WO2005023920A1 - Verfahren zur herstellung von expandierten thermoplastischen polyurethanen - Google Patents

Verfahren zur herstellung von expandierten thermoplastischen polyurethanen Download PDF

Info

Publication number
WO2005023920A1
WO2005023920A1 PCT/EP2004/009570 EP2004009570W WO2005023920A1 WO 2005023920 A1 WO2005023920 A1 WO 2005023920A1 EP 2004009570 W EP2004009570 W EP 2004009570W WO 2005023920 A1 WO2005023920 A1 WO 2005023920A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpu
weight
thermoplastic
microspheres
blowing agents
Prior art date
Application number
PCT/EP2004/009570
Other languages
English (en)
French (fr)
Inventor
Marcus Leberfinger
Carsten GÜNTHER
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE112004001516T priority Critical patent/DE112004001516D2/de
Publication of WO2005023920A1 publication Critical patent/WO2005023920A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • Thermoplastic polyurethanes are semi-crystalline materials and belong to the class of thermoplastic elastomers. They are characterized by good strength, abrasion, tear resistance and chemical resistance, among other things, and can be produced in almost any hardness by suitable raw material composition.
  • the production takes place according to the known processes in the one-shot or prepolymer process on the belt system or on the reaction extruder.
  • the reaction components diisocyanate, long-chain diol and short-chain diol (chain extender) are combined together or in a specific order and brought to reaction.
  • the reactants are mixed in a ratio of NCO groups to the sum of all hydrogen atoms reacting with the NCO groups of 1: 0.9-1.2, preferably 1: 0.95-1.05, in particular in a ratio of 1: 1.
  • TPE thermoplastics
  • blowing agents come here as blowing agents, in particular those which split off gases under thermal decomposition, such as citric acid, hydrogen carbonates or azodicarbonamides, such as Celegoene; Tracel; Hydrocerols etc., ("Hydrocerols: chemical blowing and nucleating agents for plastics; processing instructions; injection molding; rigid PVC foam; foam extrusion; product range; Clariant March 2000";”new blowing agent developments in the field of injection molding; Lübke, G .; Holzberg, T .; Seminars on plastics processing IKV; February 4, 2003 ”) or by physical blowing agents, mostly inert liquids that evaporate under the foaming conditions, or expandable microspheres (eg Expancel ® from Akzo or microspheres from Lehmann & Voss).
  • thermal decomposition such as citric acid, hydrogen carbonates or azodicarbonamides, such as Celegoene; Tracel; Hydrocerols etc.
  • Hydrocerols chemical blowing and
  • thermoplastic polyurethanes with blowing agents.
  • chemical blowing agents lead to a comparatively very coarse foam structure and to an increased formation of voids.
  • Expandable microspheres are hollow microspheres that consist of a thin plastic shell, for example polyacrylonitrile or copolymers thereof. These hollow microspheres are filled with gas, usually with hydrocarbons. The temperature acting in the thermoplastic processing softens the plastic shell and at the same time expands the enclosed gas. This leads to an expansion of the microspheres.
  • EP-A-1174459 the process described in WO 00/44821 is improved by adding a flow agent to the TPU. This was intended to improve the surface of the moldings and reduce the molding time.
  • the blowing agents can be mixed into the base TPU as masterbatches, ie mixtures of the blowing agents with a carrier, preferably a thermoplastic, so-called concentrates, or as a powder. In the latter case it makes sense to add a binding agent (e.g. mineral oil, paraffin oil) to the TPU granulate in order to allow the powder to adhere to the granulate.
  • a binding agent e.g. mineral oil, paraffin oil
  • the described uncontrolled powder agglomerates are also often not sufficiently homogenized or digested during plasticization and lead to bright spots in the finished part and on the finished part surface.
  • the object of this invention was to develop a trouble-free production process in the production of expanded TPU, in which the finished parts have a constant quality and a uniform density and which is easy to operate.
  • blowing agents to be metered in the form of masterbatches or as pure powder are not mixed with the TPU granules in advance, but rather the blowing agent metering is carried out only directly before or during the thermoplastic processing, directly on the plant, in which the expanded parts are produced.
  • the invention accordingly relates to a method for producing expanded TPU, comprising the steps
  • expandable microspheres in the form of powder or masterbatch are used as blowing agents and the blowing agents are mixed with the TPUs directly at the plant in which the thermoplastic processing is carried out.
  • the systems on which expandable TPU is processed are mostly u ⁇ ? usual and known injection molding or extrusion systems.
  • the blowing agent and basic TPU are metered and mixed in particular in a single unit, for example a KK type premixer; Throughput 20 kg / h; Shot weight up to 200 g; Manufacturer company Koch-Technik. This unit is mounted on the intake of the palstification unit.
  • the blowing agent is metered continuously into the system and mixed with the TPU, which is also metered continuously.
  • the blowing agent can be fed in at the feed zone and / or in one of the subsequent screw zones, preferably at the feed of the injection molding machine or the extruder.
  • the expandable microspheres used for the process according to the invention are generally known and commercially available. Expancel ® type microspheres are preferred, in which the microspheres are filled with hydrocarbons.
  • the expandable microspheres used as blowing agents have a TMA density of less than 10 kg / m 3 , preferably 2-10 kg / m 3 and particularly preferably 2-7 kg / m 3 .
  • Expanded TPUs produced with such blowing agents have a particularly fine cell structure, a significantly reduced formation of voids and practically no sink marks.
  • the processing window for example with regard to the temperature, is significantly larger than when using expandable microspheres with a different TMA density.
  • the expansion capacity of the microspheres can be described with the TMA density [kg / m 3 ].
  • the TMA density is the minimum density that can be achieved at a certain temperature T max under normal pressure before the microspheres collapse.
  • the TMA density can be determined using a Stare Thermal Analysis System from Mettler Toledo at a heating rate of 20 ° C./min.
  • the expandable TPUs produced by the process according to the invention preferably have a density of ⁇ 1.2 g / cm 3 , preferably 0.3-1.0 g / cm 3 , particularly preferably 0.4-0.8 g / cm 3 .
  • microsheres used according to the invention preferably have a diameter between 20 ⁇ m and 40 ⁇ m.
  • Corresponding microspheres are available from Akzo Nobel, Casco Products GmbH, Essen under the brand Expancel® 093 DU 120 (powder).
  • thermoplastic processing means any processing which is associated with melting the TPU.
  • the thermoplastic processing is carried out at 80-240 ° C., preferably at 120-230 ° C., particularly preferably at 170-220 ° C., on the person skilled in the art known injection molding and extrusion systems or powder sintering systems.
  • the content of expandable microspheres in the mixture depends on the desired density of the expanded TPU.
  • Expandable TPU or expanded TPU blends which contain the following components are particularly preferred: 85% by weight to 99.5% by weight, preferably between 90% by weight and 99.5% by weight, particularly preferably between 92% by weight and 98% by weight TPU or blend containing TPU, 0.5% by weight to 15% by weight, preferably between 2% by weight and 8% by weight Microspheres masterbatch, 0 to 10% by weight, preferably 0.1% to 2% by weight
  • Dye e.g. commonly known black paste or dye additions in the form of
  • microspheres masterbatch preferably contains:
  • Carrier preferably thermoplastic carrier, for example the carrier materials shown later, particularly preferably EVA (ethylene vinyl acetate).
  • the expandable microspheres used can be in the form of powder, on the one hand, the application to the TPU granules being carried out with and without a binder, such as 0.05-2% by weight of mineral or paraffin oil, or, on the other hand, preferably as masterbatches.
  • a binder such as 0.05-2% by weight of mineral or paraffin oil, or, on the other hand, preferably as masterbatches.
  • Masterbatch is understood to mean that the expandable microspheres in a carrier, for example binders, waxes or a thermoplastic, such as TPU, ethylene vinyl acetate (EVA), polyvinyl chloride, polyethylene, polypropylene, polyester, polystyrene, or thermoplastic rubber, or blends thereof, preferably a carrier with a melt index MFR; 190 ° C / 2.16 kg; ASTM D 1238) from 5 to 700 g / 10 min, preferably 50 to 600 g / 10 min, particularly preferably 150 to 500 g / 10 min and a melting point between 60 and 110 ° C., particularly preferably EVA with a melt index MFR : 80-800 g / 10 min; 125 ° C / 325 g; ASTM D 1238 are bound in granular form.
  • a carrier for example binders, waxes or a thermoplastic, such as TPU, ethylene vinyl acetate (EVA), polyvinyl chloride, poly
  • blowing agents can also be used.
  • chemical blowing agents especially those which split off under thermal decomposition gases, such as citric acid, hydrogen or azodicarboxamides as Celegoene ® Trace ®!, Hydrocerole ®, or physical blowing agent, usually inert, called on VerDumbedingun- evaporating liquids, for use.
  • TPU The usual and known compounds can be used as the TPU, as described, for example, in the plastics handbook, volume 7 "Polyurethane", Carl Hanser Verlag, Kunststoff, Vienna, 3rd edition 1993, pages 455 to 466.
  • TPU are preferably used which have a melt index or MFR 190 ° C / 3.8 kg; DIN EN 1133 from 1 - 350 g / 10 min, preferably from 30 - 150 g / 10 min.
  • MFR melt index
  • DIN EN 1133 from 1 - 350 g / 10 min, preferably from 30 - 150 g / 10 min.
  • use of TPU for expandable or expanded TPU is not limited to a specific MFR.
  • TPU can be understood to mean plasticizer-free and plasticizer-containing TPUs, in particular those with a content of 0-50% by weight, based on the weight of the mixture, of conventional plasticizers.
  • Compounds known for this purpose, such as phthalates and in particular benzoates, are generally suitable as plasticizers.
  • blends of TPU with up to 70% by weight, based on the weight of the blend, of a further plastic from the group of thermoplastic materials, in particular from the group of thermoplastic elastomers or rubbers can also be present for the process according to the invention.
  • Mixtures containing TPU and other thermoplastic elastomers between 99% by weight and 50% by weight of TPU and between 1% by weight and 50% by weight of another thermoplastic elastomer are preferred, particularly preferably between 90% by weight and 70 % By weight of TPU and between 10% by weight and 30% by weight of another thermoplastic elastomer.
  • z. B. rubber e.g. Butadiene-acrylonitrile copolymers, for use.
  • the TPU is produced by the customary process by reacting diisocyanates with compounds having at least two hydrogen atoms reactive with isocyanate groups, preferably difunctional alcohols.
  • Typical aromatic, aliphatic and / or cycloaliphatic diisocyanates for example diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), tri, tetra, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2 -Methyl-pentamethylene-diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1, 4-cyclohexane diisocyanate, 1-methyl-2,4- and / or -2,6-cyclohexane diisocyanate, 4,4'-, 2,4
  • Well-known polyhydroxyl compounds with molecular weights of 500 to 8000, preferably 600 to 6000, in particular 800 to 4000, and preferably an average functionality of 1.8 to 2.6, preferably 1.9 to 2.2, can be used as compounds which are reactive toward isocyanates , in particular 2 are used, for example polyesterols, polyetherols and / or polycarbonate diols. Polyester diols which are obtainable by reacting butanediol and hexanediol as diol with adipic acid as dicarboxylic acid are preferably used as (b), the weight ratio of butanediol to hexanediol preferably being 2 to 1.
  • polytetrahydrofuran with a molecular weight of 750 to 2500 g / mol, preferably 750 to 1200 g / mol.
  • chain extenders for example diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical, in particular ethylene glycol and / or 1,4-butanediol, and / or hexanediol and / or di- and / or tri- oxyalkylene glycols with 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene glycols, it also being possible to use mixtures of the chain extenders.
  • chain extenders are ethylene glycol and hexanediol, particularly preferably ethylene glycol.
  • Catalysts are usually used which accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the structural components, for example tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) - ethanol, diazabicyclc— (2,2,2) octane and similar as well as in particular organic metal compounds such as titanium esters, iron compounds such as Iron (III) acetyl acetonate, tin compounds such as tin diacetate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyl tin diacetate, dibutyl tin dilaurate or the like.
  • the catalysts are usually used in amounts of 0.0001 to 0.1 part by weight per 100 parts by weight of polyhydroxyl compound.
  • auxiliaries can also be added to the structural components.
  • examples include surface-active substances, flame retardants, nucleating agents, lubricants and mold release agents, dyes and pigments, inhibitors, stabilizers against hydrolysis, light, heat, oxidation or discoloration, protective agents against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers.
  • monofunctional compounds which are reactive toward isocyanate preferably monoalcohols, can be used.
  • the TPU is usually manufactured using customary methods, such as belt systems or reaction extruders.
  • the expanded TPUs produced by the process according to the invention can be used, for example, as films, hoses, profiles, fibers, cables, shoe soles, other shoe parts, ear tags, automotive parts, agricultural products, electrical products, damping elements; armrests; Plastic furniture elements, ski boots, bumpers, rollers, ski goggles, powder slush surfaces can be used.
  • shoe soles are preferred, in particular those with a compact skin and a foamed core, in particular colored, in particular black colored shoe soles.
  • Light-resistant aliphatic TPUs or blends made from them can also be foamed according to the invention. Examples include products for the automotive interior and exterior such as instrument panel surfaces, gear knobs, control elements and buttons, antennas and antenna feet, handles, housings, switches, cladding and cladding elements, and others.
  • the base TPU and blowing agent were dosed and mixed separately using a KK pre-mixer, and fed to the injection molding machine.
  • the pre-mixer is mounted on the intake of the injection molding system.
  • the TPU granulate is automatically fed to the pre-mixer via the dryer (3 h / 75 ° C) and delivery lines.
  • GT MP weight fraction of the microspheres powder used in relation to TPU
  • Hydrocerol BIN Clariant
  • S70A10W commercial polyester TPU contains plasticizer from Elastogran; Application for e.g. B. shoe soles;
  • Rejects indicates the number of soles that are not completely filled based on 50 injections
  • Shoe sole tool aluminum; Shot weight 243 g at a density of 1, 20 g / cm 3 in the case of Elastollan S70A10W compact

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von expandierten thermoplastischen Polyurethanen, umfassend die Schritte a) Mischen von Treibmitteln zu einem thermoplastischen Polyurethan und gegebenenfalls Trocknung, b) thermoplastische Verarbeitung dieser Mischung unter Expansion des Treibmittels, wobei als Treibmittel expandierbare Mikrospheren in Form von Pulver oder Masterbatch eingesetzt werden und die Mischung der Treibmittel mit den TPU direkt an der Anlage, in der die thermoplastische Verarbeitung durchgeführt wird, erfolgt.

Description

Verfahren zur Herstellung von expandierten thermoplastischen Polyurethanen
Beschreibung
Thermoplastische Polyurethane (TPU) sind teilkristalline Werkstoffe und gehören zu der Klasse der thermoplastischen Elastomere. Sie zeichnen sich unter anderem durch gute Festigkeiten, Abriebe, Weiterreißfestigkeiten und Chemikalienbeständigkeit aus, und können in nahezu beliebiger Härte durch geeignete Rohstoffzusammensetzung hergestellt werden.
Die Herstellung erfolgt nach den bekannten Verfahren im One-shot- oder Prepolymer- verfahren auf der Bandanlage oder auf dem Reaktionsextruder. Hierbei werden die Reaktionskomponenten Diisocyanat, langkettiges Diol und kurzkettiges Diol (Ketten- verlängerer) gemeinsam oder in bestimmter Reihenfolge vereinigt und zur Reaktion gebracht. Die Reaktionspartner werden in einem Verhältnis NCO-Gruppen zur Summe aller mit den NCO-Gruppen reagierenden Wasserstoffatomen von 1 : 0,9 - 1 ,2, vorzugsweise 1 : 0,95 - 1 ,05 insbesondere im Verhältnis 1 : 1 gemischt.
Es ist allgemein bekannt, thermoplastische Kunststoffe (TPE) unter Verwendung von Treibmitteln zu verschäumen. Insbesondere Polystyrol und Polyolefine werden in großem Umfang verschäumt.
Als Treibmittel kommen hierbei chemische Treibmittel, insbesondere solche, die unter thermischer Zersetzung Gase abspalten, wie Zitronensäure, Hydrogencarbonate oder Azodicarbonamide, wie Celegoene; Tracel; Hydrocerole etc., („Hydrocerole: Chemische Treib- und Nukleierungsmittel für Kunststoffe; Verarbeitungshinweise; Spritzguss; Hart-PVC-Schaum; Schaumextrusiuon; Produktprogramm; Clariant März 2000"; „Neue Treibmittelentwicklungen im Bereich Spritzguss; Lübke, G.; Holzberg, T.; Seminare zur Kunststoffverarbeitung IKV; 4. Februar 2003") oder durch physikalische Treibmittel, zumeist inerte, bei den Verschäumbedingungen verdampfende Flüssigkeiten, oder expandierbare Mikrospheren (z.B. Expancel® der Akzo oder Mikrospheren von Lehmann & Voss) zum Einsatz. Auch Kombinationen aus chemischen Treibmitteln und expandierbaren Mikrospheren können eingesetzt werden (Foaming Plastics with Expancel Microspheres; Elfving, K.; Blowing Agent Systems: Formulations and Processing; Paper 9, Page 1-5; Mikrohohlkugeln aus Kunststoffen; N.N.; Kunststoffe 82 (1992) 4 (36366).
Es sind auch Verfahren bekannt, thermoplastische Polyurethane mit Treibmitteln zu verschäumen. Im Falle von TPU führen chemische Treibmittel zu einer vergleichs- weisen sehr groben Schaumstruktur und zu einer vermehrten Bildung von Lunkern. Zur Behebung dieses Mangels beschreibt EP-A-692516 ein Verfahren zur Herstellung von Schaumstoffen auf Basis von TPU, bei dem als Treibmittel eine Mischung von chemischen Treibmitteln und Mikrospheren vom Typ Expancel® eingesetzt wird.
Expandierbare Mikrospheren sind Mikrohohlkugeln, die aus einer dünnen Kunststoffhülle, beispielsweise Polyacrylnitril oder Copolymere hiervon, bestehen. Diese Mikrohohlkugeln sind mit Gas, in der Regel mit Kohlenwasserstoffen gefüllt. Durch die einwirkende Temperatur in der thermoplastischen Verarbeitung kommt es zu einer Erweichung der Kunststoffhülle und gleichzeitig zu einer Expansion des eingeschlossenen Gases. Hierdurch kommt es zu einer Expansion der Mikrospheren.
In WO 00/44821 wird der Einsatz einer Treibmittelkombination aus Mikrospheren vom Typ Expancel® vorgeschlagen, bei der die Mikrospheren mit Kohlenwasserstoffen gefüllt sind.
In EP-A-1174459 wird das in WO 00/44821 beschriebene Verfahren verbessert, indem dem TPU ein Fließmittel zugesetzt wird. Damit sollte die Oberfläche der Formkörper verbessert und die Formzeit gesenkt werden.
In EP-A-1174458 soll der gleiche Effekt durch Zusatz von Plastifizierungsmitteln er- reicht werden.
Die Treibmittel können hierbei als Masterbatches, das sind Mischungen der Treibmittel mit einem Träger, vorzugsweise einem Thermoplasten, sogenannten Konzentraten oder als Pulver dem Basis-TPU zugemischt werden. Im letzteren Falle ist es sinnvoll rtem TPU-Granulat vorab ein Bindemittel (z.B. Mineralöl, Parafinöl) zuzugeben um ein Anhaften des Pulvers auf dem Granulat zu ermöglichen.
Hierbei ist es jedoch nie vollständig zu verhindern, dass es zu Pulveragglomeraten und Inhomogenitäten in der TPU/Pulver-Mischung bzw. zu Entmischungen von TPU- Granulat und Treibmittel-Pulver bzw. Treibmittel-Masterbatch kommt. Im Falle der Verwendung von TPU/Treibmittel-Pulver-Mischungen ist es ebenfalls nie zu vermeiden, dass Pulverrückstände an Innenwänden von Verpackungen, Mischern, Trockner, Fördereinrichtungen, Vorlagebehältern oder anderen Stellen anhaften. Hierdurch kommt es zu unkontrollierten Konzentrationsschwankungen des Treibmittels in der TPU/Treibmittel-Mischung, auch verstärkt durch Wiederablösen von Pulveranhäufungen an Innenwänden. All diese Probleme führen letztendlich zu Schwankungen im ohnehin empfindlichen Schäumprozess bei der thermoplastischen Verarbeitung von TPU und zu Dichteschwankungen im Fertigteil. Die beschriebenen unkontrolliert auftretenden Pulveragglomerate werden zudem häufig bei der Plastifizierung nicht ausreichend homogenisiert oder aufgeschlossen und führen zu hellen Spots im Fertigteil und auf der Fertigteiloberfläche. Aufgabe dieser Erfindung war es, einen störungsfreien Produktionsprozess bei der Herstellung von expandierten TPU zu entwickeln, bei dem die Fertigteile eine gleichbleibende Qualität und eine einheitliche Dichte aufweisen und der einfach zu betreiben ist.
Die Aufgabe konnte dadurch gelöst werden, dass die zu dosierenden Treibmittel in Form von Masterbatches oder als reines Pulver nicht vorab mit dem TPU-Granulat vermischt werden, sondern die Treibmittel-Dosierung erst unmittelbar vor bzw. während der thermoplastischen Verarbeitung, direkt an der Anlage, in der die expandierten Teile produziert werden, erfolgt.
Gegenstand der Erfindung ist demzufolge ein Verfahren zur Herstellung von expandierten TPU, umfassend die Schritte
a) Mischen von Treibmitteln zu einem TPU und gegebenenfalls Trocknung, b) thermoplastische Verarbeitung dieser Mischung unter Expansion des Treibmittels,
dadurch gekennzeichnet, dass als Treibmittel expandierbare Mikrospheren in Form von Pulver oder Masterbatch eingesetzt werden und die Mischung der Treibmittel mit den TPU direkt an der Anlage, in der die thermoplastische Verarbeitung durchgeführt wird, erfolgt.
Bei den Anlagen, auf denen expandierbares TPU verarbeitet wird, handelt es sich zu- meist uιτ? übliche und bekannte Spritzguss- oder Extrusionsanlagen. Die Dosierung und Mischung von Treibmittel und Basis-TPU erfolgt insbesondere in einem einzigen Aggregat, zum Beispiel einem Vormischer vom Typ KK; Durchsatz 20 kg/h; Schussgewicht bis 200 g; Hersteller Firma Koch-Technik. Dieses Aggregat ist auf den Einzug der Palstifiziereinheit montiert.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird das Treibmittel kontinuierlich der Anlage zudosiert und mit dem ebenfalls kontinuierlich dosierten TPU vermischt. Die Zuführung des Treibmittels kann hierbei an der Einzugszone und/oder in einer der nachfolgenden Schneckenzonen, vorzugsweise am Einzug der Spritz- gussmaschine oder des Extruders erfolgen.
Wie oben beschrieben, sind die für das erfindungsgemäße Verfahren eingesetzten expandierbaren Mikrospheren allgemein bekannt und handelsüblich. Bevorzugt werden Mikrospheren vom Typ Expancel® eingesetzt, bei der die Mikrospheren mit Kohlen- Wasserstoffen gefüllt sind. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weisen die als Treibmittel eingesetzten expandierbaren Mikrospheren eine TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3 auf. Mit derartigen Treibmitteln hergestellte expandierte TPU weisen eine besonders feine Zellstruktur, eine deutlich verringerte Lunkerbildung und praktisch keine Einfallstellen auf. Zudem ist bei Verwendung derartiger expandierbarer Mikrosphären das Verarbeitungsfenster, beispielsweise bezüglich der Temperatur, deutlich größer als bei Verwendung von expandierbaren Mikrospheren mit einer anderen TMA-Dichte.
Mit der TMA-Dichte [kg/m3] kann die Expansionsfähigkeit der Mikrospheren der beschrieben werden. Die TMA-Dichte ist die minimal erreichbare Dichte bei einer bestimmten Temperatur Tmax unter Normaldruck, bevor die Mikrospheren kollabieren. Die TMA-Dichte kann bestimmt werden mit einem Stare Thermal Analysis System Firma Mettler Toledo bei einer Heizrate von 20°C/min.
Die nach dem erfindungsgemäßen Verfahren hergestellten expandierbaren TPU haben vorzugsweise eine Dichte von <1 ,2 g/cm3, bevorzugt 0,3 - 1 ,0 g/cm3, besonders bevorzugt 0,4 - 0,8 g/cm3.
Die erfindungsgemäß eingesetzten Mikrosheren weisen bevorzugt einen Durchmesser zwischen 20 μm und 40 μm auf. Entsprechende Mikrosphreren sind erhältlich bei Akzo Nobel, Casco Products GmbH, Essen unter der Marke Expancel® 093 DU 120 (Pulver).
Unter dem Begriff „thermoplastische Verarbeitung" ist jede Verarbeitung gemeint, die mit einem Aufschmelzen des TPU verbunden ist. Die thermoplastische Verarbeitung erfolgt hierbei bei 80 - 240°Cbevorzugt bei 120 - 230°C insbesondere bevorzugt bei 170 - 220°C, auf dem Fachmann bekannten Spritzguss- und Extrusionsanlagen oder Pulversinteranlagen.
Der Gehalt an expandierbaren Mikrospheren in der Mischung ist abhängig von der angestrebten Dichte der expandierten TPU. Bevorzugt werden pro 100 Gew.-Teilen des zu expandierenden, das heißt zu schäumendem TPU oder TPU-Blend, zwischen 0,1 Gew.-Teilen und 10 Gew.-Teilen, bevorzugt zwischen 0,2 Gew.-Teilen und
6,5 Gew.-Teilen der erfindungsgemäßen expandierbaren Mikrosphreres eingesetzt.
Besonders bevorzugt sind expandierbare TPU bzw. expandierte TPU-Blends, die folgende Komponenten enthalten: 85 Gew.-% bis 99,5 Gew.-%, bevorzugt zwischen 90 Gew.-% und 99,5 Gew.-%, besonders bevorzugt zwischen 92 Gew.-% und 98 Gew.-% TPU oder Blend enthaltend TPU, 0,5 Gew.-% bis 15 Gew.-%, bevorzugt zwischen 2 Gew.-% und 8 Gew.-% Mikrospheren-Masterbatch, 0 bis 10 Gew.-%, bevorzugt 0,1 Gew.-% bis 2 Gew.-%
Farbstoff, z.B. allgemein bekannte Schwarzpaste oder Farbstoffzugaben in Form von
Farbmasterbatches.
Das Mikrospheren-Masterbatch enthält bevorzugt:
5 Gew.-% bis 90 Gew.-%, bevorzugt 25 Gew.-% bis 65 Gew.-% Mikrospheren und 10 Gew.-% bis 95 Gew.-%, bevorzugt 35 Gew.-% bis 75 Gew.-% Träger, bevorzugt thermoplastische Träger, beispielsweise die an späterer Stelle dargestellten Träger- materialen, besonders bevorzugt EVA (Ethylenvinylacetat).
Die verwendeten expandierbaren Mikrospheren können einerseits in Form von Pulver, wobei die Aufbringung auf das TPU-Granulat hierbei mit und ohne Bindemittel, wie 0,05 - 2 Gew.-% Mineral- oder Parafinöl erfolgen kann, oder andererseits bevorzugt als Masterbatches eingesetzt werden. Unter Masterbatch ist zu verstehen, dass die expandierbaren Mikrospheren in einem Träger, beispielsweise Bindemittel, Wachse oder einem Thermoplasten, wie TPU, Ethylenvinylacetat (EVA), Polyvinylchlorid, Poly- ethylen, Polypropylen, Polyester, Polystyrol, oder thermoplastic rubber, oder Blends hieraus, bevorzugt einem Träger mit einem Schmelzindex MFR; 190°C/2,16 kg; ASTM D 1238) von 5 - 700 g/10 min, bevorzugt 50 - 600 g/10 min, besonders bevor- zugt 150 - 500 g/10 min und einem Schmelzpunkt zwischen 60 und 110°C, besonders bevorzugt EVA mit einem Schmelzindex MFR: 80 - 800 g/10 min; 125°C/325 g; ASTM D 1238 in Granulatform gebunden sind. Bei der Herstellung dieser Mikro- spheren-Masterbatches werden in der Regel Thermoplaste mit einem sehr niedrigen Schmelzpunkt und sehr niedrigen Viskositäten bzw. hohen Schmelzindizes, wie oben beschrieben, eingesetzt, um hierdurch möglichst niedrige Temperaturen bei der
Masterbatchherstellung verwenden zu können, um eine vorzeitige Expansion zu vermeiden.
Neben den expandierbaren Mikrospheren können auch weitere Treibmittel eingesetzt werden. Wie bereits oben ausgeführt, kommen hierfür chemische Treibmittel, insbesondere solche, die unter thermischer Zersetzung Gase abspalten, wie Zitronensäure, Hydrogencarbonate oder Azodicarbonamide, wie Celegoene®, Trace®!, Hydrocerole®, oder physikalische Treibmittel, zumeist inerte, bei den Verschäumbedingun- gen verdampfende Flüssigkeiten, zum Einsatz.
Als TPU können die üblichen und bekannten Verbindungen eingesetzt werden, wie sie beispielsweise im Kunststoffhandbuch, Band 7 „Polyurethane", Carl Hanser Verlag München Wien, 3. Auflage 1993, Seiten 455 bis 466 beschrieben sind.
Bevorzugt werden TPU eingesetzt, die einen Schmelzindex oder MFR 190°C/3,8 kg; DIN EN 1133 von 1 - 350 g/10 min, bevorzugt von 30 - 150 g/10 min besitzen. Die Verwendung von TPU für expandierbare bzw. expandierte TPU ist jedoch nicht auf einen bestimmten MFR beschränkt.
Unter TPU können im Sinne der vorliegenden Erfindung weichmacherfreie und weich- macherhaltige TPU, insbesondere solche mit einem Gehalt von 0 - 50 Gew.-%, bezogen auf das Gewicht der Mischung, an üblichen Weichmacher verstanden werden. Als Weichmacher kommen allgemein für diesen Zweck bekannte Verbindungen, wie Phthalate und insbesondere Benzoate in Betracht.
Weiterhin können für das erfindungsgemäße Verfahren auch Blends aus TPU mit bis zu 70 Gew.-%, bezogen auf das Gewicht des Blends, eines weiteren Kunststoffs aus der Gruppe der thermoplastischen Kunststoffe, insbesondere aus der Gruppe der thermoplastischen Elastomere oder Kautschuke, enthalten. Bevorzugt sind Mischungen enthaltend TPU und andere thermoplastische Elastomere zwischen 99 Gew.-% und 50 Gew. -% TPU und zwischen 1 Gew.-% und 50 Gew.-% eines anderen thermoplastischen Elastomeren, besonders bevorzugt zwischen 90 Gew.-% und 70 Gew. -% TPU und zwischen 10 Gew.-% und 30 Gew.-% eines anderen thermoplastischen E- lastomeren. Als andere thermoplastische Elastomere kommen bevorzugt z. B. Gummi, z.B. Butadien-Acrylnitril-Copolymere, zum Einsatz.
Die Herstellung der TPU erfolgt nach üblichem Verfahren durch Umsetzung von Diiso- cyanaten mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen, vorzugsweise difunktionellen Alkoholen.
Als Diisocyanate können übliche aromatische, aliphatische und/oder cycloaliphatische Diisocyanate, beispielsweise Diphenyl-Methan-Diisocyanat (MDI), Toluylendiiso- cyanat (TDI), Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen-diisocyanat-1 ,5, 2-Ethyl-butylen-diisocyanat-1 ,4, 1-lso- cyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-diiso- cyanat, 1-Methyl-2,4- und/oder -2,6-cyclohexan-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Dicyclohexylmethan-diisocyanat eingesetzt werden.
Als gegenüber Isocyanaten reaktive Verbindungen können allgemein bekannte Poly- hydroxylverbindungen mit Molekulargewichten von 500 bis 8000, bevorzugt 600 bis 6000, insbesondere 800 bis 4000, und bevorzugt einer mittleren Funktionalität von 1 ,8 bis 2,6, bevorzugt 1,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole. Bevorzugt werden als (b) Polyester- diole eingesetzt, die erhältlich sind durch Umsetzung von Butandiol und Hexandiol als Diol mit Adipinsäure als Dicarbonsäure, wobei das Gewichtsverhältnis von Butandiol zu Hexandiol bevorzugt 2 zu 1 beträgt. Bevorzugt ist weiterhin Polytetrahydrofuran mit einem Molekulargewicht von 750 bis 2500 g/mol, bevorzugt 750 bis 1200 g/mol. Als Kettenverlängerungsmittel können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere Ethylenglykol und/oder Butandiol-1 ,4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxy alkylenrest, bevorzugt entsprechende Oligo-Polyoxypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1 ,4-Bis-(hydroxymethyl)-benzol (1,4-BHMB), 1 ,4-Bis-(hydroxyethyl)- benzol (1,4-BHEB) oder 1 ,4-Bis-(2-hydroxyethoxy)-benzol (1,4-HQEE) zum Einsatz kommen. Bevorzugt werden als Kettenverlängerer Ethylenglykol und Hexandiol, besonders bevorzugt Ethylenglykol.
Üblicherweise werden Katalysatoren eingesetzt, welche die Reaktion zwischen den NCO-Gruppen der Diisocyanate und den Hydroxylgruppen der Aufbaukomponenten beschleunigen, beispielsweise tertiäre Amine, wie Triethylamin, Dimethylcyclohexyl- amin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclc— (2,2,2)-octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen— (III)— acetyl- acetonat, Zinnverbindungen, wie Zinndiacetat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Polyhydroxylverbindung eingesetzt.
Neben Katalysatoren können den Aufbaukomponenten bis auch übliche Hilfsstoffe hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze, Oxidation oder Verfärbung, Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher.
Zur Einstellung des Molekulargewichtes können gegenüber Isocyanat reaktive mono- funktionelle Verbindungen, bevorzugt Monoalkohole eingesetzt werden.
Die Herstellung der TPU erfolgt zumeist nach üblichen Verfahren, wie mittels Band- anlagen oder Reaktionsextruder.
Die nach dem erfindungsgemäßen Verfahren hergestellten expandierten TPU können beispielsweise als Folien, Schläuche, Profile, Fasern, Kabel, Schuhsohlen, sonstige Schuhteile, Ohrmarken, Automobilteile, Landwirtschaftliche Produkte, Elektroprodukte, Dämpfungselemente; Armlehnen; Kunststoffmöbelelemente, Skischuhe, Anschlagpuffer, Rollen, Skibrillen, Powderslushoberflächen verwendet werden. Bevorzugt sind erfindungsgemäß Schuhsohlen, insbesondere solche mit einer kompakten Haut und einem geschäumten Kern, insbesondere gefärbte, insbesondere schwarz gefärbte Schuhsohlen. Auch lichtbeständige aliphatische TPU oder Blends hieraus lassen sich erfindungsgemäß verschäumen. Beispiele sind etwa Produkte für das Automobil- Interieur- und Exterieur wie Instrumententafeloberflächen, Schaltknäufe, Bedien- elemente- und Knöpfe, Antennen und Antennenfüße, Griffe, Gehäuse, Schalter, Verkleidungen und Verkleidungselemente, und anderes.
Die Erfindung soll an den nachfolgenden Beispielen näher beschrieben werden.
Es wurden Vergleichsversuche und erfindungsgemäße Versuche durchgeführt. Die Eingangsstoffe, die eingesetzten Mengen und die Ergebnisse sind in der Tabelle dargestellt.
Verfahren 1 (Vergleich) Zugabe des Treibmittels in einem Mischer vor der Herstellung der Formteile
In einem einfachen Betonmischer wurde auf das TPU-Granulat 0,1 % Parafinöl als Bindemittel aufgebracht, anschließend nach einer Mischzeit von 10 min das oder die Treibmittel zugegeben und anschließend wieder für 10 min gemischt. Danach wurde diese Mischung thermoplastisch verarbeitet, indem diese über einen automatisch arbeitenden Trockner (3 h/75°C) und Förderleitungen der Spritzgussmaschine automatisch zugeführt wird
Verfahren 2: Kontinuierliche Treibmittel-Dosierung
Basis-TPU und Treibmittel wurden separat über einen Kochtechnik Vormischer Typ KK dosiert und vermischt und dem Einzug der Spritzgussanlage zugeführt. Der Vormischer ist hierbei auf dem Einzug der Spritzgussanlage montiert. Das TPU-Granulat wird dem Vormischer über den Trockner (3 h/75°C) und Förderleitungen automatisch zugeführt.
Tabelle 1 : Ergebnisse der erfindungsgemäßen Versuche V1 und V2 im Vergleich zu den Referenzversuchen RO - 2
Figure imgf000010_0001
1) Ausschließlich bei RO wurde mit Nachdruck gearbeitet, in den anderen Fällen wird der Nachdruck ausgeschaltet 2) Zielgewicht: 151 g; Formenvolumen (Sohlenwerkzeug): 203 cm3; Zieldichte: 0,74 g /cm3 3) keine statistische Fehleranalyse, da kompakte Sohle
Lenαende:
R Vergleichsversuch
V Erfindungsgemäßer Versuch
093DU120 Microspheren-Pulver der Fa. Akzo
GTMP = eingesetzter Gewichtsanteil des Mikrospheren-Pulver in Bezug auf TPU
Hydrocerol BIN = Fa. Clariant; chemisches Treibmittel-Pulver
GTCT eingesetzter Gewichtsanteil des chemischen Treibmittel-Masterbatches in Bezug auf TPU
S70A10W handelsübliches Polyester-TPU weichmacherhaltig von Elastogran; Anwendung für z. B. Schuhsohlen;
MW Mittelwert aus 20 Bestimmungen, d.h. 20 Sohlen
Stabwn = Standardabweichung aus 20 Bestimmungen
Agglomeratbildung: Auftreten sichtbarer weiser Agglomerate in der Sohle und auf der Sohlenoberfläche 0 = keine sichtbaren Agglomerate ++ = stark sichtbare Agglomerate
Pulveranhaftungen: Auftreten von Pulverablagerungen an Innenwandungen von Trockner, Granulatförderleitungen, Vorlagetrichter 0 = keine Pulverablagerungen ++ = deutliche Pulverablagerungen
Ausschuss = gibt die Anzahl der nicht vollständig gefüllten Sohlen an bezogen auf 50 Einspritzungen
Spritzgussmaschine: Klöckner Ferromatic FM 160
Schuhsohlenwerkzeug: Aluminium; Schussgewicht 243 g bei einer Dichte von 1 ,20 g/cm3 im Falle Elastollan S70A10W kompakt
Werkzeugtemperatur: 25 °C; Schuhwerkzeug;

Claims

Patentansprüche
1. Verfahren zur Herstellung von expandierten thermoplastischen Polyurethanen, umfassend die Schritte a) Mischen von Treibmitteln zu einem thermoplastischen Polyurethan und gegebenenfalls Trocknung,
Figure imgf000012_0002
b) thermoplastische Verarbeitung dieser Mischung unter Expansion des Treibmittels, dadurch gekennzeichnet, dass als Treibmittel expandierbare Mikrospheren in
Figure imgf000012_0004
Form von Pulver oder Masterbatch eingesetzt werden und die Mischung der Treibmittel mit den thermoplastischen Polyurethanen direkt an der Anlage, in der die thermoplastische Verarbeitung durchgeführt wird, erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Mischung der Treibmittel mit den thermoplastischen Polyurethanen unmittelbar vor der ther plastische Verarbeitung am Einzug oder an einer der Schneckenzonen der in Verfahrensschritt b) verwendeten Anlage erfolgt.
Figure imgf000012_0001
Figure imgf000012_0005
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die expandierbaren Mikrospheren eine TMA-Dichte von kleiner 10 kg/m3 aufweisen.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass neben den Mikrospheren expandierbaren weitere Treibmittel eingesetzt werden.
Figure imgf000012_0007
Figure imgf000012_0006
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die thermo
Figure imgf000012_0003
plastischen Polyurethane einen Schmelzindex bei 190°C/3,8 kg; DIN EN 1133) von 1 bis 350 g/10 min, aufweisen.
PCT/EP2004/009570 2003-09-01 2004-08-27 Verfahren zur herstellung von expandierten thermoplastischen polyurethanen WO2005023920A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001516T DE112004001516D2 (de) 2003-09-01 2004-08-27 Verfahren zur Herstellung von expandierten thermoplastischen Polyurethanen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003140539 DE10340539A1 (de) 2003-09-01 2003-09-01 Verfahren zur Herstellung von expandierten thermoplastischen Elastomeren
DE10340539.9 2003-09-01

Publications (1)

Publication Number Publication Date
WO2005023920A1 true WO2005023920A1 (de) 2005-03-17

Family

ID=34202344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009570 WO2005023920A1 (de) 2003-09-01 2004-08-27 Verfahren zur herstellung von expandierten thermoplastischen polyurethanen

Country Status (2)

Country Link
DE (2) DE10340539A1 (de)
WO (1) WO2005023920A1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652130B1 (ko) 2005-09-29 2006-12-01 서광티피유 주식회사 열가소성 폴리우레탄 발포체 제조방법
WO2007073318A1 (en) * 2005-12-21 2007-06-28 Akzo Nobel N.V. Chemical composition and process
WO2008087078A1 (de) * 2007-01-16 2008-07-24 Basf Se Hybridsysteme aus geschäumten thermoplastischen elastomeren und polyurethanen
US7786181B2 (en) 2005-12-21 2010-08-31 Akzo Nobel N.V. Chemical composition and process
US8438719B2 (en) 2007-08-09 2013-05-14 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing antenna
WO2013153153A1 (de) 2012-04-13 2013-10-17 Basf Se Thermoplastische formmasse
CN105476172A (zh) * 2015-12-22 2016-04-13 丁荣誉 一种pu爆米花鞋底及一种pu爆米花鞋材的制备工艺
WO2016146537A1 (de) 2015-03-13 2016-09-22 Basf Se Verfahren zur herstellung von partikelschaumstoffen auf basis von thermoplastischen elastomeren durch thermisches verbinden mit mikrowellen
WO2016146395A1 (de) 2015-03-13 2016-09-22 Basf Se Elektrisch leitfähige partikelschaumstoffe auf basis von thermoplastischen elastomeren
US9781974B2 (en) 2012-04-13 2017-10-10 Adidas Ag Soles for sports shoes
US9781970B2 (en) 2013-02-13 2017-10-10 Adidas Ag Cushioning element for sports apparel
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
WO2018082984A1 (de) 2016-11-04 2018-05-11 Basf Se Partikelschaumstoffe auf basis von expandierten thermoplastischen elastomeren
US10039342B2 (en) 2014-08-13 2018-08-07 Adidas Ag Co-molded 3D elements
EP3424974A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und einer wasserbasierten beschichtung
EP3424973A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und beschichtung
WO2019016313A1 (de) 2017-07-20 2019-01-24 Basf Se Thermoplastisches polyurethan
WO2019115678A1 (en) 2017-12-14 2019-06-20 Basf Se Method for preparing a thermoplastic polyurethane having a low glass transition temperature
WO2019122122A1 (de) 2017-12-20 2019-06-27 Basf Se Neue polyurethanweichschaumstoffe
WO2019170484A1 (en) 2018-03-06 2019-09-12 Basf Se A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and use thereof
USD906648S1 (en) 2013-04-12 2021-01-05 Adidas Ag Shoe
US10905919B2 (en) 2015-05-28 2021-02-02 Adidas Ag Ball and method for its manufacture
US10925347B2 (en) 2014-08-11 2021-02-23 Adidas Ag Shoe sole
WO2021032528A1 (en) 2019-08-21 2021-02-25 Basf Se A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof
US10952489B2 (en) 2015-04-16 2021-03-23 Adidas Ag Sports shoes and methods for manufacturing and recycling of sports shoes
US11291268B2 (en) 2015-04-10 2022-04-05 Adidas Ag Sports shoe and method for the manufacture thereof
US11920013B2 (en) 2014-04-30 2024-03-05 Basf Se Polyurethane particle foam with polyurethane coating
US11957206B2 (en) 2015-03-23 2024-04-16 Adidas Ag Sole and shoe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044532A1 (de) * 2009-11-15 2011-05-19 Allgaier Gmbh & Co. Besitz Kg Verfahren zum Herstellen von Gegenständen
CN112659442A (zh) * 2019-10-16 2021-04-16 加久企业股份有限公司 Tpu发泡鞋底制程及其成品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044821A1 (en) * 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
EP1174458A1 (de) * 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044821A1 (en) * 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
EP1174458A1 (de) * 2000-07-20 2002-01-23 Huntsman International Llc Expandierte thermoplastische Polyurethane

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652130B1 (ko) 2005-09-29 2006-12-01 서광티피유 주식회사 열가소성 폴리우레탄 발포체 제조방법
WO2007073318A1 (en) * 2005-12-21 2007-06-28 Akzo Nobel N.V. Chemical composition and process
US7786181B2 (en) 2005-12-21 2010-08-31 Akzo Nobel N.V. Chemical composition and process
US10501596B2 (en) 2007-01-16 2019-12-10 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
WO2008087078A1 (de) * 2007-01-16 2008-07-24 Basf Se Hybridsysteme aus geschäumten thermoplastischen elastomeren und polyurethanen
CN101583656B (zh) * 2007-01-16 2012-09-05 巴斯夫欧洲公司 含有发泡热塑性弹性体和聚氨酯的混杂体系
US8438719B2 (en) 2007-08-09 2013-05-14 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing antenna
US9788606B2 (en) 2012-04-13 2017-10-17 Adidas Ag Soles for sports shoes
WO2013153153A1 (de) 2012-04-13 2013-10-17 Basf Se Thermoplastische formmasse
US10716358B2 (en) 2012-04-13 2020-07-21 Adidas Ag Soles for sports shoes
US9781974B2 (en) 2012-04-13 2017-10-10 Adidas Ag Soles for sports shoes
US9788598B2 (en) 2012-04-13 2017-10-17 Adidas Ag Soles for sports shoes
US9795186B2 (en) 2012-04-13 2017-10-24 Adidas Ag Soles for sports shoes
US9820528B2 (en) 2012-04-13 2017-11-21 Adidas Ag Soles for sports shoes
US11707108B2 (en) 2012-04-13 2023-07-25 Adidas Ag Soles for sports shoes
US9781970B2 (en) 2013-02-13 2017-10-10 Adidas Ag Cushioning element for sports apparel
US11986047B2 (en) 2013-02-13 2024-05-21 Adidas Ag Sole for a shoe
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
US10721991B2 (en) 2013-02-13 2020-07-28 Adidas Ag Sole for a shoe
US11445783B2 (en) 2013-02-13 2022-09-20 Adidas Ag Sole for a shoe
USD1035231S1 (en) 2013-04-12 2024-07-16 Adidas Ag Shoe
USD906648S1 (en) 2013-04-12 2021-01-05 Adidas Ag Shoe
US11920013B2 (en) 2014-04-30 2024-03-05 Basf Se Polyurethane particle foam with polyurethane coating
US10925347B2 (en) 2014-08-11 2021-02-23 Adidas Ag Shoe sole
US11284669B2 (en) 2014-08-13 2022-03-29 Adidas Ag Co-molded 3D elements
US10039342B2 (en) 2014-08-13 2018-08-07 Adidas Ag Co-molded 3D elements
US10667576B2 (en) 2014-08-13 2020-06-02 Adidas Ag Co-molded 3D elements
US11161956B2 (en) 2015-03-13 2021-11-02 Bafs Se Method for producing particle foams based on thermoplastic elastomers, by thermal bonding using microwaves
WO2016146537A1 (de) 2015-03-13 2016-09-22 Basf Se Verfahren zur herstellung von partikelschaumstoffen auf basis von thermoplastischen elastomeren durch thermisches verbinden mit mikrowellen
WO2016146395A1 (de) 2015-03-13 2016-09-22 Basf Se Elektrisch leitfähige partikelschaumstoffe auf basis von thermoplastischen elastomeren
US10597531B2 (en) 2015-03-13 2020-03-24 Basf Se Electrically conductive particle foams based on thermoplastic elastomers
US11957206B2 (en) 2015-03-23 2024-04-16 Adidas Ag Sole and shoe
US11291268B2 (en) 2015-04-10 2022-04-05 Adidas Ag Sports shoe and method for the manufacture thereof
US10952489B2 (en) 2015-04-16 2021-03-23 Adidas Ag Sports shoes and methods for manufacturing and recycling of sports shoes
US10905919B2 (en) 2015-05-28 2021-02-02 Adidas Ag Ball and method for its manufacture
CN105476172A (zh) * 2015-12-22 2016-04-13 丁荣誉 一种pu爆米花鞋底及一种pu爆米花鞋材的制备工艺
WO2018082984A1 (de) 2016-11-04 2018-05-11 Basf Se Partikelschaumstoffe auf basis von expandierten thermoplastischen elastomeren
EP3424973A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und beschichtung
US10927274B2 (en) 2017-07-04 2021-02-23 Covestro Deutschland Ag Article comprising expanded TPU and a water based coating
WO2019007770A1 (en) 2017-07-04 2019-01-10 Covestro Deutschland Ag ARTICLE COMPRISING EXPANDED TPU AND WATER BASED COATING
EP3424974A1 (de) 2017-07-04 2019-01-09 Covestro Deutschland AG Artikel mit expandiertem tpu und einer wasserbasierten beschichtung
WO2019007767A1 (en) 2017-07-04 2019-01-10 Covestro Deutschland Ag ARTICLE COMPRISING EXPANDED TPU AND COATING
US11535697B2 (en) 2017-07-20 2022-12-27 Basf Se Thermoplastic polyurethane
EP3909996A1 (de) 2017-07-20 2021-11-17 Basf Se Schaumstoff aus thermoplastischem polyurethan
US11725075B2 (en) 2017-07-20 2023-08-15 Basf Se Thermoplastic polyurethane
WO2019016313A1 (de) 2017-07-20 2019-01-24 Basf Se Thermoplastisches polyurethan
US11859042B2 (en) 2017-12-14 2024-01-02 Basf Se Method for preparing a thermoplastic polyurethane having a low glass transition temperature
WO2019115678A1 (en) 2017-12-14 2019-06-20 Basf Se Method for preparing a thermoplastic polyurethane having a low glass transition temperature
US11945904B2 (en) 2017-12-20 2024-04-02 Basf Se Flexible polyurethane foams
WO2019122122A1 (de) 2017-12-20 2019-06-27 Basf Se Neue polyurethanweichschaumstoffe
WO2019170484A1 (en) 2018-03-06 2019-09-12 Basf Se A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and use thereof
WO2021032528A1 (en) 2019-08-21 2021-02-25 Basf Se A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof

Also Published As

Publication number Publication date
DE10340539A1 (de) 2005-03-24
DE112004001516D2 (de) 2006-10-05

Similar Documents

Publication Publication Date Title
WO2005023920A1 (de) Verfahren zur herstellung von expandierten thermoplastischen polyurethanen
EP1664169B1 (de) Expandierbare thermoplastische polyurethan-blends
DE10326138A1 (de) Verfahren zur Herstellung von expandierbaren thermoplastischen Elastomeren
EP1704177B1 (de) Verfahren zur herstellung von schuhen
EP3055353B1 (de) Verfahren zur herstellung von expandierten thermoplastischen elastomerpartikeln
EP2430097B1 (de) Hybridschaum
DE102005050411A1 (de) Schuhsohlen auf Basis von geschäumtem thermoplastischen Polyurethan (TPU)
EP1204688B1 (de) Thermoplastische polyurethane
EP3765539A1 (de) Thermoplastisches polyurethan aus recyclingrohstoffen
WO2020136239A1 (de) Etpu mit hoher festigkeit
EP3909996A1 (de) Schaumstoff aus thermoplastischem polyurethan
WO2022162048A1 (de) Partikelschaum aus tpe mit einer shorehärte zwischen 20d und 90d
EP0826706A2 (de) Schäumfähige Polyurethanzubereitungen mit gutem Fliessverhalten sowie ein Verfahren zur Herstellung geschäumter Polyurethan-Formteile
EP1458779B1 (de) Thermoplastische polyurethane auf der basis aliphatischer isocyanate
WO2020053354A1 (de) Schaumstoffe auf basis thermoplastischer elastomere
WO2019202098A1 (de) Schaumstoffe auf basis thermoplastischer elastomere
EP3781614A1 (de) Schaumstoffe auf basis thermoplastischer elastomere
WO2020136238A1 (de) Partikelschäume aus aromatischem-polyester-polyurethan-multiblockcopolymer
EP1234844A1 (de) Thermoplastische Polyurethane auf der Basis aliphatischer Isocyanate
WO2022043428A1 (de) Geschäumtes granulat aus thermoplastischem polyurethan
CA3096990A1 (en) Foams based on thermoplastic elastomers
EP3906270A1 (de) Hartphasen-modifiziertes thermoplastisches polyurethan
DE4209057A1 (de) Verfahren zur herstellung von formkoerpern
WO2006000356A1 (de) Poröses trägermaterial enthaltend isocyanat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120040015162

Country of ref document: DE

REF Corresponds to

Ref document number: 112004001516

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001516

Country of ref document: DE

122 Ep: pct application non-entry in european phase