WO2005021520A1 - Substituierte 1,2,4-thiadiazole - Google Patents

Substituierte 1,2,4-thiadiazole Download PDF

Info

Publication number
WO2005021520A1
WO2005021520A1 PCT/EP2004/009119 EP2004009119W WO2005021520A1 WO 2005021520 A1 WO2005021520 A1 WO 2005021520A1 EP 2004009119 W EP2004009119 W EP 2004009119W WO 2005021520 A1 WO2005021520 A1 WO 2005021520A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
plants
compounds
alkyl
species
Prior art date
Application number
PCT/EP2004/009119
Other languages
English (en)
French (fr)
Inventor
Ulrike Wachendorff-Neumann
Karl-Heinz Kuck
Ulrich Heinemann
Hans-Georg Schwarz
Arnd Voerste
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Publication of WO2005021520A1 publication Critical patent/WO2005021520A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/081,2,4-Thiadiazoles; Hydrogenated 1,2,4-thiadiazoles

Definitions

  • the present invention relates to new substituted 1,2,4-thiadiazoles, processes for their preparation and their use for controlling unwanted microorganisms.
  • R ⁇ represents hydrogen, halogen, alkyl or alkoxy
  • R.3 represents hydrogen or alkyl
  • R ⁇ represents hydrogen or alkyl
  • R5 represents halogen
  • R 6 represents hydrogen or alkyl
  • A represents a single bond or optionally substituted alkanediyl
  • the compounds of the formula (I) according to the invention can optionally be in the form of mixtures of different possible isomeric forms, in particular Isomers such as E and Z, threo and erythro and optical isomers, but optionally also in the form of tautomers.
  • 1,2,4-thiadiazoles of the formula (I) can be prepared by substituting 1,2,4-thiadiazoles of the formula
  • R5 has the meanings given above and
  • R represents halogen
  • R * R ⁇ , R ⁇ , R4 and R6 have the meanings given above,
  • 1, 2,4-thiadiazoles of the formula (I) are very suitable for controlling unwanted microorganisms. Above all, they show a strong fungal activity and can be used both in crop protection and in material protection.
  • the 1,2,4-thiadiazoles of the formula (I) according to the invention have a substantially better microbicidal activity than the constitutionally most similar, known substances of the same action.
  • Saturated or unsaturated hydrocarbon chains such as alkyl, alkanediyl, alkenyl or alkynyl, also in combination with hetroatomes, such as, for example, alkoxy, or haloalkyl are in each case straight-chain or branched. Unless otherwise stated, hydrocarbon chains having 1 to 6 carbon atoms are preferred.
  • Aryl stands for aromatic, mono- or polycyclic hydrocarbon lengths, e.g. Phenyl, naphthyl, anthranyl, phenanthryl, preferably phenyl or naphthyl, especially phenyl.
  • Formula (I) provides a general definition of the 1,2,4-thiadiazoles according to the invention.
  • Rl preferably represents hydrogen, fluorine, chlorine, bromine, nitro, cyano, hydroxy, alkyl having 1 to 4 carbon atoms; Haloalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine or bromine atoms; Alkoxy of 1 to 4 carbon atoms; Haloalkoxy with 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine or bromine atoms; Phenyl, phenyloxy, naphthyl, naphthyloxy, amino, aminosulfonyl, alkyl ino with 1 to 4 carbon atoms, dialkylamino with 2 to 8 carbon atoms, alkylthio with 1 to 4 carbon atoms, alkylsulfoxy with 1 to 4 carbon atoms, alkylsulfonyl with 1 to 4 carbon atoms, Haloalkylthio with 1 to 4 carbon atoms and 1 to 9 fluorine-chlorine or bromine atoms, halo
  • R ⁇ preferably represents hydrogen, fluorine, chlorine, bromine; Alkyl of 1 to 4 carbon atoms or alkoxy of 1 to 4 carbon atoms.
  • R ⁇ preferably represents hydrogen or alkyl having 1 to 4 carbon atoms.
  • R ⁇ preferably represents hydrogen or alkyl having 1 to 4 carbon atoms.
  • R * preferably represents fluorine, chlorine or bromine.
  • R preferably represents hydrogen or alkyl having 1 to 4 carbon atoms.
  • A preferably represents a single bond or alkanediyl having 1 to 3 carbon atoms, which are optionally substituted by hydroxy.
  • R particularly preferably represents hydrogen, chlorine, bromine, fluorine, nitro, cyano, hydroxy, methyl, ethyl, chloromethyl, trichohlormethyl, trifluoromethyl, methoxy, ethoxy chloromethoxy, trichohlormethoxy, trifluoromethoxy, phenyl, phenyloxy, amino, methylsulfonyl, ethylsulfonyl, methylamino, ethylamino, dimethylamino, diethylamino, methylthio, ethylthio, methylsulfoxy, Ethylsulfoxy, methylsulfonyl, ethylsulfonyl, chloromethyl-thio, Trichohlormethylthio, trifluoromethylthio, Chlormethyls
  • R ⁇ particularly preferably represents hydrogen, chlorine, bromine, methyl, ethyl, methoxy or ethoxy.
  • R ⁇ particularly preferably represents hydrogen, methyl or ethyl.
  • R ⁇ particularly preferably represents hydrogen, methyl or ethyl.
  • R5 particularly preferably represents chlorine or bromine.
  • R> particularly preferably represents hydrogen.
  • R very particularly preferably represents hydrogen, chlorine, fluorine, methyl, ethyl, trichohlormethyl, trifluoromethyl, methoxy, ethoxy, phenyl, phenyloxy,
  • R ⁇ very particularly preferably represents hydrogen, chlorine, fluorine, methoxy or ethoxy.
  • radical definitions can be combined with one another in any way.
  • individual definitions can be omitted.
  • Preferred compounds of the formula (I) are those in which R 3 , R 4 are hydrogen and A is methylene.
  • Formula (IT) provides a general definition of the 1,2,4-thiadiazoles required as starting materials for carrying out the process according to the invention.
  • R 7 preferably has those meanings which have already been mentioned as preferred or particularly preferred for the radical R 5 in connection with the description of the compounds of the formula (I) according to the invention.
  • the compounds of the formula (IT) are known.
  • Formula (H3) provides a general definition of the amines required as starting materials for carrying out the process according to the invention.
  • R 1 , R 2 , R 3 , R 4 , R 6 and A preferably have those meanings which have already been described in connection with the description of the invention.
  • Compounds of the formula (I) according to the invention were mentioned as preferred or particularly preferred for these radicals.
  • the compounds of the formula (HT) are known or can be prepared by known processes.
  • Suitable diluents for carrying out the process according to the invention are all customary inert organic solvents.
  • Halogenated hydrocarbons such as, for example, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane, can preferably be used;
  • Ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole;
  • Nitriles such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile;
  • Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformanilide, N-methyl
  • Suitable acid acceptors for carrying out the process according to the invention are all inorganic or organic bases customary for such reactions.
  • Alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, acetates, carbonates or hydrogen carbonates such as, for example, sodium hydride, sodium amide, lithium diisopropylamide, sodium methylate, sodium ethylate, potassium tert-butoxide, are preferably usable , Sodium hydroxide, potassium hydroxide, sodium acetate, potassium acetate, calcium acetate, sodium carbonate, potassium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate, and also ammonium compounds such as ammonium hydroxide, ammonium acetate and ammonium carbonate, and also tertiary amines, such as trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, N, N-dimethylbenzylamine, pyridine, N-methylpiperidine
  • Suitable catalysts for carrying out the process according to the invention are all reaction accelerators customary for such reactions. Fluorides such as sodium fluoride, potassium fluoride or ammonium fluoride can preferably be used.
  • reaction temperatures can be varied within a substantial range when carrying out the process according to the invention. In general, temperatures between 0 ° C and 150 ° C, preferably at temperatures between 0 ° C and 80 ° C.
  • temperatures between 0 ° C and 150 ° C, preferably at temperatures between 0 ° C and 80 ° C.
  • amine of the formula (HI) are employed per 1 mol of 1, 2,4-thiadiazole of the formula (IT).
  • the processing takes place according to usual methods.
  • the processes according to the invention are generally carried out under atmospheric pressure. However, it is also possible to work under increased pressure.
  • the compounds of the formula (I) are isolated from the reaction mixtures by customary laboratory methods, such as extraction, crystallization, distillation, if appropriate after prior conversion into a suitable salt such as chloride, nitrate, sulfate, tosylate, carbonate.
  • the substances according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae; Pseudomonas species, such as, for example, Pseudomonas syringae pv.
  • Lachrymans Erwinia species, such as, for example, Erwinia amylovora; Pythium species, such as, for example, Pythium ultimum; Phytophthora species, such as, for example, Phytophthora infestans; Pseudoperonospora species, such as, for example, Pseudopero- nospora humuli or Pseudoperonospora cubensis; Plasmopara species, such as, for example, Plasmopara viticola; Bremia species, such as, for example, Bremia lactucae; Peronospora species, such as, for example, Peronospora pisi or P.
  • Erwinia species such as, for example, Erwinia amylovora
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea (conidia form:
  • Drechslera Syn: Helminthosporium
  • Cochliobolus species such as, for example, Cochliobolus sativus (conidial form: Drechslera, Syn: Helminthosporium)
  • Uromyces species such as
  • Uromyces appendiculatus Uromyces appendiculatus; Puccinia species, such as, for example, Puccinia recondita; Sclerotinia
  • Species such as Sclerotinia sclerotiorum; Tilletia species, such as Tilletia ca- factories; Ustilago species, such as, for example, Ustilago nuda or Ustilago avenae; Pellicularia species, such as, for example, Pellicularia sasakii; Pyricularia species, such as, for example, Pyricularia oryzae; Fusarium species, such as, for example, Fusarium culmorum; Botrytis species, such as, for example, Botrytis cinerea; Septoria species, such as, for example, Septoria nodorum; Leptosphaeria species, such as, for example, Leptosphaeria nodorum; Cercospora species, such as, for example, Cercospora canes-cens; Alternaria species, such as, for example, Alternaria brassicae; Pseudocercosporella species, such as, for example, Ps
  • the active compounds according to the invention also have a very good strengthening effect in plants. They are therefore suitable for mobilizing the plant's own defenses against attack by undesired microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as substances which are able to stimulate the defense system of plants in such a way that the treated plants develop extensive resistance to these microorganisms when subsequently inoculated with undesired microorganisms.
  • Undesired microorganisms are to be understood in the present case as phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can thus be used to protect plants against attack by the pests mentioned within a certain period of time after the treatment.
  • the period within which protection is brought about generally extends from 1 to 10 days, preferably 1 to 7 days, after the plants have been treated with the active compounds.
  • the active compounds according to the invention can be used with particularly good success for combating cereal diseases, for example against Erysiphe species, for diseases in wine, fruit and vegetable cultivation, for example against Botrytis, Venturia, Sphaerotheca and Podosphaera species , deploy.
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth and for controlling animal pests. If necessary, they can also be used as Use intermediates and precursors for the synthesis of other active ingredients.
  • Plants are understood here to mean all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of the plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space using the customary treatment methods, e.g. by dipping, spraying, vaporizing, atomizing, scattering, spreading and, in the case of propagation material, in particular in the case of seeds, furthermore by coating in one or more layers.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are understood to mean non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which can be attacked or decomposed by microorganisms .
  • parts of production systems for example cooling water circuits, are also mentioned which can be impaired by the multiplication of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against mucus organisms and algae.
  • Microorganisms of the following genera may be mentioned, for example:
  • Alternaria such as Alternaria tenuis, Aspergillus, such as Aspergillus niger, Chaetomium, such as Chaetomium globosum, Coniophora, such as Coniophora puetana, Lentinus, such as Lentinus tigrinus, Penicillium, such as Penicillium glaucum, Polyporus, such as Polyporus versicolididium, such as Aureob pullulans, Sclerophoma, such as Sclerophoma pityop ila, Trichoderma, such as Trichoderma viride, Escherichia, such as Escherichia coli, Pseudomonas, such as Pseudomonas aeruginosa, Staphylococcus, such as Staphylococcus aureus.
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus t
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV -Cold and warm mist formulations.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • Solid carrier materials are suitable: for example natural rock powders such as kaolins, clay, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Solid carrier materials for granules are suitable: e.g.
  • emulsifiers and / or foaming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersing agents are, for example, lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to to broaden the spectrum of activity or to prevent the development of resistance.
  • fungicides bactericides
  • acaricides nematicides or insecticides
  • synergistic effects are obtained, i.e. the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Possible mixing partners are, for example, the compounds named “Main Entries” in the Pesticide Manual 10 ⁇ Edition, British Crop Protection Council, and preparations which contain insecticidally active plant extracts, nematodes, fungi or viruses.
  • a mixture with other known compounds Active ingredients such as herbicides or with fertilizers and growth regulators, safeners or semiochemicals are possible.
  • the compounds of the formula (I) according to the invention also have very good antimycotic effects. They have a very broad antimycotic activity spectrum in particular against dermatophytes and yeasts, molds and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata), and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, microsporon species such as microsporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum Aspergillus species such as Aspergillus niger and Aspergillus fumigatus
  • Trichophyton species such as Trichophyton mentagrophytes
  • microsporon species such as microsporon canis and audouinii.
  • the list of these fungi is in no way
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the customary manner, for example by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients by the ultra-low-volume process or to prepare the active ingredient or the active ingredient itself in the Inject soil. The seeds of the plants can also be treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g ha, preferably between 10 and 1,000 g ha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • all plants and their parts can be treated.
  • wild plant species or plant species and their parts obtained by conventional biological breeding methods such as crossing or protoplast fusion
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods if appropriate in combination with conventional methods (genetically modified organisms) and their parts are treated.
  • the term “parts” or “parts of plants” or “parts of plants” was explained above.
  • Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been cultivated by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be cultivars, breeds, bio- and genotypes.
  • the treatment according to the invention can also cause superadditive (“synergistic”) effects.
  • superadditive for example, reduced application rates and / or widening of the activity spectrum and / or one Enhancing the effect of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or water or soil salt content, increased flowering capacity, easier harvesting, acceleration of ripeness, higher harvest yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products, which go beyond the effects to be expected.
  • the preferred transgenic plants or plant cultivars to be treated according to the invention include all plants which have received genetic material through the genetic engineering modification, which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or Workability of the harvested products Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or Vi ren and an increased tolerance of the plants to certain herbicidal active ingredients.
  • transgenic plants are the important crop plants, such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, tobacco, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes , Cotton, tobacco and rapeseed are highlighted.
  • the traits are particularly emphasized as the increased defense of the plants against insects, arachnids, namatodes and snails by toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (eg by the genes Cry ⁇ A (a) , CryIA (b), Cry ⁇ A (c), CrylJA, CrylTIA, CryIHB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations) are produced in the plants (hereinafter "Bt plants”).
  • Bacillus thuringiensis eg by the genes Cry ⁇ A (a) , CryIA (b), Cry ⁇ A (c), CrylJA, CrylTIA, CryIHB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations
  • Trans are also used the increased defense of plants against fungi, bacteria and viruses through systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins are particularly emphasized.
  • SAR systemic acquired resistance
  • the properties (“traits”) which are particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example “PAT” gene).
  • the genes conferring the desired properties (“traits”) can also occur in combinations with one another in the transgenic plants.
  • Bt plants are corn varieties, cotton varieties, soy varieties and potato varieties that are sold under the trade names YTELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® ( Cotton), Nucoton® (cotton) and NewLeaf® (potato).
  • herbicide-tolerant plants include maize, cotton and soybeans, which are among the The Roundup Ready® (tolerance to glyphosate e.g. corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, e.g.
  • rapeseed rapeseed
  • IMI® tolerance to imidazolinones
  • STS® tolerance to sulfonylureas e.g. corn
  • the herbicide-resistant plants include the varieties sold under the name Clearfield® (eg maize). Of course, these statements also apply to plant varieties developed in the future or coming onto the market in the future with these or future-developed genetic properties ("traits").
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • R 6 stands for H.
  • Solvent 24.5 parts by weight of acetone; 24.5 parts by weight of dimetylacetamide
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 3 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Example B Plasmopara test (vine) / protective
  • Solvent 24.5 parts by weight of acetone; 24.5 parts by weight of dimethylacetamide
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at approx. 21 ° C. and a relative humidity of approx. 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Example D Altermaria test ( " tomato) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Example E Pyricularia test (rice) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent and the concentrate is diluted to the desired concentration with water and the stated amount of emulsifier.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die Erfindung betrifft neue 1,2,4-Thiadiazole der Formel (I) in welcher R1, R2, R3, R4, R5, R6 und A die in der Beschreibung angegebenen Bedeutungen haben, Verfahren zur Herstellung dieser Verbindungen und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Description

Substituierte 1,2,4-ThiadiazoIe
Die vorliegende Erfindung betrifft neue substituierte 1,2,4-Thiadiazole, Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.
Aus DE 2 154 852 ist bereits bekannt, dass bestimmte 1 ,2,4-Thiadiazole füngizide Eigenschaften besitzen. Die Wirkung dieser Verbindungen ist gut, lässt aber in manchen Fällen zu wünschen übrig.
Es wurden nun neue substituierte 1,2,4-Thiadiazole der Formel
Figure imgf000002_0001
in welcher
R.1 für Wasserstoff, Halogen, Nitro, Cyano, Hydroxy, Alkyl, Halogenalkyl, Alkoxy, Halogen- alkoxy, Aryl, Aryloxy Amino, Aminosulfonyl, Alkylamino, Dialkylamino, Alkylthio, Al- kylsulfoxy, Alkylsulfonyl, Halogenalkylthio, Halogenalkylsulfoxy, Halogenalkylsulfonyl, Carboxy, Carboalkoxy, Carbamido, Formyl, Alkylcarbonyl oder Arylcarbonyl, steht,
R^ für Wasserstoff , Halogen, Alkyl oder Alkoxy steht,
R.3 für Wasserstoff oder Alkyl steht,
R^ für Wasserstoff oder Alkyl steht,
R5 für Halogen steht,
R6 für Wasserstoff oder Alkyl steht und
A für eine Einfachbindung oder gegebenenfalls substituiertes Alkandiyl steht,
gefunden.
Die erfϊndungsgemäßen Verbindungen der Formel (I) können je nach Substitutionsmuster gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereo- isomeren, wie E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch in Form von Tautomeren vorliegen.
Weiterhin wurde gefunden, daß sich 1,2,4-Thiadiazole der Formel (I) herstellen lassen, indem man substituierte 1,2,4-Thiadiazole der Formel
Figure imgf000003_0001
in welcher
R5 die oben angegebenen Bedeutungen hat und
R für Halogen steht,
mit Aminen der Formel
Figure imgf000003_0002
in welcher
R* R^, R^, R4 und R6 fae oben angegebenen Bedeutungen haben,
gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt.
Schließlich wurde gefunden, dass sich die 1 ,2,4-Thiadiazole der Formel (I) sehr gut zur Bekämpfung von unerwünschten Mikroorganismen eignen. Sie zeigen vor allem eine starke füngizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.
Überraschenderweise besitzen die erfϊndungsgemäßen 1,2,4-Thiadiazole der Formel (I) eine wesentlich bessere mikrobizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.
In den vorstehenden und nachfolgenden Definitionen gelten, sofern nicht anders ausgeführt, die nachfolgenden Definitionen: Gesättigte oder ungesättigte Kohlenwasserstoffketten, wie Alkyl, Alkandiyl, Alkenyl oder Alkinyl, auch in Verknüpfung mit Hetroatomen, wie beispielsweise Alkoxy, oder Halogenalkyl sind jeweils geradkettig oder verzweigt. Bevorzugt sind, falls nicht anders angegeben, Kohlenwasserstoffketten mit 1 bis 6 Kohlenstoffatomen.
Aryl steht für aromatische, mono- oder polycyclische Kohlenwasserstoffπnge, wie z.B. Phenyl, Naphthyl, Anthranyl, Phenanthryl, vorzugsweise Phenyl oder Naphthyl, insbesondere Phenyl.
Die erfϊndungsgemäßen 1 ,2,4-Thiadiazole sind durch die Formel (I) allgemein definiert.
Bevorzugte Substituenten bzw. bevorzugte Bereiche der in den oben und nachstehend aufgeführten Formeln vorhandenen Reste werden im Folgenden definiert.
Rl steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Alkyl mit 1 bis 4 Kohlenstoffatomen; Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- Chlor- oder Bromatomen; Alkoxy mit 1 bis 4 Kohlenstoffatomen; Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- Chlor- oder Bromatomen; Phenyl, Phenyloxy, Naphthyl, Naphthyloxy, Amino, Aminosulfonyl, Alkyla ino mit 1 bis 4 Kohlenstoffato- men, Dialkylamino mit 2 bis 8 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Alkylsulfoxy mit 1 bis 4 Kohlenstoffatomen, Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- Chlor- oder Bromatomen, Halogenalkylsulfoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- Chlor- oder Bromatomen, Halogenalkylsulfonyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- Chlor- oder Bromatomen, Carboxy, Carboalkoxy mit 1 bis 4 Kohlenstoffatomen, Carbamido mit 1 bis 4 Kohlenstoffatomen, Formyl, Alkylcarbonyl mit 1 bis 4 Kohlenstoffatomen Phenylcarbonyl oder Napthylcarbonyl.
R^ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom; Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen.
R^ steht bevorzugt für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen.
R^ steht bevorzugt für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen.
R* steht bevorzugt für Fluor, Chlor oder Brom.
R" steht bevorzugt für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen.
A steht bevorzugt für eine Einfachbindung oder für Alkandiyl mit 1 bis 3 Kohlenstoffatomen, welche gegebenenfalls durch Hydroxy substituiert sind. R steht besonders bevorzugt für Wasserstoff, Chlor, Brom, Fluor, Nitro, Cyano, Hydroxy, Methyl, Ethyl, Chlormethyl, Trichohlormethyl, Trifluormethyl, Methoxy, Ethoxy Chlor- methoxy, Trichohlormethoxy, Trifluormethoxy, Phenyl, Phenyloxy, Amino, Methylsulfo- nyl, Ethylsulfonyl, Methylamino, Ethylamino, Dimethylamino, Diethylamino, Methylthio, Ethylthio, Methylsulfoxy, Ethylsulfoxy, Methylsulfonyl, Ethylsulfonyl, Chlormethyl-thio, Trichohlormethylthio, Trifluormethylthio, Chlormethylsulfoxy, Trichohlormethylsulfoxy, Trifluormethylsulfoxy, Chlormethylsulfonyl, Trichohlormethylsulfonyl, Trifluormethylsul- fonyl, Carboxy, Methoxy-carbonyl, Ethoxycarbonyl, Methylamido, Formyl, Methylcarbo- nyl, Ethyl-carbonyl, Benzoyl oder Napthoyl.
R^ steht besonders bevorzugt für Wasserstoff, Chlor, Brom Methyl, Ethyl, Methoxy oder E- thoxy.
R^ steht besonders bevorzugt für Wasserstoff, Methyl oder Ethyl.
R^ steht besonders bevorzugt für Wasserstoff, Methyl oder Ethyl.
R5 steht besonders bevorzugt für Chlor oder Brom.
R > steht besonders bevorzugt für Wasserstoff.
A steht besonders bevorzugt für eine Einfachbindung oder für Methylen.
R steht ganz besonders bevorzugt für Wasserstoff, Chlor, Fluor, Methyl, Ethyl, Trichohlormethyl, Trifluormethyl, Methoxy, Ethoxy, Phenyl, Phenyloxy,
R^ steht ganz besonders bevorzugt für Wasserstoff, Chlor, Fluor, Methoxy oder Ethoxy.
Die zuvor genannten Definitionen der Substituenten können in beliebiger Weise miteinander kombiniert werden. Ebenso können einzelne Definitionen entfallen.
Erfindungsgemäß bevorzugt sind die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß besonders bevorzugt sind die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß ganz besonders bevorzugt sind die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt. Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Reste-Definitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangs- oder Zwischenprodukte.
Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können einzelne Definitionen entfallen.
Bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R3, R4 für Wasserstoff und A für Methylen stehen.
Weiterhin bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R3 für Methyl, R4 für Wasserstoff und A für eine Einfachbindung stehen.
Weiterhin bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R5 für Chlor steht.
Weiterhin bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R3 und R4 für Wasserstoff und A für eine Einfachbindung stehen.
Weiterhin bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R5 für Brom steht.
Weiterhin bevorzugt sind diejenigen Verbindungen der Formel (I), in denen R1 nicht für Wasser- stoff steht und R2 für Wasserstoff steht.
Verwendet man 3,5-Dichlor-l,2,4-Thiadiazol und 2-(3,4-Dimethoxyphenyl)ethylamin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden.
Figure imgf000006_0001
Die zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten 1,2,4- Thiadiazole sind durch die Formel (IT) allgemein definiert. In Formel (H) hat R7 vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für den Rest R5 als bevorzugt bzw. besonders bevorzugt genannt wurden. Die Verbindungen der Formel (IT) sind bekannt.
Die zur Durchführung des erfϊndungsgemäßen Verfahrens als Ausgangsstoffe benötigten Amine sind durch die Formel (H3) allgemein definiert. In Formel (ITf) haben R1, R2, R3, R4, R6 und A vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfin- dungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.
Die Verbindungen der Formel (HT) sind bekannt oder lassen sich nach bekannten Verfahren herstellen.
Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens alle üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl -t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2- Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzo- nitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Me- thylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Es- sigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.
Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen Verfahren alle für derartige Umsetzungen üblichen anorganischen oder organischen Basen in Frage. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Lithium-diisopropylamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kali- umcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat, und außerdem Ammonium- verbindungen wie Ammoniumhydroxid, Ammoniumacetat und Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl- benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diaza- bicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).
Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Betracht. Vorzugsweise verwendbar sind Fluoride wie Natriumfluorid, Kaliumfluorid oder Ammoniumfluorid.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C. Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 mol an 1 ,2,4-Thiadiazol der Formel (IT) im Allgemeinen 0,5 bis 10 mol, vorzugsweise 0,8 bis 2 mol an Amin der Formel (HI) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.
Die erfindungsgemäßen Verfahren werden im Allgemeinen unter Atmosphärendruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem Druck zu arbeiten.
Die Isolierung der Verbindungen der Formel (I) aus den Reaktionsgemischen erfolgt nach laborüblichen Methoden, wie Extraktion, Kristallisation, Destillation, gegebenenfalls nach vorheriger Überführung in ein geeignetes Salz wie Chlorid, Nitrat, Sulfat, Tosylat, Carbonat.
Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Be- kämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomyce- tes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia-Arten, wie beispielsweise Er- winia amylovora; Pythium-Arten, wie beispielsweise Pythium ultimum; Phytophthora-Arten, wie beispielsweise Phytophthora infestans; Pseudoperonospora-Arten, wie beispielsweise Pseudopero- nospora humuli oder Pseudoperonospora cubensis; Plasmopara-Arten, wie beispielsweise Plasmo- para viticola; Bremia-Arten, wie beispielsweise Bremia lactucae; Peronospora-Arten, wie bei- spielsweise Peronospora pisi oder P. brassicae; Erysiphe-Arten, wie beispielsweise Erysiphe gra- minis; Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea; Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha; Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform:
Drechslera, Syn: Helminthosporium); Cochliobolus-Arten, wie beispielsweise Cochliobolus sati- vus (Konidienform: Drechslera, Syn: Helminthosporium); Uromyces-Arten, wie beispielsweise
Uromyces appendiculatus; Puccinia-Arten, wie beispielsweise Puccinia recondita; Sclerotinia-
Arten, wie beispielsweise Sclerotinia sclerotiorum; Tilletia-Arten, wie beispielsweise Tilletia ca- ries; Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae; Pellicularia-Arten, wie beispielsweise Pellicularia sasakii; Pyricularia-Arten, wie beispielsweise Pyricularia oryzae; Fusarium-Arten, wie beispielsweise Fusarium culmorum; Botrytis-Arten, wie beispielsweise Botrytis cinerea; Septoria-Arten, wie beispielsweise Septoria nodorum; Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum; Cercospora-Arten, wie beispielsweise Cercospora canes- cens; Alternaria-Arten, wie beispielsweise Alternaria brassicae; Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.
Die erfindungsgemäßen Wirkstoffe weisen auch eine sehr gute stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch uner- wünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflan- zen mit den Wirkstoffen.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe-Arten, von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia-, Sphaerotheca- und Po- dosphaera-Arten, einsetzen.
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kul- turpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materia- lien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger, Chaetomium, wie Chaetomi- um globosum, Coniophora, wie Coniophora puetana, Lentinus, wie Lentinus tigrinus, Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidi- um pullulans, Sclerophoma, wie Sclerophoma pityop ila, Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslö- sungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aro- maten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Ton- erden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Mais- kolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen- Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methyl- cellulose.
Es können in den Formulierungen Haftmittel wie Carboxymefhylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel die in Pesticide Manual 10ώ Edition, Britisch Crop Pro- tection Council als „Main Entries" genannten Verbindungen sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten, in Frage. Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.
Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute anti- mykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter. Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g ha, vorzugsweise zwischen 10 und 1.000 g ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugs- weise zwischen 1 und 5.000 g/ha.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform wer- den transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw. „Teile von Pflanzen" oder „Pflanzenteile" wurde oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder ge- gen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Tro- ckenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Emte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpatho- genen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Namatoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryIA(b), CryΙA(c), CrylJA, CrylTIA, CryIHB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften („Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YTELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nu- coton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Han- delsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resis- tente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeich- nung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.
Herstellungsbeispiel
Figure imgf000016_0001
Zu einer Lösung von 0,388 g (2,5 mmol) 3,5-Dichlorisothiazol in 15 ml Tetrahydrofuran gibt man 0,453 g (2,50 mmol) 2-(3,4-Dimethoxyphenyl)ethylamin und 0,253 g ( 2,50 mmol) Triethylamin, rührt 24 Stunden bei Rückfluss. Danach wird das Reaktionsgemisch auf Raumtemperatur abgekühlt und mit 50 ml Wasser verrührt. Man extrahiert mit Essigsäureethylester, wäscht die organische Phase einmal mit Wasser, trocknet über Natriumsulfat und engt unter vermindertem Druck ein. Man erhält 0,64 g (81%) der Verbindung (1-2); HPLC: logP = 2,15.
Nach dieser Methode sind auch die in Tabelle 1 aufgeführten 1 ,2,4-Thiadiazole der Formel
Figure imgf000016_0002
erhältlich.
Tabelle 1:
Figure imgf000016_0003
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Anmerkungen zu Tabelle 1 :
R6 steht für H.
#) Me steht für Methyl, Et steht für Ethyl, Ph steht für Phenyl, OMe steht für Methoxy, „-" steht für eine Einfachbindung usw. • *) Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure) Biologische Beispiele
Beispiel A Phytophthora-Test (Tomate) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton; 24,5 Gewichtsteile Dimetylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Phytophthora infestans inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
In diesem Test zeigen die in Beispiel 6, 8, 9 und 26 aufgeführten Verbindungen bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 85 %.
Beispiel B: Plasmopara-Test (Rebe) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton; 24,5Gewichtsteile Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 5 Tage im Gewächshaus bei ca. 21°C und ca. 90 % relativer Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt. 6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
In diesem Test zeigen die in Beispiel 6, 8, 9, 10, 12, 13, 24 und 26 aufgeführten Verbindungen bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 85 %.
Beispiel C Venturia - Test (Apfel) / protektiv
Lösungsmittel : 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflan- zen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden dann im Gewächshaus bei ca. 21 °C und einer relativen Luftfeuchtigkeit von ca. 90% aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.
In diesem Test zeigen die in Beispiel 6, 8 und 10 aufgeführten Verbindungen bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 90 %.
Beispiel D: Altermaria-Test ("Tomate) / protektiv
Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Tomatenpflanzen mit der Wirkstoffzu- bereitung in der angegebenen Aufwandmenge besprüht. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Altermaria solani inokuliert und stehen dann 24 h bei 100%) rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96% rel. Luftfeuchtigkeit und einer Temperatur von 20°C.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
In diesem Test zeigen die in Beispiel 8, 9 und 12 aufgeführten Verbindungen bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von über 90 %.
Beispiel E: Pyricularia-Test (Reis) / protektiv
Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und verdünnt das Konzentrat mit Wasser und der angegebenen Menge Emulgator auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Reispflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach dem Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Fyricularia oryzae inokuliert und verbleiben dann 24 h bei 100 % rel. Luftfeuchte und 26°C. Anschließend werden die Pflanzen in einem Gewächshaus bei 80 % relativer Luftfeuchtigkeit und 26°C aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
In diesem Test zeigen die in Beispiel 10 und 13 aufgeführten Verbindungen bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von über 90 %.

Claims

Patentansprüche
Verbindungen der Formel
Figure imgf000023_0001
in welcher
Rl für Wasserstoff, Halogen, Nitro, Cyano, Hydroxy, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Aryl, Aryloxy Amino, Aminosulfonyl, Alkylamino, Dialkylamino, Alkylthio, Alkylsulfoxy, Alkylsulfonyl, Halogenalkylthio, Halogenalkylsulfoxy, Halogenalkylsulfonyl, Carboxy, Carboalkoxy, Carbamido, Formyl, Alkylcarbonyl oder Arylcarbonyl,
R^ für Wasserstoff , Halogen, Alkyl, oder Alkoxy,
R^ für Wasserstoff, Hydroxy oder Alkyl, R^ für Wasserstoff, Hydroxy oder Alkyl, R^ für Halogen,
R6 für Wasserstoff oder Alkyl und für eine Einfachbindung oder gegebenenfalls substituiertes Alkandiyl steht.
Verfahren zur Herstellung von Verbindungen der Formel (I) gemäß Anspruch 1 , dadurch gekennzeichnet, dass man substituierte 1 ,
2,4-Thiadiazole der Formel
Figure imgf000023_0002
in welcher
R-* die in Anspruch 1 angegebenen Bedeutungen hat und R für Halogen steht, mit Aminen der Formel
Figure imgf000024_0001
in welcher
R* R^, R^, R4 und R > die in Anspruch 1 angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt.
3. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, enthaltend mindestens eine Verbindung der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von unerwünschten Mikroorganismen.
Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
Verfahren zur Herstellung von Mitteln nach Anspruch 3, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
PCT/EP2004/009119 2003-08-26 2004-08-13 Substituierte 1,2,4-thiadiazole WO2005021520A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10339568.7 2003-08-26
DE2003139568 DE10339568A1 (de) 2003-08-26 2003-08-26 3-Halogen-1,2,4-Thiadiazole

Publications (1)

Publication Number Publication Date
WO2005021520A1 true WO2005021520A1 (de) 2005-03-10

Family

ID=34202124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009119 WO2005021520A1 (de) 2003-08-26 2004-08-13 Substituierte 1,2,4-thiadiazole

Country Status (2)

Country Link
DE (1) DE10339568A1 (de)
WO (1) WO2005021520A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062411A1 (en) * 2005-11-28 2007-05-31 Kalypsys, Inc. Novel method of preparation of 5-chloro-3-imidazol-1-yl-[1,2,4]thiadiazole and (3-imidazol-1-yl-[1,2,4]thiadiazol-5-yl)-dialkyl-amines
CN105622599A (zh) * 2016-03-01 2016-06-01 浙江工业大学 一种2-取代苄硫基-5-(4,6-二甲基嘧啶-2-)硫甲基-1,3,4-噻二唑类化合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2154852A1 (en) * 1970-11-27 1972-06-15 Makhteshim Beer Sheva Chemical Works Ltd, Beer Sheva (Israel) 5-substd amino-3-isopropyl-1,2,4-thiadiazoles - pesticides and herbici
US3720684A (en) * 1970-10-13 1973-03-13 Velsicol Chemical Corp 5-halo-1,2,4-thiadiazoles
US3736328A (en) * 1969-02-28 1973-05-29 L Wittenbrook Certain 3-halo-5-sulfinyl-1,2,4-thiadiazoles
DE2452618A1 (de) * 1974-11-06 1976-05-13 Merck Patent Gmbh Sulfenamide
EP0478974A1 (de) * 1990-09-20 1992-04-08 BASF Aktiengesellschaft N-Heteroaryl-2-nitroaniline
WO2001046165A2 (en) * 1999-12-16 2001-06-28 Novartis Ag N-heteroaryl-amides and their use as parasiticides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736328A (en) * 1969-02-28 1973-05-29 L Wittenbrook Certain 3-halo-5-sulfinyl-1,2,4-thiadiazoles
US3720684A (en) * 1970-10-13 1973-03-13 Velsicol Chemical Corp 5-halo-1,2,4-thiadiazoles
DE2154852A1 (en) * 1970-11-27 1972-06-15 Makhteshim Beer Sheva Chemical Works Ltd, Beer Sheva (Israel) 5-substd amino-3-isopropyl-1,2,4-thiadiazoles - pesticides and herbici
DE2452618A1 (de) * 1974-11-06 1976-05-13 Merck Patent Gmbh Sulfenamide
EP0478974A1 (de) * 1990-09-20 1992-04-08 BASF Aktiengesellschaft N-Heteroaryl-2-nitroaniline
WO2001046165A2 (en) * 1999-12-16 2001-06-28 Novartis Ag N-heteroaryl-amides and their use as parasiticides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062411A1 (en) * 2005-11-28 2007-05-31 Kalypsys, Inc. Novel method of preparation of 5-chloro-3-imidazol-1-yl-[1,2,4]thiadiazole and (3-imidazol-1-yl-[1,2,4]thiadiazol-5-yl)-dialkyl-amines
CN105622599A (zh) * 2016-03-01 2016-06-01 浙江工业大学 一种2-取代苄硫基-5-(4,6-二甲基嘧啶-2-)硫甲基-1,3,4-噻二唑类化合物及其应用

Also Published As

Publication number Publication date
DE10339568A1 (de) 2005-03-24

Similar Documents

Publication Publication Date Title
EP0339418B1 (de) Substituierte Cycloalkyl- bzw. Heterocyclyl-carbon-säureanilide
EP0165448A2 (de) 1-Heteroaryl-4-aryl-pyrozolin-5-one
DE3821711A1 (de) Thiazolopyrimidin-derivate, verfahren zu ihrer herstellung und ihre verwendung als schaedlingsbekaempfungsmittel
EP0584625B1 (de) Pyridyloxy-acrylsäureester
EP0628540B1 (de) 2-Oximino-2-phenyl-acetamide
EP0311892A1 (de) Subtituierte Azolylmethylcarbinole
DE4341066A1 (de) Oxa(Thia)-diazol-oxy-phenylacrylate
EP0438717A2 (de) Trisubstituierte 1,2,4-Triazin-3,5-dione und neue Zwischenprodukte
EP0590458A1 (de) Substituierte Thiophencarbonsäureamide
WO2005021520A1 (de) Substituierte 1,2,4-thiadiazole
DE3711345A1 (de) Substituierte propylamine
EP0329011A1 (de) Heterocyclisch substituierte Acrylsäureester
EP0594963A1 (de) Substituierte Hydroxyalkylpyridine
EP0557860B1 (de) Substituierte Pyridylpyrimidine und ihre Verwendung als Schädlingsbekämpfungsmittel
EP0277537A1 (de) 1-Aminomethyl-3-aryl-4-cyano-pyrrole
DE3702962A1 (de) Schaedlingsbekaempfungsmittel auf pyrimidin-derivat basis
EP0387499B1 (de) Substituierte Oximether sowie deren Verwendung als Schädlingsbekämpfungsmittel
EP0283777A1 (de) Benzaldoxim-Derivate
DE3725968A1 (de) Substituierte pyridine
DE3716023A1 (de) Azolyl-tetrahydrofuran-2-yliden-methane
EP0269929A1 (de) Chlor-1,2,4-oxadiazole
EP0185983A1 (de) N-(3-Chlor-1,2,4-oxadiazol-5-yl)-harnstoffe
WO1994004529A1 (de) Pyridylsubstituierte 1,3-oxazolidin-derivate und ihre verwendung als schädlingsbekämpfungsmittel
EP0391188A1 (de) Fungizide Mittel auf Basis von teilweise bekannten nitrosubstituierten Benzthiazolonen, neue nitrosubstituierte Benzthiazolone und Verfahren zu ihrer Herstellung
DE3809776A1 (de) Hetaryl-1,10-phenanthrolin-derivate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase