WO1996011034A2 - Method of administrating water soluble steroids with iontophoresis - Google Patents

Method of administrating water soluble steroids with iontophoresis Download PDF

Info

Publication number
WO1996011034A2
WO1996011034A2 PCT/JP1995/001652 JP9501652W WO9611034A2 WO 1996011034 A2 WO1996011034 A2 WO 1996011034A2 JP 9501652 W JP9501652 W JP 9501652W WO 9611034 A2 WO9611034 A2 WO 9611034A2
Authority
WO
WIPO (PCT)
Prior art keywords
iontophoresis
water
pulse
power supply
inductor
Prior art date
Application number
PCT/JP1995/001652
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Mori
Takahiro Hirata
Kazuya Katagai
Original Assignee
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co., Inc. filed Critical Hisamitsu Pharmaceutical Co., Inc.
Priority to AU32313/95A priority Critical patent/AU3231395A/en
Priority to JP08512468A priority patent/JP3119488B2/en
Publication of WO1996011034A2 publication Critical patent/WO1996011034A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis

Definitions

  • the present invention relates to a method for administering iontophoresis of a water-soluble steroid. More specifically, a water-soluble steroid exhibiting excellent pharmacological effects in the treatment of rheumatoid arthritis, osteoarthritis, and the like can be obtained by using a pulse depolarized iontophoresis power supply and a conductor having a non-polarizable electrode and a non-polarizable electrode.
  • the present invention relates to a method for administering iontophoresis of a water-soluble steroid, which is transdermally administered to a site of trouble such as a joint using a lead. Background art
  • the absorption of a drug from the skin of a living body is more effective than oral administration, which is known as a general drug administration method, in that it maintains the blood concentration, reduces the side effects of the drug on the gastrointestinal tract, and further administers the drug. It is known to have a number of advantages such as simplicity. However, due to the low permeability of the skin of the living body, there are only a limited number of drugs capable of delivering an effective dose sufficient for a therapeutic effect in the living body. However, as research on percutaneous absorption preparations has progressed, preparations using chemical absorption enhancement methods have been put on the market.On the other hand, physical absorption enhancement methods using phonophoresis and iontophoresis have been developed. Percutaneous absorption of the drug is expected.
  • iontophoresis is an administration method in which an ionized drug is absorbed from the skin by an electric current, and the above-mentioned advantages can be expected.
  • USP No. 4 is an alternative to painful injections at the time of administration. No. 2,087,878, USP. No. 4,141,359, and USP. No. 3,991,755.
  • DC-type current-carrying methods so safety and practicability such as electrical stimulation of the skin at the time of administration (when power is applied) and charging (or polarization potential) of the skin occur.
  • Pulse-type iontophoresis devices have also been developed in addition to the DC-type iontophoresis devices described above. However, similar to the DC-type devices, electrical stimulus to skin frost and the like poses a problem. I have.
  • water-soluble steroids having bioactivity are used as injections in various administration routes.
  • This water-soluble steroid is obtained by esterifying fat-soluble steroids such as dexamethasone, betamethasone, and prednisolone with phosphoric acid or acetic acid to improve water solubility.
  • this water-soluble steroid is administered intra-articularly in the treatment of rheumatoid arthritis and osteoarthritis.
  • surface anesthesia such as lidocaine, etc. It may cause infectious disease, and is not a simple, safe and highly pharmaceutical useful and administration method.
  • Japanese Patent Publication No. 2-45461 discloses a device for pulse depolarization type iontophoresis with little electrical stimulation to the skin. Using this technology, transdermal absorption of water-soluble steroids is performed. There has been no study on administration, and no disclosure or suggestion that a non-polarizable electrode such as silver / silver chloride is particularly effective for the electrode layer.
  • these conventional configurations have the following problems. That is,
  • synovium which is the site of inflammation such as osteoarthritis, and deep joints, such as the joint capsule consisting of the synovium and fibrous membrane, and were not effective for drug treatment.
  • Water-soluble steroids are administered intra-articularly as injections for the treatment of rheumatoid arthritis, osteoarthritis, etc. Must be administered at an interval, and a hospital visit is required. Therefore, it is not always a simple and highly useful administration method for seeking a therapeutic effect.
  • the present invention solves the above-mentioned conventional problems, and provides a water-soluble physiologically active steroid that is transdermally administered with high absorbability without electrical stimulus to the skin during administration.
  • the present invention provides a method for administering iontophoresis of a water-soluble steroid having excellent safety and pharmacological effects, which is highly safe and has pharmacological effects.
  • the purpose is to: Disclosure of the invention
  • a method for iontophoresis administration of a water-soluble steroid according to the present invention has the following configuration. That is,
  • a pulse depolarization type iontophoresis power supply device is used as the iontophoresis power supply device, and a non-polarizing electrode is used for the electrode layers of the inductor and the inductor. I have.
  • the method for administering iontophoresis of a water-soluble steroid according to claim 2 is the method according to claim 1, wherein the pulse depolarization type iontophoresis power supply is configured to supply a current between the inductor and the non-inductor.
  • the method for administering iontophoresis of a water-soluble steroid according to claim 3 is the method according to claim 1, wherein the non-polarizable electrode is made of silver, silver chloride, or the like. It has a configuration.
  • the method for administering iontophoresis of a water-soluble steroid according to claim 4 is the method according to any one of claims 1 to 3, wherein the inductor is a non-polarizable electrode and a drug storage layer. And a configuration in which an ion-exchange membrane is provided between them.
  • the method for administering iontophoresis of a water-soluble steroid wherein the water-soluble steroid is dexamethasone sodium phosphate, dexamethasone acetate, It has a composition consisting of dexamethasone metasulfobenzoate sodium, hydrocortisone sodium succinate, sodium hydrocortisone phosphate, predniblone sodium succinate, mesonadium sodium phosphate and the like, or a mixture thereof.
  • the pulse depolarization type iontophoresis power supply includes A power supply unit that supplies a current z voltage between the electrode layers of the indifferent inductor, a pulse oscillator that pulse-modulates the current Z voltage output from the power supply unit, and a pulse voltage output from the pulse oscillator that is related to the rest of the pulse voltage And a switch portion for depolarizing the polarization potential between the element and the unrelated element are preferably used.
  • the pause of the pulse voltage output from the pulse oscillator refers to the period excluding the pulse width in the pulse interval (or pulse period).
  • a pulse depolarization type iontophoresis power supply is formed by integrating a conductor and a conductor, or separating a conductor and a conductor to separate the conductor and the conductor.
  • the child may be connected by a connection cord or the like.
  • Current value of the pulse depolarized type iontophoresis power supply is preferably 0. 0 l ⁇ lm AZcm 2, the output currents and skin although it depends on the contact area with the conductor and the non-conductor, it is approximately 0.5 to 18 V, preferably 3 to 9 V. Therefore, if necessary, a plurality of light-weight batteries, which will be described later, as a power supply unit may be provided or stacked, or a combination of chipped amplification elements may be used. Further, if necessary, a constant current element, a light emitting element for indicating conduction, or the like may be added.
  • the pulse depolarization type iontophoresis power supply is used when the condition of the living body changes according to the dose of the water-soluble steroid or when the dose of the water-soluble steroid needs to be controlled according to the condition of the living body.
  • a feed knock mechanism for automatically controlling the output current while monitoring the state of the living body may be provided.
  • the power supply unit may be separated from the iontophoresis device and connected with a connection cord or the like, or may be integrated with the device.
  • the pulse depolarization type iontophoresis power supply when used in combination with the inductor and the non-inductor, the manganese dry battery, the alkaline dry battery, the lithium battery, the tunicad battery, and the silver oxide are used as the power supply unit.
  • a rechargeable battery, a sheet battery, or the like is preferably used.
  • the pulse oscillator performs pulse modulation of the current and voltage from the power supply unit.
  • the pulse generator may appropriately use a pulse voltage, such as a periodic pulse or an aperiodic pulse, depending on the dose of the water-soluble steroid, the state of the living body, and the like.
  • the pulse oscillator may be provided with an output limiting circuit for limiting a large peak current flowing through the human body when the pulse voltage rises and falls.
  • the switch removes the polarization potential (or polarization voltage) accumulated between the conductor and the non-conductor in the pause of the pulse voltage, that is, the skin or the like of the living body.
  • a transistor switch such as an FET switch is preferably used as the switch unit.
  • the guide wire includes a drug storage layer to which a water-soluble steroid is adhered, dispersed, or impregnated, an electrode layer electrically connected to a non-guide wire on the opposite side via skin or the like, A backing layer for supporting the electrode layer; and the non-inductive element includes a conductive layer, an electrode layer electrically connected to the counter electrode-side inductor, and a conductive layer or an electrode layer. And a support layer for supporting.
  • the size of the backing layer and the like and the area of the drug storage layer and the like are determined so that an effective blood concentration set in advance when applied to a patient can be obtained for an effective time.
  • a material that is impermeable to at least a water-soluble steroid is used as the backing layer and the support layer. This is to prevent leakage of the water-soluble steroid ⁇ additives and the like.
  • the material include a woven fabric, a nonwoven fabric, a paper, a synthetic paper, or a composite thereof formed of a polymer film or sheet, or a film or fiber made of a natural fiber or a float, a synthetic resin, or a composite thereof. Laminated synthetic resin films are used.
  • polyethylene polypropylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, plasticized vinyl acetate copolymer, plasticized vinyl acetate-vinyl chloride copolymer, and polyamide.
  • Films or sheets made of synthetic resin such as cellulose, cellophane, cellulose acetate, ethyl cellulose and the like are used alone or in a multilayer structure. Further, as these synthetic resin films / sheets, it is possible to use a laminate of aluminum foil, aluminum vapor deposition or ceramic coating, or a laminate of these materials.
  • the backing layer and the support layer may form a depression for holding the preparation if necessary.
  • the backing layer—the shape of the support layer and the shape of the depression are not particularly limited, but are generally preferably formed in a circular, elliptical, or substantially rectangular shape.
  • Electrode layer a non-polarizable material such as silver / silver chloride is preferable.
  • An electrode protective layer made of a conductive material may be partially or entirely laminated between the electrode layer and the drug storage layer in order to prevent the influence of the water-soluble steroid depending on the type of the electrode layer. .
  • the durability of the electrode layer can be improved.
  • the electrode layers are preferably laminated so as not to come into direct contact with each other. This is because electrical stimulation can be further reduced.
  • the formation of the electrode layer on the backing layer or the support layer may be performed by mixing the material with a printing ink for electric wiring or the like, coating and drying the material, or spreading and fixing the material, or depositing the material.
  • a known method such as a method of forming the electrode layer by photoetching is used.
  • ion exchange membrane As the ion exchange membrane, a cation exchange membrane is used when the drug ion is an anion, and an anion exchange membrane is used when the drug ion is a cation.
  • Preferred ion-exchange membranes include Neocebu-Yu CMS (manufactured by Tokuyama Soda Co., Ltd.) for the cation-exchange membrane, and Neosep-Yu ACM (Made by Tokuyama Soda Co., Ltd.) for the anion-exchange membrane.
  • the ion exchange membrane By using the ion exchange membrane, it is possible to prevent the permeation of the ion from the electrode material released from the electrode layer at the time of energization, and to remarkably improve the percutaneous absorption of the water-soluble steroid.
  • the conductive layer is made of natural wood such as karaya gum, tragacanth gum, and xanthan gum. Fatty polysaccharides or polyvinyl alcohol and its partial genated products, polyvinyl formal, polyvinyl methyl ether and its copolymers, polyvinyl resins such as polyvinyl pyridine, polyvinyl methacrylate, polyacrylic acid and its sodium salt, polyacrylamide and its parts Various hydrophilic or natural resins, such as hydrolysates, partially saponified polyacrylates, and acrylic resins such as poly (acrylic acid-acrylamide), can be prepared by adding water, ethyl alcohol, ethylene diol, Flexible plasticized with polyhydric alcohols such as glycerin or a mixture thereof and used as a flexible film or sheet gel having self-retaining property and skin adhesiveness o
  • the conductive layer is in the form of a flexible film or sheet and can adhere to the skin, so it has low skin contact resistance and is effective not only for percutaneous penetration of water-soluble steroids, but also for adhesive tapes and other materials. It also has an advantage in use that it can be adhered and supported without the need for a means for bonding the skin.
  • a natural resin polysaccharide such as calayagum
  • pH buffering property or skin protection property due to its natural polymer acid structure, remarkably high water retention, moderate skin adhesion, etc. Thus, more suitable suitability for skin is obtained.
  • a required amount (usually about 1 to 15%) of an electrolyte such as sodium chloride, sodium carbonate, or potassium citrate may be added to impart sufficient conductivity.
  • an electrolyte such as sodium chloride, sodium carbonate, or potassium citrate
  • the composition of these conductive layers is mainly determined by electrochemical considerations such as the type and required dosage of the water-soluble steroid used, the application time of application, the output of the battery used, and the skin contact area. The ion mobility or conductivity is appropriately determined so as to be a required value.
  • the material for forming the drug storage layer is a polymer film or sheet to which water-soluble steroids can be attached, dispersed or impregnated.L is made of natural fibers, felts, synthetic resin films and fibers, etc. The formed woven or nonwoven fabric is used. As these materials, widely known water-soluble polymer materials, hydrophilic synthetic polymer materials, hydrophobic polymer materials, natural materials, and composites thereof are used.
  • Films made of synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, plasticized vinyl acetate copolymer, plasticized vinyl acetate-vinyl chloride copolymer, polyamide, cellophane, cellulose acetate, and ethyl cellulose.
  • a sheet or an ion exchange resin membrane or the like is used alone or in a multilayer structure.
  • a conventionally known plasticizer may be used by mixing a softener.
  • paper materials such as water-absorbing paper, cloth materials such as gauze, fiber materials such as absorbent cotton, synthetic resin continuous foam such as sponge, water-absorbing resin or porous material, etc. It is also possible to enclose the member.
  • water-soluble steroids examples include dexamethasone sodium phosphate, dexamethasone acetate, dexamethasone sodium metasulfobenzoate, hydrocortisone sodium succinate, sodium hydrocortisone phosphate, sodium blednibron succinate, and sodium metazone sodium phosphate. It can be used but is not limited to these.
  • a reservoir type, a matrix type, or the like can be used as the shape of the iontophoresis device containing the water-soluble steroid.
  • an aqueous solution storage layer for storing an aqueous solution may be provided adjacent to a backing layer or a support layer, an electrode layer, a drug storage layer, or a conductive layer of a reservoir-type preparation or a matrix-type preparation.
  • the aqueous solution storage layer include paper materials such as water-absorbing paper, cloth materials such as gauze, fiber materials such as a degreased surface, synthetic resin continuous foam such as sponge, water-absorbing resin or
  • a water-absorbing member for impregnating a chemical such as a porous material, a nonwoven fabric, and the like.
  • the amount of water-soluble steroids contained or deposited in the drug reservoir is determined so that when applied to a patient, a preset, effective blood concentration is obtained for an effective time.
  • an electrolyte such as sodium chloride, sodium carbonate, potassium citrate or the like in order to impart sufficient conductivity.
  • additives include solvents such as water and ethanol as required, emulsifiers such as phosphazidonic acid derivatives, lecithin, cephaline, and polyalkylene glycol, methyl laurate, methyl carboxylate, aison, and oleic acid.
  • solvents such as water and ethanol as required
  • emulsifiers such as phosphazidonic acid derivatives, lecithin, cephaline, and polyalkylene glycol, methyl laurate, methyl carboxylate, aison, and oleic acid.
  • Pyrothiodecane 1 Clotamiton
  • an absorption enhancer such as menthol, limonene, and heart oil
  • Ethylene glycol diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, dimethylperylamide, isosorbitol, olive oil, castor oil, squalene , Lanolin and other solubilizers or solubilizers, as well as thickeners such as cellulose acetate, methylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose and stearyl alcohol, glycerin monooleic acid, glycerin mono.
  • Irritation reducing agents such as laurate, sorbitan monolaurate, karaya gum, tragacanth gum, polyvinyl alcohol and That portion Gen product, dextran, albumin, polyamino acids, poly Binirupirori pyrrolidone, It is also possible to add hydrophilic and water-absorbing polymers such as poly (meth) acrylate, polyacrylic acid and its sodium salt, polyacrylamide and its partial hydrolyzate, and plasticizers such as glycerin.
  • hydrophilic and water-absorbing polymers such as poly (meth) acrylate, polyacrylic acid and its sodium salt, polyacrylamide and its partial hydrolyzate, and plasticizers such as glycerin.
  • additives are determined for each type of water-soluble steroid to the extent that the type and concentration appear to be optimal, as long as they are therapeutically beneficial and pharmacologically acceptable.
  • the drug storage layer or the conductive layer may have an adhesive layer on its surface.
  • a pressure-sensitive adhesive or a gel adhesive is suitably used as the adhesive layer.
  • the pressure-sensitive adhesive or gel adhesive can hold a device for iontophoresis or a conductor or an inducible conductor on the patient's skin, and is not limited as long as it is perceptually acceptable.
  • acrylic adhesives such as poly (2-ethylhexyl acrylate), methacrylic adhesives such as polybutyl methacrylate, and silicone adhesives such as polydimethyl siloxane.
  • Polyisoprene rubber Polybutylene rubber, polybutadiene rubber, rubber-based adhesives such as natural rubber, polyvinyl alcohol, gelatin, polyvinylpyrrolidone, carboxyvinyl polymer, sodium polyacrylate, and cross-linked products thereof And sodium alginate and its crosslinked products, cellulose derivatives and the like.
  • the adhesive layer may be added with a required amount (usually about 15%) of an electrolyte such as sodium chloride, sodium carbonate, potassium citrate or the like in order to impart sufficient conductivity thereto.
  • the adhesive layer may be provided with a hole for allowing the passage of ionized water-soluble steroids from the drug storage layer, if necessary.
  • the shape of the pressure-sensitive adhesive layer and the holes formed in the pressure-sensitive adhesive layer is not particularly limited, but is generally formed in a circular shape, an elliptical shape, a substantially rectangular shape, or the like. desirable.
  • the pulsed depolarization type iontophoresis power supply and the inductor or non-inductor having a non-polarizing electrode are used for the method of administering the water-soluble steroid, so that the water-soluble steroid can be removed from the skin.
  • the body especially rheumatoid arthritis and osteoarthritis It is possible to highly absorb a therapeutically effective amount of a drug sufficient for a therapeutic effect up to the deep part of the joint where an inflammation site such as a symptom or a joint capsule is present.
  • it can suppress electrical stimulation and electrification on the skin during administration.
  • an ion exchange membrane is provided, the adverse effect of ions of the electrode material can be prevented, and the transport number of the water-soluble steroid can be significantly increased.
  • FIG. 1 is a block circuit diagram showing a device for pulse depolarization type iontophoresis used in a method for administering iontophoresis of a water-soluble steroid in a first embodiment of the present invention.
  • FIG. 2 (a) is a perspective view showing the guide element.
  • FIG. 2 (b) is a perspective view showing an unrelated inductor.
  • FIG. 3 is an exploded perspective view showing a conductor for an electrical stimulation test.
  • FIG. 4 is an exploded perspective view showing an unrelated inductor for an electrical stimulation test.
  • FIG. 5 is a schematic view showing a mounted state of a conductor and an open conductor for an electrical stimulation test.
  • FIG. 6 is a characteristic diagram showing a current value at which an electric stimulus is sensed.
  • FIG. 7 (a) is an exploded perspective view showing a 2-chamber-diffusion cell for a permeation experiment.
  • FIG. 7 (b) is a sectional view showing a 2-chamber-diffusion cell for a permeation experiment.
  • FIG. 8 is a characteristic diagram showing the accumulated permeation amount of the steroid after 6 hours.
  • Fig. 9 is a characteristic diagram showing the concentration of dexamethasone sodium phosphate in the joint capsule.
  • Fig. 10 is a characteristic diagram showing the increase and decrease of the joint circumference based on the joint circumference on the 11th day.
  • FIG. 1 is a block diagram showing a block diagram of a device for pulse depolarization iontophoresis used in a method for administering iontophoresis of a water-soluble steroid according to a first embodiment of the present invention.
  • 1 is a device for pulse depolarization type iontophoresis
  • 2 is a conductor containing water-soluble steroid
  • 3 is a non-inductor
  • 4 is a power supply unit 5, a pulse oscillator 6, and a switch unit 7 described later.
  • 5 is a power supply such as a dry battery for applying a current Z voltage between each electrode layer of the inductor 2 and the non-inductor 3
  • 6 is supplied from the power supply 5
  • 7 is a pulse oscillator that is output from the pulse oscillator 6, and at the same time the pulse voltage is paused.
  • a switch part for depolarizing the polarization potential of the unrelated inductor 3 8 is an administration site such as a joint, and 9 and 10 are connection terminals such as jacks.
  • FIG. 2 (a) is a perspective view showing the inductor
  • FIG. 2 (b) is a perspective view showing the non-inductor.
  • 2a is a lead wire connected to an electrode layer 2c to be described later
  • 2b is a backing layer made of a polyolefin film such as polyester or polyethylene
  • 2c is a backing layer 2b.
  • An electrode layer formed of silver chloride or the like on one side of the electrode, 2 d is laminated on the electrode layer 2 c and has a slightly larger diameter than the electrode layer 2 c and contains sodium alginate or polyvinyl alcohol containing a water-soluble steroid as a drug.
  • a drug storage layer composed of chitin and the like.
  • 3a is a lead wire connected to an electrode layer 3c described later
  • 3b is a support layer made of a film / sheet of a polyolefin such as polyester or polyethylene
  • 3c is a support layer.
  • 3b is an electrode layer formed by evaporating silver etc. on one surface
  • 3d is a conductive layer formed on the electrode layer 3c and having a diameter slightly larger than the electrode layer 3c Layer.
  • the device for pulse depolarization iontophoresis configured as described above, that is, a pulse depolarization type iontophoresis power supply, and a conductor and a non-conductor associated with a non-polarizable electrode
  • the method of iontophoresis administration of the water-soluble steroid used will be described based on an example applied to a human joint.
  • the inductor 2 and the non-inductor 3 are attached to the administration site 8. Since the drug storage layer 2 d and the conductive layer 3 d are made of a flexible material, the administration site 8 can be brought into close contact with a relatively uneven portion such as a joint without falling.
  • the main power supply of the pulse depolarization type iontophoresis power supply 1 is turned on.
  • the frequency of the pulse oscillator 6 and the output time of the pulse voltage are adjusted, and the designed dose is administered.
  • the administration is terminated after a lapse of a predetermined administration time or the like.
  • the switch of the pulse depolarization type iontophoresis power supply 1 is turned off, and the treatment is completed by separating the guide 2 and the guide 3 from the administration site.
  • the switch section 7 is automatically turned on and off upon detecting the falling Z rise of the pulse voltage output from the pulse generator 6, and is not related to the inductor 2 when the switch section 7 is turned on.
  • the designed amount of the water-soluble steroid was produced without electrical stimulation or electrification at the administration site during the administration period. It can be administered smoothly to the body, for example, to the deep joints where the synovium and the joint capsule composed of the synovium and the fibrous membrane are present. Performance comparison tests were performed on the pulse depolarization type iontophoresis device and the conventional iontophoresis device configured as described above. Hereinafter, the results will be described.
  • FIG. 3 is an exploded perspective view showing a conductor for an electrical stimulus test
  • FIG. 4 is an exploded perspective view showing an unrelated conductor for an electrical stimulus test
  • FIG. 5 is an electrical stimulus.
  • FIG. 3 is a schematic view showing a state where a test inductor and an unrelated inductor are attached.
  • a polyethylene terephthalate (PET) film 2b ' was prepared as a backing layer.
  • silver chloride was applied to one surface of the backing layer (or PET film) 2b 'to form an electrode layer 2c'.
  • a nonwoven fabric 2d ' was laminated as a drug storage layer on the upper surface of the electrode layer (or silver chloride) 2c'.
  • an acryl-based adhesive 2e ' is attached as an adhesive layer on the upper surface of the drug storage layer (or non-woven fabric) 2d' as an adhesive layer, and the backing layer 2b ', the electrode layer 2c', and the drug The storage layer 2d 'and the adhesive layer 2e' were fixed.
  • the drug storage layer 2 d ′ was impregnated with the aqueous solution lml through the pores of the adhesive layer 2 e ′, to prepare a guide 2 ′.
  • a PET film 3b ′ was prepared as a support layer.
  • silver was applied to one surface of the support layer (or PET film) 3b 'to form an electrode layer 3c'.
  • an acrylic pressure-sensitive adhesive 3e ' is adhered in a 0-ring shape as a binding layer on the upper surface of the electrode layer (or silver) 3c', and is adhered to the support layer 3b 'and the electrode layer 3c'.
  • Layer 3e ' was fixed.
  • an aqueous solution of polyvinyl alcohol (PVA) containing 0.9% of sodium chloride was stored in the pores of the adhesive layer 3e ', and these were frozen at 130 ° C to gel the PVA.
  • Insulator 3 ' was created.
  • the lead wires 2a 'and 3a' were connected to the respective electrode layers 2c 'and 3c' of the prepared inductor 2 'and non-inductor 3', respectively.
  • FIG. 6 is a characteristic diagram showing a current value at which an electric stimulus is sensed.
  • FIG. 7 (a) is an exploded perspective view showing a 2-chamber-diffusion cell for a permeation experiment
  • FIG. 7 (b) is a cross-sectional view showing a 2-chamber-diffusion cell for a permeation experiment.
  • the cell 14a on the side of the inductor 2 is filled with dexamethasone sodium phosphate at 1 Omg Zm1, and the cell 14b on the side of the inductor 3 is filled with saline. did.
  • unrelated inductor 3 The physiological saline in the cell 14 b on the side was stirred with a stirrer 16.
  • FIG. 8 is a characteristic diagram showing the accumulated permeation amount of stelloid after 6 hours.
  • a pulsed depolarizing iontophoresis power supply and a lead / insensitive lead having a nonpolarizable electrode layer of silver / silver chloride were used on the isolated skin of the human.
  • mA was supplied and 1 O mg Zm 1 of dexamethasone sodium phosphate was permeated, about 40 ⁇ g Zcm 2 of dexamethasone sodium phosphate was transmitted by 6 hours.
  • Comparative Example 3 a pulsed depolarized iontophoresis power supply and a conductor having a nonpolarizable electrode layer of silver Z silver chloride and a non-polarized electrode layer were used for 3 m on the human skin.
  • Egret Japanese white rabbit was anesthetized with pentobarbital.
  • a cylindrical cell having a diameter of 1 cm and fitted with a guide having a silver chloride electrode layer as shown in Fig. 7 (a) was set outside the right rear knee of the egret.
  • a conductive layer of PVA gel containing 0.9% of sodium chloride and a silver electrode layer as shown in Fig. 2 (b) were superimposed on the inside of the right knee of the rear of the egret.
  • the lead was set.
  • the inductor side was used as the anode
  • the non-inductor side was used as the cathode.
  • the cylindrical cell is filled with radiolabeled dexamethasone sodium phosphate (3 O mg / m 1, 33 33 / C i / m 1) and linked to a pulse depolarization type iontophoresis power supply. After connecting the probe and the unrelated probe, 3 mA was supplied. Two hours later, the egret was exsanguinated and killed. The joint capsule was taken out from the joint of the hind right foot knee, weighed, burned with an oxidizer, and the radioactivity was measured. The results are shown in FIG. FIG. 9 is a characteristic diagram showing the concentration of dexamethasone sodium phosphate in the joint capsule.
  • FIG. 7 (a) A non-inductive element in which a conductive layer of a PVA gel containing sodium chloride and a silver electrode layer were superimposed as shown in FIG. 2 (b) was set inside the knee of the rear right foot.
  • the side of the conductor was the anode
  • the side of the non-conductor was the cathode.
  • FIG. 10 is a characteristic diagram showing the increase and decrease of the joint circumference based on the joint circumference on the 11th day.
  • a water-soluble steroid having bioactivity is efficiently used in a living body, particularly in a synovial membrane or a joint capsule comprising the synovial membrane and fibrous membrane. It can be absorbed in a large amount, and the electrical stimulation and electrification at the administration site such as the skin can be extremely low, and a clinically excellent method of administering iontophoresis of a water-soluble steroid can be realized. Things.
  • the method for administering iontophoresis of a water-soluble steroid of the present invention having such excellent effects can be applied to a site of administration in a living body and applied with a voltage so that the desired excellent effects can be exhibited without any effect. Very useful in industry.

Description

明 細 書 水溶性ステロイドのイオントフォレーシス投与方法 技術分野  Description Method for administering iontophoresis of water-soluble steroids
本発明は、 水溶性ステロイドのイオントフォレーシス投与方法に関する。 更に 詳細には、 慢性関節リゥマチや変形性関節症等の治療に優れた薬理効果を示す水 溶性ステロィドをパルス脱分極型ィオントフォレーシス電源装置と非分極性電極 を有する関導子及び不閟導子を用いて関節等の支障部位に経皮投与を行う水溶性 ステロイドのイオントフォレーシス投与方法に関するものである。 背景技術  The present invention relates to a method for administering iontophoresis of a water-soluble steroid. More specifically, a water-soluble steroid exhibiting excellent pharmacological effects in the treatment of rheumatoid arthritis, osteoarthritis, and the like can be obtained by using a pulse depolarized iontophoresis power supply and a conductor having a non-polarizable electrode and a non-polarizable electrode. The present invention relates to a method for administering iontophoresis of a water-soluble steroid, which is transdermally administered to a site of trouble such as a joint using a lead. Background art
従来、 生体の皮膚から薬物を吸収させることは、 一般的な医薬品の投与方法と して知られる経口投与と比べ、 血中濃度の持続化、 消化管に対する薬物の副作用 の柽減化、 更に投与の簡便さ等、 数々の利点を有することが知られている。 しか しながら、 生体の皮膚の物質透過性が低いために、 生体内に治療効果に十分な薬 効量を送達できる薬物は限られていた。 しかし、 経皮吸収製剤の研究が進むにつ れ、 化学的吸収促進法を用いた製剤が上市され、 また一方では、 フオノフォレー シスやイオントフォレーシスを利用した物理的吸収促進法が開発され、 薬物の経 皮吸収が期待されている。 中でも、 イオントフォレーシスは、 イオン化した薬物 を電流によって皮膚から吸収させる投与方法であり、 前述の利点を期待でき、 投 与時に痛みを伴う注射剤に代わる投与方法として、 U S P . N o . 4 2 5 0 8 7 8号公報や U S P . N o . 4 1 4 1 3 5 9号公報、 U S P . N o . 3 9 9 1 7 5 5号公報に開示されている。 しかしながら、 これらはいずれも直流型の通電方法 であったため、 投与時 (通電時) 皮膚に対する電気的刺激が生じたり、 皮膚に帯 電 (又は分極電位) が生じたりする等、 安全性や実用性に欠けるという問題点を 有していた。 また、 前述の直流型のイオントフォレーシス用デバイスの他にパル ス型のイオントフォレーシス用デバイスも開発されているが、 直流型と同様、 皮 霜に対する電気的刺激等が問題となっている。 Conventionally, the absorption of a drug from the skin of a living body is more effective than oral administration, which is known as a general drug administration method, in that it maintains the blood concentration, reduces the side effects of the drug on the gastrointestinal tract, and further administers the drug. It is known to have a number of advantages such as simplicity. However, due to the low permeability of the skin of the living body, there are only a limited number of drugs capable of delivering an effective dose sufficient for a therapeutic effect in the living body. However, as research on percutaneous absorption preparations has progressed, preparations using chemical absorption enhancement methods have been put on the market.On the other hand, physical absorption enhancement methods using phonophoresis and iontophoresis have been developed. Percutaneous absorption of the drug is expected. Above all, iontophoresis is an administration method in which an ionized drug is absorbed from the skin by an electric current, and the above-mentioned advantages can be expected. USP No. 4 is an alternative to painful injections at the time of administration. No. 2,087,878, USP. No. 4,141,359, and USP. No. 3,991,755. However, these are all DC-type current-carrying methods, so safety and practicability such as electrical stimulation of the skin at the time of administration (when power is applied) and charging (or polarization potential) of the skin occur. Problem of lack of Had. Pulse-type iontophoresis devices have also been developed in addition to the DC-type iontophoresis devices described above. However, similar to the DC-type devices, electrical stimulus to skin frost and the like poses a problem. I have.
ところで、 生理活性を有する水溶性ステロイドは、 注射剤として種々の投与ル —トで用いられている。 この水溶性ステロイドは、 デキサメタゾンやべタメタゾ ン、 プレドニゾロンなどの脂溶性ステロイドをリン酸または酢酸などでエステル 化し、 水溶性を向上させたものである。 我が国では、 慢性関節リウマチや変形性 関節症等の治療において、 この水溶性ステロイドが関節内投与されている。 しか しながら、 この水溶性ステロイドを関節内投与等する場合、 リ ドカイン等の表面 麻酔を行わねばならず、 また、 注射に際し痛みを有し、 医師の高度な技術が必要 となり、 更に投与部位から感染症を引き起こす可能性もあり、 決して簡便で安全 性に優れた医薬上有用性の高レ、投与方法とは言えなかつた。  By the way, water-soluble steroids having bioactivity are used as injections in various administration routes. This water-soluble steroid is obtained by esterifying fat-soluble steroids such as dexamethasone, betamethasone, and prednisolone with phosphoric acid or acetic acid to improve water solubility. In Japan, this water-soluble steroid is administered intra-articularly in the treatment of rheumatoid arthritis and osteoarthritis. However, when administering this water-soluble steroid intra-articularly, it is necessary to perform surface anesthesia such as lidocaine, etc. It may cause infectious disease, and is not a simple, safe and highly pharmaceutical useful and administration method.
そこで、 ジエームズ ェム グラス (Jame s. M. G l a s s) らがイン ターナショナル ジャーナル ォブ ダーマトロジィ 1 9巻 (1 990年) 第 51 9〜525頁 ( I n t . J. D e r ma t 01. 1 9. ( 1 990 ) 51 9 - 525 ) において、 また、 ぺテレンツ (T. J. P e t e 1 e n z) らがジャ ーナル ォブ コント口一ルド リリース 20巻, (1 992年) 第55〜6 6頁 (Jour na l o f Con t r o l l ed Re l ea s e 20. ( 1 992 ) 55 - 66 ) において、 直流型のイオントフォレーシスを用いた水 溶性ステロイドの一種であるリン酸デキサメタゾンナトリゥ厶の経皮投与につい て発表を行っている。  Thus, James M. Glass et al., International Journal of Dermatology 19, 1990, pp. 519-525 (Int. J. Dermat 01. 1 9. (1 990) 51 9-525) also reported that TJ Pete 1 enz, et al., Published the Journal of Controls, Volume 20, Volume 19, (1992), pp. 55-66. (Journal of Controlled Release 20. (1992) 55-66), transdermal administration of dexamethasone sodium phosphate, a kind of water-soluble steroid, using direct current iontophoresis. Has been announced.
一方、 特公平 2— 45461号公報には、 皮膚に対する電気的刺激の少ないパ ルス脱分極型イオントフォレーシス用デバイスが開示されているが、 この技術を 用いて水溶性ステロイ ドの経皮吸収投与について検討した例はなく、 また、 電極 層に銀ノ塩化銀等の非分極性電極が特に有効であるとの開示や示唆もされていな い。 しかしながらこれら上記従来の構成では、 以下のような問題点を有していた。 すなわち、 On the other hand, Japanese Patent Publication No. 2-45461 discloses a device for pulse depolarization type iontophoresis with little electrical stimulation to the skin. Using this technology, transdermal absorption of water-soluble steroids is performed. There has been no study on administration, and no disclosure or suggestion that a non-polarizable electrode such as silver / silver chloride is particularly effective for the electrode layer. However, these conventional configurations have the following problems. That is,
a , 直流型のイオントフォレーシスを水溶性ステロイドの投与に適用した場合 、 適用電流を約 1 mAZcm2 以上に上げると、 電気的刺激が生じていた。 このた め、 ぺテレンツらはこの電気的刺激や痛みを抑えるために局所麻酔薬であるリ ド 力インを共投与している。 しかしながら、 投与の度に、 リ ドカインを共投与する ため、 実用上決して簡便で安全な投与法とはいえなかった。 また、 過去に公表さ れた特許公報で、 リン酸デキサメタゾンナトリゥムのイオントフォレーシスによ る経皮吸収投与の可能性は示唆されているが、 、ずれも直流型の通電方法にっレ、 てのものであり、 前述と同様、 通電時に電気的刺激や皮膚に帯電を引き起こして しまい、 安全性に欠け、 また、 前述の皮膚への帯電等のために、 慢性関節リウマ チゃ変形性関節症等の炎症部位である滑膜や、 この滑膜及び繊維膜からなる関節 包等の関節深部まで、 薬効成分を十分送達できず、 薬物治療に効果的なものでは なかった。 a, When DC-type iontophoresis was applied to the administration of a water-soluble steroid, when the applied current was increased to about 1 mAZcm 2 or more, electrical stimulation occurred. For this reason, Terenz et al. Co-administered a local anesthetic, lidofin, to reduce this electrical stimulation and pain. However, since lidocaine was co-administered at each administration, it was not practically a simple and safe administration method. A patent publication published in the past suggests that dexamethasone sodium phosphate may be administered transdermally by iontophoresis. Similar to the above, electrical stimuli and electrification of the skin may be caused when power is applied, resulting in lack of safety. In addition, due to the aforementioned electrification of the skin, rheumatoid arthritis Pharmaceutical components could not be delivered sufficiently to the synovium, which is the site of inflammation such as osteoarthritis, and deep joints, such as the joint capsule consisting of the synovium and fibrous membrane, and were not effective for drug treatment.
b , 水溶性ステロイドは、 慢性関節リウマチや変形性関節症等の治療において 、 注射剤として関節内投与されているが、 生体状況、 例えば副作用等を考慮しな がら投与するため、 2週間以上間隔を空けて投与しなければならず、 また、 通院 等が必要であり、 必ずしも治療効果を求める上で簡便で有用性の高い投与方法と は言い難いものであった。  b.Water-soluble steroids are administered intra-articularly as injections for the treatment of rheumatoid arthritis, osteoarthritis, etc. Must be administered at an interval, and a hospital visit is required. Therefore, it is not always a simple and highly useful administration method for seeking a therapeutic effect.
本発明は上記従来の問題点を解決するもので、 生理活性を有する水溶性ステロ イドを、 投与時の皮慮に対する電気的刺激ゃ皮廣への帯電等がなく、 高い吸収性 で経皮投与でき、 特に関節内、 例えば関節包や滑膜等の関節深部まで送達させる ことができ、 安全性や薬理効果に優れた医薬上有用性の高い水溶性ステロイドの イオントフォレーシス投与方法を提供することを目的とする。 発明の開示 この目的を達成するために本発明の水溶性ステロイ ドのイオントフォレーシス 投与方法は、 以下の構成を有している。 すなわち、 The present invention solves the above-mentioned conventional problems, and provides a water-soluble physiologically active steroid that is transdermally administered with high absorbability without electrical stimulus to the skin during administration. The present invention provides a method for administering iontophoresis of a water-soluble steroid having excellent safety and pharmacological effects, which is highly safe and has pharmacological effects. The purpose is to: Disclosure of the invention In order to achieve this object, a method for iontophoresis administration of a water-soluble steroid according to the present invention has the following configuration. That is,
請求項第 1項に記載の水溶性ステロイドのイオントフォレーシス投与方法は、 イオントフォレーシス電源装置と、 関導子及び不関導子を用いた水溶性ステロイ ドのイオントフォレーシス投与方法において、 イオントフォレ一シス電源装置と してパルス脱分極型イオントフォレーシス電源装置を用い、 かつ、 関導子及び不 関導子の電極層に非分極性電極を用いて行う構成を有している。  A method for administering iontophoresis of a water-soluble steroid according to claim 1, comprising: an iontophoresis power supply device; and a method for administering iontophoresis of a water-soluble steroid using an inductor and an inductor. A pulse depolarization type iontophoresis power supply device is used as the iontophoresis power supply device, and a non-polarizing electrode is used for the electrode layers of the inductor and the inductor. I have.
請求項第 2項に記載の水溶性ステロイドのイオントフォレーシス投与方法は、 請求項第 1項において、 パルス脱分極型イオントフォレーシス電源装置が、 関導 子及び不関導子間に電流 Z電圧を供給する電源部と, 電源部からの電流 Z電圧を パルス変調するパルス発振器と, パルス発振器からのパルス電圧休止時に閧導子 及び不関導子間の分極電位を脱分極するスィツチ部と, を備えた構成を有してい 。  The method for administering iontophoresis of a water-soluble steroid according to claim 2 is the method according to claim 1, wherein the pulse depolarization type iontophoresis power supply is configured to supply a current between the inductor and the non-inductor. A power supply for supplying the Z voltage, a pulse oscillator for pulse-modulating the current Z voltage from the power supply, and a switch for depolarizing the polarization potential between the conductor and the unrelated conductor when the pulse voltage from the pulse oscillator is stopped. It has a configuration with and.
請求項第 3項に記載の水溶性ステロイドのイオントフォレーシス投与方法は、 請求項第 1項又は第 2項の内いずれか 1項において、 非分極性電極が、 銀, 塩化 銀等からなる構成を有している。  The method for administering iontophoresis of a water-soluble steroid according to claim 3 is the method according to claim 1, wherein the non-polarizable electrode is made of silver, silver chloride, or the like. It has a configuration.
請求項第 4項に記載の水溶性ステロイドのイオン卜フォレーシス投与方法は、 請求項第 1項乃至第 3項の内いずれか 1項において、 関導子が、 非分極性電極と 薬物貯蔵層との間にイオン交換膜が配設されている構成を有している。  The method for administering iontophoresis of a water-soluble steroid according to claim 4 is the method according to any one of claims 1 to 3, wherein the inductor is a non-polarizable electrode and a drug storage layer. And a configuration in which an ion-exchange membrane is provided between them.
請求項第 5に記載の水溶性ステロイドのイオントフォレーシス投与方法は、 請 求項第 1項乃至第 4項の内いずれか 1項において、 水溶性ステロイドが、 リン酸 デキサメタゾンナトリウム, 酢酸デキサメタゾン, メタスルホ安息香酸デキサメ 夕ゾンナトリウム, コハク酸ヒドロコルチゾンナトリウム, リン酸ヒドロコルチ ゾンナトリウム, コハク酸プレドニブロンナトリウム, リン酸べ夕メ夕ゾンナト リウ厶等、 又はこれらの混合物からなる構成を有している。  5. The method for administering iontophoresis of a water-soluble steroid according to claim 5, wherein the water-soluble steroid is dexamethasone sodium phosphate, dexamethasone acetate, It has a composition consisting of dexamethasone metasulfobenzoate sodium, hydrocortisone sodium succinate, sodium hydrocortisone phosphate, predniblone sodium succinate, mesonadium sodium phosphate and the like, or a mixture thereof.
ここで、 パルス脱分極型イオントフォレーシス電源装置としては、 関導子及び 不関導子の各電極層間に電流 z電圧を供給する電源部と, 電源部から出力される 電流 Z電圧をパルス変調するパルス発振器と, パルス発振器から出力されるパル ス電圧の休止時に関導子及び不関導子間の分極電位を脱分極するスィッチ部と, を備えたもの等が好適に用いられる。 Here, the pulse depolarization type iontophoresis power supply includes A power supply unit that supplies a current z voltage between the electrode layers of the indifferent inductor, a pulse oscillator that pulse-modulates the current Z voltage output from the power supply unit, and a pulse voltage output from the pulse oscillator that is related to the rest of the pulse voltage And a switch portion for depolarizing the polarization potential between the element and the unrelated element are preferably used.
パルス発振器から出力されるパルス電圧の休止時とは、 パルス間隔 (又はパル ス周期) におけるパルス幅を除く期間を指すものである。  The pause of the pulse voltage output from the pulse oscillator refers to the period excluding the pulse width in the pulse interval (or pulse period).
パルス脱分極型イオントフォレーシス電源装置は、 閟導子や不閬導子を一体化 して形成されたり、 また関導子や不関導子を分離してこの関導子や不関導子を接 铳コード等で接続してもよい。  A pulse depolarization type iontophoresis power supply is formed by integrating a conductor and a conductor, or separating a conductor and a conductor to separate the conductor and the conductor. The child may be connected by a connection cord or the like.
パルス脱分極型イオントフォレーシス電源装置の電流値は、 通常、 0 . 0 0 1 〜1 O mA/cm2 、 好ましくは 0 . 0 l〜l m AZcm2 であり、 電流の出力は皮 膚と関導子や不関導子との接触面積にもよるが大略 0 . 5〜1 8 V程度、 好まし くは 3〜9 Vである。 従って、 所要の場合は後述する電源部である軽量電池を数 個配設又は数枚積層或 、はチッブ化された増幅素子等を組み合わせて使用しても よい。 また、 必要に応じて、 定電流素子や通電を表示する発光素子等を付加して もよい。 Current value of the pulse depolarized type iontophoresis power supply, usually, 0. 0 0 1 ~1 O mA / cm 2, is preferably 0. 0 l~lm AZcm 2, the output currents and skin Although it depends on the contact area with the conductor and the non-conductor, it is approximately 0.5 to 18 V, preferably 3 to 9 V. Therefore, if necessary, a plurality of light-weight batteries, which will be described later, as a power supply unit may be provided or stacked, or a combination of chipped amplification elements may be used. Further, if necessary, a constant current element, a light emitting element for indicating conduction, or the like may be added.
パルス脱分極型イオントフォレーシス電源装置は、 水溶性ステロイドの投与量 に応じて生体の状況が変化する場合や、 生体の状況に応じて水溶性ステロイドの 投与量を制御する必要がある場合は、 生体状況を監視しながら出力電流を自動的 に制御するためのフィードノくック機構を内設したものであつてもよい。  The pulse depolarization type iontophoresis power supply is used when the condition of the living body changes according to the dose of the water-soluble steroid or when the dose of the water-soluble steroid needs to be controlled according to the condition of the living body. Alternatively, a feed knock mechanism for automatically controlling the output current while monitoring the state of the living body may be provided.
電源部としては、 イオントフォレーシス用デバイスと分離されて接続コード等 で接続されてもよく、 該デバイスと一体化されてもよい。  The power supply unit may be separated from the iontophoresis device and connected with a connection cord or the like, or may be integrated with the device.
特に、 パルス脱分極型イオントフォレーシス電源装置を関導子や不関導子と一 体化して用いる場合は、 電源部として、 マンガン乾電池, アルカリ乾電池, リチ ゥ厶電池, ュニカド電池, 酸化銀電池, 水銀電池, 空気電池, アルカリ 'マンガ ン電池, プラスチック電池等及びそれらをボタン状ゃペーパー状に加工したボタ ン伏電池、 シート状電池等が好適に使用される。 In particular, when the pulse depolarization type iontophoresis power supply is used in combination with the inductor and the non-inductor, the manganese dry battery, the alkaline dry battery, the lithium battery, the tunicad battery, and the silver oxide are used as the power supply unit. Batteries, mercury batteries, air batteries, alkaline manganese batteries, plastic batteries, etc. A rechargeable battery, a sheet battery, or the like is preferably used.
パルス発振機は、 電源部からの電流 電圧をパルス変調するものである。 パルス発振機は、 水溶性ステロイドの投与量や生体の状況等に応じて周期的パ ルス、 非周期的パルス等のようにパルス電圧を適宜使い分けるものであってもよ い。  The pulse oscillator performs pulse modulation of the current and voltage from the power supply unit. The pulse generator may appropriately use a pulse voltage, such as a periodic pulse or an aperiodic pulse, depending on the dose of the water-soluble steroid, the state of the living body, and the like.
また、 パルス発振機は、 パルス電圧の立上り立下り時に人体に流れる大きなピ 一ク電流を制限するための出力制限回路を設けたものであつてもよい。  Further, the pulse oscillator may be provided with an output limiting circuit for limiting a large peak current flowing through the human body when the pulse voltage rises and falls.
スィッチ部は、 パルス電圧の休止時に関導子及び不関導子間、 すなわち生体の 皮膚等に蓄積される分極電位 (又は分極電圧) を除去するものである。 この目的 で、 スィッチ部としては、 F E Tスィッチ等のトランジスタスィッチ等が好適に 用いられる。  The switch removes the polarization potential (or polarization voltage) accumulated between the conductor and the non-conductor in the pause of the pulse voltage, that is, the skin or the like of the living body. For this purpose, a transistor switch such as an FET switch is preferably used as the switch unit.
関導子は、 水溶性ステロイドを付着または分散あるいは含浸等させた薬物貯蔵 層と、 皮膚等を介して対極側の不関導子と電気的に接続される電極層と、 これら 薬物貯蔵層や電極層を支持するバッキング層と、 を備え、 また、 不関導子は、 導 電性層と、 対極側の関導子と電気的に接続される電極層と、 導電性層や電極層を 支持する支持体層と、 を備えたものである。  The guide wire includes a drug storage layer to which a water-soluble steroid is adhered, dispersed, or impregnated, an electrode layer electrically connected to a non-guide wire on the opposite side via skin or the like, A backing layer for supporting the electrode layer; and the non-inductive element includes a conductive layer, an electrode layer electrically connected to the counter electrode-side inductor, and a conductive layer or an electrode layer. And a support layer for supporting.
バッキング層等の大きさおよび薬物貯蔵層の面積等は、 患者に適用した際にあ らかじめ設定された有効な血中濃度を有効な時間得られるように決定される。 バッキング層や支持体層としては、 少なくとも水溶性ステロイドに対して非透 過性の材料が使用される。 水溶性ステロイドゃ添加剤等の漏洩を防止するためで ある。 その材料の例としては、 高分子フィルムもしくはシートあるいは天然繊維 やフ ルト、 合成樹脂製のフィルムや繊維等から形成された織布ゃ不織布、 紙、 合成紙等もしくはこれらの複合物やこれらの 1種以上に合成樹脂フィルムをラミ ネート加工したものが用いられる。 具体例としては、 ボリエチレン、 ポリプロピ レン、 ポリエチレンテレフ夕レート、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 可 塑化酢酸ビニルコポリマー、 可塑化酢酸ビニルー塩化ビニル共重合体、 ポリアミ ド、 セロファン、 酢酸セルロース、 ェチルセルロース等の合成樹脂製のフィルム やシート等が単独で又は複数層積層して用いられる。 また、 これらの合成樹脂製 のフィルムゃシートは、 アルミ箔のラミネートゃアルミ蒸着やセラミックコート したもの若しくはこれらの素材を積層したものも使用することが可能である。 バッキング層や支持体層は、 必要に応じて製剤を入れて保持するための窪みを 形成してもよい。 バッキング層ゃ支持体層の形状及び窪みの形状にっレ、ては特に 限定するものではないが、 一般的には円形あるいは楕円形や略長方形等に形成さ れるのが望ましい。 The size of the backing layer and the like and the area of the drug storage layer and the like are determined so that an effective blood concentration set in advance when applied to a patient can be obtained for an effective time. As the backing layer and the support layer, a material that is impermeable to at least a water-soluble steroid is used. This is to prevent leakage of the water-soluble steroid ゃ additives and the like. Examples of the material include a woven fabric, a nonwoven fabric, a paper, a synthetic paper, or a composite thereof formed of a polymer film or sheet, or a film or fiber made of a natural fiber or a float, a synthetic resin, or a composite thereof. Laminated synthetic resin films are used. Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, plasticized vinyl acetate copolymer, plasticized vinyl acetate-vinyl chloride copolymer, and polyamide. Films or sheets made of synthetic resin such as cellulose, cellophane, cellulose acetate, ethyl cellulose and the like are used alone or in a multilayer structure. Further, as these synthetic resin films / sheets, it is possible to use a laminate of aluminum foil, aluminum vapor deposition or ceramic coating, or a laminate of these materials. The backing layer and the support layer may form a depression for holding the preparation if necessary. The backing layer—the shape of the support layer and the shape of the depression are not particularly limited, but are generally preferably formed in a circular, elliptical, or substantially rectangular shape.
電極層としては、 銀ノ塩化銀等の非分極性材料が好ましい。 尚、 電極層の種類 によつて水溶性ステロイドによる劣化等の影響を防止するため通電性の材質から なる電極保護層を薬物貯蔵層との間に部分的又は全面的に積層形成してもよい。 電極層の耐久性を向上させることができる。  As the electrode layer, a non-polarizable material such as silver / silver chloride is preferable. An electrode protective layer made of a conductive material may be partially or entirely laminated between the electrode layer and the drug storage layer in order to prevent the influence of the water-soluble steroid depending on the type of the electrode layer. . The durability of the electrode layer can be improved.
また、 電極層は、 皮躇に直接接触しないよう積層されるのが好ましい。 電気 的刺激をより軽減できるからである。  The electrode layers are preferably laminated so as not to come into direct contact with each other. This is because electrical stimulation can be further reduced.
バッキング層や支持体層への電極層の形成は、 電気配線用プリントインク等 に前記材料を混合して塗育して乾燥する方法や前記材料を展延し固定する方法 又は前記材料を蒸着させる方法、 前記電極層をフォトエッチングによって作成 する方法等公知の方法が用いられる。  The formation of the electrode layer on the backing layer or the support layer may be performed by mixing the material with a printing ink for electric wiring or the like, coating and drying the material, or spreading and fixing the material, or depositing the material. A known method such as a method of forming the electrode layer by photoetching is used.
イオン交換膜としては、 薬物イオンが陰イオンの場合は陽イオン交換膜、 陽 ィオンの場合は陰ィォン交換膜が使用される。 好ましいィォン交換膜としては 陽イオン交換膜ではネオセブ夕 C MS (徳山曹達社製) 等、 陰イオン交換膜で はネオセプ夕 A C M (徳山曹達社製) 等が挙げられる。  As the ion exchange membrane, a cation exchange membrane is used when the drug ion is an anion, and an anion exchange membrane is used when the drug ion is a cation. Preferred ion-exchange membranes include Neocebu-Yu CMS (manufactured by Tokuyama Soda Co., Ltd.) for the cation-exchange membrane, and Neosep-Yu ACM (Made by Tokuyama Soda Co., Ltd.) for the anion-exchange membrane.
ィォン交換膜を用レ、ることにより通電時に電極層より遊離する電極材のィォ ンの透過を防止し水溶性ステロイドの経皮吸収を著しく向上させることができ る。  By using the ion exchange membrane, it is possible to prevent the permeation of the ion from the electrode material released from the electrode layer at the time of energization, and to remarkably improve the percutaneous absorption of the water-soluble steroid.
導電性層としては、 カラャガム、 トラガカントガム、 ザンサンガム等の天然樹 脂多糖類又はポリビニルアルコールやその部分ゲン化物、 ポリビニルホルマール 、 ボリビニルメチルエーテル及びそのコポリマー、 ポリビニルピ口リ ドン、 ポリ ビニルメタクリレート等のビニル系樹脂、 ボリアクリル酸及びそのナトリウム塩 、 ポリアクリルァミ ド及びその部分加水分解物、 ポリアクリル酸エステル部分ケ ン化物、 ポリ (アクリル酸一アクリルアミ ド) 等のアクリル系樹脂など、 親水性 を有する各種天然樹脂又は合成樹脂類を水やエチルアルコール, エチレンダリコ ール、 グリセリン等の多価アルコール類又はこれらの混合物で柔軟可塑化して自 己保形性、 皮膚接着性を有する柔軟フィル厶乃至シート状ゲルとして利用される o The conductive layer is made of natural wood such as karaya gum, tragacanth gum, and xanthan gum. Fatty polysaccharides or polyvinyl alcohol and its partial genated products, polyvinyl formal, polyvinyl methyl ether and its copolymers, polyvinyl resins such as polyvinyl pyridine, polyvinyl methacrylate, polyacrylic acid and its sodium salt, polyacrylamide and its parts Various hydrophilic or natural resins, such as hydrolysates, partially saponified polyacrylates, and acrylic resins such as poly (acrylic acid-acrylamide), can be prepared by adding water, ethyl alcohol, ethylene diol, Flexible plasticized with polyhydric alcohols such as glycerin or a mixture thereof and used as a flexible film or sheet gel having self-retaining property and skin adhesiveness o
導電性層は、 柔軟フイルム乃至シート状であって皮膚に密着し得るものである ため、 皮膚接触抵抗が低く水溶性ステロイ ドの経皮浸透に効果的であるのみなら ず、 接着テープ等の他の皮盧接着手段を要せずに貼着支持し得るという使用上の 利点をも併せ有するものである。 特に導電性層の基材としてカラャガ厶等の天然 樹脂多糖類を使用した場合は、 その天然高分子酸構造による p H緩衝性乃至皮膚 保護性、 著しく高い保水性、 適度な皮慮粘着性等により好適な皮虜適合性が得ら れるものである。 また、 充分な導電性を付与すべく塩化ナトリウム、 炭酸ナトリ ゥム、 クェン酸カリウム等の電界質が所要量 (通常 1〜 1 5 %程度) 添加されて もよい。 また、 これら導電性層の組成配合に当たっては、 主として使用する水溶 性ステロイドの種類と所要投与量、 貼着使用時間、 使用電池の出力及び皮膚接触 面積等の電気化学的配慮がなされることにより、 そのイオン 'モビリティ乃至電 導度が所要値になるよう適宜決定される。  The conductive layer is in the form of a flexible film or sheet and can adhere to the skin, so it has low skin contact resistance and is effective not only for percutaneous penetration of water-soluble steroids, but also for adhesive tapes and other materials. It also has an advantage in use that it can be adhered and supported without the need for a means for bonding the skin. In particular, when a natural resin polysaccharide such as calayagum is used as the base material of the conductive layer, pH buffering property or skin protection property due to its natural polymer acid structure, remarkably high water retention, moderate skin adhesion, etc. Thus, more suitable suitability for skin is obtained. Also, a required amount (usually about 1 to 15%) of an electrolyte such as sodium chloride, sodium carbonate, or potassium citrate may be added to impart sufficient conductivity. In addition, the composition of these conductive layers is mainly determined by electrochemical considerations such as the type and required dosage of the water-soluble steroid used, the application time of application, the output of the battery used, and the skin contact area. The ion mobility or conductivity is appropriately determined so as to be a required value.
薬物貯蔵層の形成材料としては、 水溶性ステロイ ドを付着あるいは分散もしく は含浸させることができる高分子フィルムもしくはシートある L、は天然織維やフ エルト、 合成樹脂製のフィルムゃ繊維等から形成された織布ゃ不織布が用いられ る。 これらの材料としては広く従来公知の水溶解性高分子材料、 親水性合成高分 子材料、 疎水性高分子材料及び天然素材及びそれらの複合物が用いられるが、 ポ リエチレン、 ポリプロピレン、 ポリエチレンテレフタレート、 ボリ塩化ビニル、 ポリ塩化ビニリデン、 可塑化酢酸ビニルコポリマー、 可塑化酢酸ビニルー塩化ビ ニル共重合体、 ポリアミ ド、 セロファン、 酢酸セルロース、 ェチルセルロース等 の合成樹脂製のフィルムゃシートあるいはイオン交換樹脂膜等が単独で又は複数 層積層して用いられる。 その他、 綿、 麻、 絹、 レーヨン、 ポリビニルアルコール 、 ゼラチン、 寒天、 デンプン、 キサンタンガム、 アラビアゴム、 トラガカントゴ ム、 カラャゴム、 エコーガム、 口一カストビーンガム、 アルギン酸ナトリウム、 ぺクチン、 メチルセルロース、 ェチルセルロース、 プロピルセルロース、 ェチル メチルセルロース、 ヒドロキシェチルセルロース、 ヒドロキシセルロース、 カル ボキシメチルセルロース、 セルロースアセテートフタレート、 ボリメチルビニル エーテル、 ポリビニルピロリ ドン、 カルボキシビ二ルポリマー、 カゼイン、 アル ブミン、 キチン、 キトサン、 ポリアクリル酸ナトリウム及びその架橋体と必要に 応じて従来公知の可塑剤あるレ、は軟化剤を混合して用いられる。 The material for forming the drug storage layer is a polymer film or sheet to which water-soluble steroids can be attached, dispersed or impregnated.L is made of natural fibers, felts, synthetic resin films and fibers, etc. The formed woven or nonwoven fabric is used. As these materials, widely known water-soluble polymer materials, hydrophilic synthetic polymer materials, hydrophobic polymer materials, natural materials, and composites thereof are used. Films made of synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, plasticized vinyl acetate copolymer, plasticized vinyl acetate-vinyl chloride copolymer, polyamide, cellophane, cellulose acetate, and ethyl cellulose.ゃ A sheet or an ion exchange resin membrane or the like is used alone or in a multilayer structure. In addition, cotton, hemp, silk, rayon, polyvinyl alcohol, gelatin, agar, starch, xanthan gum, gum arabic, tragacanth gum, karaya gum, echo gum, oral cast bean gum, sodium alginate, pectin, methyl cellulose, ethyl cellulose, propyl Cellulose, ethyl methylcellulose, hydroxyethylcellulose, hydroxycellulose, carboxymethylcellulose, cellulose acetate phthalate, polymethylvinylether, polyvinylpyrrolidone, carboxyvinyl polymer, casein, albumin, chitin, chitosan, sodium polyacrylate and The crosslinked product and, if necessary, a conventionally known plasticizer may be used by mixing a softener.
また、 薬物貯蔵層中に吸水紙等の紙材、 ガーゼ等の布材、 脱脂綿等の繊維材、 スポンジ等の合成樹脂連続発泡体、 吸水性樹脂ないし、 多孔質材等の薬液含浸用 吸水性部材を封入することも可能である。  In the drug storage layer, paper materials such as water-absorbing paper, cloth materials such as gauze, fiber materials such as absorbent cotton, synthetic resin continuous foam such as sponge, water-absorbing resin or porous material, etc. It is also possible to enclose the member.
水溶性ステロイ ドとしては、 リン酸デキサメタゾンナトリウム, 酢酸デキサメ 夕ゾン, メタスルホ安息香酸デキサメタゾンナトリウム, コハク酸ヒドロコルチ ゾンナトリウム, リン酸ヒドロコルチゾンナトリウム, コハク酸ブレドニブロン ナトリウム, リン酸べ夕メタゾンナトリゥム等を用いることができるがこれらに 限定されることはない。  Examples of the water-soluble steroids include dexamethasone sodium phosphate, dexamethasone acetate, dexamethasone sodium metasulfobenzoate, hydrocortisone sodium succinate, sodium hydrocortisone phosphate, sodium blednibron succinate, and sodium metazone sodium phosphate. It can be used but is not limited to these.
水溶性ステロイドを含むイオントフォレ一シスデバイスの形状としては、 リザ 一バー型, マトリックス型等を用いることができる。  As the shape of the iontophoresis device containing the water-soluble steroid, a reservoir type, a matrix type, or the like can be used.
また、 水溶液中で不安定な水溶性ステロイドを用いるときは、 予め水溶性ステ ロイドのみを乾燥状態で製剤中に適用し、 使用直前に水溶液を加えるか、 又は薬 物貯蔵層中には水溶性ステロイドを混合せず、 乾燥状態の水溶性ステロイドと水 溶液とをそれぞれ別容器等に分けて保存し、 使用直前に乾燥した水溶性ステロイ ドと溶液を混合し、 溶解した水溶性ステロイドゃ溶液を薬物貯蔵層に加えてもよ い。 この目的で、 水溶液を貯蔵する水溶液貯蔵層をリザーバー型製剤や, マトリ ックス型製剤等のバッキング層または支持体層、 電極層、 薬物貯蔵層、 導電性層 に隣接して設けてもよい。 水溶液貯蔵層としては、 吸水紙等の紙材、 ガーゼ等の 布材、 脱脂面等の繊維材、 スポンジ等の合成樹脂連続発泡体、 吸水性樹脂ないしWhen using an unstable water-soluble steroid in an aqueous solution, apply only the water-soluble steroid to the preparation in a dry state in advance, and add the aqueous solution immediately before use, or add a water-soluble steroid to the drug storage layer. Water-soluble steroid and water in a dry state without mixing steroid The solution may be stored separately in separate containers, etc., and the water-soluble steroid and dried solution may be mixed immediately before use, and the dissolved water-soluble steroid solution may be added to the drug storage layer. For this purpose, an aqueous solution storage layer for storing an aqueous solution may be provided adjacent to a backing layer or a support layer, an electrode layer, a drug storage layer, or a conductive layer of a reservoir-type preparation or a matrix-type preparation. Examples of the aqueous solution storage layer include paper materials such as water-absorbing paper, cloth materials such as gauze, fiber materials such as a degreased surface, synthetic resin continuous foam such as sponge, water-absorbing resin or
、 多孔質材等の薬液含浸用吸水性部材、 不織布等が挙げられる。 And a water-absorbing member for impregnating a chemical such as a porous material, a nonwoven fabric, and the like.
薬物貯蔵層に含有又は付着される水溶性ステロイ ドの量は、 患者に適用した際 にあらかじめ設定された有効な血中濃度を有効な時間得られるように決定される o  The amount of water-soluble steroids contained or deposited in the drug reservoir is determined so that when applied to a patient, a preset, effective blood concentration is obtained for an effective time.o
また必要に応じて充分な導電性を付与するため、 塩化ナトリウム、 炭酸ナトリ ゥ厶、 クェン酸力リゥム等の電解質を加えることも可能である。  If necessary, it is also possible to add an electrolyte such as sodium chloride, sodium carbonate, potassium citrate or the like in order to impart sufficient conductivity.
水溶性ステロイ ドの他、 添加剤として、 必要に応じて水、 エタノール等の溶媒 、 ホスフアジド酸誘導体、 レシチン、 セフアリ ン、 ポリアルキレングリコール等 の乳化剤、 ラウリン酸メチル、 カブリン酸メチル、 エイゾン、 ォレイン酸、 ピロ チォデカン 1 —メン トール、 リモネン、 ハツ力油等の吸収促進剤、 クロタミ トン In addition to water-soluble steroids, additives include solvents such as water and ethanol as required, emulsifiers such as phosphazidonic acid derivatives, lecithin, cephaline, and polyalkylene glycol, methyl laurate, methyl carboxylate, aison, and oleic acid. , Pyrothiodecane 1 — Clotamiton, an absorption enhancer such as menthol, limonene, and heart oil
、 エチレングリコール、 ジエチレングリコール、 トリエチレングリコール、 プロ ピレングリコール、 ボリエチレングリコール、 ポリプロピレングリコール、 ジメ チルスルホキシド、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 ジメチルラ ゥリルアミ ド、 イソソルビトール、 ォリーブ油、 ヒマシ油、 スクワレン、 ラノ リ ン等の溶解剤または溶解補助剤、 さらに酢酸セルロース、 メチルセルロース、 ヒ ドロキシメチルセルロース、 ヒ ドロキシプロピルメチルセルロース、 カルボキシ メチルセルロースナトリウム、 ステアリルアルコール等の増粘剤、 グリセリンモ ノォレイン酸、 グリセリ ンモノラウレート、 ソルビタンモノラウレート等の刺激 低減剤、 カラャガム、 トラガカントガム、 ポリ ビニルアルコールおよびその部分 ゲン化物、 デキストラン、 アルブミ ン、 ポリアミノ酸、 ポリ ビニルピロリ ドン、 ボリ (メタ) ァクリレート、 ポリアクリル酸及びそのナトリゥ厶塩、 ポリアクリ ルアミ ドおよびその部分加水分解物等の親水性および吸水性高分子、 グリセリン 等の可塑剤等を加えることも可能である。 , Ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, dimethylperylamide, isosorbitol, olive oil, castor oil, squalene , Lanolin and other solubilizers or solubilizers, as well as thickeners such as cellulose acetate, methylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose and stearyl alcohol, glycerin monooleic acid, glycerin mono. Irritation reducing agents such as laurate, sorbitan monolaurate, karaya gum, tragacanth gum, polyvinyl alcohol and That portion Gen product, dextran, albumin, polyamino acids, poly Binirupirori pyrrolidone, It is also possible to add hydrophilic and water-absorbing polymers such as poly (meth) acrylate, polyacrylic acid and its sodium salt, polyacrylamide and its partial hydrolyzate, and plasticizers such as glycerin.
これらの添加剤は、 水溶性ステロイドの種類毎に最適と思われる種類および濃 度が、 治療上有益であり薬理学的に許容されると認められる範囲において決定さ れる。  These additives are determined for each type of water-soluble steroid to the extent that the type and concentration appear to be optimal, as long as they are therapeutically beneficial and pharmacologically acceptable.
薬物貯蔵層や導電性層は、 その表面に粘着層を備えてもよい。 粘着層としては 、 感圧性粘着剤又はゲル粘着剤が好適に用いられる。 感圧性粘着剤又はゲル粘着 剤としては、 患者の皮膚にイオントフォレーシス用デバイスまたは関導子, 不関 導子を保持することができ、 皮廣学的に許容されるものであれば任意に使用可能 であり、 例えば、 ポリ一 2—ェチルへキシルァクリレートのようなアクリル系粘 着剤、 ボリブチルメタクリレートのようなメタクリル系粘着剤、 ボリジ'メチルシ ロキサンのようなシリコーン系坫着剤、 ポリイソプレンゴム、 ボリイッブチレン ゴム、 ポリブタジエンゴム、 天然ゴムのようなゴム系粘着剤、 ポリビニルアルコ ール、 ゼラチン、 ボリビニルピロリ ドン、 カルボキシビ二ルポリマ一、 ポリアク リル酸ナトリウム、 及びその架橋体、 アルギン酸ナトリゥム及びその架橋体、 セ ルロース誘導体等が使用される。  The drug storage layer or the conductive layer may have an adhesive layer on its surface. As the adhesive layer, a pressure-sensitive adhesive or a gel adhesive is suitably used. The pressure-sensitive adhesive or gel adhesive can hold a device for iontophoresis or a conductor or an inducible conductor on the patient's skin, and is not limited as long as it is perceptually acceptable. For example, acrylic adhesives such as poly (2-ethylhexyl acrylate), methacrylic adhesives such as polybutyl methacrylate, and silicone adhesives such as polydimethyl siloxane. , Polyisoprene rubber, polybutylene rubber, polybutadiene rubber, rubber-based adhesives such as natural rubber, polyvinyl alcohol, gelatin, polyvinylpyrrolidone, carboxyvinyl polymer, sodium polyacrylate, and cross-linked products thereof And sodium alginate and its crosslinked products, cellulose derivatives and the like.
粘着層は、 これに充分な導電性を付与すべく塩化ナトリウム、 炭酸ナトリウム 、 クェン酸カリウム等の電界質が所要量 (通常 〜 1 5 %程度) 添加されてもよ い。 また、 粘着層には、 '必要に応じて薬物貯蔵層からのイオン化された水溶性ス テロイドを通過させるための孔部を形成してもよい。 粘着層やこの粘着層に形成 された孔部の形状につレ、ては特に限定するものではなレ、が、 一般的には円形ある いは楕円形や略長方形等に形成されるのが望ましい。  The adhesive layer may be added with a required amount (usually about 15%) of an electrolyte such as sodium chloride, sodium carbonate, potassium citrate or the like in order to impart sufficient conductivity thereto. The adhesive layer may be provided with a hole for allowing the passage of ionized water-soluble steroids from the drug storage layer, if necessary. The shape of the pressure-sensitive adhesive layer and the holes formed in the pressure-sensitive adhesive layer is not particularly limited, but is generally formed in a circular shape, an elliptical shape, a substantially rectangular shape, or the like. desirable.
この構成によって、 パルス脱分極型イオントフォレーシス電源装置と非分極性 電極を有する関導子や不関導子を水溶性ステロイドの投与方法に用いたことによ り、 水溶性ステロイドを皮膚から体内へ、 特に、 慢性関節リウマチや変形性関節 症等の炎症部位である滑膜や関節包等が存在する関節深部まで、 治療効果に十分 な薬効量を高吸収させることができる。 また、 投与時に皮膚に対する電気的刺激 や帯電等を抑制することができる。 また、 イオン交換膜を備えた場合、 電極材の イオンの弊害を防止し水溶性ステロイドの輸率を著しく高めることができる。 図面の簡単な説明 With this configuration, the pulsed depolarization type iontophoresis power supply and the inductor or non-inductor having a non-polarizing electrode are used for the method of administering the water-soluble steroid, so that the water-soluble steroid can be removed from the skin. Into the body, especially rheumatoid arthritis and osteoarthritis It is possible to highly absorb a therapeutically effective amount of a drug sufficient for a therapeutic effect up to the deep part of the joint where an inflammation site such as a symptom or a joint capsule is present. In addition, it can suppress electrical stimulation and electrification on the skin during administration. In addition, when an ion exchange membrane is provided, the adverse effect of ions of the electrode material can be prevented, and the transport number of the water-soluble steroid can be significantly increased. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施例における水溶性ステロイドのイオントフォレー シス投与方法に用いたパルス脱分極型ィォントフォレーシス用デバイスを示すブ ロック回路図である。  FIG. 1 is a block circuit diagram showing a device for pulse depolarization type iontophoresis used in a method for administering iontophoresis of a water-soluble steroid in a first embodiment of the present invention.
第 2 ( a ) 図は、 関導子を示す斜視図である。  FIG. 2 (a) is a perspective view showing the guide element.
第 2 ( b ) 図は、 不関導子を示す斜視図である。  FIG. 2 (b) is a perspective view showing an unrelated inductor.
第 3図は、 電気的刺激試験用の関導子を示す分解斜視図である。  FIG. 3 is an exploded perspective view showing a conductor for an electrical stimulation test.
第 4図は、 電気的刺激試験用の不関導子を示す分解斜視図である。  FIG. 4 is an exploded perspective view showing an unrelated inductor for an electrical stimulation test.
第 5図は、 電気的刺激試験用の関導子および不開導子の装着状態を示す模式図 である。  FIG. 5 is a schematic view showing a mounted state of a conductor and an open conductor for an electrical stimulation test.
第 6図は、 電気的刺激を感じる電流値を示す特性図である。  FIG. 6 is a characteristic diagram showing a current value at which an electric stimulus is sensed.
第 7 ( a ) 図は、 透過実験用 2—チャンバ一拡散セルを示す分解斜視図である ο  FIG. 7 (a) is an exploded perspective view showing a 2-chamber-diffusion cell for a permeation experiment.
第 7 ( b ) 図は、 透過実験用 2—チャンバ一拡散セルを示す断面図である。 第 8図は、 ステロイドの 6時間経過時の累積透過量を示す特性図である。 第 9図は、 関節包内のリン酸デキサメタゾンナトリウム濃度を示す特性図であ 第 1 0図は、 一 1日目の関節周囲の長さを基準とした関節周囲の長さの増減を 示す特性図である。 発明を実施するための最良の形態 以下、 本発明の一実施例について、 図面を参照しながら説明する。 FIG. 7 (b) is a sectional view showing a 2-chamber-diffusion cell for a permeation experiment. FIG. 8 is a characteristic diagram showing the accumulated permeation amount of the steroid after 6 hours. Fig. 9 is a characteristic diagram showing the concentration of dexamethasone sodium phosphate in the joint capsule. Fig. 10 is a characteristic diagram showing the increase and decrease of the joint circumference based on the joint circumference on the 11th day. FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(実施例 1 )  (Example 1)
第 1図は本発明の第 1実施例における水溶性ステロイドのイオントフォレーシ ス投与方法に用いたパルス脱分極型ィオントフォレーシス用デバイスを示すプロ ック回路図である。  FIG. 1 is a block diagram showing a block diagram of a device for pulse depolarization iontophoresis used in a method for administering iontophoresis of a water-soluble steroid according to a first embodiment of the present invention.
1はパルス脱分極型イオントフォレ一シス用デバイス、 2は水溶性ステロイ ド を含有した関導子、 3は不関導子、 4は後述する電源部 5とパルス発振器 6とス イッチ部 7とからなるパルス脱分極型イオントフォレーシス電源装置、 5は関導 子 2と不関導子 3の各電極層間に電流 Z電圧を印加する乾電池等の電源部、 6は 電源部 5から供給される電流 /電圧を 1 0 0 0 Η ζ〜1 0 0 k H z程度の直流の パルス電圧にパルス変調するパルス発振機、 7はパルス発振機 6から出力される パルス電圧の休止と同時に関導子 2 , 不関導子 3の分極電位を脱分極するスィッ チ部、 8は関節等の投与部位、 9 , 1 0はジャック等からなる接続端子である。 次に、 関導子及び不関導子について、 図面を参照しながら説明する。  1 is a device for pulse depolarization type iontophoresis, 2 is a conductor containing water-soluble steroid, 3 is a non-inductor, 4 is a power supply unit 5, a pulse oscillator 6, and a switch unit 7 described later. Pulse depolarization type iontophoresis power supply, 5 is a power supply such as a dry battery for applying a current Z voltage between each electrode layer of the inductor 2 and the non-inductor 3, and 6 is supplied from the power supply 5 A pulse oscillator that modulates the current / voltage to a DC pulse voltage of about 100 kHz to 100 kHz, 7 is a pulse oscillator that is output from the pulse oscillator 6, and at the same time the pulse voltage is paused. 2, a switch part for depolarizing the polarization potential of the unrelated inductor 3, 8 is an administration site such as a joint, and 9 and 10 are connection terminals such as jacks. Next, the conductor and the non-conductor will be described with reference to the drawings.
第 2 ( a ) 図は関導子を示す斜視図であり、 第 2 ( b ) 図は不関導子を示す斜 視図である。  FIG. 2 (a) is a perspective view showing the inductor, and FIG. 2 (b) is a perspective view showing the non-inductor.
第 2 ( a ) 図において、 2 aは後述する電極層 2 cに接続されたリード線、 2 bはボリエステルやボリエチレン等のポリオレフィンのフイルムゃシートからな るバッキング層、 2 cはバッキング層 2 bの一面に塩化銀等で形成された電極層 、 2 dは電極層 2 cに積層されかつ電極層 2 cより若干大きい径で形成され薬物 として水溶性ステロイドを含有したアルギン酸ナトリウムやポリビニルアルコ一 ル、 キチン等からなる薬物貯蔵層である。  In FIG. 2 (a), 2a is a lead wire connected to an electrode layer 2c to be described later, 2b is a backing layer made of a polyolefin film such as polyester or polyethylene, and 2c is a backing layer 2b. An electrode layer formed of silver chloride or the like on one side of the electrode, 2 d is laminated on the electrode layer 2 c and has a slightly larger diameter than the electrode layer 2 c and contains sodium alginate or polyvinyl alcohol containing a water-soluble steroid as a drug. A drug storage layer composed of chitin and the like.
第 2 ( b ) 図において、 3 aは後述する電極層 3 cに接続されたリード線、 3 bはボリエステルやボリエチレン等のポリオレフィンのフィルムゃシートからな る支持体層、 3 cは支持体層 3 bの一面に銀等を蒸着して形成された電極層、 3 dは電極層 3 cに積層されかつ電極層 3 cより若干大きい径で形成された導電性 層である。 In FIG. 2 (b), 3a is a lead wire connected to an electrode layer 3c described later, 3b is a support layer made of a film / sheet of a polyolefin such as polyester or polyethylene, and 3c is a support layer. 3b is an electrode layer formed by evaporating silver etc. on one surface, 3d is a conductive layer formed on the electrode layer 3c and having a diameter slightly larger than the electrode layer 3c Layer.
以上のように構成されたパルス脱分極型ィオントフォレ一シス用デバイス、 す なわちパルス脱分極型イオントフォレーシス電源装置と、 非分極性電極を備えた 関導子及び不関導子と、 を用いた水溶性ステロイドのイオントフォレーシス投与 方法について人間の関節に適用した例を基に説明する。  The device for pulse depolarization iontophoresis configured as described above, that is, a pulse depolarization type iontophoresis power supply, and a conductor and a non-conductor associated with a non-polarizable electrode The method of iontophoresis administration of the water-soluble steroid used will be described based on an example applied to a human joint.
まず、 関導子 2と不関導子 3を投与部位 8に貼着する。 投与部位 8は薬物貯蔵 層 2 d及び導電性層 3 dが柔軟な材質でできているので関節等の比較的起伏のあ る箇所にも落下等することなく密着させることができる。 次に、 パルス脱分極型 イオントフォレーシス電源装置 1の主電源を入れる。 次に、 パルス発振機 6の周 波数やパルス電圧の出力時間を調整し、 設計薬量の投与を行う。 次に、 所定の投 与時間等の経過により投与を終了する。 投与終了後は、 パルス脱分極型イオント フォレーシス電源装置 1のスィッチを切り、 関導子 2と不関導子 3を投与部位か ら離すことにより治療を終える。 尚、 投与中、 スィッチ部 7はパルス発振器 6か ら出力されるパルス電圧の立下り Z立上りを検知して自動的にオン オフされ、 このスィッチ部 7のオン時に関導子 2と不関導子 3の間の分極電位が脱分極され 以上のように本実施例によれば、 投与期間中に投与部位に電気的刺激や投与部 位への帯電等なく、 設計量の水溶性ステロイドを生体内、 例えば滑膜やこの滑膜 および繊維膜からなる関節包が存在する関節深部までスムーズに投与できる。 以上のように構成されたパルス脱分極型イオントフォレーシス用デバイスと従 来のイオントフォレーシス用デバイスについて性能比較試験を行った。 以下、 そ の結果について説明する。  First, the inductor 2 and the non-inductor 3 are attached to the administration site 8. Since the drug storage layer 2 d and the conductive layer 3 d are made of a flexible material, the administration site 8 can be brought into close contact with a relatively uneven portion such as a joint without falling. Next, the main power supply of the pulse depolarization type iontophoresis power supply 1 is turned on. Next, the frequency of the pulse oscillator 6 and the output time of the pulse voltage are adjusted, and the designed dose is administered. Next, the administration is terminated after a lapse of a predetermined administration time or the like. After the administration is completed, the switch of the pulse depolarization type iontophoresis power supply 1 is turned off, and the treatment is completed by separating the guide 2 and the guide 3 from the administration site. During administration, the switch section 7 is automatically turned on and off upon detecting the falling Z rise of the pulse voltage output from the pulse generator 6, and is not related to the inductor 2 when the switch section 7 is turned on. As described above, according to the present embodiment, the designed amount of the water-soluble steroid was produced without electrical stimulation or electrification at the administration site during the administration period. It can be administered smoothly to the body, for example, to the deep joints where the synovium and the joint capsule composed of the synovium and the fibrous membrane are present. Performance comparison tests were performed on the pulse depolarization type iontophoresis device and the conventional iontophoresis device configured as described above. Hereinafter, the results will be described.
(実施例 2 ) 電気的刺激性比較試験  (Example 2) Electrical irritation comparative test
第 3図は電気的刺激試験用の関導子を示す分解斜視図であり、 第 4図は電気的 刺激試験用の不関導子を示す分解斜視図であり、 第 5図は電気的刺激試験用の関 導子および不関導子の装着状態を示す模式図である。 まず、 第 3図に示すように、 バッキング層としてポリエチレンテレフタレート (PET) フイルム 2b' を準備した。 次に、 バッキング層 (又は PETフィル ム) 2 b' の一面に塩化銀を塗工し、 電極層 2 c' を形成した。 次に、 電極層 ( 又は塩化銀) 2 c ' の上面に薬物貯蔵層として不織布 2 d' を重ねた。 次に、 薬 物貯蔵層 (又は不織布) 2 d ' の上面に粘着層として 0リング状にァクリル系粘 着剤 2 e' を貼着し、 バッキング層 2 b' と電極層 2 c' と薬物貯蔵層 2 d ' と 粘着層 2 e' とを固定した。 次に、 粘着層 2 e' の孔部を介して薬物貯蔵層 2 d ' に水溶液 lm lを含浸させ、 関導子 2' を作成した。 次に、 第 4図に示すよう に、 支持体層として PETフィルム 3 b' を準備した。 次に、 支持体層 (又は P ETフィルム) 3 b' の一面に銀を塗工し、 電極層 3 c' を形成した。 次に、 電 極層 (又は銀) 3 c ' の上面に拈着層として 0リング状にアクリル系粘着剤 3 e ' を貼着し、 支持体層 3 b' と電極層 3 c' と粘着層 3 e' とを固定した。 次に 、 粘着層 3 e' の孔部に食塩を 0. 9%含有させたボリビニルアルコール (PV A) 水溶液を貯溜した後、 これらを一 30°Cにて凍結させ、 PVAをゲル化させ 、 不閱導子 3' を作成した。 尚、 作成した関導子 2' 及び不関導子 3' の各電極 層 2 c ' , 3 c ' にそれぞれリード線 2 a ' , 3 a ' を接続した。 次に、 第 5図 に示すように、 被験者の膝関節 1 3の内側に関導子 2' を装着し、 また被験者の 膝関節 1 3の外側に不閧導子 3' を装着した。 次に、 関導子 2' 側を陰極、 不関 導子 3' 側を陽極として、 パルス脱分極型イオントフォレーシス電源装置 4を用 いて通電し, この通電電流を徐々に上げ、 被験者が電気的刺激を感じる電流値を 調べた。 この結果を第 6図に示す。 第 6図は電気的刺激を感じる電流値を示す特 性図である。 FIG. 3 is an exploded perspective view showing a conductor for an electrical stimulus test, FIG. 4 is an exploded perspective view showing an unrelated conductor for an electrical stimulus test, and FIG. 5 is an electrical stimulus. FIG. 3 is a schematic view showing a state where a test inductor and an unrelated inductor are attached. First, as shown in FIG. 3, a polyethylene terephthalate (PET) film 2b 'was prepared as a backing layer. Next, silver chloride was applied to one surface of the backing layer (or PET film) 2b 'to form an electrode layer 2c'. Next, a nonwoven fabric 2d 'was laminated as a drug storage layer on the upper surface of the electrode layer (or silver chloride) 2c'. Next, an acryl-based adhesive 2e 'is attached as an adhesive layer on the upper surface of the drug storage layer (or non-woven fabric) 2d' as an adhesive layer, and the backing layer 2b ', the electrode layer 2c', and the drug The storage layer 2d 'and the adhesive layer 2e' were fixed. Next, the drug storage layer 2 d ′ was impregnated with the aqueous solution lml through the pores of the adhesive layer 2 e ′, to prepare a guide 2 ′. Next, as shown in FIG. 4, a PET film 3b ′ was prepared as a support layer. Next, silver was applied to one surface of the support layer (or PET film) 3b 'to form an electrode layer 3c'. Next, an acrylic pressure-sensitive adhesive 3e 'is adhered in a 0-ring shape as a binding layer on the upper surface of the electrode layer (or silver) 3c', and is adhered to the support layer 3b 'and the electrode layer 3c'. Layer 3e 'was fixed. Next, an aqueous solution of polyvinyl alcohol (PVA) containing 0.9% of sodium chloride was stored in the pores of the adhesive layer 3e ', and these were frozen at 130 ° C to gel the PVA. , Insulator 3 'was created. The lead wires 2a 'and 3a' were connected to the respective electrode layers 2c 'and 3c' of the prepared inductor 2 'and non-inductor 3', respectively. Next, as shown in FIG. 5, a guide 2 ′ was attached inside the knee joint 13 of the subject, and a guide 3 ′ was attached outside the knee joint 13 of the subject. Next, using the pulsed depolarization type iontophoresis power supply 4 as the cathode on the side of the inductor 2 'and the anode on the side of the inductor 3', the current was gradually increased, The current value at which an electric stimulus was felt was examined. The results are shown in FIG. FIG. 6 is a characteristic diagram showing a current value at which an electric stimulus is sensed.
(比較例 1 )  (Comparative Example 1)
パルス脱分極型イオントフォレ一シス電源装置の代わりに直流型イオントフォ レーシス電源装置 (モーション コントロール社製;商品名ホレッサー) を用い た以外は実施例 2と同様にして電気的刺激を感じる電流値を調べた。 この結果を 第 6図に示す。 The current value at which an electric stimulus was sensed was examined in the same manner as in Example 2 except that a direct current iontophoresis power supply (manufactured by Motion Control; trade name: Holeser) was used instead of the pulse depolarization type iontophoresis power supply. . This result Figure 6 shows.
(比較例 2 )  (Comparative Example 2)
パルス脱分極型ィオントフォレーシス電源装置の代わりに非脱分極型のパルス 型イオントフォレーシス電源装置を用いた以外は実施例 2と同様にして電気的刺 激を感じる電流値を調べた。 この結果を第 6図に示す。  The current value at which electric stimulation was felt was examined in the same manner as in Example 2 except that a non-depolarizing pulse iontophoresis power supply was used instead of the pulse depolarization iontophoresis power supply. The results are shown in FIG.
第 6図から明らかなように、 パルス脱分極型イオントフォレーシス電源装置を 用いて通電した場合には、 S m AZcm2 以下では殆どの被験者が電気的刺激を感 じなかった。 し力、し、 比較例 1のように直流型イオントフォレーシス電源装置を 用いて通電した場合には、 被験者全員が I mAZcni2 で電気的刺激を感じている 。 また比較例 2のように非脱分極型のパルス型ィオントフォレーシス電源装置を 用いて通電した場合にも同様に、 l mA/cm2 で殆どの被験者が電気的刺激を感 じている。 従って、 パルス脱分極型イオントフォレ一シス電源装置を用いた水溶 性ステロイドのイオン卜フォレーシス投与方法は、 電気的刺激の少ない通電方法 であることが証明された。 As is clear from FIG. 6, when the electric current was supplied using the pulse depolarization type iontophoresis power supply, most subjects did not feel electrical stimulation below Sm AZcm 2 . And power, and, when energized with DC type iontophoresis power supply as in Comparative Example 1, all subjects feel electrical stimulation I mAZcni 2. Similarly, in the case where power is supplied by using a non-depolarizing pulse iontophoresis power supply as in Comparative Example 2, almost all subjects feel electrical stimulation at lmA / cm 2 . Therefore, it was proved that the iontophoresis administration method of the water-soluble steroid using the pulse depolarization type iontophoresis power supply was an energization method with little electrical stimulation.
(実施例 3 ) 累積透過量比較試験  (Example 3) Cumulative permeation amount comparison test
第 7 ( a ) 図は透過実験用 2—チャンバ一拡散セルを示す分解斜視図であり、 第 7 ( b ) 図は透過実験用 2—チャンバ一拡散セルを示す断面図である。  FIG. 7 (a) is an exploded perspective view showing a 2-chamber-diffusion cell for a permeation experiment, and FIG. 7 (b) is a cross-sectional view showing a 2-chamber-diffusion cell for a permeation experiment.
まず、 第 7 ( a ) 図に示すように、 有効面積 2 . 5 cm2 の透過実験用 2—チヤ ンバー拡散セル 1 4の各セル 1 4 a , 1 4 bの一端部を覆設するようにそれぞれ 関導子 2及び不関導子 3を設置した。 次に、 第 7 ( b ) 図に示すように、 ヒトの 摘出皮虜1 5を透過実験用 2—チャンバ一拡散セルにセットした。 尚、 関導子 2 側にヒトの摘出皮膚 1 5の角質層が相対するよう設置した。 次に、 関導子 2側の セル 1 4 aには 1 O m g Zm 1のリン酸デキサメタゾンナトリゥムを充填し、 不 関導子 3側のセル 1 4 bには生理食塩水を充塡した。 次に、 関導子 2側が陰極、 不関導子 3側が陽極となるように、 パルス脱分極型イオントフォレーシス電源装 置と関導子及び不関導子を接続し、 3 m Aを通電した。 尚、 通電中、 不関導子 3 側のセル 1 4 b内の生理食塩水は魇拌子 1 6で擾拌した。 次に、 通電開始から 6 時間経過後に不関導子 3側の溶液を採取し、 高速液体クロマトグラフィーを用い て、 採取した溶液中のリン酸デキサメタゾンナトリウムの濃度を測定し、 6時間 経過時までの累積透過量を求めた。 この結果を第 8図に示す。 第 8図はステロイ ドの 6時間経過時の累積透過量を示す特性図である。 First, as shown in 7 (a) Fig effective area 2. 5 cm 2 of permeation experiments for 2 Chiya members each cell diffusion cell 1 4 1 4 a, 1 4 b at one end to Kutsugae設the Inductor 2 and Inducer 3 were installed in each. Next, as shown in FIG. 7 (b), the extracted human skin 15 was set in a 2-chamber-diffusion cell for permeation experiments. In addition, it was set so that the stratum corneum of the human extirpated skin 15 was opposed to the side of the guide 2. Next, the cell 14a on the side of the inductor 2 is filled with dexamethasone sodium phosphate at 1 Omg Zm1, and the cell 14b on the side of the inductor 3 is filled with saline. did. Next, connect the pulse depolarization type iontophoresis power supply with the inductor and the non-inductor so that the inductor 2 is the cathode and the non-inductor 3 is the anode. Powered on. In addition, during energization, unrelated inductor 3 The physiological saline in the cell 14 b on the side was stirred with a stirrer 16. Next, 6 hours after the start of energization, the solution on the 3rd side of the unrelated inductor was collected, and the concentration of dexamethasone sodium phosphate in the collected solution was measured by high performance liquid chromatography. Was determined. The results are shown in FIG. FIG. 8 is a characteristic diagram showing the accumulated permeation amount of stelloid after 6 hours.
(比較例 3 )  (Comparative Example 3)
リン酸デキサメタゾンナトリゥ厶の代わりにデキサメタゾンを適用した以外は 実施例 3と同様にして 6時間経過時のデキサメタゾンの累積透過量を調べた。 こ の結果を第 8図に示す。  The accumulated permeation amount of dexamethasone after 6 hours was examined in the same manner as in Example 3 except that dexamethasone phosphate was used instead of dexamethasone sodium phosphate. Figure 8 shows the results.
(比較例 4 )  (Comparative Example 4)
関導子 2及び不関導子 3に各々白金電極を用いた以外は実施例 3と同様にして 6時間経過時のリン酸デキサメタゾンナトリウ厶の累積透過量を調べた。 この結 果を第 8図に示す。  The accumulated permeation amount of dexamethasone sodium phosphate after a lapse of 6 hours was examined in the same manner as in Example 3 except that a platinum electrode was used for each of the inductor 2 and the inductor 3. Figure 8 shows the results.
(比較例 5 )  (Comparative Example 5)
パルス脱分極型イオントフォレーシス電源装置を用いない以外は実施例 3と同 様にして 6時間経過時のリン酸デキサメタゾンナトリゥムの累積透過量を調べた 。 この結果を第 8図に示す。  The accumulated permeation amount of dexamethasone sodium phosphate after 6 hours was examined in the same manner as in Example 3 except that the pulse depolarization type iontophoresis power supply was not used. The results are shown in FIG.
第 8図から明らかなように、 ヒ卜の摘出皮膚にパルス脱分極型イオントフォレ 一シス電源装置と銀/塩化銀の非分極性の電極層を有する閟導子及び不関導子を 用いて 3 mA通電し、 1 O m g Zm 1のリン酸デキサメタゾンナトリウムを透過 させた場合、 6時間経過時までに約 4 0〃g Zcm2 のリン酸デキサメタゾンナト リウムが透過された。 一方、 比較例 3のようにヒトの摘出皮膚にパルス脱分極型 イオントフォレーシス電源装置と銀 Z塩化銀の非分極性の電極層を有する関導子 及び不関導子を用いて 3 m A通電し、 1 O m g /m 1のデキサメタゾンを透過さ せた場合、 6時間経過時までに 2 w g Zcm2 ほどしかデキサメタゾンは透過され なかった。 また比較例 4のように電極層に分極性の白金電極を用いた場合や比較 例 5のようにパルス脱分極型ィオントフォレーシス電源装置を用いなかつた場合 、 リン酸デキサメタゾンナトリウムは殆ど透過されなかった。 従って、 パルス脱 分極型イオントフォレーシス電源装置と銀 塩化銀の非分極性の電極層を有する 関導子及び不関導子を用いて水溶性ステロイドを投与することで、 より多くの水 溶性ステロイドを皮膚から送達することが可能となることがわかつた。 As is evident from Fig. 8, a pulsed depolarizing iontophoresis power supply and a lead / insensitive lead having a nonpolarizable electrode layer of silver / silver chloride were used on the isolated skin of the human. When mA was supplied and 1 O mg Zm 1 of dexamethasone sodium phosphate was permeated, about 40 μg Zcm 2 of dexamethasone sodium phosphate was transmitted by 6 hours. On the other hand, as shown in Comparative Example 3, a pulsed depolarized iontophoresis power supply and a conductor having a nonpolarizable electrode layer of silver Z silver chloride and a non-polarized electrode layer were used for 3 m on the human skin. When A was supplied and 1 O mg / m 1 of dexamethasone was permeated, only about 2 wg Zcm 2 of dexamethasone was permeated by 6 hours. Also, when a polarizable platinum electrode was used for the electrode layer as in Comparative Example 4, Without using the pulse depolarized iontophoresis power supply as in Example 5, dexamethasone sodium phosphate was hardly permeated. Therefore, by administering a water-soluble steroid using a pulse depolarization type iontophoresis power supply device and a conductor and a non-receptor having a non-polarizing electrode layer of silver-silver chloride, more water-soluble steroids can be obtained. It has been found that steroids can be delivered from the skin.
(実施例 4 ) リン酸デキサメタゾンナトリウ厶濃度比較試験  (Example 4) Dexamethasone sodium phosphate concentration comparison test
ゥサギ (日本白色家兎) にペントバルビタール麻酔を施した。 次に、 ゥサギの 後右足膝の外側に、 第 7 ( a ) 図に示すような塩化銀の電極層を有する関導子を 装着した直径 1 c mの円柱型セルをセッ卜した。 次に、 ゥサギの後右足膝の内側 に、 第 2 ( b ) 図に示すような塩化ナトリウムを 0 . 9 %含有させた P V Aゲル の導電性層と銀の電極層とを重ね合わせた不関導子をセットした。 ここで、 関導 子側を陽極とし、 不関導子側を陰極とした。 円柱型セル内には放射ラベル化した リン酸デキサメタゾンナトリウム (3 O m g /m 1 , 3 3 3 / C i /m 1 ) を充 塡し、 パルス脱分極型イオントフォレーシス電源装置と関導子及び不関導子を接 続後、 3 m Aを通電した。 2時間後にゥサギを放血致死させ、 後右足膝の関節部 分から関節包を取り出し、 重量測定後、 ォキシタイザ一で燃焼させ、 放射活性を 測定した。 この結果を第 9図に示す。 第 9図は関節包内のリン酸デキサメタゾン ナトリゥム濃度を示す特性図である。  ゥ Egret (Japanese white rabbit) was anesthetized with pentobarbital. Next, a cylindrical cell having a diameter of 1 cm and fitted with a guide having a silver chloride electrode layer as shown in Fig. 7 (a) was set outside the right rear knee of the egret. Next, a conductive layer of PVA gel containing 0.9% of sodium chloride and a silver electrode layer as shown in Fig. 2 (b) were superimposed on the inside of the right knee of the rear of the egret. The lead was set. Here, the inductor side was used as the anode, and the non-inductor side was used as the cathode. The cylindrical cell is filled with radiolabeled dexamethasone sodium phosphate (3 O mg / m 1, 33 33 / C i / m 1) and linked to a pulse depolarization type iontophoresis power supply. After connecting the probe and the unrelated probe, 3 mA was supplied. Two hours later, the egret was exsanguinated and killed. The joint capsule was taken out from the joint of the hind right foot knee, weighed, burned with an oxidizer, and the radioactivity was measured. The results are shown in FIG. FIG. 9 is a characteristic diagram showing the concentration of dexamethasone sodium phosphate in the joint capsule.
(比較例 6 )  (Comparative Example 6)
パルス脱分極型イオントフォレーシス電源装置を用いない以外は実施例 4と同 様にして関節包内のリン酸デキサメ夕ゾンナ卜リゥム濃度を調べた。 この結果を 第 9図に示す。  The dexamethasone phosphate concentration in the joint capsule was examined in the same manner as in Example 4 except that the pulse depolarization type iontophoresis power supply was not used. Figure 9 shows the results.
第 9図から明らかなように、 パルス脱分極型イオントフォレーシス電源装置を 用いてリン酸デキサメ夕ゾンナトリウムを投与した場合、 リン酸デキサメタゾン ナトリウムを投与した側の膝では関節内 (具体的には滑膜内) にまで、 リン酸デ キサメタゾンナトリウムを高濃度で送達できた。 しかしながら、 比較例 6のよう にパルス脱分極型ィオントフォレーシス電源装置を適用しなかった場合、 リン酸 デキサメタゾンナトリウムの放射活性は検出されなかった。 従って、 パルス脱分 極型イオントフォレーシス電源装置を用レ、てリン酸デキサメタゾンナトリウムを 投与することにより、 関節内部にまでリン酸デキサメタゾンナトリウムを送達す ることができた。 As is clear from Fig. 9, when dexamethasone sodium phosphate was administered using a pulse depolarization type iontophoresis power supply, the knee on the side to which dexamethasone sodium phosphate was administered had intra-articular (specifically, Dexamethasone sodium phosphate could be delivered at a high concentration. However, as in Comparative Example 6, The radioactivity of dexamethasone sodium phosphate was not detected when the pulse depolarized iontophoresis power supply was not used. Therefore, dexamethasone sodium phosphate could be delivered into the joint by administering dexamethasone sodium phosphate using a pulse depolarization iontophoresis power supply.
(実施例 5 ) アジュバンド関節炎モデルの関節周長比較試験  (Example 5) Comparative study of joint circumference in adjuvant arthritis model
ゥサギを用いてアジュバンド関節炎モデルを作製し、 後足関節部位に炎症を惹 起させた。 次に、 炎症部位の後右足膝の外側に、 第 7 ( a ) 図に示すような塩化 銀の電極層を有する関導子を装着した直径 1 c mの円柱型セルをセッ卜し、 炎症 部位の後右足膝の内側に、 第 2 ( b ) 図に示すような塩化ナトリウムを含有させ た P V Aゲルの導電性層と銀の電極層とを重ね合わせた不関導子をセットした。 ここで、 関導子側を陽極とし、 不関導子側を陰極とした。 次に、 円柱型セル内に リン酸デキサメタゾンナトリウム (3 0 m gZm l ) を充塡し、 パルス脱分極型 イオントフォレーシス電源装置 (周波数 4 0 k H z , デューティ比 3 0 %) より 関導子及び不関導子に 3 mAを 1時間通電した。 炎症惹起前 (- 1日目) の関節 周囲の長さを基準値とし、 経時的に関節周囲の変化を測定した。 この結果を第 1 0図に示す。 第 1 0図は一 1日目の関節周囲の長さを基準とした関節周囲の長さ の増減を示す特性図である。  (4) An adjuvant arthritis model was prepared using a heron, and inflammation was induced at the hindfoot joint. Next, a cylindrical cell with a diameter of 1 cm fitted with a conductor having an electrode layer of silver chloride as shown in Fig. 7 (a) was set outside the right knee of the posterior foot of the inflamed area. A non-inductive element in which a conductive layer of a PVA gel containing sodium chloride and a silver electrode layer were superimposed as shown in FIG. 2 (b) was set inside the knee of the rear right foot. Here, the side of the conductor was the anode, and the side of the non-conductor was the cathode. Next, the column-shaped cell was filled with dexamethasone sodium phosphate (30 mg gZm l), and a pulse depolarized iontophoresis power supply (frequency 40 kHz, duty ratio 30%) was used. A current of 3 mA was applied to the inductor and the unrelated inductor for 1 hour. The change around the joint over time was measured using the length around the joint before the induction of inflammation (-1 day) as a reference value. The results are shown in FIG. FIG. 10 is a characteristic diagram showing the increase and decrease of the joint circumference based on the joint circumference on the 11th day.
(比較例 7 )  (Comparative Example 7)
ゥサギを用いてアジュバンド関節炎モデルを作製し、 後足関節部位に炎症を惹 起させ、 炎症惹起前 (一 1日目) の関節周囲の長さを基準値とし、 経時的に関節 周囲の変化を測定した。 この結果を第 1 0図に示す。  ア Create an adjuvant arthritis model using a heron, induce inflammation in the hind foot joint area, and use the length around the joint before inflammation induction (day 1) as a reference value, and change over time around the joint. Was measured. The results are shown in FIG.
第 1 0図から明らかなように、 パルス脱分極型イオントフォレーシス電源装置 を用いてリン酸デキサメタゾンナトリウムを 1回だけ投与した群は比較例 7のよ うに無処置群に比べて、 関節の炎症が治癒され関節周囲の長さが減少した。 従つ て、 パルス脱分極型イオントフォレーシス電源装置により水溶性ステロイドは関 節深部まで送達され、 また薬効を示している。 この結果からも本発明の有用性が 高いことがわかる。 産業上の利用可能性 As is clear from FIG. 10, the group to which dexamethasone sodium phosphate was administered only once using the pulse depolarization type iontophoresis power supply had a larger joint joint than the untreated group as in Comparative Example 7. The inflammation healed and the periarticular length decreased. Therefore, the water-soluble steroid is associated with the pulse depolarization type iontophoresis power supply. It has been delivered to the depth of the node and has shown medicinal effects. These results show that the present invention is highly useful. Industrial applicability
以上のように本発明は構成されているので、 生理活性を有する水溶性ステロイ ドを効率よく生体内、 特に、 滑膜やこの滑膜や繊維膜からなる関節包内まで治療 効果に十分な薬効量を持つて吸収させることができ、 皮膚等の投与部位における 電気的刺激や帯電等を極めて低くすることができ、 臨床学的に極めて優れた水溶 性ステロイドのイオントフォレーシス投与方法を実現できるものである。 このよ うな優れた効果を有する本発明の水溶性ステロイドのイオントフォレーシス投与 方法は、 生体の投与部位に貼付し電圧を印加することにより、 目的とする優れた 効果を如何なく発揮し、 医薬産業上大変有用である。  Since the present invention is constituted as described above, a water-soluble steroid having bioactivity is efficiently used in a living body, particularly in a synovial membrane or a joint capsule comprising the synovial membrane and fibrous membrane. It can be absorbed in a large amount, and the electrical stimulation and electrification at the administration site such as the skin can be extremely low, and a clinically excellent method of administering iontophoresis of a water-soluble steroid can be realized. Things. The method for administering iontophoresis of a water-soluble steroid of the present invention having such excellent effects can be applied to a site of administration in a living body and applied with a voltage so that the desired excellent effects can be exhibited without any effect. Very useful in industry.

Claims

請求の範囲 The scope of the claims
1 . イオン卜フォレーシス電源装置と、 関導子及び不閟導子を用いた水溶性ステ ロイ ドのイオントフォレーシス投与方法において、 前記イオントフォレーシス電 源装置としてパルス脱分極型イオントフォレーシス電源装置を用い、 かつ、 前記 関導子及び前記不関導子の電極層に非分極性電極を用いて行うことを特徴とする 水溶性ステロイ ドのイオントフォレーシス投与方法。  1. An iontophoresis power supply device and a method for administering iontophoresis of a water-soluble steroid using a conductor and an inductor, wherein the iontophoresis power supply device is a pulse depolarization type iontophoresis. A method for administering iontophoresis of a water-soluble steroid using a cis power supply device and a non-polarizable electrode for an electrode layer of the conductor and the non-conductor.
2 . 前記パルス脱分極型イオントフォレーシス電源装置が、 前記関導子及び前記 不関導子間に電流 Z電圧を供給する電源部と, 前記電源部からの前記電流 Z電圧 をパルス変調するパルス発振器と, 前記パルス発振器からのパルス電圧休止時に 前記関導子及び前記不関導子間の分極電位を脱分極するスィツチ部と, を備えた ことを特徴とする請求の範囲第 1項に記載の水溶性ステロイドのイオントフォレ 一シス投与方法。  2. The pulse depolarization type iontophoresis power supply unit supplies a current Z voltage between the inductor and the uninductor, and pulse modulates the current Z voltage from the power source. The pulse generator according to claim 1, further comprising: a pulse oscillator; and a switch unit configured to depolarize a polarization potential between the inductor and the uninductor when the pulse voltage from the pulse oscillator is stopped. A method for administering iontophoresis of the water-soluble steroid according to the above.
3 . 前記非分極性電極が、 銀, 塩化銀等からなることを特徴とする請求の範囲第 1項又は第 2項の内レ、ずれか 1項に記載の水溶性ステロイドのイオントフォレー シス投与方法。  3. The iontophoresis of a water-soluble steroid according to claim 1 or 2, wherein the non-polarizable electrode is made of silver, silver chloride, or the like. Administration method.
4 . 前記関導子が、 前記非分極性電極と薬物貯蔵層との間にイオン交換膜が配設 されていることを特徴とする請求の範囲第 1項乃至第 3項の内いずれか 1項に記 載の水溶性ステロイドのイオントフォレーシス投与方法。  4. The ion guide according to any one of claims 1 to 3, wherein an ion exchange membrane is provided between the non-polarizable electrode and the drug storage layer. The method for administering iontophoresis of a water-soluble steroid described in the section.
5 . 前記水溶性ステロイドが、 リン酸デキサメタゾンナトリウム, St酸デキサメ 夕ゾン, メタスルホ安息香酸デキサメタゾンナトリウム, コハク酸ヒドロコルチ ゾンナトリウム, リン酸ヒドロコルチゾンナトリウム, コハク酸プレドニブロン ナトリウム, リン酸べタメ夕ゾンナトリウム等、 又はこれらの混合物からなるこ とを特徴とする請求の範囲第 1項乃至第 4項の内いずれか 1項に記載の水溶性ス テロイ ドのイオントフォレーシス投与方法。  5. The water-soluble steroids include dexamethasone sodium phosphate, dexamethasone sodium state, dexamethasone sodium metasulfobenzoate, hydrocortisone sodium succinate, sodium hydrocortisone phosphate, predniblon sodium succinate, betamethasone sodium phosphate, and the like. 5. The method for iontophoresis administration of a water-soluble steroid according to any one of claims 1 to 4, wherein the method comprises a mixture thereof.
PCT/JP1995/001652 1994-10-07 1995-08-21 Method of administrating water soluble steroids with iontophoresis WO1996011034A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU32313/95A AU3231395A (en) 1994-10-07 1995-08-21 Method of administrating water soluble steroids with iontophoresis
JP08512468A JP3119488B2 (en) 1994-10-07 1995-08-21 Iontophoresis device for water-soluble steroids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/270422 1994-10-07
JP27042294 1994-10-07

Publications (1)

Publication Number Publication Date
WO1996011034A2 true WO1996011034A2 (en) 1996-04-18

Family

ID=17486056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001652 WO1996011034A2 (en) 1994-10-07 1995-08-21 Method of administrating water soluble steroids with iontophoresis

Country Status (3)

Country Link
JP (1) JP3119488B2 (en)
AU (1) AU3231395A (en)
WO (1) WO1996011034A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020967A1 (en) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. Electric drug transport preparation
WO2005021008A1 (en) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. Iontophoresis-administered composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6562312B2 (en) 2016-11-04 2019-08-21 Smc株式会社 Dust removal device and dust removal system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020967A1 (en) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. Electric drug transport preparation
WO2005021008A1 (en) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. Iontophoresis-administered composition
JPWO2005020967A1 (en) * 2003-08-29 2007-11-01 久光製薬株式会社 Electrical drug delivery formulation
JPWO2005021008A1 (en) * 2003-08-29 2007-11-01 久光製薬株式会社 Iontophoresis administration composition
JP4820647B2 (en) * 2003-08-29 2011-11-24 久光製薬株式会社 Iontophoresis administration composition

Also Published As

Publication number Publication date
AU3231395A (en) 1996-05-02
JP3119488B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP3119486B2 (en) Electrode for iontophoresis and device using the same
JP4154017B2 (en) Iontophoresis device and drug unit
US5817044A (en) User activated iontophoertic device
KR950008026B1 (en) Transdermal drug delivery device
JPH11239621A (en) Iontophoresis device
JP3523334B2 (en) Plaster structure for iontophoresis
WO2000061220A1 (en) Iontophoresis device
WO2000061218A1 (en) Iontophoresis device and current application method
JP4154016B2 (en) Iontophoresis device and assembly method thereof
JPH0892101A (en) Sodium alendronate preparation for local administration
CA2132348C (en) User activated iontophoretic device and method for using same
JPH0852224A (en) Device for iontophoresis
JPH09201420A (en) Device for iontophoresis being active on use
WO1996011034A2 (en) Method of administrating water soluble steroids with iontophoresis
Zakzewski et al. Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report
JPH08229140A (en) Device for iontophoresis
JP2839279B2 (en) Device for iontophoresis
JP4961137B2 (en) Device for iontophoresis
JPH09235230A (en) Iontophoresis preparation
JPH0349589B2 (en)
JP2542792C (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase