WO2005020967A1 - Electric drug transport preparation - Google Patents

Electric drug transport preparation Download PDF

Info

Publication number
WO2005020967A1
WO2005020967A1 PCT/JP2004/012091 JP2004012091W WO2005020967A1 WO 2005020967 A1 WO2005020967 A1 WO 2005020967A1 JP 2004012091 W JP2004012091 W JP 2004012091W WO 2005020967 A1 WO2005020967 A1 WO 2005020967A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
electrode
electropharmaceutical
electrolyte
preparation according
Prior art date
Application number
PCT/JP2004/012091
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Tokumoto
Mitsuru Kuribayashi
Toshio Yoshida
Kazutaka Inoue
Kenji Mori
Original Assignee
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co., Inc. filed Critical Hisamitsu Pharmaceutical Co., Inc.
Priority to JP2005513430A priority Critical patent/JPWO2005020967A1/en
Publication of WO2005020967A1 publication Critical patent/WO2005020967A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis

Definitions

  • the present invention relates to an electropharmaceutical drug transfer preparation suitable for transdermal or transmucosal application.
  • electro drug transfer means a method of applying a transdermal or transmucosal drug, whether charged or uncharged, by applying an electromotive force to a drug holding layer.
  • iontophoresis which is a form of an electric drug transfer device, an iontophoresis electrode for an anode and a cathode is attached to, for example, the skin at regular intervals, and the current generated by a current generator is applied to the electrode.
  • the drug is administered by electromigration, electroosmosis, or a combination of the two.
  • electroporation forms a temporary hole in the skin surface by the application of an electric field through which the drug can be passed either transdermally or actively (under the influence of a potential gradient). It is administered.
  • the electric drug transfer is not limited to the above method, but is interpreted to include all drug administration methods including an electric transfer process.
  • Such an electropharmaceutical drug transfer preparation used for electropharmaceutical drug transfer has a structure in which a drug holding layer and an electrode layer are adjacent to each other. For the purpose of maintaining for a certain period of time, in addition to a certain amount of pre-designed medicinal ingredients, various additives are enclosed as necessary to maintain stable medicinal properties.
  • the form of the preparation is determined by taking into account the stability of the drug and taking the drug in a separate package, which is attached to the electrode layer at the time of application of a separately packaged drug.
  • a hydrophilic gel base such as a water-soluble polymer.
  • Patent Literature 1 or Patent Literature 2 discloses an iontophoresis preparation comprising a lidocaine anesthetic and a vasoconstrictor epinephrine.
  • drug stabilization is achieved by mixing an antioxidant such as sodium pyrosulfite and sodium metabisulfite, and a metal chelating agent such as disodium edetate.
  • an antioxidant such as sodium pyrosulfite and sodium metabisulfite
  • a metal chelating agent such as disodium edetate.
  • pH control and nitrogen replacement further improvement in stability by pH control and nitrogen replacement has been proposed.
  • These two technologies are drug stabilization methods that focus only on the drug holding layer. However, in the actual drug decomposition mechanism, components eluted from the electrode are involved. The above two technologies do not pay attention to this point at all, and there is no example where measures have been taken for the actual point.
  • Patent Document 1 W 100Z30621
  • Patent Document 2 Japanese Translation of PCT International Publication No. 2001-505197
  • Patent Document 1 reports that when iontophoresis of hydrocortisone sodium succinate and sodium hydroconoretisone sodium phosphate is administered, drug stability decreases due to pH fluctuation due to electrolysis of water.
  • Patent Document 3 discloses an electrode composition for iontophoresis in which a substance that suppresses the electrochemical decomposition of a drug is laminated between a drug-containing layer and an electrode. This has been proposed to improve the electrochemical stability of the drug.
  • Non-Special Noon Document 1 Sandesh C. beth, international journal of pharmaceutics, 106, 7-14 (1994)
  • Patent Document 3 JP-A-11-99209
  • a polarizable electrode such as platinum, gold, carbon or titanium
  • a non-polarizable electrode such as silver, copper, silver chloride or copper chloride
  • an iontophoresis preparation can use both a polarizable electrode and a non-polarizable electrode.
  • electrolysis occurs and the pH of the drug-retaining layer changes. Drug degradation (hydrolysis) is likely to occur. Therefore, in iontophoresis preparations, In most cases, non-polarizable electrodes with little pH fluctuation are used from the viewpoint of safety to living organisms.
  • the non-polarizable electrode is a component that undergoes a chemical change and has a strong tendency to ionize. There is a risk of release in the retaining layer.
  • this free metal ion the point that the metal ion easily reaches the skin and is easily absorbed into the living body and causes harmfulness, and that the free metal ion becomes a competitive ion of the drug ion, and It is pointed out that it inhibits sex.
  • Patent Literature 4 discloses an iontophoresis preparation having an ion-exchange membrane at the electrode portion
  • Patent Literature 5 discloses an ion-exchange resin in which an ion-exchange resin is dispersed in a drug holding layer adjacent to a non-polarizable electrode.
  • Patent Document 4 Patent No. 2636290
  • Patent Document 5 JP-A-10-66733
  • composition of the drug-retaining layer is studied by focusing on the effect of the electrode component of the non-polarizable electrode on the compounding component of the drug-retaining layer during storage of the preparation. Disclosure of the invention
  • an object of the present invention is to increase the drug stability during storage when a drug holding layer containing a drug unstable in a dissolved state is commercialized adjacent to a non-polarizable electrode. It is possible to prevent the appearance change (coloring) of the drug holding layer induced by the metal ions derived from it, and to prevent the electrode components from adhering to the skin and to obtain a high bioavailability of the drug. It is an object of the present invention to provide an electropharmaceutical drug delivery preparation that can be used.
  • the present inventors have conducted intensive studies on an electropharmaceutical drug delivery formulation to solve the above-mentioned problems. As a result, it was found that metal ions, which are electrode components, promoted the oxidative decomposition of drugs and additives, and caused changes in appearance such as coloring of the drug holding layer and a decrease in drug stability. The present inventors have found that the above problem can be solved by taking measures against the eluting components, and have reached the present invention.
  • the metal ion that elutes from the electrode layer (non-polarizable electrode) to the drug holding layer is chemically reacted with an anion to convert it into a hardly soluble compound, thereby forming a metal ion drug holding layer.
  • An electrolyte that prevents the migration to the metal and / or a metal chelating agent that selectively traps the eluted metal ions is blended in the drug holding layer.
  • the present invention relates to a transdermal or transmucosal electric drug transfer preparation
  • a drug-retaining layer containing a medicinal component
  • an electrode layer disposed adjacent to the drug-retaining layer
  • the above-mentioned drug-retaining layer is an electropharmaceutical drug delivery preparation containing a metal chelating agent and / or an electrolyte which reacts with the electrode layer to form a poorly soluble compound.
  • the electrolyte may contain or generate an anion
  • the electrode layer may contain a non-polarizable metal component.
  • the non-polarizable metal component can be silver or a mixture containing silver.
  • the flame-soluble compound, the water solubility 10 g / dm 3 or less or a solubility product (Ksp) can be 1 X 1 0- 2 or less, the standard electrode potential of the redox reaction of the hardly soluble compound ( 25 ° C) can be -IV— + 2V.
  • the metal chelating agent can be edetic acid or a salt thereof.
  • the compounding amount of the metal chelating agent is preferably 0.001-1% by mass.
  • the electrolyte preferably generates at least one of halide ions (excluding fluorine ions), sulfide ions, sulfate ions, and phosphate ions when dissolved.
  • the amount of the electrolyte is preferably 0.001 to 1% by mass.
  • the medicinal component may include a steroid hormone.
  • the steroid hormone dexamethasone phosphate, dexamethasone acetate, dexamethasone benzoate metasulfone, hydroconoretisone succinate, hydroconoretisone phosphate, prenizolone succinate, at least selected from the group consisting of betamethasone phosphate and salts thereof.
  • the transfer of free metal ions from an electrode can be specifically prevented in an electric drug transfer preparation in which an electrode layer and a drug holding layer containing a medicinal component are adjacent to each other.
  • FIG. 1 is an exploded view showing one configuration example of an electric drug transfer preparation (electrode) according to the present invention.
  • FIG. 2 is a cross-sectional view of the electric drug transfer preparation of FIG. 1.
  • FIG. 3 is a graph showing drug absorbability in Examples and Comparative Examples of the present invention.
  • FIG. 1 is an exploded view showing one configuration example of the electric drug transfer preparation (electrode) according to the present invention
  • FIG. 2 is a cross-sectional view of the electric drug transfer preparation of FIG.
  • the electrodrug transfer preparation 1 comprises an electrode supporting substrate 5, an electrode layer 2 disposed on the electrode supporting substrate 5, a drug holding layer 3 disposed on the electrode layer 2, And a lid member 4 that covers the holding layer 3.
  • the electrode layer 2 is connected to an electrode terminal 6 for connecting to an external power supply.
  • the electrode composition of the electrode layer of the present invention is not particularly limited as long as it can be used for an electropharmaceutical drug delivery system.
  • Examples thereof include platinum, silver, silver chloride, copper, copper chloride, titanium, nickel, stainless steel, and carbon.
  • non-polarizable electrodes such as silver, silver chloride, copper, and copper chloride.
  • the present invention particularly uses non-polarized electrodes. Higher efficacy in some cases.
  • the drug-retaining layer of the present invention comprises, in addition to the medicinal component, a metal chelating agent or an electrolyte containing an anion that forms a poorly soluble compound in response to the electrode component, thereby forming a compound component of the electrode component. To reduce the impact on the environment.
  • Metal chelating agents include ethylenediaminetetraacetic acid (EDTA) and its sodium and potassium salts
  • Powers include, but are not limited to, calcium disodium salt, diammonium salt, and triethanolamine salt (TEA_EDTA), hydroxyethylethylenediamminetetraacetic acid (HEDTA) and its trisodium salt, and mixtures thereof.
  • the compounding amount of the metal chelating agent is preferably 0.001-1% by mass, more preferably 0.01 0.5% by mass, based on the total mass of the composition. If the amount is less than 0.001% by mass, a sufficient effect of trapping free metal ions cannot be obtained. If the amount is 1% by mass or more, it becomes a competitive ion of the drug, which decreases the absorption of the drug and reduces the metal chelate. There is concern about the effect of the drug itself on the human body.
  • electrolyte used in the present invention can be used as long as it reacts with the electrode component to form a hardly soluble compound and can suppress the migration of the metal component to the drug holding layer. It is preferable to select one that has little buffer and little reaction with other components.
  • electrolytes containing chloride ions include sodium chloride, potassium chloride, potassium chloride, zinc chloride, aluminum chloride, ammonium chloride, stannous chloride, ferric chloride, magnesium chloride, and benzalkonium chloride. Benzene, sodium chloride, hydrochloric acid, arginine hydrochloride, triethanolamine hydrochloride, and the like.
  • the electrolyte having a bromide ion includes sodium bromide, potassium bromide, calcium bromide, and the like.
  • the electrolyte having iodide ions includes potassium iodide and sodium iodide.
  • Examples of the electrolyte having sulfate ions include sulfuric acid, zinc sulfate, aluminum sulfate, aluminum potassium sulfate, potassium sulfate, calcium sulfate, copper sulfate, and magnesium sulfate.
  • Examples of the electrolyte having sulfide ions include sodium sulfide and potassium sulfide.
  • electrolytes having phosphate ions include phosphoric acid, calcium monohydrogen phosphate, sodium monohydrogen phosphate, potassium hydrogen phosphate, tricalcium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, hydrogen phosphate Disodium and the like.
  • electrolyte having carbonate ions include ammonium carbonate, potassium carbonate, calcium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, and sodium carbonate.
  • the electrolyte may be used in the form of an anhydride or a hydrate alone, in the form of an addition salt of a medicinal component, or in a different form.
  • sparingly soluble compounds of the present invention have a solubility in water 10 g / dm 3 or less, or solubility product (Ksp) l X 10- 2 is preferably from it preferably tool is less than the solubility lg / dm 3 Below or Kaidoseki (Ksp) l X 10- 5 is less than or equal to. Solubility 10 g / dm 3 or more or a solubility product (Ksp) l X 10 - 2 or more, it becomes liable to occur redissolution of poorly soluble compounds, it may not exhibit a sufficient function.
  • the poorly soluble compound is not one that crystallizes and precipitates in the drug holding layer but crystallizes essentially in a form of being laminated on the electrode surface.As a result, the insulating property on the electrode surface is increased. Become. Therefore, the standard electrode potential (25 ° C) of the electrode reaction (oxidized type ⁇ ⁇ reduced type) when applying electricity to the hardly soluble compound is preferably -IV- + 2V, more preferably. Is -0.5V- + 1V. At standard electrode potentials below -IV (25 ° C), not only does the polarization on the electrode surface increase, but it also induces electrical skin irritation. At + 2V or more, there is a problem that self-reduction is likely to occur.
  • Examples of the poorly soluble compound corresponding to the above include, when a silver-containing electrode is used, silver chloride (solubility 30 mg / dm 3 (25 ° C), standard electrode potential +0.22 V), silver bromide (Solubility 5.5mg / d
  • the amount of the electrolyte of the present invention is preferably 0.001-1% by mass, more preferably 0.01-0.5% by mass, based on the total mass of the composition. If the amount is less than 0.001% by mass, the effect of trapping free metal ions cannot be obtained, whereas if it is 1% by mass or more, it becomes a competitive ion of the drug and decreases the drug absorption.
  • the drug holding layer is classified into an impregnating type in which a drug solution is impregnated into an impregnating member and holding the same, and a matrix type in which the drug is held in a gel-like or semi-solid state having shape-retaining properties.
  • a drug solution is stored in a sponge such as a nonwoven fabric, absorbent cotton, gauze, paper, synthetic resin continuous foam or an absorbent resin, a porous material, or the like so as to be held.
  • a hydrophilic base is preferably used, for example, polyacrylic acid, partially neutralized polyacrylic acid, completely neutralized polyacrylic acid, methoxyethylene anhydrous maleic acid copolymer and neutralized Product, methoxyethylene maleic acid copolymer and neutralization Products, carboxyvinyl polymers, polyacrylic acid starch, polyacrylamide and polyacrylamide derivatives, N-vieracetoamide, and copolymers of N-vieracetamide with acrylic acid and / or acrylate Synthetic polymers, nonionic synthetic polymers such as polyvinyl alcohol, polybutylpyrrolidone, and polyethylene oxide, as well as arabia gum, tragacanth gum, locust bingham, guar gum, echo gum, karaya gum, agar, starch, carrageenan, alginic acid, and alginate , Alginate propylene glycol, dextran, dextrin, amylose, gelatin, collagen, pun
  • Soft and skin-adhesive examples thereof include those formed into a soft film or sheet gel. If necessary, preservatives, buffering agents, pH adjusters, etc. can be added.However, the amount of the preservatives should be such that the drug absorbability at the time of administration should not be reduced in consideration of competition with the drug. I do.
  • the drug contained in the composition of the present invention can be used in any therapeutic field as long as it exists in a dissolved state in the drug holding layer and dissociates into cations or anions.
  • a bioactive substance having a molecular weight of 1 ⁇ 10 2 to 1 ⁇ 10 6 is widely used.
  • the power is not limited to these. These may be used alone or in combination as needed.
  • Examples of various drugs that can dissociate into cations include bacampicillin, sultamicillin, cefpodoxime proxetil, ceftereram pivoxil, cefmenoxime, cefetiam, doxycycline, minocycline, tetrasacrine, erythromycin, rokitamycin, amylicin, Anorebekacin, Astromycin, Dibekacin, Gentamicin, Isepamicin, Kanamycin, Micronomacyin, Sissomycin, Streptomycin, Tobramycin, Ethambutol, Isoureacid, Fluconazole, Flucytosine, Miconazole, Acyclovir, Chloramphenicol, Clindamycin, Fosfomycin, noncomycin, aclarubicin, bleomycin, cytarabine, dacanolevacine, dimustine, ⁇ promyci , Pro-luvazine, vinblastine, vincri
  • Examples of various drugs that can be dissociated into anions include amoxicillin, ampicillin, aspoxycillin, benzylpenicillin, methicillin, piperacillin, sulbenicillin, ticarcillin, cefaclor, cefedroxyl, cefelexin, cefatrizine, cefixime, ceflazine, cefradixin, and ceflozine.
  • Suitable drugs in the present invention include drugs that are extremely difficult to maintain drug stability due to hydrolysis and oxidative degradation, and drugs that have a remarkable change in appearance (color) over time. More preferred drugs include water-soluble steroid compounds. Representative compounds include dexamethasone phosphate and Xamethasone, dexamethasone methansulfonate, hydrocortisone succinate, hydrocortisone phosphate, prenisolone succinate, betamethasone phosphate and salts thereof.
  • Tables 1, 2, and 3 show the amounts of the drug-retaining layers in Examples and Comparative Examples of the present invention.
  • Nonionic synthetic polymer Polyvinyl alcohol 15 17 17 17 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
  • Metal chelating agent disodium edetate 0.1 0.1 0.05 0.05 0.05 0.1
  • Nonionic synthetic polymer Polyvinyl alcohol 15 15 15 15 15 15 15 2 3
  • Carrageenan 2.5 Polyhydric alcohols Glycerin 10 10 10 10 10 10 _ tart10 1_0 _ 30 30
  • Polyvinyl alcohol (completely saponified product, manufactured by Kuraray Co., Ltd.) was 15 mass 0/0 was dispersed in glycerin 10 weight 0/0, it was dissolved by heating the addition of water. Separately, dexamethasone sodium phosphate 3% by mass and disodium edetate 0.1% by mass were dissolved in water. Both preparations were kneaded while defoaming with a vacuum kneader. 0.8 g of the obtained composition (drug holding layer) was filled into a peeled polyester terephthalate convex molded container (diameter 24 mm, depth 1.5 mm), and a polyester terephthalate film on which an electrode layer was printed was pasted. They were combined, frozen at 40 ° C, and thawed at 5 ° C to obtain the preparation of this example.
  • 2% by mass of Polyvier alcohol (partial Keni-Daimono, manufactured by Kuraray) and 1.5% by mass of polyethylene oxide (coagulant, manufactured by Dow Chemical) were dispersed in 12% by mass of glycerin to prepare. Both preparations were kneaded while defoaming with a vacuum kneading machine.
  • Gels were prepared in the same manner as in Example 16 for the components described in Table 2.
  • Example 19 In water 30 wt% N-Bulle ⁇ Seto amide / acrylic acid copolymer (GE-167, manufactured by Showa Denko) 5 Weight 0/0, glycerin 21 weight 0/0, polyethylene glycol monostearate (MYS10, sunlight Kemi It was added Karuzu Ltd.) 0.4 wt%, dissolved by heating.
  • Example 1-20 and Comparative Example 1-10 were prepared using a non-polarizable electrode (silver / silver chloride (1: 1): a mixture of silver and silver chloride) or a polarizable electrode (carbon ) Was printed on aluminum and the preparation equipped with a polyester film was used as an evaluation sample.
  • the electrode of this embodiment is a dual-purpose electrode for a donor and a reference. This experimental example was stored at 40 ° C, and the degree of change in the appearance of the drug-retaining layer was examined. Table 4 shows the results. Table 4 shows the main salts which are considered to be formed by the reaction between the electrolyte in the drug holding layer and the electrode layer. [0034] [Table 4]
  • Example 1-20 in which a metal chelating agent and an electrolyte were blended in consideration of prevention of coloring, in the system provided with a non-polarizing electrode (silver / silver chloride), no apparent coloring of the drug holding layer was observed. I got it. However, in Comparative Example 37, it was not possible to prevent coloring alone by using the electrolyte.
  • the cause can be determined to be due to the difference in the mobility of the generated anion (interaction with other components) and the difference in the solubility and solubility product of the salt formed by reacting with the electrode layer.
  • silver hydroxide which is a hardly soluble salt, was to be produced.However, since the hydroxide ion was buffered, it had a sufficient force to produce the salt. Seem. (For the solubility and solubility product of the formed salt described in Table 4, see the column of the detailed description. In addition, silver hydroxide (solubility 2.65 mg / dm 3 (25.C), silver nitrate (solubility 241 g / 100 g (25. C).)
  • the electrolyte which generates an anion which forms a poorly soluble compound by reacting with the metal chelating agent and / or the electrode layer is used. It is clear that the compounding can suppress and prevent coloring and suppress the influence of the electrode layer.
  • Example of the present invention was fitted with a polyester film printed silver / silver chloride paste gel composition of Example 5 and Comparative Example 2 (4.5 cm 2) The preparation was stored in an aluminum package at 50 ° C, and the time-dependent change of the active ingredient (dexamethasone sodium phosphate) was examined. Table 5 shows the results.
  • Example 1 containing sodium disodium edetate
  • Example 5 containing sodium disodium edetate and sodium chloride
  • the experimental example equipped with Example 1 and Example 5 had a higher drug residual ratio.
  • the composition of the decomposed product In particular, in Examples 1 and 5, the generation rates of other decomposition products (oxides and the like) were reduced.
  • dexamethasium phosphate It is known that oxidative decomposition and hydrolysis are the main reactions in the mechanism of sodium decomposition, and metal ions are particularly involved in oxidative decomposition. From these points, it was expected that the released silver ions would adversely affect drug stability, but this was also confirmed in this experimental example. From this result, it can be determined that the metal chelating agent and the electrolyte of this example suppress the release of silver ions, and thus have improved drug stability.
  • a polyester film on which a silver chloride paste was printed was attached to the gel compositions (4.5 cm 2 ) obtained in Example 2, Example 5, Comparative Example 2, and Comparative Example 8, and used as a donor electrode (cathode).
  • a reference electrode (anode) was prepared by impregnating physiological saline solution into a preparation (4.5 cm 2 ) in which a PET non-woven fabric was attached to the printed surface of the electrode on which the silver paste was printed.
  • FIG. 3 is a graph showing the drug absorptivity in Examples and Comparative Examples of the present invention, wherein the horizontal axis represents time (hr) and the vertical axis represents serum dexamethasone concentration (ng / ml).
  • Example 2 (containing 0.1% by mass of sodium chloride) and Example 5 (containing 0.1% by mass of sodium chloride and 0.1% by mass of disodium edetate) show Comparative Example 2 (Not blended) showed the same drug absorption.
  • Comparative Example 8 (containing 1.0% by mass of sodium chloride), the drug absorptivity was reduced, and it was found that the compounded electrolyte was a competitive ion of the drug. However, from the aspect of drug absorption, it is important to minimize the amount of electrolyte blended.
  • the present invention can be used for an electropharmaceutical drug transfer preparation that can realize long-term quality assurance as a medical product.

Abstract

An electric drug transport preparation in which stability of a drug is enhanced during storage and a variation in appearance (coloring) of a drug holding layer due to metal ions derived from an electrode can be prevented during preparation under such a state that the drug holding layer containing a drug unstable under dissolved state adjoins a nonpolarizable electrode, and a high biological utilization rate of a drug can be attained by preventing adhesion of the electrode component to skin. The electric drug transport preparation (1) comprises an electrode supporting substrate (5), an electrode layer (2) arranged on the electrode supporting substrate (5), a drug holding layer (3) arranged on the electrode layer (2), and a cover material (4) covering the drug holding layer (3). The drug holding layer (3) contains an electrolyte reacting with a metal chelating agent and/or the electrode layer (2) to form a hard-to-dissolve compound.

Description

明 細 書  Specification
電気的薬物移送製剤  Electrical drug delivery formulation
技術分野  Technical field
[0001] 本発明は、経皮または経粘膜への適用に好適な電気的薬物移送製剤に関するも のである。  The present invention relates to an electropharmaceutical drug transfer preparation suitable for transdermal or transmucosal application.
^景技術  ^ Scenic technology
[0002] 本願において「電気的薬物移送」とは、薬物保持層に起電力を与えることで、薬物 を荷電または無荷電に拘わらず、経皮または経粘膜投与する方法を意味するもので ある。電気的薬物移送装置の一形態であるイオントフォレーシスでは、陽極用と陰極 用のイオントフォレーシス用電極を一定間隔において例えば皮膚に貼着し、電流発 生器から生じた電流を上記電極に導くことにより治療が実施されるように構成されて おり、電気的移動(electromigration)、電気的浸透(electroosmosis)、またはこの両者 の組み合わせにより薬物投与を可能にしている。更に、その他の方法であるエレクト 口ポレーシヨン(electroporation)は、電界の印加により皮膚表面に一時的に孔を形成 し、この孔を通して薬物を受動的又は能動的に(電位勾配の影響で)経皮投与するも のである。尚、本願において電気的薬物移送は、上記の方法に限らず、電気的移送 プロセスを含む薬物の投与方法であれば、全てを含むものと解釈される。  [0002] In the present application, "electric drug transfer" means a method of applying a transdermal or transmucosal drug, whether charged or uncharged, by applying an electromotive force to a drug holding layer. In iontophoresis, which is a form of an electric drug transfer device, an iontophoresis electrode for an anode and a cathode is attached to, for example, the skin at regular intervals, and the current generated by a current generator is applied to the electrode. The drug is administered by electromigration, electroosmosis, or a combination of the two. In addition, another method, electroporation, forms a temporary hole in the skin surface by the application of an electric field through which the drug can be passed either transdermally or actively (under the influence of a potential gradient). It is administered. Note that, in the present application, the electric drug transfer is not limited to the above method, but is interpreted to include all drug administration methods including an electric transfer process.
[0003] このような電気的薬物移送に用いる電気的薬物移送製剤は、薬物保持層と電極層 とを隣接させた構造を有しており、薬物保持層には、薬物の体内血中濃度を一定時 間維持する目的で、あらかじめ設計された一定量の薬効成分の他、必要に応じて種 々の添加剤が安定した薬効を維持できるように封入されている。  [0003] Such an electropharmaceutical drug transfer preparation used for electropharmaceutical drug transfer has a structure in which a drug holding layer and an electrode layer are adjacent to each other. For the purpose of maintaining for a certain period of time, in addition to a certain amount of pre-designed medicinal ingredients, various additives are enclosed as necessary to maintain stable medicinal properties.
[0004] 通常、製剤の形態は、薬物の安定性を考慮に入れ、別包装の薬物を適用時に電 極層に装着する薬物分離包装型、薬物を乾燥状態で薬物保持層に保持し適用時に 溶解させる用時溶解一体包装型、更に含浸部材に薬液を含浸させた状態で保持す るか、水溶性高分子等の親水性ゲル基剤に予め配合した状態で保持する薬物一体 包装型の 3つに大別できる。但し、医療現場では、操作性の面から、溶解した薬物を 製剤中に予め保持された形態 (薬物一体包装型)が、最も望まれている。この場合、 薬物保持層の薬物の安定性確保が、非常に大きな課題であり、この課題の解決を目 的としてこれまで数多くの提案がなされている。 [0004] In general, the form of the preparation is determined by taking into account the stability of the drug and taking the drug in a separate package, which is attached to the electrode layer at the time of application of a separately packaged drug. Dissolution-integrated packaging type for use when dissolving, and drug-integrated packaging type in which the impregnating member is held in a state in which the drug solution is impregnated or in a state in which it is previously mixed with a hydrophilic gel base such as a water-soluble polymer. Can be roughly divided into two. However, in the medical field, from the viewpoint of operability, a form in which a dissolved drug is preliminarily held in a preparation (drug integrated package type) is most desired. in this case, Ensuring the stability of the drug in the drug-retaining layer is a very important task, and many proposals have been made to solve this problem.
[0005] 例えば、特許文献 1または特許文献 2には、麻酔薬リドカインと血管収縮剤ェピネフ リンを配合したイオントフォレーシス製剤が開示されている。この製剤の場合、ェピネ フリンが酸化し易いのを受け、ピロ亜硫酸ナトリウムやメタ亜硫酸水素ナトリウム等の 酸化防止剤、更にェデト酸ニナトリウム等の金属キレート剤を配合することで薬物安 定化を実現する共に、 pH制御及び窒素置換による更なる安定性向上が提案されて いる。この 2つの技術は、薬物保持層のみに主眼を置いた薬物安定化方法である。 しかし、実際の薬物分解機構では、電極からの溶出成分が関与している。上記 2つの 技術はこの点については全く着目しておらず、また、実際に係る点に対して対策が実 施された例は皆無である。  For example, Patent Literature 1 or Patent Literature 2 discloses an iontophoresis preparation comprising a lidocaine anesthetic and a vasoconstrictor epinephrine. In the case of this formulation, because epinephrine is easily oxidized, drug stabilization is achieved by mixing an antioxidant such as sodium pyrosulfite and sodium metabisulfite, and a metal chelating agent such as disodium edetate. At the same time, further improvement in stability by pH control and nitrogen replacement has been proposed. These two technologies are drug stabilization methods that focus only on the drug holding layer. However, in the actual drug decomposition mechanism, components eluted from the electrode are involved. The above two technologies do not pay attention to this point at all, and there is no example where measures have been taken for the actual point.
特許文献 1 : W〇 00Z30621号公報  Patent Document 1: W 100Z30621
特許文献 2:特表 2001 - 505197号公報  Patent Document 2: Japanese Translation of PCT International Publication No. 2001-505197
[0006] 一方、通電状態での電極と薬物の相互作用に関しては、多くの報告がなされている 。例えば、非特許文献 1には、コハク酸ヒドロコルチゾンナトリウム及びリン酸ヒドロコノレ チゾンナトリウムのイオントフォレーシス投与時に、水の電気分解による pH変動が原 因で、薬物安定性が低下することが報告されている。その解決策として、例えば、特 許文献 3には、薬物含有層と電極の間に薬物の電気化学的な分解を抑制する物質 を積層するイオントフォレーシス用電極組成物が開示されており、これにより薬物の 電気化学的安定性を向上させることが提案されている。  [0006] On the other hand, many reports have been made on the interaction between an electrode and a drug in an energized state. For example, Non-Patent Document 1 reports that when iontophoresis of hydrocortisone sodium succinate and sodium hydroconoretisone sodium phosphate is administered, drug stability decreases due to pH fluctuation due to electrolysis of water. I have. As a solution, for example, Patent Document 3 discloses an electrode composition for iontophoresis in which a substance that suppresses the electrochemical decomposition of a drug is laminated between a drug-containing layer and an electrode. This has been proposed to improve the electrochemical stability of the drug.
非特午文献 1: Sandesh C. beth, international journal of pharmaceutics, 106, 7-14(1994)  Non-Special Noon Document 1: Sandesh C. beth, international journal of pharmaceutics, 106, 7-14 (1994)
特許文献 3:特開平 1 1 - 99209号公報  Patent Document 3: JP-A-11-99209
[0007] 一般に、電気的薬物移送製剤では、電極層に分極性電極の白金、金、カーボン、 チタンや、非分極性電極の銀、銅、塩化銀、塩化銅が使用される。特に、イオントフォ レーシス製剤では、分極性電極と非分極性電極の両方を使用することができるが、 分極性電極を用いた場合には電気分解が発生し、薬物保持層の pHが変化するため 、薬物の分解 (加水分解)が発生し易い。そのため、イオントフォレーシス製剤では、 生体への安全性の面から、 pH変動が少ない非分極性電極を使用するケースがほと んどである。しかし、非分極性電極は、電極自身が化学変化を受け、イオン化傾向が 強い成分であるため、薬物保持層の条件 (pH、電解質量)によっては、非通電状態 でも電極成分の金属イオンが薬物保持層に遊離する危険性がある。この遊離金属ィ オンについては、早期に金属イオンが皮膚に到達して生体内に吸収され易くなり、有 害性が発生し易くなる点と、遊離金属イオンが薬物イオンの競合イオンとなり、薬物 吸収性を阻害する点が指摘されている。例えば、特許文献 4には、電極部にイオン交 換膜を設置したイオントフォレーシス製剤が、特許文献 5には、非分極性電極に隣接 した薬物保持層にイオン交換樹脂を分散させたイオントフォレーシス製剤が開示され ているが、何れの製剤も、薬物吸収の競合となる遊離金属イオンの除去を目的とした ものであり、薬物安定性への影響を検討したものではない。 [0007] In general, in an electropharmaceutical drug delivery system, a polarizable electrode such as platinum, gold, carbon or titanium, or a non-polarizable electrode such as silver, copper, silver chloride or copper chloride is used for the electrode layer. In particular, an iontophoresis preparation can use both a polarizable electrode and a non-polarizable electrode.However, when a polarizable electrode is used, electrolysis occurs and the pH of the drug-retaining layer changes. Drug degradation (hydrolysis) is likely to occur. Therefore, in iontophoresis preparations, In most cases, non-polarizable electrodes with little pH fluctuation are used from the viewpoint of safety to living organisms. However, the non-polarizable electrode is a component that undergoes a chemical change and has a strong tendency to ionize. There is a risk of release in the retaining layer. Regarding this free metal ion, the point that the metal ion easily reaches the skin and is easily absorbed into the living body and causes harmfulness, and that the free metal ion becomes a competitive ion of the drug ion, and It is pointed out that it inhibits sex. For example, Patent Literature 4 discloses an iontophoresis preparation having an ion-exchange membrane at the electrode portion, while Patent Literature 5 discloses an ion-exchange resin in which an ion-exchange resin is dispersed in a drug holding layer adjacent to a non-polarizable electrode. Although tophoresis preparations have been disclosed, all preparations are intended to remove free metal ions that compete with drug absorption, and have not been studied for their effects on drug stability.
特許文献 4 :特許 2636290号公報  Patent Document 4: Patent No. 2636290
特許文献 5:特開平 10 - 66733号公報  Patent Document 5: JP-A-10-66733
[0008] この様に、製剤保管時の非分極性電極の電極成分による薬物保持層の配合成分 への影響に着目して、薬物保持層の組成を検討した事例はないのが現状である。 発明の開示 [0008] As described above, there is no case in which the composition of the drug-retaining layer is studied by focusing on the effect of the electrode component of the non-polarizable electrode on the compounding component of the drug-retaining layer during storage of the preparation. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] したがって本発明の目的は、溶解状態で不安定な薬物を含有する薬物保持層を 非分極性電極に隣接させた状態で製品化するに際し、保存時の薬物安定性の増大 、更に電極由来の金属イオンが原因で誘発される薬物保持層の外観変化 (着色)の 防止を可能とする共に、皮膚への電極成分の付着を防止し、薬物の高い生物学的 利用率を得ることができる電気的薬物移送製剤を提供することにある。 [0009] Therefore, an object of the present invention is to increase the drug stability during storage when a drug holding layer containing a drug unstable in a dissolved state is commercialized adjacent to a non-polarizable electrode. It is possible to prevent the appearance change (coloring) of the drug holding layer induced by the metal ions derived from it, and to prevent the electrode components from adhering to the skin and to obtain a high bioavailability of the drug. It is an object of the present invention to provide an electropharmaceutical drug delivery preparation that can be used.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者等は、電気的薬物移送製剤について、上記課題を解決すベぐ鋭意に研 究を実施した。その結果、電極成分である金属イオンが、薬物や添加剤の酸化分解 を増進させ、薬物保持層の着色等の外観変化及び薬物安定性の低下を発生させて レ、ることを突き止め、この電極溶出成分について対策を行うことにより上記課題を解 決することができることを見出し、本発明に至ったものである。したがって本発明では 、製剤保存時に電極層(非分極性電極)から薬物保持層に溶出してこようとする金属 イオンを陰イオンで化学的に反応させ難溶性化合物に変化させることにより金属ィォ ンの薬物保持層への移行を未然に防ぐ電解質、および/または、溶出した金属ィォ ンを選択的にトラップする金属キレート剤が薬物保持層に配合される。これにより、電 極層からの遊離金属イオンの移動が特異的に防止され、製剤の酸化による安定性の 問題が解決され、薬効成分及び添加剤の含量低下や着色を抑制することができる。 [0010] The present inventors have conducted intensive studies on an electropharmaceutical drug delivery formulation to solve the above-mentioned problems. As a result, it was found that metal ions, which are electrode components, promoted the oxidative decomposition of drugs and additives, and caused changes in appearance such as coloring of the drug holding layer and a decrease in drug stability. The present inventors have found that the above problem can be solved by taking measures against the eluting components, and have reached the present invention. Therefore, in the present invention During storage of the drug product, the metal ion that elutes from the electrode layer (non-polarizable electrode) to the drug holding layer is chemically reacted with an anion to convert it into a hardly soluble compound, thereby forming a metal ion drug holding layer. An electrolyte that prevents the migration to the metal and / or a metal chelating agent that selectively traps the eluted metal ions is blended in the drug holding layer. As a result, the transfer of free metal ions from the electrode layer is specifically prevented, the stability problem due to the oxidation of the preparation is solved, and the reduction in the content of the medicinal component and additives and coloring can be suppressed.
[0011] すなわち本発明は、薬効成分を含有する薬物保持層と、前記薬物保持層と隣接設 置された電極層とを備えた経皮または経粘膜用の電気的薬物移送製剤であって、前 記薬物保持層が金属キレート剤および/または前記電極層と反応して難溶性化合 物を形成する電解質を含む電気的薬物移送製剤である。ここで、前記電解質は陰ィ オンを含有または生成し、また前記電極層は非分極性金属成分を含有するものとす ること力 Sできる。前記非分極性金属成分は、銀または銀を含有する混合物とすること ができる。  [0011] That is, the present invention relates to a transdermal or transmucosal electric drug transfer preparation comprising a drug-retaining layer containing a medicinal component, and an electrode layer disposed adjacent to the drug-retaining layer, The above-mentioned drug-retaining layer is an electropharmaceutical drug delivery preparation containing a metal chelating agent and / or an electrolyte which reacts with the electrode layer to form a poorly soluble compound. Here, the electrolyte may contain or generate an anion, and the electrode layer may contain a non-polarizable metal component. The non-polarizable metal component can be silver or a mixture containing silver.
[0012] 前記難溶性化合物は、水への溶解度 10g/dm3以下または溶解度積 (Ksp) 1 X 1 0— 2以下とすることができ、前記難溶性化合物の酸化還元反応の標準電極電位 (25 °C)は、 -IV— + 2Vとすることができる。また、前記金属キレート剤は、ェデト酸また はその塩とすることができる。前記金属キレート剤の配合量は、 0. 001— 1質量%で あることが好ましい。前記電解質は、溶解時にハロゲンィ匕物イオン (フッ素イオンを除 く)、硫化物イオン、硫酸イオンおよびリン酸イオンの少なくとも一つ生成するものであ ることが好ましい。前記電解質の配合量は、 0. 001— 1質量%であることが好ましレヽ [0012] The flame-soluble compound, the water solubility 10 g / dm 3 or less or a solubility product (Ksp) can be 1 X 1 0- 2 or less, the standard electrode potential of the redox reaction of the hardly soluble compound ( 25 ° C) can be -IV— + 2V. Further, the metal chelating agent can be edetic acid or a salt thereof. The compounding amount of the metal chelating agent is preferably 0.001-1% by mass. The electrolyte preferably generates at least one of halide ions (excluding fluorine ions), sulfide ions, sulfate ions, and phosphate ions when dissolved. The amount of the electrolyte is preferably 0.001 to 1% by mass.
[0013] 前記薬効成分は、ステロイドホルモンを含むことができる。前記ステロイドホルモン は、リン酸デキサメタゾン、酢酸デキサメタゾン、メタスルホン安息香酸デキサメタゾン 、コハク酸ヒドロコノレチゾン、リン酸ヒドロコノレチゾン、コハク酸プレニゾロン、リン酸ベタ メタゾン及びその塩からなる群から選択される少なくとも 1つとすることができる。 発明の効果 [0013] The medicinal component may include a steroid hormone. The steroid hormone, dexamethasone phosphate, dexamethasone acetate, dexamethasone benzoate metasulfone, hydroconoretisone succinate, hydroconoretisone phosphate, prenizolone succinate, at least selected from the group consisting of betamethasone phosphate and salts thereof. Can be one. The invention's effect
[0014] 本発明によれば、電極層と薬効成分を含有する薬物保持層が隣接した電気的薬 物移送製剤において、電極からの遊離金属イオンの移動を特異的に防止できるため 、酸化による安定性が問題となる薬効成分及び添加剤の含量低下や、薬物保持層 の着色抑制が可能であり、製剤の長期の品質保証を実現することができる。 According to the present invention, the transfer of free metal ions from an electrode can be specifically prevented in an electric drug transfer preparation in which an electrode layer and a drug holding layer containing a medicinal component are adjacent to each other. In addition, it is possible to reduce the content of medicinal components and additives, whose stability due to oxidation is a problem, and to suppress the coloring of the drug holding layer, thereby realizing long-term quality assurance of the preparation.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明に係る電気的薬物移送製剤 (電極)の一構成例を示す分解図である。  FIG. 1 is an exploded view showing one configuration example of an electric drug transfer preparation (electrode) according to the present invention.
[図 2]図 1の電気的薬物移送製剤の断面図である。  FIG. 2 is a cross-sectional view of the electric drug transfer preparation of FIG. 1.
[図 3]本発明の実施例および比較例における薬物吸収性を示すグラフである。  FIG. 3 is a graph showing drug absorbability in Examples and Comparative Examples of the present invention.
符号の説明  Explanation of symbols
[0016] 1 電気的薬物移送製剤 [0016] 1 Electrical drug transfer formulation
2 電極層  2 Electrode layer
3 薬物保持層  3 Drug retention layer
4 フタ材  4 Lid material
5 電極支持基材  5 Electrode support substrate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明の実施の形態について以下詳細に説明する。  An embodiment of the present invention will be described in detail below.
図 1は、本発明に係る電気的薬物移送製剤(電極)の一構成例を示す分解図、図 2 は図 1の電気的薬物移送製剤の断面図である。図示のように、電気的薬物移送製剤 1は、電極支持基材 5と、電極支持基材 5上に配置された電極層 2と、電極層 2上に 配置された薬物保持層 3と、薬物保持層 3を覆うフタ材 4とを備える。電極層 2は外部 電源に接続するための電極端子 6に接続されている。  FIG. 1 is an exploded view showing one configuration example of the electric drug transfer preparation (electrode) according to the present invention, and FIG. 2 is a cross-sectional view of the electric drug transfer preparation of FIG. As shown in the figure, the electrodrug transfer preparation 1 comprises an electrode supporting substrate 5, an electrode layer 2 disposed on the electrode supporting substrate 5, a drug holding layer 3 disposed on the electrode layer 2, And a lid member 4 that covers the holding layer 3. The electrode layer 2 is connected to an electrode terminal 6 for connecting to an external power supply.
本発明の電極層の電極組成は、電気的薬物移送製剤に用いることができればい ずれでも良ぐ例えば、白金、銀、塩化銀、銅、塩化銅、チタン、ニッケル、ステンレス 、カーボン等が挙げげられるが、薬物の電気的分解を考慮した場合には、非分極性 電極である銀、塩化銀、銅、塩化銅を使用することが好ましぐ本発明は、特に非分 極性電極を使用した場合により高い効力を発揮する。  The electrode composition of the electrode layer of the present invention is not particularly limited as long as it can be used for an electropharmaceutical drug delivery system. Examples thereof include platinum, silver, silver chloride, copper, copper chloride, titanium, nickel, stainless steel, and carbon. However, in consideration of the electrolysis of the drug, it is preferable to use non-polarizable electrodes such as silver, silver chloride, copper, and copper chloride.The present invention particularly uses non-polarized electrodes. Higher efficacy in some cases.
更に、本発明の薬物保持層は、薬効成分以外に、金属キレート剤や電極成分と反 応して難溶性化合物を形成する陰イオンを含有する電解質を配合することにより、電 極成分による配合成分への影響を抑制してレ、る。  Furthermore, the drug-retaining layer of the present invention comprises, in addition to the medicinal component, a metal chelating agent or an electrolyte containing an anion that forms a poorly soluble compound in response to the electrode component, thereby forming a compound component of the electrode component. To reduce the impact on the environment.
[0018] 金属キレート剤は、エチレンジァミン四酢酸 (EDTA)とそのナトリウム塩、カリウム塩、 カルシウムニナトリウム塩、ジアンモニゥム塩、及びトリエタノールアミン塩 (TEA_EDTA)、ヒドロキシェチルエチレンジアンミン四酢酸 (HEDTA)とその三ナトリウ ム塩、及びそれらの混合物が挙げられる力 これに限定されない。また、その金属キ レート剤の配合量は、組成物の全質量に対して 0.001— 1質量%が好ましぐより好ま しくは 0.01 0.5質量%である。上記配合量が、 0.001質量%未満では、十分な遊離 金属イオンの捕捉効果が得られないのに対して、 1質量%以上では、薬物の競合ィ オンとなり、薬物吸収を低下させると共に、金属キレート剤自体の人体への影響が懸 念される。 [0018] Metal chelating agents include ethylenediaminetetraacetic acid (EDTA) and its sodium and potassium salts, Powers include, but are not limited to, calcium disodium salt, diammonium salt, and triethanolamine salt (TEA_EDTA), hydroxyethylethylenediamminetetraacetic acid (HEDTA) and its trisodium salt, and mixtures thereof. Further, the compounding amount of the metal chelating agent is preferably 0.001-1% by mass, more preferably 0.01 0.5% by mass, based on the total mass of the composition. If the amount is less than 0.001% by mass, a sufficient effect of trapping free metal ions cannot be obtained. If the amount is 1% by mass or more, it becomes a competitive ion of the drug, which decreases the absorption of the drug and reduces the metal chelate. There is concern about the effect of the drug itself on the human body.
[0019] 本発明で使用する電解質は、電極成分と反応して難溶性化合物を形成し、薬物保 持層への金属成分の移行を抑制できるものであれば使用可能であるが、薬物保持 層中のその他の成分との緩衝や反応が少ない物を選ぶことが好ましレ、。例えば、塩 化物イオンを有する電解質は、塩化ナトリウム、塩ィ匕カリウム、塩ィ匕カルシウム、塩ィ匕 亜鉛、塩化アルミニウム、塩化アンモニゥム、塩化第一スズ、塩化第二鉄、塩化マグ ネシゥム、塩化ベンザルコニゥム、塩化べンゼトニゥム、塩酸、塩酸ァラギニン、塩酸ト リエタノールアミン等が挙げられ、更に臭化物イオン有する電解質は、臭化ナトリウム 、臭化カリウム、臭化カルシウム等が挙げられる。更に、ヨウ化物イオンを有する電解 質は、ヨウ化カリウム、ヨウ化ナトリウムが挙げられる。また、硫酸イオンを有する電解 質は、硫酸、硫酸亜鉛、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸カリウム、 硫酸カルシウム、硫酸銅、硫酸マグネシウム等が挙げられる。また、硫化物イオンを 有する電解質は、硫化ナトリウム、硫化カリウム等が挙げられる。また、リン酸イオンを 有する電解質は、リン酸、リン酸一水素カルシウム、リン酸一水素ナトリウム、リン酸一 水素カリウム、リン酸三カルシウム、リン酸三ナトリウム、リン酸水素二カリウム、リン酸 水素ニナトリウム等が挙げられる。また、炭酸イオンを有する電解質は、炭酸アンモニ ゥム、炭酸カリウム、炭酸カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸ナ トリウム等が挙げられる。尚、電解質の使用形態は、無水物若しくは水和物の単独形 態でも、薬効成分の付加塩の形態でもレ、ずれでも構わなレ、。  [0019] The electrolyte used in the present invention can be used as long as it reacts with the electrode component to form a hardly soluble compound and can suppress the migration of the metal component to the drug holding layer. It is preferable to select one that has little buffer and little reaction with other components. For example, electrolytes containing chloride ions include sodium chloride, potassium chloride, potassium chloride, zinc chloride, aluminum chloride, ammonium chloride, stannous chloride, ferric chloride, magnesium chloride, and benzalkonium chloride. Benzene, sodium chloride, hydrochloric acid, arginine hydrochloride, triethanolamine hydrochloride, and the like. Further, the electrolyte having a bromide ion includes sodium bromide, potassium bromide, calcium bromide, and the like. Further, the electrolyte having iodide ions includes potassium iodide and sodium iodide. Examples of the electrolyte having sulfate ions include sulfuric acid, zinc sulfate, aluminum sulfate, aluminum potassium sulfate, potassium sulfate, calcium sulfate, copper sulfate, and magnesium sulfate. Examples of the electrolyte having sulfide ions include sodium sulfide and potassium sulfide. In addition, electrolytes having phosphate ions include phosphoric acid, calcium monohydrogen phosphate, sodium monohydrogen phosphate, potassium hydrogen phosphate, tricalcium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, hydrogen phosphate Disodium and the like. Examples of the electrolyte having carbonate ions include ammonium carbonate, potassium carbonate, calcium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, and sodium carbonate. The electrolyte may be used in the form of an anhydride or a hydrate alone, in the form of an addition salt of a medicinal component, or in a different form.
[0020] 尚、本発明の難溶性化合物は、水への溶解度 10g/dm3以下、若しくは溶解度積 (Ksp)l X 10— 2以下であることが好ましぐより好ましくは溶解度 lg/dm3以下若しくは溶 解度積 (Ksp)l X 10— 5以下である。溶解度 10g/dm3以上若しくは溶解度積 (Ksp)l X 10 — 2以上では、難溶性化合物の再溶解が起こり易くなるため、十分な機能を発揮しない 場合がある。また、難溶性化合物は、薬物保持層中で結晶化沈殿するものではなぐ 本質的に電極表面に積層する形で結晶化するものであり、その結果、電極表面に絶 縁性が増大することになる。そのため、難溶性化合物に電気を掛けた場合の電極反 応 (酸化型 ~~ ^還元型)の標準電極電位 (25°C)は、 -IV— +2Vであることが好ましぐよ り好ましくは -0.5V— +1Vである。 -IV以下の標準電極電位 (25°C)には、電極表面での 分極が増加するばかりか、電気的な皮膚刺激を誘発する。また、 +2V以上では、 自己 還元が発生し易くなるという問題がある。 [0020] In addition, sparingly soluble compounds of the present invention have a solubility in water 10 g / dm 3 or less, or solubility product (Ksp) l X 10- 2 is preferably from it preferably tool is less than the solubility lg / dm 3 Below or Kaidoseki (Ksp) l X 10- 5 is less than or equal to. Solubility 10 g / dm 3 or more or a solubility product (Ksp) l X 10 - 2 or more, it becomes liable to occur redissolution of poorly soluble compounds, it may not exhibit a sufficient function. In addition, the poorly soluble compound is not one that crystallizes and precipitates in the drug holding layer but crystallizes essentially in a form of being laminated on the electrode surface.As a result, the insulating property on the electrode surface is increased. Become. Therefore, the standard electrode potential (25 ° C) of the electrode reaction (oxidized type ~~ ^ reduced type) when applying electricity to the hardly soluble compound is preferably -IV- + 2V, more preferably. Is -0.5V- + 1V. At standard electrode potentials below -IV (25 ° C), not only does the polarization on the electrode surface increase, but it also induces electrical skin irritation. At + 2V or more, there is a problem that self-reduction is likely to occur.
[0021] 上記に該当する難溶性化合物としては、例えば、銀含有電極を使用した場合には 、塩化銀 (溶解度 30mg/ dm3(25°C),標準電極電位 +0.22V)、臭化銀 (溶解度 5.5mg/d[0021] Examples of the poorly soluble compound corresponding to the above include, when a silver-containing electrode is used, silver chloride (solubility 30 mg / dm 3 (25 ° C), standard electrode potential +0.22 V), silver bromide (Solubility 5.5mg / d
3/ 1 3/1
m'(25°C),標準電極電位 +0.07V)、ヨウ化銀 (溶解度積 8.5 X 10— "(25°C),標準電極電 位- 0.15V)、シアンィ匕銀 (溶解度積 1.6 X 10— 14(25°C),標準電極電位- 0.017V)、炭酸銀 (溶解度積 8.1 X 10— 12(25°C),標準電極電位 +0.47V)、硫化銀 (溶解度 6.151 X 10"10 mg/dm3(10°C),標準電極電位- 0.71V)、リン酸銀 (溶解度積 6.44 X 10— 3(20°C),標準電 極電位 +0.34V)、硫酸銀 (溶解度 0.84g/100g(25°C),標準電極電位 +0.65V))等が挙げ られる。 m '(25 ° C), standard electrode potential + 0.07V), silver iodide (solubility product 8.5 X 10 — “(25 ° C), standard electrode potential-0.15V), cyanide silver (solubility product 1.6 X 10- 14 (25 ° C), the standard electrode potential - 0.017V), silver carbonate (solubility product 8.1 X 10- 12 (25 ° C ), the standard electrode potential + 0.47 V), silver sulfide (solubility 6.151 X 10 "10 mg / dm 3 (10 ° C ), the standard electrode potential - 0.71V), silver phosphate (solubility product 6.44 X 10- 3 (20 ° C ), standard electrostatic electrode potential + 0.34 V), silver sulfate (solubility 0.84g / 100g (25 ° C), standard electrode potential + 0.65V)).
[0022] また、本発明の電解質の配合量は、組成物の全質量に対して 0.001— 1質量%が好 ましぐより好ましくは 0.01— 0.5質量%である。上記配合量が、 0.001質量%未満では 遊離金属イオンの捕捉効果が得られないのに対して、 1質量%以上では、薬物の競 合イオンとなり、薬物吸収を低下させる。  [0022] The amount of the electrolyte of the present invention is preferably 0.001-1% by mass, more preferably 0.01-0.5% by mass, based on the total mass of the composition. If the amount is less than 0.001% by mass, the effect of trapping free metal ions cannot be obtained, whereas if it is 1% by mass or more, it becomes a competitive ion of the drug and decreases the drug absorption.
[0023] また、薬物保持層には、薬物溶液を含浸部材にしみ込ませて保持する含浸型と、 薬物を保形性のあるゲル状若しくは半固形状にして保持するマトリックス型に分けら れる。含浸型では、例えば、不織布、脱脂綿、ガーゼ、紙、合成樹脂連続発泡体又 は吸収性樹脂等のスポンジや多孔質材等に薬物溶液を保持させた状態で保存する ものである。一方、マトリックス型では、親水性基剤が好適に使用され、例えば、ポリア クリル酸、ポリアクリル酸部分中和物、ポリアクリル酸完全中和物、メトキシエチレン無 水マレイン酸共重合体及び中和物、メトキシエチレンマレイン酸共重合体及び中和 物、カルボキシビ二ルポリマー、ポリアクリル酸デンプン、ポリアクリルアミドおよびポリ アクリルアミド誘導体、 N-ビエルァセトアミド、 N-ビエルァセトアミドとアクリル酸および /またはアクリル酸塩との共重合体等のイオン性合成高分子や、ポリビュルアルコー ノレ、ポリビュルピロリドン、ポリエチレンオキサイド等の非イオン性合成高分子、更にァ ラビアガム、トラガントガム、ローカストビンガム、グァーガム、エコーガム、カラャガム、 寒天、デンプン、カラギーナン、アルギン酸、アルギン酸塩、アルギン酸プロピレング リコーノレ、デキストラン、デキストリン、アミロース、ゼラチン、コラーゲン、プノレラン、ぺ クチン、アミロぺクチン、スターチ、キチン、キトサン、アルブミン、カゼイン、メチルセル ロース、ェチノレセノレロース、プロピノレセノレロース、ェチノレメチノレセノレロース、ヒドロキシ メチノレセノレロース、ヒドロキシェチノレセノレロース、ヒドロキシプ口ピノレメチノレセノレロース 、ヒドロキシプロピルスターチ等の天然樹脂及び半合成系樹脂が挙げられ、これらに 水を添カ卩してゲル状又は固体状にしたり、更にグリセリン、エチレングリコール、ジェ チレンダルコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコ ール、ポリプロピレングリコール等のグリコール類、 1 , 3-プロパンジオール、 1 , 4-ブ タンジオール等のジオール類、 D-ソルビトール、キシリトール、マンニトール、エリスリ トール等の糖アルコール類を添加して柔軟可塑化して、 自己保形性及び皮膚接着 性を有する柔軟なフィルム又はシート状ゲルに成形したものが挙げられる。また、必 要に応じて、防腐剤、緩衝化剤、 pH調整剤等を添加できるが、配合量は、薬物との 競合を考慮し、投与時の薬物吸収性を低下させなレ、程度とする。 The drug holding layer is classified into an impregnating type in which a drug solution is impregnated into an impregnating member and holding the same, and a matrix type in which the drug is held in a gel-like or semi-solid state having shape-retaining properties. In the impregnated type, for example, a drug solution is stored in a sponge such as a nonwoven fabric, absorbent cotton, gauze, paper, synthetic resin continuous foam or an absorbent resin, a porous material, or the like so as to be held. On the other hand, in the matrix type, a hydrophilic base is preferably used, for example, polyacrylic acid, partially neutralized polyacrylic acid, completely neutralized polyacrylic acid, methoxyethylene anhydrous maleic acid copolymer and neutralized Product, methoxyethylene maleic acid copolymer and neutralization Products, carboxyvinyl polymers, polyacrylic acid starch, polyacrylamide and polyacrylamide derivatives, N-vieracetoamide, and copolymers of N-vieracetamide with acrylic acid and / or acrylate Synthetic polymers, nonionic synthetic polymers such as polyvinyl alcohol, polybutylpyrrolidone, and polyethylene oxide, as well as arabia gum, tragacanth gum, locust bingham, guar gum, echo gum, karaya gum, agar, starch, carrageenan, alginic acid, and alginate , Alginate propylene glycol, dextran, dextrin, amylose, gelatin, collagen, punorellan, actin, amylopectin, starch, chitin, chitosan, albumin, casein, methylcellulose Natural resins such as etinoresenolerose, propinoresenolerose, etinoremethinoresenolerose, hydroxymethinoresenolerose, hydroxyethinoresenolerose, hydroxypropyl pinoremethinoresenolerose, and hydroxypropyl starch; Semi-synthetic resins can be mentioned, and these are added to water to form gels or solids, and glycerin, ethylene glycol, ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol And diols such as 1,3-propanediol and 1,4-butanediol, and sugar alcohols such as D-sorbitol, xylitol, mannitol, and erythritol. Soft and skin-adhesive Examples thereof include those formed into a soft film or sheet gel. If necessary, preservatives, buffering agents, pH adjusters, etc. can be added.However, the amount of the preservatives should be such that the drug absorbability at the time of administration should not be reduced in consideration of competition with the drug. I do.
本発明の組成物に含有される薬物は、薬物保持層中に溶解状態で存在し、陽ィォ ン又は陰イオンに解離するものであれば、あらゆる治療分野における薬剤が使用可 能であり、特に分子量 1 X 102— 1 X 106の生理活性物質が広く用いられる。例えば、 抗アレルギー剤、麻酔剤、鎮痛剤、抗喘息薬、抗痙攣薬、抗腫瘍薬、解熱薬、抗不 整脈薬、降圧薬、利尿薬、血管拡張薬、制吐薬、中枢神経系興奮薬、診断薬、ホル モン剤、抗炎症薬、抗うつ薬、抗精神病薬、免疫抑制薬、筋弛緩薬、抗ウィルス薬、 抗生物質、抗血栓形成薬、骨吸収抑制剤、骨形成促進剤などが例示として挙げられ る力 これらに限定されるものではなレ、。これらは単独あるいは必要に応じて組み合 わせて使用される。 陽イオンに解離しうる種々の薬物の例としては、バカンピシリン、スルタミシリン、セフ ポドキシムプロキセチル、セフテレラムピボキシル、セフメノキシム、セフエチイアム、ド キシサイクリン、ミノサイクリン、テトラサクリン、エリスロマイシン、ロキタマイシン、アミ力 シン、ァノレべカシン、ァストロマイシン、ジべカシン、ゲンタマイシン、イセパマイシン、 カナマイシン、ミクロノマシイン、シソマイシン、ストレプトマイシン、トブラマイシン、エタ ンブトール、イソユアシド、フルコナゾール、フルシトシン、ミコナゾール、ァシクロビル 、クロラムフエ二コール、クリンダマイシン、ホスホマイシン、ノ ンコマイシン、アクラルビ シン、ブレオマイシン、シタラビン、ダカノレバジン、二ムスチン、ぺプロマイシン、プロ力 ルバジン、ビンブラスチン、ビンクリスチン、ビンデシン、カルシトニン類、パタチドライ ドホルモン(PTH)、顆粒球コロニー形成刺激因子(G-CSF)、メカセルミン、ァリメマ ジン、クロルフエ二ラム、クレマスチン、メキタジン、ァゼラスチン、ケトチフェン、ォキサ トミド、メチルメチォニンスルホニゥムクロライド、コノレヒチン、力モスタッド、ガべキサー ト、ナファモスタツト、ミゾリビン、ピロキシカム、プログルメタシン、ェモルファゾン、チア ラミド、ブプレノルフィン、エノレゴタミン、フエナセチン、リルマザホン、トリァゾラム、ゾピ クロン、ニトラゼパム、クロナゼパム、ァマンタジン、ブロモクリプチン、クロルプロマジ ン、スノレトプリド、クロノレジァゼポキシド、クロキサゾラム、ジァゼパム、ェチゾラム、ォキ サゾラム、アミトリプチリン、イミプラミン、ノノレトリプチリン、セチプチリン、チクロビジン、 アト口ピン、臭化パンクロ二ゥム、チザニジン、臭化ピリドスチグミン、ドブタミン、ドパミ ン、ベニジピン、ジルチアゼム、二カルジピン、ベラパミル、ァセプトロール、ァテノロ ール、カルテオロール、メトピロロール、二プラジロール、ピンドロール、プロプラノロ一 ノレ、ジピリダモール、ニコランジル、トラジピル、アジマリン、ァプリンジン、ジベンゾリン 、ジソピラミド、フレカイユド、イソプレナリン、リドカイン、メキシレチン、プロ力イン、プロ 力インアミド、テトラカイン、シブカイン、プロパフェノン、キニジン、ヒドロクロロチアジド 、トリクロ口チアジド、トリバミド、ァゾセミド、ァモスラロール、ブドララジン、ブナゾシン、 力ドララジン、クロ二ジン、デラプリル、ェナラプリル、グァネチジン、ヒドララジン、ラベ タローノレ、プラゾシン、レセルピン、テラゾシン、ゥラジピル、ニコモール、ェピネフリン 、ェチレフリン、ミドドリン、パノ べリン、クレンブテローノレ、フエノテローノレ、マブテロ一 ノレ、プロ力テロール、サルブタモール、テルブタリン、ッロブテロール、チぺプジン、ァ ンブロキソール、ブロムへキシン、シメチジン、ファモチジン、ラニチジン、ロキサチジ ンァセタート、ベネキサート、オメブラーノレ、ピレンゼピン、スノレピリド、シサプリド、ドン ペリドン、メトクロプラミド、トリメブチン、コディン、モノレヒネ、フェンタニノレ、ペチジン、 ォキシブチン、リトドリン、トロジリン及びそれらの塩が挙げられる力 これらに限定され るものではない。 The drug contained in the composition of the present invention can be used in any therapeutic field as long as it exists in a dissolved state in the drug holding layer and dissociates into cations or anions. Particularly, a bioactive substance having a molecular weight of 1 × 10 2 to 1 × 10 6 is widely used. For example, antiallergic, anesthetic, analgesic, antiasthmatic, anticonvulsant, antitumor, antipyretic, antiarrhythmic, antihypertensive, diuretic, vasodilator, antiemetic, central nervous system agitation Drugs, diagnostics, hormones, anti-inflammatory drugs, antidepressants, antipsychotics, immunosuppressants, muscle relaxants, antivirals, antibiotics, antithrombotic agents, bone resorption inhibitors, bone formation promoters For example, the power is not limited to these. These may be used alone or in combination as needed. Examples of various drugs that can dissociate into cations include bacampicillin, sultamicillin, cefpodoxime proxetil, ceftereram pivoxil, cefmenoxime, cefetiam, doxycycline, minocycline, tetrasacrine, erythromycin, rokitamycin, amylicin, Anorebekacin, Astromycin, Dibekacin, Gentamicin, Isepamicin, Kanamycin, Micronomacyin, Sissomycin, Streptomycin, Tobramycin, Ethambutol, Isoureacid, Fluconazole, Flucytosine, Miconazole, Acyclovir, Chloramphenicol, Clindamycin, Fosfomycin, noncomycin, aclarubicin, bleomycin, cytarabine, dacanolevacine, dimustine, ぺ promyci , Pro-luvazine, vinblastine, vincristine, vindesine, calcitonins, patatilide hormone (PTH), granulocyte colony formation stimulating factor (G-CSF), mecamermin, alimemazine, chlorpheniram, clemastine, mequitazine, azelastine, ketotifen, Oxatomide, methylmethionine sulfonium chloride, conorechitin, kymostad, gabexate, nafamostat, mizoribine, piroxicam, progourmetacin, emorfazone, thiaramid, buprenorphine, enolegotamine, phenacetin, rilmazahon, triazolam, zopiclone , Nitrazepam, clonazepam, amantadine, bromocriptine, chlorpromazine, snoretopride, chlororesazepoxide, cloxazolam, diazepam, Etizolam, oxosazolam, amitriptyline, imipramine, noretriptyline, setiptiline, ticlovidine, atotopin, panclodinium bromide, tizanidine, pyridostigmine bromide, dobutamine, dopamine, benidipine, diltiazem, dicardipine, verapamil Aceptolol, Atenolol, Carteolol, Metopyrolol, Nipradilol, Pindolol, Propranolol, Dipyridamole, Nicorandil, Tradipir, Azimarin, Aprindine, Dibenzoline, Disopyramide, Flecaide, Isoprenaline, Lidocaine, Mexiletine, Proamide Tetracaine, Sibucaine, Propafenone, Quinidine, Hydrochlorothiazide, Triclomouth thiazide, Tribamide, Azosemide, A Suralol, budralazine, bunazosin, forcedralazine, clonidine, delapril, enalapril, guanethidine, hydralazine, labetaronole, prazosin, reserpine, terazosin, perazipir, nicomol, epinephrine, etilefrin, midodrine, panoberenoleno, renopine , Mabterone, Propoterol, Salbutamol, Terbutaline, Allobuterol, Tipudine, Nmbroxol, Bromhexine, Cimetidine, Famotidine, Ranitidine, Roxatidin acetate, Benexate, Omebulanore, Pirenzepine, Snorepiride, Cisapride, Domperidone, Metoclopramide, Trimebutine, Codine, Monolehine, Fentaninole, Petitidine, Petitidine, Xetine Listed powers are not limited to these.
陰イオンに解離しうる種々の薬物の例としては、ァモキシシリン、アンピシリン、ァス ポキシシリン、ベンジルペニシリン、メチシリン、ピぺラシリン、スルベニシリン、チカル シリン、セファクロル、セフエドロキシル、セフエレキシン、セファトリジン、セフィキシム、 セフラジン、セフロキサジン、セフアマンドール、セファゾリン、セフメタゾール、セフミノ タス、セファペラゾン、セフォタキシム、セフオタテン、セフォキシチン、セフピラミド、セ フスロジン、セフタジジム、セフチゾキシム、セフトリアキソン、セフゾナム、ァズトレォナ ム、カルモナム、フロモキセフ、ィメぺネム、ラタモキセフ、シプロフロキサシン、エノキ サシン、ナリジタス酸、ノルフロキサシン、オフロキサシン、ビダラゾン、フルォロウラシ ノレ、メトトレキサート、レボチロキシン、リオチロニン、アンレキサノクス、クロモグリク酸、 トラニラスト、グリクラジド、インシュリン類、プロスタグランジン類、ベンズブロマロン、力 ルバゾクロム、トラネキサム酸、アルコロフエナック、アスピリン、ジクロフエナク、イブプ 口フェン、インドメタシン、ケトプロフェン、メフエナム酸、スリンダク、チアプロフェン酸、 トルメチン、スルピリン、口ベンザリット、ぺニシラミン、ァモバルビタール、ペントバルビ タール、フエノバルビタール、チォペンタール、フエ二トレン、バルプロ酸、ドロキシド パ、ァセタゾラミド、ブメタニド、カンレン酸、エタクリン酸、ァラセプリル、カプトプリル、 リシノプリノレ、メチノレドノく、クロフイラブラート、プラバスタチン、プロブコーノレ、ァノレプロ スタジル、アミノフィリン、テオフィリン、カルボシスティン、リン酸デキサメタゾン、酢酸 デキサメタゾン、メタスルホン安息香酸デキサメタゾン、コハク酸ヒドロコルチゾン、リン 酸ヒドロコルチゾン、コハク酸プレニゾロン、リン酸べタメタゾン及びそれらの塩が挙げ られる力 これらに限定されるものではなレ、。本発明において好適な薬物としては、 加水分解及び酸化分解により非常に薬物安定性の維持が難しい薬物や、経時での 外観変化 (着色)が顕著を薬物が挙げられる。更に好ましい薬物としては、水溶性ス テロイド化合物が挙げられる。代表的な化合物として、リン酸デキサメタゾン、酢酸デ キサメタゾン、メタスルホン安息香酸デキサメタゾン、コハク酸ヒドロコルチゾン、リン酸 ヒドロコルチゾン、コハク酸プレニゾロン、リン酸べタメタゾン及びそれらの塩がある。 実施例 Examples of various drugs that can be dissociated into anions include amoxicillin, ampicillin, aspoxycillin, benzylpenicillin, methicillin, piperacillin, sulbenicillin, ticarcillin, cefaclor, cefedroxyl, cefelexin, cefatrizine, cefixime, ceflazine, cefradixin, and ceflozine. Cefamandole, cefazolin, cefmetazole, cefminotas, cefperazone, cefotaxime, cefotaten, cefoxitin, cefpyramid, cefsulodin, ceftazidime, ceftizoxime, ceftriaxone, cefzonam, aztreonam, carmonam, promoximexime Loxacin, Enoxasin, Naliditasic acid, Norfloxacin, Ofloxacin, Vidarazon, Fluorourashi Nore, methotrexate, levothyroxine, liothyronine, amlexanox, cromoglycic acid, tranilast, gliclazide, insulins, prostaglandins, benzbromarone, rubazochrome, tranexamic acid, alkolofenac, aspirin, diclofenac, inbumetafen, inbufenfen Ketoprofen, mefenamic acid, sulindac, thiaprofenic acid, tolmetin, sulpyrine, oral benzalit, penicillamine, amobarbital, pentobarbital, phenobarbital, thiopental, funetren, valproic acid, droxidopa, acetazolamide, bumetanide, canlenic acid, Ethacrynic acid, aracepril, captopril, lisinopurinole, methinoredono, clofibrate, pravastatin Probuconore, anoreprostadil, aminophylline, theophylline, carbocysteine, dexamethasone phosphate, dexamethasone acetate, dexamethasone methacrylate benzoate, hydrocortisone succinate, hydrocortisone phosphate, prenizolone succinate, betamethasone succinate and salts thereof. Not limited. Suitable drugs in the present invention include drugs that are extremely difficult to maintain drug stability due to hydrolysis and oxidative degradation, and drugs that have a remarkable change in appearance (color) over time. More preferred drugs include water-soluble steroid compounds. Representative compounds include dexamethasone phosphate and Xamethasone, dexamethasone methansulfonate, hydrocortisone succinate, hydrocortisone phosphate, prenisolone succinate, betamethasone phosphate and salts thereof. Example
[0026] 以下に、実施例および試験例を挙げて本発明をより詳細に説明するが、本発明は これに限定されるものでない。尚、本発明の実施例および比較例における薬物保持 層の配合量を表 1、表 2、および表 3に示す。  Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples, but the present invention is not limited thereto. Tables 1, 2, and 3 show the amounts of the drug-retaining layers in Examples and Comparative Examples of the present invention.
[0027] [表 1] [Table 1]
00 00
(表 1 ) 実施例 1 - 10 (Table 1) Examples 1-10
成 分 1 2 3 4 5 6 7 8 9 10 薬物 リン酸デキサメタゾンナトリウム 3 3 2 1 3 3 3 3 3 3  Component 1 2 3 4 5 6 7 8 9 10 Drug Dexamethasone sodium phosphate 3 3 2 1 3 3 3 3 3 3
リン ®へタメタゾンナ卜1 Jゥム Phosphorus ® Hetamethasonaton 1 J
イオン性合成萵分子 ポリアクリル酸ナトリウム  Ionic synthetic molecule sodium polyacrylate
ポリアクリル USB分中《3物  Polyacrylic USB
N ビニルァセ卜アミド /アクリル》# 合 (*  N vinyl acetate / acrylic) #
非イオン性合成高分子 ポリビニルアルコール 15 17 17 17 15 15 15 15 15 15  Nonionic synthetic polymer Polyvinyl alcohol 15 17 17 17 15 15 15 15 15 15
ポリエチレンォキサイト'  Polyethylene oxide '
天然系高分子 ゼラチン  Natural polymer gelatin
カラギ一ナン  Carrageenan
多価アルコール類 グリセリン 10― 10 10 10 10 ― 10 10 1Q ― 10 ―.— 10■. .—  Polyhydric alcohols Glycerin 10-10 10 10 10-10 10 1Q-10-.
D-ソルビトール液 (70W  D-sorbitol solution (70W
架橋剤 乾燥水酸化アルミニウムゲル  Crosslinking agent Dried aluminum hydroxide gel
エチレングリコールジグリシジルエー亍ル  Ethylene glycol diglycidyl ether
金属キレート剤 ェデト酸ニナトリウム 0.1 0.1 0.05 0.05 0.05 0.1  Metal chelating agent disodium edetate 0.1 0.1 0.05 0.05 0.05 0.1
Iデ M¾四ナトリウム 0.1  Ide M¾tetrasodium 0.1
電解質 塩化ナトリウム 0.1 0.1 0.1 0.1 0.1 0.05 0.01 0.05  Electrolyte Sodium chloride 0.1 0.1 0.1 0.1 0.1 0.05 0.01 0.05
塩化カルシウム (二水和物) 0.1 硫化ナトリウム  Calcium chloride (dihydrate) 0.1 Sodium sulfide
硫酸ナトリウム  Sodium sulfate
リン酸水素ニナトリウム  Disodium hydrogen phosphate
界面活性剤 モノステアリン ポリエチレングリコール  Surfactant Monostearin Polyethylene glycol
防腐剤 メチルパラペン t 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 Preservative methyl parapen t 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
プロピルパラベン 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 铕魁水 71.7 69.7 70.7 71.7 71.6 71.65 71.7 71.74 71.65 71.6 Propylparaben 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Omizu 71.7 69.7 70.7 71.7 71.6 71.65 71.7 71.74 71.65 71.6
(表 2) 実施例 11 - 20 (Table 2) Examples 11-20
Figure imgf000015_0001
Figure imgf000015_0001
o o
(表 3 ) 比較例 1-10 (Table 3) Comparative Example 1-10
成 分 1 2 3 4 5 6 7 8 9 10 薬物 リン酸デキサメタゾンナトリウム 3 3 3 3 3 3 3 3 3 リノ酸へタメタゾノナトリウム  Ingredient 1 2 3 4 5 6 7 8 9 10 Drug Dexamethasone sodium phosphate 3 3 3 3 3 3 3 3 3 Henometazono sodium linoleate
イオン性合成高分子 ポリアクリル酸ナトリウム 1.8  Ionic synthetic polymer Sodium polyacrylate 1.8
ポリアクリル酸部分中和物 0,45 Polyacrylic acid partially neutralized 0,45
N—ビニルァセトァミト'/アクリル酸共重合休 5 非イオン性合成高分子 ポリビニルアルコール 15 15 15 15 15 15 15 15 2 3 N-vinylacetamito '/ acrylic acid copolymer 5 Nonionic synthetic polymer Polyvinyl alcohol 15 15 15 15 15 15 15 15 2 3
ポリエチレンオキサイド' 1.5 天然系高分子 ゼラチン 3  Polyethylene oxide '1.5 Natural polymer Gelatin 3
カラギ一ナン 2.5 多価アルコール類 グリセリン 10 10 10 10 10 10 _„ 10 1_0 _ 30 30  Carrageenan 2.5 Polyhydric alcohols Glycerin 10 10 10 10 10 10 _ „10 1_0 _ 30 30
D -ソルビト一ル液 (70W 3 架檨剤 乾燥水酸化アルミニウムゲル ― ―  D-Sorbitol solution (70W 3 crosslinking agent Dried aluminum hydroxide gel ― ―
エチレングリコ一ルジグリシジルェ一亍ル 0.1 0.1 金属キレ一ト剤 ェ丁ト酸一ナトリウム  Ethylene glycol diglycidyl ester 0.1 0.1 Metal chelating agent
ェデト酸四ナトリウム  Tetrasodium edetate
電解質 塩化ナトリウム 1  Electrolyte Sodium chloride 1
水酸化ナトリウム 0.2  Sodium hydroxide 0.2
硫酸ナトリウム 0.2  Sodium sulfate 0.2
フッ化ナトリウム 0.2  Sodium fluoride 0.2
硝酸ナトリウム 0.2  Sodium nitrate 0.2
iiffiiH "トリウム 0.2  iiffiiH "Thorium 0.2
界面活性剤 モノス亍アリン酸ポリエチレングリコール 0.3 0.4 防腐剤 メチルパラペン 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18  Surfactant Polyethylene glycol monostearate 0.3 0.4 Preservative Methyl parapene 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
プロピルバラベン 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 精製水 74.8 71.8 71.6 71.6 71.6 71.6 71.6 70.8 55.15 55.3 Propylparaben 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Purified water 74.8 71.8 71.6 71.6 71.6 71.6 71.6 70.8 55.15 55.3
ポリビニルアルコール (完全ケン化物、クラレ製) 15質量0 /0をグリセリン 10質量0 /0に 分散させた後、水を添加し加熱溶解させた。別に、リン酸デキサメタゾンナトリウム 3質 量%、ェデト酸ニナトリウム 0.1質量%を水に溶解させ調製した。両調製品を真空練 合機で脱泡を行いながら練合した。得られた組成物 (薬物保持層)は、剥離処理した ポリエステルテレフタレート製の凸型成型容器 (直径 24mm,深さ 1.5mm)に 0.8g充填し た後、電極層を印刷したポリエステルテレフタレートフィルムを貼り合わせ、一 40°Cで 凍結後、 5°C下で解凍することで本実施例の製剤を得た。 Polyvinyl alcohol (completely saponified product, manufactured by Kuraray Co., Ltd.) was 15 mass 0/0 was dispersed in glycerin 10 weight 0/0, it was dissolved by heating the addition of water. Separately, dexamethasone sodium phosphate 3% by mass and disodium edetate 0.1% by mass were dissolved in water. Both preparations were kneaded while defoaming with a vacuum kneader. 0.8 g of the obtained composition (drug holding layer) was filled into a peeled polyester terephthalate convex molded container (diameter 24 mm, depth 1.5 mm), and a polyester terephthalate film on which an electrode layer was printed was pasted. They were combined, frozen at 40 ° C, and thawed at 5 ° C to obtain the preparation of this example.
[0031] (実施例 2— 15) (Example 2-15)
表 1または表 2に記載した成分について実施例 1と同様の方法でゲルを調製した。 (実施例 16)  Gels were prepared in the same manner as in Example 1 for the components described in Table 1 or Table 2. (Example 16)
水 39.83質量%にゼラチン (新田ゼラチン製) 2質量0 /0、 D-ソルビトール液(日研化学 製) 3質量0 /0、モノステアリン酸ポリエチレングリコール(MYS10,日光ケミカルズ製) 0.3 質量0 /0を添カ卩し、加熱溶解させた。別に、ポリビエルアルコール (部分ケンィ匕物,クラレ 製) 2質量%、ポリエチレンオキサイド (coagulant,ダウケミカル製) 1.5質量%をグリセリ ン 12質量%に分散させ調製した。両調製品を真空練合機で脱泡を行いながら練合し た。次に、ポリアクリル酸ナトリウム (F-480ss,昭和電工製) 2質量%、ポリアクリル酸部 分中和物 (NP-700,昭和電工製) 0.5質量%、パラヒドキシ安息香酸メチル 0.18質量% 、パラヒドキシ安息香酸プロピル 0.02質量%をグリセリン 10質量0 /0に分散させた調製 品、及びリン酸デキサメタゾンナトリウム 3質量0 /0、塩ィ匕カルシウム 2水和物 0.2質量% を水 15質量%に溶解さた調製品を順次添加し、均一に溶解させた。最後に、乾燥水 酸化アルミニウムゲル (協和化学製) 0.37質量%をグリセリン 3質量%に分散させた調 製品とエチレングリコールジグリシジノレエーテル 0.1質量0 /0を添カ卩し、均一になるまで 練合した。得られた組成物(薬物保持層)は、剥離処理したポリエステルテレフタレー ト製の凸型成型容器 (直径 24mm,深さ 1.5mm)に 0.8g充填した後、電極層を印刷した ポリエステルテレフタレートフィルムを貼り合わせ、本実施例の製剤を得た。 Gelatin in water 39.83 wt% (manufactured by Nitta Gelatin) 2 Weight 0/0, D-sorbitol solution (manufactured by Nikken Chemicals) 3 weight 0/0, polyethylene glycol monostearate (MYS10, manufactured by Nikko Chemicals) 0.3 weight 0 / 0 was added and heated and dissolved. Separately, 2% by mass of Polyvier alcohol (partial Keni-Daimono, manufactured by Kuraray) and 1.5% by mass of polyethylene oxide (coagulant, manufactured by Dow Chemical) were dispersed in 12% by mass of glycerin to prepare. Both preparations were kneaded while defoaming with a vacuum kneading machine. Next, 2% by mass of sodium polyacrylate (F-480ss, manufactured by Showa Denko), 0.5% by mass of polyacrylic acid partially neutralized product (NP-700, manufactured by Showa Denko), 0.18% by mass of methyl parahydroxybenzoate, is dissolved 0.02 wt% propyl benzoate glycerin 10 mass 0/0 preparations dispersed in, and dexamethasone sodium phosphate 3 wt 0/0, 0.2 wt% Shioi匕calcium dihydrate in 15% by weight of water The prepared preparations were sequentially added and uniformly dissolved. Finally, a 0.37 mass% dry water aluminum oxide gel (manufactured by Kyowa Chemical) was添Ka卩glycerin 3 mass tone was dispersed in% product and ethylene glycol diglycidyl Honoré ether 0.1 0/0, until uniform kneading I combined. 0.8 g of the obtained composition (drug holding layer) was filled in a convex molded container (diameter 24 mm, depth 1.5 mm) made of peeled polyester terephthalate, and then a polyester terephthalate film on which an electrode layer was printed was filled. By laminating, the preparation of this example was obtained.
[0032] (実施例 17— 18)  (Examples 17-18)
表 2に記載した成分について実施例 16と同様の方法でゲルを調製した。 (実施例 19) 水 30質量%に N-ビュルァセトアミド /アクリル酸共重合体 (GE-167,昭和電工製) 5質 量0 /0、グリセリン 21質量0 /0、モノステアリン酸ポリエチレングリコール(MYS10,日光ケミ カルズ製)0.4質量%を添加し、加熱溶解させた。別に、ポリビュルアルコール (部分ケ ン化物,クラレ製) 3質量%、パラヒドキシ安息香酸メチル 0.18質量%、パラヒドキシ安息 香酸プロピル 0.02質量%をグリセリン 9質量%に分散させ調製した。両調製品を真空 練合機で脱泡を行いながら練合した。次に、水 13質量%にゼラチン (新田ゼラチン製 )3質量%を添加し加熱溶解させた調製品、及びリン酸デキサメタゾンナトリウム 3質量 %、塩化ナトリウム 0.2質量%を水 12.2質量%に溶解さた調製品を順次添加し、均一 に溶解させた。最後に、エチレングリコールジグリシジノレエーテル 0.1質量0 /0を添カロ し、均一になるまで練合した。得られた組成物(薬物保持層)は、剥離処理したポリエ ステルテレフタレート製の凸型成型容器 (直径 24mm,深さ 1.5mm)に 0.8g充填した後、 電極層を印刷したポリエステルテレフタレートフィルムを貼り合わせ、本実施例の製剤 を得た。 Gels were prepared in the same manner as in Example 16 for the components described in Table 2. (Example 19) In water 30 wt% N-Bulle § Seto amide / acrylic acid copolymer (GE-167, manufactured by Showa Denko) 5 Weight 0/0, glycerin 21 weight 0/0, polyethylene glycol monostearate (MYS10, sunlight Kemi It was added Karuzu Ltd.) 0.4 wt%, dissolved by heating. Separately, 3% by mass of polybutyl alcohol (partially saponified product, manufactured by Kuraray), 0.18% by mass of methyl parahydroxybenzoate, and 0.02% by mass of propyl parahydroxybenzoate were dispersed in 9% by mass of glycerin. Both preparations were kneaded while defoaming with a vacuum kneader. Next, a preparation prepared by adding 3% by mass of gelatin (manufactured by Nitta Gelatin) to 13% by weight of water and dissolving by heating, and 3% by mass of dexamethasone sodium phosphate and 0.2% by mass of sodium chloride dissolved in 12.2% by mass of water. The prepared preparations were sequentially added and uniformly dissolved. Finally, ethylene glycol diglycidyl Honoré ether 0.1 0/0 was added Caro, kneaded until uniform. 0.8 g of the obtained composition (drug holding layer) was filled in a convex molded container (diameter 24 mm, depth 1.5 mm) made of peeled polyester terephthalate, and a polyester terephthalate film on which an electrode layer was printed was pasted. Together, the preparation of this example was obtained.
(実施例 20) (Example 20)
表 2に記載した成分について実施例 19と同様の方法でゲルを調製した。  Gels were prepared in the same manner as in Example 19 for the components described in Table 2.
(比較例 1一 8) (Comparative Examples 11-8)
表 3に記載した成分について実施例 1と同様の方法でゲルを調製した。  Gels were prepared in the same manner as in Example 1 for the components described in Table 3.
(比較例 9) (Comparative Example 9)
表 3に記載した成分について実施例 16と同様の方法でゲルを調製した。  Gels were prepared in the same manner as in Example 16 for the components described in Table 3.
(比較例 10) (Comparative Example 10)
表 3に記載した成分について実施例 19と同様の方法でゲルを調製した。  Gels were prepared in the same manner as in Example 19 for the components described in Table 3.
(実験例 1 :外観変化の観察) (Experimental example 1: Observation of appearance change)
実施例 1一 20及び比較例 1一 10のゲル組成物(4.5cm2)は、非分極性電極(銀/塩化 銀 (1: 1):銀と塩化銀の混合物)若しくは分極性電極 (カーボン)を印刷したポリエステ ルフィルムを装着した製剤をアルミニウム包装し、評価試料とした。本実施例の電極 は、ドナー及びリファレンスの兼用電極である。本実験例を 40°Cで保存し、薬物保持 層の外観変化の度合いを検討した。その結果を表 4に示した。また、表 4には、薬物 保持層の電解質と電極層とが反応して生成すると思われる主な生成塩を記載した。 [0034] [表 4] The gel compositions (4.5 cm 2 ) of Example 1-20 and Comparative Example 1-10 were prepared using a non-polarizable electrode (silver / silver chloride (1: 1): a mixture of silver and silver chloride) or a polarizable electrode (carbon ) Was printed on aluminum and the preparation equipped with a polyester film was used as an evaluation sample. The electrode of this embodiment is a dual-purpose electrode for a donor and a reference. This experimental example was stored at 40 ° C, and the degree of change in the appearance of the drug-retaining layer was examined. Table 4 shows the results. Table 4 shows the main salts which are considered to be formed by the reaction between the electrolyte in the drug holding layer and the electrode layer. [0034] [Table 4]
(表 4 )  (Table 4)
Figure imgf000019_0001
Figure imgf000019_0001
◎ :着色無し 〇:極弱い着色あり 厶:明らかな着色あり X :非常に強い着色 ◎: no coloring 〇: very weak coloring m: obvious coloring X: very strong coloring
[0035] 表 4に示した結果において、薬物を含有しない比較例 1は、電極の有無に関わらず 薬物保持層の着色が無かったの対し、薬物を含有した比較例 2では、非分極性電極( 銀/塩化銀)では着色が確認された力 分極性電極(カーボン)では確認されな力、つた 。この結果は、非分極性電極 (銀/塩化銀)を使用し、薬物を含有した系で、明らかな 着色が発生することを示唆する。 [0035] In the results shown in Table 4, in Comparative Example 1 containing no drug, the drug holding layer was not colored regardless of the presence or absence of the electrode, whereas in Comparative Example 2 containing the drug, the non-polarizable electrode was not used. (Silver / silver chloride) The color was confirmed to be colored. The force was not confirmed with the polarizable electrode (carbon). This result is evident for a drug-containing system using non-polarizable electrodes (silver / silver chloride). It indicates that coloring occurs.
一方、着色防止を念頭に金属キレート剤や電解質を配合した実施例 1一 20では、非 分極性電極 (銀/塩化銀)を設置した系でも薬物保持層の明らかな着色は認められな 力、つた。ただ、比較例 3 7では、電解質を配合したにも関わらず、単独では着色を防 止することはできな力 た。  On the other hand, in Example 1-20 in which a metal chelating agent and an electrolyte were blended in consideration of prevention of coloring, in the system provided with a non-polarizing electrode (silver / silver chloride), no apparent coloring of the drug holding layer was observed. I got it. However, in Comparative Example 37, it was not possible to prevent coloring alone by using the electrolyte.
[0036] この原因は、生成する陰イオンの移動度 (その他の成分との相互作用)の違いと、電 極層と反応して形成する塩の溶解度や溶解度積の違いによるものと判断できる。因 みに、比較例 3では、難溶性塩の水酸化銀が生成される予定であつたが、水酸化ィ オンが緩衝を受けるため、塩を生成するまでに到らな力、つたもののと思われる。 (表 4 記載の生成塩の溶解度や溶解度積は、詳細な説明の欄を参照。尚、水酸化銀 (溶解 度 2.65mg/ dm3(25。C),硝酸銀 (溶解度 241g/100g(25。C)である。 ) [0036] The cause can be determined to be due to the difference in the mobility of the generated anion (interaction with other components) and the difference in the solubility and solubility product of the salt formed by reacting with the electrode layer. By the way, in Comparative Example 3, silver hydroxide, which is a hardly soluble salt, was to be produced.However, since the hydroxide ion was buffered, it had a sufficient force to produce the salt. Seem. (For the solubility and solubility product of the formed salt described in Table 4, see the column of the detailed description. In addition, silver hydroxide (solubility 2.65 mg / dm 3 (25.C), silver nitrate (solubility 241 g / 100 g (25. C).)
[0037] 上記の結果より、非分極性電極 (銀/塩化銀)を設置した製剤では、金属キレート剤 および/または電極層と反応して難溶性化合物を形成する陰イオンを生成する電解 質を配合することにより、着色の抑制及び防止が可能であり、電極層による影響を抑 制していることは明らかである。  [0037] From the above results, in the preparation provided with the non-polarizable electrode (silver / silver chloride), the electrolyte which generates an anion which forms a poorly soluble compound by reacting with the metal chelating agent and / or the electrode layer is used. It is clear that the compounding can suppress and prevent coloring and suppress the influence of the electrode layer.
[0038] (実験例 2:薬物安定性試験) 本発明の実施例 1、実施例 5及び比較例 2のゲル組成 物(4.5cm2)に銀/塩化銀ペーストを印刷したポリエステルフィルムを装着した製剤を アルミニウム包装を施した状態で、 50°Cで保存し、薬効成分 (リン酸デキサメタゾンナト リウム)の経時的変化の度合いを検討した。その結果を表 5に示した。 [0038] (Experiment 2: Drug Stability Test) Example of the present invention 1, was fitted with a polyester film printed silver / silver chloride paste gel composition of Example 5 and Comparative Example 2 (4.5 cm 2) The preparation was stored in an aluminum package at 50 ° C, and the time-dependent change of the active ingredient (dexamethasone sodium phosphate) was examined. Table 5 shows the results.
[0039] [表 5]  [Table 5]
(表 5 )  (Table 5)
実験例 1実施例及び比較例 薬物残存率 加水分解物 その他の分解物  Experimental Example 1 Example and Comparative Example Residual drug rate Hydrolyzate Other degradation products
50 - 1ヶ月 (Dexame thasone) (酸化物等) 実験例 2-1 比較例 2 83. 69¾ 6. 38¾ 2. 83¾ 実験例 2 - 2 実施例 1 87. 15¾ 4. 82¾  50-1 month (Dexame thasone) (oxides, etc.) Experimental example 2-1 Comparative example 2 83. 69¾ 6. 38¾ 2.83¾ Experimental example 2-2 Example 1 87. 15¾ 4. 82¾
実験例 2-3 1 実施例 5 88. 85¾ 4. 26¾ 0. 79¾  Experimental Example 2-3 1 Example 5 88.85¾ 4.26¾ 0.79¾
[0040] 比較例 2を装着した実験例に対し、実施例 1 (ェデト酸ニナトリウム配合)及び実施例 5 (ェデト酸ニナトリウム、塩化ナトリウム配合)を装着した実験例は、薬物残存率が高 ぐ更に分解物の構成に違いがあることが明らかである。特に、実施例 1及び実施例 5 では、その他の分解物 (酸化物等)の生成率が減少している。尚、リン酸デキサメタゾ ンナトリウムの分解機構は、酸化分解と加水分解が主反応であり、特に酸化分解には 金属イオンの関与が大きいことが知られている。係る点より、遊離した銀イオンが薬物 安定性に悪影響を及ぼすことが予想されたが、本実験例でも確認された。この結果よ り、本実施例の金属キレート剤と電解質が、銀イオンの遊離を抑制するため、薬物安 定性が向上したものと判断できる。 [0040] In contrast to the experimental example equipped with Comparative Example 2, the experimental example equipped with Example 1 (containing sodium disodium edetate) and Example 5 (containing sodium disodium edetate and sodium chloride) had a higher drug residual ratio. It is clear that there is a difference in the composition of the decomposed product. In particular, in Examples 1 and 5, the generation rates of other decomposition products (oxides and the like) were reduced. In addition, dexamethasium phosphate It is known that oxidative decomposition and hydrolysis are the main reactions in the mechanism of sodium decomposition, and metal ions are particularly involved in oxidative decomposition. From these points, it was expected that the released silver ions would adversely affect drug stability, but this was also confirmed in this experimental example. From this result, it can be determined that the metal chelating agent and the electrolyte of this example suppress the release of silver ions, and thus have improved drug stability.
[0041] (実験例 3:in vivo薬物吸収性)  (Experimental example 3: in vivo drug absorption)
実施例 2、実施例 5及び比較例 2、比較例 8で得たゲル組成物 (4.5cm2)に塩化銀べ 一ストを印刷したポリエステルフィルムを装着し、ドナー電極(陰極)とした。更に、銀 ペーストを印刷した電極の印刷面に PET不織布を装着した製剤(4.5cm2)に生理食 塩水を含浸させてものをリファレンス電極(陽極)とした。 A polyester film on which a silver chloride paste was printed was attached to the gel compositions (4.5 cm 2 ) obtained in Example 2, Example 5, Comparative Example 2, and Comparative Example 8, and used as a donor electrode (cathode). A reference electrode (anode) was prepared by impregnating physiological saline solution into a preparation (4.5 cm 2 ) in which a PET non-woven fabric was attached to the printed surface of the electrode on which the silver paste was printed.
[0042] 実験開始時には、 SDラット 7週齢 (体重 300g,N=4)の腹部をシェーバー処理した後、 製剤を貼布し、エラテックステープ (アルケア製)で固定し、更に電源装置および記録 装置と接続したコードを製剤に接続し、通電(定電流: 0.45mA/patch,通電時間: 3hr )を開始した。採血は、経時的に徑静脈よりシリンジで採血し、血漿をアルカリフォスフ ァターゼにより脱リン酸化し、 ODSカートリッジでクリーンアップ後、 HPLCで定量した。 その結果を図 3に示した。図 3は、本発明の実施例および比較例における薬物吸収 性を示すグラフであり、横軸は時間(hr)、縦軸は血清中 dexamethasone濃度(ng/ml) を示す。  [0042] At the start of the experiment, the abdomen of a 7-week-old SD rat (body weight 300 g, N = 4) was subjected to shaver treatment, a preparation was applied thereto, fixed with Elatex tape (manufactured by Alcare), and a power supply device and recording were performed. The cord connected to the device was connected to the preparation, and energization (constant current: 0.45 mA / patch, energization time: 3 hr) was started. Blood was collected over time using a syringe from the venous vein, dephosphorylated the plasma with alkaline phosphatase, cleaned up with an ODS cartridge, and quantified by HPLC. The results are shown in FIG. FIG. 3 is a graph showing the drug absorptivity in Examples and Comparative Examples of the present invention, wherein the horizontal axis represents time (hr) and the vertical axis represents serum dexamethasone concentration (ng / ml).
[0043] 図 3に示した結果において、実施例 2(塩ィ匕ナトリウム 0.1質量%配合)と実施例5(塩 化ナトリウム 0.1質量%,ェデト酸ニナトリウム 0.1質量%配合)は、比較例 2(未配合)と同 等の薬物吸収性を示した。一方、比較例 8(塩化ナトリウムを 1.0質量%配合)では、薬 物吸収性が低下しており、配合した電解質が薬物の競合イオンとなっていることが判 明した。然るに、薬物吸収性の面からは、電解質の配合を極力少なくすることが重要 になる。  In the results shown in FIG. 3, Example 2 (containing 0.1% by mass of sodium chloride) and Example 5 (containing 0.1% by mass of sodium chloride and 0.1% by mass of disodium edetate) show Comparative Example 2 (Not blended) showed the same drug absorption. On the other hand, in Comparative Example 8 (containing 1.0% by mass of sodium chloride), the drug absorptivity was reduced, and it was found that the compounded electrolyte was a competitive ion of the drug. However, from the aspect of drug absorption, it is important to minimize the amount of electrolyte blended.
産業上の利用可能性  Industrial applicability
[0044] 本発明は、医療用製品として長期の品質保証を実現することができる電気的薬物 移送製剤に利用可能である。 [0044] The present invention can be used for an electropharmaceutical drug transfer preparation that can realize long-term quality assurance as a medical product.

Claims

請求の範囲  The scope of the claims
[I] 薬効成分を含有する薬物保持層と、前記薬物保持層と隣接設置された電極層とを 備えた経皮または経粘膜用の電気的薬物移送製剤であって、前記薬物保持層が金 属キレート剤および Zまたは前記電極層と反応して難溶性化合物を形成する電解質 を含むことを特徴とする電気的薬物移送製剤。  [I] A transdermal or transmucosal electric drug transfer preparation comprising a drug holding layer containing a drug component and an electrode layer provided adjacent to the drug holding layer, wherein the drug holding layer is made of gold. An electropharmaceutical drug delivery preparation comprising a chelating agent of the genus and an electrolyte which reacts with Z or the electrode layer to form a poorly soluble compound.
[2] 前記電解質が陰イオンを含有または生成することを特徴とする請求項 1記載の電気 的薬物移送製剤。  [2] The electropharmaceutical drug transfer preparation according to [1], wherein the electrolyte contains or generates an anion.
[3] 前記電極層が非分極性金属成分を含有することを特徴とする請求項 1または 2記載 の電気的薬物移送製剤。  3. The electropharmaceutical drug delivery preparation according to claim 1, wherein the electrode layer contains a non-polarizable metal component.
[4] 前記非分極性金属成分が、銀または銀を含有する混合物からなることを特徴とする 請求項 3記載の電気的薬物移送製剤。 4. The electropharmaceutical drug delivery preparation according to claim 3, wherein the non-polarizable metal component is made of silver or a mixture containing silver.
[5] 前記難溶性化合物が、水への溶解度 10g/dm3以下または溶解度積 (Ksp) 1 X 1[5] The poorly soluble compound has a solubility in water of 10 g / dm 3 or less or a solubility product (Ksp) of 1 × 1
0— 2以下であることが特徴とする請求項 1一 4のいずれかに記載の電気的薬物移送製 剤。 The electropharmaceutical drug delivery device according to any one of claims 14 to 14, wherein the drug content is 0 to 2 or less.
[6] 前記難溶性化合物の酸化還元反応の標準電極電位 (25°C)が、 - IV— + 2Vであ ることを特徴とする請求項 1一 5のいずれかに記載の電気的薬物移送製剤。  [6] The electric drug transfer according to any one of [15] to [15], wherein a standard electrode potential (25 ° C.) of the oxidation-reduction reaction of the hardly soluble compound is −IV− + 2V. Formulation.
[7] 前記金属キレート剤が、ェデト酸またはその塩であることを特徴とする請求項 1一 6 のいずれかに記載の電気的薬物移送製剤。 [7] The electropharmaceutical drug delivery preparation according to any one of [16] to [16], wherein the metal chelating agent is edetic acid or a salt thereof.
[8] 前記金属キレート剤の配合量が、 0. 001— 1質量%であることを特徴とする請求項[8] The compounding amount of the metal chelating agent is 0.001 to 1% by mass.
1一 6のいずれかに記載の電気的薬物移送製剤。 An electropharmaceutical drug transfer preparation according to any one of 1 to 6.
[9] 前記電解質が、溶解時にハロゲン化物イオン (フッ素イオンを除く)、硫化物イオン、 硫酸イオンおよびリン酸イオンの少なくとも一つ生成することを特徴とする請求項 1一9. The electrolyte according to claim 11, wherein the electrolyte generates at least one of a halide ion (excluding a fluorine ion), a sulfide ion, a sulfate ion, and a phosphate ion when dissolved.
8のいずれかに記載の電気的薬物移送製剤。 9. The electropharmaceutical drug delivery preparation according to any one of 8.
[10] 前記電解質の配合量が、 0. 001 1質量%であることを特徴とする請求項 1一 8の いずれかに記載の電気的薬物移送製剤。 [10] The electropharmaceutical drug delivery preparation according to any one of [18] to [18], wherein the blending amount of the electrolyte is 0.0001 1% by mass.
[II] 前記薬効成分が、ステロイドホルモンを含むことを特徴とする請求項 1一 10のいず れかに記載の電気的薬物移送製剤。  [II] The electropharmaceutical drug transfer preparation according to any one of [110] to [110], wherein the medicinal component contains a steroid hormone.
[12] 前記ステロイドホルモン力 リン酸デキサメタゾン、酢酸デキサメタゾン、メタスルホン 安息香酸デキサメタゾン、コハク酸ヒドロコルチゾン、リン酸ヒドロコルチゾン、コハク酸 プレニゾロン、リン酸べタメタゾン及びその塩からなる群から選択される少なくとも 1つ であることを特徴とする請求項 11記載の電気的薬物移送製剤。 [12] The steroid hormone power dexamethasone phosphate, dexamethasone acetate, methasulfone The electropharmaceutical drug delivery preparation according to claim 11, which is at least one selected from the group consisting of dexamethasone benzoate, hydrocortisone succinate, hydrocortisone phosphate, prenisolone succinate, betamethasone phosphate and salts thereof. .
PCT/JP2004/012091 2003-08-29 2004-08-24 Electric drug transport preparation WO2005020967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513430A JPWO2005020967A1 (en) 2003-08-29 2004-08-24 Electrical drug delivery formulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-306743 2003-08-29
JP2003306743 2003-08-29

Publications (1)

Publication Number Publication Date
WO2005020967A1 true WO2005020967A1 (en) 2005-03-10

Family

ID=34269405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012091 WO2005020967A1 (en) 2003-08-29 2004-08-24 Electric drug transport preparation

Country Status (2)

Country Link
JP (1) JPWO2005020967A1 (en)
WO (1) WO2005020967A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011034A2 (en) * 1994-10-07 1996-04-18 Hisamitsu Pharmaceutical Co., Inc. Method of administrating water soluble steroids with iontophoresis
JPH09248344A (en) * 1996-03-17 1997-09-22 Hisamitsu Pharmaceut Co Inc Electrode device for iontophoresis
JPH1199209A (en) * 1997-09-26 1999-04-13 Kyowa Hakko Kogyo Co Ltd Electrode composition for iontophoresis
JP2000219623A (en) * 1998-11-26 2000-08-08 Hisamitsu Pharmaceut Co Inc Tacky gel composition for iontophoresis and device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147297A (en) * 1990-05-07 1992-09-15 Alza Corporation Iontophoretic delivery device
JP3100696B2 (en) * 1991-10-01 2000-10-16 協和醗酵工業株式会社 Composition for iontophoresis
ATE238046T1 (en) * 1996-11-14 2003-05-15 Alza Corp DEVICE FOR ADMINISTRATION OF SUBSTANCES SUCH AS LIDOCAIN AND EPINEPHRINE WITH THE SUPPORT OF ELECTRICAL CURRENT
US6629968B1 (en) * 2000-06-30 2003-10-07 Vyteris, Inc. Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system incorporating the reservoir-electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011034A2 (en) * 1994-10-07 1996-04-18 Hisamitsu Pharmaceutical Co., Inc. Method of administrating water soluble steroids with iontophoresis
JPH09248344A (en) * 1996-03-17 1997-09-22 Hisamitsu Pharmaceut Co Inc Electrode device for iontophoresis
JPH1199209A (en) * 1997-09-26 1999-04-13 Kyowa Hakko Kogyo Co Ltd Electrode composition for iontophoresis
JP2000219623A (en) * 1998-11-26 2000-08-08 Hisamitsu Pharmaceut Co Inc Tacky gel composition for iontophoresis and device therefor

Also Published As

Publication number Publication date
JPWO2005020967A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4414517B2 (en) Device structure for iontophoresis
JP4410421B2 (en) Iontophoresis device
JP3459724B2 (en) Electrode device for iontophoresis
EP0804155B1 (en) Composition and method for enhancing transdermal electrotransport agent delivery
JP4049389B2 (en) Compositions, devices and methods for administration of electrotransport agents
KR20040012744A (en) Transdermal electrotransport delivery device including an antimicrobial compatible reservoir composition
JPH09511167A (en) Reduction of skin irritation during electrotransport administration
JP4694839B2 (en) Adhesive gel composition for iontophoresis preparation
US5908400A (en) Device structure for iontophoresis
JP4393641B2 (en) Adhesive gel composition for iontophoresis and apparatus therefor
WO2007010900A1 (en) Percutaneous absorption patch with application position indicating function, and iontophoresis device
JPH0892101A (en) Sodium alendronate preparation for local administration
JPH11504237A (en) Compositions and methods for facilitating electrotransport agent administration
WO2005020967A1 (en) Electric drug transport preparation
AU767708B2 (en) Pressure-sensitive adhesive gel composition for iontophoresis and apparatus therefor
EP0813879B1 (en) Drug administration composition for iontophoresis
JP3883603B2 (en) Adhesive gel substrate and adhesive composition
CA2190370C (en) Composition and method for enhancing transdermal electrotransport agent delivery
JPH1072374A (en) Medicinal administration composition for iontophoresis
JPS62126138A (en) Base composition for biological electrode of iontophoresis
JPS62135435A (en) Base composition for biological electrode of iontophoresis
JP2007135882A (en) Clay type iontophoresis device
JP2010137048A (en) Electrode composition for iontophoresis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513430

Country of ref document: JP

122 Ep: pct application non-entry in european phase