied.
  • the output terminals of the generators 6 to 10 driven by the diesel engines 1 to 5 are connected to the common distribution buses 12 and 13, respectively.
  • 38 is the primary winding of the transformer 37
  • 39 and 41 are the secondary windings of the transformer 37, 42 and 43 are rectifiers
  • 44 is a capacitor
  • 45 is an inverter. .
  • the mechanical power output from the diesel engines 1 to 5 is converted into electric power by the generators 6 to 10, and the common distribution buses 12, 13, the transformer 37, the power converter 1, 8 ⁇ 21, induction motor 23 ⁇ 26, finally the screw 33 ⁇ 36 via rotary shaft 28 ⁇ 31, variable speed It is used as mechanical power for driving.
  • part of the mechanical power output by the diesel engines 1 to 5 is also supplied to other load equipment connected to the low-voltage distribution systems 16 and 17 via transformers 14 and 15. You.
  • the electric propulsion system using such an electric motor drive system has less vibration compared to the conventional propulsion system that drives the screw directly by the diesel engine, makes it easier to adjust the screw rotation direction and rotation speed, There are advantages such as high efficiency. For this reason, applications are increasing for luxury passenger ships that place emphasis on ride comfort and icebreakers that repeatedly move forward and backward.
  • the outflow of harmonics to the common distribution bus is due to the fact that the power converter does not have a harmonic reduction function.
  • the capacity of the generator is determined by the value of the negative-phase current (harmonic current) flowing into the generator from the load equipment. Therefore, the higher the harmonic current, the larger the rated capacity of the generator. There was a problem that can not be.
  • This generator capacity problem is particularly important in motor drive systems for marine electric propulsion and LNG plants, where it is desirable that the number of diesel engines, generators, power converters and induction motors be small in order to reduce investment costs. Therefore, improvement is desired.
  • An electric motor drive system includes a plurality of generators driven by a mechanical power generation device that outputs mechanical power to generate AC power, and a common power distribution bus in which output terminals of the plurality of generators are connected in parallel. Input terminals are connected to the common distribution bus, and a plurality of power converters that output AC power of variable amplitude and variable frequency are connected to the power converters, respectively, and each drive a load machine.
  • a desirable carrier frequency phase difference between a plurality of power converters is 360 ° ZN, where N is the number of operating power converters.
  • the power converter connected to the common distribution bus With the suppression function, the harmonic current in the common distribution bus can be reduced at the same load capacity, and the rated capacity of the generator connected to the bus can be reduced.
  • the electric motor drive system of the present invention provides a plurality of generators that are driven by a mechanical power generation device that outputs mechanical power to generate AC power, and a common power distribution in which output terminals of the plurality of generators are connected in parallel.
  • An input terminal is connected to the bus and the common distribution bus, and a plurality of power converters that output AC power of variable amplitude and variable frequency are connected to the power converter, and each of the power converters drives a load machine.
  • Number-of-units setting means for calculating a phase difference and outputting a predetermined phase-difference command; provided in each of the power converters;
  • a variable phase setting device is provided for adjusting the phase difference setting value of the carrier frequency with respect to the voltage phase of the power bus, and in response to a change in the number of operating the plurality of power converters, based on a command from the number setting means.
  • the electric motor drive system includes an operation state detector for detecting an operation state of the electric power conversion device in each of the electric power conversion devices, and the number setting means uses the vehicle information from each of the operation state detectors.
  • the system is configured to output a phase difference command based on this, and to automatically change the set value of the carrier frequency phase in response to a change in the number of operating power converters.
  • the electric motor drive system of the present invention thus configured, the system Even if the number of operating power converters increases or decreases during system operation, the phase of the carrier frequency is automatically adjusted so that the amount of harmonic cancellation is maximized in accordance with the number of operating power converters. And a more stable operation of the generator is possible.
  • FIG. 1 is a configuration diagram showing an electric motor drive system according to Embodiment 1 of the present invention.
  • FIG. 2 shows an example of a voltage waveform when PWM control is performed on the power conversion device according to Embodiment 1 of the present invention.
  • FIG. 3 is a phenomenon diagram showing a state of reduction of harmonics in Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram showing an electric motor drive system according to Embodiment 2 of the present invention.
  • FIG. 5 is a configuration diagram showing an example of a conventional motor drive system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an electric motor drive system for boat propulsion according to a first embodiment of the present invention.
  • a plurality of generators 6 to 10 are driven by diesel engines (mechanical power generators):! To 5, each of which outputs mechanical power, and a common power distribution via a circuit breaker (not shown).
  • the AC power is connected in parallel to the bus 12 and supplies the generated AC power to the common distribution bus 12.
  • the plurality of induction motors 23 to 26 drive screws (loading machines) 33 to 36 connected to their rotating shafts 28 to 31, respectively.
  • the induction motors 23 to 26 are provided with speed detectors 49 to 52, respectively.
  • Guidance The motor 23 is connected to the common distribution bus 12 via a transformer 46 and a motor controller 63.
  • a circuit breaker (not shown) is connected between the common distribution bus 12 and the transformer 46.
  • the induction motors 24 to 26 are also connected to the common distribution bus 12 via circuit breakers, transformers, and control devices 64 to 66 of the motor.
  • the motor control devices 63 to 66 have the same configuration and function, respectively, and only the motor control device 63 is typically shown in detail.
  • the motor control device 63 has a power conversion device 62.
  • the power conversion device 62 has a main circuit 47 and a control circuit unit 61, and has a configuration in which the main circuit 47 can control the reactive power and the active power of the input power.
  • the main circuit 47 includes, for example, a high power factor converter 81 for converting AC power to DC power, a smoothing capacitor 82 for smoothing the converted DC power, and a motor 2 for converting DC power to AC power. It is composed of a converter-inverter type (DC link type) converter that has a self-excited impeller 83 that drives the converter 3.
  • Reference numeral 48 denotes a phase detection circuit that detects the voltage phase of the common distribution bus 12, and is configured by, for example, a well-known PLL circuit.
  • Reference numeral 53 is a DC voltage detector for detecting the DC voltage of the converter 81 (the DC voltage of the smoothing capacitor 82).
  • Reference numeral 54 denotes a DC voltage control circuit that receives the DC voltage detected by the DC voltage detector 53 and controls the DC voltage of the converter 81 to the predetermined value based on a deviation from a predetermined value.
  • Reference numeral 55 denotes a carrier frequency phase setting device for controlling the converter 81 of the main circuit 47 by P ⁇ , and sets the transmission phase with respect to the voltage phase of the common distribution bus 12.
  • Reference numeral 56 denotes a carrier frequency generator for performing PWM control of the converter 81, and reference numeral 57 denotes a converter control circuit that drives the converter 81 of the main circuit 47 with the output of the DC voltage control circuit 54.
  • Carrier frequency generator 5 6 key Includes a circuit that controls the converter 81 based on the rear frequency.
  • Reference numeral 58 denotes a speed command setting circuit that sets or receives a speed command value of the induction motor 23 according to an external command.
  • Reference numeral 59 denotes a speed control circuit for calculating a current command value of the inverter 83 of the main circuit 47. It receives a certain speed command value, calculates the difference between this speed command value and the feedback speed, and calculates the current command value so that this difference disappears.
  • Reference numeral 60 denotes an inverter control circuit which receives the output of the speed control circuit 59 and controls the inverter 83 of the main circuit 47.
  • Reference numeral 61 denotes a control circuit for controlling the main circuit 47 of the power conversion device 62, and includes the above-described DC voltage detector 53, DC voltage control circuit 54, phase setting device 55, carrier frequency generator. 56, a converter control circuit 57, a speed command setting circuit 58, a speed control circuit 59, and an inverter control circuit 60 are included.
  • Part of the power from the common distribution bus 12 is also supplied to other load devices connected to the low-voltage distribution systems 16 and 17 via the transformers 14 and 15.
  • the power generation system generates power so that the AC power output of a predetermined frequency and voltage is obtained even at the maximum load connected to the common distribution bus 12. If, for example, the power consumed by the load increases within the rated range of the power generation system, the output of diesel engines (motors) 1 to 5 is increased and the output power of generators 6 to 10 is made equal to the power consumption. By doing so, the frequency and voltage of the common distribution bus 12 are maintained at predetermined values.
  • the load capacity that the generator can generate and output is regulated by the negative-sequence current (harmonic current) flowing into the generator from the load equipment, and the amount of harmonics is 14% or less of the generator capacity. It is standard to do so. That is, load capacity Even if the amount is the same, if the harmonic current is large, the rated capacity of the generator must be large, and if the harmonic current is small, the rated capacity of the generator can be reduced.
  • the present invention has been made by paying attention to the above points.
  • a harmonic suppression function between the power converters of the respective motor control devices 63 to 66, a common power distribution bus 1 2 In this way, the rated current (required capacity) of the generators 6 to 10 connected to the common distribution bus 12 can be reduced.
  • motor control devices 63 to 66 control the driving of each motor so that the rotation speed of the motors 23 to 26 becomes a desired value.
  • the power conversion device 62 receives AC power from the transformer 46 and outputs the speed, which is the output of the speed command setting circuit 58 based on an external speed command.
  • the inverter 23 of the main circuit 47 is controlled based on the command value to output AC power of variable amplitude and variable frequency for driving the motor 23.
  • the carrier frequency generator 56 for controlling the high-efficiency converter 81 of the power converter with P-dragon control uses the common power distribution bus 12 when the reduction of harmonics is not performed by operating multiple power converters.
  • the carrier frequency is generated at a specific frequency regardless of the phase of the common distribution bus.However, when the harmonics are reduced by operating multiple units, the voltage phase of the common distribution bus 12 detected by the phase detection circuit 48 is On the other hand, a carrier frequency having a predetermined phase set by the phase setting device 55 is generated and given to the converter control circuit 57.
  • the DC voltage detected by the DC voltage detector 53 is compared with a predetermined voltage value in the DC voltage control circuit 54.
  • the DC voltage control circuit 54 calculates the current command reference value so that the deviation is eliminated, and the converter Output to control circuit 57.
  • the converter control circuit 57 is based on the current command reference from the DC voltage control circuit 54.
  • the P ⁇ control of the comparator 81 is performed, and the converter 81 is controlled so that the DC voltage of the converter 81 becomes a desired value.
  • the phase of the carrier frequency from the carrier frequency generator 56 is transmitted with a predetermined phase difference set by the phase setting device 55 with respect to the voltage phase of the common distribution bus 12.
  • the phase difference between the carrier frequency transmitted from the carrier frequency generator 56 and the voltage phase of the common distribution bus 12 is determined by the power converters of the respective motor control devices 63, 64, 65, 66. By varying the value of, the total harmonic current of the common distribution bus can be reduced.
  • the carrier frequency for PWM control of the converters 81 of each power converter has a phase difference of 180 ° so that the harmonics can be reduced. Reduction can be achieved. That is, the voltage phase of the common distribution bus 12 was detected by the phase detection circuit 48, and the detected phase was set to 0 ° (reference), and the phase of the carrier frequency of the first power conversion device 62 was detected. Match the phase. On the other hand, the phase of the carrier frequency of the second power conversion device has a phase difference of 180 ° with respect to the first carrier frequency by the phase setting device.
  • Fig. 2 (a) to (d) show an example of the voltage waveform of P ⁇ control in this case
  • Fig. 2 (a) is a waveform diagram of the carrier frequency and signal voltage of the first power converter.
  • FIGS. 2 (b) and 2 (c) show the output voltage waveform diagrams
  • FIG. 2 (d) shows the carrier frequency and signal voltage waveform diagrams of the second power converter.
  • the output voltage waveform diagram of the second power converter is omitted because it can be easily inferred from Figs. 2 (b) and 2 (c).
  • harmonics can be reduced by giving each carrier frequency a phase difference of 120 °. This is because the principle that the total current of the three-phase alternating current becomes 0 (zero) cancels out the harmonic currents between the power converters.
  • FIG. 3 is a phenomenon diagram showing the effect of reducing the harmonic current on the common distribution bus of the motor drive system according to the present invention.
  • FIG. 3 (a) shows the harmonic component (reduction) when one power converter is operated. (No effect), (b) shows the harmonic component when two power converters are operated, and (c) shows the harmonic component when five power converters are operated.
  • the carrier frequencies of the plurality of power converters connected to the common distribution bus are mutually set at predetermined positions with reference to the voltage phase of the common distribution bus.
  • a harmonic suppression function is provided between a plurality of power converters, so that the harmonic current in the common distribution bus can be reduced with the same load capacity, and the common distribution bus can be reduced.
  • the rated capacity (required capacity) of the generator connected to the power supply can be reduced.
  • FIG. 4 is a configuration diagram showing an electric motor drive system according to Embodiment 2 of the present invention.
  • the harmonic current is minimized in response to the reduction in the number of power converters.
  • the phase difference of the carrier frequency of each power converter is automatically changed.
  • reference numerals 75 to 78 denote operating state detectors (contacts) provided in the control devices 71 to 74 of the electric motors, and output that the power converter is in operation when the contacts are turned on. .
  • Reference numeral 6 denotes a number setting device, which calculates the operating number N of the power converters based on the outputs from the operation state detectors (contacts) 7 5 to 7 8 and calculates the carrier frequency of each power converter based on the number N. Is calculated, and a predetermined phase difference command is given to each of the power converters of the motor control devices 71 to 74.
  • the motor control devices 71 to 74 have the same configurations and functions, respectively, and only the motor control device 71 is typically shown in detail.
  • the motor control device 71 has a power conversion device 70, and the power conversion device 70 includes a main circuit 47 and a control circuit section 69 for controlling the main circuit 47.
  • the control circuit section 69 is provided with a variable phase setter 68 for adjusting the phase set value of the carrier frequency for controlling the converter 81 of the main circuit 47 by PWM.
  • the number setting device 67 monitors the operation state of the power converter based on the output from the operation state detectors 75 to 78. Calculates the optimal phase difference of the carrier frequency of each power conversion device according to the number N of operating Provided to the variable phase setting device 6-8.
  • the variable phase setting device 68 receives the command and changes the phase of the carrier frequency of each power converter with respect to the voltage phase of the common distribution bus 12 to an optimal value according to the number of operating units at that time.
  • the number of operating power converters for example, when one of the power converters fails during the operation of the system, or when the suspended power converter starts operating, etc. Even if there is an increase or decrease, the carrier frequency phase can be automatically adjusted according to the number of operating power converters so that the amount of harmonic cancellation is maximized, resulting in more stable generator operation. It is possible. Industrial applicability
  • the present invention is suitable for use in a motor drive system for marine electric propulsion and a motor drive system for an LNG plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 機械動力発生装置(1~5)により駆動される複数台の発電機(6~10)が、共通配電母線(12)に並列接続され、この共通配電母線(12)に、可変振幅及び可変周波数の交流電力を出力する複数台の電力変換装置(61)と、共通配電母線の電圧位相を検出する位相検出手段(48)が接続され、上記複数台の電力変換装置によって、複数台の電動機(23~27)を駆動する電動機駆動システムに関する。上記位相検出手段(48)で検出した共通配電母線の電圧位相を基に、各電力変換装置のコンバータをPWM制御するキャリア周波数の位相をそれぞれ異なる所定の値に設定することによって、電力変換装置に共通配電母線への高調波低減機能を持たせたものである。

Description

明 細 書 電動機駆動システム 技術分野
この発明は、機械動力発生装置を動力源とする複数台の発電機が、 共 通の配電母線に並列接続され、かつ負荷機械を駆動する複数台の交流電 動機を可変速運転する電力変換装置が、 この共通配電母線に並列接続さ れた電動機駆動システムに関するものである。 背景技術
第 5図は、国際公開第 WO 0 2 / 1 0 0 7 1 6 A 1号に示された船舶 電気推進用の従来の電動機駆動システムの一例を示す構成図である。 第 5図において、 スクリユー 3 3 〜 3 6はそれぞれ、 回転軸 2 8 〜 3 1を介して誘導電動機 2 3 〜 2 6により可変速駆動される。誘導電動機 2 3 〜 2 6はそれぞれ、電力変換装置 1 8〜 2 1により可変速駆動され るが、可変速駆動に必要な電力は変圧器 3 7を介して共通配電母線 1 2 、 1 3から供給される。 この共通配電母線 1 2、 1 3には、 ディーゼル 機関 1 〜 5によつて駆動される発電機 6 〜 1 0の出力端子力 S接続され ている。 なお、 3 8は変圧器 3 7の一次卷線、 3 9 、 4 1は変圧器 3 7 の二次巻線、 4 2、 4 3は整流器、 4 4はコンデンサ、 4 5はインバー タである。
このようなシステム構成により、ディーゼル機関 1 〜 5が出力する機 械動力は、 発電機 6 〜 1 0によって電力に変換され、 共通配電母線 1 2 、 1 3、 変圧器 3 7、 電力変換装置 1 8 〜 2 1、 誘導電動機 2 3 〜 2 6 、回転軸 2 8〜 3 1を経由して最終的にスクリュー 3 3 〜 3 6を可変速 運転する機械動力として利用される。 さらに、 ディーゼル機関 1〜5が 出力する機械動力の一部は、 変圧器 1 4、 1 5を経由して、 低圧配電系 統 1 6、 1 7に接続された他の負荷機器にも供給される。
なお、 図示されていないが、 発電機 6〜 1 0と共通配電母線 1 2、 1 3との間、 および変圧器 3 7 ( 4台あり) と共通配電母線 1 2、 1 3と の間には、 それぞれ遮断器が設けられる。 発電機側あるいは誘導電動機 側に異常が生じた場合は、 該当する箇所の遮断器が開放され、 共通配電 母線 1 2、 1 3から切り離される。
このような電動機駆動システムを適用した電気推進システムは、ディ ーゼル機関により直接、スクリユーを駆動する従来の推進システムと比 較して、 振動が少ない、 スクリューの回転方向や回転数の調整が容易、 効率がよいなどの利点がある。 このため、 乗り心地を重視する豪華客船 や前後進を繰り返す砕氷船などでの適用が増加しつつある。
また、 天然ガスを液化するための L N Gプラントでは、 従来、 液化設 備に使用されるコンプレッサの駆動に、ガスタービンやスチームタービ ンなどの機械動力発生装置が使用されてきた。 し力 し、 排気ガスが少な い、 効率がよいといった利点から、 船舶電気推進システムと同様の電動 機駆動システムの適用が開始されつつある。 この L N Gプラント用の電 動機駆動システムの構成は、 例えば、 第 5図において、 スクリュー 3 3 〜3 6をコンプレッサで置換えたものとなる。
従来の電動機駆動システムは上記のように構成されているが、共通配 電母線への高調波の流出は、電力変換装置に高調波低減機能が無いこと から、その母線に接続される電力変換装置からの高調波の単純な足し算 となる。 一方発電機の容量は、 発電機に負荷設備より流入する逆相電流 (高調波電流) 値により決定されることから、 高調波電流が多ければ必 然的に発電機定格容量も大きくせざるをえないという問題があった。 この発電機容量の問題は、 特に、 船舶電気推進用や L N Gプラント用 の電動機駆動システムでは、投資コストを抑えるためにディーゼル機関 、発電機、 電力変換装置や誘導電動機の台数は少ないことが望まれてお り、 改善が望まれるところである。
この発明は、 上記のような問題点を解消するためになされたもので、 電力変換装置に、電力変換装置と共通配電母線との間でやりとりされる 高調波電流の抑制機能を持たせることによって、共通配電母線に接続さ れている発電機の定格容量(必要容量) を低減することのできる電動機 駆動システムを提供することを目的とする。 発明の開示
この発明の電動機駆動システムは、機械動力を出力する機械動力発生 装置により駆動され交流電力を発生する複数台の発電機と、上記複数台 の発電機の出力端子が並列接続された共通配電母線と、上記共通配電母 線に入力端子が接続され、可変振幅及び可変周波数の交流電力を出力す る複数台の電力変換装置と、 上記電力変換装置にそれぞれ接続され、 そ れぞれ負荷機械を駆動する複数台の電動機と、上記共通配電母線の電圧 位相を検出する位相検.出手段を備え、上記位相検出手段によって検出し た上記共通配電母線の電圧位相を基に、上記各電力変換装置のコンパ一 タを PWM制御するためのキャリア周波数の位相をそれぞれ異なる所定 の値に設定することによって、上記電力変換装置のコンバータの入力電 流より発生する上記共通配電母線への高調波を低減制御するものであ る。
なお、複数の電力変換装置相互間の望ましいキヤリァ周波数の位相差 は、 電力変換装置の運転台数を Nとすれば、 3 6 0 ° ZNである。 この発明によれば、共通配電母線に接続される電力変換装置に高調波 抑制機能を持たせたので、同一負荷容量において共通配電母線における 高調波電流を低減することができ、母線に接続される発電機の定格容量 を低減できる効果がある。
またこの発明の電動機駆動システムは、機械動力を出力する機械動力 発生装置により駆動され交流電力を発生する複数台の発電機と、上記複 数台の発電機の出力端子が並列接続された共通配電母線と、上記共通配 電母線に入力端子が接続され、可変振幅及び可変周波数の交流電力を出 力する複数台の電力変換装置と、上記電力変換装置にそれぞれ接続され 、 それぞれ負荷機械を駆動する複数台の電動機と、 上記共通配電母線の 電圧位相を検出する位相検出手段と、上記複数の電力変換装置の運転状 態を監視し、その時の運転台数に応じて電力変換装置のキヤリァ周波数 の最適位相差を演算し、 所定の位相差指令を出力する台数設定手段と、 それぞれの電力変換装置に設けられ、上記台数設定手段からの位相差指 令を受け、上記共通配電母線の電圧位相に対するキヤ'リァ周波数の位相 差設定値を調整する可変位相設定器を備え、上記複数の電力変換装置の 運転台数の変更に対応して、 上記台数設定手段からの指令にもとづき、 上記可変位相設定器により、運転状態にある電力変換装置の P龍制御コ ンバータのキヤリァ周波数位相をそれぞれ所定の値に調整することに よって、その時の運転台数に適した高調波の低減制御ができるようにし たものである。
さらに、 この発明の電動機駆動システムは、 電力変換装置の運転状態 を検出する運転状態検出器をそれぞれの電力変換装置に備え、上記台数 設定手段は、各運転状態検出器からの運車云情報にもとづいて位相差指令 を出力するようにし、 電力変換装置の運転台数の変更に対応して、 キヤ リア周波数位相の設定値を自動的に変更するよう構成されている。 このように構成されたこの発明の電動機駆動システムによれば、 シス テムの運転中に電力変換装置の運転台数に増減があっても、電力変換装 置の運転台数に応じて高調波の打ち消し量が最大となるように、キヤリ ァ周波数の位相を自動調整することができ、 より安定した発電機の運転 が可能となる。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1である電動機駆動システムを示す 構成図である。
第 2図はこの発明の実施の形態 1における電力変換装置を PWM 制御 する時の電圧波形の一例を示すものである。
第 3図は、 この発明の実施の形態 1における高調波の低減状況を示す 現象図である。
第 4図は、 この発明の実施の形態 2である電動機駆動システムを示す 構成図である。
第 5図は、 従来の電動機駆動システムの一例を示す構成図である。 発明を実施するための最良の形態
実施の形態 1 .
第 1図はこの発明の実施の形態 1である船舶推進用の電動機駆動シ ステムを示す構成図である。 第 1図において、 複数台の発電機 6〜1 0 は、 それぞれ機械動力を出力するディーゼル機関 (機械動力発生装置) :!〜 5により駆動され、 遮断器 (図示せず) を介して共通配電母線 1 2 に並列接続され、 発生した交流電力を共通配電母線 1 2に供給する。 複 数の誘導電動機 2 3〜2 6は、それぞれその回転軸 2 8〜3 1に連結さ れたスクリュー (負荷機械) 3 3〜 3 6を駆動する。 誘導電動機 2 3〜 2 6には、 それぞれその速度検出器 4 9〜5 2が設けられている。 誘導 電動機 2 3は共通配電母線 1 2に、 変圧器 4 6、 電動機の制御装置 6 3 を経て接続されている。 共通配電母線 1 2と変圧器 4 6間には遮断器 ( 図示せず) が接続されている。 誘導電動機 2 4〜 2 6も、 それぞれ誘導 電動機 2 3と同様に共通配電母線 1 2に、 遮断器、 変圧器、 及ぴ電動機 の制御装置 6 4〜6 6を経て接続されている。なお電動機の制御装置 6 3〜6 6はそれぞれ同一の構成、機能を有しており、 代表的に電動機の 制御装置 6 3についてのみ詳細を示している。
電動機の制御装置 6 3は電力変換装置 6 2を有している。電力変換装 置 6 2は、 主回路 4 7と制御回路部 6 1を有し、 主回路 4 7で入力電力 の無効電力と有効電力が制御できる構成とされている。 この主回路 4 7 は、 例えば交流電力を直流電力に変換する高力率コンバータ 8 1と、 変 換された直流電力を平滑する平滑コンデンサ 8 2と、直流電力を交流電 力に変換して電動機 2 3を駆動する自励式ィンパータ 8 3とを有する コンバータ—インバータ方式 (D Cリンク方式) の変換装置で構成され ている。
4 8は、共通配電母線 1 2の電圧位相を検出する位相検出回路であって 、 例えば周知の P L L回路によって構成されている。
5 3は、 コンバータ 8 1の直流電圧 (平滑コンデンサ 8 2の直流電圧) を検出する直流電圧検出器である。 5 4は、 直流電圧検出器 5 3の検出 直流電圧を受け所定値との偏差をもとに、 コンバータ 8 1の直流電圧を その所定値に制御する直流電圧制御回路である。 5 5は、 主回路 4 7の コンバータ 8 1を P丽 制御するためのキヤリァ周波数の位相設定器で あり、 共通配電母線 1 2の電圧位相に対する発信位相を設定する。 5 6 は、 コンバータ 8 1を PWM制御するためのキャリア周波数発生器、 5 7 は、直流電圧制御回路 5 4の出力で主回路 4 7のコンバータ 8 1の駆動 を行うコンバータ制御回路であって、キヤリァ周波数発生器 5 6のキヤ リァ周波数に基づきコンバータ 8 1を P丽制御する回路を含んでいる。 5 8は、 外部からの指令により、誘導電動機 2 3の速度指令値を設定ま たは受ける速度指令設定回路である。 5 9は、 主回路 4 7のインバータ 8 3の電流指令値を演算する速度制御回路であって、速度検出器 4 9の 信号より帰還速度を演算すると共に、速度指令設定回路 5 8の出力であ る速度指令値を受け、 この速度指令値と帰還速度との偏差を演算し、 こ の偏差がなくなるように電流指令値を演算するものである。 6 0は、 速 度制御回路 5 9の出力を受け、主回路 4 7のインバータ 8 3を制御する ィンパータ制御回路である。 6 1は、 電力変換装置 6 2の主回路 4 7を 制御する制御回路部であって、 上述した直流電圧検出器 5 3、 直流電圧 制御回路 5 4、 位相設定器 5 5、 キャリア周波数発生器 5 6、 コンパ一 タ制御回路 5 7、 速度指令設定回路 5 8、 速度制御回路 5 9、 インパー タ制御回路 6 0を含んでいる。
なお、 共通配電母線 1 2からの電力の一部は、 変圧器 1 4、 1 5を経 由して低圧配電系統 1 6、 1 7に接続された他の負荷機器にも供給され る。
次に第 1図の動作について説明する。
発電システムは、共通配電母線 1 2に接続される最大負荷においても所 定の周波数、 電圧の交流電力出力となるように発電を行っている。 そし て、例えば負荷が消費する電力が発電システムの定格範囲内で増加した 場合は、 ディーゼル機関 (原動機) 1〜5の出力を増加して発電機 6〜 1 0の出力電力を消費電力と等しくすることにより、共通配電母線 1 2 の周波数および電圧を所定値に維持している。
ここで、 発電機が発電出力可能な負荷容量は、 発電機に負荷設備より流 入する逆相電流 (高調波電流) によって規制され、 高調波量が発電機容 量の 1 4 %以下となるようにするのが標準とされている。 即ち、 負荷容 量が同等でも、高調波電流が多ければ発電機の定格容量は大きいものが 必要とされ、高調波電流が少なければ発電機の定格容量を小さくするこ とができる。
この発明は以上の点に着目して成されたもので、各電動機制御装置 6 3 〜6 6の電力変換装置の相互間で高調波抑制機能を持たせることによ り、 共通配電母線 1 2での高調波電流を低減し、 共通配電母線 1 2に接 続される発電機 6〜1 0の定格容量 (必要容量) を低減できるようにし たものである。
第 1図において、 電動機の制御装置 6 3〜6 6は、 電動機 2 3〜2 6 の回転速度が所望の値となるように各電動機の駆動制御を行う。
代表的に電動機制御装置 6 3を例にとって説明すると、電力変換装置 6 2は、 変圧器 4 6から交流電力を受電し、 外部からの速度指令に基づく 速度指令設定回路 5 8の出力である速度指令値に基づいて主回路 4 7 のインパータ 8 3を制御し、 電動機 2 3を駆動する可変振幅 ·可変周波 数の交流電力を出力する。
電力変換装置の高効率コンバータ 8 1を P龍 制御するためのキヤリ ァ周波数発生器 5 6は、電力変換装置の複数台運転による高調波の低減 作用を実行しない場合は、 共通配電母線 1 2との位相に関係なく、 特定 の周波数でキヤリァ周波数を発生するが、複数台運転による高調波の低 減を実行する場合には、位相検出回路 4 8で検出した共通配電母線 1 2 の電圧位相に対し、位相設定器 5 5で設定される所定の位相のキヤリァ 周波数を発生し、 コンバータ制御回路 5 7に与える。
直流電圧検出器 5 3で検出した直流電圧と所定の電圧値とが直流電圧 制御回路 5 4で比較され、その偏差が無くなるように直流電圧制御回路 5 4は電流指令基準値を演算し、 コンバータ制御回路 5 7に出力する。 コンバータ制御回路 5 7は、直流電圧制御回路 5 4からの電流指令基準 12327
値と、キヤリァ周波数発生器 5 6からのキヤリァ周波数を基にコンパ一 タ 8 1の P丽制御を行い、コンパータ 8 1の直流電圧が所望の値となる ようにコンバータ 8 1を制御する。
この時、 キヤリァ周波数発生器 5 6からのキヤリァ周波数の位相は、 共 通配電母線 1 2の電圧位相に対し、位相設定器 5 5により設定された所 定の位相差で発信される。 このキヤリァ周波数発生器 5 6から発信され るキャリア周波数の、 共通配電母線 1 2の電圧位相に対する位相差を、 各々の電動機制御装置 6 3、 6 4、 6 5、 6 6の電力変換装置で所定の 値だけ異ならせることによって、共通配電母線の総合高調波電流量を低 減することができるものである。
例えば、 2台の電力変換装置を駆動した場合は、 それぞれの電力変換装 置のコンバータ 8 1を PWM制御するためのキヤリア周波数に、 1 8 0 ° の位相差を持たせることによって、 高調波の低減をすることができる。 即ち、 共通配電母線 1 2の電圧位相を位相検出回路 4 8で検出し、 その 検出した位相を 0 ° (基準) として、 1台目の電力変換装置 6 2のキヤ リア周波数の位相を検出した位相に合わせる。 これに対し、 2台目の電 力変換装置のキヤリァ周波数の位相は、位相設定器によって 1台目のキ ャリァ周波数に対し 1 8 0 ° の位相差を持たせるものである。
第 2図 (a) 〜(d) はこの場合の P丽制御の電圧波形の一例を示すもの で、 第 2図 (a) は 1台目の電力変換装置のキャリア周波数と信号電圧 の波形図、 第 2図 (b )、 ( c ) は同じく出力電圧波形図、 第 2図 (d ) は 2台目の電力変換装置のキヤリァ周波数と信号電圧の波形図を示す ものである。 なお、 2台目の電力変換装置の出力電圧波形図は、 第 2図 ( b )、 ( c ) から容易に類推できるため省略している
第 2図(a)と第 2図 (d ) との比較から明らかなように、 1台目の電力 変換装置のキヤリァ周波数と 2台目の電力変換装置のキヤリァ周波数 との間には、 1 8 0 ° の位相差が設定されている。
なお、 3台の電力変換装置を駆動した場合は、 相互のキャリア周波数 に 1 2 0 ° の位相差を持たせることによって、高調波の低減を行うこと ができる。 これは、 三相交流の合計電流が 0 (ゼロ) になるのと同様な 原理で、電力変換装置相互間で互いに高調波電流を打ち消し合うからで める。
第 3図は、この発明による電動機駆動システムの共通配電母線上にお ける高調波電流の低減効果を示す現象図で、 (a ) は電力変換装置を 1 台運転した場合の高調波成分(低減効果のない場合)、 ( b )は電力変換 装置を 2台運転した場合の高調波成分、 (c ) は電力変換装置を 5台運 転した場合の高調波成分、 を各々示している。
第 3図から明らかなように、電力変換装置の運転台数が増えるほど高調 波の打ち消し合う量は大きくなり、 2台より 5台の方が高調波量は減少 する。
以上のようにこの発明の実施の形態 1によれば、共通配電母線に接続 される複数の電力変換装置のそれぞれのキヤリァ周波数に、共通配電母 線の電圧位相を基準として、相互に所定の位相差を持たせることによつ て、複数の電力変換装置相互間で高調波抑制機能を持たせたので、 同一 負荷容量において、共通配電母線における高調波電流を低減することが でき、 共通配電母線に接続される発電機の定格容量 (必要容量) を低減 することができる。
なお、 複数の電力変換装置相互間のキャリア周波数の位相差は、 共通 配電母線の高調波量が最小になるように設定するが、 一般的には、 電力 変換装置の運転台数を Nとすれば、 3 6 0 ° ZNとするのが望ましい。 実施の形態 2 第 4図はこの発明の実施の形態 2である電動機駆動システムを示す 構成図である。 この実施の形態 2に示すものは、 例えばシステムの運転 中に電力変換装置の 1台が故障したような場合に、電力変換装置の台数 減に対応して、 高調波電流が最小になるように、 各電力変換装置のキヤ リア周波数の位相差を自動的に変更するものである。
第 4図において、 第 1図と同一の符号を付したものは、 第 1図のもの と同一または相当するものを示す。
第 4図において、 7 5〜7 8は、 各電動機の制御装置 7 1〜7 4に設け られた運転状態検出器 (接点) で、 接点 O Nにより電力変換装置が運転 中であることを出力する。
6 7は台数設定器であって、 運転状態検出器 (接点) 7 5〜 7 8からの 出力により電力変換装置の運転台数 Nを演算し、 この台数 Nにもとづい て各電力変換装置のキャリア周波数の最適位相差を計算し、電動機の制 御装置 7 1〜7 4の各電力変換装置へ所定の位相差指令を与えるもの である。
なお電動機の制御装置 7 1〜7 4はそれぞれ同一の構成、機能を有して おり、 代表的に電動機の制御装置 7 1についてのみ詳細を示している。 電動機の制御装置 7 1は、 電力変換装置 7 0を有し、 電力変換装置 7 0は、主回路 4 7とこの主回路 4 7を制御する制御回路部 6 9を備えて いる。 制御回路部 6 9には、主回路 4 7のコンバータ 8 1を PWM制御す るキヤリァ周波数の位相設定値を調整する可変位相設定器 6 8が設け られている。
以上のように構成された実施の形態 2の電動機駆動システムにおい ては、 台数設定器 6 7は、 運転状態検出器 7 5〜 7 8からの出力により 電力変換装置の運転状態を監視し、その時の運転台数 Nに応じた各電力 変換装置のキヤリァ周波数の最適位相差を演算し、所定の位相差指令を 可変位相設定器 6 8に与える。 可変位相設定器 6 8はその指令を受け、 共通配電母線 1 2の電圧位相に対する各電力変換装置のキヤリァ周波 数の位相を、 その時の運転台数に応じた最適の値に設定変更する。 このように実施の形態 2では、例えばシステムの運転中に電力変換装 置の 1台が故障したような場合、あるいは休止中の電力変換装置が稼動 を開始した場合等、 電力変換装置の運転台数に増減があっても、 電力変 換装置の運転台数に応じて高調波の打ち消し量が最大となるようにキ ャリァ周波数の位相を自動調整することができ、.より安定した発電機の 運転が可能となるものである。 産業上の利用可能性
この発明は、船舶電気推進用の電動機駆動システムや L N Gプラント 用の電動機駆動システムに用いて、 好適である。

Claims

請 求 の 範 囲
1 .機械動力を出力する機械動力発生装置により駆動され交流電力を発 生する複数台の発電機と、上記複数台の発電機の出力端子が並列接続さ れた共通配電母線と、 上記共通配電母線に入力端子が接続され、可変振 幅及び可変周波数の交流電力を出力する複数台の電力変換装置と、上盲己 電力変換装置にそれぞれ接続され、それぞれ負荷機械を駆動する複数^ の電動機と、上記共通配電母線の電圧位相を検出する位相検出手段を備 え、上記位相検出手段によって検出した上記共通配電母線の電圧位相を 基に、上記各電力変換装置のコンバータを p丽制御するためのキヤリ ァ 周波数の位相をそれぞれ異なる所定の値に設定することによって、上 ΪΒ 電力変換装置のコンバータの入力電流より発生する上記共通配電母翁 への高調波を低減制御し、上記複数台の発電機の必要容量を低減する こ とを特徴とする電動機駆動システム。
2 . 複数の電力変換装置相互間のキヤリァ周波数の位相差は、 電力変換 装置の運転台数を Νとした時、 3 6 0 ° /Νとすることを特徴とする t 求の範囲第 1項記載の電動機駆動システム。
3 .機械動力を出力する機械動力発生装置により駆動され交流電力を 生する複数台の発電機と、上記複数台の発電機の出力端子が並列接続さ れた共通配電母線と、 上記共通配電母線に入力端子が接続され、可変振 幅及び可変周波数の交流電力を出力する複数台の電力変換装置と、上言己 電力変換装置にそれぞれ接続され、それぞれ負荷機械を駆動する複数 の電動機と、 上記共通配電母線の電圧位相を検出する位相検出手段と、 上記複数の電力変換装置の運転状態を監視し、その時の運転台数に応じ て電力変換装置のキヤリァ周波数の最適位相差を演算し、所定の位相差 指令を出力する台数設定手段と、 それぞれの電力変換装置に設けられ、 上記台数設定手段からの位相差指令を受け、上記共通配電母線の電圧位 相に対するキヤリァ周波数の位相差設定値を調整する可変位相設定器 を備え、 上記複数の電力変換装置の運転台数の変更に対応して、 上記台 数設定手段からの指令にもとづき、 上記可変位相設定器により、 運転状 態にある電力変換装置の PWM制御コンバータのキャリア周波数位相を それぞれ所定の値に調整することによって、その時の運車云台数に適した 高調波の低減制御ができるようにした電動機駆動システム。
4 . それぞれの電力変換装置の運転状態を検出する運転状態検出器をそ れぞれの電力変換装置に備え、 上記台数設定手段は、 各運転状態検出器 からの運転情報にもとづいて位相差指令を出力するようにし、電力変換 装置の運転台数の変更に対応して、キヤリァ周波数位相の設定値を自動 的に変更するようにしたことを特徴とする請求の範囲第 3項に記載の 電動機駆動システム。
5 . 複数の電力変換装置相互間のキャリア周波数の位相差は、 電力変換 装置の運転台数を Nとした時、 3 6 0 ° ZNとすることを特徴とする請 求の範囲第 3項または第 4項に記載の電動機駆動-
PCT/JP2003/012327 2003-09-26 2003-09-26 電動機駆動システム WO2005031939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005509184A JPWO2005031939A1 (ja) 2003-09-26 2003-09-26 電動機駆動システム
EP03818786A EP1677403A4 (en) 2003-09-26 2003-09-26 MOTOR CONTROL SYSTEM
PCT/JP2003/012327 WO2005031939A1 (ja) 2003-09-26 2003-09-26 電動機駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012327 WO2005031939A1 (ja) 2003-09-26 2003-09-26 電動機駆動システム

Publications (1)

Publication Number Publication Date
WO2005031939A1 true WO2005031939A1 (ja) 2005-04-07

Family

ID=34385864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012327 WO2005031939A1 (ja) 2003-09-26 2003-09-26 電動機駆動システム

Country Status (3)

Country Link
EP (1) EP1677403A4 (ja)
JP (1) JPWO2005031939A1 (ja)
WO (1) WO2005031939A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129594A (ja) * 2004-10-28 2006-05-18 Hitachi Ltd 船舶用電気推進装置の制御方法及びその装置
GB2449427A (en) * 2007-05-19 2008-11-26 Converteam Ltd Pulse width modulation strategy for power converters
CN105620706A (zh) * 2016-02-19 2016-06-01 武汉理工大学 具有谐波抑制和回馈制动功能的船舶电力推进系统及控制方法
RU2733179C1 (ru) * 2019-11-22 2020-09-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Судовая электроэнергетическая установка (варианты)
US11652427B2 (en) 2021-02-22 2023-05-16 Hamilton Sundstrand Corporation Control distribution architecture
US11888418B2 (en) 2021-02-12 2024-01-30 Hamilton Sundstrand Corporation Control structures for parallel motor drive control architectures
US12027994B2 (en) 2020-12-29 2024-07-02 Hamilton Sundstrand Corporation Distributed control architecture for motor drives

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405251B2 (en) * 2010-04-20 2013-03-26 General Electric Company Method and apparatus for reduction of harmonics in a power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148865A (ja) * 1986-12-11 1988-06-21 Mitsubishi Electric Corp 電力変換装置の制御装置
JPH03112317A (ja) * 1989-06-05 1991-05-13 Fuji Electric Co Ltd 多重化整流器の制御方法
JPH07322629A (ja) * 1994-05-27 1995-12-08 Meidensha Corp 順変換装置
JPH09201056A (ja) * 1996-01-16 1997-07-31 Hitachi Ltd 電力変換システム
WO2002100716A1 (de) * 2001-06-11 2002-12-19 Siemens Aktiengesellschaft Schiffsantriebssystem mit vermindertem bordnetzklirrfaktor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148865A (ja) * 1986-12-11 1988-06-21 Mitsubishi Electric Corp 電力変換装置の制御装置
JPH03112317A (ja) * 1989-06-05 1991-05-13 Fuji Electric Co Ltd 多重化整流器の制御方法
JPH07322629A (ja) * 1994-05-27 1995-12-08 Meidensha Corp 順変換装置
JPH09201056A (ja) * 1996-01-16 1997-07-31 Hitachi Ltd 電力変換システム
WO2002100716A1 (de) * 2001-06-11 2002-12-19 Siemens Aktiengesellschaft Schiffsantriebssystem mit vermindertem bordnetzklirrfaktor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1677403A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129594A (ja) * 2004-10-28 2006-05-18 Hitachi Ltd 船舶用電気推進装置の制御方法及びその装置
GB2449427A (en) * 2007-05-19 2008-11-26 Converteam Ltd Pulse width modulation strategy for power converters
US8217533B2 (en) 2007-05-19 2012-07-10 Converteam Technology Ltd Control methods for the synchronization and phase shift of the pulse width modulation (PWM) strategy of power converters
GB2449427B (en) * 2007-05-19 2012-09-26 Converteam Technology Ltd Control methods for the synchronisation and phase shift of the pulse width modulation (PWM) strategy of power converters
US9293921B2 (en) 2007-05-19 2016-03-22 Ge Energy Power Conversion Technology, Ltd. Control methods for the synchronization and phase shift of the pulse width modulation (PWM) strategy of power converters
CN105620706A (zh) * 2016-02-19 2016-06-01 武汉理工大学 具有谐波抑制和回馈制动功能的船舶电力推进系统及控制方法
RU2733179C1 (ru) * 2019-11-22 2020-09-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Судовая электроэнергетическая установка (варианты)
US12027994B2 (en) 2020-12-29 2024-07-02 Hamilton Sundstrand Corporation Distributed control architecture for motor drives
US11888418B2 (en) 2021-02-12 2024-01-30 Hamilton Sundstrand Corporation Control structures for parallel motor drive control architectures
US11652427B2 (en) 2021-02-22 2023-05-16 Hamilton Sundstrand Corporation Control distribution architecture

Also Published As

Publication number Publication date
EP1677403A1 (en) 2006-07-05
EP1677403A4 (en) 2009-07-01
JPWO2005031939A1 (ja) 2006-12-07

Similar Documents

Publication Publication Date Title
JP5530603B2 (ja) パワーコンバータ
US8513911B2 (en) Power converters
EP2682339B1 (en) Power distribution systems
US8525492B2 (en) Electric power generation system with multiple alternators driven by a common prime mover
US6188591B1 (en) System for supplying electromotive consumers with electric energy
JP4422030B2 (ja) マトリクスコンバータの作動方法、並びにこの方法を実施するためのマトリクスコンバータ
JP4440880B2 (ja) 電動機駆動システム
US5111376A (en) Voltage balancing circuit
WO2005031939A1 (ja) 電動機駆動システム
JP4440879B2 (ja) 電動機駆動システム
JP2013223421A (ja) 負荷整流インバータの並列化
JP2000192888A (ja) コンプレッサ制御装置
JP4489018B2 (ja) 交流電動機の駆動システム
JPS5839298A (ja) 主軸駆動発電装置
JP3130192B2 (ja) 交流励磁同期機の2次励磁制御方法
JP2006311725A (ja) 電力変換装置の制御装置
JPS61128770A (ja) 主軸駆動発電システム
GB2484020A (en) Power converter system for marine propulsion unit
JPH0828987B2 (ja) 交流励磁発電電動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005509184

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003818786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003818786

Country of ref document: EP