WO2005028142A1 - Core for use in casting - Google Patents

Core for use in casting Download PDF

Info

Publication number
WO2005028142A1
WO2005028142A1 PCT/JP2004/013669 JP2004013669W WO2005028142A1 WO 2005028142 A1 WO2005028142 A1 WO 2005028142A1 JP 2004013669 W JP2004013669 W JP 2004013669W WO 2005028142 A1 WO2005028142 A1 WO 2005028142A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
core
ceramic material
potassium
mixed
Prior art date
Application number
PCT/JP2004/013669
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Yaokawa
Koichi Anzai
Youji Yamada
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2005514063A priority Critical patent/JP4516024B2/en
Priority to DE602004031244T priority patent/DE602004031244D1/en
Priority to EP04773288A priority patent/EP1674173B1/en
Priority to AT04773288T priority patent/ATE496713T1/en
Publication of WO2005028142A1 publication Critical patent/WO2005028142A1/en
Priority to US11/377,125 priority patent/US20060185815A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores

Definitions

  • the present invention relates to a structure formed of a salt material that is loaded into a die used for manufacturing a non-ferrous alloy product, in particular, a die-casting die, and can withstand the high-pressure manufacturing pressure environment. It is about a core.
  • the die-casting method can mass-produce complex-shaped parts with high dimensional accuracy at low cost.
  • the salt core can be removed by dissolving with hot water or steam after the completion of the production, the use of the salt core makes it possible to produce a sand core (eg, a shell core). Compared with the case of using, the labor of sanding work can be saved and the productivity can be increased. This is because in the case of the shell core, the so-called penetration phenomenon occurs in which the molten metal enters the gaps between the sand grains at the boundary surface with the core and sand cannot be removed.
  • Such salt cores are disclosed in, for example, Japanese Patent Publication No. 48-17570 (hereinafter simply referred to as Patent Document 1), US Pat. No. 3,963,818 (hereinafter simply referred to as Patent Document 2), and US Pat.
  • Patent Document 3 Japanese Patent Publication No. 48-17570
  • Patent Document 4 Japanese Patent Publication No. 4,361,181 (hereinafter simply referred to as Patent Document 3) and US Pat. No. 5,154,644 (hereinafter simply referred to as Patent Document 4)
  • NaCl sodium salt sodium chloride
  • KC1 potassium chloride
  • the salt cores disclosed in Patent Documents 1 to 3 are formed by pressing a salt (eg, sodium chloride, potassium salt, etc.) in a predetermined shape by a press molding method. , This molding It is formed by sintering an object.
  • a salt eg, sodium chloride, potassium salt, etc.
  • the salt core described in Patent Document 4 uses sodium salt as a salt material and is formed into a predetermined shape by a die casting method.
  • Patent Document 5 US Pat. No. 4,446,906
  • Patent Document 6 US Pat. No. 5,803,151
  • Patent Document 7 Japanese Patent Publication No. 49-15140
  • Patent Document 8 Japanese Patent Publication No. 48-8368
  • Patent Document 9 Japanese Patent Publication No. 49-46450
  • Patent Document 10 discloses a salt core in which ceramics is mixed as a filler in a salt material!
  • the salt core disclosed in Patent Document 5 uses silica (SiO 2)
  • the tensile strength of this salt core is described as 150-175 psi, which corresponds to 1.0-3.2 MPa.
  • shell cores which are the same collapsible cores, it is common to evaluate the core strength based on the values of the bending strength obtained by the bending strength test method. Can be adopted.
  • the bending strength is a barometer that indicates the strength of the core when a bending stress acts on the core.
  • the salt core disclosed in Patent Document 6 particles such as alumina, silica sand, boron nitride (BN), and boron carbide (BC), fibers, whiskers, and the like are used as ceramics for filling.
  • the salt core is formed by molding a mixture of the ceramic for filling and a salt material into a predetermined shape by a pressure molding method and then sintering the mixture.
  • This patent is Seth suggests that salt cores be reinforced with various forms of ceramic materials.
  • Patent Documents 7 and 8 use alumina as a filling ceramic.
  • the salt core disclosed in Patent Document 9 uses silica, alumina, zirconia (ZrO 2), or the like as a ceramic for filling.
  • the salt core shown in 9 is formed by construction.
  • a salt core disclosed in Patent Document 10 two types of alumina having different particle sizes are mixed as a ceramic for filling into a salt material, and formed into a predetermined shape by a die casting method.
  • the salt material used for this salt core is a mixed salt obtained by mixing sodium carbonate and sodium carbonate (Na 2 CO 3).
  • Patent Document 11 Japanese Patent Application Laid-Open No. Sho 50-136225
  • Patent Document 12 and ⁇ ⁇ Japanese Patent Application Laid-Open No. Sho 50-136225
  • Patent Document 11 discloses a mixed salt composed of sodium salt and sodium carbonate as in Patent Document 10.
  • Patent Document 12 discloses a mixed salt obtained by mixing sodium carbonate with sodium salt and sodium salt.
  • Patent Document 13 Japanese Patent Publication No. 48-39696
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-50218
  • Patent Document 13 discloses that sodium carbonate, sodium salt, sodium chloride and potassium salt, a mixed salt that also has a potassium salt, metal oxides such as alumina and zinc oxide (ZnO), and siliceous particles such as silica sand, talc, and clay.
  • the salt material mixed with is shown.
  • Patent Document 14 discloses potassium carbonate, sodium sulfate (Na SO), sodium salt sodium salt and salt.
  • a salt material in which silica 'alumina' fibers and the like are mixed in a mixed salt of potassium iodide is shown.
  • the salt material is formed by a single chloride, carbonate or sulfate!
  • the melting point of the salt material can be relatively reduced as compared with the case where the temperature is low. Disclosure of the invention
  • Patent Document 1 and Patent Document 3 and Patent Document 6 described above cannot be formed into a complicated shape because they are formed by a press molding method. There was a problem. As shown in Patent Documents 4, 5, and Patent Documents 10 and 11, such a problem can be solved to some extent by forming a salt core by a fabrication method such as die casting. However, the salt core disclosed in Patent Document 4 has a problem in that the bending strength is low, and there are many restrictions on the product structure performed using the salt core.
  • the salt core disclosed in Patent Document 4 is made of only a fragile material itself such as sodium salt sodium and potassium salt sodium (eg, bending strength of 1-11). 5MPa), so that this core is supplied with a low supply pressure of the molten metal and at a low flow rate, for example, a gravity die manufacturing method or a low pressure manufacturing method (LP) so that it is not destroyed during product manufacturing.
  • a gravity die manufacturing method or a low pressure manufacturing method (LP) so that it is not destroyed during product manufacturing.
  • LP low pressure manufacturing method
  • the conventional die-casting method has a higher injection pressure of 40-100MPa compared to the gravity die manufacturing method or low-pressure manufacturing method, and the injection speed is high (20-100 mZ seconds at the gate speed).
  • the present invention has been made to solve such a problem, and has excellent fluidity, and is formed into a core having a complicated shape by a structure such as a die casting method, a gravity mold manufacturing method, or a low pressure manufacturing method. It is another object of the present invention to provide a salt core that can be applied to a die casting method having a high bending strength as a core.
  • Kaolin artificially synthesized ceramics and the like
  • Kaolin is re-melted, pulverized, and classified; for example, pulverized synthetic mullite.
  • Kaolin is granulated and sintered by a rotary kiln for classification.
  • a sintered product of synthetic mullite, precipitated by the flux method, and flux is removed and classified, for example, aluminum borate, and deposited and classified by the gas phase method, for example, silicon carbide nitride Is produced.
  • these artificially synthesized materials are used as reinforcement materials for reinforced plastics, as heat-resistant piston materials, used as brake materials as an alternative to asbestos, or developed for aerospace.
  • This is an industrial material that has not been developed as a ceramic for strengthening salt cores.
  • a production core according to the present invention is a production core formed by producing a mixed material of a salt material and a ceramic material.
  • the ceramic material is artificially synthesized density 2. 2 g / cm 3 greater than 4g / cm 3 It has the following granularity.
  • the production core according to the second aspect of the present invention is the production core according to the first aspect, wherein the ceramic material is made of a material having a density of 2.79 gZcm 3 to 3.15 gZcm 3 . It is a synthetic mullite.
  • the manufacturing core according to the invention described in claim 3 is the manufacturing core according to claim 1, wherein the ceramic material is aluminum borate having a density of 2.93 gZcm 3. is there.
  • the production core according to the invention set forth in claim 4 is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or potassium. Any one of sodium chloride, bromide, carbonate, and sulfate, wherein the ceramic material has an artificially synthesized particle diameter of 150 m or less and has a granular shape. is there.
  • the structural core according to the invention as set forth in claim 5 is a structural core formed by forming a mixed material of a salt material and a ceramic material, wherein the salt material is a potassium or sodium salt.
  • Ceramide, bromide, carbonate, or sulfate, and the ceramic material is synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, aluminum nitride, titanate.
  • the aluminum cordierite and the alumina exhibit any one of granularity.
  • a structural core according to claim 6 is a structural core obtained by forming a mixed material of a salt material and a ceramic material by structure, wherein the salt material is potassium or Any one of sodium chloride, bromide, carbonate, and sulfate is used, and the ceramic material is aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, potassium titanate 8 And whisker of any one of zinc oxide.
  • the salt material is potassium or Any one of sodium chloride, bromide, carbonate, and sulfate is used
  • the ceramic material is aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, potassium titanate 8 And whisker of any one of zinc oxide.
  • the manufacturing core according to the invention described in claim 7 is the manufacturing core according to the invention described in claim 6, wherein the ceramic material is aluminum borate whisker.
  • the production core according to the invention according to claim 8 is a production core formed by producing a mixed material of a salt material and a ceramic material, wherein the salt material is potassium or a mixed salt obtained by adding a carbonate or sulfate of potassium or sodium with respect to sodium Shioi ⁇ , the ceramic material, artificially synthesized density 2. 2 g / cm 3 greater than 4g / cm 3 It has the following granularity.
  • the production core according to the ninth aspect of the present invention is the production core according to the eighth aspect, wherein the ceramic material is made of a material having a density of 2.79 g / cm 3 to 3.15 g / cm 3. Mullite.
  • the manufacturing core according to the invention described in claim 10 is the same as the manufacturing core according to claim 8.
  • the ceramic material was aluminum borate having a density of 2.93 gZcm 3 .
  • the manufacturing core according to the invention according to claim 11 is a manufacturing core formed by manufacturing a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or sodium.
  • a production core according to the invention as set forth in claim 12, is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of a ceramic.
  • the ceramic material is made of synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, It has a granular shape of any one of aluminum nitride, aluminum titanate, cordierite, and alumina.
  • a production core according to the invention according to claim 13 is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of a ceramic.
  • the salt material is made of a ceramic.
  • a mixed salt obtained by adding a carbonate or a sulfate of potassium or sodium to a sodium chloride is used, and the ceramic material is made of aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, 8 Whisker of any one of potassium titanate and zinc oxide.
  • the core for production according to the invention described in claim 14 is the core for production according to the invention described in claim 13, wherein the ceramic material is aluminum borate whisker.
  • the manufacturing core according to the invention according to the invention is the manufacturing core according to any one of the inventions described in claims 8 to 14, wherein the mixed salt is prepared by mixing salt salt and sodium carbonate. It was formed.
  • a salt core in which a ceramic material is sufficiently dispersed in a salt material can be formed by fabrication. Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water and steam) after the production, and can be formed into a complicated shape by the production. Strengthening materials that have both strength and ceramic material strength will increase the bending strength more than expected. For this reason, the manufacturing core according to the present invention can be used, for example, in a conventional casting machine, which has been difficult in the past. Therefore, the degree of freedom of construction can be improved.
  • a salt core in which synthetic mullite is sufficiently dispersed in a salt material can be formed by forging.
  • a salt core in which aluminum borate is sufficiently dispersed in a salt material can be formed by forging.
  • a salt core in which the ceramic material is sufficiently dispersed in the salt material can be formed by forging.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water and steam) after the production, and can be formed into a complicated shape by the production.
  • Strengthening materials that have both strength and ceramic material strength will increase the bending strength more than expected.
  • the manufacturing core according to the present invention can be used, for example, in a die-casting machine, which has been difficult in the past, and is also handled with special care when mounting it on other types. Since there is no necessity, the degree of freedom of construction can be improved.
  • a salt core sufficiently reinforced by a ceramic material having a granular shape can be formed.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material.
  • the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Because there is no, the degree of freedom of construction can be improved. Since one type of ceramic material is used, the salt core is dissolved in water. The ceramic material is collected and reused.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength is sufficiently strengthened by the whisker, which also has the strength of the ceramic material, and the bending strength is increased more than expected.
  • the manufacturing core according to the present invention can be used not only in a conventionally difficult die-casting machine, for example, but also with special care when mounting it on other types. Since there is no need to handle, the degree of freedom of construction can be improved.
  • the salt core is dissolved in water to recover the ceramic material, which can be reused.
  • a salt core sufficiently reinforced by aluminum borate whiskers can be formed by structure.
  • a salt core in which a ceramic material is sufficiently dispersed in a salt material made of a mixed salt can be formed by structure.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength the bending strength will be increased more than expected by the strengthening material which is a ceramic material.
  • the manufacturing core according to the present invention can be used not only in, for example, a die-casting machine, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Therefore, the degree of freedom of construction can be improved.
  • the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
  • a salt core in which synthetic mullite is sufficiently dispersed in a salt material composed of a mixed salt can be formed by structure.
  • a salt core in which aluminum borate is sufficiently dispersed in a salt material composed of a mixed salt can be formed by a structure.
  • a salt core in which a ceramic material is sufficiently dispersed in a salt material made of a mixed salt can be formed by structure.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength the bending strength will be increased more than expected by the strengthening material which is a ceramic material.
  • the manufacturing core according to the present invention can be used not only in, for example, a die-casting machine, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Therefore, the degree of freedom of construction can be improved.
  • the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
  • the granular ceramic material is sufficiently dispersed in the salt material having mixed salt strength, and a salt core sufficiently reinforced by the ceramic material can be formed. .
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength As for the strength, the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material.
  • the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. There is no way to improve the freedom of construction.
  • the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Furthermore, salt cores with small wrinkles formed on the core surface Can be provided.
  • the salt material which is also a ceramic, is sufficiently dispersed in the salt material, which is a mixed salt, and a salt core which is sufficiently strengthened by the whiskers can be formed.
  • the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production.
  • the strength As for the strength, the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material.
  • the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. There is no way to improve the freedom of construction.
  • the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
  • the whisker force made of aluminum borate is sufficiently dispersed in the salt material having a mixed salt force, and a salt core sufficiently reinforced by the whiskers can be formed. it can. For this reason, a strong salt core having a low melting point and can be formed by forging.
  • potassium chloride and sodium carbonate are easily available and inexpensive. Therefore, according to the invention, the production core made of the salt material composed of the mixed salt is used. Manufacturing costs can be reduced.
  • FIG. 1 is a perspective view showing a cylinder block when manufactured using the manufacturing core according to the present invention.
  • FIG. 2 is a graph showing a relationship between a mixed amount of synthetic mullite and bending strength.
  • FIG. 3 is a graph showing a relationship between a mixed amount of synthetic mullite and bending strength.
  • FIG. 4 is a view showing a bending test piece.
  • FIG. 5 is a graph showing a relationship between a bending test piece and a bending force.
  • FIG. 6 is a graph showing the relationship between the amount of aluminum borate mixed and the transverse rupture strength.
  • FIG. 7 is a graph showing the relationship between the mixing amount of silicon nitride and the bending strength.
  • FIG. 8 is a graph showing the relationship between the mixing amount of silicon carbide and bending strength.
  • FIG. 9 is a graph showing the relationship between the mixing amount of aluminum nitride and the transverse rupture strength.
  • FIG. 10 is a graph showing the relationship between the amount of boron carbide mixed and the transverse rupture strength.
  • FIG. 11 is a graph showing the relationship between the mixing amount of aluminum titanate and spinel and the transverse rupture strength.
  • FIG. 12 is a graph showing the relationship between the mixed amount of alumina and the transverse rupture strength.
  • FIG. 13 is a graph showing the relationship between the amounts of all ceramic materials shown in the first to eighth embodiments and the transverse rupture strength.
  • FIG. 14 is a graph showing the relationship between the mixing amount of all the ceramic materials shown in the first to eighth embodiments and the bending strength.
  • FIG. 15 is a diagram showing conditions for mixing potassium salt and ceramic materials.
  • FIG. 16 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity.
  • FIG. 17 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity.
  • FIG. 18 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity.
  • FIG. 19 is a graph showing the relationship between the mixing amount of aluminum borate whis force and bending strength.
  • FIG. 20 is a graph showing the relationship between the mixing amount of the silicon nitride force and the silicon carbide force and the transverse rupture strength.
  • FIG. 21 is a graph showing the relationship between the mixing amount of potassium titanate powder and bending strength.
  • FIG. 22 is a graph showing the relationship between the mixing amount of the Zi-Dani zinc wiping force and the transverse rupture strength.
  • FIG. 23 is a graph showing the relationship between the mixing amount of all the forces and the bending strength shown in the ninth to twelfth embodiments.
  • FIG. 24 is a diagram showing a relationship between a mixing ratio of ceramics force and fluidity.
  • Figure 25 shows the mixing of potassium bromide or sodium bromide with aluminum borate power. It is a graph which shows the relationship between quantity and bending strength.
  • FIG. 1 is a perspective view of a cylinder block manufactured by using the manufacturing core according to the present invention, and the figure is drawn in a partially broken state.
  • 2 and 3 are graphs showing the relationship between the amount of synthetic mullite mixed and the bending strength
  • FIG. 4 is a diagram showing the bending test piece
  • FIG. 5 is a graph showing the relationship between the weight of the bending test piece and the bending strength. It is a graph which shows a relationship.
  • FIG. 1 what is indicated by reference numeral 1 is an engine cylinder block manufactured using a salt core 2 as a manufacturing core according to the present invention.
  • the cylinder block 1 is for forming a water-cooled four-cycle four-cylinder engine for a motorcycle, and is formed into a predetermined shape by a die casting method.
  • the cylinder block 1 according to the present embodiment has a cylinder body 4 having four cylinder bores 3, 3,... And an upper crankcase 5 extending downward from the lower end of the cylinder body 4 and integrally formed.
  • the upper crankcase 5 has a lower crankcase (not shown) attached to a lower end thereof, and rotatably supports a crankshaft (not shown) in cooperation with the lower crankcase.
  • the above-mentioned cylinder body 4 is a V, so-called closed deck type, and has a water jacket 6 formed therein using the salt core 2 according to the present invention.
  • the water jacket 6 includes a cooling water inlet 8 formed in a cooling water passage forming portion 7 projecting from one side of the cylinder body 4 and extending in the direction in which the cylinder bores 3 are arranged, and a cooling water passage forming portion 7.
  • a cooling water distribution passage (not shown) formed inside; a main cooling water passage 9 which is communicated with the cooling water distribution passage and is formed so as to cover the periphery of all cylinder bores 3;
  • the communication passage 10 extends upward from the cooling water passage 9 in the figure and opens to the mating surface 4 a at the upper end of the cylinder body 4.
  • the water jacket 6 supplies the cooling water flowing from the cooling water inlet 8 to the main cooling water passage 9 around the cylinder bore through the cooling water distribution passage. Cooling water in cylinder head (not shown) from 9 through communication passage 10 It is configured to lead to the passage.
  • the cylinder body 4 has a ceiling 10 of the cylinder body 4 except that the communication passage 10 of the water jacket 6 is opened on the mating surface 4a at the upper end to which the cylinder head is connected. It is now covered by a wall (the wall that forms the mating surface 4a), resulting in a closed deck configuration.
  • the salt core 2 for forming the water jacket is formed in a shape in which respective parts of the water jacket 6 are integrally connected.
  • the shape of the salt core 2 (the shape of the water jacket 6) is drawn in a state where a part of the cylinder body 4 is broken so that it can be easily understood.
  • the salt core 2 is formed into a water jacket 6 by a die casting method using a core material composed of a mixture of a salt material and a ceramic material described later.
  • the salt core 2 according to this embodiment has a passage forming portion 2a that forms a cooling water inlet 8 and a cooling water distribution passage, and an annular shape that surrounds four cylinder bores 3.
  • the portion 2b and a plurality of convex portions 2c projecting upward from the annular portion 2b are all integrally formed.
  • the communication passage 10 of the water jacket 6 is formed by these projections 2c.
  • the salt core 2 is supported at a predetermined position in a mold (not shown) by a skirting board (not shown) at the time of fabrication, and is dissolved by hot water or steam after the fabrication. And remove.
  • the salt core 2 is removed after fabrication by immersing the cylinder block 1 in a water tank (not shown) in which hot water is stored. By immersing the cylinder block 1 in the water tank in this way, the passage forming portion 2a of the salt core 2 and the convex portion 2c exposed on the mating surface 4a come into contact with the hot water and dissolve, and this dissolving portion gradually disappears. And finally all parts are dissolved.
  • hot water or steam can be sprayed with a hole force and pressure in order to promote the dissolution of the salt core 2 remaining in the water jacket 6.
  • a skirting board can be inserted instead of the convex portion 2c at a portion where the convex portion 2c is formed.
  • potassium salt salt is used as a salt material
  • a synthetic mullite [3A10.2SiO ⁇ Itochu
  • This salt core 2 In forming by the die casting method, first, a mixture of a salt material and a ceramic material is heated to melt the salt material, and the molten material is stirred by sufficiently dispersing the ceramic material to form a mixed molten metal. . Then, the mixed molten metal is injected into the mold for the salt core under high pressure to solidify, and after solidification, the mold force is removed.
  • the product name is an indication for specifying the synthetic mullite used by the manufacturer at the time of sale.
  • the trial mixing amount indicates the ratio of the weight of the synthetic mullite mixed with the salted mullite. From the synthetic mullites shown in Table 1, those that can be used in the production were tested. After heating the mixture to dissolve potassium salt and stirring well, the dissolution container is turned upside down and turned upside down to determine whether the molten metal flows out. Was performed by confirming. According to this experiment, a material having fluidity in the molten metal in a state where the melting container was returned as described above was selected as a material that can be manufactured. The results are shown in Table 1 and FIGS.
  • a crucible made of INCONEL X-750 or a high-alumina tamman tube was used as the dissolving vessel described above.
  • the dissolution of potassium salt was carried out by placing a dissolution vessel containing potassium chloride in an electric resistance furnace and heating it in the atmosphere.
  • the fabrication was performed by injecting the molten metal at a temperature of 800 ° C into a mold at about 25 ° C. After fabrication, in order to prevent the test piece from sticking to the mold due to heat shrinkage, about 20 seconds after the injection of the molten metal, the test piece was also taken out of the mold and cooled by air cooling at room temperature.
  • CeraBeads # 650 exhibited fluidity at 30%, 40%, 50% and 60%. From this, it was considered that CeraBeads # 650 had sufficient fluidity when the mixing amount was 60% or less and could be manufactured, but it cannot be used for manufacturing because it precipitates at the bottom of the dissolution vessel. understood. (Table 1, Figure 15, Figure 16)
  • CeraBeads # 1700 was found to be fluid at 20%, 30%, 40%, 50% and 60%. From this, it is considered that CeraBeads # 1700 has sufficient fluidity when the mixing amount is 60% or less and can be manufactured.
  • CeraBeads # 1450 exhibited fluidity at mixing powers of 0%, 50% and 60%. This fact suggests that CeraBeads # 1450 has sufficient fluidity when the mixing amount is 60% or less, and is considered to be manufacturable. It was also confirmed that the deviation between CeraBeads # 1700 and # 1450 was dispersed in the molten potassium chloride. (Table 1, Figure 15, Figure 16)
  • MM-325mesh was found to be fluid at 10%, 20%, 30% and 40%. This means that MM-325mesh has sufficient fluidity if the mixing amount is 40% or less. , It is considered to be configurable. In addition, it was confirmed that MM-325mesh was dispersed in the molten salt of Shii-dani potassium. (Table 1, Figure 15, Figure 17)
  • MM-16mesh was found to be fluid at 20%, 30%, and 40%, but settled at the bottom of the dissolution vessel and was unsuitable as a material.
  • Table 1 CeraBeads is a sintered product and MM is a crushed product.
  • the flexural test specimens were prepared in the same manner as described above for confirming the fluidity by placing the salt and potassium in a crucible or Tamman tube made of INCONEL X-750 and heating in a furnace to dissolve the salt and potassium. After that, a well-stirred molten metal was poured into a mold. The temperature of the molten metal was 800 ° C.
  • the bending strength is measured by supporting the center of the bending test specimen at two points with a spacing of 50mm, and pressing a middle part of these supporting points with a pressing device having two pressing points with a spacing of 10mm. Pressing was performed by the following equation based on the load when the bending test piece was broken.
  • the salt core 2 obtained by mixing synthetic mullite (MM-325mesh) with potassium chloride has a mixing amount of synthetic mullite in the range of 25% to 40%.
  • the maximum bending strength is about 14 MPa, and the bending strength (about 8 MPa) that can be used in the die casting method is obtained.
  • the salt core 2 according to this embodiment can be used for most conventional production methods including the die casting method.
  • the degree of freedom in the structure such as the shape of the pressure at the time of pouring, can be improved.
  • the maximum core strength of the shell core, which is said to be stronger than the salt core at present, at the current technical level is about 6MP. Therefore, the target transverse rupture strength of the salt core applicable to the die casting method was set to at least 8MPa.
  • the density of the synthetic mullite (2. 79g / cm 3 - 3. 15g / cm 3) is Shioi
  • the individual particles of synthetic mullite are substantially uniformly dispersed and solidified in the salty dangling potassium in the molten state, which is appropriately larger than the density of the dangling potassium in the molten state (1.57 gZcm 3 ), thereby solidifying the inside of the salt. This is thought to be because the crack growth is suppressed. This is evident from the fact that MM-16mesh and CeraBeads # 650, which precipitate, have high strength.
  • the salt core 2 is a substance in which potassium chloride as a main component is dissolved in warm water, it can be removed by being dissolved in warm water after production. That is, since the salt core 2 is removed by immersing the structure formed using the salt core 2 in, for example, warm water, when the shell core is used, for example, similarly to the conventional salt core. In comparison, the cost in the core removal process can be reduced.
  • the ceramic material mixed with the salt core 2 is only one kind of synthetic mullite, and the salt core 2 is separated by dissolving the salt core 2 in water (hot water) as described above. . Therefore, the ceramic material can be easily reused by drying it. That is, since the ceramic material can be reused, the manufacturing cost of the salt core 2 can be reduced. If there is more than one ceramic material, even if the salt core is recovered by dissolving it in warm water, the mixing ratio of the recovered ceramic material becomes unstable and cannot be controlled, and the ceramic material cannot be reused. It becomes difficult.
  • the salt core according to the present invention can use granular aluminum borate (9A1 O. 2B O) as a ceramic material.
  • Aluminum borate mixed with potassium salt 9A1 O. 2B O
  • FIG. 6 is a graph showing the relationship between the amount of aluminum borate mixed and the bending strength.
  • Figure 6 The bending strength shown was obtained by performing the experiment shown in the first embodiment using aluminum borate as a ceramic material.
  • the line in FIG. 6 is an approximate curve drawn by using the least squares method.
  • the mixing amounts of Albolite PF08 were 10%, 15% and 20%, and the mixing amounts of Albolite PC30 were 10%, 20%, 30% and 35% (see Table 5, FIG. 16). From this,
  • Albolite PF03 has a mixing amount of 15% or less
  • Albolite PF08 has a mixing amount of 20% or less
  • Albolite PC30 has a mixing amount of 35% or less. Conceivable.
  • the salt core according to the present invention is formed of granular silicon nitride (SiN) as a ceramic material.
  • FIG. 7 is a graph showing the relationship between the amount of silicon nitride mixed and the transverse rupture strength.
  • the flexural strength shown in FIG. 7 was obtained by performing the experiment shown in the first embodiment using silicon nitride as a ceramic material. Note that the line in FIG. 7 is an approximation curve drawn using the least squares method.
  • NP-600 has a mixing amount of 25% or less
  • SN-7 has a mixing amount of 0% or less
  • SN-9 has a mixing amount of 40% or less
  • HM-5MF has a mixing amount of 40% or less. If the mixing amount is 25% or less, it is considered that it can be manufactured.
  • NP- 600, SN- 7 and SN- 9 is density at 3. 18gZcm 3
  • HM- density of 5MF is 3. 19g Zcm 3.
  • the salt core according to the present invention can use granular silicon carbide (SiC) as the ceramic material.
  • SiC granular silicon carbide
  • FIG. 8 is a graph showing the relationship between the amount of silicon carbide mixed and the bending strength.
  • the flexural strength shown in FIG. 8 was obtained by performing the experiment shown in the first embodiment using silicon carbide as a ceramic material. Note that the line in FIG. 8 is an approximation curve drawn using the least squares method.
  • the salt core according to the present invention can use granular aluminum nitride (A1N) as a ceramic material.
  • A1N granular aluminum nitride
  • FIG. 9 is a graph showing the relationship between the mixing amount of aluminum nitride and the bending strength.
  • the transverse rupture strength shown in FIG. 9 was obtained by performing the experiment shown in the first embodiment using aluminum nitride as a ceramic material. Note that the line in FIG. 9 is an approximate curve drawn using the least squares method.
  • Aluminum nitride used in the experiment was selected from two types shown in Table 11 below from among commercially available granular ones.
  • the transverse rupture strength of aluminum nitride is hardly affected by the grain size.
  • the salt core according to the present invention is a boron carbide (B C) which exhibits a granular shape as a ceramic material.
  • FIG. 10 is a graph showing the relationship between the mixing amount of boron carbide and the bending strength.
  • the transverse rupture strength shown in FIG. 10 was obtained by performing the experiment shown in the first embodiment using boron carbide as a ceramic material. Note that the line in FIG. 10 is an approximate curve drawn using the least squares method.
  • boron carbide Of the three types of boron carbide shown in Table 13, those that could also be used for the production of fluidity were # 1200 mixed with 20%, 30%, and 33.75%, and S1 and S3 Were 20%, 30% and 40% (see Table 13 and Figure 16). From this, # 1200 is mixed If the volume is 33.75% or less, SI and S3 are considered to be manufacturable if the mixing power is 0% or less. Of these three types of boron carbide, S3 was also found to be capable of precipitating in the molten potassium chloride. Other # 1200 and S1 were also confirmed to disperse (see Fig. 15). These boron carbides have a density of 2.51 g / cm 3 and different particle diameters.
  • the flexural strength is increased by setting the mixing amount between sample name # 1200 and sample name S1 to 20% or more. It turned out to be larger than 8MPa. In addition, as shown in FIG. 10, it can be seen that the dispersed S3 has no strength.
  • the salt core according to the present invention can use granular aluminum titanate (Al TiO) or spinel (cordierite: MgO. Al O) as a ceramic material. This
  • FIG. 11 is a graph showing the relationship between the mixing amount of aluminum titanate and spinel and the bending strength.
  • the transverse rupture strength shown in FIG. 11 was obtained by performing the experiment shown in the first embodiment using aluminum titanate and spinel as ceramic materials. Note that the line in FIG. 11 is an approximate curve drawn using the least squares method.
  • Aluminum titanate and spinel used in conducting the experiment were selected from commercially available, granular ones shown in Table 15 below.
  • the aluminum titanate shown in Table 15 can be used in the production of a fluid having a mixing force of 10%, 20%, 30% and 40%. It was found that 20%, 30% and 40% can be used for production (see Table 15 and Figure 18). From this, it is considered that aluminum titanate and spinel can be manufactured if the mixing amount is 40% or less. In addition, it was confirmed that both of these ceramic materials were dispersed in the molten salt of potassium salt (see Fig. 15).
  • Aluminum titanate density 3. 7 g / cm 3, the particle diameter is not less, the density of the spinel is 3. 27g / cm 3, the particle size is 75 / zm.
  • the salt core according to the present invention is made of alumina (Al 2 O 3) having a granular shape as a ceramic material.
  • FIG. 12 is a graph showing the relationship between the mixed amount of alumina and the bending strength.
  • the flexural strength shown in FIG. 12 was obtained by performing the experiment shown in the first embodiment using alumina as a ceramic material.
  • the lines in FIG. 12 are approximation curves drawn using the least squares method.
  • the alumina used in the experiment was selected from the commercially available granular ones shown in Table 17 below.
  • alumina having a mixed amount of 20% 30% 35% (AL-45-1) in Table 17 can be used for production (see Fig. 18). This indicates that AL-45-1 can be manufactured if the mixing amount is 35% or less, and the others can be manufactured if the mixing amount is 30% or less. Conceivable.
  • these aluminas were dispersed in the molten salt of Shiridani potassium (see FIG. 15). These aluminas have a density of about 4 gZcm 3 and a particle size of 0.6 ⁇ m (AL-160SG), 1 m (AL-45-1), and 3-4 ⁇ m. m (A—42—1) and 40—50 ⁇ m (A—12).
  • a bending test piece was prepared for each mixing amount as shown in Table 18 below, and the bending strength was determined.
  • FIGS. 13 and 14 show the relationship between the mixing amount of all the ceramic materials and the bending strength shown in the first to eighth embodiments described above. As can be seen from these figures, among the above-mentioned ceramic materials, the one capable of forming the salt core having the highest bending strength was aluminum nitride.
  • the material with the lowest material unit price is synthetic mullite, and the material with the smallest material amount (mixing amount) is aluminum borate.
  • synthetic mullite or aluminum borate it is possible to produce a salt core having high strength without reducing production costs.
  • a salt core having excellent formability and high strength could be formed by using the ceramic material shown in the first to eighth embodiments for the following reasons. This is because the molten metal obtained by mixing these ceramic materials with potassium salt has fluidity, and the density of these ceramic materials is the density of potassium salt in the molten state (1.57 g / cm 3 ). This is a value that is more moderately large, and is considered to be a force capable of suppressing the crack growth inside the salt by dispersing these ceramic materials widely and uniformly in the molten potassium salt.
  • the structure is possible because of the "fluidity", and sufficient strength is obtained because it is "dispersed”.
  • the influence on the “fluidity” is mainly the amount of the ceramic material mixed (wt%), and the “dispersion” is affected by the density. For this reason, even if the ceramic material is different from that shown in the first to eighth embodiments, the density is close to each of the above ceramic materials, and a molten metal having fluidity is formed. It is considered that a salt core having the same strength as that described in the above embodiment can be formed.
  • FIG. 15 In order to investigate the force of the ceramic material being well dispersed in the molten salt material, according to an experiment conducted by the inventors on the mixing conditions of potassium salt and the ceramic material, FIG. As shown in Fig. 15, the ceramic material dispersed in the molten potassium salt has a minimum density of more than 2.28 g / cm 3 (boron nitride) and a maximum of 4 g / cm 3 (alumina). It was found that the maximum value of the particle size was about 150 ⁇ m.
  • V precipitated speed [MZS]
  • g is the gravitational acceleration 9.80
  • MZS 2 pc is the density of the Seramitsu task materials [GZcm 3]
  • ps is the density of the salt material in the molten state [GZcm 3]
  • d is The particle size [m] and ⁇ of the ceramic material are the viscosity coefficient [Pa ⁇ s] of the salt material.
  • the precipitation velocity V is proportional to the first power of the density difference between the ceramic material and the molten salt material, and is proportional to the square of the particle size. From this, it is considered that when the particle size is larger than 150 m, the precipitation speed becomes extremely high and the ceramic material cannot be dispersed well. On the other hand, with respect to the density of the ceramic material, small influence amount for precipitation rate in comparison with the influence of the particle size, so ⁇ of performing this experiment, greater than 4g / cm 3, it may be a ceramic box material dispersion It can be guessed that it is possible.
  • a salt core having a strength that can be used in the die casting method can be formed.
  • the salt core according to the present invention is made of aluminum borate whisker (9A1) as a ceramic material.
  • Moisture power K O. 6TiO
  • potassium 8 titanate whisker K O. 8TiO
  • oxide Lead-force ZnO
  • These ceramic wiping powers include those shown in Table 19 below.
  • Silicon nitride power product name SNW # 1—S
  • silicon carbide power product name SCW # 1-0.8
  • potassium 6 titanate whisker product name Tismo N
  • 8 titanic acid It was found that potassium potassium (product name: Tismo D) with a mixed amount of 5% and 7% can be used for production (see Fig. 24). From this, it is considered that these whiskers can be manufactured if the mixing amount is 7% or less.
  • Zinc whiskers (product name WZ-0501) having a mixing amount of 5%, 10% and 15% can be used for production (see FIG. 24). From this, it is considered that zinc oxide whiskers can be manufactured if the mixing amount is 15% or less.
  • FIG. 19 is a graph showing the relationship between the mixing amount of the aluminum borate whis force and the bending strength.
  • the transverse rupture strength shown in FIG. 19 was obtained by performing the experiment shown in the first embodiment using aluminum borate whiskers as a ceramic material. Note that the line in FIG. 19 is an approximate curve drawn using the least squares method. In conducting this experiment, as shown in Table 20 below, a bending test piece was prepared for each mixing amount, and the bending strength was determined.
  • FIG. 20 is a graph showing the relationship between the mixed amount of the silicon nitride force and the mixed amount of the silicon carbide force and the bending strength.
  • the transverse rupture strength shown in FIG. 20 was obtained by performing the experiment shown in the first embodiment using silicon nitride force or carbon carbide whisker as a ceramic material. Note that the line in FIG. 20 is an approximated curve drawn using the least squares method. In carrying out this experiment, as shown in Table 21 below, a bending test piece was prepared for each mixing amount, and the bending strength was determined. [0118] [Table 21]
  • FIG. 21 is a graph showing the relationship between the mixing amount of potassium titanate powder force and the mixing amount of potassium potassium titanate powder force and bending strength.
  • the transverse rupture strength shown in FIG. 21 was obtained by performing the experiment shown in the first embodiment using potassium hexa titanate force or potassium octa titanate whisker as a ceramic material. Note that the line in FIG. 21 is an approximate curve drawn using the least squares method. Table 22 below shows the results of this experiment. [0121] [Table 22]
  • the bending strength as shown in FIG. 22 was obtained by mixing Zinc whisker with potassium salt.
  • FIG. 22 is a graph showing the relationship between the mixing amount of the Zi-Dani zinc wiping force and the bending strength.
  • the bending strength shown in FIG. 22 was obtained by performing the experiment shown in the first embodiment using zinc oxide whiskers as a ceramic material. Note that the line in FIG. 22 is an approximate curve drawn using the least squares method. In carrying out this experiment, as shown in Table 23 below, bending test pieces were prepared for each mixing amount, and the bending strength was determined.
  • FIG. 23 shows the relationship between the mixing amount of all the forces and the bending strength shown in the ninth to twelfth embodiments described above.
  • the aluminum borate wiping force capable of forming a salt core having the highest bending strength among the above-mentioned die forces.
  • the relationship between the mixing amount of each ceramic sheet force and the fluidity was as shown in FIG.
  • the ceramics power and potassium salt were placed in a Tamman tube and melted at 800 ° C., then sufficiently stirred, and the tube was turned back downward. In this experiment, those that also flowed out of the molten metal S-Tamman tube were rated “fluid” and those that did not flow were “fluid”.
  • potassium salt is used as the salt material.
  • the salt material may be sodium salt, potassium or sodium salt. Any one of bromide, carbonate, and sulfate can be used.
  • sodium salty sardine sodium salty sardine (NaCl) can be used.
  • potassium or sodium bromide potassium bromide (KBr) or sodium bromide (NaBr) can be used.
  • carbonates sodium carbonate (Na CO) and potassium carbonate (K CO)
  • K so Potassium sulfate
  • FIG. 25 is a graph showing the relationship between the mixing amount of potassium bromide or sodium bromide and aluminum borate wiping force and the bending strength. The drawing also shows the transverse rupture strength when aluminum borate-moisture force is mixed with different salt materials. As these different salt materials, potassium salt and sodium salt were used.
  • FIG. 25 shows the density p of each salt material in the solid state. Density p in the solid state of the potassium bromide is 2. 75g / cm 3, a density P of the solid state sodium bromide is 3.
  • the density in the solid state of Shioi ⁇ potassium p Is 1.98 g / cm 3 and the density p in the solid state of sodium salt is 2.17 g / cm 3 c
  • the bending strength shown in FIG. 25 was obtained by performing the experiment shown in the first embodiment using aluminum borate whiskers as a ceramic material. Note that the line in FIG. 25 is an approximate curve drawn using the least squares method. In conducting this experiment, bending test pieces were prepared for each mixing amount as shown in Tables 24 to 27 below, and bending strength was determined. Table 24 below shows the transverse rupture strength when aluminum borate is mixed with potassium bromide, and Table 25 shows the transverse rupture strength when aluminum borate is mixed with sodium bromide.
  • Table 26 shows the transverse rupture strength when aluminum borate was mixed with potassium salt.
  • Table 26 shows the results of two experiments in which the mixing amount of aluminum borate whissing force and the mixing amount of aluminum borate whissing force are 3 wt% in Table 20. is there.
  • Table 27 shows the transverse rupture strength when aluminum borate was mixed with sodium chloride.
  • the aluminum borate whiskers used in adopting this embodiment are the same as those described in the ninth embodiment (see FIG. 19 and Table 19).
  • potassium bromide or sodium bromide is used as the salt material as described above.
  • the same effect as when the first embodiment is adopted can be obtained.
  • a potassium salty salt or a sodium salty salt in addition to using a single salty salt, bromide or salt as described above, a potassium salty salt or a sodium salty salt, a potassium or sodium carbonate or Mixed salts with sulfates can be used.
  • a mixed salt of potassium salt and sodium carbonate a mixed salt of sodium salt of sodium and sodium carbonate, a mixed salt of sodium salt of sodium chloride and carbonated lithium, or a mixed salt of potassium salt and potassium sulfate And a mixed salt thereof.
  • the salt material By making the salt material a mixed salt in this way, a salt core having a low melting point can be formed, as is well known in the art. For this reason, the temperature at the time of manufacturing the salt core can be lowered, and accordingly, the power consumption of the manufacturing apparatus can be reduced, and the cost for manufacturing the salt core can be reduced. . In addition, salt cores formed by the above four kinds of mixed salts are less likely to cause wrinkles on the surface of the manufactured core.
  • the manufacturing core according to the present invention is useful for a die-casting mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

A salt core (2) prepared by casting a mixed material from a salt material and a ceramic material, wherein one of chlorides, bromides, carbonates and sulfates of potassium and sodium is used as the salt material, and the ceramic material is a particulate material having a density which is greater than 2.2 g/cm3 and not greater than 4 g/cm3.

Description

明 細 書  Specification
铸造用中子  铸 Building core
技術分野  Technical field
[0001] 本発明は、非鉄合金铸物を铸造するのに用いられる金型、特にダイカスト铸造金型 内にも装填され、その高圧の铸造圧力環境にも耐え得る、ソルト材料によって形成し た铸造用中子に関するものである。  [0001] The present invention relates to a structure formed of a salt material that is loaded into a die used for manufacturing a non-ferrous alloy product, in particular, a die-casting die, and can withstand the high-pressure manufacturing pressure environment. It is about a core.
背景技術  Background art
[0002] 従来、ダイカスト铸造法は、複雑形状部品を寸法精度良く廉価に多量生産できる。  [0002] Conventionally, the die-casting method can mass-produce complex-shaped parts with high dimensional accuracy at low cost.
しかし、形状によっては崩壊性の铸造用中子を利用せざるを得ない場合がある。従 来、崩壊性の中子としては、砂を使用して形成されたシェル中子の他に、いわゆるソ ルト中子がある。このソルト中子は、生産性を考える場合、極めて魅力的な選択であ る。  However, depending on the shape, there is a case where a collapsed production core must be used. Conventionally, as a disintegratable core, there is a so-called salt core in addition to a shell core formed using sand. This salt core is an extremely attractive choice when considering productivity.
[0003] すなわち、ソルト中子は、铸造終了後に温水または蒸気によって溶解させて除去す ることができるために、ソルト中子を使用することにより、砂力もなる中子 (例えばシェ ル中子)を使用する場合に較べると、砂出し作業の手間を省け、生産性を高めること ができる。なぜなら、シェル中子の場合、溶湯が中子との境界面において砂粒の隙 間に入り、砂が取れなくなる、所謂さし込み現象が起こる。  [0003] That is, since the salt core can be removed by dissolving with hot water or steam after the completion of the production, the use of the salt core makes it possible to produce a sand core (eg, a shell core). Compared with the case of using, the labor of sanding work can be saved and the productivity can be increased. This is because in the case of the shell core, the so-called penetration phenomenon occurs in which the molten metal enters the gaps between the sand grains at the boundary surface with the core and sand cannot be removed.
[0004] このため、金型力も製品を取出した後に、製品を何台かのノックアウトマシンにかけ て内部力も砂を出し、さらに、さし込みで落ち難い砂をショットブラストで落とす必要が あり、砂出し作業が大変でコストアップになっている力もである。  [0004] For this reason, it is necessary to remove the mold force and the product, apply the product to several knockout machines to remove the internal force, and also remove the hard-to-fall sand by shot blasting. It is also a force that is difficult to put out and costs are increasing.
この種のソルト中子は、例えば、特公昭 48— 17570号公報(以下、単に特許文献 1 という)や、米国特許第 3963818号明細書 (以下、単に特許文献 2という)や、米国特 許第 4361181号明細書 (以下、単に特許文献 3という)や、米国特許第 5165464号 明細書 (以下、単に特許文献 4という)に開示されているように、塩ィ匕ナトリウム (NaCl )や塩化カリウム (KC1)を主な材料 (ソルト材料)として形成されて 、る。  Such salt cores are disclosed in, for example, Japanese Patent Publication No. 48-17570 (hereinafter simply referred to as Patent Document 1), US Pat. No. 3,963,818 (hereinafter simply referred to as Patent Document 2), and US Pat. As disclosed in US Pat. No. 4,361,181 (hereinafter simply referred to as Patent Document 3) and US Pat. No. 5,154,644 (hereinafter simply referred to as Patent Document 4), sodium salt sodium chloride (NaCl) and potassium chloride ( KC1) is formed as the main material (salt material).
[0005] 特許文献 1ないし特許文献 3に示されたソルト中子は、粒状 (粉状)の塩化ナトリウ ムゃ塩ィ匕カリウムなどの塩ィ匕物をプレス成形法により所定の形状に成形し、この成形 物を焼結させることによって形成されて 、る。 [0005] The salt cores disclosed in Patent Documents 1 to 3 are formed by pressing a salt (eg, sodium chloride, potassium salt, etc.) in a predetermined shape by a press molding method. , This molding It is formed by sintering an object.
特許文献 4に記載されているソルト中子は、ソルト材料として塩ィ匕ナトリウムが用いら れ、ダイカスト铸造法によって所定の形状に成形されて 、る。  The salt core described in Patent Document 4 uses sodium salt as a salt material and is formed into a predetermined shape by a die casting method.
また、米国特許第 4446906号明細書 (以下、単に特許文献 5という)と、米国特許 第 5803151号明細書 (以下、単に特許文献 6という)と、特公昭 49-15140号公報( 以下、単に特許文献 7という)と、特公昭 48— 8368号公報 (以下、単に特許文献 8と いう)と、特公昭 49-46450号公報(以下、単に特許文献 9という)と、米国特許第 48 40219号明細書 (以下、単に特許文献 10という)には、ソルト材料に充填材としてセ ラミックスが混入されたソルト中子が開示されて!ヽる。  Further, US Pat. No. 4,446,906 (hereinafter simply referred to as Patent Document 5), US Pat. No. 5,803,151 (hereinafter simply referred to as Patent Document 6), and Japanese Patent Publication No. 49-15140 (hereinafter simply referred to as Patent Reference 7), Japanese Patent Publication No. 48-8368 (hereinafter simply referred to as Patent Document 8), Japanese Patent Publication No. 49-46450 (hereinafter simply referred to as Patent Document 9), and US Pat. No. 4,840,219. A book (hereinafter simply referred to as Patent Document 10) discloses a salt core in which ceramics is mixed as a filler in a salt material!
[0006] 特許文献 5に示されたソルト中子は、充填用セラミックスとしてシリカ(SiO )またはァ [0006] The salt core disclosed in Patent Document 5 uses silica (SiO 2)
2 ルミナ (Al O )が用いられ、ダイカスト铸造法によって所定の形状に成形されている。  2 Lumina (Al 2 O 3) is used and is formed into a predetermined shape by die casting.
2 3  twenty three
このソルト中子の引張り強度は 150— 175psiと記載されており、これは 1. 03-1. 2 MPaに相当する。同じ崩壊性中子であるシェル中子では抗折強度試験法によって 得られた抗折強度の値によって中子の強度を評価するのが一般的であり、ソルト中 子でも抗折強度による評価方法を採用し得る。  The tensile strength of this salt core is described as 150-175 psi, which corresponds to 1.0-3.2 MPa. In the case of shell cores, which are the same collapsible cores, it is common to evaluate the core strength based on the values of the bending strength obtained by the bending strength test method. Can be adopted.
[0007] 抗折強度は中子に曲げ応力が作用した時の中子の強度を表すバロメータである。  [0007] The bending strength is a barometer that indicates the strength of the core when a bending stress acts on the core.
曲げ応力が作用する時としては例えば溶湯がゲートからキヤビティ内に高速で流れ 込んで内部のソルト中子にぶつ力つた時あるいは中子の金型内への取り付け作業時 に中子に衝撃が加わった時などが想定される。このように曲げ応力が生じることは、 ダイカスト铸造法で中子が折れる主要因である。特許文献 5にはこの抗折強度につ V、て何ら記載がな 、。明細書にこの中子を使ってエンジンブロックをダイカスト铸造法 で生産したとされているものの、商用実績がないことから推測して、このソルト中子は ダイカスト铸造法の高圧の溶湯圧力、高速の射出速度に耐え得る抗折強度はもって いな力つたと推測される。  When bending stress is applied, for example, when the molten metal flows into the cavity at high speed from the gate and hits the inner salt core, or when the core is installed in the mold, impact is applied to the core. Is assumed. The occurrence of such bending stress is a major factor that causes the core to break in the die casting method. Patent Document 5 does not describe this bending strength V. Although the specification says that this core was used to produce the engine block by die casting, the salt core was inferred from the lack of commercial experience. It is presumed that the transverse rupture strength that can withstand the injection speed was not strong.
[0008] 特許文献 6に示されたソルト中子は、充填用セラミックスとしてアルミナ、珪砂、窒化 ホウ素(BN)、炭化ホウ素(BC)などの粒子、繊維、ウイスカ等が用いられている。この ソルト中子は、前記充填用セラミックスとソルト材料との混合物を加圧成形法により所 定の形状に成形した後に焼結させることによって形成されている。この特許は、プロ セスは異なるがソルト中子をセラミックスの各種形態の材料で補強することを示唆して いる。 [0008] In the salt core disclosed in Patent Document 6, particles such as alumina, silica sand, boron nitride (BN), and boron carbide (BC), fibers, whiskers, and the like are used as ceramics for filling. The salt core is formed by molding a mixture of the ceramic for filling and a salt material into a predetermined shape by a pressure molding method and then sintering the mixture. This patent is Seth suggests that salt cores be reinforced with various forms of ceramic materials.
[0009] 特許文献 7および特許文献 8に示されたソルト中子は、充填用セラミックスとしてァ ルミナが用いられている。特許文献 9に示されたソルト中子は、充填用セラミックスとし てシリカ、アルミナ、ジルコユア(ZrO )などが用いられている。これらの特許文献 7—  [0009] The salt cores disclosed in Patent Documents 7 and 8 use alumina as a filling ceramic. The salt core disclosed in Patent Document 9 uses silica, alumina, zirconia (ZrO 2), or the like as a ceramic for filling. These patent documents 7—
2  2
9に示されたソルト中子は铸造によって形成されている。  The salt core shown in 9 is formed by construction.
[0010] 特許文献 10に示されたソルト中子は、充填用セラミックスとして粒径が大小異なる 2 種類のアルミナがソルト材料に混入され、ダイカスト铸造法によって所定の形状に成 形されている。このソルト中子に用いられるソルト材料は、塩ィ匕ナトリウムに炭酸ナトリ ゥム (Na CO )を混合させた混合塩である。 [0010] In a salt core disclosed in Patent Document 10, two types of alumina having different particle sizes are mixed as a ceramic for filling into a salt material, and formed into a predetermined shape by a die casting method. The salt material used for this salt core is a mixed salt obtained by mixing sodium carbonate and sodium carbonate (Na 2 CO 3).
2 3  twenty three
[0011] このように混合塩をソルト材料として用いるソルト中子は、上記の他に米国特許第 5 [0011] As described above, a salt core using a mixed salt as a salt material is disclosed in US Pat.
303761号明細書 (以下、単に特許文献 11という)と、特開昭 50— 136225号公報( 以下、単に特許文献 12と ヽぅ)とに記載されて ヽる。 No. 303761 (hereinafter simply referred to as Patent Document 11) and Japanese Patent Application Laid-Open No. Sho 50-136225 (hereinafter simply referred to as Patent Documents 12 and ヽ ぅ).
特許文献 11には、特許文献 10と同様に塩ィ匕ナトリウムと炭酸ナトリウムとからなる混 合塩が示されている。特許文献 12には、炭酸ナトリウムに塩ィ匕カリウムと塩ィ匕ナトリウ ムとを混合させてなる混合塩が開示されている。  Patent Document 11 discloses a mixed salt composed of sodium salt and sodium carbonate as in Patent Document 10. Patent Document 12 discloses a mixed salt obtained by mixing sodium carbonate with sodium salt and sodium salt.
[0012] また、混合塩にセラミックスが混入されたソルト材料は、特公昭 48— 39696号公報( 以下、単に特許文献 13という)と、特開昭 51-50218号公報 (以下、単に特許文献 1[0012] Further, salt materials in which ceramics are mixed in a mixed salt are disclosed in Japanese Patent Publication No. 48-39696 (hereinafter simply referred to as Patent Document 13) and Japanese Patent Application Laid-Open No. 51-50218 (hereinafter simply referred to as Patent Document 1).
4という)とに示されている。 4).
特許文献 13には、炭酸ナトリウム、塩ィ匕ナトリウムおよび塩ィ匕カリウム力もなる混合 塩に、アルミナ、酸化亜鉛 (ZnO)などの金属酸化物や、珪砂、タルク、クレーなどの 珪酸質粉粒物が混合されたソルト材料が示されている。  Patent Document 13 discloses that sodium carbonate, sodium salt, sodium chloride and potassium salt, a mixed salt that also has a potassium salt, metal oxides such as alumina and zinc oxide (ZnO), and siliceous particles such as silica sand, talc, and clay. The salt material mixed with is shown.
[0013] 特許文献 14には、炭酸カリウム、硫酸ナトリウム (Na SO )、塩ィ匕ナトリウムおよび塩 [0013] Patent Document 14 discloses potassium carbonate, sodium sulfate (Na SO), sodium salt sodium salt and salt.
2 4  twenty four
化カリウムカゝらなる混合塩にシリカ 'アルミナ'ファイバーなどが混入されたソルト材料 が示されている。  A salt material in which silica 'alumina' fibers and the like are mixed in a mixed salt of potassium iodide is shown.
このようにソルト材料を混合塩とすることによって、ソルト材料が単一の塩化物や炭 酸塩または硫酸塩などによって形成されて!ヽる場合に比べて、ソルト材料の融点を相 対的に低くすることができる。 発明の開示 Thus, by making the salt material a mixed salt, the salt material is formed by a single chloride, carbonate or sulfate! The melting point of the salt material can be relatively reduced as compared with the case where the temperature is low. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 上述した特許文献 1一特許文献 3および特許文献 6に示されたソルト中子は、プレ ス成形法によって形成されて ヽるために、複雑な形状に形成することができな ヽと ヽ う問題があった。このような問題は、特許文献 4, 5、特許文献 10, 11に示されている ように、ダイカスト等の铸造法によりソルト中子を形成することによって、ある程度は解 消することができる。しかし、この特許文献 4に示されたソルト中子は、抗折強度が低 ぐこのソルト中子を使用して行う製品铸造の制約条件が多くなるという問題があった  [0014] The salt cores disclosed in Patent Document 1 and Patent Document 3 and Patent Document 6 described above cannot be formed into a complicated shape because they are formed by a press molding method. There was a problem. As shown in Patent Documents 4, 5, and Patent Documents 10 and 11, such a problem can be solved to some extent by forming a salt core by a fabrication method such as die casting. However, the salt core disclosed in Patent Document 4 has a problem in that the bending strength is low, and there are many restrictions on the product structure performed using the salt core.
[0015] すなわち、特許文献 4に示されたソルト中子は、塩ィ匕ナトリウムや塩ィ匕カリウムのよう に材料自体が脆弱な材料のみで作られており(例、抗折強度 1一 1. 5MPa)、このた め、この中子は、製品铸造時に破壊されることがないように、溶湯の供給圧力が低ぐ かつ流速を抑えた例えば重力金型铸造法や低圧铸造法 (LP)にしか用いることがで きず、一般的にダイカスト法と呼ばれる高圧高速ダイカスト法には用いることができな かった。なお、従来のダイカスト法は、重力金型铸造法や低圧铸造法などに較べると 铸造時の溶湯圧力が 40— lOOMPaと高ぐ射出速度も速い (湯口速度で 20— 100 mZ秒)ために、ソルト中子とは別の中子であっても使用することは困難を伴なう。溶 湯の供給圧力は高 、が、速度を低く抑えた層流ダイカスト法およびスクイズダイカスト 法等においては、強度を向上させたシェル中子 {抗折強度 3— 6MPa (現時点での Max値 6MPa) }が用いられることがある力 この場合には、前述のように铸造後の砂 出し作業の時間が過度に長くなり、製造コストが著しく高くなつてしまう。 [0015] That is, the salt core disclosed in Patent Document 4 is made of only a fragile material itself such as sodium salt sodium and potassium salt sodium (eg, bending strength of 1-11). 5MPa), so that this core is supplied with a low supply pressure of the molten metal and at a low flow rate, for example, a gravity die manufacturing method or a low pressure manufacturing method (LP) so that it is not destroyed during product manufacturing. However, it could not be used for high-pressure high-speed die casting, which is generally called die casting. In addition, the conventional die-casting method has a higher injection pressure of 40-100MPa compared to the gravity die manufacturing method or low-pressure manufacturing method, and the injection speed is high (20-100 mZ seconds at the gate speed). It is difficult to use a core other than the salt core. The supply pressure of the molten metal is high, but in the laminar flow die-casting method and the squeeze die-casting method, etc., in which the speed is kept low, the shell core with increased strength {Bending strength 3-6MPa (Max value 6MPa at present) In this case, as described above, the time required for sand removal after construction is excessively long, and the production cost is significantly increased.
[0016] ソルト中子の抗折強度を増大させるためには、特許文献 5, 10や特許文献 13, 14 に示されて 、るように、ソルト材料に補強材としてセラミックスを混入させることが考え られる。し力しながら、従来のセラミックス混入型のソルト中子は、期待したほど高い抗 折強度を得ることはできな力つた。これは、セラミックス材料として、汎用的な工業材 料や天然材料 (例えばアルミナやシリカ等)を主体として 、たためセラミックス材料が ソルト材料中に充分に分散して 、なかったり、適切な物性のセラミックス材料を用いて いな力つたことが原因であると考えられる。 [0017] 本発明はこのような問題を解消するためになされたもので、流動性に優れ、ダイカス ト法、重力金型铸造法、低圧铸造法等の铸造によって複雑な形状の中子に形成する ことができ、しかも、中子として抗折強度が高ぐダイカスト铸造法にも適用可能なソル ト中子を提供することを目的とする。 [0016] In order to increase the bending strength of the salt core, as shown in Patent Documents 5 and 10 and Patent Documents 13 and 14, it is considered to mix ceramics as a reinforcing material in the salt material. Can be However, the conventional ceramic-mixed salt core was unable to achieve the expected high flexural strength. This is because ceramic materials are mainly composed of general-purpose industrial materials and natural materials (for example, alumina and silica). Therefore, the ceramic material is sufficiently dispersed in the salt material or is not present in the salt material. It is considered that the cause was that the user did not use the power. The present invention has been made to solve such a problem, and has excellent fluidity, and is formed into a core having a complicated shape by a structure such as a die casting method, a gravity mold manufacturing method, or a low pressure manufacturing method. It is another object of the present invention to provide a salt core that can be applied to a die casting method having a high bending strength as a core.
[0018] 近年、人工的に合成されたセラミックス等 (カオリンを再溶融し、粉砕、分級したもの で、例えば合成ムライトの粉砕品。カオリンを造粒し、ロータリー 'キルンで焼結して分 級したもので、例えば合成ムライトの焼結品。フラックス法で析出させフラックスを除去 して分級したもので、例えばホウ酸アルミニウム。気相法で析出させて分級したもので 、例えば炭化ケィ素ゃ窒化ケィ素)が生産されるようになっている。  [0018] In recent years, artificially synthesized ceramics and the like (kaolin is re-melted, pulverized, and classified; for example, pulverized synthetic mullite. Kaolin is granulated and sintered by a rotary kiln for classification. For example, a sintered product of synthetic mullite, precipitated by the flux method, and flux is removed and classified, for example, aluminum borate, and deposited and classified by the gas phase method, for example, silicon carbide nitride Is produced.
これらの人工的に合成された材料は、従来強化プラスチックの補強材料や、耐熱性 を有するピストン材料として使われたり、アスベストの代替材料としてブレーキシュ一 に使われたり、あるいは航空 ·宇宙用に開発された工業材料であり、ソルト中子の強 化用セラミックスとして開発されたものではない。  Conventionally, these artificially synthesized materials are used as reinforcement materials for reinforced plastics, as heat-resistant piston materials, used as brake materials as an alternative to asbestos, or developed for aerospace. This is an industrial material that has not been developed as a ceramic for strengthening salt cores.
しかし、密度や粒径や形状等は多様なものが市販されており、又、耐熱性や強度安 定性も旧来のセラミックスに比べ著しく改善されており、本発明者らはこの点に着目し て、これら材料をソルト強化用セラミックスとして活用できないか再検討し、本発明に 至ったものである。  However, a variety of products having various densities, particle sizes, shapes, and the like are commercially available, and the heat resistance and strength stability are remarkably improved as compared with conventional ceramics. The present inventors have reexamined whether these materials can be used as ceramics for salt reinforcement and arrived at the present invention.
課題を解決するための手段  Means for solving the problem
[0019] この目的を達成するため、本発明に係る铸造用中子は、ソルト材料とセラミックス材 料との混合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を[0019] In order to achieve this object, a production core according to the present invention is a production core formed by producing a mixed material of a salt material and a ceramic material.
、カリウムまたはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫酸塩のうちいずれか一つと し、前記セラミックス材料は、人工的に合成された密度が 2. 2g/cm3より大きく 4g/c m3以下の粒状を呈するものとしたものである。 , And potassium or sodium Shioi匕物, bromides, carbonates, and any one of sulfates, the ceramic material is artificially synthesized density 2. 2 g / cm 3 greater than 4g / cm 3 It has the following granularity.
[0020] 請求項 2に記載した発明に係る铸造用中子は、請求項 1に記載した発明に係る铸 造用中子において、セラミックス材料を、密度が 2. 79gZcm3— 3. 15gZcm3の合 成ムライトとしたものである。 [0020] The production core according to the second aspect of the present invention is the production core according to the first aspect, wherein the ceramic material is made of a material having a density of 2.79 gZcm 3 to 3.15 gZcm 3 . It is a synthetic mullite.
請求項 3に記載した発明に係る铸造用中子は、請求項 1に記載した铸造用中子に おいて、セラミックス材料を、密度が 2. 93gZcm3のホウ酸アルミニウムとしたもので ある。 The manufacturing core according to the invention described in claim 3 is the manufacturing core according to claim 1, wherein the ceramic material is aluminum borate having a density of 2.93 gZcm 3. is there.
[0021] 請求項 4に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との混 合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリウム またはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫酸塩のうちいずれか一つとし、前記セ ラミックス材料を、人工的に合成された粒径が 150 m以下で粒状を呈するものとし たものである。  [0021] The production core according to the invention set forth in claim 4 is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or potassium. Any one of sodium chloride, bromide, carbonate, and sulfate, wherein the ceramic material has an artificially synthesized particle diameter of 150 m or less and has a granular shape. is there.
請求項 5に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との混 合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリウム またはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫酸塩のうちいずれか一つとし、前記セ ラミックス材料を、合成ムライト、ホウ酸アルミニウム、炭化ホウ素、窒化ケィ素、炭化ケ ィ素、窒化アルミニウム、チタン酸アルミニウムコージ一ライト、アルミナのうちいずれ か一つの粒状を呈するものとしたものである。  The structural core according to the invention as set forth in claim 5 is a structural core formed by forming a mixed material of a salt material and a ceramic material, wherein the salt material is a potassium or sodium salt. Ceramide, bromide, carbonate, or sulfate, and the ceramic material is synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, aluminum nitride, titanate. The aluminum cordierite and the alumina exhibit any one of granularity.
[0022] 請求項 6に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との混 合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリウム またはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫酸塩のうちいずれか一つとし、前記セ ラミックス材料を、ホウ酸アルミニウム、窒化ケィ素、炭化ケィ素、 6チタン酸カリウム、 8 チタン酸カリウム、酸化亜鉛のうちいずれか一つのウイスカとしたものである。  [0022] A structural core according to claim 6 is a structural core obtained by forming a mixed material of a salt material and a ceramic material by structure, wherein the salt material is potassium or Any one of sodium chloride, bromide, carbonate, and sulfate is used, and the ceramic material is aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, potassium titanate 8 And whisker of any one of zinc oxide.
請求項 7に記載した発明に係る铸造用中子は、請求項 6に記載した発明に係る铸 造用中子において、セラミックス材料をホウ酸アルミニウムウイスカとしたものである。  The manufacturing core according to the invention described in claim 7 is the manufacturing core according to the invention described in claim 6, wherein the ceramic material is aluminum borate whisker.
[0023] 請求項 8に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との混 合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリウム またはナトリウムの塩ィ匕物に対してカリウムまたはナトリウムの炭酸塩あるいは硫酸塩 を加えた混合塩とし、前記セラミックス材料を、人工的に合成された密度が 2. 2g/c m3より大きく 4g/cm3以下の粒状を呈するものとしたものである。 [0023] The production core according to the invention according to claim 8 is a production core formed by producing a mixed material of a salt material and a ceramic material, wherein the salt material is potassium or a mixed salt obtained by adding a carbonate or sulfate of potassium or sodium with respect to sodium Shioi匕物, the ceramic material, artificially synthesized density 2. 2 g / cm 3 greater than 4g / cm 3 It has the following granularity.
請求項 9に記載した発明に係る铸造用中子は、請求項 8に記載した発明に係る铸 造用中子において、セラミックス材料を、密度が 2. 79g/cm3— 3. 15g/cm3の合 成ムライトとしたものである。 The production core according to the ninth aspect of the present invention is the production core according to the eighth aspect, wherein the ceramic material is made of a material having a density of 2.79 g / cm 3 to 3.15 g / cm 3. Mullite.
[0024] 請求項 10に記載した発明に係る铸造用中子は、請求項 8に記載した発明に係る铸 造用中子において、セラミックス材料を、密度が 2. 93gZcm3のホウ酸アルミニウムと したものである。 The manufacturing core according to the invention described in claim 10 is the same as the manufacturing core according to claim 8. In the manufacturing core, the ceramic material was aluminum borate having a density of 2.93 gZcm 3 .
請求項 11に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との 混合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリ ゥムまたはナトリウムの塩ィ匕物に対してカリウムまたはナトリウムの炭酸塩あるいは硫 酸塩を加えた混合塩とし、前記セラミックス材料を、人工的に合成された粒径が 150 μ m以下で粒状を呈するものとしたものである。  The manufacturing core according to the invention according to claim 11 is a manufacturing core formed by manufacturing a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or sodium. A mixed salt obtained by adding a carbonate or a sulfate of potassium or sodium to a salted sardine, wherein the ceramic material has an artificially synthesized particle diameter of 150 μm or less and has a granular shape. It is.
[0025] 請求項 12に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との 混合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリ ゥムまたはナトリウムの塩ィ匕物に対してカリウムまたはナトリウムの炭酸塩あるいは硫 酸塩を加えた混合塩とし、前記セラミックス材料を、合成ムライト、ホウ酸アルミニウム 、炭化ホウ素、窒化ケィ素、炭化ケィ素、窒化アルミニウム、チタン酸アルミニウム、コ ージーライト、アルミナのうちいずれか一つの粒状を呈するものとしたものである。  [0025] A production core according to the invention as set forth in claim 12, is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of a ceramic. Alternatively, a mixed salt obtained by adding potassium or sodium carbonate or sulfate to sodium chloride is used, and the ceramic material is made of synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, It has a granular shape of any one of aluminum nitride, aluminum titanate, cordierite, and alumina.
[0026] 請求項 13に記載した発明に係る铸造用中子は、ソルト材料とセラミックス材料との 混合材料を铸造によって形成してなる铸造用中子であって、前記ソルト材料を、カリ ゥムまたはナトリウムの塩ィ匕物に対してカリウムまたはナトリウムの炭酸塩あるいは硫 酸塩を加えた混合塩とし、前記セラミックス材料を、ホウ酸アルミニウム、窒化ケィ素、 炭化ケィ素、 6チタン酸カリウム、 8チタン酸カリウム、酸ィ匕亜鉛のうちいずれか一つの ウイスカとしたものである。  [0026] A production core according to the invention according to claim 13 is a production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of a ceramic. Alternatively, a mixed salt obtained by adding a carbonate or a sulfate of potassium or sodium to a sodium chloride is used, and the ceramic material is made of aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, 8 Whisker of any one of potassium titanate and zinc oxide.
[0027] 請求項 14に記載した発明に係る铸造用中子は、請求項 13に記載した発明に係る 铸造用中子において、セラミックス材料をホウ酸アルミニウムウイスカとしたものである 請求項 15に記載した発明に係る铸造用中子は、請求項 8ないし請求項 14に記載 した発明のうちいずれか一つの発明に係る铸造用中子において、混合塩を塩ィ匕カリ ゥムと炭酸ナトリウムとによって形成したものである。  [0027] The core for production according to the invention described in claim 14 is the core for production according to the invention described in claim 13, wherein the ceramic material is aluminum borate whisker. The manufacturing core according to the invention according to the invention is the manufacturing core according to any one of the inventions described in claims 8 to 14, wherein the mixed salt is prepared by mixing salt salt and sodium carbonate. It was formed.
発明の効果  The invention's effect
[0028] 以上説明したように、本発明によれば、セラミックス材料がソルト材料中に充分に分 散したソルト中子を铸造によって形成することができる。 したがって、本発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によつ て除去することができる特性を有しながら、铸造によって複雑な形状に形成すること ができ、し力も、セラミックス材料力もなる強化材によって抗折強度が予想以上に増大 するようになる。このため、本発明に係る铸造用中子は、例えば従来困難であったダ ィキャスト機にも使用することができるようになるばかりか、その他の铸型に装着すると きにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させることができる。 [0028] As described above, according to the present invention, a salt core in which a ceramic material is sufficiently dispersed in a salt material can be formed by fabrication. Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water and steam) after the production, and can be formed into a complicated shape by the production. Strengthening materials that have both strength and ceramic material strength will increase the bending strength more than expected. For this reason, the manufacturing core according to the present invention can be used, for example, in a conventional casting machine, which has been difficult in the past. Therefore, the degree of freedom of construction can be improved.
[0029] 請求項 2記載の発明によれば、合成ムライトがソルト材料中に充分に分散したソルト 中子を铸造によって形成することができる。  According to the second aspect of the present invention, a salt core in which synthetic mullite is sufficiently dispersed in a salt material can be formed by forging.
請求項 3記載の発明によれば、ホウ酸アルミニウムがソルト材料中に充分に分散し たソルト中子を铸造によって形成することができる。  According to the third aspect of the present invention, a salt core in which aluminum borate is sufficiently dispersed in a salt material can be formed by forging.
[0030] 請求項 4記載の発明によれば、セラミックス材料がソルト材料中に充分に分散したソ ルト中子を铸造によって形成することができる。  [0030] According to the invention set forth in claim 4, a salt core in which the ceramic material is sufficiently dispersed in the salt material can be formed by forging.
したがって、本発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によつ て除去することができる特性を有しながら、铸造によって複雑な形状に形成すること ができ、し力も、セラミックス材料力もなる強化材によって抗折強度が予想以上に増大 するようになる。このため、この発明に係る铸造用中子は、例えば従来困難であった ダイキャスト機にも使用することができるようになるばかりか、その他の铸型に装着す るときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させることができ る。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water and steam) after the production, and can be formed into a complicated shape by the production. Strengthening materials that have both strength and ceramic material strength will increase the bending strength more than expected. For this reason, the manufacturing core according to the present invention can be used, for example, in a die-casting machine, which has been difficult in the past, and is also handled with special care when mounting it on other types. Since there is no necessity, the degree of freedom of construction can be improved.
[0031] 請求項 5記載の発明によれば、粒状を呈するセラミックス材料によって充分に強化 されたソルト中子を形成することができる。  [0031] According to the invention set forth in claim 5, a salt core sufficiently reinforced by a ceramic material having a granular shape can be formed.
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、粒状のセラミックス材料力 なる強化材によって抗折強度が予想以 上に増大するようになる。このため、この発明に係る铸造用中子は、例えば従来困難 であったダイキャスト機にも使用することができるようになるばかりか、その他の铸型に 装着するときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させるこ とができる。また、 1種類のセラミックス材料を使用するので、ソルト中子を水で溶解さ せてセラミックス材料を回収し、再利用が可能となる。 Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. As for the strength, the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material. For this reason, the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Because there is no, the degree of freedom of construction can be improved. Since one type of ceramic material is used, the salt core is dissolved in water. The ceramic material is collected and reused.
[0032] 請求項 6記載の発明によれば、セラミックス材料力 なるウイスカによって充分に強 ィ匕されたソルト中子を形成することができる。  [0032] According to the invention set forth in claim 6, it is possible to form a salt core sufficiently stiffened by a whisker of ceramic material strength.
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、セラミックス材料力もなるウイスカによって充分に強化されて抗折強 度が予想以上に増大するようになる。このため、この発明に係る铸造用中子は、例え ば従来困難であったダイキャスト機にも使用することができるようになるばかりか、その 他の铸型に装着するときにも特に慎重に取り扱う必要はないから、铸造の自由度を 向上させることができる。また、 1種類のセラミックス材料を使用するので、ソルト中子 を水で溶解させてセラミックス材料を回収し、再利用が可能となる。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. The strength is sufficiently strengthened by the whisker, which also has the strength of the ceramic material, and the bending strength is increased more than expected. For this reason, the manufacturing core according to the present invention can be used not only in a conventionally difficult die-casting machine, for example, but also with special care when mounting it on other types. Since there is no need to handle, the degree of freedom of construction can be improved. In addition, since one type of ceramic material is used, the salt core is dissolved in water to recover the ceramic material, which can be reused.
請求項 7記載の発明によれば、ホウ酸アルミニウムウイスカによって充分に強化され たソルト中子を铸造によって形成することができる。  According to the invention described in claim 7, a salt core sufficiently reinforced by aluminum borate whiskers can be formed by structure.
[0033] 請求項 8記載の発明によれば、混合塩からなるソルト材料中にセラミックス材料が充 分に分散したソルト中子を铸造によって形成することができる。 [0033] According to the invention of claim 8, a salt core in which a ceramic material is sufficiently dispersed in a salt material made of a mixed salt can be formed by structure.
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、セラミックス材料力 なる強化材によって抗折強度が予想以上に増 大するようになる。このため、この発明に係る铸造用中子は、例えば従来困難であつ たダイキャスト機にも使用することができるようになるばかりか、その他の铸型に装着 するときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させることが できる。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. As for the strength, the bending strength will be increased more than expected by the strengthening material which is a ceramic material. For this reason, the manufacturing core according to the present invention can be used not only in, for example, a die-casting machine, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Therefore, the degree of freedom of construction can be improved.
また、このソルト中子は、ソルト材料が混合塩であり、融点が相対的に低くなる。この ため、このソルト中子を铸造するときの温度を低くすることができ、ソルト中子の製造コ ストを低減することができる。さらに、中子表面に形成されるしわが小さいソルト中子を 提供することができる。  Further, the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
[0034] 請求項 9記載の発明によれば、混合塩からなるソルト材料中に合成ムライトが充分 に分散したソルト中子を铸造によって形成することができる。 請求項 10記載の発明によれば、混合塩からなるソルト材料中にホウ酸アルミニウム が充分に分散したソルト中子を铸造によって形成することができる。 [0034] According to the invention as set forth in claim 9, a salt core in which synthetic mullite is sufficiently dispersed in a salt material composed of a mixed salt can be formed by structure. According to the invention of claim 10, a salt core in which aluminum borate is sufficiently dispersed in a salt material composed of a mixed salt can be formed by a structure.
[0035] 請求項 11記載の発明によれば、混合塩からなるソルト材料中にセラミックス材料が 充分に分散したソルト中子を铸造によって形成することができる。  According to the eleventh aspect of the present invention, a salt core in which a ceramic material is sufficiently dispersed in a salt material made of a mixed salt can be formed by structure.
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、セラミックス材料力 なる強化材によって抗折強度が予想以上に増 大するようになる。このため、この発明に係る铸造用中子は、例えば従来困難であつ たダイキャスト機にも使用することができるようになるばかりか、その他の铸型に装着 するときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させることが できる。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. As for the strength, the bending strength will be increased more than expected by the strengthening material which is a ceramic material. For this reason, the manufacturing core according to the present invention can be used not only in, for example, a die-casting machine, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. Therefore, the degree of freedom of construction can be improved.
また、このソルト中子は、ソルト材料が混合塩であり、融点が相対的に低くなる。この ため、このソルト中子を铸造するときの温度を低くすることができ、ソルト中子の製造コ ストを低減することができる。さらに、中子表面に形成されるしわが小さいソルト中子を 提供することができる。  Further, the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
[0036] 請求項 12記載の発明によれば、混合塩力もなるソルト材料に粒状を呈するセラミツ タス材料が充分に分散し、このセラミックス材料によって充分に強化されたソルト中子 を形成することができる。  According to the twelfth aspect of the present invention, the granular ceramic material is sufficiently dispersed in the salt material having mixed salt strength, and a salt core sufficiently reinforced by the ceramic material can be formed. .
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、粒状のセラミックス材料力 なる強化材によって抗折強度が予想以 上に増大するようになる。このため、この発明に係る铸造用中子は、例えば従来困難 であったダイキャスト機にも使用することができるようになるばかりか、その他の铸型に 装着するときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させるこ とがでさる。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. As for the strength, the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material. For this reason, the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. There is no way to improve the freedom of construction.
また、このソルト中子は、ソルト材料が混合塩であり、融点が相対的に低くなる。この ため、このソルト中子を铸造するときの温度を低くすることができ、ソルト中子の製造コ ストを低減することができる。さらに、中子表面に形成されるしわが小さいソルト中子を 提供することができる。 Further, the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Furthermore, salt cores with small wrinkles formed on the core surface Can be provided.
[0037] 請求項 13記載の発明によれば、混合塩力 なるソルト材料にセラミックス力もなるゥ イス力が充分に分散し、このウイスカによって充分に強化されたソルト中子を形成する ことができる。  According to the invention as set forth in claim 13, the salt material, which is also a ceramic, is sufficiently dispersed in the salt material, which is a mixed salt, and a salt core which is sufficiently strengthened by the whiskers can be formed.
したがって、この発明に係る铸造用中子は、铸造後に水 (温水や蒸気も含む)によ つて除去することができる特性を有しながら、铸造によって複雑な形状に形成するこ とができ、し力も、粒状のセラミックス材料力 なる強化材によって抗折強度が予想以 上に増大するようになる。このため、この発明に係る铸造用中子は、例えば従来困難 であったダイキャスト機にも使用することができるようになるばかりか、その他の铸型に 装着するときにも特に慎重に取り扱う必要はないから、铸造の自由度を向上させるこ とがでさる。  Therefore, the core for production according to the present invention has a characteristic that it can be removed by water (including hot water or steam) after the production, and can be formed into a complicated shape by the production. As for the strength, the bending strength is increased more than expected by the reinforcing material, which is a granular ceramic material. For this reason, the manufacturing core according to the present invention can be used not only in a die-casting machine, for example, which has been difficult in the past, but also needs to be handled with special care when mounting it on other types. There is no way to improve the freedom of construction.
また、このソルト中子は、ソルト材料が混合塩であり、融点が相対的に低くなる。この ため、このソルト中子を铸造するときの温度を低くすることができ、ソルト中子の製造コ ストを低減することができる。さらに、中子表面に形成されるしわが小さいソルト中子を 提供することができる。  Further, the salt core is a mixed salt of a salt material, and has a relatively low melting point. For this reason, the temperature at the time of manufacturing this salt core can be lowered, and the manufacturing cost of the salt core can be reduced. Further, a salt core with small wrinkles formed on the core surface can be provided.
[0038] 請求項 14記載の発明によれば、混合塩力もなるソルト材料にホウ酸アルミニウムか らなるウイス力が充分に分散し、このウイスカによって充分に強化されたソルト中子を 形成することができる。このため、融点が低くかつ強固なソルト中子を铸造によって形 成することができる。  [0038] According to the invention as set forth in claim 14, the whisker force made of aluminum borate is sufficiently dispersed in the salt material having a mixed salt force, and a salt core sufficiently reinforced by the whiskers can be formed. it can. For this reason, a strong salt core having a low melting point and can be formed by forging.
請求項 15記載の発明によれば、塩ィ匕カリウムと炭酸ナトリウムは入手が容易で安価 であるから、この発明によれば、混合塩カゝらなるソルト材料によって形成された铸造用 中子の製造コストを低減することができる。  According to the invention of claim 15, potassium chloride and sodium carbonate are easily available and inexpensive. Therefore, according to the invention, the production core made of the salt material composed of the mixed salt is used. Manufacturing costs can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]図 1は、本発明に係る铸造用中子を使用して铸造した場合のシリンダブロックを 示す斜視図である。  FIG. 1 is a perspective view showing a cylinder block when manufactured using the manufacturing core according to the present invention.
[図 2]図 2は、合成ムライトの混合量と抗折強度との関係を示すグラフである。  FIG. 2 is a graph showing a relationship between a mixed amount of synthetic mullite and bending strength.
[図 3]図 3は、合成ムライトの混合量と抗折強度との関係を示すグラフである。  FIG. 3 is a graph showing a relationship between a mixed amount of synthetic mullite and bending strength.
[図 4]図 4は、抗折試験片を示す図である。 [図 5]図 5は、抗折試験片と抗折力との関係を示すグラフである。 FIG. 4 is a view showing a bending test piece. FIG. 5 is a graph showing a relationship between a bending test piece and a bending force.
[図 6]図 6は、ホウ酸アルミニウムの混合量と抗折強度との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the amount of aluminum borate mixed and the transverse rupture strength.
[図 7]図 7は、窒化ケィ素の混合量と抗折強度との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the mixing amount of silicon nitride and the bending strength.
[図 8]図 8は、炭化ケィ素の混合量と抗折強度との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the mixing amount of silicon carbide and bending strength.
[図 9]図 9は、窒化アルミニウムの混合量と抗折強度との関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the mixing amount of aluminum nitride and the transverse rupture strength.
[図 10]図 10は、炭化ホウ素の混合量と抗折強度との関係を示すグラフである。  FIG. 10 is a graph showing the relationship between the amount of boron carbide mixed and the transverse rupture strength.
[図 11]図 11は、チタン酸アルミニウムとスピネルの混合量と抗折強度との関係を示す グラフである。  FIG. 11 is a graph showing the relationship between the mixing amount of aluminum titanate and spinel and the transverse rupture strength.
[図 12]図 12は、アルミナの混合量と抗折強度との関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the mixed amount of alumina and the transverse rupture strength.
[図 13]図 13は、第 1一第 8の実施の形態で示した全てのセラミックス材料の混合量と 抗折強度との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the amounts of all ceramic materials shown in the first to eighth embodiments and the transverse rupture strength.
[図 14]図 14は、第 1一第 8の実施の形態で示した全てのセラミックス材料の混合量と 抗折強度との関係を示すグラフである。  FIG. 14 is a graph showing the relationship between the mixing amount of all the ceramic materials shown in the first to eighth embodiments and the bending strength.
[図 15]図 15は、塩ィ匕カリウムとセラミックス材料との混合条件を示す図である。  FIG. 15 is a diagram showing conditions for mixing potassium salt and ceramic materials.
圆 16]図 16は、粒状セラミックス材料の混合比と流動性の関係を示す図である。 圆 17]図 17は、粒状セラミックス材料の混合比と流動性の関係を示す図である。 圆 18]図 18は、粒状セラミックス材料の混合比と流動性の関係を示す図である。 [16] FIG. 16 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity. FIG. 17 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity. [18] FIG. 18 is a diagram showing the relationship between the mixing ratio of the granular ceramic material and the fluidity.
[図 19]図 19は、ホウ酸アルミニウムウイス力の混合量と抗折強度との関係を示すダラ フである。 [FIG. 19] FIG. 19 is a graph showing the relationship between the mixing amount of aluminum borate whis force and bending strength.
[図 20]図 20は、窒化ケィ素ゥイス力'炭化ケィ素ゥイス力の混合量と抗折強度との関 係を示すグラフである。  FIG. 20 is a graph showing the relationship between the mixing amount of the silicon nitride force and the silicon carbide force and the transverse rupture strength.
[図 21]図 21は、チタン酸カリウムゥイス力の混合量と抗折強度との関係を示すグラフ である。  FIG. 21 is a graph showing the relationship between the mixing amount of potassium titanate powder and bending strength.
[図 22]図 22は、酸ィ匕亜鉛ウイス力の混合量と抗折強度との関係を示すグラフである。  FIG. 22 is a graph showing the relationship between the mixing amount of the Zi-Dani zinc wiping force and the transverse rupture strength.
[図 23]図 23は、第 9一第 12の実施の形態で示した全てのゥイス力の混合量と抗折強 度との関係を示すグラフである。 [FIG. 23] FIG. 23 is a graph showing the relationship between the mixing amount of all the forces and the bending strength shown in the ninth to twelfth embodiments.
[図 24]図 24は、セラミックスゥイス力の混合比と流動性の関係を示す図である。  [FIG. 24] FIG. 24 is a diagram showing a relationship between a mixing ratio of ceramics force and fluidity.
[図 25]図 25は、臭化カリウムまたは臭化ナトリウムとホウ酸アルミニウムウイス力の混合 量と抗折強度との関係を示すグラフである。 [Figure 25] Figure 25 shows the mixing of potassium bromide or sodium bromide with aluminum borate power. It is a graph which shows the relationship between quantity and bending strength.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] (第 1の実施の形態)  (First Embodiment)
以下、本発明に係る铸造用中子の一実施の形態を図 1ないし図 5によって詳細に 説明する。  Hereinafter, an embodiment of a manufacturing core according to the present invention will be described in detail with reference to FIGS.
図 1は本発明に係る铸造用中子を使用して铸造した場合のシリンダブロックの斜視 図で、同図は一部を破断した状態で描いてある。図 2および図 3は合成ムライトの混 合量と抗折強度との関係を示すグラフ、図 4は抗折試験片を示す図、図 5は抗折試 験片の重量と抗折力との関係を示すグラフである。  FIG. 1 is a perspective view of a cylinder block manufactured by using the manufacturing core according to the present invention, and the figure is drawn in a partially broken state. 2 and 3 are graphs showing the relationship between the amount of synthetic mullite mixed and the bending strength, FIG. 4 is a diagram showing the bending test piece, and FIG. 5 is a graph showing the relationship between the weight of the bending test piece and the bending strength. It is a graph which shows a relationship.
[0041] 図 1において、符号 1で示すものは本発明に係る铸造用中子としてのソルト中子 2を 使用して铸造されたエンジン用シリンダブロックである。このシリンダブロック 1は、 自 動二輪車用水冷式 4サイクル 4気筒エンジンを形成するためのもので、ダイカスト铸 造法によって所定の形状に形成されている。この実施の形態によるシリンダブロック 1 は、四箇所のシリンダボア 3、 3…を有するシリンダボディ 4と、このシリンダボディ 4の 下端から下方に延びる上部クランクケース 5とが一体に形成されて 、る。この上部クラ ンクケース 5は、下端部に下部クランクケース(図示せず)が取付けられ、この下部クラ ンクケースと協働してクランク軸(図示せず)を回転自在に支持するものである。  In FIG. 1, what is indicated by reference numeral 1 is an engine cylinder block manufactured using a salt core 2 as a manufacturing core according to the present invention. The cylinder block 1 is for forming a water-cooled four-cycle four-cylinder engine for a motorcycle, and is formed into a predetermined shape by a die casting method. The cylinder block 1 according to the present embodiment has a cylinder body 4 having four cylinder bores 3, 3,... And an upper crankcase 5 extending downward from the lower end of the cylinder body 4 and integrally formed. The upper crankcase 5 has a lower crankcase (not shown) attached to a lower end thereof, and rotatably supports a crankshaft (not shown) in cooperation with the lower crankcase.
[0042] 上述したシリンダボディ 4は、 V、わゆるクローズドデッキ型のものであり、本発明に係 るソルト中子 2を用いてウォータージャケット 6が内部に形成されている。このウォータ 一ジャケット 6は、シリンダボディ 4の一側部に突設されてシリンダボア 3の並設方向に 延びる冷却水通路形成部 7に形成された冷却水入口 8と、冷却水通路形成部 7の内 部に形成された冷却水分配通路(図示せず)と、この冷却水分配通路に連通されると ともに全てのシリンダボア 3の周囲を覆うように形成された主冷却水通路 9と、この主 冷却水通路 9から図において上側へ延びてシリンダボディ 4の上端の合わせ面 4aに 開口する連通路 10などによって構成されている。  [0042] The above-mentioned cylinder body 4 is a V, so-called closed deck type, and has a water jacket 6 formed therein using the salt core 2 according to the present invention. The water jacket 6 includes a cooling water inlet 8 formed in a cooling water passage forming portion 7 projecting from one side of the cylinder body 4 and extending in the direction in which the cylinder bores 3 are arranged, and a cooling water passage forming portion 7. A cooling water distribution passage (not shown) formed inside; a main cooling water passage 9 which is communicated with the cooling water distribution passage and is formed so as to cover the periphery of all cylinder bores 3; The communication passage 10 extends upward from the cooling water passage 9 in the figure and opens to the mating surface 4 a at the upper end of the cylinder body 4.
[0043] すなわち、このウォータージャケット 6は、冷却水入口 8から流入した冷却水を冷却 水分配通路によってシリンダボアの周囲の主冷却水通路 9に供給し、さらに、この冷 却水を主冷却水通路 9から連通路 10を通してシリンダヘッド(図示せず)内の冷却水 通路に導くように構成されて 、る。このようにウォータージャケット 6が形成されることに より、このシリンダボディ 4は、シリンダヘッドが接続される上端の合わせ面 4aにウォー タージャケット 6の連通路 10が開口する他はシリンダボディ 4の天井壁(合わせ面 4a を形成する壁)で覆われるようになり、クローズドデッキ型の構成となる。 That is, the water jacket 6 supplies the cooling water flowing from the cooling water inlet 8 to the main cooling water passage 9 around the cylinder bore through the cooling water distribution passage. Cooling water in cylinder head (not shown) from 9 through communication passage 10 It is configured to lead to the passage. By forming the water jacket 6 in this manner, the cylinder body 4 has a ceiling 10 of the cylinder body 4 except that the communication passage 10 of the water jacket 6 is opened on the mating surface 4a at the upper end to which the cylinder head is connected. It is now covered by a wall (the wall that forms the mating surface 4a), resulting in a closed deck configuration.
[0044] ウォータージャケットを形成するためのソルト中子 2は、ウォータージャケット 6の各部 を一体に接続した形状に形成されている。図 1においては、ソルト中子 2の形状 (ゥォ 一タージャケット 6の形状)を理解し易 、ように、シリンダボディ 4の一部を破断した状 態で描いてある。 [0044] The salt core 2 for forming the water jacket is formed in a shape in which respective parts of the water jacket 6 are integrally connected. In FIG. 1, the shape of the salt core 2 (the shape of the water jacket 6) is drawn in a state where a part of the cylinder body 4 is broken so that it can be easily understood.
ソルト中子 2は、後述するソルト材料とセラミックス材料との混合物からなる中子材料 を使用してダイカスト铸造法によってウォータージャケット 6の形状となるように形成さ れている。この実施の形態によるソルト中子 2は、図 1に示すように、冷却水入口 8と冷 却水分配通路とを形成する通路形成部 2aと、四箇所のシリンダボア 3の周囲を囲む 形状の環状部 2bと、この環状部 2bから上方へ突出する複数の凸部 2cとが全て一体 に形成されている。これらの凸部 2cによってウォータージャケット 6の連通路 10が形 成される。このソルト中子 2は、従来力 よく知られているように、铸造時には幅木(図 示せず)によって金型(図示せず)内の所定の位置に支持され、铸造後に温水または 蒸気によって溶解させて除去する。  The salt core 2 is formed into a water jacket 6 by a die casting method using a core material composed of a mixture of a salt material and a ceramic material described later. As shown in FIG. 1, the salt core 2 according to this embodiment has a passage forming portion 2a that forms a cooling water inlet 8 and a cooling water distribution passage, and an annular shape that surrounds four cylinder bores 3. The portion 2b and a plurality of convex portions 2c projecting upward from the annular portion 2b are all integrally formed. The communication passage 10 of the water jacket 6 is formed by these projections 2c. As is well known, the salt core 2 is supported at a predetermined position in a mold (not shown) by a skirting board (not shown) at the time of fabrication, and is dissolved by hot water or steam after the fabrication. And remove.
[0045] このソルト中子 2を铸造後に除去するためには、温水が貯留された水槽(図示せず) にシリンダブロック 1を浸漬させることによって行う。このようにシリンダブロック 1を水槽 中に浸漬させることにより、ソルト中子 2における通路形成部 2aと、合わせ面 4aに露 出する凸部 2cが温水に接触して溶解し、この溶解部分が徐々に拡がって最終的に 全ての部位が溶解する。この中子除去工程では、ウォータージャケット 6内に残存し たソルト中子 2の溶解を促進するために、穴力も圧力をもって温水または蒸気を吹き 掛けることもできる。なお、このソルト中子 2は、凸部 2cが形成される部位に凸部 2cの 代わりに幅木を挿入することができる。  [0045] The salt core 2 is removed after fabrication by immersing the cylinder block 1 in a water tank (not shown) in which hot water is stored. By immersing the cylinder block 1 in the water tank in this way, the passage forming portion 2a of the salt core 2 and the convex portion 2c exposed on the mating surface 4a come into contact with the hot water and dissolve, and this dissolving portion gradually disappears. And finally all parts are dissolved. In this core removing step, hot water or steam can be sprayed with a hole force and pressure in order to promote the dissolution of the salt core 2 remaining in the water jacket 6. In this salt core 2, a skirting board can be inserted instead of the convex portion 2c at a portion where the convex portion 2c is formed.
[0046] この実施の形態によるソルト中子 2としては、例えばソルト材料として塩ィ匕カリウムが 使用され、セラミックス材料として後述する合成ムライト〔3A1 0 . 2SiO {伊藤忠セラ  As the salt core 2 according to the present embodiment, for example, potassium salt salt is used as a salt material, and a synthetic mullite [3A10.2SiO {Itochu
2 3 2  2 3 2
テック(株)製 MM—325mesh 混合量 40wt% }〕が使用される。このソルト中子 2を ダイカスト铸造法によって形成するに当たっては、先ず、ソルト材料とセラミックス材料 との混合物を加熱してソルト材料を溶融させ、この溶融物をセラミックス材料が充分に 分散するように攪拌することによって混合溶湯を作る。その後、この混合溶湯をソルト 中子用の金型に高圧注入して凝固させ、凝固後に金型力 取り出すことによって行う Tech Co., Ltd. MM-325mesh mixed amount 40wt%}] is used. This salt core 2 In forming by the die casting method, first, a mixture of a salt material and a ceramic material is heated to melt the salt material, and the molten material is stirred by sufficiently dispersing the ceramic material to form a mixed molten metal. . Then, the mixed molten metal is injected into the mold for the salt core under high pressure to solidify, and after solidification, the mold force is removed.
[0047] セラミックス材料である合成ムライトを選定するに当たっては、市販されている粒状( 粉状)の合成ムライトの中から下記の表 1に示す複数のものを選び、さらに、この中か ら铸造に用いることができるものを下記の実験によって選別することによって行った。 [0047] In selecting synthetic mullite as a ceramic material, a plurality of synthetic mullites as shown in Table 1 below are selected from commercially available granular (powder) synthetic mullites. This was done by selecting what could be used by the following experiment.
[0048] [表 1] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
[0049] 表 1において、製品名は製造者が販売時に使用する合成ムライトを特定する表示 である。試行混合量は、塩ィ匕カリウムに混合させた合成ムライトの重量の割合を示す 表 1に示す合成ムライトの中から铸造に用いることができるものを選別する実験は、 塩ィ匕カリウムと合成ムライトとの混合物を加熱して塩ィ匕カリウムを溶解させた後に充分 攪拌し、溶解用容器を上下方向に逆となるように返して容器内の溶湯が流れ出るか 否かで溶湯の流動性の有無を確認することによって行った。この実験により、上述し たように溶解用容器を返した状態で溶湯に流動性を有するものを铸造可能なものと して選択した。この結果を表 1と図 16、図 17に示す。 [0049] In Table 1, the product name is an indication for specifying the synthetic mullite used by the manufacturer at the time of sale. The trial mixing amount indicates the ratio of the weight of the synthetic mullite mixed with the salted mullite. From the synthetic mullites shown in Table 1, those that can be used in the production were tested. After heating the mixture to dissolve potassium salt and stirring well, the dissolution container is turned upside down and turned upside down to determine whether the molten metal flows out. Was performed by confirming. According to this experiment, a material having fluidity in the molten metal in a state where the melting container was returned as described above was selected as a material that can be manufactured. The results are shown in Table 1 and FIGS.
[0050] 上述した溶解用容器としては、 INCONEL X— 750製るつぼ、または、高アルミナ 質タンマン管を使用した。また、塩ィ匕カリウムの溶解は、塩化カリウムを入れた溶解用 容器を電気抵抗炉に投入し、大気中で加熱することによって行った。铸造は、溶湯を 温度が 800°Cの状態で約 25°Cの金型に注入することによって行った。铸造後には、 熱収縮により試験片が金型に固着することを防ぐために、溶湯を注入してから 20秒 程度経過した後に試験片を金型力も取り出し、室温にて空冷によって冷却した。  [0050] A crucible made of INCONEL X-750 or a high-alumina tamman tube was used as the dissolving vessel described above. The dissolution of potassium salt was carried out by placing a dissolution vessel containing potassium chloride in an electric resistance furnace and heating it in the atmosphere. The fabrication was performed by injecting the molten metal at a temperature of 800 ° C into a mold at about 25 ° C. After fabrication, in order to prevent the test piece from sticking to the mold due to heat shrinkage, about 20 seconds after the injection of the molten metal, the test piece was also taken out of the mold and cooled by air cooling at room temperature.
[0051] この実験により、表 1および図 15に示すように、 CeraBeads # 650は、 30%、 40%、 50%および 60%で流動性が認められた。このことから、 CeraBeads # 650は、混合量 が 60%以下であれば充分流動性があり、铸造可能と考えられたが、溶解用容器の底 に沈殿することから铸造に用いることができないことが判った。(表 1、図 15、図 16) [0051] In this experiment, as shown in Table 1 and Fig. 15, CeraBeads # 650 exhibited fluidity at 30%, 40%, 50% and 60%. From this, it was considered that CeraBeads # 650 had sufficient fluidity when the mixing amount was 60% or less and could be manufactured, but it cannot be used for manufacturing because it precipitates at the bottom of the dissolution vessel. understood. (Table 1, Figure 15, Figure 16)
CeraBeads # 1700は、混合量が 20%、 30%、 40%、 50%および 60%で流動性が 認められた。このことから、 CeraBeads # 1700は、混合量が 60%以下であれば充分流 動性があり、铸造可能と考えられる。 CeraBeads # 1700 was found to be fluid at 20%, 30%, 40%, 50% and 60%. From this, it is considered that CeraBeads # 1700 has sufficient fluidity when the mixing amount is 60% or less and can be manufactured.
[0052] CeraBeads # 1450は、混合量力 0%、 50%および 60%で流動性が認められた。こ のこと力 、 CeraBeads # 1450は、混合量が 60%以下であれば充分流動性があり、 铸造可能と考えられる。 CeraBeads # 1700と # 1450の 、ずれも塩化カリウムの溶湯中 に分散することも確認した。(表 1、図 15、図 16)  [0052] CeraBeads # 1450 exhibited fluidity at mixing powers of 0%, 50% and 60%. This fact suggests that CeraBeads # 1450 has sufficient fluidity when the mixing amount is 60% or less, and is considered to be manufacturable. It was also confirmed that the deviation between CeraBeads # 1700 and # 1450 was dispersed in the molten potassium chloride. (Table 1, Figure 15, Figure 16)
MM—325meshは、混合量が 10%、 20%、 30%および 40%で流動性が認められ た。このこと力 、 MM—325meshは、混合量が 40%以下であれば充分流動性があり 、铸造可能と考えられる。また、 MM— 325meshは塩ィ匕カリウムの溶湯中に分散する ことも確認した。(表 1、図 15、図 17) MM-325mesh was found to be fluid at 10%, 20%, 30% and 40%. This means that MM-325mesh has sufficient fluidity if the mixing amount is 40% or less. , It is considered to be configurable. In addition, it was confirmed that MM-325mesh was dispersed in the molten salt of Shii-dani potassium. (Table 1, Figure 15, Figure 17)
[0053] MM— 200meshと、 MM— 150meshと、 MM— lOOmeshと、 SM— 325meshは、混合 量が 20%、 30%および 40%で流動性が認められた。このことから、 MM-200mesh と、 MM—150meshと、 MM—100meshと、 SM— 325meshは、混合量が 40%以下で あれば充分流動性があり、铸造可能と考えられる。またこれらのものはいずれも塩ィ匕 カリウムの溶湯中に分散することも確認した。(表 1、図 15、図 17)  [0053] With MM-200mesh, MM-150mesh, MM-IOOmesh, and SM-325mesh, fluidity was observed at mixing amounts of 20%, 30% and 40%. From this, it is considered that MM-200mesh, MM-150mesh, MM-100mesh, and SM-325mesh have sufficient fluidity if the mixing amount is 40% or less, and can be manufactured. In addition, it was also confirmed that all of these were dispersed in the molten salt of potassium salt. (Table 1, Figure 15, Figure 17)
[0054] MM35— lOOmeshは、混合量が 30%と 40%のものしか実験を行っていないが、こ の混合量では流動性は認められるものの(表 1、図 17参照)、溶解用容器の底に沈 殿してしまい (表 1、図 15参照)、材料として不適であることが判った。  [0054] MM35-lOOmesh has been tested only with the mixing amounts of 30% and 40%. Although fluidity is observed with this mixing amount (see Table 1, Fig. 17), the dissolution vessel It settled at the bottom (see Table 1, Figure 15), and was found to be unsuitable as a material.
MM—16meshは、混合量が 20%、 30%、 40%で流動性が認められるものの、溶 解用容器の底に沈殿してしまい、材料として不適であることが判った。なお、表 1にお いて、 CeraBeadsは焼結品であり、 MMは粉砕品である。  MM-16mesh was found to be fluid at 20%, 30%, and 40%, but settled at the bottom of the dissolution vessel and was unsuitable as a material. In Table 1, CeraBeads is a sintered product and MM is a crushed product.
これらのセラミックス材料のうち、 MM— 16mesh以外の沈殿したものを除いてを使用 して下記の表 2、表 3および表 4に示すように混合量毎に抗折試験片を作り、抗折強 度を求めたところ、図 2および図 3に示す結果が得られた。  Of these ceramic materials, except for the precipitated material other than MM-16mesh, using each of the mixing amounts, a bending test piece was prepared as shown in Tables 2, 3 and 4 below, and the bending strength was measured. When the degree was determined, the results shown in FIGS. 2 and 3 were obtained.
[0055] [表 2] [Table 2]
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0001
699CT0/l700Zdf/X3d YZ ひ ΐ簡 SOOZ OAV
Figure imgf000024_0001
£l0/^00Zdf/X3d 33 ひ ΐ簡 SOOZ OAV [0058] MM—325meshの抗折試験片は、表 2に示すように、混合量 0%と 10%のものを 5 個ずつ形成し、混合量 20%のものを 7個、混合量 30%のものを 5個、混合量 40%の ものを 8個造った。表 2、表 3および表 4に示す抗折試験片は、図 4に示すように、幅 1 8mm、高さ 20mm、長さ約 120mmの断面長方形の棒状を呈するように铸造によつ て形成した。この抗折試験片の铸造は、前述の流動性の確認と同様 INCONEL X —750製るつぼまたはタンマン管に塩ィ匕カリウムと合成ムライトとを入れ、炉で加熱し て塩ィ匕カリウムを溶解させた後、充分攪拌させた溶湯を金型に注入することによって 行った。溶湯の温度は 800°Cとした。
699CT0 / l700Zdf / X3d YZ ΐ Simple SOOZ OAV
Figure imgf000024_0001
£ l0 / ^ 00Zdf / X3d 33 ΐ ΐ Easy SOOZ OAV [0058] As shown in Table 2, five MM-325mesh bending test pieces were formed with five samples each having a mixing amount of 0% and 10%, and seven samples each having a mixing amount of 20% and a mixing amount of 30%. Five were made and eight were made with a 40% mixture. The bending test specimens shown in Tables 2, 3 and 4 were formed by forming into a rectangular cross-section rod with a width of 18 mm, a height of 20 mm and a length of about 120 mm as shown in Fig. 4. did. The flexural test specimens were prepared in the same manner as described above for confirming the fluidity by placing the salt and potassium in a crucible or Tamman tube made of INCONEL X-750 and heating in a furnace to dissolve the salt and potassium. After that, a well-stirred molten metal was poured into a mold. The temperature of the molten metal was 800 ° C.
[0059] 抗折強度は、抗折試験片の中央部を間隔が 50mmとなる 2点で支え、これらの支 持点の中間部分を、間隔が 10mmとなる二つの押圧点を有する押圧装置によって押 圧し、抗折試験片が折れるときの荷重に基づいて下記の式によって求めた。  [0059] The bending strength is measured by supporting the center of the bending test specimen at two points with a spacing of 50mm, and pressing a middle part of these supporting points with a pressing device having two pressing points with a spacing of 10mm. Pressing was performed by the following equation based on the load when the bending test piece was broken.
σ = 3Pm/bh2- · · ·式 1 σ = 3Pm / bh 2-
この式 1において、 σ:抗折強度〔MPa〕、 Ρ :抗折荷重〔N〕、 m= 20mm、 b = 18mm 、 h= 20mmである。  In this equation 1, σ: bending strength [MPa], Ρ: bending load [N], m = 20 mm, b = 18 mm, h = 20 mm.
[0060] 合成ムライト(MM— 325mesh)の抗折強度は、図 2に示すように、混合量に略比例 して増大することが判った。なお、図 2中の実線は、最小自乗法を用いて描いた近似 曲線である。混合量が同一であっても抗折強度が異なるのは、試験片内に 10%程 度の铸巣が形成されて ヽることや、セラミックス材料の混合量に若干の不均一があつ たことが原因であった。このことを確認するために試験片の重量に対する抗折カを求 めたところ、図 5に示すように、これら両者も略比例関係にあることが判った。  As shown in FIG. 2, it was found that the bending strength of the synthetic mullite (MM-325mesh) increased almost in proportion to the mixing amount. Note that the solid line in FIG. 2 is an approximate curve drawn using the least squares method. The bending strength differs even when the mixing amount is the same, because about 10% of the cavities are formed in the test piece, and the mixing amount of the ceramic material is slightly uneven. Was the cause. In order to confirm this, bending force against the weight of the test piece was determined. As shown in FIG. 5, it was found that both of these were in a substantially proportional relationship.
[0061] したがって、図 2から判るように、塩化カリウムに合成ムライト(MM— 325mesh)を混 合してなるソルト中子 2は、合成ムライトの混合量が 25%— 40%の範囲であれば、抗 折強度が最大約 14MPaとなり、ダイカスト法で使用できる抗折強度 (約 8MPa)を有 するようになる。このような事実は、この実施の形態によるソルト中子 2が、ダイカスト法 を含めて従来の殆どの铸造法に使用することができることを意味する。  [0061] Therefore, as can be seen from Fig. 2, the salt core 2 obtained by mixing synthetic mullite (MM-325mesh) with potassium chloride has a mixing amount of synthetic mullite in the range of 25% to 40%. In addition, the maximum bending strength is about 14 MPa, and the bending strength (about 8 MPa) that can be used in the die casting method is obtained. Such a fact means that the salt core 2 according to this embodiment can be used for most conventional production methods including the die casting method.
[0062] この結果、このソルト中子 2を用いることによって、注湯時の圧力ゃ铸型の形状など 、铸造の自由度を向上させることができる。なお、発明者らは現状ソルト中子より強度 が高いと言われるシェル中子の現在の技術水準における抗折強度最大値が約 6MP aであることから、ダイカスト铸造法にも適用可能なソルト中子の目標抗折強度を、少 なくとも 8MPa以上とした。 [0062] As a result, by using the salt core 2, the degree of freedom in the structure, such as the shape of the pressure at the time of pouring, can be improved. Note that the present inventors have found that the maximum core strength of the shell core, which is said to be stronger than the salt core at present, at the current technical level is about 6MP. Therefore, the target transverse rupture strength of the salt core applicable to the die casting method was set to at least 8MPa.
また、図 3から判るように、他の合成ムライトからなるセラミックス材料についても、 M M—16meshとCeraBeads#1700とCeraBeads#1450とCeraBeads#650の他はMM—325 meshと同様に高い抗折強度が得られることが判った。  In addition, as can be seen from Fig. 3, other MM-16 ceramics, CeraBeads # 1700, CeraBeads # 1450, and CeraBeads # 650 also have high flexural strength similar to MM-325 mesh for ceramic materials made of synthetic mullite. It turned out to be obtained.
[0063] このように抗折強度が高くなるようにソルト中子 2を形成することができたのは、合成 ムライトの密度(2. 79g/cm3— 3. 15g/cm3)は塩ィ匕カリウムの溶融状態での密度 (1. 57gZcm3)より適度に大きぐ溶融状態にある塩ィ匕カリウム中に合成ムライトの個 々の粒子が略均等に分散して凝固することにより、ソルト内部の亀裂進展を抑制する からであると考えられる。このことは、沈殿する MM—16meshや CeraBeads#650にお V、ては強度が得られて 、な 、ことから明らかである。 [0063] was able to form a salt core 2 as thus bending strength is increased, the density of the synthetic mullite (2. 79g / cm 3 - 3. 15g / cm 3) is Shioi The individual particles of synthetic mullite are substantially uniformly dispersed and solidified in the salty dangling potassium in the molten state, which is appropriately larger than the density of the dangling potassium in the molten state (1.57 gZcm 3 ), thereby solidifying the inside of the salt. This is thought to be because the crack growth is suppressed. This is evident from the fact that MM-16mesh and CeraBeads # 650, which precipitate, have high strength.
[0064] また、このソルト中子 2は、主成分である塩化カリウムが温水に溶解する物質である ため、铸造後に温水に溶力して除去することができる。すなわち、このソルト中子 2を 使用して形成した铸造物を例えば温水に浸漬させることにより、ソルト中子 2が除去さ れるから、従来のソルト中子と同様に例えばシェル中子を用いる場合に較べて中子 除去工程でのコストを低減することができる。  [0064] Further, since the salt core 2 is a substance in which potassium chloride as a main component is dissolved in warm water, it can be removed by being dissolved in warm water after production. That is, since the salt core 2 is removed by immersing the structure formed using the salt core 2 in, for example, warm water, when the shell core is used, for example, similarly to the conventional salt core. In comparison, the cost in the core removal process can be reduced.
[0065] さらに、ソルト中子 2に混合されているセラミックス材料は 1種類の合成ムライトのみ であり、上述したようにソルト中子 2を水 (湯)に溶かすことにより塩ィ匕カリウム力 分離 する。このため、これ^^めて乾燥させることによって、セラミックス材料は容易に再利 用することができる。すなわち、セラミックス材料を再利用することができるから、ソルト 中子 2の製作コストを低減することができる。もし、セラミック材料が複数であると、ソル ト中子を温水に溶力して回収しても、回収したセラミックス材料の混合割合が不安定 となって管理ができず、セラミックス材料を再利用し難くなる。  [0065] Further, the ceramic material mixed with the salt core 2 is only one kind of synthetic mullite, and the salt core 2 is separated by dissolving the salt core 2 in water (hot water) as described above. . Therefore, the ceramic material can be easily reused by drying it. That is, since the ceramic material can be reused, the manufacturing cost of the salt core 2 can be reduced. If there is more than one ceramic material, even if the salt core is recovered by dissolving it in warm water, the mixing ratio of the recovered ceramic material becomes unstable and cannot be controlled, and the ceramic material cannot be reused. It becomes difficult.
[0066] (第 2の実施の形態)  (Second Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈するホウ酸アルミニウム (9A1 O . 2B O )を使用することができる。ホウ酸アルミニウムを塩ィ匕カリウムに混合 The salt core according to the present invention can use granular aluminum borate (9A1 O. 2B O) as a ceramic material. Aluminum borate mixed with potassium salt
2 3 2 3 2 3 2 3
することにより、図 6に示すような抗折強度が得られた。  As a result, the bending strength as shown in FIG. 6 was obtained.
図 6はホウ酸アルミニウムの混合量と抗折強度との関係を示すグラフである。図 6に 示す抗折強度は、ホウ酸アルミニウムをセラミックス材料として第 1の実施の形態で示 した実験を行うことによって求めたものである。なお、図 6中の線は、最小自乗法を用 V、て描 、た近似曲線である。 FIG. 6 is a graph showing the relationship between the amount of aluminum borate mixed and the bending strength. Figure 6 The bending strength shown was obtained by performing the experiment shown in the first embodiment using aluminum borate as a ceramic material. The line in FIG. 6 is an approximate curve drawn by using the least squares method.
実験を行うに当たって使用したホウ酸アルミニウムは、市販されている粒状のものの 中から下記の表 5に示す 3種類のものを選択した。  As the aluminum borate used in the experiment, three types shown in Table 5 below were selected from commercially available granular ones.
[表 5] [Table 5]
セラミックス名 製品名 組成 形状 製造者名 密度(g/cm3) 粒径 (μηι) 試行混合量(wt% ) 最大混合量(wt%) ホウ酸ァゥミニゥム Albolite PF03 9AI203.2B203 Ιϋ状 四国化成工業 (株) 2.93 2.3 10,15,x20,x30 15 ホウ酸ァゥミニゥム Albolite PF08 9AI203.2B203 粒状 四国化成工業 (株) 2.93 7.3 10,15,20,x30 20 ホウ酸ァゥミニゥム Albolite PC30 9AI203.2B203 粒状 四国化成工業 (株) 2.93 48.92 10,20,30,35,x40 35 Ceramic name Product name Composition Shape Manufacturer name Density (g / cm3) Particle size (μηι) Trial mixing amount (wt%) Maximum mixing amount (wt%) Aluminum borate Albolite PF03 9AI203.2B203 Shaped Shikoku Chemical Industry Co., Ltd. 2.93 2.3 10,15, x20, x30 15 Boric acid Albolite PF08 9AI203.2B203 Granular Shikoku Chemicals Co., Ltd. 2.93 7.3 10,15,20, x30 20 Boric acid Albolite PC30 9AI203.2B203 Granular Shikoku Chemicals 2.93 48.92 10,20,30,35, x40 35
X:流動性なし  X: No liquidity
S :沈殿 S: precipitation
[0068] 表 5に示す 3種類のホウ酸アルミニウムのうち、溶湯の流動性の有無力 判断して铸 造に用いることができたものは、 Albolite PF03の混合量 10%と 15%のものと、 [0068] Of the three types of aluminum borate shown in Table 5, those that could be used in the production by judging the fluidity of the molten metal were those with 10% and 15% Albolite PF03 mixture. ,
Albolite PF08の混合量 10%、 15%および 20%のものと、 Albolite PC30の混合量 10 %、 20%、 30%および 35%のものであった(表 5、図 16参照)。このことから、  The mixing amounts of Albolite PF08 were 10%, 15% and 20%, and the mixing amounts of Albolite PC30 were 10%, 20%, 30% and 35% (see Table 5, FIG. 16). From this,
Albolite PF03は混合量が 15%以下であれば、 Albolite PF08は混合量が 20%以下 であれば、 Albolite PC30は混合量が 35%以下であれば、充分に流動性があり、铸 造可能と考えられる。  Albolite PF03 has a mixing amount of 15% or less, Albolite PF08 has a mixing amount of 20% or less, and Albolite PC30 has a mixing amount of 35% or less. Conceivable.
[0069] これらのホウ酸アルミニウムは 、ずれも塩ィ匕カリウムの溶湯中に分散することも確認 した(図 15参照)。 これらのホウ酸アルミニウムの密度はいずれも 2. 93gZcm3であ り、 Albolite PF03の粒径は 2. 3 μ mであり、 Albolite PF08の粒径は 7. 3 μ mであり、 Albolite PC30の粒径は 48. 92 μ mである。 [0069] It was also confirmed that these aluminum borates disperse in the molten salt of potassium salt (see Fig. 15). The density of each of these aluminum borates is 2.93 gZcm 3 , the particle size of Albolite PF03 is 2.3 μm, the particle size of Albolite PF08 is 7.3 μm, and the particle size of Albolite PC30 is The diameter is 48.92 μm.
上述した粒径の異なる 3種類のホウ酸アルミニウムについて、下記の表 6に示すよう に混合量毎に抗折試験片を作成し、抗折強度を求めた。  As shown in Table 6 below, bending test pieces were prepared for each of the three types of aluminum borate having different particle diameters, and the bending strength was determined.
[0070] [表 6] [Table 6]
Figure imgf000030_0001
[0071] このようにホウ酸アルミニウムをセラミックス材料として使用する場合には、図 6に示 すように、混合量を 10%— 20%とすることによって、抗折強度が 8MPaより大きくなる ことが判った。
Figure imgf000030_0001
[0071] When aluminum borate is used as a ceramic material in this way, as shown in Fig. 6, by setting the mixing amount to 10% to 20%, the transverse rupture strength may become larger than 8 MPa. understood.
また、図 6に示すように、ホウ酸アルミニウムの抗折強度は、粒径に殆ど影響を受け ることがな!/、ことが半 IJる。  Also, as shown in Fig. 6, the bending strength of aluminum borate is hardly affected by the particle size! /, That's half IJ.
したがって、上述したようにセラミックス材料としてホウ酸アルミニウムを使用しても第 1の実施の形態を採るときと同等の効果を奏するといえる。  Therefore, it can be said that the same effect as when the first embodiment is adopted can be obtained even when aluminum borate is used as the ceramic material as described above.
[0072] (第 3の実施の形態) (Third Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈する窒化ケィ素(Si N  The salt core according to the present invention is formed of granular silicon nitride (SiN) as a ceramic material.
3 4 3 4
)を使用することができる。窒化ケィ素を塩ィ匕カリウムに混合することにより、図 7に示 すような抗折強度が得られた。 ) Can be used. By mixing silicon nitride with potassium salt, a bending strength as shown in FIG. 7 was obtained.
図 7は窒化ケィ素の混合量と抗折強度との関係を示すグラフである。図 7に示す抗 折強度は、窒化ケィ素をセラミックス材料として第 1の実施の形態で示した実験を行う ことによって求めたものである。なお、図 7中の線は、最小自乗法を用いて描いた近 似曲線である。  FIG. 7 is a graph showing the relationship between the amount of silicon nitride mixed and the transverse rupture strength. The flexural strength shown in FIG. 7 was obtained by performing the experiment shown in the first embodiment using silicon nitride as a ceramic material. Note that the line in FIG. 7 is an approximation curve drawn using the least squares method.
実験を行うに当たって使用する窒化ケィ素は、市販されて 、る粒状のものの中から 下記の表 7に示す 4種類のものを選択した。  As the silicon nitride used in conducting the experiment, four types shown in Table 7 below were selected from among commercially available, granular ones.
[0073] [表 7] [0073] [Table 7]
Figure imgf000032_0001
Figure imgf000032_0001
に示す 4種匿の :化ケィ素のうち、流動性の有無力 判断して铸造に用いるこ とができたものは、表 7、図 17に示す通り NP— 600の混合量 20%および 25%のものと 、 SN— 7の 20%、 30%および 40%のものと、 SN— 9の 20%、 30%、 35%および 40% のものと、 HM— 5MFの 10%、 20%、 25%のものであった。このことから、 NP— 600は混 合量が 25%以下であれば、 SN— 7は混合量力 0%以下であれば、 SN— 9は混合量が 40%以下であれば、 HM— 5MFは混合量が 25%以下であれば、铸造可能と考えられ る。 Of the four types shown below: As shown in Table 7 and FIG. 17, the results were as follows: 20% and 25% of NP-600, 20%, 30% and 40% of SN-7, and They were 20%, 30%, 35% and 40%, and 10%, 20% and 25% of HM-5MF. From this, NP-600 has a mixing amount of 25% or less, SN-7 has a mixing amount of 0% or less, SN-9 has a mixing amount of 40% or less, and HM-5MF has a mixing amount of 40% or less. If the mixing amount is 25% or less, it is considered that it can be manufactured.
[0075] これら 4種類のセラミック材料は、 、ずれも塩ィ匕カリウムの溶湯中に分散することも確 認した(図 15参照)。  [0075] It was also confirmed that the four types of ceramic materials were dispersed in the molten salt of Shii-dani potassium (see Fig. 15).
NP— 600、 SN— 7および SN— 9の密度は 3. 18gZcm3で、 HM— 5MFの密度は 3. 19g Zcm3である。これら 4種類の窒化ケィ素は、粒径が互いに異なるものである。 NP- 600, SN- 7 and SN- 9 is density at 3. 18gZcm 3, HM- density of 5MF is 3. 19g Zcm 3. These four types of silicon nitride have different particle sizes.
上述した 4種類の窒化ケィ素につ 、て、下記の表 8に示すように混合量毎に抗折試 験片を作成し、抗折強度を求めた。  With respect to the above four kinds of silicon nitride, bending test pieces were prepared for each mixing amount as shown in Table 8 below, and bending strength was determined.
[0076] [表 8] [0076] [Table 8]
Figure imgf000034_0001
CT0/l700Zdf/X3d 38 ひ ΐ簡 SOOZ OAV [0077] このように窒化ケィ素をセラミックス材料として使用する場合には、図 7に示すように 、混合量を 20%以上とすることによって、抗折強度が 8MPaより大きくなることが判つ た。
Figure imgf000034_0001
CT0 / l700Zdf / X3d 38 ΐ Simple SOOZ OAV [0077] As described above, when silicon nitride is used as a ceramic material, it was found that, as shown in Fig. 7, by setting the mixing amount to 20% or more, the transverse rupture strength became larger than 8 MPa. .
また、図 7に示すように、窒化ケィ素の抗折強度は、粒径に殆ど影響を受けることが ないことが判る。  Further, as shown in FIG. 7, it can be seen that the transverse rupture strength of silicon nitride is hardly affected by the grain size.
したがって、上述したようにセラミックス材料として窒化ケィ素を使用しても第 1の実 施の形態を採るときと同等の効果を奏するといえる。  Therefore, as described above, it can be said that the use of silicon nitride as the ceramic material has the same effect as when the first embodiment is employed.
[0078] (第 4の実施の形態) (Fourth Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈する炭化ケィ素(SiC) を使用することができる。炭化ケィ素を塩ィ匕カリウムに混合することにより、図 8に示す ような抗折強度が得られた。  The salt core according to the present invention can use granular silicon carbide (SiC) as the ceramic material. By mixing the silicon carbide with the potassium salt, a bending strength as shown in FIG. 8 was obtained.
図 8は炭化ケィ素の混合量と抗折強度との関係を示すグラフである。図 8に示す抗 折強度は、炭化ケィ素をセラミックス材料として第 1の実施の形態で示した実験を行う ことによって求めたものである。なお、図 8中の線は、最小自乗法を用いて描いた近 似曲線である。  FIG. 8 is a graph showing the relationship between the amount of silicon carbide mixed and the bending strength. The flexural strength shown in FIG. 8 was obtained by performing the experiment shown in the first embodiment using silicon carbide as a ceramic material. Note that the line in FIG. 8 is an approximation curve drawn using the least squares method.
実験を行うに当たって使用する炭化ケィ素は、市販されて 、る粒状のものの中から 下記の表 9に示す 3種類のものを選択した。  As the silicon carbide used in conducting the experiment, three types shown in Table 9 below were selected from among commercially available granular materials.
[0079] [表 9] [0079] [Table 9]
Figure imgf000036_0001
Figure imgf000036_0001
表 9に示す 3種類の炭化ケィ素は、溶湯の流動性力も判断して混合量 10% 20% 30% 40%および 45%のものが铸造に用いることができることが判った(図 18参 照)。このこと力ゝら、 3種類の炭化ケィ素は、混合量がいずれも 45%以下であれば铸 造可能と考えられる。 これらの炭化ケィ素は、 、ずれも塩ィ匕カリウムの溶湯中に分散することも確認した( 図 15参照)。これらの炭化ケィ素は、密度はいずれも 3. 23g/cm3であり、粒径が互 いに異なるものである。 Judging from the fluidity of the molten metal, it was found that the three types of silicon carbide shown in Table 9 can be used for production in a mixed amount of 10%, 20%, 30%, 40% and 45% (see Fig. 18). ). For this reason, it is considered that all three types of silicon carbide can be manufactured if the mixing amount is 45% or less. It was also confirmed that these silicon carbides were dispersed in the molten salt of Shii-dani potassium (see FIG. 15). Each of these silicon carbides has a density of 3.23 g / cm 3 and different particle sizes.
上述した 3種類の炭化ケィ素について、下記の表 10に示すように混合量毎に抗折 試験片を作成し、抗折強度を求めた。  As shown in Table 10 below, bending test pieces were prepared for each of the three types of silicon carbide described above, and the bending strength was determined.
[表 10][Table 10]
Figure imgf000037_0001
Figure imgf000037_0001
このように炭化ケィ素をセラミックス材料として使用する場合には、図 8に示すように 、混合量を 25%— 30%以上とすることによって、抗折強度が 8MPaより大きくなること が判った。 When using silicon carbide as a ceramic material in this way, as shown in Fig. 8, In addition, it was found that the bending strength became larger than 8 MPa by setting the mixing amount to 25% -30% or more.
また、図 8に示すように、炭化ケィ素の抗折強度は、粒径に殆ど影響を受けることが ないことが判る。  Also, as shown in FIG. 8, it can be seen that the transverse rupture strength of the silicon carbide is hardly affected by the particle size.
したがって、上述したようにセラミックス材料として炭化ケィ素を使用しても第 1の実 施の形態を採るときと同等の効果を奏するといえる。  Therefore, as described above, it can be said that the same effect as when the first embodiment is adopted can be obtained even if silicon carbide is used as the ceramic material.
[0083] (第 5の実施の形態) (Fifth Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈する窒化アルミニウム( A1N)を使用することができる。窒化アルミニウムを塩ィ匕カリウムに混合することにより 、図 9に示すような抗折強度が得られた。  The salt core according to the present invention can use granular aluminum nitride (A1N) as a ceramic material. By mixing aluminum nitride with potassium salt, a transverse rupture strength as shown in FIG. 9 was obtained.
図 9は窒化アルミニウムの混合量と抗折強度との関係を示すグラフである。図 9に示 す抗折強度は、窒化アルミニウムをセラミックス材料として第 1の実施の形態で示した 実験を行うことによって求めたものである。なお、図 9中の線は、最小自乗法を用いて 描いた近似曲線である。  FIG. 9 is a graph showing the relationship between the mixing amount of aluminum nitride and the bending strength. The transverse rupture strength shown in FIG. 9 was obtained by performing the experiment shown in the first embodiment using aluminum nitride as a ceramic material. Note that the line in FIG. 9 is an approximate curve drawn using the least squares method.
実験を行うに当たって使用する窒化アルミニウムは、市販されている粒状のものの 中から下記の表 11に示す 2種類のものを選択した。  Aluminum nitride used in the experiment was selected from two types shown in Table 11 below from among commercially available granular ones.
[0084] [表 11] [0084] [Table 11]
Figure imgf000039_0001
Figure imgf000039_0001
表 11に示す 2種類の窒化アルミニウムは、流動性の点力 混合量 20% 30% 40 %のものが铸造に用いることができることが判った(表 11、図 18参照)。このことから、 2種類の窒化アルミニウムはいずれも混合量が 40%であれば铸造可能と考えられる これらの窒化アルミニウムは、いずれも塩ィ匕カリウムの溶湯中に分散することも確認 した(図 15参照)。これらの窒化アルミニウムは、密度はいずれも 3. 25g/cm3であり 、粒径が互いに異なるものである。 It was found that the two types of aluminum nitride shown in Table 11 can be used for production with a flowability of 20%, 30%, and 40% in terms of fluidity (see Table 11, FIG. 18). From this, it is considered that both types of aluminum nitride can be manufactured if the mixing amount is 40%. It was confirmed that all of these aluminum nitrides were dispersed in the molten salt of potassium salt (see FIG. 15). These aluminum nitrides all have a density of 3.25 g / cm 3 and have different particle sizes.
上述した 2種類の窒化アルミニウムについて、下記の表 12に示すように混合量毎に 抗折試験片を作成し、抗折強度を求めた。  As shown in Table 12 below, bending test pieces were prepared for each of the two types of aluminum nitride described above, and the bending strength was determined.
[0086] [表 12] [0086] [Table 12]
Figure imgf000040_0001
Figure imgf000040_0001
[0087] このように窒化アルミニウムをセラミックス材料として使用する場合には、図 9に示す ように、混合量を 15%以上とすることによって、抗折強度が 8MPaより大きくなることが 判った。  [0087] As described above, when aluminum nitride is used as a ceramic material, it was found that, as shown in Fig. 9, by setting the mixing amount to 15% or more, the transverse rupture strength became larger than 8 MPa.
また、図 9に示すように、窒化アルミニウムの抗折強度は、粒径に殆ど影響を受ける ことがな ヽことが半 IJる。  Also, as shown in FIG. 9, the transverse rupture strength of aluminum nitride is hardly affected by the grain size.
したがって、上述したようにセラミックス材料として窒化アルミニウムを使用しても第 1 の実施の形態を採るときと同等の効果を奏するといえる。 Therefore, even if aluminum nitride is used as the ceramic material as described above, It can be said that the same effect as when the embodiment is adopted is achieved.
[0088] (第 6の実施の形態)  (Sixth Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈する炭化ホウ素(B C)  The salt core according to the present invention is a boron carbide (B C) which exhibits a granular shape as a ceramic material.
4 を使用することができる。炭化ホウ素を塩ィ匕カリウムに混合することにより、図 10に示 すような抗折強度が得られた。  4 can be used. By mixing boron carbide with potassium salt, a transverse rupture strength as shown in FIG. 10 was obtained.
図 10は炭化ホウ素の混合量と抗折強度との関係を示すグラフである。図 10に示す 抗折強度は、炭化ホウ素をセラミックス材料として第 1の実施の形態で示した実験を 行うことによって求めたものである。なお、図 10中の線は、最小自乗法を用いて描い た近似曲線である。  FIG. 10 is a graph showing the relationship between the mixing amount of boron carbide and the bending strength. The transverse rupture strength shown in FIG. 10 was obtained by performing the experiment shown in the first embodiment using boron carbide as a ceramic material. Note that the line in FIG. 10 is an approximate curve drawn using the least squares method.
実験を行うに当たって使用する炭化ホウ素は、市販されている粒状のものの中から 下記の表 13に示す 3種類のものを選択した。  As the boron carbide used in the experiment, three types shown in Table 13 below were selected from commercially available granular ones.
[0089] [表 13] [Table 13]
Figure imgf000042_0001
表 13に示す 3種類の炭化ホウ素のうち、流動性の点カも铸造に用いることができた ものは、 # 1200の混合量 20%、 30%、 33. 75%のものと、 S1と S3の混合量 20%、 30%および 40%のものであった(表 13、図 16参照)。このことから、 # 1200は混合 量が 33. 75%以下であれば、 SIと S3は混合量力 0%以下であれば、铸造可能と 考えられる。これら 3種類の炭化ホウ素のうち、 S3は塩化カリウムの溶湯中に沈殿す る力 他の # 1200と S1は分散することも確認した(図 15参照)。また、これらの炭化 ホウ素は、密度が 2. 51g/cm3であり、粒径が互いに異なるものである。
Figure imgf000042_0001
Of the three types of boron carbide shown in Table 13, those that could also be used for the production of fluidity were # 1200 mixed with 20%, 30%, and 33.75%, and S1 and S3 Were 20%, 30% and 40% (see Table 13 and Figure 16). From this, # 1200 is mixed If the volume is 33.75% or less, SI and S3 are considered to be manufacturable if the mixing power is 0% or less. Of these three types of boron carbide, S3 was also found to be capable of precipitating in the molten potassium chloride. Other # 1200 and S1 were also confirmed to disperse (see Fig. 15). These boron carbides have a density of 2.51 g / cm 3 and different particle diameters.
上述した 3種類の炭化ホウ素について、下記の表 14に示すように混合量毎に抗折 試験片を作成し、抗折強度を求めた。  For the above three types of boron carbide, bending test pieces were prepared for each mixing amount as shown in Table 14 below, and the bending strength was determined.
[表 14][Table 14]
Figure imgf000043_0001
[0092] このように炭化ホウ素をセラミックス材料として使用する場合には、図 10に示すよう に、試料名 # 1200と試料名 S1とにおいて混合量を 20%以上とすることによって、抗 折強度が 8MPaより大きくなることが判った。また、図 10に示すように、分散してしまう S3は強度が得られな 、ことも判る。
Figure imgf000043_0001
[0092] When boron carbide is used as a ceramic material in this way, as shown in Fig. 10, the flexural strength is increased by setting the mixing amount between sample name # 1200 and sample name S1 to 20% or more. It turned out to be larger than 8MPa. In addition, as shown in FIG. 10, it can be seen that the dispersed S3 has no strength.
したがって、上述したようにセラミックス材料として炭化ホウ素を使用しても第 1の実 施の形態を採るときと同等の効果を奏するといえる。  Therefore, as described above, it can be said that the use of boron carbide as the ceramic material has the same effect as when the first embodiment is employed.
[0093] (第 7の実施の形態) (Seventh Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈するチタン酸アルミ-ゥ ム(Al TiO )や、スピネル(コージーライト: MgO. Al O )を使用することができる。こ The salt core according to the present invention can use granular aluminum titanate (Al TiO) or spinel (cordierite: MgO. Al O) as a ceramic material. This
2 5 2 3 2 5 2 3
れらのセラミックス材料を塩ィ匕カリウムに混合することにより、図 11に示すような抗折 強度が得られた。  By mixing these ceramic materials with potassium salt, a bending strength as shown in FIG. 11 was obtained.
図 11はチタン酸アルミニウムとスピネルの混合量と抗折強度との関係を示すグラフ である。図 11に示す抗折強度は、チタン酸アルミニウムとスピネルとをセラミックス材 料として第 1の実施の形態で示した実験を行うことによって求めたものである。なお、 図 11中の線は、最小自乗法を用いて描!、た近似曲線である。  FIG. 11 is a graph showing the relationship between the mixing amount of aluminum titanate and spinel and the bending strength. The transverse rupture strength shown in FIG. 11 was obtained by performing the experiment shown in the first embodiment using aluminum titanate and spinel as ceramic materials. Note that the line in FIG. 11 is an approximate curve drawn using the least squares method.
実験を行うに当たって使用するチタン酸アルミニウムとスピネルは、市販されて 、る 粒状のものの中から下記の表 15に示すものを選択した。  Aluminum titanate and spinel used in conducting the experiment were selected from commercially available, granular ones shown in Table 15 below.
[0094] [表 15] [0094] [Table 15]
セラミックス名 製品名 組成 形状 製造者名 密度(g/cm3) 粒径 (Mm) 試行混合量(WtM) 最大混合量(wt%) スピネル NSP-70 -200mesh MgO.AI203 fe状 伊藤忠セラテック (株) 3.27 75 20,30,40,x50 40 チタン酸アルミニウム VCAT ΑΙ2ΤΪ05 粒状 真空セラミックス (株) 3.7- -1.0 10,20,30,40,x50 40 Ceramic name Product name Composition Shape Manufacturer name Density (g / cm3) Particle size (Mm) Trial mixing amount (WtM) Maximum mixing amount (wt%) Spinel NSP-70 -200mesh MgO.AI203 fe-shaped ITOCHU CERATECH CORPORATION 3.27 75 20,30,40, x50 40 Aluminum titanate VCAT ΑΙ2ΤΪ05 Granular vacuum ceramics 3.7- -1.0 10,20,30,40, x50 40
X:流動性なし  X: No liquidity
s:沈殿 s: precipitation
[0095] 表 15に示すチタン酸アルミニウムは、流動性の点力も混合量 10%、 20%、 30%お よび 40%のものが铸造に用いることができ、スピネルは、流動性の点力も混合量 20 %、 30%、 40%のものが铸造に用いることができることが判った (表 15、図 18参照) 。このことから、チタン酸アルミニウムとスピネルは、いずれも混合量 40%以下であれ ば铸造可能と考えられる。また、これら両セラミックス材料とも塩ィ匕カリウムの溶湯中に 分散することも確認した (図 15参照)。 [0095] The aluminum titanate shown in Table 15 can be used in the production of a fluid having a mixing force of 10%, 20%, 30% and 40%. It was found that 20%, 30% and 40% can be used for production (see Table 15 and Figure 18). From this, it is considered that aluminum titanate and spinel can be manufactured if the mixing amount is 40% or less. In addition, it was confirmed that both of these ceramic materials were dispersed in the molten salt of potassium salt (see Fig. 15).
チタン酸アルミニウムは密度が 3. 7g/cm3,粒径が であり,スピネルの密度 は3. 27g/cm3,粒径が75 / z mである。 Aluminum titanate density 3. 7 g / cm 3, the particle diameter is not less, the density of the spinel is 3. 27g / cm 3, the particle size is 75 / zm.
上述したセラミックス材料について、下記の表 16に示すように混合量毎に抗折試験 片を作成し、抗折強度を求めた。  For the above ceramic materials, bending test pieces were prepared for each mixing amount as shown in Table 16 below, and the bending strength was determined.
[0096] [表 16]  [0096] [Table 16]
Figure imgf000046_0001
このようにチタン酸アルミニウムとスピネルをセラミックス材料として使用する場合に は、図 11に示すように、混合量を 20%以上とすることによって、抗折強度が 8MPaよ り大きくなることが判った。
Figure imgf000046_0001
When aluminum titanate and spinel are used as ceramic materials in this way, as shown in Fig. 11, by setting the mixing amount to 20% or more, the transverse rupture strength is reduced to 8 MPa. It turned out to be larger.
したがって、上述したようにセラミックス材料としてチタン酸アルミニウムまたはスピネ ルを使用しても第 1の実施の形態を採るときと同等の効果を奏するといえる。  Therefore, it can be said that, even if aluminum titanate or spinel is used as the ceramic material as described above, the same effect as when the first embodiment is adopted can be obtained.
[0098] (第 8の実施の形態) [0098] (Eighth Embodiment)
本発明に係るソルト中子は、セラミックス材料として粒状を呈するアルミナ (Al O )を  The salt core according to the present invention is made of alumina (Al 2 O 3) having a granular shape as a ceramic material.
2 3 使用することができる。アルミナを塩ィ匕カリウムに混合することにより、図 12に示すよう な抗折強度が得られた。  2 3 can be used. By mixing alumina with potassium salt, a bending strength as shown in FIG. 12 was obtained.
図 12はアルミナの混合量と抗折強度との関係を示すグラフである。図 12に示す抗 折強度は、アルミナをセラミックス材料として第 1の実施の形態で示した実験を行うこ とによって求めたものである。なお、図 12中の線は、最小自乗法を用いて描いた近 似曲線である。  FIG. 12 is a graph showing the relationship between the mixed amount of alumina and the bending strength. The flexural strength shown in FIG. 12 was obtained by performing the experiment shown in the first embodiment using alumina as a ceramic material. The lines in FIG. 12 are approximation curves drawn using the least squares method.
実験を行うに当たって使用するアルミナは、市販されている粒状のものの中から下 記の表 17に示すものを選択した。  The alumina used in the experiment was selected from the commercially available granular ones shown in Table 17 below.
[0099] [表 17] [0099] [Table 17]
Figure imgf000048_0001
表 17に示すアルミナは、流動性の点から混合量 20% 30% 35% (AL— 45— 1)の ものが铸造に用いることができることが判った(図 18参照)。このことから、 AL— 45— 1は 混合量 35%以下であれば、その他のものは混合量 30%以下であれば、铸造可能と 考えられる。
Figure imgf000048_0001
From the viewpoint of fluidity, it was found that alumina having a mixed amount of 20% 30% 35% (AL-45-1) in Table 17 can be used for production (see Fig. 18). This indicates that AL-45-1 can be manufactured if the mixing amount is 35% or less, and the others can be manufactured if the mixing amount is 30% or less. Conceivable.
これらのアルミナは、 、ずれも塩ィ匕カリウムの溶湯中に分散することも確認した(図 1 5参照)。また、これらのアルミナは、密度は約 4gZcm3であり、粒径は 0. 6 μ mのも の(AL— 160SG)と、 1 mのもの(AL— 45— 1)と、 3— 4 μ mのもの(A— 42— 1)と、 40— 50 μ mのもの(A— 12)とである。 It was also confirmed that these aluminas were dispersed in the molten salt of Shiridani potassium (see FIG. 15). These aluminas have a density of about 4 gZcm 3 and a particle size of 0.6 μm (AL-160SG), 1 m (AL-45-1), and 3-4 μm. m (A—42—1) and 40—50 μm (A—12).
上述したアルミナについて、下記の表 18に示すように混合量毎に抗折試験片を作 成し、抗折強度を求めた。  With respect to the above-mentioned alumina, a bending test piece was prepared for each mixing amount as shown in Table 18 below, and the bending strength was determined.
[表 18] [Table 18]
組成 坑折荷重 坑折強度 Composition Bending load Bending strength
組成 wt% N Pa  Composition wt% N Pa
pure KCI 0 186.255 1.55  pure KCI 0 186.255 1.55
pure KCI 0 250.024 2.08  pure KCI 0 250.024 2.08
pure KCI 0 226.274 1.89  pure KCI 0 226.274 1.89
pure KCI 0 308.725 2.57  pure KCI 0 308.725 2.57
pure KCI 0 225.850 1.88  pure KCI 0 225.850 1.88
KCI+20%AI203 AL-45-1 20 8.68  KCI + 20% AI203 AL-45-1 20 8.68
KC!+30¾AI203 AL-45-1 30 1037.05 8.64  KC! + 30¾AI203 AL-45-1 30 1037.05 8.64
KCI+35 I203 AL-45-1 35 1116 9.30  KCI + 35 I203 AL-45-1 35 1116 9.30
KCI+35 I203 AL-45-1 35 1008.67 8.41 組成 坑折荷重 坑折強度  KCI + 35 I203 AL-45-1 35 1008.67 8.41 Composition Bending load Bending strength
組成 wt¾ N MPa  Composition wt¾ N MPa
pure KCI 0 186.255 1.55  pure KCI 0 186.255 1.55
pure KCI 0 250.024 2.08  pure KCI 0 250.024 2.08
pure KCI 0 226.274 1.89  pure KCI 0 226.274 1.89
pure KCI 0 308.725 2.57  pure KCI 0 308.725 2.57
pure KCI 0 22 CD5.850 1.88  pure KCI 0 22 CD5.850 1.88
KCI+20¾AI203 A - 42- 1 20 871.75 7.26  KCI + 20¾AI203 A-42-1 20 871.75 7.26
KCI+20¾AIZO3 A - 42-1 20 1432.5 11.94  KCI + 20¾AIZO3 A-42-1 20 1432.5 11.94
KCI+30¾AI203 A-42-1 30 2118.07 17.65  KCI + 30¾AI203 A-42-1 30 2118.07 17.65
KCI+30%AI2O3 A-42-1 30 1660.75 13.84 組成 坑折荷重 坑折強度  KCI + 30% AI2O3 A-42-1 30 1660.75 13.84 Composition Bending load Bending strength
組成 wt% N MPa  Composition wt% N MPa
pure KCI 0 186.255 1.55  pure KCI 0 186.255 1.55
pure KCI 0 250.024 2.08  pure KCI 0 250.024 2.08
pure KCI 0 226.274 1.89  pure KCI 0 226.274 1.89
pure KCI 0 308.725 2.57  pure KCI 0 308.725 2.57
pure KCI 0 225.850 1.88  pure KCI 0 225.850 1.88
KCI+20¾AI203 A-12 20 1093.52 9. Π  KCI + 20 AI203 A-12 20 1093.52 9.
KCI+20¾AI203 A-12 20 972.4 8.10  KCI + 20¾AI203 A-12 20 972.4 8.10
KCI+30 I203 A-12 30 1456 12.13  KCI + 30 I203 A-12 30 1456 12.13
KCI+30 I2O3 A-12 ' 30 1540 12.83 組成 坑折荷重 坑折強度  KCI + 30 I2O3 A-12 '30 1540 12.83 Composition Bending load Bending strength
組成 wt% N MPa  Composition wt% N MPa
pure KCI 0 186.255 1.55  pure KCI 0 186.255 1.55
pure KCI 0 250.024 2.08  pure KCI 0 250.024 2.08
pure KCI 0 226.274 1.89  pure KCI 0 226.274 1.89
pure KCI 0 308.725 2.57  pure KCI 0 308.725 2.57
pure KCI 0 225.850 1.88  pure KCI 0 225.850 1.88
KC1+20¾AI203 AL-160SG - 3 20 973.75 8.11  KC1 + 20¾AI203 AL-160SG-3 20 973.75 8.11
KCI+20 I203 AL-160SG-3 20 986.25 8.22  KCI + 20 I203 AL-160SG-3 20 986.25 8.22
KCI+30¾AI203 AL-160SG-3 30 1166.34 9.72  KCI + 30¾AI203 AL-160SG-3 30 1166.34 9.72
KCI+30¾AI203 AL-160SG-3 30 1183.75 9.86 このようにアルミナをセラミックス材料として使用する場合には、図 12に示すように、 混合量を 20%以上とすることによって、抗折強度が 8MPaより大きくなることが判った したがって、上述したようにセラミックス材料としてアルミナを使用しても第 1の実施 の形態を採るときと同等の効果を奏するといえる。 KCI + 30¾AI203 AL-160SG-3 30 1183.75 9.86 When alumina is used as a ceramic material in this way, as shown in Fig. 12, It was found that by setting the mixing amount to 20% or more, the transverse rupture strength was higher than 8 MPa.Therefore, even if alumina was used as the ceramic material as described above, the same as when the first embodiment was adopted. It can be said that it has an effect.
[0103] 上述した第 1一第 8の実施の形態で示した全てのセラミックス材料の混合量と抗折 強度との関係を図 13と図 14に示す。これらの図から判るように、上述したセラミックス 材料のうち、抗折強度が最も高いソルト中子を形成することができるものは窒化アルミ ニゥムであった。 [0103] FIGS. 13 and 14 show the relationship between the mixing amount of all the ceramic materials and the bending strength shown in the first to eighth embodiments described above. As can be seen from these figures, among the above-mentioned ceramic materials, the one capable of forming the salt core having the highest bending strength was aluminum nitride.
また、上述したセラミックス材料のうち、材料単価が最も安価なものは合成ムライトで あり、材料量 (混合量)が最も少なくてよいものはホウ酸アルミニウムである。すなわち 、合成ムライトまたはホウ酸アルミニウムを使用することにより、製造コストを低く抑えな 力 高い強度を有するソルト中子を製造することができる。  Among the above ceramic materials, the material with the lowest material unit price is synthetic mullite, and the material with the smallest material amount (mixing amount) is aluminum borate. In other words, by using synthetic mullite or aluminum borate, it is possible to produce a salt core having high strength without reducing production costs.
[0104] 第 1一第 8の実施の形態で示したセラミックス材料を用いることにより铸造性に優れ 強度の高いソルト中子を形成することができたのは、下記の理由によると考えられる。 これは、これらのセラミックス材料を塩ィ匕カリウムに混合させてなる溶湯に流動性があ り、これらのセラミックス材料の密度が溶融状態での塩ィ匕カリウムの密度(1. 57g/c m3)より適度に大きい値であり、これらのセラミックス材料が溶融状態の塩ィ匕カリウム 中に広くかつ均等に分散して、ソルト内部の亀裂進展を抑制することができた力 で あると考えられる。 [0104] It is considered that a salt core having excellent formability and high strength could be formed by using the ceramic material shown in the first to eighth embodiments for the following reasons. This is because the molten metal obtained by mixing these ceramic materials with potassium salt has fluidity, and the density of these ceramic materials is the density of potassium salt in the molten state (1.57 g / cm 3 ). This is a value that is more moderately large, and is considered to be a force capable of suppressing the crack growth inside the salt by dispersing these ceramic materials widely and uniformly in the molten potassium salt.
[0105] すなわち、「流動性」があるので铸造が可能となり、「分散」しているので充分な強度 が得られたものである。このうち「流動性」に影響するのは主にセラミックス材料の混 合量 (wt%)で、「分散」には密度が影響するということである。このため、第 1一第 8の 実施の形態で示したものとは別のセラミックス材料であったとしても、密度が上述した 各セラミックス材料に近似するものであり、流動性を有する溶湯が形成されるものであ れば、上述した実施の形態で示したものと同等の強度を有するソルト中子を形成する ことができると考えられる。  [0105] That is, the structure is possible because of the "fluidity", and sufficient strength is obtained because it is "dispersed". Of these factors, the influence on the “fluidity” is mainly the amount of the ceramic material mixed (wt%), and the “dispersion” is affected by the density. For this reason, even if the ceramic material is different from that shown in the first to eighth embodiments, the density is close to each of the above ceramic materials, and a molten metal having fluidity is formed. It is considered that a salt core having the same strength as that described in the above embodiment can be formed.
[0106] セラミックス材料が溶融状態のソルト材料中によく分散する力、調査するために、塩ィ匕 カリウムとセラミックス材料との混合条件について発明者らが行った実験によれば、図 15に示すように、溶融した塩ィ匕カリウム中に分散するセラミックス材料は、密度の最 小値が 2. 28g/cm3 (窒化ホウ素)より大きく最大値が 4g/cm3 (アルミナ)であり、粒 径の最大値が約 150 μ mであることが判った。 [0106] In order to investigate the force of the ceramic material being well dispersed in the molten salt material, according to an experiment conducted by the inventors on the mixing conditions of potassium salt and the ceramic material, FIG. As shown in Fig. 15, the ceramic material dispersed in the molten potassium salt has a minimum density of more than 2.28 g / cm 3 (boron nitride) and a maximum of 4 g / cm 3 (alumina). It was found that the maximum value of the particle size was about 150 μm.
[0107] これは、分散には溶湯の凝固時間とセラミックス材料の沈殿速度が密接に関連して いるからである。沈殿速度の理論式は、 [0107] This is because the solidification time of the molten metal and the precipitation rate of the ceramic material are closely related to dispersion. The theoretical equation for the precipitation rate is
( ρ ο- ρ 5) ά2 18 μ - - - '式 2 (ρ ο- ρ 5 ) ά 2 18 μ---'Equation 2
である。ここで Vは沈殿速度〔mZs〕、gは重力加速度 9. 80〔mZs2〕、 p cはセラミツ タス材料の密度〔gZcm3〕、 p sは溶融状態のソルト材料の密度〔gZcm3〕、 dはセラミ ック材料の粒径〔m〕、 μはソルト材料の粘性係数〔Pa · s〕である。 It is. Where V is precipitated speed [MZS], g is the gravitational acceleration 9.80 [MZS 2], pc is the density of the Seramitsu task materials [GZcm 3], ps is the density of the salt material in the molten state [GZcm 3], d is The particle size [m] and μ of the ceramic material are the viscosity coefficient [Pa · s] of the salt material.
[0108] 式 2によれば、沈殿速度 Vは、セラミックス材料と溶融状態のソルト材料の密度差の 1乗に比例し、粒径の 2乗に比例する。このことから、粒径については、 150 mより 大きいと沈殿速度が非常に速くなりセラミックス材料をよく分散させることができないと 考えられる。一方、セラミックス材料の密度に関しては、沈殿速度に対する影響量が 粒径の影響に較べて小さ 、ので、今回実験を行って ヽな 、4g/cm3より大き 、セラミ ックス材料であってもよく分散させることは可能と推測できる。 According to Equation 2, the precipitation velocity V is proportional to the first power of the density difference between the ceramic material and the molten salt material, and is proportional to the square of the particle size. From this, it is considered that when the particle size is larger than 150 m, the precipitation speed becomes extremely high and the ceramic material cannot be dispersed well. On the other hand, with respect to the density of the ceramic material, small influence amount for precipitation rate in comparison with the influence of the particle size, soヽof performing this experiment, greater than 4g / cm 3, it may be a ceramic box material dispersion It can be guessed that it is possible.
[0109] また、各セラミックス材料の混合量と流動性の関係は、図 16—図 18に示すようにな ることが判った。図 16—図 18は、セラミックス材料と塩ィ匕カリウムとをタンマン管に入 れて 800°Cで溶解した後、充分に攪拌し、タンマン管を下方に向けて返す実験によ つて求めた。この実験で溶湯力タンマン管から流れ出るものを「流動性あり」とし、そう でな 、ものを「流動性なし」とした。  [0109] Further, it was found that the relationship between the mixing amount of each ceramic material and the fluidity was as shown in Figs. Figures 16 to 18 were obtained by experiments in which a ceramic material and potassium salt were placed in a Tamman tube, melted at 800 ° C, stirred sufficiently, and then turned back down. In this experiment, the material flowing out of the molten metal Tamman tube was designated as "fluid", and otherwise, it was designated "no fluid".
[0110] したがって、密度が 2. 2gZcm3 ( =窒化ホウ素の密度)より大きく 4gZcm3以下また は Zかつ粒径が約 150 m以下で粒状に形成されて塩ィ匕カリウム溶湯中に充分に 分散するセラミックス材料であれば、ダイカスト法にも使うことができるような強度を有 するソルト中子を形成することができる。 [0110] Therefore, the density is larger than 2.2 gZcm 3 (= the density of boron nitride) and is 4 gZcm 3 or less and Z and the particle size is about 150 m or less. As long as it is a ceramic material that can be used, a salt core having a strength that can be used in the die casting method can be formed.
[0111] (第 9の実施の形態)  (Ninth Embodiment)
本発明に係るソルト中子は、セラミックス材料としてホウ酸アルミニウムウイスカ(9A1  The salt core according to the present invention is made of aluminum borate whisker (9A1) as a ceramic material.
2 2
O . 2B O )、窒化ケィ素ゥイス力(Si N )、炭化ケィ素ゥイス力(SiC)、 6チタン酸カリO.2B O), silicon nitride force (SiN), silicon carbide force (SiC), potassium titanate
3 2 3 3 4 3 2 3 3 4
ゥムゥイス力(K O. 6TiO )、 8チタン酸カリウムウイスカ(K O. 8TiO )および酸化亜 鉛ゥイス力(ZnO)を使用することができる。 Moisture power (K O. 6TiO), potassium 8 titanate whisker (K O. 8TiO) and oxide Lead-force (ZnO) can be used.
これらのセラミツクウイス力としては、下記の表 19に示すものがある。  These ceramic wiping powers include those shown in Table 19 below.
[表 19] [Table 19]
セラミックス名 製品名 組成 形状 製造者名 密度 (g/cm3) 粒径 (μηη) 粒径 (μιη) 試行混合量(wt%) 最大混合量(wt%) ホウ酸アルミニウム Albolex M20 9AI203.2B203 ウイスカ 四国化成工業 (株) 2.93 10-30 0.5-1.0 10,15,18.67,x20 15 窒化ケィ素 SNW #1-S Si3N4 alpha ウイスカ タテホ化学工業 (株) 3.18 5-200 0.1-1.6 5,7,x8 7 炭化ケィ素 SCW #1-0.8 SiC Beta ウイスカ タテホ化学工業 (株) 3.18 5-200 0.05-1.5 5,7,x8,x10,x15 7Ceramic name Product name Composition Shape Manufacturer name Density (g / cm3) Particle size (μηη) Particle size (μιη) Trial mixing amount (wt%) Maximum mixing amount (wt%) Aluminum borate Albolex M20 9AI203.2B203 Whisker Shikoku Chemicals Industrial Co., Ltd. 2.93 10-30 0.5-1.0 10,15,18.67, x20 15 Silicon nitride SNW # 1-S Si3N4 alpha Whisker Tatejo Chemical Co., Ltd. 3.18 5-200 0.1-1.6 5,7, x8 7 Carbonized Silicon SCW # 1-0.8 SiC Beta Whisker Tateho Chemical Co., Ltd. 3.18 5-200 0.05-1.5 5,7, x8, x10, x15 7
6チタン酸カリウム Tismo N Κ20.6ΤΪ02 ウイスカ 大塚化学 (株) (3.4-3.6)3.58 10-20 0.3-0.6 5,7,x8,x10 76 Potassium titanate Tismo N Κ20.6ΤΪ02 Whisker Otsuka Chemical Co., Ltd. (3.4-3.6) 3.58 10-20 0.3-0.6 5,7, x8, x10 7
8チタン酸カリウム 丁 ismo D K20.8丁 i02 ウイスカ 大塚化学 (株) (3.4-3.6)3.58 10-20 0.3-0.6 5,7,x8,x10 7 酸化亜鉛 WZ-0501 ZnO ウイスカ 松下アムテック (株) 5.78 2-50 0.2-3.0 5,10,15,x16,x18,x20 15 x:流動性なし 8 Potassium titanate ismo D K20.8 cho i02 Whisker Otsuka Chemical Co., Ltd. (3.4-3.6) 3.58 10-20 0.3-0.6 5, 7, x8, x10 7 Zinc oxide WZ-0501 ZnO Whisker Matsushita Amtech Co., Ltd. 5.78 2-50 0.2-3.0 5,10,15, x16, x18, x20 15 x: No liquidity
s :沈殿 s: precipitation
[0113] 表 19に示すように、ホウ酸アルミニウムウイスカ(製品名 Albolex M20)は、流動性 の点力も混合量 10%、 15%および 18. 67%のものが铸造に用いることができること が判った(図 24参照)。このこと力ら、ホウ酸アルミニウムウイスカは、混合量が 18. 67 %以下であれば铸造可能と考えられる。 [0113] As shown in Table 19, it was found that aluminum borate whiskers (product name: Albolex M20) can be used for production with a mixing force of 10%, 15% and 18.67% in terms of fluidity. (See Figure 24). For these reasons, it is considered that aluminum borate whiskers can be manufactured if the mixing amount is 18.67% or less.
窒化ケィ素ゥイス力 (製品名 SNW # 1— S)と、炭化ケィ素ゥイス力 (製品名 SCW # 1-0. 8)と、 6チタン酸カリウムウイスカ(製品名 Tismo N)と、 8チタン酸カリウムゥイス 力(製品名 Tismo D)は、混合量 5%と 7%のものが铸造に用いることができることが 判った(図 24参照)。このことから、これらのウイスカは、混合量が 7%以下であれば铸 造可能と考えられる。  Silicon nitride power (product name SNW # 1—S), silicon carbide power (product name SCW # 1-0.8), potassium 6 titanate whisker (product name Tismo N), and 8 titanic acid It was found that potassium potassium (product name: Tismo D) with a mixed amount of 5% and 7% can be used for production (see Fig. 24). From this, it is considered that these whiskers can be manufactured if the mixing amount is 7% or less.
酸ィ匕亜鉛ウイスカ(製品名 WZ-0501)は、混合量 5%、 10%および 15%のものが 铸造に用いることができることが判った(図 24参照)。このことから、酸化亜鉛ウイスカ は、混合量が 15%以下であれば铸造可能と考えられる。  It was found that Zinc whiskers (product name WZ-0501) having a mixing amount of 5%, 10% and 15% can be used for production (see FIG. 24). From this, it is considered that zinc oxide whiskers can be manufactured if the mixing amount is 15% or less.
[0114] これらのゥイス力のうち、ホウ酸アルミニウムウイスカを塩ィ匕カリウムに混合することに より、図 19に示すような抗折強度が得られた。  Of these strengths, by mixing aluminum borate whiskers with potassium chloride, the transverse rupture strength as shown in FIG. 19 was obtained.
図 19はホウ酸アルミニウムウイス力の混合量と抗折強度との関係を示すグラフであ る。図 19に示す抗折強度は、ホウ酸アルミニウムウイスカをセラミックス材料として第 1 の実施の形態で示した実験を行うことによって求めたものである。なお、図 19中の線 は、最小自乗法を用いて描いた近似曲線である。この実験を行うに当たっては、下記 の表 20に示すように混合量毎に抗折試験片を作成し、抗折強度を求めた。  FIG. 19 is a graph showing the relationship between the mixing amount of the aluminum borate whis force and the bending strength. The transverse rupture strength shown in FIG. 19 was obtained by performing the experiment shown in the first embodiment using aluminum borate whiskers as a ceramic material. Note that the line in FIG. 19 is an approximate curve drawn using the least squares method. In conducting this experiment, as shown in Table 20 below, a bending test piece was prepared for each mixing amount, and the bending strength was determined.
[0115] [表 20] [0115] [Table 20]
組成 坑折荷重 坑折強度 Composition Bending load Bending strength
組成 wt¾ N MPa  Composition wt¾ N MPa
pure KCI 0 186.255 1.55  pure KCI 0 186.255 1.55
pure KCI 0 250.024 2.08  pure KCI 0 250.024 2.08
pure KCI 0 226.274 1.89  pure KCI 0 226.274 1.89
pure KCI 0 308.725 2.57  pure KCI 0 308.725 2.57
pure KCI 0 225.850 1.88  pure KCI 0 225.850 1.88
KCI+10!¾アルボ M20 10 2485.750 20.71  KCI + 10! ¾Arbo M20 10 2485.750 20.71
KCI+10!¾アルボ M20 10 2466.75 20.56  KCI + 10! ¾Arbo M20 10 2466.75 20.56
KCI+10!¾7ルポ M20 10 2488.75 20.74  KCI + 10! ¾7 Report M20 10 2488.75 20.74
KCI+10%アルボ M20 10 2832.25 23.60  KCI + 10% Arbo M20 10 2832.25 23.60
1<(:1+10¾;ァルボ《20 10 2262.89 18.86 1 <(: 1 + 10¾; arbo << 20 10 2262.89 18.86
1+10!¾ァルポ1«20 10 2758.00 22.98 1 + 10! Palpo 1 «20 10 2758.00 22.98
KCI + 10¾7ルポ M20 10 2624.75KCI + 10¾7 Report M20 10 2624.75
1 +10!¾ァルポ1«20 10 2155.35 17.96 1 +10! Alpo 1 «20 10 2155.35 17.96
1<(;1 +15!¾ァルポ111120 15 4101.05 34.18 1 <(; 1 +15!
KCI + 15S;ァルポ M20 15 3722.75 31.02 KCI + 15S; Alpo M20 15 3722.75 31.02
1 +15!¾ァルボ¾120 15 3763.50 31.36 1 +15! Valve 120 15 3763.50 31.36
KCI + 15¾7ルポ M20 15 3973.75 33.11 KCI + 15¾7 Report M20 15 3973.75 33.11
KCI + 15%アルボ M20 15 3305.72 27.55  KCI + 15% Arbo M20 15 3305.72 27.55
1((:1 +15¾;ァルボ¾120 15 3783.02 31.53  1 ((: 1 + 15¾; Arbo¾120 15 3783.02 31.53
KCI + 15%アルボ M20 15 3411.75 28.43  KCI + 15% Arbo M20 15 34 11.75 28.43
KCI + 18.7%アルボ M20 18.7 4346.25 36.22  KCI + 18.7% Arbo M20 18.7 4346.25 36.22
[0116] このようにホウ酸アルミニウムウイスカをセラミックス材料として使用する場合には、図 19に示すように、混合量が 5%以上であれば抗折強度が 8MPaより大きくなることが 判った。また、混合量が 18%であれば、 35MPaもの抗折強度を示すことが判った。 したがって、上述したようにセラミックス材料としてホウ酸アルミニウムウイスカを使用 しても第 1の実施の形態を採るときと同等の効果を奏するといえる。 As shown in FIG. 19, when aluminum borate whiskers are used as a ceramic material, it was found that the bending strength becomes greater than 8 MPa if the mixing amount is 5% or more. Also, it was found that when the mixing amount was 18%, the transverse rupture strength was as high as 35 MPa. Therefore, even if aluminum borate whiskers are used as the ceramic material as described above, it can be said that the same effect as when the first embodiment is adopted can be obtained.
[0117] (第 10の実施の形態) [0117] (Tenth embodiment)
窒化ケィ素ゥイス力または炭化ケィ素ウイスカを塩ィ匕カリウムに混合することにより、 図 20に示すような抗折強度が得られた。  By mixing a silicon nitride force or a silicon carbide whisker with potassium chloride, a transverse rupture strength as shown in FIG. 20 was obtained.
図 20は窒化ケィ素ゥイス力の混合量および炭化ケィ素ゥイス力の混合量と抗折強度 との関係を示すグラフである。図 20に示す抗折強度は、窒化ケィ素ゥイス力または炭 化ケィ素ウイスカをセラミックス材料として第 1の実施の形態で示した実験を行うことに よって求めたものである。なお、図 20中の線は、最小自乗法を用いて描いた近似曲 線である。この実験を行うに当たっては、下記の表 21に示すように混合量毎に抗折 試験片を作成し、抗折強度を求めた。 [0118] [表 21] FIG. 20 is a graph showing the relationship between the mixed amount of the silicon nitride force and the mixed amount of the silicon carbide force and the bending strength. The transverse rupture strength shown in FIG. 20 was obtained by performing the experiment shown in the first embodiment using silicon nitride force or carbon carbide whisker as a ceramic material. Note that the line in FIG. 20 is an approximated curve drawn using the least squares method. In carrying out this experiment, as shown in Table 21 below, a bending test piece was prepared for each mixing amount, and the bending strength was determined. [0118] [Table 21]
Figure imgf000057_0001
Figure imgf000057_0001
[0119] このように窒化ケィ素ゥイス力または炭化ケィ素ウイスカをセラミックス材料として使用 する場合には、図 20に示すように、混合量が 7%であれば抗折強度が 8MPaより大き くなることが判った。  [0119] As described above, when silicon nitride whisker or silicon carbide whisker is used as a ceramic material, as shown in Fig. 20, if the mixing amount is 7%, the transverse rupture strength is larger than 8MPa. It turns out.
したがって、上述したようにセラミックス材料として窒化ケィ素ゥイス力または炭化ケィ 素ウイスカを使用しても第 1の実施の形態を採るときと同等の効果を奏するといえる。  Therefore, as described above, it can be said that the same effect as when the first embodiment is adopted can be obtained even if a silicon nitride force or a silicon carbide whisker is used as the ceramic material.
[0120] (第 11の実施の形態) [0120] (Eleventh embodiment)
6チタン酸カリウムゥイス力または 8チタン酸カリウムウイスカを塩ィ匕カリウムに混合す ることにより、図 21に示すような抗折強度が得られた。  By mixing potassium hexatitanate force or potassium octa titanate whisker with potassium chloride, bending strength as shown in FIG. 21 was obtained.
図 21は 6チタン酸カリウムゥイス力の混合量および 8チタン酸カリウムゥイス力の混合 量と抗折強度との関係を示すグラフである。図 21に示す抗折強度は、 6チタン酸カリ ゥムゥイス力または 8チタン酸カリウムウイスカをセラミックス材料として第 1の実施の形 態で示した実験を行うことによって求めたものである。なお、図 21中の線は、最小自 乗法を用いて描いた近似曲線である。この実験を行うに当たっては、下記の表 22に [0121] [表 22] FIG. 21 is a graph showing the relationship between the mixing amount of potassium titanate powder force and the mixing amount of potassium potassium titanate powder force and bending strength. The transverse rupture strength shown in FIG. 21 was obtained by performing the experiment shown in the first embodiment using potassium hexa titanate force or potassium octa titanate whisker as a ceramic material. Note that the line in FIG. 21 is an approximate curve drawn using the least squares method. Table 22 below shows the results of this experiment. [0121] [Table 22]
OAVu Ζ9/vld0さ sfc 6992 OAVu Ζ9 / vld0 sfc 6992
Figure imgf000059_0001
Figure imgf000059_0001
[0122] このように 6チタン酸カリウムゥイス力または 8チタン酸カリウムウイスカをセラミックス 材料として使用する場合には、図 21に示すように、混合量が 7%であれば抗折強度 力 ^MPaより大きくなることが判った。 [0122] When potassium hexatitanate force or potassium octa titanate whisker is used as a ceramic material in this way, as shown in Fig. 21, if the mixing amount is 7%, the bending strength is larger than ^ MPa. It turned out to be.
したがって、上述したようにセラミックス材料として 6チタン酸カリウムゥイス力または 8 チタン酸カリウムウイスカを使用しても第 1の実施の形態を採るときと同等の効果を奏 するといえる。  Therefore, as described above, even if potassium hexatitanate power or potassium octa titanate whisker is used as the ceramic material, it can be said that the same effect as when the first embodiment is adopted can be obtained.
[0123] (第 12の実施の形態) (Twelfth Embodiment)
酸ィ匕亜鉛ウイスカを塩ィ匕カリウムに混合することにより、図 22に示すような抗折強度 が得られた。  The bending strength as shown in FIG. 22 was obtained by mixing Zinc whisker with potassium salt.
図 22は酸ィ匕亜鉛ウイス力の混合量と抗折強度との関係を示すグラフである。図 22 に示す抗折強度は、酸ィ匕亜鉛ウイスカをセラミックス材料として第 1の実施の形態で 示した実験を行うことによって求めたものである。なお、図 22中の線は、最小自乗法 を用いて描いた近似曲線である。この実験を行うに当たっては、下記の表 23に示す ように混合量毎に抗折試験片を作成し、抗折強度を求めた。  FIG. 22 is a graph showing the relationship between the mixing amount of the Zi-Dani zinc wiping force and the bending strength. The bending strength shown in FIG. 22 was obtained by performing the experiment shown in the first embodiment using zinc oxide whiskers as a ceramic material. Note that the line in FIG. 22 is an approximate curve drawn using the least squares method. In carrying out this experiment, as shown in Table 23 below, bending test pieces were prepared for each mixing amount, and the bending strength was determined.
[0124] [表 23] [0124] [Table 23]
Figure imgf000060_0001
Figure imgf000060_0001
このように酸ィ匕亜鉛ウイスカをセラミックス材料として使用する場合には、図 22に示 すように、混合量を 15%とすることによって、抗折強度の高いソルト中子を形成するこ とがでさる。  In the case of using the Zi-Dai zinc whisker as a ceramic material in this way, as shown in Fig. 22, by setting the mixing amount to 15%, a salt core having high bending strength can be formed. Monkey
したがって、上述したようにセラミックス材料として酸ィ匕亜鉛ウイスカを使用しても第 1 の実施の形態を採るときと同等の効果を奏するといえる。 [0126] 上述した第 9一第 12の実施の形態で示した全てのゥイス力の混合量と抗折強度と の関係を図 23に示す。図 23から判るように、上述したゥイス力のうち、抗折強度が最 も高いソルト中子を形成することができるものはホウ酸アルミニウムウイス力であった。 また、各セラミックスゥイス力の混合量と流動性の関係は、図 24に示すようになること が判った。図 24は、セラミックスゥイス力と塩ィ匕カリウムとをタンマン管に入れて 800°C で溶解した後、充分に攪拌し、タンマン管を下方に向けて返す実験によって求めた。 この実験で溶湯力 Sタンマン管力も流れ出るものを「流動性あり」とし、そうでないものを 「流動性なし」とした。 Therefore, it can be said that the same effect as when the first embodiment is adopted can be obtained even when the Zidani zinc whisker is used as the ceramic material as described above. FIG. 23 shows the relationship between the mixing amount of all the forces and the bending strength shown in the ninth to twelfth embodiments described above. As can be seen from FIG. 23, the aluminum borate wiping force capable of forming a salt core having the highest bending strength among the above-mentioned die forces. Further, it was found that the relationship between the mixing amount of each ceramic sheet force and the fluidity was as shown in FIG. In FIG. 24, the ceramics power and potassium salt were placed in a Tamman tube and melted at 800 ° C., then sufficiently stirred, and the tube was turned back downward. In this experiment, those that also flowed out of the molten metal S-Tamman tube were rated “fluid” and those that did not flow were “fluid”.
[0127] 上述した各実施の形態においては、ソルト材料として塩ィ匕カリウムを使用する例を 示したが、ソルト材料は、塩ィ匕カリウムの他に、ナトリウム塩ィ匕物、カリウムまたはナトリ ゥムの臭化物、炭酸塩、硫酸塩のうちいずれか一つを使用することができる。ナトリウ ム塩ィ匕物としては、塩ィ匕ナトリウム (NaCl)を使用することができる。カリウムまたはナト リウムの臭化物としては、臭化カリウム (KBr)または臭化ナトリウム (NaBr)を使用す ることができる。炭酸塩としては炭酸ナトリウム (Na CO )と炭酸カリウム (K CO )とを  [0127] In each of the above-described embodiments, an example is described in which potassium salt is used as the salt material. However, in addition to potassium salt, the salt material may be sodium salt, potassium or sodium salt. Any one of bromide, carbonate, and sulfate can be used. As sodium salty sardine, sodium salty sardine (NaCl) can be used. As potassium or sodium bromide, potassium bromide (KBr) or sodium bromide (NaBr) can be used. As carbonates, sodium carbonate (Na CO) and potassium carbonate (K CO)
2 3 2 3 使用することができる。硫酸塩としては硫酸カリウム (K so )を使用することができる  2 3 2 3 can be used. Potassium sulfate (K so) can be used as sulfate
2 4  twenty four
[0128] (第 13の実施の形態) (Thirteenth Embodiment)
ソルト材料として臭化カリウムまたは臭化ナトリウムを使用し、これらのソルト材料にホ ゥ酸アルミニウムウイスカを混合することにより、図 25に示すような抗折強度が得られ た。  By using potassium bromide or sodium bromide as a salt material and mixing aluminum borate whiskers with these salt materials, a bending strength as shown in FIG. 25 was obtained.
図 25は臭化カリウムまたは臭化ナトリウムとホウ酸アルミニウムウイス力の混合量と抗 折強度との関係を示すグラフである。同図中には、異なるソルト材料にホウ酸アルミ- ゥムゥイス力を混合させた場合の抗折強度も記載した。この異なるソルト材料としては 、塩ィ匕カリウムと塩ィ匕ナトリウムとを使用した。また、図 25中には、各ソルト材料の固体 状態での密度 pを記載した。臭化カリウムの固体状態での密度 pは 2. 75g/cm3 であり、臭化ナトリウムの固体状態の密度 Pは 3. 21g/cm3であり、塩ィ匕カリウムの 固体状態での密度 pは 1. 98g/cm3であり、塩ィ匕ナトリウムの固体状態での密度 p は 2. 17g/cm3である c [0129] 図 25に示す抗折強度は、ホウ酸アルミニウムウイスカをセラミックス材料として第 1の 実施の形態で示した実験を行うことによって求めたものである。なお、図 25中の線は 、最小自乗法を用いて描いた近似曲線である。この実験を行うに当たっては、下記の 表 24—表 27に示すように混合量毎に抗折試験片を作成し、抗折強度を求めた。下 記の表 24は臭化カリウムにホウ酸アルミニウムを混合させた場合の抗折強度を示し、 表 25は臭化ナトリウムにホウ酸アルミニウムを混合させた場合の抗折強度を示す。 FIG. 25 is a graph showing the relationship between the mixing amount of potassium bromide or sodium bromide and aluminum borate wiping force and the bending strength. The drawing also shows the transverse rupture strength when aluminum borate-moisture force is mixed with different salt materials. As these different salt materials, potassium salt and sodium salt were used. FIG. 25 shows the density p of each salt material in the solid state. Density p in the solid state of the potassium bromide is 2. 75g / cm 3, a density P of the solid state sodium bromide is 3. 21g / cm 3, the density in the solid state of Shioi匕potassium p Is 1.98 g / cm 3 and the density p in the solid state of sodium salt is 2.17 g / cm 3 c The bending strength shown in FIG. 25 was obtained by performing the experiment shown in the first embodiment using aluminum borate whiskers as a ceramic material. Note that the line in FIG. 25 is an approximate curve drawn using the least squares method. In conducting this experiment, bending test pieces were prepared for each mixing amount as shown in Tables 24 to 27 below, and bending strength was determined. Table 24 below shows the transverse rupture strength when aluminum borate is mixed with potassium bromide, and Table 25 shows the transverse rupture strength when aluminum borate is mixed with sodium bromide.
[0130] 表 26は塩ィ匕カリウムにホウ酸アルミニウムを混合させた場合の抗折強度を示す。表 26は、表 20に記載したものにホウ酸アルミニウムウイス力の混合量力^の場合と、ホウ 酸アルミニウムウイス力の混合量が 3wt%の場合との二つの実験結果を追カ卩したもの である。表 27は塩ィ匕ナトリウムにホウ酸アルミニウムを混合させた場合の抗折強度を 示す。  [0130] Table 26 shows the transverse rupture strength when aluminum borate was mixed with potassium salt. Table 26 shows the results of two experiments in which the mixing amount of aluminum borate whissing force and the mixing amount of aluminum borate whissing force are 3 wt% in Table 20. is there. Table 27 shows the transverse rupture strength when aluminum borate was mixed with sodium chloride.
この実施の形態を採るに当たって使用したホウ酸アルミニウムウイスカは、第 9の実 施の形態(図 19、表 19参照)で説明したものと同一のものである。  The aluminum borate whiskers used in adopting this embodiment are the same as those described in the ninth embodiment (see FIG. 19 and Table 19).
[0131] [表 24] [0131] [Table 24]
Figure imgf000062_0001
Figure imgf000062_0001
[0132] [表 25] 組成 坑折荷重 抗折強度  [Table 25] Composition Bending load Bending strength
組成 wt% N MPa  Composition wt% N MPa
NaBr 0 227.20 1.89  NaBr 0 227.20 1.89
NaBr+3%アルポ M20 3 1210.75 10.09  NaBr + 3% Alpo M20 3 12 10.75 10.09
NaBr+3%アルポ M20 3 1424.50 1 1.87  NaBr + 3% Alpo M20 3 1424.50 1 1.87
NaBr+3%ァルポ M20 3 1527.07 12.73  NaBr + 3% Alpo M20 3 1527.07 12.73
NaBr+3%ァルポ M20 3 2041.42 17.01  NaBr + 3% Alpo M20 3 2041.42 17.01
NaBr+5%アルボ M20 5 2098.85 17.49  NaBr + 5% Arbo M20 5 2098.85 17.49
NaBr+8%ァルポ M20 8 2531.25 21.09  NaBr + 8% Alpo M20 8 2531.25 21.09
NaBr+10%アルボ M20 10 2554.40 21.29 [0133] [表 26] NaBr + 10% Arbo M20 10 2554.40 21.29 [0133] [Table 26]
Figure imgf000063_0001
Figure imgf000063_0001
[0134] [表 27]  [Table 13]
Figure imgf000063_0002
Figure imgf000063_0002
[0135] このように臭化カリウムまたは臭化ナトリウムにホウ酸アルミニウムウイスカを混合させ る場合には、図 25に示すように、混合量力 ¾wt%以上であれば抗折強度が 8MPaよ り大きくなることが判った。また、図 25においては、塩ィ匕ナトリウムにホウ酸アルミニゥ ムゥイス力を混合させることによって、抗折強度の高いソルト中子を形成することがで さることが分かる。  When aluminum borate whiskers are mixed with potassium bromide or sodium bromide, as shown in FIG. 25, if the mixing power is ¾wt% or more, the transverse rupture strength becomes larger than 8 MPa. It turns out. In addition, in FIG. 25, it can be seen that a salt core having high bending strength can be formed by mixing aluminum borate with sodium salt sodium.
したがって、上述したようにソルト材料として臭化カリウムまたは臭化ナトリウムを使 用しても第 1の実施の形態を採るときと同等の効果を奏するといえる。 Therefore, potassium bromide or sodium bromide is used as the salt material as described above. Thus, it can be said that the same effect as when the first embodiment is adopted can be obtained.
[0136] また、ソルト材料は、上述したように単一の塩ィ匕物、臭化物または塩を使用する他に 、カリウム塩ィ匕物またはナトリウム塩ィ匕物と、カリウムまたはナトリウムの炭酸塩あるいは 硫酸塩との混合塩を使用することができる。例えば、塩ィ匕カリウムと炭酸ナトリウムとの 混合塩や、塩ィ匕ナトリウムと炭酸ナトリウムとの混合塩や、塩ィ匕ナトリウムと炭酸力リウ ムとの混合塩や、塩ィ匕カリウムと硫酸カリウムとの混合塩を使用することができる。 [0136] Further, as described above, in addition to using a single salty salt, bromide or salt as described above, a potassium salty salt or a sodium salty salt, a potassium or sodium carbonate or Mixed salts with sulfates can be used. For example, a mixed salt of potassium salt and sodium carbonate, a mixed salt of sodium salt of sodium and sodium carbonate, a mixed salt of sodium salt of sodium chloride and carbonated lithium, or a mixed salt of potassium salt and potassium sulfate And a mixed salt thereof.
[0137] このようにソルト材料を混合塩とすることにより、従来力もよく知られているように融点 の低いソルト中子を形成することができる。このため、ソルト中子を铸造するときの温 度を低くすることができ、その分、铸造装置の消費電力を低減できるようになり、ソルト 中子を製造するためのコストを低減することができる。また、上記のような 4種類の混 合塩によって形成されたソルト中子は、铸造した中子の表面にしわが発生し難くなる ことも半 IJつた。 [0137] By making the salt material a mixed salt in this way, a salt core having a low melting point can be formed, as is well known in the art. For this reason, the temperature at the time of manufacturing the salt core can be lowered, and accordingly, the power consumption of the manufacturing apparatus can be reduced, and the cost for manufacturing the salt core can be reduced. . In addition, salt cores formed by the above four kinds of mixed salts are less likely to cause wrinkles on the surface of the manufactured core.
産業上の利用可能性  Industrial applicability
[0138] 本発明に係る铸造用中子は、ダイカスト铸造金型に用いて有用である。 [0138] The manufacturing core according to the present invention is useful for a die-casting mold.

Claims

請求の範囲 The scope of the claims
[1] ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫 酸塩のうちいずれか一つのものであり、前記セラミックス材料は、人工的に合成された 密度が 2. 2gZcm3より大きく 4gZcm3以下の粒状を呈するものである铸造用中子。 [1] A manufacturing core obtained by forming a mixed material of a salt material and a ceramic material by manufacturing, wherein the salt material includes potassium or sodium chloride, bromide, carbonate, or sulfate. of be of any one, the ceramic material is铸造core for artificially synthesized density 2. is one that exhibits a large 4GZcm 3 following granular than 2gZcm 3.
[2] 請求項 1記載の铸造用中子において、セラミックス材料は、密度が 2. 79g/cm3- 3. 15g/cm3の合成ムライトである铸造用中子。 [2] In铸造for core according to claim 1, ceramic material has a density of 2. 79g / cm 3 - 3.铸造core for a composite mullite 15 g / cm 3.
[3] 請求項 1記載の铸造用中子において、セラミックス材料は、密度が 2. 93gZcm3の ホウ酸アルミニウムである铸造用中子。 3. The manufacturing core according to claim 1, wherein the ceramic material is aluminum borate having a density of 2.93 gZcm 3 .
[4] ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫 酸塩のうちいずれか一つのものであり、前記セラミックス材料は、人工的に合成された 粒径が 150 μ m以下で粒状を呈するものである铸造用中子。  [4] A manufacturing core obtained by manufacturing a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or sodium chloride, bromide, carbonate, or sulfate. Any one of the above, wherein the ceramic material has an artificially synthesized particle diameter of 150 μm or less and has a granular shape.
[5] ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫 酸塩のうちいずれか一つのものであり、前記セラミックス材料は、合成ムライト、ホウ酸 アルミニウム、炭化ホウ素、窒化ケィ素、炭化ケィ素、窒化アルミニウム、チタン酸アル ミニゥム、コージ一ライト、アルミナのうちいずれか一つの粒状を呈するものである铸 造用中子。  [5] A production core formed by production of a mixed material of a salt material and a ceramic material, wherein the salt material is made of potassium or sodium chloride, bromide, carbonate, or sulfate. The ceramic material is any one of synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, aluminum nitride, aluminum titanate, cordierite, and alumina. A core for production.
[6] ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物、臭化物、炭酸塩、硫 酸塩のうちいずれか一つのものであり、前記セラミックス材料は、ホウ酸アルミニウム、 窒化ケィ素、炭化ケィ素、 6チタン酸カリウム、 8チタン酸カリウム、酸ィ匕亜鉛のうちい ずれか一つのウイスカである铸造用中子。  [6] A manufacturing core obtained by forming a mixed material of a salt material and a ceramic material by manufacturing, wherein the salt material is formed of potassium or sodium chloride, bromide, carbonate, or sulfate. And the ceramic material is any one of aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, potassium dititanate, and zinc oxide.铸 Building core.
[7] 請求項 6記載の铸造用中子にぉ 、て、セラミックス材料がホウ酸アルミニウムウイス 力である铸造用中子。  [7] The structural core according to claim 6, wherein the ceramic material is aluminum borate wisdom.
[8] ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物に対してカリウムまた はナトリウムの炭酸塩あるいは硫酸塩を加えた混合塩であり、前記セラミックス材料は[8] A manufacturing core obtained by forming a mixed material of a salt material and a ceramic material by manufacturing, wherein the salt material is potassium or sodium with respect to potassium or sodium chloride. Is a mixed salt obtained by adding sodium carbonate or sulfate, and the ceramic material is
、人工的に合成された密度が 2. 2g/cm3より大きく 4g/cm3以下の粒状を呈するも のである铸造用中子。 , Artificially synthesized density 2. 2 g / cm 3 greater than 4g / cm 3 is also of a is铸造for core exhibits the following granular.
請求項 8記載の铸造用中子において、セラミックス材料は、密度が 2. 79g/cm3- 3. 15g/cm3の合成ムライトである铸造用中子。 In铸造for core according to claim 8, the ceramic material has a density of 2. 79g / cm 3 - 3.铸造core for a composite mullite 15 g / cm 3.
請求項 8記載の铸造用中子において、セラミックス材料は、密度が 2. 93g/cm3の ホウ酸アルミニウムである铸造用中子。 9. The manufacturing core according to claim 8, wherein the ceramic material is aluminum borate having a density of 2.93 g / cm 3 .
ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物に対してカリウムまた はナトリウムの炭酸塩あるいは硫酸塩を加えた混合塩であり、前記セラミックス材料は 、人工的に合成された粒径が 150 m以下で粒状を呈するものである铸造用中子。 ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物に対してカリウムまた はナトリウムの炭酸塩あるいは硫酸塩を加えた混合塩であり、前記セラミックス材料は 、合成ムライト、ホウ酸アルミニウム、炭化ホウ素、窒化ケィ素、炭化ケィ素、窒化アル ミニゥム、チタン酸アルミニウム、コージ一ライト、アルミナのうちいずれか一つの粒状 を呈するものである铸造用中子。  A forging core obtained by forming a mixed material of a salt material and a ceramic material by forging, wherein the salt material is potassium or sodium carbonate or sulfate against potassium or sodium chloride. Wherein the ceramic material has an artificially synthesized particle diameter of 150 m or less and has a granular shape. A forging core obtained by forming a mixed material of a salt material and a ceramic material by forging, wherein the salt material is potassium or sodium carbonate or sulfate against potassium or sodium chloride. Wherein the ceramic material is any one of synthetic mullite, aluminum borate, boron carbide, silicon nitride, silicon carbide, aluminum nitride, aluminum titanate, cordierite, and alumina. Manufacturing cores that are granular.
ソルト材料とセラミックス材料との混合材料を铸造によって形成してなる铸造用中子 であって、前記ソルト材料は、カリウムまたはナトリウムの塩ィ匕物に対してカリウムまた はナトリウムの炭酸塩あるいは硫酸塩を加えた混合塩であり、前記セラミックス材料は 、ホウ酸アルミニウム、窒化ケィ素、炭化ケィ素、 6チタン酸カリウム、 8チタン酸力リウ ム、酸ィ匕亜鉛のうちいずれか一つのウイスカである铸造用中子。  A forging core obtained by forming a mixed material of a salt material and a ceramic material by forging, wherein the salt material is potassium or sodium carbonate or sulfate against potassium or sodium chloride. And the ceramic material is a whisker of one of aluminum borate, silicon nitride, silicon carbide, potassium hexatitanate, lithium titanate, and zinc oxide.铸 Building core.
請求項 13記載の铸造用中子において、セラミックス材料がホウ酸アルミニウムウイス 力である铸造用中子。  14. The manufacturing core according to claim 13, wherein the ceramic material is aluminum borate wisdom.
請求項 8な ヽし請求項 14のうち ヽずれか一つの铸造用中子にお!、て、混合塩を塩 化カリウムと炭酸ナトリウムとによって形成してなる铸造用中子。  Claim 18. The manufacturing core according to any one of Claims 14 to 14, wherein the mixed salt is formed by potassium chloride and sodium carbonate.
PCT/JP2004/013669 2003-09-17 2004-09-17 Core for use in casting WO2005028142A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005514063A JP4516024B2 (en) 2003-09-17 2004-09-17 Casting core
DE602004031244T DE602004031244D1 (en) 2003-09-17 2004-09-17 CORE FOR USE IN CASTING
EP04773288A EP1674173B1 (en) 2003-09-17 2004-09-17 Core for use in casting
AT04773288T ATE496713T1 (en) 2003-09-17 2004-09-17 CORE FOR USE IN CASTING
US11/377,125 US20060185815A1 (en) 2003-09-17 2006-03-16 Expandable core for use in casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-324778 2003-09-17
JP2003324778 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005028142A1 true WO2005028142A1 (en) 2005-03-31

Family

ID=34372754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013669 WO2005028142A1 (en) 2003-09-17 2004-09-17 Core for use in casting

Country Status (6)

Country Link
US (1) US20060185815A1 (en)
EP (2) EP1674173B1 (en)
JP (1) JP4516024B2 (en)
AT (1) ATE496713T1 (en)
DE (1) DE602004031244D1 (en)
WO (1) WO2005028142A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136032A1 (en) * 2006-05-19 2007-11-29 National University Corporation Tohoku University Salt core for casting

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574476B2 (en) * 2008-05-09 2013-11-05 Buhler Ag Method of manufacturing expendable salt core for casting
ITMI20120950A1 (en) 2012-06-01 2013-12-02 Flavio Mancini METHOD AND PLANT TO OBTAIN DIE-CASTING JETS IN LIGHT ALLOYS WITH NON-METALLIC SOURCES
CN104812511B (en) * 2012-11-27 2017-03-01 卡明斯公司 Stable electromotor casting core assembly
KR102478505B1 (en) 2016-12-23 2022-12-15 현대자동차주식회사 Saltcore For Die-casting with Aluminum and the Method Therefor
RU2731996C1 (en) * 2020-02-03 2020-09-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Additive for dissolution of rods in hidden hollows of casts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839696B1 (en) * 1969-12-27 1973-11-26
JPS5150218A (en) * 1974-10-29 1976-05-01 Kobe Steel Ltd SUIYOSE INAKAGO
JPS5210803B1 (en) * 1968-01-20 1977-03-26
JPH04276273A (en) * 1991-02-28 1992-10-01 Ee M Technol:Kk Monobloc molding method for golf club head

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073770A (en) * 1961-04-24 1963-01-15 Bell Telephone Labor Inc Mullite synthesis
GB1055737A (en) * 1964-03-25 1967-01-18 Wellworthy Ltd Improvements in casting processes
GB1111225A (en) * 1965-07-26 1968-04-24 Wellworthy Ltd Improvements in casting processes
GB1179241A (en) * 1966-07-15 1970-01-28 Unilever Ltd Soluble Cores.
JPS4817570B1 (en) 1969-05-09 1973-05-30
JPS4915140B1 (en) * 1969-10-02 1974-04-12
JPS4839696A (en) 1971-09-27 1973-06-11
US3963818A (en) 1971-10-29 1976-06-15 Toyo Kogyo Co., Ltd. Water soluble core for pressure die casting and process for making the same
JPS5121863B2 (en) 1972-06-05 1976-07-06
JPS4946450A (en) 1972-09-06 1974-05-04
JPS5215446B2 (en) 1974-04-19 1977-04-30
DE2917208A1 (en) 1979-04-27 1980-12-04 Alcan Aluminiumwerke CASTING CORE FOR GENERATING HARD ACCESSIBLE CAVES IN CASTING PIECES, AND METHOD FOR THE PRODUCTION THEREOF
US4446906A (en) 1980-11-13 1984-05-08 Ford Motor Company Method of making a cast aluminum based engine block
JPS60500906A (en) * 1983-03-28 1985-06-20 パ−ク ケミカル コムパニ− Pressure molding method using salt core and composition for producing core
GB8314089D0 (en) * 1983-05-20 1983-06-29 Doulton Ind Products Ltd Moulding
GB8409044D0 (en) * 1984-04-07 1984-05-16 Gkn Technology Ltd Casting metal articles
US4840219A (en) 1988-03-28 1989-06-20 Foreman Robert W Mixture and method for preparing casting cores and cores prepared thereby
US5165464A (en) 1991-09-27 1992-11-24 Brunswick Corporation Method of casting hypereutectic aluminum-silicon alloys using a salt core
US5303761A (en) 1993-03-05 1994-04-19 Puget Corporation Die casting using casting salt cores
US5942168A (en) * 1994-01-06 1999-08-24 Otsuka Kagaku Kabushiki Kaisha Resin compound for molding die, molding die and material molding by the molding die
US5803151A (en) 1996-07-01 1998-09-08 Alyn Corporation Soluble core method of manufacturing metal cast products
KR20000006623A (en) * 1999-07-06 2000-02-07 이인호 A method for manufacturing a disintegrative core for a high pressure casting, a core and a method for extracting the core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210803B1 (en) * 1968-01-20 1977-03-26
JPS4839696B1 (en) * 1969-12-27 1973-11-26
JPS5150218A (en) * 1974-10-29 1976-05-01 Kobe Steel Ltd SUIYOSE INAKAGO
JPH04276273A (en) * 1991-02-28 1992-10-01 Ee M Technol:Kk Monobloc molding method for golf club head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136032A1 (en) * 2006-05-19 2007-11-29 National University Corporation Tohoku University Salt core for casting
EP2022578A1 (en) * 2006-05-19 2009-02-11 National University Corporation Tohoku Unversity Salt core for casting
JPWO2007136032A1 (en) * 2006-05-19 2009-10-01 国立大学法人東北大学 Salt core for casting
JP4685934B2 (en) * 2006-05-19 2011-05-18 国立大学法人東北大学 Salt core for casting
EP2022578A4 (en) * 2006-05-19 2013-08-28 Nat University Corp Tohoku Unversity Salt core for casting

Also Published As

Publication number Publication date
US20060185815A1 (en) 2006-08-24
EP1674173B1 (en) 2011-01-26
EP2316592A1 (en) 2011-05-04
EP1674173A4 (en) 2006-12-20
EP1674173A1 (en) 2006-06-28
JPWO2005028142A1 (en) 2007-11-15
ATE496713T1 (en) 2011-02-15
DE602004031244D1 (en) 2011-03-10
JP4516024B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CN105531051B (en) Ceramic core component, the method for making core, the method for cast hollow titanium-containing articles and hollow titanium-containing articles
TW495399B (en) A reinforced ceramic shell mold, and related processes
CN110423915B (en) Preparation method of aluminum-based composite material
WO2001002112A1 (en) Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same
CN110438379B (en) Preparation method of lithium-containing magnesium/aluminum-based composite material
US7204955B2 (en) Casting ladle
CN103128227B (en) Method for manufacturing shell surface layer formed by stainless steel precision casting
US20130068129A1 (en) Infiltrate-stabilized salt cores
CN105745040B (en) The method of the mold and surface coating composition and cast titanium and titanium aluminide alloy of silicon carbide-containing
US20060185815A1 (en) Expandable core for use in casting
Tu et al. Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings
EP2556907A2 (en) Manufacturing process of composite plates made of magnesium alloys and ceramic foam and composite plates
CN106536450A (en) Castable refractory material
CN110128144A (en) A kind of metal and ceramic composite
JP2986785B1 (en) Castable refractory and refractory brick using the same
Shinde et al. Manufactoring of aluminium matrix composite using stir casting method
JP5601833B2 (en) Method for producing metal-ceramic composite material
Abdulsalam et al. The influence of silicon carbide particulate loading on tensile, compressive and impact strengths of Al-Sicp composite for sustainable development
JP2000103684A (en) Castable refractory and firebrick using the same
Reddy Impact of Boron Coated Investment Shell Moulds on Surface Modification of Hypoeutectic Al-Si Alloys
Ali et al. A review on the effects of ceramic sand particles on most casting defects
WO2001045876A1 (en) Crack resistant shell mold and method
JP2004225145A (en) Method for manufacturing ceramic-metal matrix composite
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
WO2016176758A1 (en) Article made from refractory material for contact with a liquid metal or alloy, a method for manufacture, use and method of use of same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514063

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11377125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773288

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773288

Country of ref document: EP