WO2005021379A1 - Inertia wheel for space vehicle - Google Patents

Inertia wheel for space vehicle Download PDF

Info

Publication number
WO2005021379A1
WO2005021379A1 PCT/FR2004/001821 FR2004001821W WO2005021379A1 WO 2005021379 A1 WO2005021379 A1 WO 2005021379A1 FR 2004001821 W FR2004001821 W FR 2004001821W WO 2005021379 A1 WO2005021379 A1 WO 2005021379A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
mass
inertia
flywheel
play
Prior art date
Application number
PCT/FR2004/001821
Other languages
French (fr)
Inventor
Philippe Faucheux
Pascal Michel Noël GUAY
Original Assignee
Eads Astrium Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Astrium Sas filed Critical Eads Astrium Sas
Publication of WO2005021379A1 publication Critical patent/WO2005021379A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/315Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft
    • F16F15/3156Arrangement of the bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/285Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using momentum wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/581Raceways; Race rings integral with other parts, e.g. with housings or machine elements such as shafts or gear wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/283Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using reaction wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/286Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/47Cosmonautic vehicles, i.e. bearings adapted for use in outer-space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments

Definitions

  • the present invention relates to a wheel intended to be driven in a rotational movement about its axis, and to be used as a flywheel, or as a reaction wheel, for equipping space vehicles.
  • flywheel covers both the flywheels used to create an on-board angular momentum, or the flywheels mounted on gimbal to make gyroscopic actuators (or gyrodynes or CMG), or the reaction wheels intended to create torque by varying their rotational speed, or any other use intended for the equipment of attitude control systems and satellite orientation.
  • reaction wheels and gyrodynes are given in patents US-3, 968,352, US-6, 135,392 and US-6,305,647, which will be referred to for more details on their subject.
  • a flywheel, standard or custom made, of a space vehicle generally consists of at least one rolling bearing on which is attached at least one mass called “inertia”, making it possible to create the desired inertia, the rotation of which at high constant speed will create an on-board kinetic moment, or the acceleration of which will create the desired reaction torque.
  • inertia wheels with an inertia mass added to one or two bearing bearings are shown in FIGS. 1, 4 and 3 respectively of the three aforementioned US patents.
  • This added mass is generally screwed onto an interface piece intended to secure it to the rolling bearing or bearings. It must be extremely precisely centered with respect to the rolling bearing (s) so as to limit dynamic disturbances (during the rotations of the inertia mass around the axis of the bearing (s)), and by consequently the microvibrations, which are generated by the rotation of the mass of inertia, and which are transmitted to equipment on board the satellites, the performance of which can therefore be significantly reduced. For the same reasons, this mass of inertia must be balanced after transfer to the rolling bearing.
  • a major drawback of the known embodiments of flywheels for space vehicles lies in the fact that the centering and balancing faults of the rotating member consisting of the rolling bearing (s) on which it is reported.
  • the mass of inertia will necessarily be amplified typically by a factor of ten compared to the initial settings, when the wheel is subjected, during ground tests or during launching into very unfavorable mechanical vibration environments.
  • This amplification results from uncontrollable displacements between the different parts which constitute the rotating member, that is to say the mass of inertia on the one hand, and the interface part to which it is screwed on the other hand .
  • the aim of the present invention is to reduce the problems and drawbacks linked to the lack of centering and balancing of the inertia masses and to their uncontrollable increase observed after ground vibration tests or after launch, in order to limit its impact in terms of micro-vibrations, and improve its stability.
  • the invention provides a flywheel for a space vehicle, the wheel comprising at least one flywheel rotatably mounted by a bearing with at least one bearing, the fixed part of which is intended to be fixed to the spacecraft, and which is characterized in that said at least one mass of inertia of the wheel integrates at least one rotating ring of said one bearing, said rotating ring being made integral without play of said mass of inertia.
  • said rotating ring and said mass of inertia consist of a single piece or of several pieces hooped together or assembled without play by any technique allowing any relative play between the pieces to be eliminated.
  • the proposed embodiment therefore consists in using part of the bearing structure or at least one of the bearings of the bearing, namely at least one rotating bearing ring, as an integrated part in one piece or hooped together or assembled without play with the mass of inertia.
  • Such an embodiment has the following advantages: the mass of inertia being in one piece or hooped together or assembled without play with at least one rotating ring of at least one bearing, unbalances can thus be minimized by manufacture; in particular, the centering faults, due to the assembly by screwing of the inertia mass on the corresponding bearing or bearings, are eliminated; - the assemblies of the inertia mass (s) on the bearing (s) being eliminated, the phenomena of shake due to vibrations at the interfaces between inertia mass (s) and bearing (s) are eliminated, which guarantees a stability of the imbalance, and therefore stability of micro-vibrations, despite the strong vibrations undergone by the wheel during mechanical tests or when the spacecraft is launched.
  • the flywheel according to the invention is such that said mass d inertia is in one piece or shrunk together or assembled without play with at least one outer ring of the rolling bearing, another configuration, generally less favorable, being that the mass of inertia is in one piece or shrunk together or assembled without play with at least one internal ring of the rolling bearing.
  • the mass of inertia is in one piece or hooped together or assembled without play with a single external ring, or possibly internal, of a bearing comprising two bearings, therefore two rows of rolling elements, with balls or with tapered rollers, mounted face-to-face or, preferably, back-to-back.
  • this bearing is a rolling bearing comprising a single row of rolling elements, the latter have four points of contact with the inner and outer rings of the bearing.
  • said mass of inertia comprises: - a full veil or with shelving in sticks, preferably of conical shape or of any other shape radial, relative to the axis of the bearing and which is in one piece or hooped together or assembled without play with said rotating ring of at least one of the bearings of the bearing, and - an external peripheral rim, of a single piece or hooped together or assembled without play with said veil.
  • the value of the inertia for a given mass, in a given size, the rim and the outer ring are bodies of revolution around the axis of the outer ring, and are in one piece or hooped together or assembled without play with said veil, at the respectively external and internal radial ends of the latter.
  • the rolling bearing is a preloaded bearing by back-to-back mounting of two rows of rolling elements, axially spaced from one another between a single rotating ring and two non-rotating rings which may or may not be separated from each other by at least one axial spacer.
  • the rolling bearing can be preloaded with two rows of balls, of the oblique contact type or of the deep groove type, between the rotating ring, preferably external and the two fixed rings, preferably internal.
  • flywheels according to the invention makes it possible to significantly reduce imbalances (typically by a factor of 10), and consequently micro-vibrations, which makes it possible to significantly improve the pointing performance of satellites.
  • the structure of the inertia wheels according to the invention is all the more suitable for wheels rotating at high speeds, for which small imbalances can cause significant micro-dynamic disturbances, since the effect of these disturbances is proportional to the square the speed of rotation of the wheel.
  • FIG. 1 represents a schematic view in axial section of 'a first example of a flywheel according to the invention
  • - Figure 2 shows, substantially similar to Figure 1, a second example of a flywheel according to the invention.
  • the flywheel shown in FIG. 1 comprises a flywheel mass 1 rotatably mounted on a rolling bearing 2, around the axis XX of this bearing 2.
  • the flywheel mass 1 consists of a rim 3, external device, having a symmetry of revolution about the axis XX, and preferably in one piece with a veil 4, but which can be hooped together, or assembled without play and connected, on the side of its internal face, with the peripheral external radial end of the web 4, in the form of a frustoconical solid disc of axis XX, and itself in one piece or hooped together, or assembled without play by its internal radial end, with the external rotating ring 5 of the rolling bearing 2.
  • the veil 4 can be full, with symmetry of revolution about the axis XX, or perforated, with a shelving in sticks, the radii of which are inclined in axial planes.
  • the web 4 is linked by its external and internal radial ends respectively to the middle, in the axial direction (along the axis XX), of the internal radial face of the rim 3, and to the external radial face of an end part.
  • axial 5a (upper in FIG. 1) of the rotating external ring 5.
  • the veil 4 can also be planar and radial, solid or perforated with radial spokes or have any other shape making it possible to improve its rigidity while minimizing its mass.
  • the rim 3, the web 4 and the outer ring 5 are therefore advantageously made of a single piece constituting the mass of inertia 1. But as a variant, the latter can be made up of several pieces hooped together without play, or assembled without play any other way.
  • the mass of inertia 1 thus formed, of a metal or metallic alloy, is balanced and centered on the axis XX of the rolling bearing 2, and this mass of inertia 1 can advantageously be of revolution around the axis XX.
  • the external ring 5 in the internal radial position on the mass 1 is also a body of generally cylindrical shape, and, in the example shown, the rim 3 and the outer ring 5 have substantially the same axial dimension
  • the bearing 2 is composed of two preloaded bearings and advantageously mounted back-to-back, comprising two rows of balls 7a and 7b, which are offset from one another according to the axis XX, and each located between an axial end portion 5a or 5b of the common rotating external ring 5, radially outward, and respectively one of two non-rotating or fixed internal rings 6a and 6b, either directly in contact with each other, or spaced axially from each other by a tubular spacer 8, radially inward., and intended to be fixed to the structure of the satellite.
  • the rings 5, 6a and 6b are coaxial around the axis X-X of the rolling bearing
  • FIG. 1 represents a bearing with two deep groove ball bearings 7a and 7b
  • the rolling bearing 2 can have two angular contact ball bearings, as shown schematically by the axes in solid lines crossing the balls 7a and 7b between their points of contact with the two corresponding rings, with an orientation which, in FIG. 1, indicates a preload of the bearings mounted back-to-back.
  • the use of a single rotating external ring 5 and two fixed internal rings 6a and 6b provides better stability and allows easier assembly.
  • the two internal rings 6a and 6b of which must be supported on the platform of the satellite or on a box of equipment on board the satellite it may be advantageous that, as shown in the figure 1, the axial dimension of the two internal rings 6a and 6b as well as of the tubular spacer 8 which separates them is substantially equal to the axial dimension of the single external ring 5.
  • the example of a flywheel in FIG. 2 also comprises a mass of inertia 9, comprising, substantially like the mass of inertia 1 of FIG. 1, an external peripheral rim 11, similar to the rim 3, and in one piece with a frustoconical web 12, similar to the wall 4 of FIG.
  • the web 12 is in one piece with the internal rotating ring 14, which is common to the two ball bearings, the two rows of balls 15a and 15b are axially offset and located between one respectively of two axial end portions 14a and 14b of the single common rotating inner ring 14 and one respectively of the two fixed outer rings 13a and 13b of the bearings.
  • These fixed external rings 13a and 13b can bear axially against each other, or, as shown in FIG. 2, kept spaced apart by an axial tubular spacer 16, inside a sleeve 13 of tubular support.
  • the mass of inertia 9 can be produced by assembling its three components, the rim 11, the web 12 and the internal rotating ring 14, without play, or of component parts of these components, for example by hooping together and without play of these parts or components.
  • the mass of inertia 9, like the mass of inertia 1 of FIG. 1, is balanced and centered on the axis XX of the bearing 10 with two bearings, and can advantageously be of revolution around this axis XX.
  • Such flywheels therefore have a flywheel mass 1 or 9 which can be centered extremely precisely with respect to the rolling bearing 2 or 10, because the balancing and centering of the flywheel mass 1 or 9 which incorporates the single external ring 5 or internal 4 of the rolling bearing 2 or 10, as well as their good resistance over time after having undergone severe vibratory environments, are facilitated compared to the achievements of the prior art.
  • the manufacture of such a mass of inertia 1 or 9 makes it possible to reduce imbalances and to overcome the problems of connection between the mass of inertia and the rotating ring of the bearing or bearings, of which the mass of inertia is integral in rotation.
  • Such a mass of inertia 1 or 9 is particularly suitable for producing inertia wheels rotating at high speed, such as those used on small satellites which, because of their low mass and inertia, are very sensitive to micro-vibrations. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

The invention concerns an inertia wheel comprising at least one inertia mass (1) rotatably mounted through a bearing (2) to at least one ball-bearing whereof the stationary part is designed to be fixed on the space vehicle. The inertia mass (1) incorporates at least one rotating ring (5) of the bearing (2), and said rotating ring (5) is tightly secured to the inertia mass (1). The invention is useful for making inertia wheels, reaction wheels and satellite gyrodynes.

Description

ROUE D'INERTIE POUR VEHICULE SPATIAL SPARE VEHICLE INERTIA WHEEL
La présente invention concerne une roue destinée à être animée d'un mouvement de rotation autour de son axe, et à être utilisée comme roue d'inertie, ou comme roue de réaction, pour l'équipement de véhicules spatiaux. Pour cette raison, dans le présent mémoire descriptif comme dans les revendications qui lui font suite, le terme « roue d'inertie » recouvre aussi bien les roues d'inertie utilisées pour créer un moment cinétique embarqué, ou les roues d'inertie montées sur cardan pour réaliser des actionneurs gyroscopiques (ou gyrodynes ou CMG), ou les roues de réaction destinées à créer du couple en faisant varier leur vitesse de rotation, ou toute autre utilisation destinée à l'équipement de systèmes de contrôle d'attitude et d'orientation des satellites. Des exemples de roues de réaction et de gyrodynes sont donnés dans les brevets US-3, 968,352, US-6, 135,392 et US-6,305,647, auxquels on se reportera pour davantage de précisions à leur sujet. On sait qu'une roue d'inertie, standard ou fabriquée sur mesure, de véhicule spatial est généralement constituée d'au moins un palier de roulement sur lequel est rapportée au moins une masse dite « d'inertie », permettant de créer l'inertie désirée, dont la mise en rotation à vitesse constante élevée permettra de créer un moment cinétique embarqué, ou dont la mise en accélération créera le couple de réaction désiré. A titre d'exemple, des roues d'inertie à masse d'inertie rapportée sur un ou deux paliers de roulements sont représentées sur les figures 1, 4 et 3 respectivement des trois brevets US précités. Cette masse rapportée est en général vissée sur une pièce d'interface destinée à la solidariser du ou des paliers de roulement. Elle doit être centrée de manière extrêmement précise par rapport au(x) palier(s) de roulement de façon à limiter les perturbations dynamiques (lors des rotations de la masse d'inertie autour de l'axe du ou des roulements), et par conséquent les microvibrations, qui sont engendrées par la rotation de la masse d'inertie, et qui sont transmises à des équipements, embarqués sur les satellites, et dont les performances peuvent de ce fait être sensiblement réduites. Pour les mêmes raisons, cette masse d'inertie doit être équilibrée après report sur le palier de roulement. Un inconvénient majeur des réalisations connues de roues d'inertie pour véhicules spatiaux réside dans le fait que les défauts de centrage et d'équilibrage de l'organe tournant constitué du ou des paliers de roulement sur le(s)quel(s) est rapportée la masse d'inertie vont nécessairement être amplifiés typiquement d'un facteur dix par rapport aux réglages initiaux, lorsque la roue sera soumise, lors d'essais au sol ou lors du lancement à des environnements mécaniques vibratoires très défavorables. Cette amplification résulte des déplacements non contrôlables entre les différentes parties qui constituent l'organe tournant, c'est-à-dire la masse d'inertie d'une part, et la pièce d'interface sur laquelle elle est vissée d'autre part. Le but visé par la présente invention est de réduire les problèmes et inconvénients liés au défaut de centrage et d'équilibrage des masses d'inertie et à leur accroissement non contrôlable observé après des essais de vibration au sol ou après le lancement, afin d'en limiter les impacts en terme de micro- vibrations, et d'en améliorer la stabilité. A cet effet, l'invention propose une roue d'inertie, pour véhicule spatial, la roue comprenant au moins une masse d'inertie montée en rotation par un palier à au moins un roulement dont la partie fixe est destinée à être fixée sur le véhicule spatial, et qui se caractérise en ce que ladite au moins une masse d'inertie de la roue intègre au moins une bague tournante dudit un palier, ladite bague tournante étant rendue solidaire sans jeu de ladite masse d'inertie. Par ces termes, il faut comprendre que ladite bague tournante et ladite masse d'inertie sont constituées d'une seule pièce ou de plusieurs pièces frettées ensemble ou assemblées sans jeu par toute technique permettant de supprimer tout jeu relatif entre les pièces. La réalisation proposée consiste donc à utiliser une partie de la structure du roulement ou de l'un au moins des roulements du palier, à savoir au moins une bague tournante de roulement, comme partie intégrée d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec la masse d'inertie. Une telle réalisation présente les avantages suivants : - la masse d'inertie étant d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec au moins une bague tournante d'au moins un roulement, des balourds peuvent être ainsi minimisés par fabrication ; en particulier, les défauts de centrage, dûs à l'assemblage par vissage de la masse d'inertie sur le ou les roulements correspondants, sont supprimés ; - les assemblages de la ou des masses d'inertie sur le ou les roulements étant supprimés, les phénomènes de bougés dus aux vibrations aux interfaces entre masse(s) d'inertie et roulement(s) sont éliminés, ce qui permet de garantir une stabilité du balourd, et donc une stabilité des micro- vibrations, malgré les fortes vibrations subies par la roue lors d'essais mécaniques ou lors du lancement du véhicule spatial. Pour ces raisons, et avantageusement du point de vue de l'inertie, en raison du plus grand rayon d'une bague externe par rapport à une bague interne de roulement, la roue d'inertie selon l'invention est telle que ladite masse d'inertie est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec au moins une bague externe du palier de roulement, une autre configuration, généralement moins favorable, étant que la masse d'inertie est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec au moins une bague interne du palier de roulement. De préférence, la masse d'inertie est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec une unique bague externe, ou éventuellement interne, d'un palier comprenant deux roulements, donc deux rangées d'éléments roulants, à billes ou à rouleaux coniques, montés face-à- face ou, de préférence, dos-à-dos. Lorsque ce palier est un palier de roulement comprenant une seule rangée d'éléments roulants, ces derniers ont quatre points de contact avec les bagues interne et externe du palier. Avantageusement en outre, pour obtenir une grande inertie, dans un encombrement limité, et sans augmenter inconsidérément la masse concernée, ladite masse d'inertie comprend : - un voile plein ou avec rayonnage en bâtons, de préférence de forme conique ou de toute autre forme radiale, par rapport à l'axe du palier et qui est d'une seule pièce ou fretté ensemble ou assemblé sans jeu avec ladite bague tournante d'au moins un des roulements du palier, et - une jante périphérique externe, d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec ledit voile. Avantageusement de plus, et afin d'optimiser les centrages, la valeur de l'inertie pour une masse donnée, dans un encombrement donné, la jante et la bague externes sont des corps de révolution autour de l'axe de la bague externe, et sont d'une seule pièce ou frettés ensemble ou assemblées sans jeu avec ledit voile, aux extrémités radiales respectivement externe et interne de ce dernier. Pour améliorer le guidage axial, il est avantageux que le palier de roulement soit un palier pré-chargé par montage dos-à-dos de deux rangées d'éléments roulants, axialement espacées l'une de l'autre entre une unique bague tournante et deux bagues non-tournantes pouvant être séparées ou non l'une de l'autre par au moins une entretoise axiale. Dans le premier cas, à titre d'exemple de réalisation, le palier de roulement peut être pré-chargé à deux rangées de billes, du type à contact oblique ou du type à gorges profondes, entre la bague tournante, de préférence externe et les deux bagues fixes, de préférence internes. L'utilisation de roues d'inertie selon l'invention permet de réduire de manière importante les balourds (typiquement d'un facteur 10), et par conséquent les micro-vibrations, ce qui permet d'améliorer sensiblement les performances de pointage des satellites. La structure des roues d'inertie selon l'invention est d'autant mieux adaptée pour les roues tournant à vitesses élevées, pour lesquelles de faibles balourds peuvent entraîner des perturbations micro-dynamiques importantes, puisque l'effet de ces perturbations est proportionnel au carré de la vitesse de rotation de la roue. D'autres avantages et caractéristiques de l'invention ressortiront de la description, donnée ci-dessous à titre non limitatif, d'exemples de réalisation décrits en référence aux dessins annexés sur lesquels : - la figure 1 représente une vue schématique en coupe axiale d'un premier exemple d'une roue d'inertie selon l'invention, et - la figure 2 représente, sensiblement de manière analogue à la figure 1 , un second exemple d'une roue d'inertie selon l'invention. La roue d'inertie représentée sur la figure 1 comprend une masse d'inertie 1 montée en rotation sur un palier de roulement 2, autour de l'axe X-X de ce palier 2. La masse d'inertie 1 est constituée d'une jante 3, périphérique externe, ayant une symétrie de révolution autour de l'axe X-X, et de préférence d'une seule pièce avec un voile 4, mais pouvant être frettée ensemble, ou assemblée sans jeu et reliée, du côté de sa face interne, avec l'extrémité radiale externe périphérique du voile 4, en forme de disque plein tronconique d'axe X-X, et lui-même d'une seule pièce ou fretté ensemble, ou assemblée sans jeu par son extrémité radiale interne, avec la bague externe tournante 5 du palier de roulement 2. Le voile 4 peut être plein, à symétrie de révolution autour de l'axe X-X, ou ajouré, avec un rayonnage en bâtons, dont les rayons sont inclinés dans des plans axiaux. Le voile 4 est lié par ses extrémités radiales externe et interne respectivement au milieu, en direction axiale (selon l'axe X-X), de la face radiale interne de la jante 3, et à la face radiale externe d'une partie d'extrémité axiale 5a (supérieure sur la figure 1) de la bague externe tournante 5. Le voile 4 peut également être plan et radial, plein ou ajouré à rayons radiaux ou avoir toute autre forme permettant d'améliorer sa rigidité en minimisant sa masse. La masse d'inertie 1, constituée de préférence d'une seule pièce formant la jante 3, le voile 4 et la bague externe 5, intègre donc cette dernière, dont la masse participe à procurer l'inertie nécessaire à la roue d'inertie. La jante 3, le voile 4 et la bague externe 5 sont donc avantageusement constitués d'une seule pièce constituant la masse d'inertie 1. Mais en variante cette dernière peut être constituée de plusieurs pièces frettées ensemble sans jeu, ou assemblées sans jeu de toute autre manière. La masse d'inertie 1 ainsi constituée, en un métal ou alliage métallique, est équilibrée et centrée sur l'axe X-X du palier de roulement 2, et cette masse d'inertie 1 peut être avantageusement de révolution autour de l'axe X-X. Comme la jante 3, en position radiale externe sur la masse 1 , la bague externe 5, en position radiale interne sur la masse 1, est également un corps de forme générale cylindrique, et, dans l'exemple représenté, la jante 3 et la bague externe 5 présentent sensiblement la même dimension axialeThe present invention relates to a wheel intended to be driven in a rotational movement about its axis, and to be used as a flywheel, or as a reaction wheel, for equipping space vehicles. For this reason, in the present specification as in the claims which follow it, the term “flywheel” covers both the flywheels used to create an on-board angular momentum, or the flywheels mounted on gimbal to make gyroscopic actuators (or gyrodynes or CMG), or the reaction wheels intended to create torque by varying their rotational speed, or any other use intended for the equipment of attitude control systems and satellite orientation. Examples of reaction wheels and gyrodynes are given in patents US-3, 968,352, US-6, 135,392 and US-6,305,647, which will be referred to for more details on their subject. We know that a flywheel, standard or custom made, of a space vehicle generally consists of at least one rolling bearing on which is attached at least one mass called “inertia”, making it possible to create the desired inertia, the rotation of which at high constant speed will create an on-board kinetic moment, or the acceleration of which will create the desired reaction torque. By way of example, inertia wheels with an inertia mass added to one or two bearing bearings are shown in FIGS. 1, 4 and 3 respectively of the three aforementioned US patents. This added mass is generally screwed onto an interface piece intended to secure it to the rolling bearing or bearings. It must be extremely precisely centered with respect to the rolling bearing (s) so as to limit dynamic disturbances (during the rotations of the inertia mass around the axis of the bearing (s)), and by consequently the microvibrations, which are generated by the rotation of the mass of inertia, and which are transmitted to equipment on board the satellites, the performance of which can therefore be significantly reduced. For the same reasons, this mass of inertia must be balanced after transfer to the rolling bearing. A major drawback of the known embodiments of flywheels for space vehicles lies in the fact that the centering and balancing faults of the rotating member consisting of the rolling bearing (s) on which it is reported. the mass of inertia will necessarily be amplified typically by a factor of ten compared to the initial settings, when the wheel is subjected, during ground tests or during launching into very unfavorable mechanical vibration environments. This amplification results from uncontrollable displacements between the different parts which constitute the rotating member, that is to say the mass of inertia on the one hand, and the interface part to which it is screwed on the other hand . The aim of the present invention is to reduce the problems and drawbacks linked to the lack of centering and balancing of the inertia masses and to their uncontrollable increase observed after ground vibration tests or after launch, in order to limit its impact in terms of micro-vibrations, and improve its stability. To this end, the invention provides a flywheel for a space vehicle, the wheel comprising at least one flywheel rotatably mounted by a bearing with at least one bearing, the fixed part of which is intended to be fixed to the spacecraft, and which is characterized in that said at least one mass of inertia of the wheel integrates at least one rotating ring of said one bearing, said rotating ring being made integral without play of said mass of inertia. By these terms, it should be understood that said rotating ring and said mass of inertia consist of a single piece or of several pieces hooped together or assembled without play by any technique allowing any relative play between the pieces to be eliminated. The proposed embodiment therefore consists in using part of the bearing structure or at least one of the bearings of the bearing, namely at least one rotating bearing ring, as an integrated part in one piece or hooped together or assembled without play with the mass of inertia. Such an embodiment has the following advantages: the mass of inertia being in one piece or hooped together or assembled without play with at least one rotating ring of at least one bearing, unbalances can thus be minimized by manufacture; in particular, the centering faults, due to the assembly by screwing of the inertia mass on the corresponding bearing or bearings, are eliminated; - the assemblies of the inertia mass (s) on the bearing (s) being eliminated, the phenomena of shake due to vibrations at the interfaces between inertia mass (s) and bearing (s) are eliminated, which guarantees a stability of the imbalance, and therefore stability of micro-vibrations, despite the strong vibrations undergone by the wheel during mechanical tests or when the spacecraft is launched. For these reasons, and advantageously from the point of view of inertia, due to the larger radius of an outer ring relative to an inner bearing ring, the flywheel according to the invention is such that said mass d inertia is in one piece or shrunk together or assembled without play with at least one outer ring of the rolling bearing, another configuration, generally less favorable, being that the mass of inertia is in one piece or shrunk together or assembled without play with at least one internal ring of the rolling bearing. Preferably, the mass of inertia is in one piece or hooped together or assembled without play with a single external ring, or possibly internal, of a bearing comprising two bearings, therefore two rows of rolling elements, with balls or with tapered rollers, mounted face-to-face or, preferably, back-to-back. When this bearing is a rolling bearing comprising a single row of rolling elements, the latter have four points of contact with the inner and outer rings of the bearing. Advantageously, moreover, in order to obtain high inertia, in a limited space, and without thoughtlessly increasing the mass concerned, said mass of inertia comprises: - a full veil or with shelving in sticks, preferably of conical shape or of any other shape radial, relative to the axis of the bearing and which is in one piece or hooped together or assembled without play with said rotating ring of at least one of the bearings of the bearing, and - an external peripheral rim, of a single piece or hooped together or assembled without play with said veil. Advantageously, moreover, and in order to optimize the centering, the value of the inertia for a given mass, in a given size, the rim and the outer ring are bodies of revolution around the axis of the outer ring, and are in one piece or hooped together or assembled without play with said veil, at the respectively external and internal radial ends of the latter. To improve the axial guidance, it is advantageous that the rolling bearing is a preloaded bearing by back-to-back mounting of two rows of rolling elements, axially spaced from one another between a single rotating ring and two non-rotating rings which may or may not be separated from each other by at least one axial spacer. In the first case, as an exemplary embodiment, the rolling bearing can be preloaded with two rows of balls, of the oblique contact type or of the deep groove type, between the rotating ring, preferably external and the two fixed rings, preferably internal. The use of flywheels according to the invention makes it possible to significantly reduce imbalances (typically by a factor of 10), and consequently micro-vibrations, which makes it possible to significantly improve the pointing performance of satellites. . The structure of the inertia wheels according to the invention is all the more suitable for wheels rotating at high speeds, for which small imbalances can cause significant micro-dynamic disturbances, since the effect of these disturbances is proportional to the square the speed of rotation of the wheel. Other advantages and characteristics of the invention will emerge from the description, given below without implied limitation, of embodiments described with reference to the appended drawings in which: - Figure 1 represents a schematic view in axial section of 'a first example of a flywheel according to the invention, and - Figure 2 shows, substantially similar to Figure 1, a second example of a flywheel according to the invention. The flywheel shown in FIG. 1 comprises a flywheel mass 1 rotatably mounted on a rolling bearing 2, around the axis XX of this bearing 2. The flywheel mass 1 consists of a rim 3, external device, having a symmetry of revolution about the axis XX, and preferably in one piece with a veil 4, but which can be hooped together, or assembled without play and connected, on the side of its internal face, with the peripheral external radial end of the web 4, in the form of a frustoconical solid disc of axis XX, and itself in one piece or hooped together, or assembled without play by its internal radial end, with the external rotating ring 5 of the rolling bearing 2. The veil 4 can be full, with symmetry of revolution about the axis XX, or perforated, with a shelving in sticks, the radii of which are inclined in axial planes. The web 4 is linked by its external and internal radial ends respectively to the middle, in the axial direction (along the axis XX), of the internal radial face of the rim 3, and to the external radial face of an end part. axial 5a (upper in FIG. 1) of the rotating external ring 5. The veil 4 can also be planar and radial, solid or perforated with radial spokes or have any other shape making it possible to improve its rigidity while minimizing its mass. The inertia mass 1, preferably consisting of a single piece forming the rim 3, the web 4 and the outer ring 5, therefore integrates the latter, the mass of which contributes to providing the inertia necessary for the inertia wheel . The rim 3, the web 4 and the outer ring 5 are therefore advantageously made of a single piece constituting the mass of inertia 1. But as a variant, the latter can be made up of several pieces hooped together without play, or assembled without play any other way. The mass of inertia 1 thus formed, of a metal or metallic alloy, is balanced and centered on the axis XX of the rolling bearing 2, and this mass of inertia 1 can advantageously be of revolution around the axis XX. Like the rim 3, in the external radial position on the mass 1, the external ring 5, in the internal radial position on the mass 1, is also a body of generally cylindrical shape, and, in the example shown, the rim 3 and the outer ring 5 have substantially the same axial dimension
(parallèlement à l'axe X-X) afin de minimiser l'encombrement de la roue. Dans l'exemple représenté sur la figure 1 , le palier 2 est composé de deux roulements préchargés et montés avantageusement dos-à-dos, comprenant deux rangées de billes 7a et 7b, qui sont décalées l'une de l'autre selon l'axe X-X, et chacune située entre une partie d'extrémité axiale 5a ou 5b de la bague externe tournante 5 commune, radialement vers l'extérieur, et respectivement l'une de deux bagues internes non tournantes ou fixes 6a et 6b, soit directement en contact l'une avec l'autre, soit espacées axialement l'une de l'autre par une entretoise tubulaire 8, radialement vers l'intérieur., et destinées à être fixées sur la structure du satellite. Dans ce montage, les bagues 5, 6a et 6b sont coaxiales autour de l'axe X-X du palier de roulement(parallel to the X-X axis) to minimize the size of the wheel. In the example shown in Figure 1, the bearing 2 is composed of two preloaded bearings and advantageously mounted back-to-back, comprising two rows of balls 7a and 7b, which are offset from one another according to the axis XX, and each located between an axial end portion 5a or 5b of the common rotating external ring 5, radially outward, and respectively one of two non-rotating or fixed internal rings 6a and 6b, either directly in contact with each other, or spaced axially from each other by a tubular spacer 8, radially inward., and intended to be fixed to the structure of the satellite. In this assembly, the rings 5, 6a and 6b are coaxial around the axis X-X of the rolling bearing
2, et bien que la figure 1 représente un palier à deux roulements à rangées de billes 7a et 7b à gorges profondes, le palier de roulement 2 peut avoir deux roulements à rangées de billes à contact oblique, comme indiqué schématiquement par les axes en traits pleins traversant les billes 7a et 7b entre leurs points de contact avec les deux bagues correspondantes, avec une orientation qui, sur la figure 1, indique une précharge des roulements montés dos-à-dos. L'utilisation d'une unique bague externe tournante 5 et de deux bagues internes fixes 6a et 6b procure une meilleure stabilité et permet un montage plus facile. Pour faciliter le positionnement du palier de roulement 2, dont les deux bagues internes 6a et 6b doivent être supportées sur la plateforme du satellite ou sur un boîtier d'un équipement embarqué dans le satellite, il peut être avantageux que, comme représenté sur la figure 1, la dimension axiale des deux bagues internes 6a et 6b ainsi que de l'entretoise tubulaire 8 qui les sépare soit sensiblement égale à la dimension axiale de l'unique bague externe 5. L'exemple de roue d'inertie de la figure 2 comprend également une masse d'inertie 9, comprenant, sensiblement comme la masse d'inertie 1 de la figure 1 , une jante périphérique externe 11 , semblable à la jante 3, et d'une seule pièce avec un voile 12 tronconique, semblable au voile 4 de la figure 1, et lui-même d'une seule pièce avec une partie d'extrémité axiale d'une bague tournante d'un palier 10 à deux roulements à billes montés préchargés, de préférence dos-à-dos, comme le palier 2 de la figure 1. Mais, dans ce deuxième exemple, le voile 12 est d'une seule pièce avec la bague tournante interne 14, qui est commune aux deux roulements à billes, dont les deux rangées de billes 15a et 15b sont décalées axialement et situées entre l'une respectivement de deux parties d'extrémité axiales 14a et 14b de l'unique bague interne tournante commune 14 et l'une respectivement des deux bagues externes fixes 13a et 13b des roulements. Ces bagues externes fixes 13a et 13b peuvent être en appui axial l'une contre l'autre, ou, comme représenté sur la figure 2, maintenues espacées par une entretoise tubulaire axiale 16, à l'intérieur d'un manchon 13 de support tubulaire fixé à la structure porteuse. En variante, la masse d'inertie 9 peut être réalisée par l'assemblage sans jeu de ses trois composants, la jante 11 , le voile 12 et la bague tournante interne 14, ou de pièces constitutives de ces composants, par exemple par frettage ensemble et sans jeu de ces pièces ou composants. La masse d'inertie 9, comme la masse d'inertie 1 de la figure 1 , est équilibrée et centrée sur l'axe X-X du palier 10 à deux roulements, et peut être avantageusement de révolution autour de cet axe X-X. De telles roues d'inertie comportent donc une masse d'inertie 1 ou 9 qui peut être centrée de manière extrêmement précise par rapport au palier de roulement 2 ou 10, car l'équilibrage et le centrage de la masse d'inertie 1 ou 9 qui intègre l'unique bague externe 5 ou interne 4 du palier de roulement 2 ou 10, ainsi que leur bonne tenue dans le temps après avoir subi de sévères environnements vibratoires, sont facilités par rapport aux réalisations de l'état de la technique. La fabrication d'une telle masse d'inertie 1 ou 9 permet de réduire les balourds et de s'affranchir des problèmes de liaison entre la masse d'inertie et la bague tournante du ou des roulements, dont la masse d'inertie est solidaire en rotation. Une telle masse d'inertie 1 ou 9 est particulièrement adaptée à la réalisation de roues d'inertie tournant à vitesse élevée, comme celles utilisées sur des petits satellites qui, du fait de leur faible masse et inertie, sont très sensibles aux micro-vibrations. 2, and although FIG. 1 represents a bearing with two deep groove ball bearings 7a and 7b, the rolling bearing 2 can have two angular contact ball bearings, as shown schematically by the axes in solid lines crossing the balls 7a and 7b between their points of contact with the two corresponding rings, with an orientation which, in FIG. 1, indicates a preload of the bearings mounted back-to-back. The use of a single rotating external ring 5 and two fixed internal rings 6a and 6b provides better stability and allows easier assembly. To facilitate the positioning of the rolling bearing 2, the two internal rings 6a and 6b of which must be supported on the platform of the satellite or on a box of equipment on board the satellite, it may be advantageous that, as shown in the figure 1, the axial dimension of the two internal rings 6a and 6b as well as of the tubular spacer 8 which separates them is substantially equal to the axial dimension of the single external ring 5. The example of a flywheel in FIG. 2 also comprises a mass of inertia 9, comprising, substantially like the mass of inertia 1 of FIG. 1, an external peripheral rim 11, similar to the rim 3, and in one piece with a frustoconical web 12, similar to the wall 4 of FIG. 1, and itself in one piece with an axial end part of a rotating ring of a bearing 10 with two ball bearings mounted preloaded, preferably back-to-back, as level 2 of figure 1. May s, in this second example, the web 12 is in one piece with the internal rotating ring 14, which is common to the two ball bearings, the two rows of balls 15a and 15b are axially offset and located between one respectively of two axial end portions 14a and 14b of the single common rotating inner ring 14 and one respectively of the two fixed outer rings 13a and 13b of the bearings. These fixed external rings 13a and 13b can bear axially against each other, or, as shown in FIG. 2, kept spaced apart by an axial tubular spacer 16, inside a sleeve 13 of tubular support. attached to the supporting structure. As a variant, the mass of inertia 9 can be produced by assembling its three components, the rim 11, the web 12 and the internal rotating ring 14, without play, or of component parts of these components, for example by hooping together and without play of these parts or components. The mass of inertia 9, like the mass of inertia 1 of FIG. 1, is balanced and centered on the axis XX of the bearing 10 with two bearings, and can advantageously be of revolution around this axis XX. Such flywheels therefore have a flywheel mass 1 or 9 which can be centered extremely precisely with respect to the rolling bearing 2 or 10, because the balancing and centering of the flywheel mass 1 or 9 which incorporates the single external ring 5 or internal 4 of the rolling bearing 2 or 10, as well as their good resistance over time after having undergone severe vibratory environments, are facilitated compared to the achievements of the prior art. The manufacture of such a mass of inertia 1 or 9 makes it possible to reduce imbalances and to overcome the problems of connection between the mass of inertia and the rotating ring of the bearing or bearings, of which the mass of inertia is integral in rotation. Such a mass of inertia 1 or 9 is particularly suitable for producing inertia wheels rotating at high speed, such as those used on small satellites which, because of their low mass and inertia, are very sensitive to micro-vibrations. .

Claims

REVENDICATIONS
1. Roue d'inertie, pour véhicule spatial, la roue comprenant au moins une masse d'inertie (1, 9) montée en rotation par un palier à au moins un roulement (2, 10) dont la partie fixe est destinée à être fixée sur ledit véhicule spatial, caractérisée en ce que ladite au moins une masse d'inertie (1 , 9) intègre au moins une bague tournante (5, 14) dudit palier (2, 10), ladite bague tournante (5, 14) étant rendue solidaire sans jeu de ladite masse d'inertie (1, 9). 1. Inertia wheel, for a space vehicle, the wheel comprising at least one inertia mass (1, 9) rotatably mounted by a bearing with at least one bearing (2, 10), the fixed part of which is intended to be fixed to said spacecraft, characterized in that said at least one mass of inertia (1, 9) integrates at least one rotating ring (5, 14) of said bearing (2, 10), said rotating ring (5, 14) being made integral without play of said mass of inertia (1, 9).
2. Roue d'inertie selon la revendication 1, caractérisée en ce que ladite bague tournante (5, 14) et ladite masse d'inertie (1, 9) sont constituées d'une seule pièce, ou de plusieurs pièces frettées ensemble, ou assemblées par toute technique permettant de supprimer tout jeu relatif entre les pièces.2. Flywheel according to claim 1, characterized in that said rotating ring (5, 14) and said flywheel (1, 9) consist of a single piece, or of several pieces hooped together, or assembled by any technique to eliminate any relative play between the parts.
3. Roue d'inertie selon la revendication 2, caractérisée en ce que ladite masse d'inertie (1) est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec au moins une bague externe (5) dudit palier (2).3. Flywheel according to claim 2, characterized in that said flywheel mass (1) is in one piece or hooped together or assembled without play with at least one outer ring (5) of said bearing (2) .
4. Roue d'inertie selon la revendication 3, caractérisée en ce que ladite masse d'inertie (1) est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec une unique bague externe (5) dudit palier (2). 4. Flywheel according to claim 3, characterized in that said flywheel mass (1) is in one piece or hooped together or assembled without play with a single outer ring (5) of said bearing (2).
5. Roue d'inertie selon la revendication 2, caractérisée en ce que ladite masse d'inertie (9) est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec au moins une bague interne (14) dudit palier (10).5. Flywheel according to claim 2, characterized in that said flywheel mass (9) is in one piece or hooped together or assembled without play with at least one internal ring (14) of said bearing (10) .
6. Roue d'inertie selon la revendication 5, caractérisée en ce que ladite masse d'inertie (9) est d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec une unique bague interne (14) dudit palier (10).6. Flywheel according to claim 5, characterized in that said flywheel mass (9) is in one piece or hooped together or assembled without play with a single internal ring (14) of said bearing (10).
7. Roue d'inertie selon l'une quelconque des revendication 1 à 6, caractérisée en ce que le palier est un palier à un roulement comprenant une seule rangée d'élément roulants à quatre points de contact avec les bagues interne et externe du palier. 7. Flywheel according to any one of claims 1 to 6, characterized in that the bearing is a rolling bearing comprising a single row of rolling elements with four points of contact with the inner and outer rings of the bearing .
8. Roue d'inertie selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le palier est un palier de roulement à deux rangées d'éléments roulants (7a, 7b ; 15a, 15b), à billes ou à rouleaux coniques, montés face-à-face ou de préférence dos-à-dos.8. Flywheel according to any one of claims 1 to 6, characterized in that the bearing is a rolling bearing with two rows rolling elements (7a, 7b; 15a, 15b), with balls or tapered rollers, mounted face-to-face or preferably back-to-back.
9. Roue d'inertie selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite masse d'inertie (1 ou 9) comprend : - un voile (4, 12) plein ou avec rayonnage en bâtons, de préférence de forme conique ou de toute autre forme radiale, par rapport à l'axe (X-X) du palier (2, 10) et qui est d'une seule pièce ou fretté ensemble ou assemblé sans jeu avec ladite bague tournante d'au moins un des roulements du palier (5, 14), - une jante (3, 11) périphérique externe, d'une seule pièce ou frettée ensemble ou assemblée sans jeu avec ledit voile (4, 12).9. Flywheel according to any one of claims 1 to 8, characterized in that said flywheel mass (1 or 9) comprises: - a web (4, 12) full or with shelving in sticks, preferably of conical shape or any other radial shape, with respect to the axis (XX) of the bearing (2, 10) and which is in one piece or hooped together or assembled without play with said rotating ring of at least one bearings of the bearing (5, 14), - an outer peripheral rim (3, 11), in one piece or hooped together or assembled without play with said web (4, 12).
10. Roue d'inertie selon la revendication 8, caractérisée en ce que le palier de roulement est un palier préchargé, de préférence dos-à-dos, ou face-à- face, à deux rangées d'éléments roulants, billes ou rouleaux coniques (7a/7b,15a/15b), axialement espacées l'une de l'autre entre une unique bague tournante (5, 14) et deux bagues fixes (6a/6b, 13a/13b) séparées ou non l'une de l'autre par au moins une entretoise axiale (8, 16).10. Flywheel according to claim 8, characterized in that the rolling bearing is a preloaded bearing, preferably back-to-back, or face-to-face, with two rows of rolling elements, balls or rollers conical (7a / 7b, 15a / 15b), axially spaced from each other between a single rotating ring (5, 14) and two fixed rings (6a / 6b, 13a / 13b) separated or not one of the other by at least one axial spacer (8, 16).
11. Roue d'inertie selon la revendication 10, caractérisée en ce que ledit palier de roulement (2, 10) est un roulement à deux rangées de billes ou rouleaux coniques (7a/7b,15a/15b), à contact oblique ou à gorges profondes, entre ladite bague externe tournante (5, 14) et les deux bagues internes fixes (6a/6b, 13a/ 13b). 11. Flywheel according to claim 10, characterized in that said rolling bearing (2, 10) is a bearing with two rows of balls or conical rollers (7a / 7b, 15a / 15b), with oblique contact or with deep grooves, between said rotating external ring (5, 14) and the two fixed internal rings (6a / 6b, 13a / 13b).
PCT/FR2004/001821 2003-07-28 2004-07-09 Inertia wheel for space vehicle WO2005021379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309228A FR2858294A1 (en) 2003-07-28 2003-07-28 Inertia wheel for space vehicle e.g. satellite, has inertia mass mounted in rotation by anti-friction bearing and integrating with rotating ring of bearing without any clearance
FR03/09228 2003-07-28

Publications (1)

Publication Number Publication Date
WO2005021379A1 true WO2005021379A1 (en) 2005-03-10

Family

ID=34043585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001821 WO2005021379A1 (en) 2003-07-28 2004-07-09 Inertia wheel for space vehicle

Country Status (2)

Country Link
FR (1) FR2858294A1 (en)
WO (1) WO2005021379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981603A1 (en) * 2011-10-25 2013-04-26 Eads Europ Aeronautic Defence INERTIAL WHEEL ARCHITECTURE FOR ENERGY STORAGE
CN110525692A (en) * 2019-08-30 2019-12-03 中国科学院西安光学精密机械研究所 Realize the counteraction flyback of the spaceborne integrated common drive executing agency of rapid scan

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090100957A1 (en) 2007-10-23 2009-04-23 Honeywell International, Inc. Rotor assemblies having shafts with integral bearing raceways
CN114590421B (en) * 2022-04-12 2022-09-09 北京航空航天大学 Multi-friction contact surface nonlinear vibration absorption-energy consumption device for momentum wheel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353139A (en) * 1943-01-28 1944-07-11 Sperry Gyroscope Co Inc Shaft mounting
US3020106A (en) * 1959-07-16 1962-02-06 Barden Corp Bearings having balls with restrained spin axes
US3071421A (en) * 1958-09-15 1963-01-01 Northrop Corp Compensated pre-loaded bearing
US3416377A (en) * 1965-04-20 1968-12-17 Beyerle Konrad Mounting for gyros
GB1417585A (en) * 1972-11-04 1975-12-10 British Aircraft Corp Ltd Gyroscopes
US3968352A (en) * 1974-05-17 1976-07-06 Sperry Rand Corporation Torque control system for reaction wheel assemblies and the like
US4492131A (en) * 1981-04-11 1985-01-08 Teldix Gmbh Flywheel
US6305647B1 (en) * 1998-11-19 2001-10-23 Matra Marconi Space France Method and apparatus for steering the attitude of a satellite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353139A (en) * 1943-01-28 1944-07-11 Sperry Gyroscope Co Inc Shaft mounting
US3071421A (en) * 1958-09-15 1963-01-01 Northrop Corp Compensated pre-loaded bearing
US3020106A (en) * 1959-07-16 1962-02-06 Barden Corp Bearings having balls with restrained spin axes
US3416377A (en) * 1965-04-20 1968-12-17 Beyerle Konrad Mounting for gyros
GB1417585A (en) * 1972-11-04 1975-12-10 British Aircraft Corp Ltd Gyroscopes
US3968352A (en) * 1974-05-17 1976-07-06 Sperry Rand Corporation Torque control system for reaction wheel assemblies and the like
US4492131A (en) * 1981-04-11 1985-01-08 Teldix Gmbh Flywheel
US6305647B1 (en) * 1998-11-19 2001-10-23 Matra Marconi Space France Method and apparatus for steering the attitude of a satellite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981603A1 (en) * 2011-10-25 2013-04-26 Eads Europ Aeronautic Defence INERTIAL WHEEL ARCHITECTURE FOR ENERGY STORAGE
WO2013060704A1 (en) 2011-10-25 2013-05-02 European Aeronautic Defence And Space Company Eads France Inertia wheel architecture for storing
CN103958175A (en) * 2011-10-25 2014-07-30 欧洲航空防务与空间公司Eads法国 Inertia wheel architecture for storing
RU2607213C2 (en) * 2011-10-25 2017-01-10 Юропиан Аэронотик Дефенс Энд Спейс Компани Эадс Франс Design of inertial wheel for energy accumulation
CN110525692A (en) * 2019-08-30 2019-12-03 中国科学院西安光学精密机械研究所 Realize the counteraction flyback of the spaceborne integrated common drive executing agency of rapid scan

Also Published As

Publication number Publication date
FR2858294A1 (en) 2005-02-04

Similar Documents

Publication Publication Date Title
EP1348623B1 (en) Rotorcraft rotor with constant velocity joint and a torque-splitting differential
FR2825765A1 (en) BEARING WITH TWO DISSYMMETRIC ROWS OF BALLS WITH OBLIQUE CONTACT, AND MOUNTING OF DOOR-A-FALSE SPROCKETS ON SUCH A BEARING
EP1212541B1 (en) Hybrid ball bearing with oblique contact, and axial stop comprising same
EP1346910A1 (en) Rotor for a rotary wing aircraft having constant velocity drive
FR2908736A1 (en) Power transmitting system for helicopter, has damper extended around shaft with radial space less than clearance such that dampening of displacements of shaft is ensured and damage of inductors is limited in case of failure of active damper
FR2975340A1 (en) DEVICE FOR COUPLING ROTATION FROM A CROWN TO A WHEEL AND AN AIRCRAFT ENGINEER WITH SUCH A DEVICE.
EP1865206A2 (en) Belt transmission mechanism
EP2935939B1 (en) Device for absorbing vibrations
EP2935938B1 (en) Vibration absorbing device
EP1382877B1 (en) Aircraft multi-disc brake system
EP1344896A1 (en) Device for supporting and recentering a fan-shaft of a turbofan after failure due to inbalance
WO2005021379A1 (en) Inertia wheel for space vehicle
FR3017265A1 (en) WHEEL FORMING ENHANCED AGRICULTURAL TOOL
FR3033543A1 (en) ANTI-SIMILAR SUSPENSION SYSTEM FOR AN AIRCRAFT POWER TRANSMISSION BOX HOLDING BAR, ANTI-VIBRATION SUSPENSION DEVICE, AND AN AIRCRAFT
CA3130552A1 (en) Blade pivot of adjustable orientation and of reduced bulk for a turbomachine fan hub
EP3320316B1 (en) Modular calibration rotor for a horizontal balancer
EP4093983B1 (en) Motor vehicle wheel assembly
EP2053248A2 (en) Belt drive mechanism and its manufacturing method
EP1201957B1 (en) Wheel assembly with a disc brake for vehicles
WO2009138695A2 (en) Rolling bearing with spherical separators
EP4093985A1 (en) Rotating assembly, in particular for guiding a motor vehicle wheel
WO2018087273A1 (en) Spacecraft comprising active attitude control means and passive attitude control means
FR3112825A1 (en) rotating assembly, in particular for guiding a motor vehicle wheel
FR3106635A1 (en) Automotive vehicle wheel assembly
EP4308800A1 (en) Device for centring and guiding a shaft of an aircraft turbine engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase