WO2005031752A1 - Multinary memory and method for recording to phase-change type recording medium for it - Google Patents

Multinary memory and method for recording to phase-change type recording medium for it Download PDF

Info

Publication number
WO2005031752A1
WO2005031752A1 PCT/JP2004/014450 JP2004014450W WO2005031752A1 WO 2005031752 A1 WO2005031752 A1 WO 2005031752A1 JP 2004014450 W JP2004014450 W JP 2004014450W WO 2005031752 A1 WO2005031752 A1 WO 2005031752A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
pulse
phase
electric pulse
change recording
Prior art date
Application number
PCT/JP2004/014450
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Nakayama
Akio Kitagawa
Original Assignee
Kanazawa University Technology Licensing Organization Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University Technology Licensing Organization Ltd. filed Critical Kanazawa University Technology Licensing Organization Ltd.
Priority to JP2005514294A priority Critical patent/JPWO2005031752A1/en
Publication of WO2005031752A1 publication Critical patent/WO2005031752A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Definitions

  • the present invention relates to a method for recording multilevel information on a phase change recording medium using a phase change material, and a multilevel memory using a nonvolatile multilevel information recording medium to which the method is applied.
  • the realization of large-capacity memory devices can be broadly classified into a method of miniaturizing the device itself and a method of providing multiple information in one device (multi-valued).
  • a method of miniaturizing the device itself there is a limit to the miniaturization of the device itself, and a method of recording multi-value information on the device is desired.
  • phase change type information recording medium using a phase change material.
  • phase change material an alloy containing a so-called chalcogen-based material as a main component is used.
  • the resistivity of the amorphous state with low conductivity (high resistance) and the resistance of the crystalline state with high conductivity (low resistance) are used. Since there is a large difference in the rates, each state (resistance) is assigned a logical value of “0” or “1” and used as a recording element.
  • Patent No. 1 discloses a multi-valued recording medium, that is, recording of two or more values of "0" and "1". There is a method described in literature 1).
  • Patent Document 1 by controlling the current value applied at the time of rewriting of the recording element, the resistance value of the recording element is set to a resistance value between a high resistance state and a low resistance state. Is to be realized.
  • FIG. 6 shows an example of a circuit configuration for realizing rewriting of a recording element described in Patent Document 1.
  • 101 indicates a word line
  • 102 indicates a bit line
  • one end of the recording element 104 is connected to the bit line 102 via the selection transistor 110. It is.
  • the other end of the recording element 104 is connected to a constant voltage source 103.
  • the bit line 102 is connected to a switch circuit 106 that controls the rewrite current of the recording element 104.
  • the switch circuit section 106 includes a plurality of write switches 107, an erase switch 108, and a read switch 109.
  • the current value for rewriting is controlled by combining a plurality of writing and erasing switches 107 and 108.
  • the resistance value of the selected recording element 104 is output as information by driving the readout switch 109 and inputting the current flowing through the recording element 104 to the width comparator 105.
  • the ground potential and the constant voltage source 103 potential may have opposite potential levels.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a recording method for a phase-change recording medium which has a simple circuit configuration and is suitable for high integration, and a multi-valued memory using the same.
  • a multi-valued memory includes a memory element that stores three or more values of information due to a difference in resistance value of a phase change recording medium, and a predetermined electric pulse applied to the memory element a plurality of times to store information.
  • the resistance value of the phase change recording medium can be changed stepwise according to the number of times the electric pulse is applied instead of the magnitude (current value) of the energy pulse. It is possible to store multi-valued information by allocating information correspondingly.
  • the self-rewriting control circuit is provided with an electric panel for changing the resistance value of the phase change recording medium to a high resistance. It is characterized by comprising a first applying means for applying, and a second applying means for applying an electric pulse for changing a resistance value of the phase change type recording medium to a low resistance.
  • the resistance value of the memory element can be reversibly changed from high resistance to low resistance or from low resistance to high resistance by the applied electric pulse.
  • the first application means can change from low resistance to resistance
  • the second application means can change from high resistance to low resistance.
  • the rewriting control circuit includes a comparing unit that compares information read by the read control circuit with information to be written.
  • the information read by the read control circuit and the information to be written are compared, and the electric pulse to be applied is selected according to the magnitude of the resistance value corresponding to both. If the information to be written has a high resistance, the first application means is selected, and if the information to be written has a low resistance, the second application means is selected. Then, from the difference between the two resistance values, the number of times of application of the electric pulse necessary until the resistance value corresponding to the information to be written is determined.
  • the method of the present invention has the following features.
  • the first method of the present invention is a method of gradually lowering the resistance value of an amorphous phase-change recording medium, wherein the following electric pulse (a) is applied to the phase-change recording medium.
  • the resistance value of the phase change type recording medium is reduced stepwise according to the number of times of application of the electric pulse.
  • the electric pulse of (a) is an electric pulse having a smaller pulse voltage and / or a smaller pulse width than the electric pulse of (A) below.
  • the second method of the present invention is a method of gradually increasing the resistance value of a crystalline phase change type recording medium, and applying the following electric pulse (b) to the phase change type recording medium.
  • the resistance value of the phase change recording medium is stepwise increased in accordance with the number of times of application of the electric pulse.
  • a single application to a crystalline phase-change recording medium does not cause the phase-change recording medium to transition to a completely amorphous state, but to an amorphous state by multiple applications.
  • the electric pulse in (b) above is an electric pulse with a smaller pulse width than the electric pulse in (B) below.
  • Changing the resistance value of the variable-gap recording medium stepwise means writing and rewriting information only in the type of the step including the original step.
  • FIG. 1 is a conceptual explanatory diagram of a phase change recording medium used in the present invention.
  • FIG. 2 is a circuit configuration diagram according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view related to a memory element structure.
  • FIG. 4 is a processing flow diagram relating to the rewriting process.
  • FIG. 6 is a circuit configuration diagram of a conventional multilevel memory.
  • FIG. 1 is a diagram illustrating the concept of the present invention.
  • the vertical axis shows the resistance value of the phase-change type recording medium
  • the horizontal axis shows the number of electric pulses applied.
  • the vertical axis indicates the voltage of the applied electric pulse
  • the horizontal axis indicates time.
  • the first method according to the present invention is to lower the resistance value of the phase change recording medium to three or more levels by the electric pulse.
  • the subject change type recording medium When the subject change type recording medium is in an amorphous state, it is in a high resistance state. In this state, if the temperature of the phase change recording medium is maintained at a temperature equal to or higher than the crystallization temperature and equal to or lower than the melting point, and is maintained for a certain period of time or more, a transition to a low-resistance crystal state occurs. Therefore, the temperature of the phase-change recording medium should be higher than the crystallization temperature and lower than the melting point (preferably the melting point).
  • Such an electric pulse is called a set pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) according to conditions such as the material of the phase change recording medium and the structure of the memory element.
  • This set pulse is the electric pulse of (A) described in (5) above.
  • the set pulse varies depending on the material of the phase-change recording medium and the structure of the memory element, and is not limited.
  • the pulse voltage is 0.1 to 10 (V), preferably exemplified 1 to 3 (V) is, as the pulse width 1 n sec ⁇ 1 msec (1 X 1 0- 9 ⁇ 1 X 1 0- 3 ( s)), preferably 5 0 n sec ⁇ 1 sec (5 X 1 0- 8 ⁇ 1 X 1 0- 6 ( s)) are exemplified.
  • the amorphous phase-change recording medium when an electric panel with a pulse voltage Z or a pulse width smaller than the set pulse is applied to the amorphous phase-change recording medium, sufficient heat is not generated, and the crystal does not transition to the perfect crystalline state. Thus, the amorphous state and the crystalline state are in a mixed state.
  • Such an electric pulse is referred to as a small set pulse, and this small set pulse is the electric pulse of (a) referred to in the above (4).
  • a small set pulse is applied only once to an amorphous phase-change recording medium, the resistance value drops slightly by the transition to the crystalline state, and by subsequently applying the small set pulse, The amount of transition to the crystalline state increases and the resistance value further decreases. That is, as shown in FIG. 1, the resistance value decreases stepwise according to the number of times of application of the / J ⁇ set pulse. After the recording medium is completely crystallized, the resistance value does not decrease any further even if a small set pulse is further applied. In this case, the interval between the small set pulses should be such that the heat effect of the previous small set pulse is eliminated.
  • the / j and the set pulse are also not limited because they differ depending on the material of the phase change type recording medium and the structure of the memory element, but, for example, the pulse voltage is 0.1 to 5 (V), preferably 0.5 to 3 (V), Panoresu 1 n S is the width ec ⁇ 0. 5 msec (1 X 1 0- 9 ⁇ 5 X 1 0- 4 ( s)), preferably 5 0 n sec ⁇ 1 ⁇ sec ( 5 X 1 0- 8 ⁇ : LX 1 0 6 (s)) of Ru is illustrated.
  • These range powers may be appropriately selected so that the pulse voltage or the pulse width is smaller than the set pulse value so as to preferably function as a small set pulse.
  • the second method according to the present invention is to increase the resistance value of the phase change recording medium to three or more levels by an electric pulse. This is explained as follows. When the phase change recording medium is in a crystalline state, it is in a low resistance state. In this state, if the phase-change recording medium is heated to a temperature equal to or higher than the melting point (preferably a temperature exceeding the melting point) and then rapidly cooled, the phase-change recording medium transitions to a high-resistance amorphous state. At this time, if the cooling rate is low, the memory element will crystallize.
  • the phase change recording medium in a crystalline state can be changed to an amorphous state by applying a pulse having a small pulse width to an electric pulse that provides energy for generating a heat quantity that causes the memory element to have a melting point or more. Can be.
  • Such an electric pulse is called a reset pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) depending on conditions such as the material of the phase change recording medium and the structure of the memory element.
  • This reset pulse is the electric pulse of (B) referred to in the above (7).
  • the reset pulse is also not limited as it is different depending on the material of the phase change type recording medium and the structure of the memory element as in the case of the set pulse, but, for example, the pulse voltage is 1 to 15 (V) , preferably 1 to 7 (V), is a pulse width 0.
  • Such an electric pulse is called a small reset pulse.
  • _b.f3 This is the electric pulse of (b) in (6).
  • the resistance slightly increases by the transition to the amorphous state, and the small reset pulse is subsequently applied.
  • the resistance value is further increased by the transition to the amorphous state. That is, contrary to the case of FIG. 1, the resistance value increases stepwise according to the number of application of / J and the reset pulse. After the phase-change recording medium is completely in an amorphous state, the resistance value does not further increase even if a small reset pulse is further applied.
  • the small reset pulse is also not limited because it differs depending on the material of the phase change recording medium and the structure of the memory element, but is not limited to this.
  • the pulse voltage is 1 to 10 (V ), Preferably 1 to 5 (V), and the pulse width is 0.1 nsec to: L msec (1 X 10 0 to 1.
  • LX 10 to 3 (seconds), preferably 1 n sec to 1 0 0 n sec (1 X 1 0- 9 ⁇ : LX 1 0- 7 ( s)) are exemplified.
  • the pulse width may be appropriately selected such that the pulse width is smaller than the reset pulse so as to function favorably as the small reset pulse.
  • the resistance value of the phase change recording medium can be changed in a plurality of steps according to the number of application of the small set pulse or the small reset pulse applied to the phase change type recording medium.
  • a memory element using a recording medium can have three or more values of information due to a difference in resistance value.
  • phase-change recording medium used in the present invention examples include an alloy mainly containing a chalcogen-based (chalcogenide-based) material described in Patent Document 1.
  • (A) a material containing Te, for example, a Ge x Sb y Te z, when the x + y + z 100, X is 5 atomic% or more, y is 5 atomic% or more, z is 5 atomic. /. More than that.
  • atomic% is the ratio of the number of atoms in the constituent elements.
  • FIG. 2 shows a circuit configuration according to the embodiment of the present invention.
  • 1 indicates a word line
  • 2 indicates a bit line
  • one end of the memory element 4 and the bit line 2 are connected via a selection transistor 10.
  • the other end of the memory element 4 is connected to the constant voltage source 3.
  • the bit line 2 is connected to a switch circuit section 6 for controlling a rewriting energy pulse of the memory element 4.
  • the switch circuit section 6 includes a write switch 7 and an erase switch 8 as a rewrite control circuit, and a read switch 9 as a read control circuit. Since this circuit configuration is equivalent to the existing switch circuit configuration for recording binary information, it is not necessary to newly design a circuit configuration for the switch circuit unit 6 of the present invention. Further, the ground potential and the potential of the constant voltage source 3 can be set to be opposite.
  • FIG. 3 shows a cross-sectional structure of a memory element 4 and a selection transistor 10.
  • a diffusion layer 22 is formed on a silicon substrate 20 in a well portion 21, and an oxide film 23 is laminated on the upper surface thereof.
  • a source electrode 24, a drain electrode 25 and a gate electrode 26 are formed on the upper surface of the oxide film 23, and the source electrode 24 and the drain electrode 25 pass through the oxide film 23. Are electrically connected to the diffusion layers 22 respectively.
  • the selection transistor 10 is configured as MOS-FET.
  • Source electrode 24 is electrically connected to wiring 27 corresponding to bit line 2
  • gate electrode 26 is electrically connected to wiring 28 corresponding to word line 1.
  • the memory element 4 is a phase-change recording medium layer made of a chalcogenide-based material. 29 has a structure sandwiched between an upper electrode 30 and a lower electrode 31.
  • the lower electrode 31 includes a via 31 a and a metal layer 31. Since the via 31 a is made of a high-melting-point metal, it does not deform or change even when the phase change recording medium layer 29 changes phase. In addition, since the via 3a can have a smaller contact area with the phase change type recording medium layer 29 than the metal layer 31b, the volume of the phase change portion of the phase change type recording medium layer 29 must be reduced. Therefore, the set current or the reset current can be reduced.
  • the 3 lb metal layer can be made at the same time that the bit line 51 is formed. Then, the via 31 a is electrically connected to the drain electrode 25.
  • phase-change recording medium layer 29 can be formed above the selection transistor 10, almost no new area is required for forming the phase-change recording medium layer 29. Therefore, the mounting area can be reduced.
  • the upper and lower electrodes 30, 31 sandwiching the phase change recording medium layer 29 also have a function as a heat radiation (cooling) plate after pulse application.
  • the use of chalcogenide-based materials has a high affinity with ordinary CMOS processes, and can be applied to memory units such as system-on-chip (SOC).
  • FIG. 4 shows a processing flow for writing information to the memory element 4.
  • the writing information (Rw) is read (S100).
  • the read switch 9 is driven to energize the memory element 4 and read the recorded information (Rm) corresponding to the resistance value (S101).
  • Rw and Rm are compared (S102). If Rw is larger, the number of application of the small reset pulse is calculated from the difference between the two (S103), and the number of application of the erase switch 8 is calculated.
  • the minute drive control is performed (S104), and the process ends. If Rw is not large, it is checked whether they are equal (S105), and if they are equal, the process ends.
  • the number of application of the small set pulse is calculated from the difference between the two (S106), the write switch 7 is drive-controlled by the calculated number of application (S107), and the process ends. .
  • a switch for applying a set pulse for completely crystallizing with one application and a reset pulse for completely amorphizing with one application may be added. Group these By combining them, the rewriting speed can be further increased.
  • FIG. 5 shows a change in resistance value when a small set pulse is applied to the memory element 4 in the circuit configuration shown in FIG.
  • the vertical axis represents the resistance value of the memory element 4
  • the horizontal axis represents the number of small set pulse applications.
  • FIG. 5 shows that the resistance value of the memory element 4 gradually decreases each time a small set pulse is applied.
  • one element can have two or more values of information. In FIG. 5, seven-value information can be provided. Note that the power supply voltage, pulse width, and pulse interval of the energy pulse applied to the memory element 4 strongly depend on the material used for the memory element 4 and its element structure.
  • the stepwise change in the resistance value of the phase change recording medium can be controlled by the number of times of application of the electric pulse, that is, the digital value.
  • Rewriting control can be performed by using two types of electric pulses of the first applying means and the second applying means as the electric pulse, and the circuit configuration is the same as that of the conventional binary information rewriting control. For this reason, it is not necessary to prepare a plurality of switches for changing the magnitude (current value) of the energy pulse as in the conventional multi-value information recording method. Therefore, it is possible to record multi-valued information with a circuit area and the number of parts which are almost equal to those of a conventional memory for recording binary information. Further, since the circuit configuration of the switch circuit unit used for the memory using the conventional phase change type information recording medium for recording binary information can be used, there is no need for a significant design change.
  • an electric pulse is selected and the number of application times is determined based on a comparison result between the information read by the read control circuit and the information to be written. Therefore, the resistance value can be changed with the minimum necessary number of times of application. Therefore, an increase in power consumption can be suppressed even when recording multilevel information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

By controlling the number of times electric pulse is applied to a phase-change type recording medium so as to control the stepwise change of the resistance value, multinary information is recorded according to the difference in resistance values. The electric pulse stepwise changes its resistance value by the first application means for changing the phase-change type recording medium from a high resistance state to a low resistance state and second application means for changing it from the low resistance state to the high resistance state. According to a difference between the information which has been recorded and the information to be recorded, an electric pulse required for changing to the information to be written is selected and its number of application times is calculated. The present invention provides a multinary memory appropriate for a simple circuit configuration with high integration.

Description

明細書  Specification
多値メモリおよびそのための相変化型記録媒体への記録方法  Multi-valued memory and method for recording on phase change recording medium therefor
技術分野  Technical field
本発明は、 相変化材料を用いた相変化型記録媒体へ多値情報を記録する方法、 およぴ該方法を適用した不揮発性の多値情報記録媒体を用いた多値メモリに関す る。  The present invention relates to a method for recording multilevel information on a phase change recording medium using a phase change material, and a multilevel memory using a nonvolatile multilevel information recording medium to which the method is applied.
背景技術  Background art
近年、 高度情報化社会が進むに伴い、 大容量 メモリデバイスに関する需要は 増大の一途をたどり、 高集積化、 及び高性能化が要求されている。  In recent years, with the advance of the information-oriented society, the demand for large-capacity memory devices continues to increase, and high integration and high performance are required.
大容量メモリ素子の実現には、 素子自体を微細化する方法と、 一つの素子に複 数の情報を持たせる方法 (多値化) に大別される。 しかし、 素子自体の微細化に は限界があるため、 素子に多値情報を記録する方法が望まれている。  The realization of large-capacity memory devices can be broadly classified into a method of miniaturizing the device itself and a method of providing multiple information in one device (multi-valued). However, there is a limit to the miniaturization of the device itself, and a method of recording multi-value information on the device is desired.
一つの素子に複数の情報を記録する手段として、 相変化材料を用いた相変化型 情報記録媒体が挙げられる。  As a means for recording a plurality of pieces of information in one element, there is a phase change type information recording medium using a phase change material.
相変化材料には、 いわゆるカルコゲン系材料を主成分とした合金が使用され、 低い伝導性 (高抵抗) の非晶質状態の抵抗率と、 高い伝導性 (低抵抗) の結晶状 態の抵抗率には大きな差が存在するため、 それぞれの状態 (抵抗値) に論理値の 「0」 と 「1」 を割り当てて、 記録素子として使用される。  As the phase change material, an alloy containing a so-called chalcogen-based material as a main component is used. The resistivity of the amorphous state with low conductivity (high resistance) and the resistance of the crystalline state with high conductivity (low resistance) are used. Since there is a large difference in the rates, each state (resistance) is assigned a logical value of “0” or “1” and used as a recording element.
このような相変化型情報記録媒体において、 多値化すなわち 「0」 と 「1」 の 2値以上の情報記録を実現させたものとして、 米国特許第 5 5 3 6 9 4 7号公報 (特許文献 1 ) に記載された方法がある。  In such a phase change type information recording medium, U.S. Pat.No. 5,533,694,771 (Patent No. 1) discloses a multi-valued recording medium, that is, recording of two or more values of "0" and "1". There is a method described in literature 1).
特許文献 1においては、 記録素子の書き換え時に印加する電流値を制御するこ とにより、 記録素子の抵抗値を高抵抗状態と低抵抗状態との間の抵抗値を取るよ うにして、 多値化が実現されることとなっている。  In Patent Document 1, by controlling the current value applied at the time of rewriting of the recording element, the resistance value of the recording element is set to a resistance value between a high resistance state and a low resistance state. Is to be realized.
特許文献 1に記載された、 記録素子の書き換えを実現するための回路構成例を 、 図 6に示す。 1 0 1はワードライン、 1 0 2はビットラインを示し、 選択用ト ランジスタ 1 1 0を介して記録素子 1 0 4の一端とビットライン 1 0 2が接続さ れている。 記録素子 1 0 4の他端は、 定電圧源 1 0 3に接続されている。 ビット ライン 1 0 2は、 記録素子 1 0 4の書き換え電流を制御するスィツチ回路部 1 0 6に接続されている。 スィッチ回路部 1 0 6は、 複数の書き込みスィッチ 1 0 7 及び消去スィツチ 1 0 8と、 読み出しスィツチ 1 0 9とから構成される。 複数の 書き込み及ぴ消去スィッチ 1 0 7、 1 0 8を組み合わせることにより、 書き換え の電流値が制御される。 選択中の記録素子 1 0 4の抵抗値は、 読み出しスィッチ 1 0 9を駆動して記録素子 1 0 4に流れる電流を增幅 比較部 1 0 5に入力する ことによって情報として出力される。 接地電位と定電圧源 1 0 3電位は電位の高 低が逆の場合もある。 FIG. 6 shows an example of a circuit configuration for realizing rewriting of a recording element described in Patent Document 1. 101 indicates a word line, 102 indicates a bit line, and one end of the recording element 104 is connected to the bit line 102 via the selection transistor 110. It is. The other end of the recording element 104 is connected to a constant voltage source 103. The bit line 102 is connected to a switch circuit 106 that controls the rewrite current of the recording element 104. The switch circuit section 106 includes a plurality of write switches 107, an erase switch 108, and a read switch 109. The current value for rewriting is controlled by combining a plurality of writing and erasing switches 107 and 108. The resistance value of the selected recording element 104 is output as information by driving the readout switch 109 and inputting the current flowing through the recording element 104 to the width comparator 105. The ground potential and the constant voltage source 103 potential may have opposite potential levels.
特許文献 1に記載された書き換え方法においては、 一つの記録素子 1 0 4の書 き換えのために多数のスィツチ 1 0 7 , 1 0 8を用意しなければならないため、 多くの部品が必要となってしまい、 コストの増大を招くこととなる。 さらに、 ス イッチ 1 0 7、 1 0 8の多用に伴ってスィッチ回路部 1 0 6の占有面積が増加す ることとなり、 高集積化に反することとなる。  In the rewriting method described in Patent Document 1, a large number of switches 107 and 108 must be prepared for rewriting one recording element 104, so that many parts are required. This leads to an increase in cost. Furthermore, the occupation area of the switch circuit section 106 increases with the frequent use of the switches 107 and 108, which is against high integration.
発明の開示  Disclosure of the invention
本 明は、 上記課題を解決するものであり、 回路構成が簡単で高集積化に好適 な、 相変化型記録媒体への記録方法、 およびそれを利用した多値メモリを提供す ることを目的とする。  An object of the present invention is to solve the above-mentioned problems, and to provide a recording method for a phase-change recording medium which has a simple circuit configuration and is suitable for high integration, and a multi-valued memory using the same. And
本努明の多値メモリの特徴おょぴその主たる作用効果は次のとおりである。 ( 1 ) 本発明による多値メモリは、 相変化型記録媒体の抵抗値の違いにより 3値 以上の情報を記憶するメモリ素子と、 該メモリ素子に所定の電気パルスを複数回 印加して情報を書き換える書換制御回路と、 前記メモリ素子に通電して情報を読 み取る読取制御回路とを備えていることを特徴とする。  The features of the multi-level memory of this effort are as follows. (1) A multi-valued memory according to the present invention includes a memory element that stores three or more values of information due to a difference in resistance value of a phase change recording medium, and a predetermined electric pulse applied to the memory element a plurality of times to store information. A rewrite control circuit for rewriting; and a read control circuit for reading information by energizing the memory element.
この発明によれば、 エネルギーパルスの大きさ (電流値) ではなく、 電気パル スの ロ加回数によって、 相変化型記録媒体の抵抗値を段階的に変化させることが でき、 抵抗値の違いに対応してそれぞれ情報を割り当てることで多値情報を記憶 することが可能となる。 ( 2 ) 本発明による多値メモリの好ましい態様は、 上記 (1 ) の発明を前提とし て、 前言己書換制御回路が、 前記相変化型記録媒体の抵抗値を高抵抗に変化させる 電気パノレスを印加する第一印加手段と、 前記相変化型記録媒体の抵抗値を低抵抗 に変化させる電気パルスを印加する第二印加手段とを備えていることを特徴とす る。 According to the present invention, the resistance value of the phase change recording medium can be changed stepwise according to the number of times the electric pulse is applied instead of the magnitude (current value) of the energy pulse. It is possible to store multi-valued information by allocating information correspondingly. (2) In a preferred embodiment of the multi-valued memory according to the present invention, based on the premise of the above (1), the self-rewriting control circuit is provided with an electric panel for changing the resistance value of the phase change recording medium to a high resistance. It is characterized by comprising a first applying means for applying, and a second applying means for applying an electric pulse for changing a resistance value of the phase change type recording medium to a low resistance.
この^明によれば、 印加する電気パルスによってメモリ素子の抵抗値を高抵抗 から低抵抗、 または、 低抵抗から高抵抗へと可逆的に変化することができる。 第 一印加手段は、 低抵抗から 抵抗へと変化させ、 第二印加手段は、 高抵抗から低 抵抗へと変化させることができる。  According to the disclosure, the resistance value of the memory element can be reversibly changed from high resistance to low resistance or from low resistance to high resistance by the applied electric pulse. The first application means can change from low resistance to resistance, and the second application means can change from high resistance to low resistance.
( 3 ) 本発明の多値メモリの好ましい態様は、 上記 (2 ) の発明を前提として、 前記書換制御回路が、 前記読取制御回路により読み取られた情報と書き込むべき 情報とを比較する比較手段と、 該比較手段の比較結果に基づき前記第一印加手段 又は前 IB第二印加手段を選択する手段と、 前記比較結果に基づき電気パルスの印 加回数を算出する手段とを備えていることを特徴とする。  (3) In a preferred aspect of the multi-valued memory according to the present invention, based on the premise of the above (2), the rewriting control circuit includes a comparing unit that compares information read by the read control circuit with information to be written. A means for selecting the first application means or the previous IB second application means based on the comparison result of the comparison means; and a means for calculating the number of times of application of the electric pulse based on the comparison result. And
この 明によれば、 まず、 読取制御回路により読み取られた情報と書き込むベ き情報とを比較して両者の対応する抵抗値の大小によって、 印加すべき電気パル スを選釈する。 書き込むべき情報が高抵抗の場合には第一印加手段が選択され、 低抵抗の場合には第二印加手段が選択される。 そして、 両者の抵抗値の差分から 書き込むべき情報に対応する抵抗値になるまでに必要な電気パルスの印加回数が 決定されることとなる。  According to this description, first, the information read by the read control circuit and the information to be written are compared, and the electric pulse to be applied is selected according to the magnitude of the resistance value corresponding to both. If the information to be written has a high resistance, the first application means is selected, and if the information to be written has a low resistance, the second application means is selected. Then, from the difference between the two resistance values, the number of times of application of the electric pulse necessary until the resistance value corresponding to the information to be written is determined.
また、 本発明の方法は、 次の特徴を有する。  The method of the present invention has the following features.
( 4 ) 本発明の第一番目の方法は、 非晶質状態の相変化型記録媒体の抵抗値を段 階的に低下させる方法であって、 下記 (a ) の電気パルスを相変化型記録媒体に 複数回 口加することによって、 該相変化型記録媒体の抵抗値を、 前記電気パルス の印加回数に応じて段階的に低下させることを特徴とする。  (4) The first method of the present invention is a method of gradually lowering the resistance value of an amorphous phase-change recording medium, wherein the following electric pulse (a) is applied to the phase-change recording medium. By applying a plurality of times to the medium, the resistance value of the phase change type recording medium is reduced stepwise according to the number of times of application of the electric pulse.
( a ) 非晶質状態の相変化型記録媒体に対する 1回の印加だけでは該相変化型 記録媒体が完全な結晶状態へと遷移することはなく、 複数回の印加によって結晶 状態への遷移が段階的に進行するように、 パルス電圧および Z又はパルス幅が選 択された電気パルス。 (a) A single application to an amorphous phase-change recording medium does not cause the phase-change recording medium to transition to a completely crystalline state, An electrical pulse in which the pulse voltage and Z or pulse width are selected so that the transition to the state proceeds in steps.
( 5 ) 上記 (a ) の電気パルスは、 下記 (A) の電気パルスよりも、 パルス電圧 およぴノ又はパルス幅を小さくした電気パルスである。  (5) The electric pulse of (a) is an electric pulse having a smaller pulse voltage and / or a smaller pulse width than the electric pulse of (A) below.
(A) 1回の印加によって相変化型記録媒体が完全に結晶化し該媒体の抵抗値 が結晶化した時の値となる電気パルス。  (A) An electric pulse whose phase change type recording medium is completely crystallized by one application and whose resistance value becomes the value when the medium is crystallized.
( 6 ) 本発明の第二番目の方法は、 結晶状態の相変化型記録媒体の抵抗値を段階 的に上昇させる方法であって、 下記 (b ) の電気パルスを相変化型記録媒体に印 加し、 該相変化型記録媒体の抵抗値を、 前記電気パルスの印加回数に応じて段階 的に上昇させることを特徴とする。  (6) The second method of the present invention is a method of gradually increasing the resistance value of a crystalline phase change type recording medium, and applying the following electric pulse (b) to the phase change type recording medium. In addition, the resistance value of the phase change recording medium is stepwise increased in accordance with the number of times of application of the electric pulse.
( b ) 結晶状態の相変化型記録媒体に対する 1回の印加だけでは該相変化型記 録媒体が完全な非晶質状態へと遷移することはなく、 複数回の印加によって非晶 質^態への遷移が印加毎に段階的に進行するように、 パルス電圧および/又はパ ルス幅が選択された電気パルス。  (b) A single application to a crystalline phase-change recording medium does not cause the phase-change recording medium to transition to a completely amorphous state, but to an amorphous state by multiple applications. An electrical pulse with a pulse voltage and / or pulse width selected so that the transition to 進行 progresses step by step with each application.
( 7 ) 上記 (b ) の電気パルスは、 下記 (B ) の電気パルスよりも、 パルス幅を 小さくした電気パルスである。  (7) The electric pulse in (b) above is an electric pulse with a smaller pulse width than the electric pulse in (B) below.
( B ) 1回の印加によって相変化型記録媒体が完全に非晶化するエネルギーを 有する電気パルス。  (B) An electric pulse having energy to completely amorphize a phase change recording medium by one application.
;f目変化型記録媒体の抵抗値を段階的に変化 (低下、 上昇) させることは、 元の 段階を含んでその段階の種類だけ情報を書込み、 書換えることを意味する。  Changing the resistance value of the variable-gap recording medium stepwise (decreasing, increasing) means writing and rewriting information only in the type of the step including the original step.
図面の簡単な説明  Brief Description of Drawings
図 1は、 本発明に用いる相変化型記録媒体の概念説明図である。  FIG. 1 is a conceptual explanatory diagram of a phase change recording medium used in the present invention.
図 2は、 本発明の実施形態に関する回路構成図である。  FIG. 2 is a circuit configuration diagram according to the embodiment of the present invention.
図 3は、 メモリ素子構造に関する概略断面図である。  FIG. 3 is a schematic cross-sectional view related to a memory element structure.
図 4は、 書換処理に関する処理フロー図である。  FIG. 4 is a processing flow diagram relating to the rewriting process.
m 5は、 本発明の実施形態に関する相変化型記録媒体の抵抗変化を示すグラフ である。 図 6は、 従来の多値メモリの回路構成図である。 m5 is a graph showing a resistance change of the phase change recording medium according to the embodiment of the present invention. FIG. 6 is a circuit configuration diagram of a conventional multilevel memory.
図面中の符号は、 それぞれ次のものを示している。 1 ;ワードライン、 2 ; ビ ッ トライン、 3 ;定電圧源、 4 ;メモリ素子、 5 ;増幅/比較部、 6 ;スィツチ 回路部、 7 ;書き込みスィッチ、 8 ;消去スィッチ、 9 ;読み出しスィッチ、 ' 1 0 ;選択用トランジスタ、 1 0 1 ; ヮードライン、 1 0 2 ; ビットライン、 1 0 3 ;定電圧源、 1 04 ;記録素子、 1 0 5 ;増幅/比較部、 1 0 6 ;スィツチ回 路眘 β、 1 0 7 ;書き込みスィツチ、 1 0 8 ;消去スィツチ、 1 0 9 ;読み出しス イッチ、 1 1 0 ;選択用トランジスタ  The reference numerals in the drawings indicate the following, respectively. 1; word line, 2; bit line, 3; constant voltage source, 4; memory element, 5; amplification / comparison section, 6; switch circuit section, 7; write switch, 8; erase switch, 9; read switch, '10: Selection transistor, 101: Lead line, 102: Bit line, 103: Constant voltage source, 104: Recording element, 105: Amplification / comparison unit, 106: Switch times Path β, 107: Write switch, 108: Erase switch, 109: Read switch, 110: Select transistor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を添付図面に示す実施形態に基づいて詳しく説明する。 なお、 以 下に説明する実施形態は、 本発明を実施するにあたって好ましい具体例であるか ら、 技術的に種々の限定がなされているが、 本発明は、 以下の説明において特に 本発明を限定する旨明記されていない限り、 これらの形態に限定されるものでは なレ、。  Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. The embodiment described below is a preferred specific example for carrying out the present invention, and thus various technical limitations are made. However, the present invention particularly limits the present invention in the following description. It is not limited to these forms unless otherwise specified.
図 1は、 本発明の概念を説明する図である。 図 1 (a) は、 縦軸に相変化型記 録媒体の抵抗値をとり、 横軸に電気パルスの印加回数をとつている。 また、 図 1 (b) は、 縦軸に印加する電気パルスの電圧をとり、 横軸に時間をとつている。 図 1 ( b ) に示すような電気パルスを非晶質状態の相変化型記録媒体に与えた 場合、 相変化型記録媒体の抵抗値は、 図 1 (a) のように段階的に変化するよう になる。  FIG. 1 is a diagram illustrating the concept of the present invention. In Fig. 1 (a), the vertical axis shows the resistance value of the phase-change type recording medium, and the horizontal axis shows the number of electric pulses applied. In Fig. 1 (b), the vertical axis indicates the voltage of the applied electric pulse, and the horizontal axis indicates time. When an electric pulse as shown in Fig. 1 (b) is applied to an amorphous phase-change recording medium, the resistance of the phase-change recording medium changes stepwise as shown in Fig. 1 (a). It becomes like.
このように、 相変化型記録媒体の抵抗値を電気パルスによって 3段階以上の値 に低下させることが本発明による第一の方法である。  As described above, the first method according to the present invention is to lower the resistance value of the phase change recording medium to three or more levels by the electric pulse.
こうした現象は以下の通り説明される。  These phenomena are explained as follows.
申目変化型記録媒体が非晶質状態の時は、 高抵抗な状態となっている。 この状態 において、 相変化型記録媒体の温度が結晶化温度以上、 かつ融点以下の状態で、 ある一定時間以上保たれると、 低抵抗な結晶状態へ遷移するようになる。 したが つて、 相変化型記録媒体の温度を結晶化温度以上かつ融点以下 (好ましくは融点 未満) にするような熱量を発生させるエネルギーを与える電気パルスを与えるこ とで、 非晶質状態の相変化型記録媒体を結晶状態へ遷移させることができる。 このような電気パルスをセットパルスと称し、 相変化型記録媒体の材料及ぴメ モリ素子の構造等の条件により所定のパルス電圧及ぴパルス幅 (時間) で決めら れる。 このセッ トパルスが、 上記 (5 ) でいう (A) の電気パルスである。 When the subject change type recording medium is in an amorphous state, it is in a high resistance state. In this state, if the temperature of the phase change recording medium is maintained at a temperature equal to or higher than the crystallization temperature and equal to or lower than the melting point, and is maintained for a certain period of time or more, a transition to a low-resistance crystal state occurs. Therefore, the temperature of the phase-change recording medium should be higher than the crystallization temperature and lower than the melting point (preferably the melting point). By applying an electric pulse that provides energy for generating a calorific value that causes the amorphous phase change recording medium to transition to the crystalline state. Such an electric pulse is called a set pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) according to conditions such as the material of the phase change recording medium and the structure of the memory element. This set pulse is the electric pulse of (A) described in (5) above.
セットパルスは相変化型記録媒体の材料及ぴメモリ素子の構造等によつて異な るので、 限定はされないが、 汎用的な範囲の一例を挙げると、 パルス電圧として は、 0 . 1〜1 0 (V) 、 好ましくは 1〜3 (V) が例示され、 パルス幅として は 1 n sec〜 1 msec ( 1 X 1 0— 9〜 1 X 1 0— 3 (秒) ) 、 好ましくは 5 0 n sec 〜 1 sec ( 5 X 1 0— 8〜 1 X 1 0— 6 (秒) ) が例示される。 The set pulse varies depending on the material of the phase-change recording medium and the structure of the memory element, and is not limited. However, as an example of a general-purpose range, the pulse voltage is 0.1 to 10 (V), preferably exemplified 1 to 3 (V) is, as the pulse width 1 n sec~ 1 msec (1 X 1 0- 9 ~ 1 X 1 0- 3 ( s)), preferably 5 0 n sec ~ 1 sec (5 X 1 0- 8 ~ 1 X 1 0- 6 ( s)) are exemplified.
ところが、 セットパルスよりもパルス電圧おょぴ Z又はパルス幅が小さい電気 パノレスを非晶質状態の相変化型記録媒体に加えた場合、 十分な熱量が発生しない ため完全な結晶状態に遷移せず、 非晶質状態と結晶状態とがー部混在する状態と なる。  However, when an electric panel with a pulse voltage Z or a pulse width smaller than the set pulse is applied to the amorphous phase-change recording medium, sufficient heat is not generated, and the crystal does not transition to the perfect crystalline state. Thus, the amorphous state and the crystalline state are in a mixed state.
このような電気パルスを小セットパルスと称し、 この小セットパルスが、 上記 ( 4 ) でいう (a ) の電気パルスである。 非晶質状態の相変化型記録媒体に対し て、 小セットパルスを一回だけ印加した場合は結晶状態に遷移した分抵抗値が若 千低下し、 続けて小セットパルスを印加することにより、 結晶状態に遷移した分 が増加し抵抗値がさらに低下することとなる。 すなわち、 図 1に示されるように 、 /Jヽセットパルスの印加回数に応じて、 抵抗値が段階的に低下することとなる。 栢変化型記録媒体が完全に結晶状態となった後は、 小セットパルスをさらに印 加しても、 抵抗値がそれ以上低下することはない。 この場合、 小セットパルスの 間の間隔は前の小セットパルスによる熱の影響がなくなる程度の時間間隔にする い。  Such an electric pulse is referred to as a small set pulse, and this small set pulse is the electric pulse of (a) referred to in the above (4). When a small set pulse is applied only once to an amorphous phase-change recording medium, the resistance value drops slightly by the transition to the crystalline state, and by subsequently applying the small set pulse, The amount of transition to the crystalline state increases and the resistance value further decreases. That is, as shown in FIG. 1, the resistance value decreases stepwise according to the number of times of application of the / J ヽ set pulse. After the recording medium is completely crystallized, the resistance value does not decrease any further even if a small set pulse is further applied. In this case, the interval between the small set pulses should be such that the heat effect of the previous small set pulse is eliminated.
/j、セットパルスもまた、 セットパルスと同様に、 相変化型記録媒体の材料及ぴ メモリ素子の構造等によって異なるので限定はされないが、 一例を挙げると、 パ ルス電圧としては 0 . 1〜5 (V) 、 好ましくは 0 . 5〜3 (V) が例示され、 パノレス幅としては 1 n Sec〜0 . 5 msec ( 1 X 1 0— 9〜5 X 1 0— 4 (秒) ) 、 好ましくは 5 0 n sec〜 1 ^ sec ( 5 X 1 0— 8〜: L X 1 0 6 (秒) ) が例示され る。 Like the set pulse, the / j and the set pulse are also not limited because they differ depending on the material of the phase change type recording medium and the structure of the memory element, but, for example, the pulse voltage is 0.1 to 5 (V), preferably 0.5 to 3 (V), Panoresu 1 n S is the width ec~0. 5 msec (1 X 1 0- 9 ~5 X 1 0- 4 ( s)), preferably 5 0 n sec~ 1 ^ sec ( 5 X 1 0- 8 ~ : LX 1 0 6 (s)) of Ru is illustrated.
これらの範囲力、ら、 小セットパルスとして好ましく機能するように、 上記セッ トパルスの値よりもパルス電圧おょぴノ又はパルス幅が小さくなるように適宜選 択すればよい。  These range powers may be appropriately selected so that the pulse voltage or the pulse width is smaller than the set pulse value so as to preferably function as a small set pulse.
また、 相変化型記録媒体の抵抗値を電気パルスによって 3段階以上の値に上昇 させることが本発明による第二の方法である。 これは次のように説明される。 相変化型記録媒体が結晶状態の時は、 低抵抗な状態となっている。 この状態に おいて、 相変化型記録媒体の温度を融点以上 (好ましくは融点を越える温度) に 加熱した後、 急冷させると、 相変化型記録媒体は高抵抗な非晶質状態へ遷移する 。 このとき、 冷却速度が遅いとメモリ素子は結晶化してしまう。 したがって、 メ モリ素子を融点以上にするような熱量を発生させるエネルギーを与える電気パル スをパルス幅を小さくして与えることで、 結晶状態の相変化型記録媒体を非晶質 状態へ遷移させることができる。  The second method according to the present invention is to increase the resistance value of the phase change recording medium to three or more levels by an electric pulse. This is explained as follows. When the phase change recording medium is in a crystalline state, it is in a low resistance state. In this state, if the phase-change recording medium is heated to a temperature equal to or higher than the melting point (preferably a temperature exceeding the melting point) and then rapidly cooled, the phase-change recording medium transitions to a high-resistance amorphous state. At this time, if the cooling rate is low, the memory element will crystallize. Therefore, the phase change recording medium in a crystalline state can be changed to an amorphous state by applying a pulse having a small pulse width to an electric pulse that provides energy for generating a heat quantity that causes the memory element to have a melting point or more. Can be.
このような電気パルスをリセットパルスと称し、 相変化型記録媒体の材料及ぴ メモリ素子の構造等の条件により所定のパルス電圧及びパルス幅 (時間) で決め られる。 このリセットパルスが、 上記 (7 ) でいう (B ) の電気パルスである。 リセットパルスもまた、 上記セットパルスと同様に、 相変化型記録媒体の材料 及ぴメモリ素子の構造等によって異なるので限定はされないが、 一例を挙げると 、 パルス電圧としては 1〜1 5 (V) 、 好ましくは 1〜7 (V) 、 パルス幅とし ては 0 . 1 n sec〜l 0 msec ( 1 X 1 0— 1。〜 1 X 1 0— 2 (秒) ) 、 好ましくは 1 n sec〜 1 see ( 1 X 1 0— 9〜 1 X 1 0— 6 (秒) ) が例示される。 Such an electric pulse is called a reset pulse, and is determined by a predetermined pulse voltage and a predetermined pulse width (time) depending on conditions such as the material of the phase change recording medium and the structure of the memory element. This reset pulse is the electric pulse of (B) referred to in the above (7). The reset pulse is also not limited as it is different depending on the material of the phase change type recording medium and the structure of the memory element as in the case of the set pulse, but, for example, the pulse voltage is 1 to 15 (V) , preferably 1 to 7 (V), is a pulse width 0. 1 n sec~l 0 msec ( 1 X 1 0- 1 .~ 1 X 1 0- 2 ( s)), preferably 1 n sec to 1 see (1 X 10 — 9 to 1 X 10 — 6 (seconds)) is exemplified.
そして、 リセットパルスよりもパルス電圧又はパルス幅の小さい電気パルスを 結晶状態の相変化型記録媒体に加えた場合十分な熱量が発生しないため完全には 非晶質状態に遷移せず、 非晶質状態と結晶状態とがー部混在する状態となる。  When an electric pulse having a pulse voltage or a pulse width smaller than that of the reset pulse is applied to a phase change recording medium in a crystalline state, a sufficient amount of heat is not generated. The state is such that the state and the crystalline state are partly mixed.
このような電気パルスを小リセットパルスと称し、 この小リセットパルスが、 _b.f3 ( 6 ) でいう (b ) の電気パルスである。 結晶状態の相変化型記録媒体に対 して、 小リセットパルスを一回だけ印加した場合は非晶質状態に遷移した分抵抗 値が若干上昇し、 続けて小リセットパルスを印加することにより、 非晶質状態に 遷移した分抵抗値がさらに上昇することとなる。 すなわち、 図 1の場合とは逆に /J、リセットパルスの印加回数に応じて、 抵抗値が段階的に上昇することとなる。 相変化型記録媒体が完全に非晶質状態となった後は、 小リセットパルスをさら に印加しても、 抵抗値がそれ以上上昇することはない。 Such an electric pulse is called a small reset pulse. _b.f3 This is the electric pulse of (b) in (6). When a small reset pulse is applied only once to a crystalline phase-change recording medium, the resistance slightly increases by the transition to the amorphous state, and the small reset pulse is subsequently applied. The resistance value is further increased by the transition to the amorphous state. That is, contrary to the case of FIG. 1, the resistance value increases stepwise according to the number of application of / J and the reset pulse. After the phase-change recording medium is completely in an amorphous state, the resistance value does not further increase even if a small reset pulse is further applied.
小リセットパルスもまた、 セットパルスと同様に、 相変化型記録媒体の材料及 びメモリ素子の構造等によって異なるので限定はされないが、 一例を挙げると、 ノ ルス電圧としては 1〜1 0 (V) 、 好ましくは 1〜5 (V) 、 パルス幅として は 0 . 1 n sec〜: L msec ( 1 X 1 0— 1。〜 L X 1 0— 3 (秒) 、 好ましくは 1 n se c〜1 0 0 n sec ( 1 X 1 0— 9〜: L X 1 0— 7 (秒) ) が例示される。 Like the set pulse, the small reset pulse is also not limited because it differs depending on the material of the phase change recording medium and the structure of the memory element, but is not limited to this. For example, the pulse voltage is 1 to 10 (V ), Preferably 1 to 5 (V), and the pulse width is 0.1 nsec to: L msec (1 X 10 0 to 1. LX 10 to 3 (seconds), preferably 1 n sec to 1 0 0 n sec (1 X 1 0- 9 ~: LX 1 0- 7 ( s)) are exemplified.
これらの範囲から、 小リセットパルスとして好ましく機能するように、 上記リ セットパルスよりもパルス幅が小さくなるように適宜選択すればよい。  From these ranges, the pulse width may be appropriately selected such that the pulse width is smaller than the reset pulse so as to function favorably as the small reset pulse.
以上のように、 相変化型記録媒体に加えられる小セットパルス又は小リセット パルスの印加回数に応じて、 相変化型記録媒体の抵抗値を複数段階に変化させる こ とができるため、 相変化型記録媒体を用いたメモリ素子は、 抵抗値の違いによ り 3値以上の情報を持たせることができる。  As described above, the resistance value of the phase change recording medium can be changed in a plurality of steps according to the number of application of the small set pulse or the small reset pulse applied to the phase change type recording medium. A memory element using a recording medium can have three or more values of information due to a difference in resistance value.
本発明に用いられる相変化型記録媒体としては、 例えば、 特許文献 1に記載さ れたカルコゲン系 (カルコゲナイド系) 材料を主成分とした合金が挙げられる。  Examples of the phase-change recording medium used in the present invention include an alloy mainly containing a chalcogen-based (chalcogenide-based) material described in Patent Document 1.
より具体的な材料組成の例を次に挙げる。  Examples of more specific material compositions are given below.
( a ) Teを含む材料、 例えば GexSbyTezであって、 x + y + z =100とした場合、 Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic。/。以上のもの。 (A) a material containing Te, for example, a Ge x Sb y Te z, when the x + y + z = 100, X is 5 atomic% or more, y is 5 atomic% or more, z is 5 atomic. /. More than that.
atomic%は、 構成原素の原子数の比である。  atomic% is the ratio of the number of atoms in the constituent elements.
( b ) 上記 (a ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, (b) Addition of Na, Mg, Al, P, S, Ca, Ga, As,
Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu , Fe, Bi, および Mnから選ばれる 1以上の元素が含まれた材料。 ( c ) Teを含む材料、 例えば GexBiyTezであって、 x + y + z =100とした場合、 xが 5 atomic。/。以上、 yが 5 atomic%以上、 zが 5 atomic0/。以上のもの。 One or more selected from Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe, Bi, and Mn Materials containing elements. (c) A material containing Te, for example, Ge x Bi y Te z , where x + y + z = 100, x is 5 atomic. /. Above, y is 5 atomic% or more, and z is 5 atomic 0 /. More than that.
( d ) 上記 (c ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, , Mo, Pt, Co, Ni, Si, Au, Cu , Fe, および Mnから選ばれる 1以上の元素が含まれた材料。  (d) As an additive, Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb A material containing one or more elements selected from the group consisting of: Ag, Ag, Mo, Pt, Co, Ni, Si, Au, Cu, Fe, and Mn.
( e ) Teを含む材料、 例えば GexCuyTezであって、 x + y + z =100とした場合、 Xが 5 atomic。/。以上、 yが 5 atomic%以上、 zが 5 atomic。/。以上のもの。 (e) When the material containing Te, for example, Ge x Cu y Te z , and x + y + z = 100, X is 5 atomic. /. Above, y is 5 atomic% or more, z is 5 atomic%. /. More than that.
( f ) 上記 (e ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Fe , Bi, および Mnから選ばれる 1以上の元素が含まれた材料。  (f) As an additive, Na, Mg, Al, P, S, Ca, Ga, As, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb A material containing one or more elements selected from the group consisting of: Ag, W, Mo, Pt, Co, Ni, Si, Au, Fe, Bi, and Mn.
( g ) Teを含む材料、 例えば SexSbyTezであって、 x + y + z =100とした場合、 Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic%以上のもの。 (G) material containing Te, for example, a Se x Sb y Te z, when the x + y + z = 100, X is 5 atomic% or more, y is 5 atomic% or more, z is 5 atomic% or more Stuff.
( h ) 上記 (g ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, As, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe , Bi, および Mnから選ばれる 1以上の元素が含まれた材料。  (h) As an additive, Na, Mg, Al, P, S, Ca, Ga, As, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag A material containing one or more elements selected from, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe, Bi, and Mn.
( i ) Teを含む材料、 例えば AsxSbyTezであって、 x + y + z =100とした場合、 Xが 5 atomic%以上、 yが 5 atomic%以上、 zが 5 atomic。/。以上のもの。 (I) material containing Te, for example, a As x Sb y Te z, when the x + y + z = 100, X is 5 atomic% or more, y is 5 atomic% or more, z is 5 atomic. /. More than that.
( j ) 上記 (i ) の材料に、 添加物として、 Na, Mg, Al, P, S, Ca, Ga, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe , Bi, および Mnから選ばれる 1以上の元素が含まれた材料。  (j) As an additive, Na, Mg, Al, P, S, Ca, Ga, Se, Cd, In, Sn, I, Cs, Ta, Re, Hg, Pb, Ag A material containing at least one element selected from the group consisting of, W, Mo, Pt, Co, Ni, Si, Au, Cu, Fe, Bi, and Mn.
相変化型記録媒体の形状は限定されないが、 小セットパルス、 小リセットパル スを効果的に印加する点からは、 印加電極間に配置される相変化型記録媒体の厚 さ (=電極間距離) は l n m〜: L z m程度、 特に 1 0 n m〜 2 0 0 n mが好まし い値である。  Although the shape of the phase change recording medium is not limited, the thickness of the phase change recording medium disposed between the applied electrodes (= distance between the electrodes) is effective in applying the small set pulse and the small reset pulse. ) Is lnm ~: about Lzm, especially 10nm ~ 200nm is a preferable value.
上記のような相変化型記録媒体層を形成する方法は限定されず、 公知の成膜法 を用いてよいが、 デパイスの形成プロセスの点からは、 スパッタ法、 フラッシュ 蒸着などが好ましい形成方法として挙げられる。 図 2は、 本発明に係る実施形態に関する回路構成を示している。 図 2において 、 1はワードライン、 2はビットラインを示し、 選択用トランジスタ 1 0を介し てメモリ素子 4の一端とビットライン 2が接続されている。 メモリ素子 4の他端 は、 定電圧源 3に接続されている。 ビットライン 2は、 メモリ素子 4の書き換え エネルギーパルスを制御するスィッチ回路部 6に接続されている。 スィッチ回路 部 6は、 書換制御回路である書き込みスィッチ 7及ぴ消去スィッチ 8と、 読取制 御回路である読み出しスィッチ 9とから構成される。 この回路構成は、 既存の 2 値情報記録用のスィツチ回路構成と同等であるため、 新たに本発明のスィツチ回 路部 6のための回路構成を設計しなくともよい。 また、 接地電位と定電圧源 3の 電位を逆に設定することもできる。 The method for forming the phase-change recording medium layer as described above is not limited, and a known film forming method may be used. No. FIG. 2 shows a circuit configuration according to the embodiment of the present invention. In FIG. 2, 1 indicates a word line, 2 indicates a bit line, and one end of the memory element 4 and the bit line 2 are connected via a selection transistor 10. The other end of the memory element 4 is connected to the constant voltage source 3. The bit line 2 is connected to a switch circuit section 6 for controlling a rewriting energy pulse of the memory element 4. The switch circuit section 6 includes a write switch 7 and an erase switch 8 as a rewrite control circuit, and a read switch 9 as a read control circuit. Since this circuit configuration is equivalent to the existing switch circuit configuration for recording binary information, it is not necessary to newly design a circuit configuration for the switch circuit unit 6 of the present invention. Further, the ground potential and the potential of the constant voltage source 3 can be set to be opposite.
第一印加手段である書き込みスィッチ 7を駆動させると、 小セットパルスを印 加することができ、 第二印加手段である消去スィッチ 8を駆動させると、 小リセ ットパルスを印加することができる。 メモリ素子 4に小セットパルスあるいは小 リセットパルスを印加して、 メモリ素子 4の抵抗値を複数段階に変化させること により、 一つのメモリ素子 4に 3値以上の情報をもたせることができる。 選択中 のメモリ素子 4の抵抗値は、 読み出しスィッチ 9を駆動してメモリ素子 4に流れ る電流を増幅 Z比較部 5に入力することによって、 情報として出力される。 図 3は、 メモリ素子 4及ぴ選択用トランジスタ 1 0の部分の断面構造を示して いる。 シリコン基板 2 0にはゥエル部分 2 1に拡散層 2 2が形成されており、 そ の上面に酸化膜 2 3が積層されている。 酸化膜 2 3の上面にはソース電極 2 4、 ドレイン電極 2 5及ぴゲ一ト電極 2 6が形成されており、 ソース電極 2 4及ぴド レイン電極 2 5は酸化膜 2 3を貫通してそれぞれ拡散層 2 2と電気的に接続され ている。 以上のように選択用トランジスタ 1 0は、 MO S— F E Tとして構成さ れる。  When the write switch 7 as the first application unit is driven, a small set pulse can be applied, and when the erase switch 8 as the second application unit is driven, a small reset pulse can be applied. By applying a small set pulse or a small reset pulse to the memory element 4 and changing the resistance value of the memory element 4 in a plurality of stages, one memory element 4 can have three or more values of information. The resistance value of the selected memory element 4 is output as information by driving the readout switch 9 and inputting the current flowing through the memory element 4 to the amplification Z comparison unit 5. FIG. 3 shows a cross-sectional structure of a memory element 4 and a selection transistor 10. A diffusion layer 22 is formed on a silicon substrate 20 in a well portion 21, and an oxide film 23 is laminated on the upper surface thereof. A source electrode 24, a drain electrode 25 and a gate electrode 26 are formed on the upper surface of the oxide film 23, and the source electrode 24 and the drain electrode 25 pass through the oxide film 23. Are electrically connected to the diffusion layers 22 respectively. As described above, the selection transistor 10 is configured as MOS-FET.
ソース電極 2 4は、 ビットライン 2に相当する配線 2 7と電気的に接続されて おり、 ゲート電極 2 6は、 ワードライン 1に相当する配線 2 8と電気的に接続さ れている。 メモリ素子 4は、 カルコゲナイド系材料からなる相変化型記録媒体層 29を上部電極 30と下部電極 31とで挟んだ構造であり、 下部電極 31は、 ビ ァ 31 a及び金属層 31 とで構成される。 ビア 31 aは、 高融点金属で作製さ れるため、 相変化型記録媒体層 29の相変化時においても、 変形及ぴ変質等する ことがない。 また、 ビア 3 aは、 相変化型記録媒体層 29との接触面積を金属層 31 bよりも小さくすることができるため、 相変化型記録媒体層 29の相変化部 分の体積を小さくすることができ、 セット電流あるいはリセット電流の低減が可 能である。 金属層 3 l bは、 ビットライン 51を形成するときに同時に作製でき る。 そして、 ビア 31 aがドレイン電極 25と電気的に接続されている。 Source electrode 24 is electrically connected to wiring 27 corresponding to bit line 2, and gate electrode 26 is electrically connected to wiring 28 corresponding to word line 1. The memory element 4 is a phase-change recording medium layer made of a chalcogenide-based material. 29 has a structure sandwiched between an upper electrode 30 and a lower electrode 31. The lower electrode 31 includes a via 31 a and a metal layer 31. Since the via 31 a is made of a high-melting-point metal, it does not deform or change even when the phase change recording medium layer 29 changes phase. In addition, since the via 3a can have a smaller contact area with the phase change type recording medium layer 29 than the metal layer 31b, the volume of the phase change portion of the phase change type recording medium layer 29 must be reduced. Therefore, the set current or the reset current can be reduced. The 3 lb metal layer can be made at the same time that the bit line 51 is formed. Then, the via 31 a is electrically connected to the drain electrode 25.
図 3に示されるように、 相変化型記録媒体層 29は選択用トランジスタ 10の 上部に形成可能なため、 相変化型記録媒体層 29の形成のために新たに必要とな る面積はほとんどなく、 実装面積の低減が図られる。 また、 相変化型記録媒体層 29を挟む上下電極 30, 31は、 パルス印加後における放熱 (冷却) 板として の機能も持っている。 そして、 カルコゲナイド系材料を用いることは、 通常の C MOSプロセスとの親和性が高く、 システムオンチップ (SOC) 等のメモリ部 としての適用も可能である。  As shown in FIG. 3, since the phase-change recording medium layer 29 can be formed above the selection transistor 10, almost no new area is required for forming the phase-change recording medium layer 29. Therefore, the mounting area can be reduced. The upper and lower electrodes 30, 31 sandwiching the phase change recording medium layer 29 also have a function as a heat radiation (cooling) plate after pulse application. The use of chalcogenide-based materials has a high affinity with ordinary CMOS processes, and can be applied to memory units such as system-on-chip (SOC).
図 4は、 メモリ素子 4に情報を書き込む処理フローを示している。 書換処理が 開始されると、 書き込み情報 (Rw) の読込処理がなされる (S 100) 。 次に 、 読み出しスィッチ 9を駆動して、 メモリ素子 4を通電しその抵抗値に対応した 記録情報 (Rm) を読み出す (S 101) 。 そして、 Rwと Rmとを比較し (S 102) 、 Rwの方が大きい場合は、 両者の差分から小リセットパルスの印加回 数を算出し (S 103) 、 消去スィッチ 8を算出された印加回数分駆動制御して (S 104) 、 終了する。 Rwが大きくない場合には両者が等しい場合かチェッ クし (S 105) 、 等しい場合にはそのまま終了する。 Rwが Rmより小さい場 合には、 両者の差分から小セットパルスの印加回数を算出し (S 106) 、 書き 込みスィッチ 7を算出された印加回数分駆動制御して (S 107) 、 終了する。 一方、 一度の印加で完全に結晶化するセットパルス、 及び一度の印加で完全に 非晶質化するリセットパルスを印加するスィツチを追加しても良い。 これらを組 み合わせることによってさらに書き換え速度を速くすることも可能となる。 FIG. 4 shows a processing flow for writing information to the memory element 4. When the rewriting process is started, the writing information (Rw) is read (S100). Next, the read switch 9 is driven to energize the memory element 4 and read the recorded information (Rm) corresponding to the resistance value (S101). Then, Rw and Rm are compared (S102). If Rw is larger, the number of application of the small reset pulse is calculated from the difference between the two (S103), and the number of application of the erase switch 8 is calculated. The minute drive control is performed (S104), and the process ends. If Rw is not large, it is checked whether they are equal (S105), and if they are equal, the process ends. If Rw is smaller than Rm, the number of application of the small set pulse is calculated from the difference between the two (S106), the write switch 7 is drive-controlled by the calculated number of application (S107), and the process ends. . On the other hand, a switch for applying a set pulse for completely crystallizing with one application and a reset pulse for completely amorphizing with one application may be added. Group these By combining them, the rewriting speed can be further increased.
実施例  Example
図 2で示した回路構成におけるメモリ素子 4に、 小セットパルスを印加したと きの抵抗値の変化を図 5に示す。 図 5では、 縦軸にメモリ素子 4の抵抗値をとり 、 横軸に小セットパルスの印加回数をとつている。  FIG. 5 shows a change in resistance value when a small set pulse is applied to the memory element 4 in the circuit configuration shown in FIG. In FIG. 5, the vertical axis represents the resistance value of the memory element 4, and the horizontal axis represents the number of small set pulse applications.
非晶質状態のメモリ素子 4に、 小セットパルスを印加する度に抵抗値を測定し Each time a small set pulse is applied to the amorphous memory element 4, the resistance is measured.
、 合計 6回の小セットパルスを印加した。 小セットパルスのパルス電圧 (定電圧 源 3の電圧) は 2 . 7 V、 パノレス幅は 5 0 0 n s (ナノ秒) とした。 図 1に示し た概念と同様に、 小セットパルスを印加する度にメモリ素子 4の抵抗値が段階的 に減少していく様子が図 5に示されている。 この複数段階の各抵抗値に情報値を 割り当てることにより、 一つの素子に 2値以上の情報をもたせることが出来る。 図 5においては、 7値の情報をもたせることができる。 なお、 メモリ素子 4に印 加するエネルギーパルスの電源電圧、 パルス幅及ぴパルス間隔は、 メモリ素子 4 に用いる材料やその素子構造に強く依存する。 A total of six small set pulses were applied. The pulse voltage of the small set pulse (the voltage of the constant voltage source 3) was 2.7 V, and the width of the panel was 500 ns (nanoseconds). Similar to the concept shown in FIG. 1, FIG. 5 shows that the resistance value of the memory element 4 gradually decreases each time a small set pulse is applied. By assigning an information value to each of the resistance values in the plurality of stages, one element can have two or more values of information. In FIG. 5, seven-value information can be provided. Note that the power supply voltage, pulse width, and pulse interval of the energy pulse applied to the memory element 4 strongly depend on the material used for the memory element 4 and its element structure.
産業上の利用分野  Industrial applications
本発明によれば、 電気パルスの印加回数すなわちデジタル値によって、 相変化 型記録媒体の抵抗値の段階的な変化を制御することができる。 電気パルスとして は、 第一印加手段及び第二印加手段の 2種類の電気パルスで書換制御を行うこと ができ、 従来の 2値情報の書換制御の場合と同じ回路構成となる。 このため、 従 来の多値情報記録方法のように、 エネルギーパルスの大きさ (電流値) を変化さ せることを目的とする複数のスィッチを用意する必要がない。 したがって、 従来 の 2値情報記録用のメモリと同程度の回路面積及び部品点数で多値情報の記録を 可能にすることができる。 さらに、 従来の 2値情報を記録する相変化型情報記録 媒体を用いたメモリに使用していたスィッチ回路部の回路構成を利用できるため 、 大幅な設計変更の必要がない。  According to the present invention, the stepwise change in the resistance value of the phase change recording medium can be controlled by the number of times of application of the electric pulse, that is, the digital value. Rewriting control can be performed by using two types of electric pulses of the first applying means and the second applying means as the electric pulse, and the circuit configuration is the same as that of the conventional binary information rewriting control. For this reason, it is not necessary to prepare a plurality of switches for changing the magnitude (current value) of the energy pulse as in the conventional multi-value information recording method. Therefore, it is possible to record multi-valued information with a circuit area and the number of parts which are almost equal to those of a conventional memory for recording binary information. Further, since the circuit configuration of the switch circuit unit used for the memory using the conventional phase change type information recording medium for recording binary information can be used, there is no need for a significant design change.
また、 本発明においては、 読取制御回路により読み取られた情報と書き込むベ き情報との比較結果に基づいて、 電気パルスを選択しその印加回数を決定するた め、 必要最小限の印加回数で抵抗値を変化させることができる。 したがって、 多 値情報の記録においても消費電力の増加が抑えられる。 Further, in the present invention, an electric pulse is selected and the number of application times is determined based on a comparison result between the information read by the read control circuit and the information to be written. Therefore, the resistance value can be changed with the minimum necessary number of times of application. Therefore, an increase in power consumption can be suppressed even when recording multilevel information.
以上のことから、 本発明は、 従来の 2値情報記録用のメモリと同程度に簡単な 回路構成にて、 多値情報を記録することが可能であり、 すなわち高集積化に好適 な多値メモリを提供することができる。  From the above, according to the present invention, it is possible to record multi-valued information with a circuit configuration as simple as a conventional memory for recording binary information, that is, a multi-valued information suitable for high integration. Memory can be provided.
本出願は、 日本で出願された特願 2003-335133を基礎としておりそ れの内容は本明細書に全て包含される。  This application is based on a patent application No. 2003-335133 filed in Japan, the contents of which are incorporated in full herein.

Claims

請求の範囲 The scope of the claims
1 . 相変化型記録媒体の抵抗値の違いにより 3値以上の情報を記憶するメモリ素 子と、 該メモリ素子に所定の電気パルスを複数回印加して情報を書き換える書換 制御回路と、 前記メモリ素子に通電して情報を読み取る読取制御回路とを備えて いることを特徴とする多値メモリ。  1. A memory element that stores information of three or more values due to a difference in resistance value of a phase change recording medium, a rewriting control circuit that rewrites information by applying a predetermined electric pulse to the memory element a plurality of times, and the memory A multivalued memory comprising: a read control circuit that reads information by energizing an element.
2 . 書換制御回路は、 相変化型記録媒体の抵抗値を高抵抗に変化させる電気パル スを印加する第一印加手段と、 前記相変化型記録媒体の抵抗値を低抵抗に変化さ せる電気パルスを印加する第二印加手段とを備えていることを特徴とする請求の 範囲 1記載の多値メモリ。  2. The rewriting control circuit includes a first application unit that applies an electric pulse that changes the resistance value of the phase change recording medium to a high resistance, and an electric power that changes the resistance value of the phase change recording medium to a low resistance. 2. The multi-value memory according to claim 1, further comprising: a second application unit that applies a pulse.
3 . 上記書換制御回路は、 前記読取制御回路により読み取られた情報と書き込む べき情報とを比較する比較手段と、 該比較手段の比較結果に基づき前記第一印加 手段又は前記第二印加手段を選択する手段と、 前記比較結果に基づき電気パルス の印加回数を算出する手段とを備えていることを特徴とする請求の範囲 2記載の 多値メモリ。  3. The rewriting control circuit includes a comparing unit that compares information read by the reading control circuit with information to be written, and selects the first applying unit or the second applying unit based on a comparison result of the comparing unit. 3. The multi-valued memory according to claim 2, further comprising: means for calculating the number of times of application of the electric pulse based on the comparison result.
4 . 非晶質状態の相変化型記録媒体の抵抗値を段階的に低下させる方法であって 、 下記 (a ) の電気パルスを相変化型記録媒体に複数回印加することによって、 該相変化型記録媒体の抵抗値を、 前記電気パルスの印加回数に応じて段階的に低 下させることを特徴とする、 前記方法。 4. A method for gradually lowering the resistance of an amorphous phase-change recording medium, wherein the electric pulse of the following (a) is applied to the phase-change recording medium a plurality of times to obtain the phase change. The method according to claim 1, wherein the resistance value of the recording medium is reduced stepwise according to the number of times of application of the electric pulse.
( a ) 非晶質状態の相変化型記録媒体に対する 1回の印加だけでは該相変化型 記録媒体が完全な結晶状態へと遷移することはなく、 複数回の印加によって結晶 状態への遷移が段階的に進行するように、 パルス電圧および z又はパルス幅が選 択された電気パルス。  (a) A single application to an amorphous phase-change recording medium does not cause the phase-change recording medium to transition to a completely crystalline state, but to a crystalline state by multiple applications. An electrical pulse in which the pulse voltage and z or pulse width are selected so that they progress in steps.
5 . 上記 (a ) の電気パルスが、 下記 (A) の電気パルスよりも、 パルス電圧お ょぴ Z又はパルス幅を小さくした電気パルスである、 請求の範囲 4記載の方法。  5. The method according to claim 4, wherein the electric pulse of (a) is an electric pulse having a smaller pulse voltage or a smaller pulse width than the electric pulse of (A) below.
(A) 1回の印加によって相変化型記録媒体が完全に結晶化し該媒体の抵抗値 が結晶化した時の値となる電気パルス。  (A) An electric pulse whose phase change type recording medium is completely crystallized by one application and whose resistance value becomes the value when the medium is crystallized.
6 . 結晶状態の相変化型記録媒体の抵抗値を段階的に上昇させる方法であって、 下記 (b ) の電気パルスを相変化型記録媒体に印加し、 該相変化型記録媒体の抵 抗値を、 前記電気パルスの印加回数に応じて段階的に上昇させることを特徴とす る、 前記方法。 6. A method for gradually increasing the resistance value of a phase-change recording medium in a crystalline state, (B) applying an electric pulse to a phase-change recording medium, and increasing a resistance value of the phase-change recording medium in a stepwise manner in accordance with the number of times of application of the electric pulse. The method.
( b ) 結晶状態の相変化型記録媒体に対する 1回の印加だけでは該相変化型記 録媒体が完全な非晶質状態へと遷移することはなく、 複数回の印加によって非晶 質状態への遷移が印加毎に段階的に進行するように、 パルス電圧およびノ又はパ ルス幅が選択された電気パルス。  (b) A single application to a crystalline phase-change recording medium does not cause the phase-change recording medium to transition to a completely amorphous state, but to an amorphous state by multiple applications. An electric pulse whose pulse voltage and pulse width or pulse width are selected so that the transition of each step progresses with each application.
7 . 上記 (b ) の電気パルスが、 下記 (B ) の電気パルスよりも、 パルス幅を小 さくした電気パルスである、 請求の範囲 6記載の方法。  7. The method according to claim 6, wherein the electric pulse in (b) is an electric pulse having a smaller pulse width than the electric pulse in (B) below.
(B ) 1回の印加によって相変化型記録媒体が完全に非晶化するエネルギーを 有する電気パルス。  (B) An electric pulse having energy to completely amorphize a phase change type recording medium by one application.
PCT/JP2004/014450 2003-09-26 2004-09-24 Multinary memory and method for recording to phase-change type recording medium for it WO2005031752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514294A JPWO2005031752A1 (en) 2003-09-26 2004-09-24 Multilevel memory and recording method for phase change recording medium therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-335133 2003-09-26
JP2003335133 2003-09-26

Publications (1)

Publication Number Publication Date
WO2005031752A1 true WO2005031752A1 (en) 2005-04-07

Family

ID=34386050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014450 WO2005031752A1 (en) 2003-09-26 2004-09-24 Multinary memory and method for recording to phase-change type recording medium for it

Country Status (2)

Country Link
JP (1) JPWO2005031752A1 (en)
WO (1) WO2005031752A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351780A (en) * 2005-06-15 2006-12-28 Sony Corp Storage element and storage device
JP2007311791A (en) * 2006-05-19 2007-11-29 Samsung Electronics Co Ltd PHASE CHANGE STORAGE CELL EMPLOYING GeBiTe FILM AS PHASE CHANGE SUBSTANCE FILM, PHASE CHANGE STORAGE DEVICE HAVING SAME, ELECTRONIC SYSTEM HAVING SAME, AND METHOD OF MANUFACTURING SAME
JP2007329471A (en) * 2006-05-18 2007-12-20 Qimonda North America Corp Memory cell containing doped phase change material
JP2009135409A (en) * 2007-11-29 2009-06-18 Samsung Electronics Co Ltd Operation method of phase change memory element
US7558105B2 (en) 2006-01-05 2009-07-07 Samsung Electronics Co., Ltd. Phase change memory devices and multi-bit operating methods for the same
US7583525B2 (en) 2006-04-24 2009-09-01 Sony Corporation Method of driving storage device
US7715220B2 (en) 2006-06-07 2010-05-11 Sony Corporation Memory apparatus
JP2013008948A (en) * 2011-06-23 2013-01-10 Macronix International Co Ltd Ge-RICH GST-212 PHASE CHANGE MATERIALS
EP4322731A3 (en) * 2014-04-14 2024-04-24 Pragmatic Printing Ltd Electronic circuit and data storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541613A (en) * 1999-04-12 2002-12-03 エナージー コンバーション デバイセス インコーポレイテッド Universal memory device having a system using universal memory device, and apparatus and method for reading, writing, and programming the memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541613A (en) * 1999-04-12 2002-12-03 エナージー コンバーション デバイセス インコーポレイテッド Universal memory device having a system using universal memory device, and apparatus and method for reading, writing, and programming the memory device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351780A (en) * 2005-06-15 2006-12-28 Sony Corp Storage element and storage device
JP4715320B2 (en) * 2005-06-15 2011-07-06 ソニー株式会社 Storage element and storage device
US7558105B2 (en) 2006-01-05 2009-07-07 Samsung Electronics Co., Ltd. Phase change memory devices and multi-bit operating methods for the same
US7583525B2 (en) 2006-04-24 2009-09-01 Sony Corporation Method of driving storage device
JP2007329471A (en) * 2006-05-18 2007-12-20 Qimonda North America Corp Memory cell containing doped phase change material
JP2007311791A (en) * 2006-05-19 2007-11-29 Samsung Electronics Co Ltd PHASE CHANGE STORAGE CELL EMPLOYING GeBiTe FILM AS PHASE CHANGE SUBSTANCE FILM, PHASE CHANGE STORAGE DEVICE HAVING SAME, ELECTRONIC SYSTEM HAVING SAME, AND METHOD OF MANUFACTURING SAME
US7715220B2 (en) 2006-06-07 2010-05-11 Sony Corporation Memory apparatus
JP2009135409A (en) * 2007-11-29 2009-06-18 Samsung Electronics Co Ltd Operation method of phase change memory element
JP2013008948A (en) * 2011-06-23 2013-01-10 Macronix International Co Ltd Ge-RICH GST-212 PHASE CHANGE MATERIALS
EP4322731A3 (en) * 2014-04-14 2024-04-24 Pragmatic Printing Ltd Electronic circuit and data storage system

Also Published As

Publication number Publication date
JPWO2005031752A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US7535756B2 (en) Method to tighten set distribution for PCRAM
US8094488B2 (en) Set algorithm for phase change memory cell
US5687112A (en) Multibit single cell memory element having tapered contact
JP3749847B2 (en) Phase change nonvolatile memory device and drive circuit thereof
US7701759B2 (en) Memory cell device and programming methods
US7423300B2 (en) Single-mask phase change memory element
US7254059B2 (en) Multilevel phase-change memory element and operating method
TWI422013B (en) Phase change memory having one or more non-constant doping profile
US5933365A (en) Memory element with energy control mechanism
KR100738092B1 (en) Method of operating a phase change memory device with multi-bits
US7233017B2 (en) Multibit phase change memory device and method of driving the same
US8077505B2 (en) Bipolar switching of phase change device
US20100171087A1 (en) Semiconductor device and process for producing the same
JP4911845B2 (en) Phase change nonvolatile memory element, memory array using the phase change nonvolatile memory element, and information recording method for the phase change nonvolatile memory element
US20060077741A1 (en) Multilevel phase-change memory, manufacturing and status transferring method thereof
KR101058856B1 (en) Memory element and memory device using same
JP2001502848A (en) Composite memory material comprising a mixture of phase change memory material and dielectric material
JPH11510317A (en) Electrically erasable and directly overwritable multi-bit single-cell storage elements and arrays made therefrom
JP2004311015A (en) Low-current and high-speed phase-change memory device and driving method therefor
JP2008091682A (en) Multivalued-recording phase-change memory element, multivalued-recording phase-change channel transistor, and memory cell array
US7483292B2 (en) Memory cell with separate read and program paths
JP2003100084A (en) Phase change type nonvolatile memory
US11917930B2 (en) Resistance change device and storage device
WO2005031752A1 (en) Multinary memory and method for recording to phase-change type recording medium for it
US20080273369A1 (en) Integrated Circuit, Memory Module, Method of Operating an Integrated Circuit, and Computing System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514294

Country of ref document: JP

122 Ep: pct application non-entry in european phase