WO2005019277A1 - 環状オレフィン系付加重合体の製造方法 - Google Patents

環状オレフィン系付加重合体の製造方法 Download PDF

Info

Publication number
WO2005019277A1
WO2005019277A1 PCT/JP2004/011156 JP2004011156W WO2005019277A1 WO 2005019277 A1 WO2005019277 A1 WO 2005019277A1 JP 2004011156 W JP2004011156 W JP 2004011156W WO 2005019277 A1 WO2005019277 A1 WO 2005019277A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
cyclic olefin
polymer
carbon atoms
Prior art date
Application number
PCT/JP2004/011156
Other languages
English (en)
French (fr)
Inventor
Noboru Oshima
Michitaka Kaizu
Satoshi Ebata
Takashi Imamura
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003296507A external-priority patent/JP4203739B2/ja
Priority claimed from JP2004023576A external-priority patent/JP4400232B2/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to EP04771194A priority Critical patent/EP1657259A4/en
Priority to US10/568,423 priority patent/US7241847B2/en
Publication of WO2005019277A1 publication Critical patent/WO2005019277A1/ja
Priority to US11/620,202 priority patent/US7268196B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof

Definitions

  • the present invention relates to a method for producing a cyclic olefin-based addition polymer. More specifically, the present invention provides a method for producing a cyclic olefin-based addition polymer which is suitably used for optical applications by addition-polymerizing a cyclic olefin compound in the presence of a specific catalyst containing a palladium compound having excellent polymerization activity. On how to do it.
  • optically transparent resin As such an optically transparent resin, a norbornene (bicyclo [2.2.1] hept-2-ene) -based addition polymer, which has characteristics of high transparency, high heat resistance and low water absorption, has been attracting attention. I have.
  • the addition polymer of cyclic olefins represented by norbornene has been obtained by addition polymerization of cyclic olefin monomers using a catalyst using a transition metal compound such as Ni, Pd, Ti, Zr, or Cr. (For example, see Non-Patent Document 1).
  • an addition copolymer of a cyclic olefinic compound having a polar substituent in a side chain and a nonpolar cyclic olefinic compound has improved heat resistance and transparency, as well as improved adhesiveness and adhesion. It is useful as a copolymer that can be crosslinked to improve dimensional stability and chemical resistance.
  • a polymerization catalyst for obtaining these copolymers a single complex of Ni and Pd Multi-component catalysts including d-drip products have been mainly used (see Patent Documents 1 and 2, Non-Patent Documents 2 to 11).
  • a phosphine compound or a diamine compound is used as a neutral donor as a ligand of a Pd cation, and a super strong acid anion is known as a weak counteranion ligand (Patent References 1, 36, Non-patent Reference 12).
  • Pd compounds with a neutral donor having a Pd-C bond such as ⁇ -anolekyl, ⁇ -arynole, ⁇ -aryl, etc.
  • Pd compounds with a ligand of a neutral donor having a Pd-C bond such as ⁇ -anolequil, ⁇ -arinole, and ⁇ -aryl
  • Each of these catalysts contains the neutral donor phosphine or aminy conjugate.
  • complex synthesis of a Pd compound having a neutral donor having a Pd_C bond as a ligand, such as ⁇ -anolequinole, ⁇ -arynole, and ⁇ _aryl is complicated and is not necessarily industrially advantageous.
  • I ca n’t say it.
  • no catalyst has been known which uses an ionic phosphonium salt as a component of the catalyst in place of such a neutral donor.
  • a neutral donor catalyst system of the prior art for example, a 5_ trialkoxysilylbicyclo [2.2.1] hepta-2-ene having a hydrolyzable silyl group is added to a side chain.
  • a polymer having a composition distribution is formed, and immediately precipitates during the polymerization, The obtained polymer sometimes became cloudy.
  • cyclic olefin compounds having ester or oxetane groups is lower than that of bicyclo [2.2.1] heptane 2_ Therefore, in the initial stage of polymerization, a polymer having a low proportion of structural units derived from a cyclic olefin compound having an ester group or an oxetane group is generated, but the fact that the composition distribution occurs in such polymerization has a hydrolyzable silyl group. This is the same as the case of the cyclic olefin compound, and the same problem may occur.
  • the Pd catalyst is expensive, and if the Pd catalyst remains in the polymer in a large amount, coloring or transparency problems may occur. Re, a catalyst is required.
  • the above-mentioned multi-component catalyst containing a Pd compound is more resistant to water, methanol, etc. than the multi-component catalyst containing a Ti, Zr compound in the previous period, but is added to improve polymerization activity.
  • Phosphine, a sex donor is oxidized to phosphinoxide in the presence of oxygen during storage, which may immediately decrease the polymerization activity.
  • the presence of a small amount of oxygen causes the catalyst components to be different, which has a large effect. For this reason, in industrial production, there has been a demand for a catalyst system with less variation in polymerization rate and quality of the produced polymer even when a trace amount of oxygen is present in the polymerization system.
  • a crosslinkable hydrolyzable silyl group, ester group, or the like may be used.
  • a copolymer which is a precursor of a crosslinked product by subjecting a cyclic olefin compound having a polar substituent to an addition polymerization reaction with a non-polar cyclic olefin compound. It is often difficult to remove palladium atoms from a copolymer formed by a polymerization reaction. For this reason, there is a problem that if the residual palladium of the copolymer is large, the optical transparency is lowered.
  • Patent Document 1 USP 6, 455, 650
  • Patent Document 2 USP 3,330,815
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-262821
  • Patent Document 4 W 4 00/20472
  • Patent Document 5 JP-A-10-130323
  • Patent Document 6 JP 2001-98035 A
  • Non-Special Noon Document 1 Cnristoph Jamak, Paul G. Lassahn, Macromol. Rapid Commun. 22, p479 (2001)
  • Non-Patent Document 2 R.G.Schultz, Polym. Lett.VOL. 4, p541 (1966)
  • Non-patent document 3 Stefan Breunig, Wilhelm Risse, Makromol.Chem. 193, 2915 (1992)
  • Non-patent document 4 Adam L. Safir, Bruce M. Novak Macromolecules, 28, 5396 (1995)
  • Non-patent document 5 Joice P Mathew et al. Macromolecules, 29, 2755-2763 (1996)
  • Non-Patent Document 6 Annette Reinmuth et al. Macromol. Rapid Commun. 17, 173-180 (
  • Non-Patent Document 7 B.S.Heinz, Acta Polymer 48, 385 (1997)
  • Non-patent document 8 BS Heinz et al. Macromol. Rapid Commun. 19, 251 (1998)
  • Non-patent document 9 Nicole R. Grove et al. J. Polym. Sci. Part B, 37, 3003 (1999)
  • Non-patent document 10 April D. Hennis et al. Organometallics, 20, 2802 (2001)
  • Non-Patent Document ll Seung UK Son et al. J. Polym. Sci. Part A Polym. Chem. 41, 76 (
  • Non-Patent Document 12 John Lipian et al. Macromolecules, 35, 8969-8977 (2002) The present invention was made in view of such a situation, and a cyclic olefin-based monomer was prepared with a small amount of palladium catalyst. It is an object of the present invention to provide a method for producing a cyclic olefin-based addition polymer, which can add (co) polymerize a polymer and can produce a cyclic olefin-based addition (co) polymer with high activity.
  • the present invention provides a polymer having a polar substituent when a monomer composition containing a specific cyclic olefin compound and a cyclic olefin compound having a polar substituent such as a hydrolyzable silyl group is polymerized.
  • An object of the present invention is to provide a method for producing a cyclic olefin-based addition polymer using a catalyst having a high polymerization activity, which does not substantially generate a composition distribution with respect to a structural unit derived from a cyclic olefin compound.
  • the present invention provides a cyclic olefin having a polar substituent such as a hydrolyzable silyl group, which has a small effect on polymerization activity even in the presence of a small amount of oxygen in the (co) polymerization reaction of the cyclic olefin compound. It is an object of the present invention to provide a method for producing a cyclic olefin-based addition polymer using a novel catalyst capable of performing (co) polymerization with carotenoids even in the case of (co) polymerization of a monomer containing a system compound. .
  • the method for producing the cyclic olefin-based addition polymer of the present invention comprises:
  • P is a phosphorus atom
  • R 2 is a hydrogen atom
  • R 3 — R 5 are each independently A substituent selected from alkyl groups, cycloalkyl groups and aryl groups having 11 to 20 carbon atoms, [CA
  • T represents a carboxylate anion, a sulfonate anion, or a pair of anions selected from a super strong acid anion containing an atom selected from B, P or Sb and an F atom.
  • (b-2) a substituent selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group having 3 to 15 carbon atoms, and a phosphine compound having a Cone Angle (° deg) of 170 to 200; Addition complexes with organoaluminum compounds
  • a 1 to A 4 each independently represent a hydrogen atom, a halogen atom, an olenoquinole group having 1 to 15 carbon atoms, a cycloalkyl group, an arylene group, an ester group, an oxetanyl group, an alkoxy group, a trialkyl
  • a 1 and A 2 may be an alkylidene group having 15 to 15 carbon atoms, or a substituted or unsubstituted alicyclic group having 520 carbon atoms, wherein A 1 and A 2 are linked by a linking group of 10.
  • a 1 and A 3, which may form an aromatic ring or a heterocyclic ring having 2 to 20 carbon atoms, are substituted or unsubstituted alicyclic or aromatic rings having 5 to 20 carbon atoms, and 2 to 20 carbon atoms.
  • M may be 0 or 1.
  • the multi-component catalyst comprises (a) a palladium compound, a phosphorus compound represented by (b-1), (c) an ionic boron compound, an ionic aluminum compound, a Lewis acidic aluminum compound, and a Lewis acid.
  • An embodiment in which the multi-component catalyst includes (a) a palladium compound, (b-2) a phosphorus compound represented by (b-2), and (d) an organoaluminum compound.
  • the content of the organoaluminum compound (d) in the above item 2 is preferably 0.1 to 200 mol per gram atom of palladium of the palladium compound (a).
  • the palladium conjugate (a) is preferably an organic carboxylate of palladium or a ⁇ -diketone compound. Good.
  • the multicomponent catalyst is a polycyclic monoolefin having a bicyclo [2.2.1] heptane 2-ene structure or a non-co-functional monocyclic or monocyclic olefin.
  • the catalyst is preferably prepared in the presence of a non-conjugated diene and at least one compound selected from the group consisting of linear non-conjugated diene.
  • the multi-component catalyst comprises bicyclo [2.2.1] hept-2-ene and Z or one hydrocarbon group having 11 to 15 carbon atoms.
  • the catalyst is preferably prepared in the presence of the bicyclo [2.2.1] hepta-2-ene derivative having the above.
  • the cyclic olefinic monomer contains a cyclic olefinic compound represented by the following general formula (2) -1 or (2) -2.
  • a cyclic olefinic compound represented by the following general formula (2) -1 or (2) -2 Preferably.
  • R 1 R 2 is a substituent selected from an alkyl group having 1 to 10 carbon atoms, a kill group or an aryl group, X is an alkoxy group having 1 to 5 carbon atoms or a halogen atom,
  • Y is a residue of a hydroxyl group of an aliphatic diol having 2 to 4 carbon atoms
  • k is an integer from 0-2, and n is 0 or 1.
  • the cyclic olefinic compound represented by the general formula (2) 11 and Z or the general formula (2) -2 is completely dissolved in a total amount. It is preferable to use 0.1-30 mol% of the cyclic olefin monomer.
  • a cyclic olefin monomer in which ⁇ 1 -A 4 are each independently a hydrogen atom or a hydrocarbon group having 11 to 15 carbon atoms, in an amount of 50 mol% or more of the total cyclic olefin monomer.
  • the addition polymerization of the cyclic olefin-based monomer is performed using a multi-component catalyst containing a palladium compound (a) and a specific phosphorus compound (b).
  • the multi-component catalyst used in the present invention is the multi-component catalyst used in the present invention.
  • P is a phosphorus atom
  • R 2 is a hydrogen atom
  • R 3 — R 5 are each independently A substituent selected from alkyl groups, cycloalkyl groups and aryl groups having 1 to 20 carbon atoms, [CA] —
  • Such a multi-component catalyst according to the present invention may further be used if necessary.
  • Examples of the palladium compound (a) include palladium organic carboxylate, organic phosphite, organic phosphate, organic sulfonate, diketone compound, halide, and the like. Of these, palladium organic carboxylate Or diketone compound power S, soluble in a hydrocarbon solvent and readily polymerized, and thus is preferable.
  • these compounds include palladium acetate, propionate, maleate, fumarate, butyrate, adipate, 2-ethylhexanoate, naphthenate, oleate, dodecane Acid salt, neodecanoate, 1,2-cyclohexanedicarboxylate, bicyclo [2.2.1] hepta 5_en-2-carboxylate, 5_norbornene-2_carboxylate, benzoate, Organic palladium carboxylate such as phthalate, terephthalate, naphthoate, etc., triphenylphosphine complex of palladium acetate, tri (m-tolyl) phosphine complex of palladium acetate, tricyclohexylphosphine complex of palladium acetate, etc.
  • Palladium organic carboxylic acid complex palladium dibutyl phosphite, dibutyl phosphate, dioctyl phosphate, dibutyl phosphate Phosphites such as stelate, phosphate, palladium dodecylbenzenesulfonate, p-toluene organic sulfonate such as p-toluenesulfonate, bis (acetylacetonato) palladium, bis ( Hexaphate p-palladium such as loacetylacetonato) palladium, bis (ethylacetoacetate) palladium, bis (phenylacetoacetate) palladium —diketone compounds, dichloro Bis (triphenylphosphine) palladium, dichlorobis [tri (m-tolylphosphine)] palladium, dibromobis [tri (m-tolylphosphine)] palladium, dichlorobi
  • R is an anion selected from organic carboxylic acids, organic sulfonic acids, organic phosphoric acids, mono- or diphosphates, organic phosphorous acid and ⁇ -diketones having 120 carbon atoms, and X is a halogen. Indicates an atom.
  • Specific examples of the compound represented by the general formula (al) include, but are not particularly limited to, for example, palladium acetate chloride, palladium 2-ethylhexanoate, palladium naphthenate chloride, palladium oleate.
  • Chloride palladium chloride dodecanoate, palladium chloride neodecanoate, palladium chloride dibutyl phosphite, palladium chloride dibutyl phosphate, palladium chloride of dibutyl phosphate, palladium chloride dodecylbenzenesulfonate, palladium chloride p-toluenesulfonate, a Examples thereof include II-valent palladium halide compounds such as cetylacetonato palladium chloride.
  • Examples of the phosphorus conjugate (b) include one or more phosphorus compounds selected from the group consisting of the following (bl) and (b-2).
  • (b-1) —phosphonium salt represented by general formula (bl)
  • P is a phosphorus atom
  • R 2 is a hydrogen atom
  • a substituent selected from an alkyl group having 1200 carbon atoms a cycloalkyl group, an aryl group
  • R 3 R 5 are each independently a carbon atom.
  • Y represents an anion selected from a carboxylic acid anion, a sulfonate anion, a / 3-diketone, or a superacid anion containing a selected atom of B, P or Sb and an F atom.
  • (b-2) a substituent selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group having 3 to 15 carbon atoms, and a phosphine compound having a Cone Angle (° deg) of 170 to 200; Addition complex with organoaluminum compound.
  • (b-1) is a phosphonium salt represented by the general formula (bl).
  • a phosphonium salt used in the present invention include, but are not particularly limited to, for example, tetraphenylphosphonium tetra (pentafluoropheninole) borate, tricyclohexylphosphonate.
  • a copolymer having a small composition distribution can be obtained by a copolymerization reaction, and thus a cyclic ester formed is obtained. It is possible to suitably prevent the refin-based addition polymer from having a remarkably high molecular weight, causing the polymer solution to be in a solid and swollen state, and preventing the polymer from being precipitated. For this reason, the obtained cyclic olefin-based addition polymer can be suitably used for forming into a film, sheet, or thin film by a solution casting method.
  • (b-2) is a substituent selected from the group consisting of an alkyl group having 315 carbon atoms, a cycloalkyl group and an aryl group, and a phosphine compound having a cone angle (Cone Angle; deg deg) of 170 200 and an organic compound. It is an addition complex with an aluminum compound.
  • the generated cyclic olefin-based addition polymer may have a remarkably high molecular weight, resulting in a solidified swelling state of the polymer solution or precipitation of the polymer. In some cases, it may be difficult to form a film, sheet or thin film by the solution casting method.
  • the phosphine compound used as a raw material of (b-2) is a trivalent electron-donating Lynch compound (tertiary phosphine compound) having an alkyl group, a cycloalkyl group or an aryl group as a substituent. .
  • the corn angle of the tertiary phosphine compound (Cone
  • Examples of phosphine compounds having a deg of 170 to 200 include tricyclohexylphosphine, di-t_butylphenylphosphine, trineopentylphosphine, tri (t-butynole) phosphine, and tri (t-butynole) phosphine. Preferred are (pentafluoropheninole) phosphine and tri (o_tolyl) phosphine.
  • di-t-butyl-2-biphenylphosphine di-t-butyl_2'-dimethylamino-2-biphenylphosphine, dicyclohexyl-2-biphenylphosphine, dicyclohexyl-2'-i-propyl-1 2— Biphenylphosphine and the like can also be mentioned.
  • the organoaluminum compound used as a raw material of (b-2) is a compound that acts as a Lewis acid and forms an addition complex with the phosphine compound, and is a compound having at least one aluminum-alkyl bond. is there.
  • Organoaluminum compounds having a specificity are preferred.
  • organoaluminum compounds examples include methyl aluminum dichloride, ethyl aluminum dichloride, butyl aluminum dichloride, sesquiethyl aluminum chloride, getyl aluminum chloride, getyl aluminum fluoride, getyl aluminum bromide, dibutyl aluminum chloride, triethyl aluminum, and trimethyl aluminum.
  • Preferred examples include butyl aluminum, tributyl aluminum, trihexyl aluminum, and dibutyl aluminum dimethyl hydride.
  • alkyl aluminum alkoxide compounds such as getyl aluminum ethoxide, getyl aluminum methoxide, and ethyl aluminum diethoxide are not preferred in view of acidity.
  • the above-mentioned addition complex (b-2) of the specific phosphine compound and the organoaluminum compound usually has a composition ratio of the phosphine conjugate to the organoaluminum compound of 1: 1 in molar ratio.
  • Complex Such an addition complex is formed, for example, by adding 110 moles of organoaluminum to 1 mole of a specific phosphine compound in a temperature range of 0 to 100 ° C and causing a reaction.
  • the organoaluminum compound is 1.0 mol per 1 mol of the specific phosphine compound, and the excess organoaluminum compound is the co-catalyst component (d) Acts as aluminum.
  • the multi-component catalyst used in the present invention particularly includes, when the phosphorus compound (b-1) is used as the component (b), (c) an ionic boron compound, an ionic aluminum compound, a noreic acid anolemminium compound and It preferably contains a compound selected from Lewis acidic boron compounds.
  • ionic boron compound examples include, for example, triphenylcarbenyltetrakis (pentafluorophenyl) borate, triphenylcarbenyltetrakis [3,5_bis (trifluoromethyl) phenyl] borate, triphenyl Carbedium tetrakis (2,4,6_trifluorofluorobenzene) borate, triphenylcarbenyltetraphenyl borate, tributylammonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium Tetrakis (pentafluorophenyl) borate, N, N-Jetylaniliniumtetrakis (pentafluorophenylene) borate, N, N-Diphenylaniliniumtetrakis (pentaphenylolenophenylene) borate, lithium Tetrakis (pentafluor
  • Examples of the ionic aluminum compound include triphenylcarbenyltetrakis (pentafluorophenyl) aluminate, triphenylcarbenyltetrakis [3,5-bis (trifluoromethyl) phenyl] aluminate and triphenylcarbamate. Examples include dimethyltetrakis (2,4,6-trifluorophenyl) aluminate and triphenylcarbenyltetraphenylaluminate.
  • Lewis acidic aluminum compound examples include aluminum trifluoride ether complex, ethyldifluoroaluminum, ethoxydifluoroaluminum, tris (pentafluorophenyl) aluminum, and tris (3,5-difluorophenyl) Aluminum, tris (3,5-ditrifluoromethylphenyl) aluminum, and the like.
  • Examples of the boron compound of noreic acid include, for example, tris (pentafluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (3,5-ditrifluoromethylphenyl) boron, trifluoride Boron ether complexes.
  • the ionic boron compound has a polymerization activity. Most preferred in that respect.
  • the multi-component catalyst used in the present invention particularly preferably comprises (d) an organoaluminum compound as a cocatalyst when the phosphorus compound (b-2) is used as the component (b). .
  • the organoaluminum compound is an aluminum compound having at least one aluminum-alkyl group, for example, an alkylalumoxane compound such as methylalumoxane, ethylalumoxane, and butylalumoxane; trimethylaluminum; Trialkylaluminum compounds such as rheanoleminium and triisobutylaluminum, alkylaluminum compounds such as diisobutylaluminum hydride, getylaluminum chloride, getylaluminum dimethylfluoride, ethylaluminum sesquichloride, and ethylaluminum dichloride, and halogens Alkyl aluminum compound or a mixture of the above alkyl alumoxane compound and the above alkyl aluminum compound is preferably used. It is.
  • an alkylalumoxane compound such as methylalumoxane, ethylalumoxane, and buty
  • the multi-component catalyst according to the present invention contains the components (a) and (b) described above and, if necessary, the components (c) and / or (d) described above.
  • each of these catalyst components can be preferably used in the following range of usage.
  • the palladium compound (a) is used in an amount of 0.0005-0.05 millimonole Pd atom, preferably 0.0001-0.05 millimonole Pd atom, per mole of the cyclic olefin monomer. And more preferably in the range of 0.005 to 0.01 mmol.
  • the cyclic olefin-based monomer may have a Pd atom of 0.01 mm, less than ram, preferably f of 0.001 to 0.01 mm / mon. Addition polymerization can be performed.
  • the specific phosphorus compound (b) is usually used in an amount of 0.05 to 20 mol per Pdl gram atom of the palladium compound (a).
  • (b-1) is usually used in an amount of 0.5 to 20 monolayers, preferably 0.5 to 2.0 pd gram atoms of the palladium compound (a). Used in the range of 5 moles.
  • (b-2) is a Pdl gram element of the palladium compound (a). It is usually used in the range of 0.1 to 10 monoles, preferably 0.5 to 3.0 moles per child.
  • the ionic boron compound or the like of (c) is particularly preferably used when (b-1) is used as the component (b), and is used as necessary when (b-2) is used.
  • the palladium compound (a) contains a component e) component
  • the palladium compound (a) has 0.2 to 20 moles, preferably 0.5 to 10 moles, and more preferably 0.5 to 20 moles per gram atom of Pdl. Used in the range of 5 moles.
  • the organoaluminum compound (d) is particularly preferably used when the component (b-2) is used as the component (b), and is optionally used when the component (b_l) is used.
  • the use of a nickel compound can be expected to have the effect of improving polymerization activity and increasing the resistance of the catalyst system to impurities such as oxygen.
  • the multi-component catalyst contains the organoaluminum compound (d)
  • the organoaluminum compound (d) is contained in an amount of 0.1 to 200 monoles, preferably 0.1 to 200 per Pdl atom of the palladium compound (a). It can be used in the range of 5 to 200 monoles.
  • the organoaluminum compound (d) is in the range of 0.5 to 10 mol per gram atom of Pd of the palladium compound (a).
  • the above-mentioned addition complex (b_2) is used as the component (b), it is used in an amount of 0.5 to 20 mol per gram atom of Pdl of the palladium compound (a).
  • the preparation method such as the order of addition of each catalyst and the method of use as long as a multi-component catalyst containing the above-described components is present in the polymerization system. That is, the components constituting the multi-component catalyst may be added to the cyclic olefin monomer after being mixed in advance, or each component may be added to the polymerization system in which the cyclic olefin monomer is present. May be added simultaneously or sequentially directly.
  • the multi-component catalyst according to the present invention may be prepared by simply mixing each catalyst component as described above or by adding the catalyst component to a polymerization system.
  • a polycyclic monoolefin compound having an ene structure a non-conjugated gen thereof, a compound selected from a monocyclic or linear conjugated gen and a non-conjugated gen (hereinafter also referred to as a compound such as gen).
  • a compound such as gen hereinafter also referred to as a compound such as gen.
  • the compound such as z is usually 0.5 to 1 per Pdl gram atom of the palladium compound (A). It can be used in the range of 1000 moles.
  • the polymerization activity of the catalyst may not be sufficient.
  • the catalyst becomes insoluble in the solvent or the resulting polymer becomes gel. Or may be.
  • a polycyclic monoolefin having a bicyclo [2.2.1] heptane 2-ene structure is used as a monomer, and each of the monomers is used in a polymerization system in which the monomer is present.
  • polymerization is carried out by introducing a catalyst component, the preparation of a multi-component catalyst does not need to be performed separately using a compound such as a diene other than the polymerization monomer.
  • polycyclic monoolefin compound having a bicyclo [2.2.1] hepta-2-ene structure examples include, for example, a specific monomer (1) described later. Can also be used as
  • alkyl, cycloalkyl and aryl substituted compounds having 115 carbon atoms of these compounds.
  • Examples of the bicyclic [2.2.1] polycyclic non-conjugated diene compound having a heptane 2-ene structure include, for example,
  • linear conjugated diene compound examples include:
  • 1,3_butadiene, 2-methinole 1,3_butadiene, 2,3_dimethine 1,1,3_butadiene, 2_pheninolee 1,3-butadiene, 1,3_pentadiene, 1,3-hexadiene, etc. are mentioned.
  • Examples of the monocyclic conjugated diene compound include 1,3-cyclohexadene and 1,3-cyclooctadiene.
  • linear non-conjugated diene compound examples include 1,4-hexadiene and 1,5-hexadiene.
  • Examples of the monocyclic non-conjugated diene compound include 1,4-cyclohexadiene and 1,5-cyclooctadiene.
  • the preparation of the multi-component catalyst according to the present invention includes, among these, a polycyclic monoolefin having a bicyclo [2.2.1] heptane 2-ene structure, its non-conjugated gen, and its monocyclic non-conjugated It is preferable from the viewpoint of polymerization activity to carry out the reaction in the presence of a compound selected from a jenic compound.
  • the catalyst formed from the components (a) and (b) described above and, if necessary, the components (c) and (d) may have a low solubility in a hydrocarbon solvent.
  • a compound such as benzene
  • such polymerization activity may be reduced. Can be reduced or eliminated.
  • a catalyst is prepared by previously mixing the catalyst components (a) and (b) and, if necessary, (c) and (d) in the presence of a compound such as the above-mentioned jen, and then preparing a catalyst.
  • B) To a mixture of a monomer, a polymerization solvent and a compound such as the above-mentioned jen, a catalyst component (a), (b) and, if necessary, each component of (c) and (d) are added.
  • a method such as a method of preparing a catalyst by direct and sequential addition. In these methods, there is no particular limitation on the order of addition of the catalyst components.
  • an excess amount of the organoaluminum compound exceeding 1 mol per 1 mol of the specific phosphine compound is Since it acts as an organoaluminum compound as component (d), which is a cocatalyst used as needed, it is possible to reduce or omit the addition amount of the organic aluminum compound of component (d) added last. is there.
  • a cyclic olefinic monomer containing a cyclic olefinic compound represented by the following general formula (1) (hereinafter, referred to as a specific monomer (1)) is added. Polymerizes.
  • a 1 to A 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 115 carbon atoms, a cycloalkyl group, an aryl group, an ester group, an oxetanyl group, an alkoxy group, An atom or group selected from the group consisting of a group, a trialkylsilyl group, and a hydroxyl group, and these include at least one atom selected from an alkylene group having a carbon number of 120, an oxygen atom, a nitrogen atom, and a sulfur atom. It may be linked to a ring structure by a linking group having 0 to 10 carbon atoms.
  • a 1 and A 2 form an alkylidene group having 15 to 15 carbon atoms, a substituted or unsubstituted alicyclic or aromatic ring having 520 carbon atoms, or a heterocyclic ring having 2 to 20 carbon atoms.
  • a 1 and A 3 may form a substituted or unsubstituted alicyclic or aromatic ring having 520 carbon atoms or a heterocyclic ring having 2 to 20 carbon atoms.
  • m is 0 or 1.
  • Specific examples of the specific monomer (1) include the following compounds, but the present invention is not limited to these specific examples.
  • Such a specific monomer (1) may be used alone or in a combination of two or more.
  • Alpha 1 one Alpha 4 specific single-mer is a hydrocarbon group are each independently a hydrogen atom or a carbon atoms 1 one 15 ( It is also preferable to use 1) in a proportion of 50 mol% or more of the total cyclic olefin monomer.
  • the cyclic olefinic monomer represented by the following general formula (2) -1 and / or the following general formula (2) -2 in addition to the specific monomer (1) is used.
  • a specific monomer (2) a cyclic olefin-based monomer containing the specific monomer (2)
  • crosslinking properties can be imparted to the obtained cyclic olefin-based addition polymer. That is, by using a cyclic olefin-based monomer containing the specific monomer (2), a hydrolyzable silyl group can be introduced into the molecule of the cyclic olefin-based addition polymer.
  • the groups act as sites for crosslinking by siloxane bonds.
  • hydrolyzable silyl group since the hydrolyzable silyl group also functions as a site for bonding / adhering to other members, it may also contribute to improving adhesion / adhesion to other members of the cyclic olefin-based addition polymer. Can be expected.
  • R 2 is a substituent selected from an alkyl group having 1 to 10 carbon atoms, a cycloanolalkyl group or an aryl group,
  • X is an alkoxy group having 1 to 5 carbon atoms, or a halogen atom
  • Y is a hydroxyl residue of an aliphatic diol having 24 carbon atoms
  • k is an integer from 0-2, and n is 0 or 1.
  • Specific examples of the specific monomer (2) represented by the general formulas (2) _1 and (2) _2 include the following compounds, but the present invention is not limited to these specific examples. Absent. Examples of the specific monomer (2) represented by the general formula (2) _1 include the following compounds.
  • examples of the specific monomer (2) represented by the general formula (2) -2 include the following compounds.
  • the specific monomer (2) includes one or more compounds represented by the general formula (2) -1 and one or more compounds represented by the general formula (2) -2. May be used in combination.
  • the amounts of the specific monomer (1) and the specific monomer (2) are not particularly limited, and may be appropriately selected according to the properties required for the obtained polymer.
  • the usage ratio of the specific monomer (1) is 50 mol% or more based on all monomers.
  • the usage ratio of the specific monomer (2) is usually in the range of 0.1 to 30 mol% based on all monomers.
  • the specific monomer (1) and the specific monomer (1) are used.
  • the total amount of the monomer and the monomer (2) should be at least 80 mol% with respect to the total monomers, and the respective ratios [(1) / (2)] should be 70–99.8 / 30 — 0.2, preferably 80-97 / 20-3, more preferably 85-95 / 15-5.
  • the polymer at such a ratio the obtained polymer can be improved in adhesion and adhesion to other materials, water absorption (wet) deformation can be substantially suppressed, and the specific monomer (2) can be used.
  • Crosslinking utilizing a specific polar group derived therefrom is facilitated, and the resulting crosslinked product has a very low linear expansion coefficient, which is preferable.
  • the specific monomer (2) when the specific monomer (2) is contained in the cyclic olefin monomer, the specific monomer (2) is contained in 0.1% of the total cyclic olefin monomer. It is desirable to use 30 mol%, preferably 230 mol%, more preferably 5-20 mol%.
  • the copolymer is a cyclic olefin-based addition copolymer containing a hydrolyzable silyl group
  • the proportion of the specific monomer (2) in the cyclic olefin-based monomer exceeds 30 mol%, the polymerization activity may decrease or the water absorption of the formed addition polymer may increase. May occur, causing water absorption deformation.
  • the obtained polymer or the olefinic unsaturated bond of the polymer is changed to hydrogen.
  • the linear expansion coefficient of the crosslinked product obtained by crosslinking the added hydrogenated product tends to increase, which may cause a problem in applications where the demand for thermal deformation is severe.
  • the coefficient of linear expansion of the crosslinked product obtained by crosslinking the obtained polymer tends to increase, This can be problematic in applications where the demands on thermal deformation are severe.
  • a monomer copolymerizable with the specific monomer (1) or (2) (hereinafter, referred to as “copolymerizable monomer”) can be used in combination.
  • a monomer include, for example, cyclic olefins such as cyclopentene, cyclohexene, cycloheptene and cyclootaten, cyclic diolefins such as cyclopentadiene and cyclohexadiene, and alkyl-substituted derivatives thereof.
  • the amount of these copolymerizable monomers may be appropriately selected depending on the properties required for the polymer obtained, based on all the monomers, typically 0- 50 Monore 0/0, preferably is 0 to 20 mole 0/0.
  • the monomer does not contain a monomer other than the specific monomer (1) and the specific monomer (2). .
  • a specific olefin compound in addition to the multi-component catalyst comprising the above components, can also be used in combination, and the polymerization activity can be expected to be improved by using a specific olefin compound in combination.
  • a specific olefin compound include, for example, ethylene, butyl chloride, butyl acetate, and acrylic acid ester. Of these, ethylene is preferred.
  • These specific olefin compounds can be used in the range of 110,000 moles per Pdl gram atom of the palladium compound (a).
  • the addition polymerization according to the present invention is usually performed in a polymerization solvent.
  • the solvent that can be used for the addition polymerization include alicyclic hydrocarbon solvents such as cyclohexane, cyclopentane, and methylcyclopentane; aliphatic hydrocarbon solvents such as hexane, heptane, and octane; With aromatic hydrocarbon solvents such as toluene, benzene, xylene, ethylbenzene, and mesitylene, and halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, 1,1-dichloroethane, tetrachloroethane, chlorobenzene, and dichlorobenzene.
  • these solvents may be used alone, or a mixed solvent using two or more kinds
  • the polymerization temperature can be generally in the range of 20 to 120 ° C, preferably 20 to 100 ° C, and the temperature can be changed over time.
  • a system in which monomers are charged all at once or a system in which monomers are sequentially added can be employed.
  • the resulting copolymer may vary from a random copolymer with no composition distribution to a copolymer with a composition distribution, depending on the difference in copolymerization reactivity and the method of charging the monomers. Can be controlled up to.
  • any of a batch polymerization system and a continuous polymerization system using a tank reactor, a tower reactor, a tube reactor, or the like can be employed.
  • a structural unit represented by the following general formula (3) is formed by addition polymerization of a cyclic olefin monomer containing the specific monomer (1).
  • the structural unit represented by the general formula (3) is obtained by hydrogenating the produced polymer after addition polymerization as described later. Formed by
  • the addition polymerization is terminated by adding an organic carboxylic acid compound, an alcohol compound, a primary to tertiary amine compound, a hydroxyamine compound, ammonia, hydrogen, an aryl halide compound to a polymer solution.
  • the reaction is carried out by adding a compound selected from a halogenated methylaryl compound, a tertiary halogenated alkylidyl compound, a halogenated acid compound, a silane compound having a Si—bond, and the like.
  • the molecular weight of the cyclic olefin-based addition polymer is controlled by, for example, ethylene, propylene, 1-butene, 1-hexene, trimethylsilylethylene, trimethoxyethylene, triethoxyethylene, styrene such as olefin, cyclopentene,
  • the reaction is carried out using silane compounds such as cyclohexene, triethylsilane, getylsilane, phenylsilane, diphenylsilane, etc., isopropanol, water, hydrogen, etc., but since the molecular weight can be controlled with a small amount and there is no effect on the polymerization activity, ethylene is used. preferable.
  • an olefinic unsaturated bond when an olefinic unsaturated bond is present in the obtained addition polymer, such as when the specific monomer (1) having an olefinic unsaturated bond is used, coloring by heat or light, Hydrogenation (hydrogenation) of the olefinic unsaturated bond is preferred because it causes deterioration such as gelation.
  • the hydrogenation method is not particularly limited, and a method for hydrogenating ordinary olefinic unsaturated bonds may be used. It can be done by applying the law. Generally, hydrogenation is performed in an inert solvent at a hydrogen gas pressure of 0.5 to 15 MPa and a reaction temperature of 0 to 200 ° C in the presence of a hydrogenation catalyst. When an aromatic ring (aromatic group) is present in the polymer, the aromatic ring is relatively stable to heat and light and may contribute to optical characteristics and heat resistance. It does not need to be converted. Depending on the desired properties, it is necessary to select conditions under which such aromatic rings are not substantially hydrogenated.
  • Examples of the inert solvent that can be used in the hydrogenation reaction include, for example, aliphatic hydrocarbons having 5 to 14 carbon atoms such as hexane, heptane, octane, and dodecane; cyclohexane, cycloheptane, cyclodecane, and methylcyclohexane.
  • a Group VIII metal such as nickel, nordium, platinum, cobalt, ruthenium, and rhodium or a compound thereof is supported on a porous carrier such as carbon, alumina, silica, silica alumina, and diatomaceous earth.
  • a catalyst is used.
  • the catalyst used for the polymerization reaction and the catalyst used for the hydrogenation reaction to be carried out if necessary are removed in the decatalysis step.
  • the method applied in such a decatalysis step is not particularly limited, and is appropriately selected depending on the properties and shape of the catalyst used.
  • a solution of the polymer obtained by terminating the polymerization or a hydrogenated product thereof is treated with lactic acid, glycolic acid, j3-methyl-3-oxypropionic acid, ⁇ -oxybutyric acid, or the like.
  • Decatalysis can be achieved by treatment with an adsorbent such as diatomaceous earth, silica, alumina, activated carbon, etc., which is treated with an aqueous solution of carboxylic acid, triethanolamine, dialkylethanolamine, ethylenediaminetetraacetate, etc. Be done.
  • the solvent is directly evaporated from the decatalyzed solution, or coagulated with alcohols such as methanol, ethanol, and propanol, and ketones such as acetone and methyl ethyl ketone, and then dried.
  • alcohols such as methanol, ethanol, and propanol
  • ketones such as acetone and methyl ethyl ketone
  • the cyclic olefin-based addition polymer produced through steps such as polymerization and desorption can be prepared from a solution containing the polymer by a known method, for example, using a method such as heating or decompression.
  • the solvent can be recovered by a method of directly removing the solvent, a method of mixing a solution containing the polymer with a poor solvent for the polymer such as an alcohol ketone, and coagulating and separating the polymer.
  • the solution can be used as a raw material as it is, or formed into a film or sheet by a solution casting method (casting method) and collected.
  • the glass transition temperature (Tg) of the cyclic olefin addition polymer obtained by the production method of the present invention is determined by the type and amount of a monomer used for polymerization, and can be appropriately selected according to the use in which the polymer is used.
  • the temperature is usually 150 to 450 ° C, preferably 180 to 400 ° C, and more preferably 200 to 380 ° C. If the glass transition temperature of the polymer is lower than 150 ° C, there may be a problem with heat resistance.On the other hand, if the glass transition temperature exceeds 450 ° C, the polymer becomes rigid and the toughness is reduced, and the polymer is liable to crack. is there.
  • the molecular weight of the cyclic olefin-based addition polymer is measured by gel permeation chromatography at 120 ° C. using o-dichlorobenzene as a solvent, and the number average molecular weight (Mn) in terms of polystyrene is measured. 10,000-300,000, weight-average molecular weight (Mw) 30 000 500,000, preferably ⁇ is number-average molecular weight ( ⁇ ) force 0,000-200,000, weight-average molecular weight (Mw) force 0 , 000—300,000.
  • the film or sheet may be easily broken. Meanwhile, the number average If the molecular weight (Mn) exceeds 300,000 and the weight average molecular weight (Mw) exceeds 500,000, the solution viscosity of the polymer becomes too high when producing a film or sheet by the casting method (solution casting method). May be difficult to handle.
  • the cyclic olefin-based addition polymer according to the present invention contains an antioxidant selected from a phenol-based, phosphorus-based, thioether-based, and rataton-based polymer in an amount of 0.001 to 15 parts per 100 parts by weight of the addition polymer. By weight, preferably 0.01 to 5 parts by weight can be added to further improve the heat deterioration resistance.
  • the cyclic olefin-based addition polymer according to the present invention includes other cyclic olefin-based addition polymers and hydrogenated cyclic olefin-based polymers in order to improve mechanical properties such as processability and toughness.
  • Ring polymers, copolymers of thiolefin with cyclic olefins, crystalline olefin polymers, rubbery ethylene and olefin copolymers having 3 or more carbon atoms, hydrogenated Butadiene-based polymer, hydrogenated butadiene-styrene block copolymer, hydrogenated isoprene-based polymer and the like can be blended in a ratio of 0.1 to 90% by weight.
  • the cyclic olefin polymer according to the present invention may be further crosslinked.
  • Crosslinking is carried out, for example, in the above-mentioned film or sheet molding, before, during or after the step of casting a polymer solution or dispersion containing an acid generator as described above and then drying. This can be performed by external heating or light irradiation.
  • the cyclic olefin-based addition polymer according to the present invention has a hydrolyzable silyl group or oxetane group in at least a part of the structural units, a compound that generates an acid by the action of heat or light (acid generator) And then subjected to light irradiation or heat treatment to obtain a crosslinked cyclic olefin-based addition polymer.
  • hydrolyzable silyl group-containing polymer a cyclic olefin-based addition polymer having the structural unit (4) -11 or (4) -12 obtained by the production method of the present invention.
  • hydrolyzable silyl group-containing polymer Has a hydrolyzable silyl group as a side chain substituent, and can be hydrolyzed and condensed in the presence of an acid to form a crosslinked product crosslinked by a siloxane bond.
  • Such a crosslinked product when formed into a film or sheet, has a significantly reduced coefficient of linear expansion, and is excellent in solvent resistance, chemical resistance, and liquid crystal resistance.
  • a compound capable of generating an acid by the action of light or heat is mixed with a solution of a hydrolyzable silyl group-containing polymer, and the film is cast by a solution casting method (cast method).
  • the crosslinked product can be obtained by generating an acid by light irradiation or heat treatment to promote the crosslinking.
  • Examples of the acid generator used in the present invention include compounds selected from the following groups 1), 2), 3) and 4), and at least one selected from these is selected from a hydrolyzable silyl group. It is preferably used in an amount of 0.00015 parts by weight, and more preferably 0.00015 parts by weight, per 100 parts by weight of the polymer.
  • Aromatic sulfonium salt aromatic ammonium salt, aromatic pyridinium salt, aromatic phosphonium salt whose anion is BF, PF, AsF, SbF, B (CF) etc.
  • trialkyl phosphites triaryl phosphites, dialkyl phosphites, monoalkyl phosphites, hypophosphites, esters of secondary or tertiary alcohols of organic carboxylic acids, Hemiacetal esters of organic carboxylic acids, trialkylsilyl esters of organic carboxylic acids or ester compounds of organic sulfonic acids and secondary or tertiary alcohols, etc. in the presence or absence of water A compound that generates an acid when heated to 50 ° C or higher.
  • Metal oxides such as tin, aluminum, zinc, titanium and antimony, alkoxide compounds, phenoxide compounds, diketone compounds, alkyl compounds, halogen compounds, and organic acid salt compounds.
  • the compound of 3 has good compatibility with the hydrolyzable silyl group-containing polymer. Further, it is preferable because of excellent storage stability when blended in a solution containing a hydrolyzable silyl group-containing polymer.
  • these acid generators may be used alone or in combination of two or more.
  • the method for molding the cyclic olefin polymer or the composition containing the polymer according to the present invention is not particularly limited. For example, a cyclic olefin polymer or a composition containing the polymer may be used.
  • It can be formed into a film, a sheet, a thin film or the like by a solution casting method (casting method) in which the solution is dissolved or dispersed in a solvent, applied to the support, and then the solvent is dried. Molding by the solution casting method is preferred because it can suppress the polymer due to heat history.
  • a solution containing a polymer prepared at a predetermined concentration and, if necessary, filtered and defoamed is rolled. After flowing onto the release plate flowing above, it passes through a smoothing roll that is in contact with the casting roll to adjust the thickness, smooth the surface, evaporate the solvent, and remove the release plate. And a method of passing through a dryer. If the demand for residual solvent is severe, immerse it in a low-boiling halogen solvent such as methylene chloride or 1,2-dichloroethane, or expose it to a steam atmosphere, or use steam in addition to primary drying with a dryer. After contacting with, it is effective to carry out secondary drying by further heating to 80-220 ° C.
  • a low-boiling halogen solvent such as methylene chloride or 1,2-dichloroethane
  • Crosslinking of a film, sheet or thin film is carried out by casting a polymer solution or a dispersion containing an acid generator as described above, before, during or after the drying step. It is performed by heating or light irradiation.
  • the residual solvent content in the film, sheet or thin film obtained by the above method is 5,000 ppm or less, preferably 2, OOO ppm or less, more preferably 1, OOO ppm or less. If the residual solvent content exceeds 5, OOOppm, a large amount of volatile components will be generated when surface treatment is performed on a film, sheet or thin film with a reduced pressure system such as a sputtering machine, resulting in equipment contamination. In addition, the degree of decompression may be reduced, and the coefficient of linear expansion of the film, sheet or thin film may increase, resulting in poor dimensional stability.
  • the cyclic olefin-based addition polymer of the present invention is formed by a solution casting method as described above.
  • the glass transition temperature of the polymer is 250 ° C or lower, injection molding or melt extrusion can be used. Melt molding such as molding and blow molding can also be applied. Even if the glass transition temperature of the polymer exceeds 250 ° C, melt extrusion molding or blow molding is applied by blending a plasticizer or the like or swelling the polymer with a solvent. , Films or thin films.
  • Oxidation degradation resistance of the cyclic olefin-based addition polymer of the present invention In order to further improve the color degradation resistance, a phenolic antioxidant, a ratatone antioxidant, a phosphorus antioxidant, and a thioether-based antioxidant. 0.005 parts by weight of a compound selected from antioxidants can be blended with respect to 100 parts by weight of the polymer.
  • the cyclic olefin-based addition polymer of the present invention may be used to improve the processability and the mechanical properties such as toughness, etc., and to obtain other cyclic olefin-based addition polymers, hydrogenated cyclic olefin-based ring-opening weight.
  • the cyclic olefin-based addition polymer obtained by the production method of the present invention can be used for optical material parts, electronic and electric parts, medical equipment, electric insulating materials, packaging materials, and the like. .
  • optical materials include light guide plates, protective films, deflection films, retardation films, touch panels, transparent electrode substrates, optical recording substrates such as CDs, MDs, and DVDs, substrates for TFTs, color filter substrates, and optical lenses. It can be used for a sealing material or the like.
  • the electronic / electric parts include containers, trays, carrier tapes, separation films, cleaning containers, pipes, tubes, and the like.
  • Medical equipment includes chemical containers, ampules, syringes, infusion bags, sample containers, test tubes, blood collection tubes, sterile containers, pipes, It can be used for tubes and the like.
  • an electrical insulating material it can be used as a covering material for electric wires and cables, an insulating material for OA equipment such as computers, printers and copiers, and an insulating material for printed circuit boards.
  • a packaging material it can be used for package films of foods, pharmaceuticals and the like.
  • a cyclic olefin-based compound can be added (co) polymerized with high polymerization activity with a small amount of a palladium-based catalyst, and a cyclic olefin-based addition polymer can be produced with high productivity.
  • a cyclic olefin monomer is polymerized using a multi-component catalyst containing (a) a palladium compound, (b-1) a specific phosphonium salt, and (d) an organoaluminum compound.
  • a cyclic olefin-based addition polymer having substantially no composition distribution can be obtained.
  • a multi-component catalyst containing (a) a palladium compound, (b-2) an addition complex of a specific phosphine compound and an organoaluminum compound, and (c) an ionic boron compound.
  • a cyclic olefin-based monomer is polymerized by using a polymer, the cyclic olefin-based compound can be added (co) polymerized with high polymerization activity at a high level, and the cyclic olefin-based addition polymer can be produced with high productivity.
  • a monomer composition containing a polar olefin compound having a polar group, particularly a hydrolyzable silyl group, that has little effect on polymerization activity is copolymerized.
  • addition copolymerization can be performed with high polymerization activity.
  • the molecular weight, total light transmittance, glass transition temperature, tensile strength, elongation, and randomness in the copolymerization reaction were measured or evaluated by the following methods.
  • the dynamic viscoelasticity was measured using Leo Vibron DDV-01FP (manufactured by Orientec), the measurement frequency was 10 ⁇ , the heating rate was 4 ° CZ, the excitation mode was a single waveform, and the excitation amplitude was 2.
  • the peak temperature of Tan ⁇ was measured using a sample of 5 ⁇ m.
  • TMA Thermal Mechanical Analysis
  • SS6100 manufactured by Seiko Instruments Inc.
  • a film piece with a film thickness of about 150 ⁇ m, length of 10 mm and width of 10 mm was set upright and fixed as a test shape.
  • the temperature was raised from room temperature to 200 ° C at a rate of 5 ° C / min, and then raised again from room temperature at a rate of 5 ° C / min.
  • the linear expansion coefficient was determined from the inclination of the elongation of the film piece between ° C and 150 ° C.
  • test piece was measured at a pulling speed of 3 mm / min.
  • the sample was placed in a hot air oven at 200 ° C for 3 hours, and the amount of residual solvent was measured from the weight change before and after.
  • Methoxy group absorbs 3.5 ppm (CH of SiOCH), ethoxy group absorbs 3.9 ppm (Si
  • the ethyl ester group used 3.9 ppm absorption (_C (C) ⁇ CH CH CH). O
  • the xetanol group used an absorption of 4.2-4.6 ppm (CH 2 next to the 4-membered ring atom).
  • the residual monomer in the polymer solution was analyzed by gas chromatography to determine the amount introduced into the copolymer.
  • the randomness is determined by the ratio of the structural unit (Rp) derived from “specific monomer (2)” in the polymer to the ratio (Rm) of “specific monomer (2)” in all monomers.
  • the ratio (r) was used as an index.
  • the ratio of structural units derived from 5_triethoxysilylbicyclo [2.2.1] hept-2-ene in polymer A was determined by 1 H-NMR at 270 MHz.
  • the ratio of the structural unit derived from 5-triethoxysilylbicyclo [2.2.1] heptane 2_ene was 6.7 mol%.
  • the number average molecular weight (Mn) was 74,000
  • the weight average molecular weight (Mw) was 185,000
  • Tg glass transition temperature
  • Example 1 tricyclohexylphosphonium pentafluorophenyl borate (0.0013) in place of 33 mmol of tricyclohexylphosphonium_2_ethylhexanoate was 0.100133 millimono, triphenylcarbenyltetrakis. The procedure was as in Example 1, except that 0.00133 mmol of (pentafluoropheninole) borate was used.
  • the conversion rate after 12 minutes is 18%
  • 5-triethoxysilyl vicinal black in the polymer [2.2.1] proportion of the structural unit derived from Heputa 2 E emission is 12 mol 0 / . Met.
  • the polymer B thus obtained had a number average molecular weight (Mn) of 63,000, a weight average molecular weight (Mw) of 167,000, and a glass transition temperature (Tg) of 365 ° C.
  • Example 2 bicyclo [2.2.1] hepter 2-ene 93 millimonole and 5-triethoxysilylbicyclo [2.2.1] hepter 2-ene 7 millimonole were replaced with bicyclo [2.2.1] Hepter 2_ene 90 mmol, 5-trimethoxysilylbicyclo [2.2.1] Hept-2-ene 10 mmol was used in the same manner as in Example 1.
  • the polymer C thus obtained had a number average molecular weight (Mn) of 72,000, a weight average molecular weight (Mw) of 177,000, and a glass transition temperature (Tg) of 360 ° C.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Tg glass transition temperature
  • polymer C Of 5-ratio of trimethoxysilane Siri ruby cyclo [2 ⁇ 2.1] hept-2-E emission derived structural units is 9. 7 mole 0/0, the index r of randomness 1. 5.
  • the polymer D thus obtained had a number average molecular weight (Mn) of 62,000, a weight average molecular weight (Mw) of 156,000, and a glass transition temperature (Tg) of 360 ° C. Further, 4-methyl-tetracyclo [6.2.3 1.1 3 '6 0 2' 7] de de force in the polymer D - percentage of 9_ En 4_ carboxylate derived structural units is 9.2 In mole%, the randomness index r was 0.6.
  • Example 2 bicyclo [2.2.1] hepta_2_ene was used as a monomer in an amount of 80 mmol, and tricyclo [5.2.1. 0 2 ' 6 ] deca with an endo body strength of 95% was used. The procedure was performed in the same manner as in Example 2 except that 20 mmol of 8-ene was used. Analysis by gas chromatography of the residual monomers of the polymer solution, tricyclo in the polymer [5.2.2 1.0 2 '6] dec force - 8- E down ratio of the structural units derived from 12 mole 0 / 0 . Up to 3 hours, the copolymer solution did not become cloudy, and the conversion to the polymer was 92%.
  • the polymer E thus obtained had a number average molecular weight (Mn) of 64,000, a weight average molecular weight (Mw) of 177,000, and a glass transition temperature (Tg) of 365 ° C.
  • Comparative Example 2 Polymerization was carried out in the same manner as in Example 2 except that tricyclohexylphosphonium-2-ethylhexanoate was replaced with tricyclohexynolephosphine.
  • the polymer F thus obtained was dissolved in p-chloro-benzene and o-dichloro-benzene.
  • the number average molecular weight (Mn) of polymer E was 53,000
  • the weight average molecular weight (Mw) was 187,000
  • the glass transition temperature (Tg) was 365 ° C.
  • the proportion of structural units derived from 5-triethoxysilylbicyclo [2.2.1] hept-2-ene in copolymer F was 6.8 mol%
  • the index of randomness r was 2.4. there were.
  • 10 g of polymer A is dissolved in a mixed solvent of 10 ml of methylcyclohexane and 40 ml of xylene, and pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and pentaerythrityl-tetrakis are used as antioxidants.
  • 0.6 parts by weight of tris (2,4-di-t_butylphenyl) phosphite was added to 100 parts by weight of the polymer, and tributyl phosphite was used as a crosslinking agent in an amount of 1 part by weight to 100 parts by weight of the polymer. 4 parts by weight were added.
  • the polymer solution was filtered through a membrane filter having a pore size of 10 ⁇ m to remove foreign substances, cast on a polyester film at 25 ° C, gradually raised the temperature of the atmosphere to 50 ° C, and dried the mixed solvent.
  • the film was formed.
  • the film was exposed to steam at 180 ° C for 2 hours to form a crosslinked product.
  • the film was exposed to a methylene chloride vapor atmosphere at 25 ° C for 30 minutes to remove residual solvent. Thereafter, vacuum drying was performed at 80 ° C. for 30 minutes to remove methylene chloride, thereby producing a crosslinked film A-1 having a thickness of 150 ⁇ m.
  • the residual solvent amount of the obtained film A-1 was 0.3% by weight or less. Table 1 shows the evaluation results.
  • a crosslinked film B-1 having a thickness of 150 zm was obtained in the same manner as in Reference Example 1, except that Polymer B was used instead of Polymer A.
  • the amount of residual solvent in the obtained film B-1 is 0.3 % Or less. Table 1 shows the evaluation results.
  • a crosslinked film C-1 having a thickness of 150 zm was obtained in the same manner as in Reference Example 1, except that Polymer C was used instead of Polymer A.
  • the residual solvent amount of the obtained film C-1 was 0.3% by weight or less. Table 1 shows the evaluation results.
  • a film was formed in the same manner as in Reference Example 1 except that the polymer D was used instead of the polymer A, and a partially crosslinked film D-1 having a thickness of 150 ⁇ m was obtained.
  • the obtained film D-1 had a residual solvent amount of 0.3% by weight or less.
  • Table 1 shows the evaluation results.
  • a film was formed in the same manner as in Reference Example 1, except that the polymer E was used instead of the polymer A, to obtain a 150-m-thick film E-1.
  • the residual solvent amount of the obtained film E-1 was 0.3% by weight or less.
  • Table 1 shows the evaluation results. Since no hydrolyzable silyl groups involved in crosslinking exist in polymer E, it is considered that the obtained film E-1 is not crosslinked.
  • a crosslinked film F1 with a thickness of 150 ⁇ was obtained in the same manner as in Example 1 except that the polymer F was used instead of the polymer A, and the casting solvent was changed to p-chlorobenzene.
  • the residual solvent amount of the obtained film F-1 was 0.3% by weight or less. Table 1 shows the evaluation results.
  • Trimethyl phosphite 140 ppm was used as an external standard for the 31 P-NMR (nuclear magnetic resonance) spectrum of tricyclohexylphosphine, using JASCO EOL-270 type nuclear magnetic resonance apparatus (NMR). It was measured.
  • Reference Example 6 it was brought into contact with air in the same manner as in Reference Example 6, except that a complex of tricyclohexylphosphine and triethylethyl having a molar ratio of 1: 1 was used instead of tricyclohexylphosphine.
  • the polymerization reaction was performed at 75 ° C for 3 hours, and the polymer solution was transparent without turbidity. To this solution, 0.1 mmol of triethylsilane was added to terminate the polymerization. From the measurement of the solid content of the polymer solution, the conversion to the polymer was 95%.
  • the polymer G in 9-trimethoxysilyl-tetracyclo [6.2.3 1.1 3 '6 0 2' 7] de de force - the ratio of 4-E emission derived structural units, the 270 MHz H- Determined by NMR.
  • the proportion of 9_ Torimeto silyl tetracyclo [6.2.3 1.1 3 '6 0 2' 7] Dodeka 4 En structural units derived from was 9. 7 mole%.
  • Example 6 the tricyclohexylphosphine and triethyl aluminum of Reference Example 7 were used.
  • Example 6 was carried out in the same manner as in Example 6, except that the complex obtained by bringing the addition complex of Reference Example 8 into contact with air was used instead of the addition complex.
  • the conversion to the polymer was 97%.
  • the number average molecular weight (Mn) of the polymer H thus obtained was 73,000, the weight average molecular weight (Mw) was 187,000, and the glass transition temperature (Tg) was 365 ° C.
  • the ratio of the structural unit derived from 5_triethoxysilylbicyclo [2.2.1] hept-2-ene in Polymer H was 9.8 monole%.
  • Example 6 triethynolealuminum was added as a catalyst component, followed by addition of triethynolealuminum to 10% of the phenylborate [PhC-B (C F)].
  • the X 10- 4 Mirimonore was added Caro, 9-trimethoxysilyl-tetracyclo [6.2.3 1.1 3 '6 0 2' 7] de de force one 4 - instead of E down 10 mmol 5- trimethoxy Using 10 mmol of silylbicyclo [2.2.1] hept-2-ene, adding 5.0 mmol before polymerization and then adding 1.0 mmol 5 times at 20-minute intervals, the procedure of Example 6 was repeated. Performed similarly.
  • the number average molecular weight (Mn) of the polymer I thus obtained was 72,000, the weight average molecular weight (Mw) was 177,000, and the glass transition temperature (Tg) was 360 ° C.
  • the ratio of structural units derived from 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene in Polymer I was 9.7 monole%.
  • Example 6 9-trimethoxysilyl-tetracyclo instead of using the 6-2.1.1 3 '6 0 2' 7] dodeca _4- E down 10 mmol, 4-methyl-tetracyclo [6 ⁇ 2. 1. 1 3 ' 6 0 2 ' 7 ] Dode force—9—4—Methyl carboxylate The procedure was as in Example 6, except that 10 mmol was used.
  • the polymer J thus obtained had a number average molecular weight (Mn) of 62,000, a weight average molecular weight (Mw) of 156,000, and a glass transition temperature (Tg) of 360 ° C. Further, 4-methyl-tetracyclo [6.2.3 1.1 3 '6 0 2' 7] de de force in the polymer J - ratio of 9-En 4-carboxylate structural units derived from the 9.2 Mol%.
  • the charging port is sealed with a rubber cap with a crown and an addition complex of triethylaluminum and cyclohexylphosphine is formed at 30 ° C for 10 minutes, and then 30 ml of gaseous 0.
  • IMPa ethylene as a molecular weight regulator is charged.
  • polymer solution was transparent and the conversion to the polymer was 99%.
  • the polymer was coagulated with isopropanol, and then dried to obtain polymer K.
  • the polymer K thus obtained had a number-average molecular weight (Mn) of 64,000 and a weight-average molecular weight (Mw) of 177,000. [6.2.1 0 2 ' 7 ]
  • the ratio of structural units derived from dodeca-4-ene was 3.0 mol%, and the glass transition temperature (Tg) was 375 ° C.
  • Example 6 100 mmol of 5-n-hexylbicyclo [2.2.1] hepta_2_ene having an endo / exo ratio of 20/80 as a monomer was used, Instead of the addition complex having a molar ratio of tricyclohexylphosphine and triethylaluminum of 1: 1 as a catalyst component, the molar ratio of tricyclohexylphosphine and getylaluminum chloride of Reference Example 9 was changed to 1: 1. Except that complex using 1 ⁇ 5 X 10- 4 mmoles, was performed in the same manner as in Example 6.
  • the polymer solution was transparent, and the film obtained by solution casting the polymer L from a 20% by weight cyclohexane solution was also transparent.
  • the polymer M had a number average molecular weight (Mn) of 48,000 and a weight average molecular weight (Mw) of 235,000, and had a somewhat broad molecular weight distribution.
  • Example 6 The procedure of Example 6 was repeated, except that 30 ml of gaseous ethylene was added and then 30 ml of air was further added to the pressure-resistant bottle. After 3 hours, the conversion to the polymer was 96%.
  • Example 6 Compared with Example 6, even if air was added to the polymerization system, the polymerization activity and the molecular weight were not affected.
  • Example 6 the molar ratio of cyclohexyl phosphine and tri E chill aluminum into tricyclo 1: Instead of using the addition complex 2. 0 X 10- 4 mmoles of 1, using hexyl phosphine 2. 0 X 10- 4 mmoles into tricyclo Except for this, polymerization was carried out in the same manner as in Example 6. The conversion to polymer after 3 hours was 95%.
  • Example 6 the molar ratio of cyclohexyl phosphine and tri E chill aluminum into tricyclo 1: Instead of using the addition complex 2. 0 X 10- 4 mmoles of 1, a hexyl phosphine to tricyclo in contact with air as prepared in Reference Example 2 other for using 2 ⁇ 0 X 10- 4 mmoles, was polymerized in the same manner as in example 6.
  • Example 13 the molar ratio of cyclohexyl phosphine and tri E chill aluminum into tricyclo 1: instead of one with Caro complex 2. 0 X 10- 4 Mirimonore, the tricyclo carboxymethyl Honoré phosphine 2. 0 X 1 0- 4 mmol Polymerization was carried out in the same manner as in Example 13 except that the polymer was used. The conversion to the polymer after 3 hours was 65%, and the conversion after 7 hours was 78%.
  • the cyclic olefin-based addition polymer obtained by the present invention can be used not only for optical materials, but also for electronic and electrical parts, medical equipment, electrical insulating materials, and packaging materials.
  • optical material for example, a light guide plate, a protective film, a deflection film, a retardation film, It is used for touch panels, transparent electrode substrates, optical recording substrates such as CDs, MDs, and DVDs, optical lenses, and sealing materials.
  • Examples of the electronic and electrical components include liquid crystal display devices, liquid crystal substrates, containers, trays, carrier tapes, separation films, cleaning containers, pipes, tubes, and the like.
  • liquid crystal display devices liquid crystal substrates, containers, trays, carrier tapes, separation films, cleaning containers, pipes, tubes, and the like.
  • medical equipment for example, it is used for drug containers, ampules, syringes, infusion bags, sample containers, test tubes, blood collection tubes, sterile containers, pipes, tubes, and the like.
  • an electrical insulating material for example, it is used as a coating material for electric wires and cables, an insulating material for OA equipment such as computers, printers, and copying machines, and an insulating material for printed circuit boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

 本発明は、少ないパラジウム触媒量で環状オレフィン系単量体を付加(共)重合でき、環状オレフィン系付加(共)重合体を高活性で製造できる、環状オレフィン系付加重合体の製造方法を提供することを課題としている。  本発明の環状オレフィン系付加重合体の製造方法は、(a)パラジウム化合物と、(b)特定のリン化合物とを含む多成分系触媒の存在下に、特定式で表される環状オレフィン系化合物を含む環状オレフィン系単量体を付加重合することを特徴としている。

Description

明 細 書
環状ォレフィン系付加重合体の製造方法
技術分野
[0001] 本発明は、環状ォレフィン系付加重合体の製造方法に関する。詳しくは、本発明は 、重合活性に優れたパラジウム化合物を含む特定の触媒の存在下に、環状ォレフィ ン化合物を付加重合して、光学用途などに好適に用いられる環状ォレフィン系付加 重合体を製造する方法に関する。
^景技術
[0002] 近年、軽量化、小型、高密度化の要求に伴い、従来、無機ガラスが用いられていた レンズ類、封止材などの光学部品、バックライト、導光板、 TFT基板、タツチパネルな ど液晶表示素子部品などの分野で光学透明な樹脂による代替が進んでいる。係る光 学透明な樹脂として、高透明性、高耐熱性、低吸水性という特徴を有する、ノルボル ネン(ビシクロ [2. 2. 1]ヘプター 2—ェン)系の付加重合体が注目されている。
また、上記特性に加えて、線膨張係数が小さく熱的な寸法安定性にも優れ、耐薬 品性があり、他の部材との接着 ·密着性に優れた透明樹脂として、ノルボルネン (ビシ クロ [2. 2. 1]ヘプタ _2_ェン)と加水分解性のシリル基を有する環状ォレフィンとの 付加重合体およびその架橋体が提案されている(特許文献 1参照)。
ノルボルネンを代表とする環状ォレフィンの付加重合体は、 Ni、 Pd、 Ti、 Zr、 Crな どの遷移金属化合物を用いた触媒を用いて環状ォレフィン系単量体を付加重合す ることにより得られてきた (例えば、非特許文献 1参照)。
[0003] また、側鎖に極性置換基を有する環状ォレフィン系化合物と非極性の環状ォレフィ ン系化合物の付加共重合体は、優れた耐熱性、透明性以外に接着 ·密着性の向上 や、寸法安定性、耐薬品性向上のために架橋化できる共重合体として有用であり、こ れら共重合体を得る重合触媒として、後周期遷移金属の Ni、 Pdの単一錯体ゃ Ni、 P dィ匕合物を含む多成分系触媒が主として用いられてきた (特許文献 1 , 2、非特許文 献 2— 11参照)。
これら触媒の中では、煩雑な触媒合成工程を省くため、工業的には単一触媒よりも 多成分系の Pd触媒が用いられる場合が多レ、。
また、重合活性の優れた触媒として、 Pdカチオンの配位子としてホスフィン化合物 ゃァミン化合物を中性ドナーとして用レ、、弱いカウンターァニオン配位子として超強 酸ァニオンが知られている(特許文献 1、 3 6、非特許文献 12参照)。
これら先行技術の多成分系の触媒は、次のいずれかの成分を調製することにより得 られている。
<触媒系 1 >
1) Pd化合物
2)中性のホスフィンまたはァミン化合物
3) Pdカチオンの弱いカウンターァニオンとなりうるイオン性の化合物
4)有機アルミニウム化合物
<触媒系 Π >
1)中性のホスフィンやアミンィヒ合物を配位子とする Pdィヒ合物
2) Pdカチオンの弱いカウンターァニオンとなりうるイオン性の化合物
3)有機アルミニウム化合物
<触媒系 III >
1) σ—ァノレキル、 σ—ァリーノレ、 π—ァリルなど Pd— C結合を有する中性ドナーを配 位子とする Pd化合物
2) Pdカチオンの弱いカウンターァニオンとなりうるイオン性の化合物
<触媒系 IV>
1) σ—ァノレキル、 σ—ァリーノレ、 π—ァリルなど Pd— C結合を有する中性ドナーを配位 子とする Pd化合物
2)ルイス酸化合物
これらの触媒には、いずれも、中性ドナーのホスフィンまたはアミンィ匕合物が含まれ ている。しかしながら、 σ—ァノレキノレ、 σ—ァリ一ノレ、 π _ァリルなど Pd_C結合を有する 中性ドナーを配位子とする Pd化合物はその錯体合成が煩雑となり、工業的には必ず しも有利とは言えなレ、。そして従来、このような中性ドナーなどに代えて、イオン性の ホスフォニゥム塩を触媒の構成成分とする触媒は知られていなかった。 [0005] また、従来技術の中性ドナー触媒系を用いて、例えば、加水分解性シリル基を有 する 5_トリアルコキシシリルビシクロ [2· 2. 1]ヘプタ— 2_ェンと側鎖に置換基のない ビシクロ [2. 2. 1]ヘプター 2—ェン(ノルボルネン)との重合を炭化水素溶媒中で行う と、組成分布のある重合体が生成しやすぐ重合中に析出したり、得られた重合体が 白濁したりすることがあった。これは、 5_トリアルコキシシリルビシクロ [2. 2. 1]ヘプタ _2_ェンの反応性がビシクロ [2. 2. 1]ヘプタ— 2_ェンの反応性よりも高いため、重 合初期により多くの 5_トリアルコキシシリルビシクロ [2. 2. 1]ヘプタ _2_ェンが反応 して重合体中に取り込まれ、 5_トリアルコキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェ ン由来の構造単位の割合が高い部分を有する重合体が生成する。すなわち、重合 体の構造単位に関して組成分布が生じるため、重合溶媒や重合反応後半で生成す る重合体との溶解性もしくは相容性が低下するためと考えられている。
[0006] また、 5_トリアルコキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン由来の構造単位に 関して組成分布が生じると、加水分解性シリル基を利用して架橋させて架橋体とした とき、架橋体中の架橋網目が不均一となり、寸法安定性が劣るものとなることがある。 このため、係る組成分布が実質的に生じない重合方法として、重合系に一方の単 量体を連続添加または逐次添加する方法が考えられるが、共重合する単量体の反 応性比が大きく異なると係る制御も困難になると考えられる。
上記のような組成分布が生じても重合中に析出することを防ぐ方法としては、 5-トリ アルコキシシリルビシクロ [2. 2. 1]ヘプター 2—ェンと側鎖置換基の炭素数が 3以上 のアルキル基を有する環状ォレフィン系化合物とを共重合する方法もあるが、係る場 合、フィルム、シートなどにした場合に、柔軟性はあるが線膨張係数が大きくなり、寸 法安定性の点で問題が生じることがある。また、係る場合、組成分布がより大きくなる ことがあり、得られた重合体の透明性や架橋体としたときの架橋網目の均一性に問題 が生じやすくなることがある。
[0007] なお、エステル基またはォキセタン基を有する環状ォレフィン系化合物とビシクロ [2 . 2. 1]ヘプター 2—ェンとの重合反応では、前述の加水分解性シリル基を有する環状 ォレフィン系化合物の場合と異なり、エステル基またはォキセタン基を有する環状ォ レフイン系化合物の反応性がビシクロ [2. 2. 1]ヘプター 2_ェンの反応性よりも低い ため、重合初期にはエステル基またはォキセタン基を有する環状ォレフィン系化合 物由来の構造単位の割合が低い重合体が生成するが、係る重合において組成分布 が生じることについては加水分解性シリル基を有する環状ォレフィン系化合物の場 合と同様であり、同様の問題が生じることがある。
このため、加水分解性シリル基、エステル基またはォキセタン基など極性の置換基 を有する環状ォレフィン系化合物と非極性の環状ォレフィン系化合物との重合反応 において、上記のような組成分布が実質的に生成せず、したがって、炭化水素溶媒 を使用した重合中に析出したり得られた重合体が白濁したりすることのない触媒系が 求められている。
[0008] さらに、 Pd触媒は高価であること、 Pd触媒が重合体中に多く残存すると着色したり 透明性に問題が生じたりするため、少なレ、触媒量で重合が可能な重合活性の高レ、 触媒が求められている。
さらに、上述した Pd化合物を含む多成分系触媒は、前周期の Ti、 Zr化合物を含む 多成分系触媒より、水、メタノールなどに比べ耐性があるが、重合活性向上のために 添加される中性ドナーのホスフィンは貯蔵中に酸素が存在するとホスフィンォキシド へ酸化されやすぐ重合活性の低下を招く場合がある。特に少ない触媒量での重合 においては微量の酸素の存在でも触媒成分が異なるものとなり、その影響が大きい。 このため、工業生産上、重合系に微量な酸素が存在しても、重合速度、生成重合 体の品質にバラツキの少ない触媒系が求められていた。
[0009] また、接着'密着性、あるいは耐溶剤性、耐薬品性を有する環状ォレフィン系付カロ 重合体架橋物を製造する場合には、架橋基となる加水分解性シリル基、エステル基 などの極性の置換基を有する環状ォレフィン系化合物と、非極性の環状ォレフィン系 化合物とを付加重合反応させて、架橋体の前駆体となる共重合体を製造する工程を 通常有するが、このような付加重合反応で形成された共重合体からは、パラジウム原 子の除去が困難である場合が多い。このため、該共重合体の残留パラジウムが多い と光学透明性の低下を招くという問題がある。
特許文献 1 : USP 6, 455, 650
特許文献 2 : USP 3, 330, 815 特許文献 3:特開平 5 - 262821号公報
特許文献 4 : W〇 00/20472号
特許文献 5:特開平 10 - 130323号公報
特許文献 6 :特開 2001— 98035号公報
非特午文献 1: Cnristoph Jamak, Paul G. Lassahn, Macromol. Rapid Commun. 22, p479 (2001)
非特許文献 2 : R. G. Schultz, Polym. Lett. VOL. 4,p541 (1966)
非特許文献 3 : Stefan Breunig, Wilhelm Risse, Makromol. Chem. 193, 2915 (1992) 非特許文献 4 : Adam L. Safir, Bruce M. Novak Macromolecules, 28, 5396 (1995) 非特許文献 5 : Joice P. Mathew et al. Macromolecules, 29, 2755-2763 (1996) 非特許文献 6 : Annette Reinmuth et al. Macromol. Rapid Commun. 17, 173-180 (
1996)
非特許文献 7 : B. S. Heinz, Acta Polymer 48, 385 (1997)
非特許文献 8 : B. S. Heinz et al. Macromol. Rapid Commun. 19, 251 (1998) 非特許文献 9 : Nicole R. Grove et al. J. Polym. Sci. PartB, 37, 3003 (1999) 非特許文献 10 : April D. Hennis et al. Organometallics, 20, 2802 (2001) 非特許文献 l l : Seung UK Son et al. J. Polym. Sci. Part A Polym. Chem. 41, 76 (
2003)
非特許文献 12 : John Lipian et al. Macromolecules, 35, 8969-8977 (2002) 本発 明は、このような状況に鑑みてなされたものであって、少ないパラジウム触媒量で環 状ォレフイン系単量体を付加 (共)重合でき、環状ォレフィン系付加 (共)重合体を高 活性で製造できる、環状ォレフィン系付加重合体の製造方法を提供することを課題と している。
また、本発明は、特定の環状ォレフィン系化合物と、加水分解性シリル基などの極 性置換基を有する環状ォレフィン系化合物とを含む単量体組成物を重合した場合に 、極性置換基を有する環状ォレフィン系化合物に由来する構造単位に関して、実質 的に組成分布を生じない、高重合活性の触媒を用いた環状ォレフィン系付加重合体 の製造方法を提供することを課題としてレ、る。 さらに、本発明は、環状ォレフィン系化合物の(共)重合反応において、微量の酸素 が存在しても、重合活性への影響が小さぐ加水分解性のシリル基などの極性置換 基を有する環状ォレフィン系化合物を含むモノマーを (共)重合する場合にも、高活 性で付カロ (共)重合できる新規な触媒を用いた、環状ォレフィン系付加重合体の製造 方法を提供することを課題としている。
発明の開示
本発明の環状ォレフィン系付加重合体の製造方法は、
(a)パラジウム化合物と、
(b)下記 (b-1)、 (b-2)よりなる群から選ばれる 1種以上のリン化合物;
(b-1)—般式(bl)で表されるホスフォニゥム塩
[PR2R3R4R5] + [CA ]" (bl)
1
[一般式 (bl)において、 Pはリン原子、 R2は水素原子、炭素数 1一 20のアルキル基、 シクロアルキル基、ァリール基から選ばれた置換基、 R3— R5はそれぞれ独立に炭素 数 1一 20のアルキル基、シクロアルキル基、ァリール基から選ばれた置換基、 [CA
1 T はカルボン酸ァニオン、スルフォン酸ァニオン、もしくは、 B、 Pまたは Sbから選ばれた 原子と F原子とを含む超強酸ァニオンから選ばれた対ァニオンを示す。 ]、
(b-2)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力、ら選ばれた 置換基で、そのコーンアングノレ(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物と有機アルミニウム化合物との付加錯体
とを含む多成分系触媒の存在下に、
下記一般式(1)で表される環状ォレフィン系化合物を含む環状ォレフィン系単量体 を付加重合することを特徴としている。 [0012] [化 1]
Figure imgf000008_0001
(式(1)中、 A1— A4はそれぞれ独立に水素原子、ハロゲン原子、炭素数 1一 15のァ ノレキノレ基、シクロアルキル基、ァリーノレ基、エステル基、ォキセタニル基、アルコキシ 基、トリアルキルシリル基、水酸基よりなる群から選ばれる原子もしくは基であり、これ らは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原子から選ばれ た少なくとも 1種の原子を含む炭素数 0 10の連結基により環構造に連結されてい てもよレ、。また、 A1と A2とが、炭素数 1一 5のアルキリデン基、炭素数 5 20の置換も しくは非置換の脂環または芳香環、炭素数 2— 20の複素環を形成していてもよぐ A1 と A3とが、炭素数 5— 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20 の複素環を形成していてもよレ、。 mは 0または 1である。 )
このような本発明の環状ォレフィン系付加重合体の製造方法においては、下記 2つ の好ましレ、様態が存在する。
1.多成分系触媒が、 (a)パラジウム化合物と、 (b-1)で表されるリン化合物と、(c)ィ オン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウム化合 物およびルイス酸性のホウ素化合物から選ばれた化合物
とを含む態様。
2.多成分系触媒が、 (a)パラジウム化合物と、 (b-2)で表されるリン化合物と、 (d)有機アルミニウム化合物とを含む態様。
[0013] なお、上記 2における有機アルミニウム化合物(d)の含有量が、パラジウム化合物( a)のパラジウム 1グラム原子あたり、 0. 1一 200モルであることが好ましい。
本発明の環状ォレフィン系付加重合体の製造方法においては、前記パラジウムィ匕 合物(a)力 パラジウムの有機カルボン酸塩または β—ジケトン化合物であることが好 ましい。
本発明の環状ォレフィン系付加重合体の製造方法においては、多成分系触媒が、 ビシクロ [2. 2. 1]ヘプター 2—ェン構造を有する多環状のモノォレフィンまたは非共 役ジェン、単環状の非共役ジェン、および、直鎖状の非共役ジェンよりなる群から選 ばれる少なくとも 1種の化合物の存在下で調製された触媒であることが好ましい。 本発明の環状ォレフィン系付加重合体の製造方法においては、多成分系触媒が、 ビシクロ [2. 2. 1]ヘプタ— 2—ェンおよび Zまたは炭素数 1一 15の炭化水素基を 1 つ以上有するビシクロ [2. 2. 1]ヘプタ— 2—ェン誘導体の存在下で調製された触媒 であることが好ましい。
[0014] 本発明の環状ォレフィン系付加重合体の製造方法においては、環状ォレフィン系 単量体が、下記一般式(2)— 1または(2)— 2で表される環状ォレフィン系化合物を含 むことが好ましい。
[0015] [化 2]
Figure imgf000009_0001
[0016] [化 3]
Figure imgf000009_0002
(式(2)— 1および式(2)— 2中、 R1 R2は炭素原子数 1一 10のアルキル基、 キル基またはァリール基から選ばれた置換基であり、 Xは炭素数 1一 5のアルコキシ基またはハロゲン原子であり、
Yは炭素数 2— 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。 )
このような本発明の環状ォレフィン系付加重合体の製造方法では、前記一般式(2) 一 1および Zまたは一般式(2)— 2で表される環状ォレフィン系化合物を、合計量で、 全環状ォレフィン系単量体中 0. 1 30モル%の割合で用レ、ることが好ましレ、。
[0017] 本発明の環状ォレフィン系付加重合体の製造方法では、前記一般式(1)において
Α1— A4がそれぞれ独立に水素原子または炭素数が 1一 15の炭化水素基である環 状ォレフイン系単量体を、全環状ォレフィン系単量体中 50モル%以上用いることが 好ましい。
なお、本出願は、特願 2003— 296507号および特願 2004— 23576号力 の優先 権を主張するが、引用することによりこれらを援用する。
発明を実施するための最良の形態
[0018] 以下、本発明について詳細に説明する。
本発明の環状ォレフィン系付加重合体の製造方法では、環状ォレフィン系単量体 の付加重合を、パラジウム化合物(a)と、特定のリン化合物 (b)とを含む多成分系触 媒を用いて行う。
ぐ多成分系触媒 >
本発明で用いる多成分系触媒は、
(a)パラジウム化合物と、
(b)下記 (b_l)、 (b-2)よりなる群から選ばれる 1種以上のリン化合物;
(b-1)—般式(bl)で表されるホスフォニゥム塩
[PR2R3R4R5] + [CA ]" (bl)
1
[一般式 (bl)において、 Pはリン原子、 R2は水素原子、炭素数 1一 20のアルキル基、 シクロアルキル基、ァリール基から選ばれた置換基、 R3— R5はそれぞれ独立に炭素 数 1一 20のアルキル基、シクロアルキル基、ァリール基から選ばれた置換基、 [CA ]—
1 はカルボン酸ァニオン、スルフォン酸ァニオン、もしくは、 B、 Pまたは Sbから選ばれた 原子と F原子とを含む超強酸ァニオンから選ばれた対ァニオンを示す。 ]、 (b-2)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基から選ばれた 置換基で、そのコーンアングノレ(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物と有機アルミニウム化合物との付加錯体
とを含む。このような本発明に係る多成分系触媒は、さらに必要に応じて
(c)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウム 化合物およびルイス酸性のホウ素化合物から選ばれた化合物
および/または
(d)有機アルミニウム化合物
を含有する。
以下に本発明で用いる多成分系触媒の各成分について説明する。
(a)パラジウム ^^
パラジウム化合物(a)としては、パラジウムの有機カルボン酸塩、有機亜リン酸塩、 有機リン酸塩、有機スルフォン酸塩、 ージケトン化合物、ハロゲン化物などが挙げら れ、このうちパラジウムの有機カルボン酸塩または ージケトン化合物力 S、炭化水素 溶媒に溶解しやすぐ重合活性が高いため好ましい。
これら化合物の具体例としては、パラジウムの酢酸塩、プロピオン酸塩、マレイン酸 塩、フマル酸塩、酪酸塩、アジピン酸塩、 2—ェチルへキサン酸塩、ナフテン酸塩、ォ レイン酸塩、ドデカン酸塩、ネオデカン酸塩、 1, 2—シクロへキサンジカルボン酸塩、 ビシクロ [2. 2. 1]ヘプタ— 5_ェンー 2_カルボン酸塩、 5_ノルボルネンー 2_カルボン 酸塩、安息香酸塩、フタル酸塩、テレフタル酸塩、ナフトェ酸塩などのパラジウムの有 機カルボン酸塩、酢酸パラジウムのトリフエニルホスフィン錯体、酢酸パラジウムのトリ (m—トリル)ホスフィン錯体、酢酸パラジウムのトリシクロへキシルホスフィン錯体などの パラジウムの有機カルボン酸の錯体、パラジウムのジブチル亜リン酸塩、ジブチルリン 酸塩、ジォクチルリン酸塩、リン酸ジブチルエステル塩などの亜リン酸塩、リン酸塩、 パラジウムのドデシルベンゼンスルホン酸塩、 p—トルエンスルホン酸塩などのパラジ ゥムの有機スルフォン酸塩、ビス(ァセチルァセトナート)パラジウム、ビス(へキサフ口 ロアセチルァセトナート)パラジウム、ビス(ェチルァセトアセテート)パラジウム、ビス( フエニルァセトアセテート)パラジウムなどのパラジウムの —ジケトン化合物、ジクロロ ビス(トリフエニルホスフィン)パラジウム、ジクロロビス [トリ(m—トリルホスフィン)]パラ ジゥム、ジブロモビス [トリ(m—トリルホスフィン)]パラジウム、ジクロロビス [トリ(m—キシ リルホスフィン)]パラジウム、ジブロモビス [トリ(m—キシリルホスフィン)]パラジウム、 [ C H N ] [PdCl ]で表されるイミダゾール錯体、 [Ph PCH C (0) CH ] [Pd CI ]で 表されるァセトニルトリフエニルホスフォニゥム錯体などのパラジウムのハロゲン化物 錯体等が挙げられる。さらに、ジベンジリデンアセトンパラジウム〔Pd (dba)〕ゃテトラ キス [トリフヱニルホスフィン]パラジウム〔Pd (P(Ph) ) 〕など、ァリールクロライド、ベンジ ノレクロライド、ブロモベンゼン、クロ口ベンゼン、ブロモナフタレンなどのハロゲン化物 との組み合わせで、本発明の上記 (b-2)で示される特定のホスフィン化合物の存在 下でァリールまたはァリルパラジウムハライドを形成する 0価のパラジウム化合物も挙 げられる。
本発明においては、パラジウム化合物(a)として、下記一般式 (al)で表される化合 物を用いることも好ましい。
Pd (R) (X) 〜(al)
(式(al)中、 Rは、炭素数 1一 20の有機カルボン酸、有機スルフォン酸、有機リン酸、 モノまたはジリン酸エステル、有機亜リン酸および βージケトンから選ばれたァニオン 、 Xはハロゲン原子を示す。 )
上記一般式 (al)で表される化合物の具体例としては、特に限定されるものではな いが、たとえば、酢酸パラジウムクロライド、 2-ェチルへキサン酸パラジウムクロライド 、ナフテン酸パラジウムクロライド、ォレイン酸パラジウムクロライド、ドデカン酸パラジ ゥムクロライド、ネオデカン酸パラジウムクロライド、ジブチル亜リン酸パラジウムクロラ イド、ジブチルリン酸パラジウムクロライド、リン酸ジブチルエステルのパラジウムクロラ イド、ドデシルベンゼンスルホン酸パラジウムクロライド、 p—トルエンスルフォン酸パラ ジゥムクロライド、ァセチルァセトナートパラジウムクロライドなどの II価のハロゲン化パ ラジウム化合物が挙げられる。
(b)リン )
リンィ匕合物 (b)としては、下記 (b-l)、(b-2)よりなる群から選ばれる 1種以上のリン 化合物が挙げられる。 (b-1)—般式(bl)で表されるホスフォニゥム塩
[PR2R R4R5] + [CA I (bl)
1
[一般式 (bl)において、 Pはリン原子、 R2は水素原子、炭素数 1一 20のアルキル基、 シクロアルキル基、ァリール基から選ばれた置換基、 R3 R5はそれぞれ独立に炭素 数 1一 20のァノレキノレ基、シクロアルキル基、ァリール基力、ら選ばれた置換基、 [CA
1 Y はカルボン酸ァニオン、スルフォン酸ァニオン、 /3—ジケトン、もしくは、 B、 Pまたは Sb 力 選ばれた原子と F原子とを含む超強酸ァニオンから選ばれた対ァニオンを示す。
L
(b-2)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力、ら選ばれた 置換基で、そのコーンアングノレ(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物と有機アルミニウム化合物との付加錯体。
以下、これらの各リン化合物について説明する。
(b-1)は、上記一般式 (bl)で表されるホスフォニゥム塩である。本発明において使 用されるこのようなホスフォニゥム塩の具体例としては、特に限定されるものではない 力 例えば、テトラフェニルホスフォニゥムテトラ(ペンタフルオロフェニノレ)ボレート、ト リシクロへキシルホスフォニゥムテトラ(ペンタフルオロフェニノレ)ボレート、トリシクロへ キシルホスフォニゥムテトラフルォロボレート、トリシクロへキシルホスフォニゥムォクタ ノエート、トリシクロへキシルホスフォニゥムアセテート、トリシクロへキシルホスフォニゥ ムトリフロロメタンスルフオナート、トリシクロへキシルホスフォニゥム p—トノレエンスルフォ ナート、トリシクロへキシルホスフォニゥムへキサフルォロアセチルァセトナート、トリシ クロへキシルホスフォニゥムへキサフルォロアンチモナート、トリシクロへキシルホスフ ォニゥムドデシルベンゼンスルフオナート、トリフエニルホスフォニゥムテトラキス(ペン タフルオロフェニノレ)ボレート、トリフエニルホスフォニゥムへキサフルォロホスフオナー ト、トリス(3_メチルフエニル)ホスフォニゥムテトラキス(3, 5_トリフルォロメチルフエ二 ノレ)ボレート、トリオクチルホスフォニゥムテトラキス(3, 5_トリフルォロメチルフエニル) ボレート、トリオクチルホスフォニゥム p—トノレエンスルフオナートトリ(o_トリル)ホスフォ 二ゥムテトラ(ペンタフルオロフェニノレ)ボレート、トリ(ペンタフルオロフ工ニノレ)ホスフォ ニゥムトリフルォロメタンスルフオナート、トリ(t—ブチノレ)ホスフォニゥムトリフルォロメタ ンスルフオナートなどが挙げられる。好ましくはトリシクロへキシルホスフォニゥム塩、ト リ(ペンタフルオロフェニル)ホスフォユウム塩、トリ(o_トリル)ホスフォニゥム塩である。
[0022] 本発明では、リン化合物(b)として、このようなホスフォニゥム塩 (b-1)を用いることに より、共重合反応で組成分布が少ない共重合体が得られるため、生成する環状ォレ フィン系付加重合体が著しく高分子量化して、重合体溶液が固化膨潤状態となった り、重合体が沈殿したりすることを好適に防止することができる。このため、得られた環 状ォレフイン系付加重合体は、溶液流延法によるフィルム、シート、薄膜への成形な どにも好適に供することができる。
(b-2)は、炭素数 3 15のアルキル基、シクロアルキル基およびァリール基力、ら選 ばれた置換基で、そのコーンアングル(Cone Angle ; Θ deg)が 170 200のホスフィ ン化合物と有機アルミニウム化合物との付加錯体である。本発明においては、(b-2) 成分の原料としては、このような特定のホスフィンィ匕合物を用いることが重要な技術的 要件である。他のホスフィン化合物を用いたのでは生成する環状ォレフィン系付加重 合体が著しく高分子量ィ匕して、重合体溶液が固化膨潤状態となったり、重合体が沈 殿したりすることがあり、係る場合には、溶液流延法によるフィルム、シートおよび薄膜 への成形は困難な場合がある。
[0023] (b-2)の原料として用いられるホスフィン化合物は、アルキル基、シクロアルキル基 またはァリール基を置換基とする三価の電子供与性のリンィヒ合物(第三級ホスフィン 化合物)である。ここで、第三級ホスフィン化合物のコーンアングル(Cone
Angle ; Θ deg)は、 C. A. Tolman (Chem. Rev. Vol. 77, 313 (1977) )によって計算 されており、金属原子とリン原子の結合距離を 2. 28Aとして、金属とリン原子の三つ の置換基で形成されるモデルで測定される円錐角 Θである。
本発明で用いられるコーンアングル: Θ degが 170— 200のホスフィン化合物として は、例えば、トリシクロへキシルホスフィン、ジ t_ブチルフエニルホスフィン、トリネオぺ ンチルホスフィン、トリ(t—ブチノレ)ホスフィン、トリ(ペンタフルオロフェニノレ)ホスフィン 、トリ(o_トリル)ホスフィンなどが好ましいものとして挙げられる。また、ジ一 tーブチルー 2—ビフエ二ルホスフィン、ジ— t—ブチル _2 '—ジメチルァミノ— 2—ビフエ二ルホスフィン 、ジシクロへキシルー 2—ビフエ二ルホスフィン、ジシクロへキシルー 2 '— i—プロピル一 2— ビフエ二ルホスフィンなども挙げられる。
[0024] (b-2)の原料として用いられる有機アルミニウム化合物は、ルイス酸として作用し、 上記ホスフィン化合物と付加錯体を形成する化合物であって、アルミニウム -アルキ ル結合を少なくとも 1つ有する化合物である。このような有機アルミニウム化合物として は、文献「三枝ら、触媒、 Vol. 7, p43 (1965)」に記載される方法で有機アルミニウム 化合物にキサントンを配位させたとき、赤外スペクトルで測定されるキサントンのカル ボニル(C =〇)の伸縮振動の吸収スペクトルのシフト値(Δ V )が 50cm— 1以上の酸 c=o
性度を有する有機アルミニウム化合物が好ましレ、。
このような有機アルミニウム化合物としては、メチルアルミニウムジクロライド、ェチル アルミニウムジクロライド、ブチルアルミニウムジクロライド、セスキエチルアルミニウム クロライド、ジェチルアルミニウムクロライド、ジェチルアルミニウムフロライド、ジェチル アルミニウムブロマイド、ジブチルアルミニウムクロライド、トリェチルアルミニウム、トリメ チルアルミニウム、トリブチルアルミニウム、トリへキシルアルミニウム、ジブチルアルミ 二ゥムヒドリドなどが好ましいものとして挙げられる。なお、ジェチルアルミニウムェトキ シド、ジェチルアルミニウムメトキシド、ェチルアルミニウムジエトキシドなどのアルキル アルミニウムアルコキシド化合物は酸性度の点で好ましくない。
[0025] 上述した特定のホスフィンィヒ合物と、有機アルミニウム化合物との付加錯体である( b-2)は、通常、ホスフィンィ匕合物と有機アルミニウム化合物との組成比がモル比で 1 : 1の錯体である。このような付加錯体は、たとえば、特定のホスフィン化合物 1モルに 対して有機アルミニウム 1一 10モルを 0— 100°Cの範囲で加えて反応させることにより 形成される。錯体の形成には、特定のホスフィン化合物 1モルに対して有機アルミ二 ゥム化合物が 1. 0モルあれば充分であり、過剰の有機アルミニウム化合物は、後述 の助触媒成分である(d)有機アルミニウムとして作用する。
本発明では、リン化合物 (b)としてこのような付加錯体 (b_2)を用いた場合には、錯 体を形成していないホスフィンィ匕合物よりも、酸素に対する酸化耐性が増し、長期間 、溶液状態で保存しても安定なものとなるため好ましい。またこのような付加錯体 (b_2 )を用いた場合には、重合系に酸素が存在しても重合活性の低下が小さいものとなる ため好ましい。 (c)イオン件ホウ素化合物、イオン性アルミニウム化合物、ルイス酸件のアルミニウム 化合物およびルイス酸性のホウ素化合物から撰ばれた化合物
本発明で用いる多成分系触媒は、特に上記 (b)成分として (b-1)のリン化合物を用 いる場合、(c)イオン性ホウ素化合物、イオン性アルミニウム化合物、ノレイス酸性のァ ノレミニゥム化合物およびルイス酸性のホウ素化合物から選ばれた化合物を含むこと が好ましい。
[0026] イオン性ホウ素化合物としては、たとえば、トリフエニルカルべ二ゥムテトラキス(ペン タフルオロフヱニル)ボレート、トリフエ二ルカルべ二ゥムテトラキス [3, 5_ビス(トリフル ォロメチル)フエニル]ボレート、トリフエニルカルべ二ゥムテトラキス(2, 4, 6_トリフル オロフヱ二ノレ)ボレート、トリフエニルカルべ二ゥムテトラフヱニルボレート、トリブチルァ ンモニゥムテトラキス(ペンタフルオロフェニル)ボレート、 N, N—ジメチルァ二リニゥム テトラキス(ペンタフルオロフェニル)ボレート、 N, N—ジェチルァニリニゥムテトラキス( ペンタフルオロフェニノレ)ボレート、 N, N—ジフエ二ルァニリニゥムテトラキス(ペンタフ ノレオロフェニノレ)ボレート、リチウムテトラキス(ペンタフルオロフェニノレ)ボレートなどが 挙げられる。
イオン性アルミニウム化合物としては、例えば、トリフエニルカルべ二ゥムテトラキス( ペンタフルオロフェニル)アルミナート、トリフエニルカルべ二ゥムテトラキス [3, 5—ビス (トリフルォロメチル)フエニル]アルミナート、トリフエニルカルべ二ゥムテトラキス(2, 4 , 6—トリフルオロフェニル)アルミナート、トリフエニルカルべ二ゥムテトラフェニルアルミ ナートなどが挙げられる。
[0027] ルイス酸性のアルミニウム化合物としては、例えば、三フッ化アルミニウムエーテル 錯体、ェチルジフルォロアルミニウム、エトキシジフルォロアルミニウム、トリス(ペンタ フルオロフェニル)アルミニウム、トリス(3, 5—ジフルオロフェニル)アルミニウム、トリス (3, 5—ジトリフルォロメチルフエニル)アルミニウム、などが挙げられる。
ノレイス酸性のホウ素化合物としては、例えば、トリス(ペンタフルオロフヱニル)ホウ素 、トリス(3, 5—ジフルオロフェニル)ホウ素、トリス(3, 5—ジトリフルォロメチルフエニル )ホウ素、三フッ化ホウ素 ·エーテル錯体などが挙げられる。
本発明においては、これらの(c)成分のうち、イオン性ホウ素化合物が重合活性の 点で最も好ましい。
(d)有機アルミニウム化合物
本発明で用いる多成分系触媒は、特に (b)成分として上記 (b-2)のリン化合物を用 レ、る場合、(d)有機アルミニウム化合物を助触媒として含有することが好ましレ、。
[0028] (d)有機アルミニウム化合物は、少なくとも 1つのアルミニウム—アルキル基を有する アルミニウム化合物であり、たとえば、メチルアルモキサン、ェチルアルモキサン、ブ チルアルモキサンなどのアルキルアルモキサン化合物、トリメチルアルミニウム、トリエ チノレアノレミニゥム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム化合物、 ジイソブチルアルミニウムヒドリド、ジェチルアルミニウムクロライド、ジェチルアルミ二 ゥムフルオライド、ェチルアルミニウムセスキク口ライド、ェチルアルミニウムジクロライ ドなどのアルキルアルミニウム化合物およびハロゲン化アルキルアルミニウム化合物 、または上記アルキルアルモキサン化合物と上記アルキルアルミニウム化合物との混 合物などが好適に使用される。
多成分系触媒の調製
本発明に係る多成分系触媒は、上述の(a)成分、 (b)成分と、必要に応じて上述の (c)成分および/または(d)成分を含有する。本発明では、特に限定されるものでは ないが、これらの各触媒成分を、以下の範囲の使用量で好ましく用いることができる。
[0029] (a)のパラジウム化合物は、環状ォレフィン系単量体 1モルに対して、 0. 0005—0 • 05ミリモノレ Pd原子の範囲で、好ましく ίま 0. 001— 0. 05ミリモノレ Pd原子の範囲で、 より好ましくは 0. 005—0. 01ミリモルの範囲で用いられる。特に、パラジウム化合物 として有機カルボン酸塩または βージケトン化合物を用いると、環状ォレフィン系単量 体 1モノレ当たり、 0. 01ミリク、、ラム以下、好ましく fま 0. 001一 0. 01ミリモノレ Pd原子で付 加重合することができる。
(b)の特定のリン化合物は、パラジウム化合物(a)の Pdlグラム原子当たり、通常 0. 05— 20モルの範囲で用いられる。 (b)成分として上述したホスフォニゥム塩(b_l)を 用いる場合には、(b-1)は、パラジウム化合物(a)の Pdlグラム原子当たり、通常 0. 5 一 20モノレ、好ましくは 0. 5— 5モルの範囲で用いられる。また、(b)成分として上述し た付加錯体 (b-2)を用いる場合には、(b-2)は、パラジウム化合物(a)の Pdlグラム原 子当たり、通常 0· 1— 10モノレ、好ましくは 0· 5— 3.0モルの範囲で用いられる。
[0030] (c)のイオン性ホウ素化合物等は、 (b)成分として (b-1)を用いる場合に特に好まし く用いられ、(b-2)を用いる場合には必要に応じて用いられるもので、多成分系触媒 力 e)成分を含む場合、パラジウム化合物(a)の Pdlグラム原子当たり、 0. 2— 20モ ノレ、好ましくは 0. 5— 10モノレ、より好ましくは 0. 5 5モルの範囲で用いられる。
(d)の有機アルミニウム化合物は、(b)成分として (b-2)を用いる場合に特に好まし く用いられ、(b_l)成分を用いる場合には必要に応じて用いられるもので、有機アルミ ニゥム化合物を用いることにより、重合活性の向上や、触媒系が酸素などの不純物に 対して耐性が増すといった効果が期待できる。多成分系触媒が、有機アルミニウム化 合物(d)を含む場合、有機アルミニウム化合物(d)は、パラジウム化合物(a)の Pdlグ ラム原子当たり、 0. 1一 200モノレ、好ましく fま 0. 5一 200モノレの範囲で用レヽられる。 特に、有機アルミニウム化合物(d)は、(b)成分として上述したホスフォニゥム塩 (b_l) を用いる場合には、パラジウム化合物(a)の Pdlグラム原子当たり、 0. 5— 10モルの 範囲で、(b)成分として上述した付加錯体 (b_2)を用いる場合には、パラジウム化合 物(a)の Pdlグラム原子当たり、 0. 5— 20モルの範囲で用いられる。
[0031] 本発明においては、重合系内に上述の各成分を含む多成分系触媒が存在してい ればよぐ各触媒の添加順などの調製法や使用法に特に制限はない。すなわち、こ れらの多成分系触媒を構成する成分は、予め混合した後に環状ォレフィン系単量体 に添加してもよぐまた、環状ォレフィン系単量体の存在する重合系内に各成分を同 時にまたは逐次的に直接添加してもよい。
また、本発明に係る多成分系触媒は、上述のように各触媒成分を単に混合するか、 または重合系に添加することにより調製してもよいが、ビシクロ [2. 2. 1]ヘプター 2— ェン構造を有する多環状のモノォレフィン化合物、その非共役ジェン、単環状および 直鎖状の共役ジェンおよび非共役ジェンから選ばれた化合物(以下、ジェン等の化 合物ともいう)の存在下に調製することも好ましい。特に、(b)成分として上述の付加 錯体 (b-2)成分を用いる場合には、触媒の調製をジェン等の化合物の存在下に行う のが望ましい。多成分系触媒の調製時に、ジェン等の化合物を用いる場合、これら z等の化合物は、パラジウム化合物 (A)の Pdlグラム原子当たり、通常 0. 5一 1000モルの範囲で用いることができる。多成分系触媒の調製を、直鎖状および/ま たは単環状のモノォレフィン化合物の存在下に行った場合には、触媒の重合活性が 充分でない場合がある。また、多成分系触媒の調製を、直鎖状の共役または非共役 の、トリェン以上のポリェンの存在下に行った場合には、触媒が溶媒に不溶となった り、得られる重合体がゲル化したりする場合がある。
[0032] なお、本発明において、単量体としてビシクロ [2. 2. 1]ヘプター 2—ェン構造を有す る多環状のモノォレフィンを用い、該単量体の存在する重合系内に各触媒成分を導 入して重合を行う場合には、多成分系触媒の調製を、重合モノマー以外のジェン等 の化合物を別途用レ、て行わなくてもよレ、。
多成分系触媒を調製する際に用いることのできる、ビシクロ [2. 2. 1]ヘプタ— 2-ェ ン構造を有する多環状のモノォレフィン化合物としては、たとえば、後述する特定単 量体(1)としても用いることのできる
2. 1]ヘプター 2_ェン、
. 2. 1. 02'6]デカ— 8—ェン、
トリシクロ [6. 2. 1. 02'7]ゥンデ力— 9—ェン、
テトラシクロ [6· 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
およびこれら化合物の炭素数が 1一 15のアルキル、シクロアルキルおよびァリール置 換体などが挙げられる。
[0033] ビシクロ [2. 2. 1]ヘプター 2—ェン構造を有する多環状の非共役ジェン化合物とし ては、たとえば、
ビシクロ [2· 2. 1]ヘプター 2, 5—ジェン、トリシクロ [5· 2. 1. 02'6]デカ— 3, 8—ジェン
、テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4、 9—ジェン、
ペンタシクロ [9. 2. 02'10. O3'8. I1'11. I4'7]ペンタデカ一5, 12—ジェン、
1 , 4—ビス(2—ビシクロ [2. 2. 1]ヘプタ— 5—ェニル)ブタン、
1 , 4_ビス(2—ビシクロ [2. 2. 1]ヘプタ— 5—ェニル)へキサン、
1 , 4_ビス(2—ビシクロ [2. 2. 1]ヘプタ— 5—ェニルメチル)ベンゼン、
ジメチルビス(2—ビシクロ [2. 2. 1]ヘプタ— 5—ェニルメチル)シラン
メチルトリス(2—ビシクロ [2. 2. 1]ヘプタ— 5—ェニルメチル)シラン 5—ビニルビシクロ [2· 2. 1]ヘプタ -2-ェン、
5_ビニリデンビシクロ [2· 2. 1]ヘプタ _2_ェン、
5_イソプロピリデンビシクロ [2· 2. 1]ヘプター 2—ェン、
などが挙げられる。
[0034] 直鎖状共役ジェン化合物としては、たとえば、
1 , 3_ブタジエン、 2—メチノレ一 1, 3_ブタジエン、 2, 3_ジメチノレ一 1 , 3_ブタジエン、 2_フエニノレー 1, 3—ブタジエン、 1 , 3_ペンタジェン、 1, 3—へキサジェンなどが挙げ られる。
単環状共役ジェン化合物としては、たとえば、 1, 3—シクロへキサジェン、 1, 3—シ クロォクタジェンなどが挙げられる。
直鎖状非共役ジェン化合物としては、たとえば、 1, 4一へキサジェン、 1, 5—へキサ ジェンなどが挙げられる。
単環状非共役ジェン化合物としては、たとえば、 1 , 4ーシクロへキサジェン、 1 , 5- シクロォクタジェンなどが挙げられる。
[0035] 本発明に係る多成分系触媒の調製は、これらのうち、ビシクロ [2. 2. 1]ヘプター 2— ェン構造を有する多環状のモノォレフィン、その非共役ジェン、単環状の非共役ジェ ン化合物から選ばれた化合物の存在下で行うことが重合活性の点で好ましい。 上述した(a)、(b)および必要に応じて(c)、(d)成分から形成される触媒は、炭化 水素系溶媒に対する溶解度が低い場合があり、重合溶媒の種類によっては、重合系 に添加した際に一時的に析出して重合活性が低下する場合があるが、本発明に係る 多成分系触媒の調製をジェン等の化合物の存在下に行うと、このような重合活性低 下の問題を軽減あるいは解消することができる。なお、このような効果は、多成分系 触媒が上述のようなジェン等の化合物の存在下に調製された場合に、ジェン等の化 合物と触媒との間で錯体を形成することに起因すると考えられる。また、ジェン等の 化合物と触媒との間で形成された錯体が、重合反応の基点となった場合には、重合 時にポリマー鎖が 2方向に延びることとなり、分子量分布が広い重合体を得ることも可 能となる。
[0036] ジェン等の化合物の存在下に多成分系触媒を調製する方法としては、たとえば、 a)上述のジェン等の化合物の存在下で、触媒成分(a)、 (b)および必要に応じて(c) 、(d)を予め混合して触媒調製した後、単量体と重合溶媒の混合物に添加する方法 b)単量体、重合溶媒および上述のジェン等の化合物の混合物に、触媒成分 (a)、 (b )および必要に応じて (c)、(d)の各成分を直接、逐次添加して触媒調製する方法 などの方法が挙げられる。これら方法において、触媒成分の添加順序に関して制限 は特にない。
また、多成分系触媒を調製する方法としては、
c)単量体と炭化水素溶媒の混合物の存在下で、特定のホスフィン化合物と錯体形 成用の有機アルミニウム化合物との付加錯体 (b_2)を形成した後、触媒成分 (a)と、 必要に応じて(c)成分および/または(d)成分を添加する方法
も挙げられる。このような方法においては、付加錯体 (b-2)を形成する際に用いた有 機アルミニウム化合物のうち、特定のホスフィン化合物 1モルに対して 1モルを超えた 過剰量の有機アルミニウム化合物は、必要に応じて用いられる助触媒である(d)成分 としての有機アルミニウム化合物として作用するため、最後に添加する(d)成分の有 機アルミニウム化合物の添加量を減らす力または省略することも可能である。
<環状ォレフィン系単量体 >
本発明の環状ォレフィン系付加重合体の製造方法では、下記一般式(1)で表され る環状ォレフィン系化合物(以下、特定単量体(1)という)を含む環状ォレフィン系単 量体を付加重合する。
[化 4]
Figure imgf000021_0001
(式(1)中、 A1— A4はそれぞれ独立に水素原子、ハロゲン原子、炭素数 1一 15のァ ルキル基、シクロアルキル基、ァリーノレ基、エステル基、ォキセタニル基、アルコキシ 基、トリアルキルシリル基、水酸基よりなる群から選ばれる原子もしくは基であり、これ らは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原子から選ばれ た少なくとも 1種の原子を含む炭素数 0— 10の連結基により環構造に連結されてい てもよレ、。また、 A1と A2とが、炭素数 1一 5のアルキリデン基、炭素数 5 20の置換も しくは非置換の脂環または芳香環、炭素数 2— 20の複素環を形成していてもよぐ A1 と A3とが、炭素数 5 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20 の複素環を形成していてもよレ、。 mは 0または 1である。 )
特定単量体(1)の具体例としては、下記化合物が例示できるが、本発明はこれらの 具体例に限定されるものではない。
ビシクロ [2. 2. 1]ヘプタ一 2—ェン、
5_メチル一ビシクロ [2. 2. 1]ヘプタ _2_ェン、
5—ェチルビシクロ [2. 2. 1]ヘプタ _2_ェン、
5_プロピルビシクロ [2· 2. 1]ヘプタ _2_ェン、
5—ブチルビシクロ [2· 2. 1]ヘプタ— 2_ェン、
5_ (1—ブテニル)ビシクロ [2· 2. 1]ヘプター 2—ェン、
5_ペンチルビシクロ [2· 2. 1]ヘプタ _2_ェン、
5_へキシルビシクロ [2· 2. 1]ヘプタ _2_ェン、
5_へプチルビシクロ [2· 2. 1]ヘプタ _2_ェン、
5—ォクチルビシクロ [2· 2. 1]ヘプタ— 2_ェン、
5_デシルビシクロ [2· 2. 1]ヘプター 2—ェン、
5—ドデシルビシクロ [2· 2. 1]ヘプター 2—ェン、
5—シクロへキシル一ビシクロ [2. 2. 1]ヘプタ _2_ェン、
5—ビュルビシクロ [2. 2. 1]ヘプタ _2_ェン、
5—ァリルビシクロ [2. 2. 1]ヘプタ _2_ェン、
5—ェチリデンビシクロ [2. 2. 1]ヘプタ— 2_ェン、
5—フエ二ルビシクロ [2. 2. 1]ヘプタ— 2_ェン、
5, 6—ジメチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—メチル—6—ェチルビシクロ [2. 2. 1]ヘプタ _2_ェン、 5—フロロ一ビシクロ [2· 2. 1]ヘプター 2—ェン、
5—クロ口一ビシクロ [2· 2. 1]ヘプター 2—ェン、
5—ベンジルービシクロ [2. 2. 1]ヘプター 2—ェン、
5—インダニノレ一ビシクロ [2. 2. 1]ヘプタ一 2—ェン、
5—トリメチルシリル—ビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—トリェチルシリル—ビシクロ [2. 2. 1]ヘプタ _2—ェン、
5—メトキシ一ビシクロ [2. 2. 1]ヘプタ一 2_ェン、
5_エトキシ—ビシクロ [2. 2. 1]ヘプタ— 2_ェン、
5. 2. 1. 02'6]デカ— 8—ェン、
3. 2. 1. 02'6]デカ _3, 8—ジェン、
3. 2. 1. 02'7]ゥンデ力一 9_ェン、
5. 2. 1. I3'6. 02'7]ドデカ一4—ェン、
9—メチルテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4—ェン、
9—ェチルテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4—ェン、
ビシクロ [2. 2. 1]ヘプタ _5_ェンー 2_カルボン酸メチル、
ビシクロ [2. 2. 1]ヘプター 5—ェンー 2—力ルボン酸 t-ブチル、
ビシクロ [2. 2. 1]ヘプタ— 5—ェンー 2, 3—ジカルボン酸メチル、
ビシクロ [2. 2. 1]ヘプタ—5—ェンー 2, 3_無水カルボン酸、
ビシクロ [2. 2. 1]ヘプタ— 5—ェン -N—シクロへキシル -2, 3—カルボンイミド、 ビシクロ [2. 2. 1]ヘプタ— 5—ェン -N—フエ二ルー 2, 3—カルボンイミド、 ビシクロ [2. 2. 1]ヘプター 5—ェンー 2—スピロ— 3 '— exo—無水スクシン酸、 ビシクロ [2. 2. 1]ヘプタ— 5—ェンー 2—メチルカルボン酸メチノレー 2_カルボン酸メチ ノレ、
ビシクロ [2. 2. 1]ヘプタ一 5—ェン一 2—スピロ一ブチロラタトン、
ビシクロ [2. 2. 1]ヘプタ一 5—ェン _2—スピロ一 N—シクロへキシノレ一スクシンイミド、 ビシクロ [2. 2. 1]ヘプタ一 5—ェン _2—スピロ一 N—フエ二ルースクシンイミド、 テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 9—ェンー 4—カルボン酸メチル、
4—メチルテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー9—ェン一4—カルボン酸メチル、 5_[ (3—ェチノレー 3—ォキセタニル)メトキシ]ビシクロ [2· 2. 1]ヘプタ _2_ェン、
5_[ (3-ォキセタニル)メトキシ]ビシクロ [2· 2. 1]ヘプタ _2_ェン、
スピロ一 5_ (3—ォキセタニノレ)ビシクロ [2· 2. 1]ヘプター 2_ェン、
ビシクロ [2. 2. 1]ヘプタ— 5—ェン _2_カルボン酸(3—ェチル _3—ォキセタニル)メチ ノレ。
このような特定単量体(1)は、 1種単独で用いてもよいし、 2種以上を組み合わせて 用いてもよい。
本発明においては、環状ォレフィン系単量体として、前記一般式(1)において、 Α1 一 Α4がそれぞれ独立に水素原子または炭素数が 1一 15の炭化水素基である特定単 量体(1)を、全環状ォレフィン系単量体中 50モル%以上の割合で用いることも好まし レ、。
本発明においては、環状ォレフィン系単量体力 特定単量体(1)に加えて、下記一 般式(2)— 1および/または下記一般式(2)— 2で表される環状ォレフィン系化合物( 以下、特定単量体(2)という)を含むことも好ましい。特定単量体(2)を含む環状ォレ フィン系単量体を用いた場合には、得られた環状ォレフィン系付加重合体に架橋性 を付与することもできる。すなわち、特定単量体(2)を含む環状ォレフィン系単量体を 用いることにより、環状ォレフィン系付加重合体の分子中に加水分解性シリル基を導 入することができ、係る加水分解性シリル基がシロキサン結合による架橋部位として 作用する。また、係る加水分解性シリル基が、他の部材と接着 ·密着するための部位 としても作用するため、環状ォレフィン系付加重合体の他の部材との接着 ·密着性向 上にも寄与することが期待できる。
[0039] [化 5]
Figure imgf000025_0001
[0040] [化 6]
Figure imgf000025_0002
(式(2)_1および式(2) _2中、 、 R2は炭素原子数 1一 10のアルキル基、シクロアノレ キル基またはァリール基から選ばれた置換基であり、
Xは炭素数 1一 5のアルコキシ基、またはハロゲン原子であり、
Yは炭素数 2 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。 )
上記一般式(2) _1および(2) _2で表される特定単量体(2)の具体例としては、下 記化合物が例示できるが、本発明はこれらの具体例に限定されるものではない。 一般式(2)_1で表される特定単量体(2)としては、たとえば以下の化合物が挙げら れる。
5—トリメトキシシリルービシクロ [2· 2. 1]ヘプタ— 2—ェン、
5—トリエトキシシリルービシクロ [2· 2. 1]ヘプタ— 2—ェン、
5—メチルジメトキシシリルービシクロ [2. 2. 1]ヘプタ— 2_ェン、
5—メチルジェトキシシリルービシクロ [2· 2. 1]ヘプター 2—ェン、
5—メチルジクロロシリルービシクロ [2· 2. 1]ヘプタ _2_ェン、 9—トリメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、 9—トリエトキシシリル-テトラシクロ [6· 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—メチルジメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—ェチルジメトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—シクロへキシルジメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、 9—フエ二ルジメトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—ジメチルメトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—トリクロロシリル一テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力一 4—ェン、 9—ジクロロメチ ルシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—クロロジメチルシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—クロロジメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—ジクロロメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—クロロメチルメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4—ェン。
[0041] これらは 1種単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
また、前記一般式(2) -2で表される特定単量体(2)としては、たとえば以下の化合 物が挙げられる。
5_[1 '—メチノレー 2,, 5 '—ジォキサ _1,ーシラシクロペンチノレ]ービシクロ [2· 2. 1]へ プター 2—ェン、
5_[1 ' _フエ二ルー 2' , 5 '—ジォキサ _1 '—シラシクロペンチル]—ビシクロ [2· 2. 1] ヘプター 2—ェン、
9_[1,ーメチルー 2,, 5,ージォキサ _1,—シラシクロペンチノレ]—テトラシクロ [6· 2. 1. I3'6. 02'7]ドデ力— 4_ェン、
9— フエ二ルー 2' , 5'—ジォキサ— 1 '—シラシクロペンチル]—テトラシクロ [6. 2. 1 . I3'6. 02'7]ドデ力- 4-ェン。
[0042] これらは 1種単独で用いてもよぐ 2種以上を組み合わせて用いてもよレ、。また、特 定単量体(2)としては、前記一般式 (2) - 1で表される化合物の 1種以上と、前記一般 式(2)— 2で表される化合物の 1種以上とを組み合わせて用いてもよい。
これらの特定単量体(2)の中で、 5—トリメトキシシリルービシクロ [2· 2. 1]ヘプタ— 2—ェン、
5—トリエトキシシリルービシクロ [2· 2. 1]ヘプタ— 2—ェン、
5—メチルジメトキシシリルービシクロ [2. 2. 1]ヘプタ _2—ェン
9—トリメトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4_ェン、
9—メチルジメトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4—ェン、
9—トリエトキシシリル—テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力— 4_ェン、
5_[1 '—メチルー 2' , 6 '—ジォキサ—4' , 4 ' _ジメチルー 1 '—シラシクロへキシル]—ビ シクロ [2. 2. 1]ヘプタ— 2_ェン、
5— [ 1 '—メチルー 2 ' , 6 '—ジォキサ— 4,—メチルー 1,—シラシクロへキシル]—ビシクロ [ 2. 2. 1]ヘプタ— 2—ェン
が好ましい。
[0043] 本発明においては、特定単量体(1)および特定単量体(2)の使用量について特に 限定されるものではなぐ得られる重合体に求められる特性に応じて適宜選択すれば よいが、通常、特定単量体(1)の使用割合は、全単量体に対して 50モル%以上であ る。また、特定単量体(2)の使用割合は、通常、全単量体に対して 0. 1— 30モル% の範囲である。
なお、本発明においては、特定単量体(1)と特定単量体(2)とを組み合わせて用 レ、ることが好ましぐ係る場合には、特定単量体(1)と特定単量体(2)との合計が全 単量体に対して 80モル%以上となるようにし、それぞれの割合 [ (1) / (2) ]を、モル 換算で、 70— 99. 8/30— 0. 2、好ましくは 80— 97/20— 3、さらに好ましくは 85 一 95/15— 5とするのが望ましい。係る割合で用いることにより、得られる重合体の 他素材との接着 ·密着性を高めたり、吸水 (湿)変形を実質的に抑制できるようになつ たりするほか、特定単量体(2)に由来する特定の極性基を利用した架橋形成が容易 になり得られる架橋体の線膨張係数が極めて低レ、ものとなるため好ましい。
[0044] 本発明では、環状ォレフィン系単量体中に、特定単量体(2)を含む場合には、特 定単量体(2)を、全環状ォレフィン系単量体中 0. 1 30モル%、好ましくは 2 30 モル%、より好ましくは 5— 20モル%の範囲で用いることが望ましい。
このような量で特定単量体(2)を含む環状ォレフィン系単量体を用いた場合には、 共重合体が加水分解性のシリル基を含む環状ォレフィン系付加共重合体となるため 、得られた付加共重合体を架橋フィルム化した場合には、耐溶剤 '耐薬品性、熱収縮 力 S小さい接着 ·密着のあるフィルムとすることができるため好ましい。なお、環状ォレフ イン系単量体中において、特定単量体(2)の割合が、 30モル%を超える場合には、 重合活性の低下が生じたり、生成した付加重合体の吸水性の増大が生じて吸水変 形が起こったりすることがある。
[0045] また、特定単量体(1)として炭素数 3— 15のアルキル基またはアルケニル基を有す る化合物を用いると、得られた重合体もしくは係る重合体のォレフィン性不飽和結合 を水素添加した水添体を架橋して得られる架橋体の線膨張係数が大きくなる傾向が あり、熱変形に対する要求が厳しい用途においては問題となることがある。特定単量 体(2)についても同様に、炭素数 3 15のアルキル基を有する化合物を用いると、得 られた重合体を架橋して得られる架橋体の線膨張係数が大きくなる傾向があり、熱変 形に対する要求が厳しい用途においては問題となることがある。
本発明においては、さらに、上記特定単量体(1)または(2)と共重合可能な単量体 (以下、「共重合性単量体」という。)を併用することができる。係る単量体の具体例と しては、例えば、シクロペンテン、シクロへキセン、シクロへブテン、シクロオタテンなど の環状ォレフィン、シクロペンタジェン、シクロへキサジェンなどの環状ジォレフイン、 あるいはこれらのアルキル置換誘導体などが挙げられる。これら共重合性単量体の 使用量としては、得られる重合体に求められる特性に応じて適宜選択すればよいが 、全単量体に対して、通常、 0— 50モノレ0 /0、好ましくは 0— 20モル0 /0である。
[0046] また、環状ジォレフインを用いた場合には、得られた重合体の熱や光による着色を 防止するために、重合後残存するォレフイン性不飽和結合を水素添加することが好 ましレ、。なお、水素添力卩率は高いほど好ましぐ通常、 90%以上である。
本発明では、特に限定されるものではないが、環状ォレフィン系単量体力 特定単 量体(1)および特定単量体(2)以外の単量体を含まなレ、ことが好ましレ、。
<環状ォレフィン系付加重合体の製造 >
ィ寸カロ
本発明の製造方法においては、上記成分からなる多成分系触媒の存在下に、上 記単量体を付加重合する。
本発明においては、上記成分からなる多成分系触媒に加えて、特定のォレフィン 化合物を併用することもでき、特定のォレフィンィ匕合物を併用することにより、重合活 性が向上することが期待できる。係る特定のォレフィン化合物の具体例としては、たと えば、エチレン、塩化ビュル、酢酸ビュルおよびアクリル酸エステルなどを挙げること ができ、これらの中でもエチレンが好ましレ、。これらの特定のォレフィン化合物は、パ ラジウム化合物(a)の Pdlグラム原子あたり、 1一 10, 000モルの範囲で用いることが できる。
[0047] 本発明に係る付加重合は、通常重合溶媒中で行う。本発明において、付加重合に 用いることができる溶媒としては、例えば、シクロへキサン、シクロペンタン、メチルシク 口ペンタンなどの脂環式炭化水素溶媒、へキサン、ヘプタン、オクタンなどの脂肪族 炭化水素溶媒、トルエン、ベンゼン、キシレン、ェチルベンゼン、メシチレンなどの芳 香族炭化水素溶媒、ジクロロメタン、 1, 2—ジクロロェタン、 1, 1—ジクロロェタン、テト ラクロロェタン、クロ口ベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素溶媒など であるが、非ハロゲン系溶媒を用いることが環境対策上好ましい。本発明においては 、これらの溶媒を単独で用いてもよぐまた、 2種以上使用した混合溶媒も用いること ができる。
本発明に係る付加重合では、重合温度は、通常一 20— 120°C、好ましくは 20— 10 0°Cの範囲とすることができ、経時的に温度を変えることも可能である。
[0048] 本発明においては、単量体を一括して仕込む方式や逐次添加する方式など採るこ とができる。二種以上の単量体を用いる場合、生成する共重合体は共重合反応性の 違いと単量体の仕込み方法により、組成分布のないランダムな共重合体から組成分 布のある共重合体まで制御することができる。また、重合プロセス方式としては、バッ チ重合方式、あるいは、槽型反応器、塔型反応器もしくはチューブ型反応器などによ る連続重合方式いずれも採用することができる。
本発明では、上述の特定単量体(1)を含む環状ォレフィン系単量体を付加重合す ることにより、下記一般式(3)で表される構造単位が形成される。なお、一般式(3)で 表される構造単位は、付加重合後、生成重合体をさらに後述のように水素化すること によって形成されてもょレ'
[0049] [化 7]
Figure imgf000030_0001
(式(3)中、 A1— A4および mは一般式(1)における定義と同じである。 )
また、単量体が上記特定単量体(2)— 1および/または(2)— 2を含む場合には、特 定単量体(1)と特定単量体 (2)とを付加重合することにより、一般式 (3)で表される構 造単位以外に、一般式 (4) _1もしくは (4) _2で表される構造単位が形成される。
[0050] [化 8]
Figure imgf000030_0002
( 4 ) 一
[0051] [化 9]
Figure imgf000031_0001
(式(4)_1および式(4) _2中、 、 R2、 X、 Y、 kおよび ηは、式(2)_1および式(2)_ 2における定義と同じである。 )
本発明において、付加重合の停止は、重合体溶液に、有機カルボン酸化合物、ァ ルコール化合物、第 1級から第 3級のアミン化合物、ヒドロキシァミン化合物、アンモニ ァ、水素、ハロゲン化ァリル化合物、ハロゲン化メチルァリール化合物、第 3級のハロ ゲンィ匕アルキルィ匕合物、ハロゲンィ匕アシノレ化合物、 Si— Η結合を有するシラン化合物 などから選ばれた化合物を添加して行われる。
本発明において、環状ォレフィン系付加重合体の分子量の制御は、たとえば、ェチ レン、プロピレン、 1—ブテン、 1—へキセン、トリメチルシリルエチレン、トリメトキシェチ レン、トリエトキシエチレン、スチレンなどのォレフィン、シクロペンテン、シクロへキサ ジェン、トリェチルシラン、ジェチルシラン、フエニルシラン、ジフエニルシラン、などの シラン化合物、イソプロパノール、水、水素などを用いて行われるが、少量で分子量 を制御でき、重合活性への影響がないことから、エチレンが好ましい。
ィ h
本発明においては、ォレフィン性不飽和結合を有する特定単量体(1)を用いた場 合など、得られた付加重合体中にォレフィン性不飽和結合が存在する場合、熱や光 による着色やゲル化等劣化の原因となるので、係るォレフィン性不飽和結合を水素 添加(水素化)することが好ましい。水素添加率は高い程好ましぐ通常 90%以上、 好ましくは 95%以上、さらに好ましくは 99。/0以上であるのが望ましい。
[0052] 水素化方法は特には限定されず、通常のォレフィン性不飽和結合を水素化する方 法を適用して行うことができる。一般的には、水素化触媒の存在下で不活性溶媒中、 水素ガス圧 0. 5— 15MPa、反応温度 0— 200°Cで水素化が行われる。なお、芳香 環 (芳香族基)が重合体中に存在する場合、係る芳香環は熱や光に対して比較的安 定であり、光学特性や耐熱性に寄与する場合もあるため、必ずしも水素化される必要 はない。所望の特性によっては、係る芳香環が実質的に水素化されない条件を選択 する必要がある。
水素化反応に用いることができる不活性溶媒としては、例えば、へキサン、ヘプタン 、オクタン、ドデカンなどの炭素数 5— 14の脂肪族炭化水素、シクロへキサン、シクロ ヘプタン、シクロデカン、メチルシクロへキサンなどの炭素数 5— 14の脂環族炭化水 素が挙げられるが、芳香環を水素化しない条件で水素化する場合には、ベンゼン、ト ルェン、キシレン、ェチルベンゼンなどの炭素数 6 14の芳香族炭化水素も使用す ること力 Sできる。
[0053] 水素化触媒としては、ニッケル、ノ ラジウム、白金、コバルト、ルテニウム、ロジウムな どの VIII族の金属またはその化合物をカーボン、アルミナ、シリカ、シリカアルミナ、珪 藻土などの多孔性担体に担持した固体触媒、あるいは、コバルト、ニッケル、パラジゥ ムなどの IV族一 VIII族の有機カルボン酸塩、 βージケトン化合物と有機アルミニウムま たは有機リチウムの組み合わせやルテニウム、ロジウム、イリジウムなどの錯体などの 均一触媒が用いられる。
脱篇
本発明の製造方法において、重合反応に用いた触媒、および必要に応じて実施 する水素化反応に用いた触媒は、脱触媒工程において除去されることが好ましい。 係る脱触媒工程において適用される方法は特に限定されるものではなぐ用いた触 媒の性状や形状に応じて適宜選択される。
[0054] 本発明においては、重合を停止して得られた重合体もしくはその水素添加物の溶 液を、乳酸、グリコール酸、 j3—メチルー /3—ォキシプロピオン酸、 γ—ォキシ酪酸など のォキシカルボン酸やトリエタノールァミン、ジアルキルエタノールァミン、エチレンジ アミンテトラ酢酸塩などの水溶液を用いて処理するカ 珪藻土、シリカ、アルミナ、活 性炭などの吸着剤を用いて処理することにより脱触媒が行われる。 さらに、脱触媒された溶液から、直接、溶媒を蒸発除去したり、メタノール、エタノー ノレ、プロパノールなどのアルコール類やアセトン、メチルェチルケトンなどのケトンを 用いて凝固し、次いで乾燥したりすることにより、 目的とする環状ォレフィン系付加重 合体が得られる。
本発明の製造方法において、重合や脱触等の工程を経て製造された環状ォレフィ ン系付加重合体は、公知の方法、例えば、加熱や減圧等の手段を用いて該重合体 を含む溶液から直接溶媒を除去する方法、該重合体を含む溶液とアルコールゃケト ンなど該重合体の貧溶媒とを混合して該重合体を凝固'分離する方法などにより回 収できる。また、当該溶液をそのまま原料として用レ、、溶液流延法 (キャスト法)により フィルムやシートに成形して回収することもできる。
<環状ォレフイン系付加重合体 >
本発明の製造方法により得られる環状ォレフィン系付加重合体のガラス転移温度( Tg)は、重合に用いる単量体の種類や量により決定され、重合体が使用される用途 に応じて適宜選択すればよいが、通常、 150— 450°C、好ましくは 180— 400°C、さ らに好ましくは 200— 380°Cである。該重合体のガラス転移温度が 150°C未満の場 合は耐熱性に問題が生じることがあり、一方、 450°Cを超えると重合体が剛直になり 靱性が低下して割れやすくなることがある。
なお、本発明において、環状ォレフィン系付加重合体のガラス転移温度は、動的粘 弾性で測定される Tan δの温度分散のピーク温度で求められる。 (貯蔵弾性率: Ε'、 損失弾性率: E"、 Tan 5 =Ε"/Ε' )
本発明において、環状ォレフィン系付加重合体の分子量は、 ο—ジクロ口ベンゼンを 溶媒とし、 120°C、ゲル'パーミエ—シヨンクロマトグラフィー法で測定され、ポリスチレ ン換算の数平均分子量(Mn)が 10, 000— 300, 000、重量平均分子量(Mw)が 3 0, 000 500, 000、好まし <は数平均分子量(Μπ)力 0, 000— 200, 000、重量 平均分子量(Mw)力 0, 000—300, 000である。
数平均分子量(Mn)が 10, 000未満、重量平均分子量(Mw)が 30, 000未満で は、フィルムまたはシートとした際、割れやすいものとなる場合がある。一方、数平均 分子量(Mn)が 300, 000、重量平均分子量(Mw)が 500, 000を超えると、キャスト 法 (溶液流延法)でフィルムまたはシートを作製する際に重合体の溶液粘度が高くな りすぎて、取り扱いが困難となる場合がある。
[0056] 本発明に係る環状ォレフィン系付加重合体には、フヱノール系、リン系、チォエー テル系、ラタトン系から選ばれた酸化防止剤を付加重合体 100重量部当たり、 0. 00 1一 5重量部、好ましくは 0. 01— 5重量部添加して、さらに耐熱劣化性を改良するこ とができる。
また、本発明に係る環状ォレフィン系付加重合体には、加工性の改良ゃ靱性など の機械的特性の改良などのために、他の環状ォレフィン系付加重合体、水素化され た環状ォレフィン系開環重合体、 ひーォレフインと環状ォレフィンとの付カ卩共重合体、 結晶性のひ—ォレフィン重合体さらにゴム状のエチレンと炭素数が 3以上のひ—ォレ フィン系共重合体、水素化されたブタジエン系重合体、水素化されたブタジエン'ス チレンブロック共重合体、水素化されたイソプレン系重合体などを 0. 1— 90重量% の割合で配合することができる。
[0057] 本発明に係る環状ォレフィン系重合体にはさらに架橋を施してもよい。架橋は、たと えば上述のフィルム、シートの成形において、酸発生剤を含む重合体溶液もしくは分 散体を上記のように溶液キャストした後、乾燥する工程の前、途中または乾燥後のェ 程で外部からの加熱または光照射することにより行うことができる。
本発明に係る環状ォレフィン系付加重合体が、少なくとも一部の構造単位に加水 分解性シリル基またはォキセタン基を有する場合には、熱または光の作用にて酸を 発生する化合物(酸発生剤)を配合し、光照射もしくは加熱処理することで、架橋され た環状ォレフィン系付加重合体とすることができる。
また、本発明の製造方法により得られた上記構造単位 (4)一 1または (4)一 2を有す る環状ォレフィン系付加重合体 (以下、「加水分解性シリル基含有重合体」という。 ) は、側鎖置換基として加水分解性のシリル基を有するため、酸の存在下で加水分解 および縮合することにより、シロキサン結合で架橋された架橋体とすることができる。 係る架橋体は、フィルムまたはシートとした時、線膨張係数が大幅に低減され、耐溶 剤'薬品性ゃ耐液晶性にも優れる。 本発明においては、光もしくは熱の作用により酸を発生させることができる化合物( 酸発生剤)を加水分解性シリル基含有重合体の溶液に配合し、溶液流延法 (キャスト 法)により、フィルムまたはシートとした後、光照射もしくは加熱処理することにより酸を 発生させて架橋を進行させて上記架橋体を得ることができる。
本発明において用いられる酸発生剤としては、下記 1)、 2)、 3)および 4)の群から 選ばれた化合物が挙げられ、これらの中から選択された少なくとも 1種を加水分解性 シリル基含有重合体 100重量部当たり、 0. 0001 5重量部、好ましくは 0. 001 5 重量部の範囲で用いることが好ましい。
1)未置換、あるいはアルキル基、ァリール基もしくはヘテロ環状基を有するジァゾ二 ゥム塩、アンモニゥム塩、ョードニゥム塩、スルフォニゥム塩、スルフォニゥム塩もしくは ホスフォニゥム塩であり、対ァニオンがスルフォン酸、ホウ素酸、リン酸、アンチモン酸 もしくはカルボン酸であるォニゥム塩類、ハロゲン含有ォキサジァゾール、ハロゲン含 有トリァジン化合物、ハロゲン含有ァセトフヱノン化合物、ハロゲン含有べンゾフエノン 化合物などのハロゲン化有機化合物、 1, 2—べンゾキノンジアジドー 4ースルフォン酸 エステル、 1 , 2_ナフトキノンジアジド— 4ースルフォン酸エステルなどのキノンジアジド ィ匕合物、 ひ、 α '―ビス(スルフォニノレ)ジァゾメタン、 α—カルボ二ノレ一ひ,一スルフォニ ルジァゾメタンなどのジァゾメタンィ匕合物等、光照射することによりブレンステッド酸あ るいはルイス酸を発生する化合物。
2)対ァニオンが BF , PF , AsF , SbF , B (C F )など力も選ばれた芳香族スルフ ォニゥム塩、芳香族アンモニゥム塩、芳香族ピリジニゥム塩、芳香族ホスフォニゥム塩
、芳香族ョードニゥム塩、ヒドラジニゥム塩もしくはメタ口センの鉄塩等、 50°C以上に加 熱することで酸を発生する化合物。
3)トリアルキル亜リン酸エステル、トリアリール亜リン酸エステル、ジアルキル亜リン酸 エステル、モノアルキル亜リン酸エステル、次亜リン酸エステル、有機カルボン酸の第 2級または第 3級アルコールのエステル、有機カルボン酸のへミアセタールエステル、 有機カルボン酸のトリアルキルシリルエステルもしくは有機スルフォン酸と第 2級また は第 3級アルコールのエステル化合物等、水の存在下または水の存在がなレ、状態で 50°C以上に加熱することで酸を発生する化合物。 4)スズ、アルミニウム、亜鉛、チタニウム、アンチモンなどの金属酸化物、アルコキサ イド化合物、フエノキサイド化合物、 ージケトン化合物、アルキル化合物、ハロゲン 化合物、有機酸塩化合物。
[0059] これらの中で、 1)、 2)および 3)の群から選ばれた化合物が好ましぐ特に、 3)の化 合物が加水分解性シリル基含有重合体と相溶性がよぐまた、加水分解性シリル基 含有重合体を含む溶液に配合した際の保存安定性に優れるため好ましい。なお、こ れらの酸発生剤は、 1種単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。 本発明に係る環状ォレフィン系重合体、もしくは該重合体を含む組成物を成形する 方法については、特に限定されるものではないが、たとえば、環状ォレフィン系重合 体もしくは該重合体を含む組成物を、溶媒に溶解もしくは分散させて支持体に塗工 し、しかる後に溶媒を乾燥させる、溶液流延法(キャスト法)により、フィルム、シートお よび薄膜などに成形することができる。溶液流延法による成形は、熱履歴による重合 体を抑制できるため好ましレ、。
[0060] 係る溶液流延法により、フィルム、シートまたは薄膜にする具体的な方法としては、 所定の濃度に調製し、必要に応じて濾過、脱泡処理した重合体を含む溶液を、ロー ル上を流れる離型板上に流した後、流延用ロールに接する平滑用ロールとの間を通 して厚みを整えるとともに表面を平滑化し、溶媒を蒸発し、離型板を取り去つたのち、 さらに乾燥機を通す方法が挙げられる。残留溶媒に対する要求が厳しい場合には、 乾燥機による 1次乾燥の他に塩化メチレン、 1 , 2—ジクロロェタンなど低沸点のハロゲ ン溶媒に浸漬するか、その蒸気雰囲気下に曝露する、もしくは、水蒸気と接触させた 後、さらに 80— 220°Cに加熱する 2次乾燥を実施することが有効である。
また、フィルム、シートまたは薄膜の架橋は、酸発生剤を含む重合体溶液もしくは分 散体を上記のように溶液キャストした後、乾燥する工程の前、途中または乾燥後のェ 程で外部からの加熱または光照射により行われる。
[0061] 上記方法により得られるフィルム、シートまたは薄膜中の残留溶媒含量は、 5, 000 ppm以下、好ましくは 2, OOOppm以下、さらに好ましくは 1, OOOppm以下である。そ の残留溶媒含量が 5, OOOppmを超えると、フィルム、シートまたは薄膜上に蒸着ゃス パッタなどの減圧系で表面処理を行う場合に、大量の揮発分が発生して設備の汚染 、減圧度の低下などを招くことがあるほか、フィルム、シートまたは薄膜の線膨張係数 が大きくなり、寸法安定性が劣るものとなることがある。
なお、本発明の環状ォレフィン系付加重合体は、上記のように溶液キャスト法により 成形加工されることが好ましいが、重合体のガラス転移温度が 250°C以下であれば、 射出成形や溶融押出成形、ブロー成形などの溶融成形加工も適用できる。また、重 合体のガラス転移温度が 250°Cを超えても、可塑剤などを配合したり、溶媒で該重合 体を膨潤させたりすることにより、溶融押出成形もしくはブロー成形を適用して、シー ト、フィルムまたは薄膜に成形することができる。
[0062] 本発明の環状ォレフィン系付加重合体の耐酸化劣化性ゃ耐着色劣化性をさらに 向上させるために、フエノール系酸化防止剤、ラタトン系酸化防止剤、リン系酸化防 止剤、チォエーテル系酸化防止剤から選ばれた化合物を、重合体 100重量部当たり 、 0. 001 5重量部を配合することができる。
また、本発明の環状ォレフィン系付加重合体は、加工性の改良ゃ靭性などの機械 的特性の改良などのために、他の環状ォレフィン系付加重合体、水素化された環状 ォレフィン系開環重合体、 α—才レフインと環状ォレフィンとの付加共重合体、結晶性 の α—ォレフイン重合体さらにゴム状のエチレンと炭素数が 3以上の α—ォレフィン系 共重合体、水素化されたブタジエン系重合体、水素化されたブタジエン 'スチレンブ ロック共重合体、水素化されたイソプレン系重合体などを 0. 1— 90重量%の割合で 酉己合すること力 Sできる。
[0063] 本発明の製造方法により得られた環状ォレフィン系付加重合体は、光学材料部品 をはじめ、電子 ·電気部品、医療用器材、電気絶縁材料あるいは包装材料などに使 用すること力 Sできる。
例えば、光学材料としては、導光板、保護フィルム、偏向フィルム、位相差フィルム、 タツチパネル、透明電極基板、 CD、 MD、 DVDなどの光学記録基板、 TFT用基板、 カラーフィルター基板などや光学レンズ類、封止材などに用いることができる。電子' 電気部品としては、容器、トレイ、キャリアテープ、セパレーシヨン'フィルム、洗浄容器 、パイプ、チューブなどに用いることができる。医療用器材としては、薬品容器、アン プル、シリンジ、輸液用バック、サンプル容器、試験管、採血管、滅菌容器、パイプ、 チューブなどに用いることができる。電気絶縁材料としては、電線'ケーブルの被覆 材料、コンピューター、プリンター、複写機などの OA機器の絶縁材料、プリント基板 の絶縁材料などに用いることができる。包装材料としては、食品や医薬品等のパッケ ージフィルムなどに用いることができる。
[0064] 本発明によれば、少ないパラジウム系触媒量で、環状ォレフィン系化合物を高い重 合活性で付加 (共)重合し、環状ォレフィン系付加重合体を生産性よく製造すること ができる。
本発明によれば、特に、 (a)パラジウム化合物、 (b-1)特定のホスフォニゥム塩、(d) 有機アルミニウム化合物を含む多成分系触媒を用いて環状ォレフィン系単量体を重 合した場合に、実質的に組成分布を有しない環状ォレフィン系付加重合体が得られ る。
また、本発明によれば、特に、(a)パラジウム化合物、(b- 2)特定のホスフィンィ匕合 物と有機アルミニウム化合物との付加錯体、(c)イオン性ホウ素化合物などを含む多 成分系触媒を用いて環状ォレフィン系単量体を重合した場合に、環状ォレフィン系 化合物を高レ、重合活性で付加(共)重合し、環状ォレフィン系付加重合体を生産性 よく製造することができ、重合系に微量の酸素が存在する場合であっても、重合活性 への影響が小さぐ極性基、特に加水分解性シリル基を有する環状ォレフィン系化合 物を含む単量体組成物を共重合した場合にも、高い重合活性で付加共重合すること ができる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの 実施例に限定されるものではない。
[0065] なお、分子量、全光線透過率、ガラス転移温度、引っ張り強度 '伸び、共重合反応 におけるランダム性は、下記の方法で測定あるいは評価した。
(1)分子量
ウォーターズ (WATERS)社製 150C型ゲルパーミエシヨンクロマトグラフィー(GPC) 装置で東ソー(株)製 Hタイプカラムを用レ、, o—ジクロ口ベンゼンを溶媒として 120°C で測定した。得られた分子量は標準ポリスチレン換算値である。 (2)全光線透過率
ASTM— D1003に準拠し、厚さが約 150 μ ΐηのフィルムにして、全光線透過率を 測定した。
(3)ガラス転移温度
ガラス転移温度は動的粘弾性で測定される Tan δ (貯蔵弾性率 E'と損失弾性率 Ε "との比 Tan S =Ε"ΖΕ' )の温度分散のピーク温度で測定した。動的粘弾性の測 定はレオバイブロン DDV—01FP (オリエンテック製)を用レ、、測定周波数が 10Ηζ、 昇温速度が 4°CZ分、加振モードが単一波形、加振振幅が 2. 5 μ mのものを用いて Tan δのピーク温度を測定した。
(4)線膨張係数
TMA (Thermal Mechanical Analysis) SS6100 (セイコーインスツルメント社製)を用い 、試験形状として、膜厚約 150 μ m、縦 10mm、横 10mmにしたフィルム片を直立、 固定し、プローブにより、 lg重の荷重をかけ、フィルムの熱履歴を除去するため、室 温から 200°Cまで 5°C/min.でー且昇温した後、再度、室温から 5°C/min.で昇温 し、 50°C— 150°C間のフィルム片の伸びの傾きから線膨張率を求めた。
(5)引っ張り強度'伸び
JIS K7113に準じて、試験片を引っ張り速度 3mm/minで測定した。
(6)残留溶媒量
200°Cの熱風オーブン中に試料を 3時間入れ、前後の重量変化より残留溶媒量を 測定した。
(7)共重合反応における重合体中の組成解析
「特定の単量体(1)」と「特定の単量体(2)」の共重合反応にて、単量体の重合体へ の転化率が 20。/o以下の範囲でイソプロピルアルコールで重合を停止し、生成重合 体のアルコキシシリル基、エステル基およびォキセタン基を 270MHzの1 H_NMR ( 溶媒: C D )装置で測定して、生成共重合体中の含量を求めた。
メトキシ基は 3. 5ppmの吸収(SiOCHの CH )、エトキシ基は 3. 9ppmの吸収(Si
OCH CHの CH )を使用した。メチルエステル基は 3. 5ppmの吸収(_C (〇)OCH
)、ェチルエステル基は 3. 9ppmの吸収(_C (〇)〇CH CHの CH )を使用した。ォ キセタ二ル基は 4· 2-4. 6ppmの吸収(4員環〇原子の隣の CH )を使用した。
一 NMRの特性吸収が重なる場合は、重合体溶液の残留モノマーをガスクロマト グラムにより分析して共重合体へ導入された量を求めた。
ランダム性は、全単量体中の「特定の単量体(2)」の割合 (Rm)に対する重合体中 の「特定の単量体(2)」由来の構造単位の割合 (Rp)の比 (r)を指標とした。
r=Rp/Rm
r= 1に近いほどランダム性がょレ、。
[0067] rく 1または r> lで、 rが 1より外れるほどランダム性が悪い。
実施例 1
[0068] 100mlのガラス製耐圧ビンに水分 6ppmの脱水されたトルエン 30· 7g、シクロへキ サン 30· 7g、 5_トリエトキシシリルビシクロ [2· 2. 1]ヘプタ _2—ェン
79g (7. 0ミリモノレ、)、ヒ、'シクロ [2. 2. 1]ヘプター 2—ェン 8. 75g (93ミリモノレ)を仕込 み、仕込み口を王冠付きゴムキャップで封止した。さらに、耐圧ビンのゴムキャップを 通じて、ガス状のエチレンを 30ml仕込んだ。
溶媒、単量体を含む耐圧ビンを 75°Cに加温して、 2—ェチルへキサン酸パラジウム (Pd原子として 0.00133ミリグラム原子)、トリシクロへキシルホスホニゥムペンタフルォロ フエニルボレート 0.00133ミリモル、トリェチルアルミニウム 0.00667ミリモルの順に添加 して重合を開始した。
重合開始後、 15分後に重合系力、ら重合体溶液一部をサンプリングしてその固形分 力、ら単量体の重合体への転化率と重合体中の 5_トリエトキシシリルビシクロ [2. 2. 1 ]ヘプタ _2—ェン由来の構造単位の割合を 270MHzの1 H—NMRから求めた。転化 率は 19%であり、重合体中の 5_トリエトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン 由来の構造単位の割合は 11モル%で、ランダム性の指標 rは 1. 6であった。
[0069] 重合反応を 75°Cで 3時間行った力 重合体溶液は濁ることなく透明であった。この 溶液に、ジメチルァミノエタノール lmlを添加して重合を停止した。重合体溶液の固 形分測定から、重合体への転化率は 96%であった。
重合体溶液から乳酸水を含むイソプロパノールで触媒残さを抽出除去する操作を 2度行い、 2リットルのイソプロパノールに重合体溶液を入れ、重合体を凝固した。凝 固した後、 80°Cで 17時間、減圧下で乾燥し重合体 Aを得た。
重合体 A中の 5_トリエトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン由来の構造単 位の割合を 270MHzの H—NMRから求めた。 5—トリエトキシシリルビシクロ [2· 2. 1 ]ヘプター 2_ェン由来の構造単位の割合は 6. 7モル%であった。分子量は数平均分 子量(Mn) 74, 000、重量平均分子量(Mw)が 185, 000で、ガラス転移温度(Tg) は 360°Cであった。
実施例 2
[0070] 実施例 1にてトリシクロへキシルホスホニゥムペンタフルオロフェニルボレート 0. 001 33ミリモルの代わりにトリシクロへキシルホスフォニゥム _2_ェチルへキサノエートを 0. 00133ミリモノレ、トリフエニルカルべ二ゥムテトラキス(ペンタフルオロフェニノレ)ボレー ト 0.00133ミリモルを用いる以外、実施例 1と同様に行った。
重合開始後、 12分後の転化率は 18%であり、重合体中の 5-トリエトキシシリルビシ クロ [2. 2. 1]ヘプター 2—ェン由来の構造単位の割合は 12モル0 /。であった。 3時間 での重合終了まで重合系は白濁することなぐ重合体への転化率は 97%であった。 このようにして得られた重合体 Bの数平均分子量 (Mn)は 63, 000、重量平均分子 量(Mw)は 167, 000で、ガラス転移温度(Tg)は 365°Cであった。また、重合体 B中 の 5_トリエトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン由来の構造単位の割合は 6 . 8モル0 /0で、ランダム性の指標 rは 1. 7であった。
実施例 3
[0071] 実施例 2にてビシクロ [2. 2. 1]ヘプター 2—ェン 93ミリモノレ、 5—トリエトキシシリルビ シクロ [2. 2. 1]ヘプター 2—ェン 7ミリモノレの代わりに、ビシクロ [2. 2. 1]ヘプター 2_ ェン 90ミリモノレ、 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン 10ミリモルを 用いて実施例 1と同様に行った。
重合開始後、 15分後の転化率は 18%であり、重合体中の 5-トリメトキシシリルビシ クロ [2. 2. 1]ヘプター 2—ェン由来の構造単位の割合は 15モル0 /。であった。 3時間 での重合終了まで重合系は白濁することなぐ転化率は 95%であった。
このようにして得られた重合体 Cの数平均分子量 (Mn)は 72, 000、重量平均分子 量(Mw)は 177, 000で、ガラス転移温度(Tg)は 360°Cであった。また、重合体 C中 の 5-トリメトキシシリルビシクロ [2· 2. 1]ヘプタ -2-ェン由来の構造単位の割合は 9 . 7モル0 /0で、ランダム性の指標 rは 1. 5であった。
実施例 4
[0072] 実施例 3にて 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン 10ミリモノレを用 レ、る代わりに 4—メチルテトラシクロ [6. 2. 1. 13'602'7]ドデ力— 9—ェン— 4—カルボン酸 メチル 10ミリモルを用いた以外、実施例 3と同様に行った。
重合開始後、 20分後の転化率は 19%であり、重合体中の 4ーメチルテトラシクロ [6 . 2. 1. 13'602'7]ドデ力— 9一ェンー 4一力ルボン酸メチル由来の構造単位の割合は 6モ ノレ%であった。 3時間での重合終了まで重合系は白濁することなぐ転化率は 91 % であった。
このようにして得られた重合体 Dの数平均分子量 (Mn)は 62, 000、重量平均分子 量(Mw)は 156, 000で、ガラス転移温度(Tg)は 360°Cであった。また、重合体 D中 の 4ーメチルテトラシクロ [6. 2. 1. 13'602'7]ドデ力— 9_ェンー 4_カルボン酸メチル由来 の構造単位の割合は 9. 2モル%で、ランダム性の指標 rは 0. 6であった。
実施例 5
[0073] 実施例 2にて単量体としてビシクロ [2. 2. 1]ヘプタ _2_ェンを 80ミリモル、 endo体 力 S95%のトリシクロ [5. 2. 1. 02'6]デカ— 8—ェンを 20ミリモル用いる以外、実施例 2と 同様に行った。重合体溶液中の残留単量体のガスクロマトグラムによる分析から、重 合体中のトリシクロ [5. 2. 1. 02'6]デ力- 8-ェン由来の構造単位の割合は 12モル0 /0 であった。 3時間まで共重合体溶液は白濁せず、重合体への転化率は 92%であつ た。
このようにして得られた重合体 Eは数平均分子量 (Mn)は 64, 000、重量平均分子 量(Mw)は 177, 000で、ガラス転移温度(Tg)は 365°Cであった。
比較例 1
実施例 1にてトリシクロへキシルホスホニゥムペンタフルオロフェニルボレートの代わ りにトリシクロへキシルホスフィンを用いて実施例 1と同様にして重合したが重合しな かった。
[0074] 比較例 2 実施例 2にてトリシクロへキシルホスフォニゥム— 2_ェチルへキサノエートの代わりに トリシクロへキシノレホスフィンを用いて実施例 2と同様にして重合した。
重合開始後、 12分後の転化率は 18%であり、重合体中の 5-トリエトキシシリルビシ クロ [2. 2. 1]ヘプタ _2—ェン由来の構造単位の割合は 17モル0 /。であった。 1時間 での重合系は白濁し始め、 3時間では白濁し、重合体がゲル状に析出した。重合体 への転化率は 90。/。であった。
このようにして得られた重合体 Fは、 p—クロ口ベンゼン、 o—ジクロ口ベンゼンには溶 解した。重合体 Eの数平均分子量(Mn)は 53, 000、重量平均分子量(Mw)は 187 , 000で、ガラス転移温度(Tg)は 365°Cであった。また、共重合体 F中の 5—トリェトキ シシリルビシクロ [2. 2. 1]ヘプタ _2—ェン由来の構造単位の割合は 6. 8モル%で、 ランダム性の指標 rは 2. 4であった。
[0075]
重合体 A 10gを、メチルシクロへキサン 10mlとキシレン 40mlの混合溶媒に溶解し て、酸化防止剤としてペンタエリスリチルーテトラキス [3—(3, 5_ジー t—ブチルー 4—ヒド ロキシフエニル)プロピオネート]およびトリス(2, 4—ジー t_ブチルフエニル)ホスフアイ トをそれぞれ、重合体 100重量部に対して 0. 6重量部、架橋剤として、亜リン酸トリブ チルを重合体 100重量部に対して、 1. 4重量部を添加した。
この重合体溶液を孔径 10 μ mのメンブランフィルターで濾過し、異物を除去した後 、ポリエステルフィルム上に 25°Cでキャストし、徐々に雰囲気の温度を 50°Cまで上げ 、混合溶媒を乾燥しフィルム化を行った。
[0076] フィルム中の残留溶媒が 5— 10重量%になった後、 180°Cのスチームに 2時間曝し てフィルムを架橋体とした。そのフィルムを 25°Cで 30分間、塩化メチレン蒸気雰囲気 下に曝し、残留溶媒を除去した。その後、 80°Cで 30分間、真空乾燥して塩化メチレ ンを除去して、厚さ 150 x mの架橋されたフィルム A— 1を作製した。得られたフィルム A— 1の残留溶媒量は 0. 3重量%以下であった。評価結果を表 1に示す。
参者例 2
重合体 Aの代わりに重合体 Bを用いたこと以外は、参考例 1と同様にして、架橋され た厚さ 150 z mのフィルム B—1を得た。得られたフィルム B—1の残留溶媒量は 0. 3重 量%以下であった。評価結果を表 1に示す。
参考例 3
重合体 Aの代わりに重合体 Cを用いたこと以外は、参考例 1と同様にして、架橋され た厚さ 150 z mのフィルム C—1を得た。得られたフィルム C—1の残留溶媒量は 0. 3 重量%以下であった。評価結果を表 1に示す。
[0077] 参者例 4
重合体 Aの代わりに重合体 Dを用いたこと以外は、参考例 1と同様にして、フィルム 化を行い、一部架橋された厚さ 150 x mのフィルム D—1を得た。得られたフィルム D— 1の残留溶媒量は 0. 3重量%以下であった。評価結果を表 1に示す。 重合体 Aの代わりに重合体 Eを用いたこと以外は、参考例 1と同様にして、フィルム 化を行い、厚さ 150 x mのフィルム E—1を得た。得られたフィルム E—1の残留溶媒量 は 0. 3重量%以下であった。評価結果を表 1に示す。なお、重合体 E中には架橋に 関与する加水分解性シリル基が存在しなレ、ため、得られたフィルム E— 1は架橋して いないものと考えられる。
[0078] 比較参考例 2
重合体 Aの代わりに重合体 Fを用レ、、キャスト溶媒を p クロ口ベンゼンに代える以外 、実施例 1と同様にして架橋された厚さ 150 μ ΐηのフィルム F 1を得た。得られたフィ ム F— 1の残留溶媒量は 0. 3重量%以下であった。評価結果を表 1に示す。
[0079] [表 1]
Figure imgf000044_0001
参 ¾ 5 50mlのフラスコに窒素雰囲気下でトリシクロへキシルホスフィン 1 · 0g (3. 57ミリモ ノレ)を重水素化ベンゼン 10mlに溶解して、 0. 357ミリモル/ mlの溶液を調製した。
[0080] トリシクロへキシルホスフィンの31 P— NMR (核磁気共鳴)スペクトルを外部標準として 亜リン酸トリメチル(140ppm)を用レ、、 日本分光衡 EOL— 270型核磁気共鳴装置 (N MR)で測定した。
この結果、トリシクロへキシルホスフィンの吸収スペクトルが 9. 2 ppmに観測された。 参者例 6
参考例 5の重水素化ベンゼン溶液の一部を別のフラスコに採取して、トリシクロへキ シノレホスフィン 1ミリモルに対して空気を酸素原子換算で 1ミリモル相当を入れ、 25。C で 2日間接触させた。この空気と接触したトリシクロへキシルホスフィン溶液の31 P— N MRを測定した。この結果、トリシクロへキシルホスフィンの 9. 2ppmの吸収スぺクトノレ はなぐ新たに 45. 7ppmにトリシクロへキシルホスフィンォキシドによる吸収スぺクトノレ が観測された。
[0081] 参考例 7
参考例 5の重水素化ベンゼン溶液の一部を別のフラスコに採取して、トリシクロへキ シルホスフィン 1ミリモルに対してトリェチルアルミニウム 1ミリモル相当を添加して、 25 °Cで 30分反応させて付加錯体を重水素化ベンゼン中で合成した。
このトリシクロへキシルホスフィンとトリェチルアルミニウムのモル比 1: 1の錯体溶液 の31 P—NMRを測定した。この結果、トリシクロへキシルホスフィンの 9. 2ppmの吸収 スペクトルはなぐ新たに一 4· 0
ppmにトリェチルアルミニウムとの付加錯体化したトリシクロへキシルホスフィンによる 吸収スペクトルが観測された。
参者例 8
参考例 6において、トリシクロへキシルホスフィンの代わりに、トリシクロへキシルホス フィンとトリェチルアルミニウムのモル比 1: 1の錯体を用いる以外、参考例 6と同様に して空気と接触させた。
[0082] 参者例 9
参考例 7において、トリェチルアルミニウムの代わりに、ジェチルアルミニウムクロライ ドを用いたことの他は参考例 7と同様にして、シクロへキシルホスフィンとジェチルァ ルミニゥムクロライドのモル比 1: 1の付加錯体を合成した。
実施例 6
[0083] 100mlのガラス製耐圧ビンに窒素雰囲気下で水分 6ppmの脱水されたトルエン 9. 4 g、水分 5ppmのシクロへキサン 37. 6g、 9—トリメトキシシリノレテトラシクロ [6. 2. 1. I3'6 02'7]ドデ力— 4—ェン 10ミリモル、ビシクロ [2. 2. 1]ヘプタ— 2—ェン 90ミリモルを仕込 み、仕込み口を王冠付きゴムキャップで封止した。さらに、耐圧ビンのゴムキャップを 通じて、分子量調節剤として 0. IMPaのガス状エチレンを 30ml仕込んだ。
溶媒、単量体を含む耐圧ビンを 75°Cに加温して、酢酸パラジウムを Pd原子として 2 X 10— 4ミリグラム原子、参考例 7で得たトリシクロへキシルホスフィンとトリェチルアルミ 二ゥムのモル比 1: 1の付力卩錯体 2 X 10— 4ミリモノレ、トリフエニルカルべ二ゥムテトラキス ペンタフルオロフ工ニルボレー h〔Ph C - B (C F )〕2. 4 X 10 ミリモル、の順に添加し て重合を開始した。
[0084] 重合反応を 75°Cで 3時間行ったが、重合体溶液は濁ることなく透明であった。この 溶液に、トリェチルシラン 0. 1ミリモルを添加して重合を停止した。重合体溶液の固形 分測定から、重合体への転化率は 95 %であつた。
重合体溶液にトリエタノールァミン 1. 0ミリモルを含む水 30mlを添加して触媒残さ を抽出除去する操作を 2度行い、 2リットルのイソプロパノールに重合体溶液を入れ、 重合体を凝固した。凝固した後、 90°Cで 17時間、減圧下で乾燥し重合体 Gを得た。 重合体 G中の原子吸光分析による残留金属は、 Pd原子が 0. 5ppm、 Al原子が 1. 5 ppmであつ 7こ。
また、重合体 G中の 9—トリメトキシシリルテトラシクロ [6. 2. 1. 13'602'7]ドデ力— 4—ェ ン由来の構造単位の割合を、 270MHzの H—NMRから求めた。この結果、 9_トリメト キシシリルテトラシクロ [6. 2. 1. 13'602'7]ドデカー 4ーェン由来の構造単位の割合は 9 . 7モル%であった。分子量は数平均分子量 (Mn) 74, 000、重量平均分子量 (Mw )が 185, 000で、ガラス転移温度(Tg)は 360°Cであった。
実施例 7
[0085] 実施例 6において、参考例 7のトリシクロへキシルホスフィンとトリェチルアルミニウム 付加錯体の代わりに、参考例 8の付加錯体を空気と接触させた錯体を用いたこと以 外は、実施例 6と同様に行った。
重合体への転化率は 97%であった。
このようにして得られた重合体 Hの数平均分子量 (Mn)は 73, 000、重量平均分子 量(Mw)は 187, 000で、ガラス転移温度(Tg)は 365°Cであった。また、重合体 H中 の 5_トリエトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン由来の構造単位の割合は 9 . 8モノレ%であった。
実施例 8
[0086] 実施例 6において、触媒成分としてトリフエニルカルべ二ゥムテトラキスペンタフルォ 口フエニルボレート〔Ph C- B (C F )〕の添加に引き続き、トリェチノレアルミニウムを 10
3 6 6 4
X 10— 4ミリモノレを添カロし、 9—トリメトキシシリルテトラシクロ [6. 2. 1. 13'602'7]ドデ力一 4 —ェン 10ミリモルの代わりに 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン 10 ミリモルを用い、重合開始前に 5. 0ミリモノレ、その後、 20分間隔で 1. 0ミリモルを 5回 添加して、実施例 6と同様に行った。
3時間での重合終了まで重合系は白濁することなぐ重合体への転化率は 98%で あった。
このようにして得られた重合体 Iの数平均分子量 (Mn)は 72, 000、重量平均分子 量(Mw)は 177, 000で、ガラス転移温度(Tg)は 360°Cであった。また、重合体 I中 の 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン由来の構造単位の割合は 9 . 7モノレ%であった。
[0087] 重合体 Iを p—キシレンの 20重量%にして溶液流延法(キャスト法)により成形したと ころ、光学的に透明なフィルムが得られた。さらに p—トルエンスルフォン酸シクロへキ シノレを添加したフィルムをスチームで架橋したところ、透明で耐薬品、耐溶剤性の優 れた架橋されたフィルムが得られた。
実施例 9
[0088] 実施例 6において、 9—トリメトキシシリルテトラシクロ [6· 2. 1. 13'602'7]ドデカ _4—ェ ン 10ミリモルを用いる代わりに、 4ーメチルテトラシクロ [6· 2. 1. 13'602'7]ドデ力— 9— ェンー 4_カルボン酸メチル 10ミリモルを用いた以外、実施例 6と同様に行つた。
3時間での重合終了まで重合系は白濁することなぐ転化率は 91 %であった。 このようにして得られた重合体 Jの数平均分子量 (Mn)は 62, 000、重量平均分子 量(Mw)は 156, 000で、ガラス転移温度(Tg)は 360°Cであった。また、重合体 J中 の 4ーメチルテトラシクロ [6. 2. 1. 13'602'7]ドデ力— 9—ェンー 4—カルボン酸メチル由来 の構造単位の割合は 9. 2モル%であった。
実施例 10
[0089] 100mlのガラス製耐圧ビンに溶媒のシクロへキサン 37· 6g、トルエン 9· 4g、単量 体、兼環状ォレフィンとしてビシクロ [2. 2. 1]ヘプター 2—ェンを 97ミリモル、単量体と して 9—トリメトキシシリルテトラシクロ [6· 2. 1. 13'602'7]ドデ力— 4—ェン 3ミリモル、環状 非共役ジェンとしてシクロォクタ— 1 , 4_ジェンを 10 X 10— 4ミリモルを仕込み、さらにト リ; ϋチノレ T レミ二クム 10 X 10— 4ミリモノレ、卜リシクロへキシノレホスフィン 1. 4 X 10— 4ミリモ ルを仕込んだ。仕込み口を王冠付きゴムキャップで封止し、 30°Cで 10分間、トリェチ ルアルミニウムとシクロへキシルホスフィンの付加錯体を形成した後、分子量調節剤 のガス状の 0. IMPaのエチレン 30mlを仕込み、さらに酢酸パラジウム(Pd原子とし て) 2 X 10— 4ミリモノレ、トリフエニルカルべ二ゥムテトラキスペンタフルオロフヱ二ルボレ 一 KPh C - B (C F )〕を 2. 4 X 10— 4ミリモルを仕込み、 75。Cで重合を開始した。
[0090] 3時間後の重合体溶液は透明で重合体への転化率は 99%で、イソプロパノールで 凝固し、その後、乾燥して重合体 Kを得た。
このようにして得られた重合体 Kは数平均分子量 (Mn)は 64, 000、重量平均分子 量(Mw)は 177, 000で、重合体 K中の 9—卜リメトキシシリノレテ卜ラシクロ [6. 2. 1 02'7]ドデカー 4—ェン由来の構造単位の割合は 3. 0モル%で、ガラス転移温度 (Tg) は 375°Cであった。
実施例 11
[0091] 実施例 6において、単量体として endo体/ exo体比が 20/80の 5— n—へキシルビ シクロ [2. 2. 1]ヘプタ _2_ェンを 100ミリモルを用レ、、触媒成分としてトリシクロへキ シルホスフィンとトリェチルアルミニウムのモル比 1: 1の付加錯体の代わりに参考例 9 のトリシクロへキシルホスフィンとジェチルアルミニウムクロライドのモル比 1: 1の付カロ 錯体を 1 · 5 X 10— 4ミリモル用いたこと以外、実施例 6と同様に行った。
1. 5時間後の重合体への転化率が 82%で重合を停止して重合体 Lを得た。
重合体溶液は透明で、重合体 Lを 20重量%のシクロへキサン溶液から溶液流延法 で得られるフィルムも透明であった。
実施例 12
[0092] 100mlのガラス製耐圧ビンに窒素雰囲気下で水分 6ppmの脱水されたトルエン 9. 4
02'7]ドデカ _4—ェン 10ミリモル、ビシクロ [2· 2. 1]ヘプタ— 2—ェン 90ミリモルを仕込 み、仕込み口を王冠付きゴムキャップで封止した。さらに、耐圧ビンのゴムキャップを 通じて、ガス状のエチレンを 35ml仕込んだ。
予め、パラジウムビス(ァセチルァセトナート)を Pd原子として 3 X 10— 4ミリグラム原子 、参考例 7で得たトリシクロへキシルホスフィンとトリェチルアルミニウムのモル比 1: 1 の付力卩錯体 3 X 10— 4ミリモル、トリフエニルカルべ二ゥムテトラキスペンタフルオロフェ ニルボレート〔Ph C- B (C F )〕3· 4 X 10— 4ミリモル、およびビシクロ [2· 2. 1]ヘプタ
_2, 5—ジェン 15 X 10— 4ミリモルをトルエン 2mlの溶液中で 60°C、 30分熟成した触媒 を 75°Cに加温された溶媒、単量体を含む耐圧ビンに仕込み、重合を開始した。
[0093] 重合反応を 75°Cで 3時間行った力 重合体溶液は濁ることなく透明であった。この 溶液に、ジメチルァミノエタノール lmlを添加して重合を停止した。重合体溶液の固 形分測定から、重合体への転化率は 92%であった。
得られた重合体 M中の 9- ). 2. (T7]ドデカー 4 —ェン由来の構造単位の割合は 9. 6モル%であった。
重合体 Mは分子量が数平均分子量(Mn) 48, 000、重量平均分子量(Mw)が 23 5, 000で分子量分布がやや広い重合体であった。
実施例 13
[0094] 実施例 6において、ガス状のエチレン 30mlを添加後、さらに空気を耐圧ビンに 30 ml添加する以外、実施例 6と同様に行った。 3時間後の重合体への転化率は 96% であった。
得られた重合体 N中の 9—トリメトキシシリルテトラシクロ [6. 2. 1. 13'602'7]ドデ力— 4 ーェン由来の構造単位の割合は 9. 8モル%であった。分子量は数平均分子量 (Mn ) 76, 000、重量平均分子量(Mw)力 87, 000であった。
実施例 6と比べ、空気を重合系へ添加しても、重合活性、分子量への影響はなかつ た。
実施例 6において、トリシクロへキシルホスフィンとトリェチルアルミニウムのモル比 1 : 1の付加錯体 2. 0 X 10— 4ミリモルを用いる代わりに、トリシクロへキシルホスフィン 2. 0 X 10— 4ミリモルを用いたことの他は、実施例 6と同様にして重合した。 3時間後の重 合体への転化率は 95%であった。
[0095] 比較例 4
実施例 6において、トリシクロへキシルホスフィンとトリェチルアルミニウムのモル比 1 : 1の付加錯体 2. 0 X 10— 4ミリモルを用いる代わりに、参考例 2で調製した空気と接触 したトリシクロへキシルホスフィンを 2· 0 X 10— 4ミリモル用いたことの他は、実施例 6と 同様にして重合した。
3時間後の重合体への転化率は 0 %であつた。
比較例 5
実施例 13において、トリシクロへキシルホスフィンとトリェチルアルミニウムのモル比 1 : 1の付カロ錯体 2. 0 X 10— 4ミリモノレの代わりに、トリシクロへキシノレホスフィン 2. 0 X 1 0— 4ミリモルを用いたことの他は、実施例 13と同様にして重合した。 3時間後の重合体 への転化率は 65%であり、 7時間後の転化率は 78%であった。
[0096] 重合体中の 9—トリメトキシシリルテトラシクロ [6· 2. 1. 13'602'7]ドデ力— 4—ェン由来 の構造単位の割合は 9. 8モル%であった。分子量は数平均分子量(Mn) 56, 000、 重量平均分子量 (Mw)が 137, 000であった。実施例 6,および実施例 13と比べ、 空気を重合系へ添加されることにより、重合活性低下と分子量の低下があった。 産業上の利用可能性
[0097] 本発明により得られる環状ォレフィン系付加重合体は、光学材料をはじめ、電子 · 電気部品、医療用器材、電気絶縁材料、包装材料にも使用することができる。
光学材料としては、例えば、導光板、保護フィルム、偏向フィルム、位相差フィルム、 タツチパネル、透明電極基板、 CD、 MD、 DVDなどの光学記録基板などや光学レン ズ類、封止材などに用いられる。
電子 ·電気部品としては、例えば、液晶表示素子、液晶基板、容器、トレイ、キャリア テープ、セパレーシヨン'フィルム、洗浄容器、パイプ、チューブ、などに用いられる。 医療用器材としては、例えば、薬品容器、アンプル、シリンジ、輸液用バック、サン プル容器、試験管、採血管、滅菌容器、パイプ、チューブなどに用いられる。
電気絶縁材料としては、例えば、電線'ケーブルの被覆材料、コンピューター、プリ ンター、複写機などの OA機器の絶縁材料、プリント基板の絶縁材料などに用いられ る。

Claims

請求の範囲 [1] (a)パラジウム化合物と、 (b)下記 (b_l)、 (b-2)よりなる群から選ばれる 1種以上のリン化合物; (b-1)—般式(bl)で表されるホスフォニゥム塩 [PR2R3R4R5] + [CA Ί— 〜(bl) [一般式 (bl)において、 Pはリン原子、 R2は水素原子、炭素数 1一 20のアルキル基、 シクロアルキル基、ァリール基から選ばれた置換基、 R3— R5はそれぞれ独立に炭素 数 1一 20のアルキル基、シクロアルキル基、ァリール基から選ばれた置換基、 [CA ] 1—はカルボン酸ァニオン、スルフォン酸ァニオン、もしくは、 B、 Pまたは Sbから選ばれ た原子と F原子とを含む超強酸ァニオンから選ばれた対ァニオンを示す。 ]、 (b-2)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基から選ばれた 置換基で、そのコーンアングノレ(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物と有機アルミニウム化合物との付加錯体 とを含む多成分系触媒の存在下に、 下記一般式(1)で表される環状ォレフィン系化合物を含む環状ォレフィン系単量体 を付加重合することを特徴とする環状ォレフィン系付加重合体の製造方法; [化 1]
(式(1)中、 A1— A4はそれぞれ独立に水素原子、ハロゲン原子、炭素数 1一 15のァ ノレキノレ基、シクロアルキル基、ァリーノレ基、エステル基、ォキセタニル基、アルコキシ 基、トリアルキルシリル基、水酸基よりなる群から選ばれる原子もしくは基であり、これ らは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原子から選ばれ た少なくとも 1種の原子を含む炭素数 0— 10の連結基により環構造に連結されてい てもよレ、。また、 A1と A2とが、炭素数 1一 5のアルキリデン基、炭素数 5— 20の置換も しくは非置換の脂環または芳香環、炭素数 2— 20の複素環を形成していてもよぐ A1 と A3とが、炭素数 5— 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20 の複素環を形成していてもよレ、。 mは 0または 1である。)。
[2] 多成分系触媒が、前記(a)成分および (b_l)成分に加えて、
(c)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウム 化合物およびルイス酸性のホウ素化合物から選ばれた化合物
を含むことを特徴とする請求項 1に記載の環状ォレフィン系付加重合体の製造方法。
[3] 多成分系触媒が、前記(a)成分および (b-2)成分に加えて、
(d)有機アルミニウム化合物
を含むことを特徴とする請求項 1または 2に記載の環状ォレフィン系付加重合体の製 造方法。
[4] 有機アルミニウム化合物(d)の含有量が、ノ ラジウム化合物(a)のパラジウム 1グラム 原子あたり、 0. 1一 200モルであることを特徴とする請求項 3に記載の環状ォレフィン 系付加重合体の製造方法。
[5] 前記パラジウム化合物(a)力 パラジウムの有機カルボン酸塩または β -ジケトンィ匕 合物であることを特徴とする請求項 1一 4のいずれかに記載の環状ォレフィン系付カロ 重合体の製造方法。
[6] 多成分系触媒が、ビシクロ [2· 2. 1]ヘプター 2—ェン構造を有する多環状のモノォ レフインまたは非共役ジェン、単環状の非共役ジェン、および、直鎖状の非共役ジェ ンよりなる群から選ばれる少なくとも 1種の化合物の存在下で調製された触媒であるこ とを特徴とする請求項 1一 5のいずれかに記載の環状ォレフィン系付加重合体の製 造方法。
[7] 多成分系触媒が、
ビシクロ [2. 2. 1]ヘプタ— 2—ェンおよび Ζまたは炭素数 1一 15の炭化水素基を 1 つ以上有するビシクロ [2. 2. 1]ヘプタ— 2—ェン誘導体の存在下で調製された触媒 であることを特徴とする請求項 1一 6のいずれかに記載の環状ォレフィン系付加重合 体の製造方法。
[8] 環状ォレフィン系単量体力 下記一般式(2)— 1または(2)— 2で表される環状ォレ フィン系化合物を含むことを特徴とする請求項 1一 7のいずれかに記載の環状ォレフ イン系付加重合体の製造方法;
[化 2]
Figure imgf000054_0001
[化 3]
Figure imgf000054_0002
(式(2)_1および式(2) _2中、 、 R2は炭素原子数 1一 10のアルキル基、シクロアノレ キル基またはァリール基から選ばれた置換基であり、
Xは炭素数 1一 5のアルコキシ基またはハロゲン原子であり、
Yは炭素数 2— 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。)。
[9] 前記一般式(2)— 1および/または一般式(2)— 2で表される環状ォレフィン系化合 物を、合計量で、全環状ォレフィン系単量体中 0. 1— 30モル%の割合で用いること を特徴とする請求項 8に記載の環状ォレフィン系付加重合体の製造方法。
[10] 前記一般式(1)において、 A1— A4がそれぞれ独立に水素原子または炭素数が 1一 15の炭化水素基である環状ォレフィン系単量体を、全環状ォレフィン系単量体中 50 モル%以上用いることを特徴とする請求項 1一 9のいずれかに記載の環状ォレフィン 系付加重合体の製造方法。
PCT/JP2004/011156 2003-08-20 2004-08-04 環状オレフィン系付加重合体の製造方法 WO2005019277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04771194A EP1657259A4 (en) 2003-08-20 2004-08-04 METHOD FOR PRODUCING A CYCLOOLEFIN POLYMERISATE
US10/568,423 US7241847B2 (en) 2003-08-20 2004-08-04 Process for producing cycloolefin addition polymer
US11/620,202 US7268196B2 (en) 2003-08-20 2007-01-05 Process for producing cycloolefin addition polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003296507A JP4203739B2 (ja) 2003-08-20 2003-08-20 環状オレフィン系付加重合体の製造方法
JP2003-296507 2003-08-20
JP2004-023576 2004-01-30
JP2004023576A JP4400232B2 (ja) 2004-01-30 2004-01-30 環状オレフィン系付加重合体の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/568,423 Continuation US7241847B2 (en) 2003-08-20 2004-08-04 Process for producing cycloolefin addition polymer
US11/620,202 Continuation US7268196B2 (en) 2003-08-20 2007-01-05 Process for producing cycloolefin addition polymer

Publications (1)

Publication Number Publication Date
WO2005019277A1 true WO2005019277A1 (ja) 2005-03-03

Family

ID=34220696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011156 WO2005019277A1 (ja) 2003-08-20 2004-08-04 環状オレフィン系付加重合体の製造方法

Country Status (5)

Country Link
US (2) US7241847B2 (ja)
EP (1) EP1657259A4 (ja)
KR (1) KR101214355B1 (ja)
TW (1) TW200508261A (ja)
WO (1) WO2005019277A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121058A1 (en) * 2005-05-06 2006-11-16 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
JP2006312665A (ja) * 2005-05-06 2006-11-16 Fuji Photo Film Co Ltd 有機金属化合物、極性基含有ノルボルネン重合用触媒および極性基含有ノルボルネン重合体の製造方法
WO2007013759A1 (en) 2005-07-26 2007-02-01 Lg Chem, Ltd. Method of preparing phosphonium compound for cyclic olefin polymerization
JP2009502907A (ja) * 2005-07-26 2009-01-29 エルジー・ケム・リミテッド 環状オレフィン重合体製造用ホスホニウム化合物の製造方法
US7648937B2 (en) 2004-09-16 2010-01-19 Lg Chem, Ltd. Catalyst system for polymerizing cyclic olefin having polar functional group, polymerizing method using the catalyst system, olefin polymer produced by the method and optical anisotropic film comprising the olefin polymer
US7964680B2 (en) * 2006-06-16 2011-06-21 Lg Chem, Ltd. Method for polymerizing cyclic olefin having polar functional group, olefin polymer produced thereby, optical anisotropic film comprising the same, and catalyst composition for polymerizing the cyclic olefin

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075789B2 (ja) * 2003-12-05 2008-04-16 Jsr株式会社 環状オレフィン系付加重合体の製造方法
EP1765887B1 (en) * 2004-07-07 2014-02-26 LG Chem. Ltd. Method of producing cyclic olefin polymers having polar functional groups
US20080125556A1 (en) * 2004-12-22 2008-05-29 Jsr Corporation Method For Producing Cyclic Olefin Addition Copolymer, Cyclic Olefin Addition Copolymer And Use Thereof
JP4826242B2 (ja) * 2005-12-12 2011-11-30 Jsr株式会社 環状オレフィン系付加重合体の製造方法
TW200804479A (en) 2006-05-23 2008-01-16 Zeon Corp Oriented film of addition polymer of norbornene compound alone, process for producing the same and use thereof
EP2039708A4 (en) * 2006-07-07 2010-02-24 Jsr Corp CYCLOOLEFIN ADDITIVE COPOLYMER, PREPARATION METHOD AND COPOLYMER RECEIVED DELAYING FILM
US7482412B2 (en) * 2006-10-10 2009-01-27 Jsr Corporation Process for manufacturing cycloolefin addition polymer
EP1956037A1 (de) * 2007-02-09 2008-08-13 Basf Se Verfahren zur anionischen Polymerisation von Epoxiden und Oxetanen
EP2019107A1 (en) * 2007-07-26 2009-01-28 Dynamit Nobel GmbH Explosivstoff- und Systemtechnik Use of phosphonium salts in coupling reactions and process for their manufacture
JP5212659B2 (ja) * 2010-07-30 2013-06-19 信越化学工業株式会社 高気体透過性環状オレフィン付加重合体の製造方法
KR20150037593A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 기재 필름, 이를 포함하는 적층 구조체 및 디스플레이 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505877A (ja) * 1995-05-24 1999-05-25 ザ ビー.エフ.グッドリッチ カンパニー カチオン重合性モノマーのホモポリマーとコポリマーおよびそれらの製造法
JP2000169517A (ja) * 1998-12-03 2000-06-20 Nippon Zeon Co Ltd ノルボルネン系重合体の製造方法
JP2001098035A (ja) * 1999-09-28 2001-04-10 Nippon Zeon Co Ltd 不飽和結合を有するノルボルネン系付加共重合体及びノルボルネン系付加重合体の製造方法
JP2002504172A (ja) * 1997-06-09 2002-02-05 ザ ビー.エフ.グッドリッチ カンパニー カチオン性パラジウム触媒を用いたエチレン/ノルボルネン型モノマーの共重合体の調製方法
JP2002531648A (ja) * 1998-12-09 2002-09-24 ザ ビー.エフ.グッドリッチ カンパニー 第10族金属の錯体を用いたノルボルネン型モノマーのモールド内付加重合
JP2003040929A (ja) * 2001-07-27 2003-02-13 Jsr Corp 環状オレフィン付加重合体の製造方法
JP2003160620A (ja) * 2001-09-13 2003-06-03 Jsr Corp 環状オレフィン系付加共重合体、その架橋用組成物、その架橋体、光学透明材料、および環状オレフィン系付加共重合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330815A (en) * 1964-03-24 1967-07-11 Union Carbide Corp Novel polynorbornenes, process for production thereof, and products produced therefrom
JP3207891B2 (ja) 1990-10-05 2001-09-10 出光興産株式会社 環状オレフィン系重合体の製造方法
EP0504418B2 (en) * 1990-10-05 2001-06-13 Idemitsu Kosan Company Limited Process for producing cycloolefin polymer and cycloolefin copolymers
DE19642866A1 (de) 1996-10-17 1998-04-23 Bayer Ag Palladium-Katalysatoren für die Polymerisation
ID26727A (id) * 1998-10-05 2001-02-01 B F Goodrich Company Cs Katalis dan metoda untuk polimerisasi sikloolefin
JP2004536871A (ja) * 2001-07-23 2004-12-09 ダウ グローバル テクノロジーズ インコーポレイティド ルイス酸/酸付加体の塩、およびそれより得られる触媒活性化剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505877A (ja) * 1995-05-24 1999-05-25 ザ ビー.エフ.グッドリッチ カンパニー カチオン重合性モノマーのホモポリマーとコポリマーおよびそれらの製造法
JP2002504172A (ja) * 1997-06-09 2002-02-05 ザ ビー.エフ.グッドリッチ カンパニー カチオン性パラジウム触媒を用いたエチレン/ノルボルネン型モノマーの共重合体の調製方法
JP2000169517A (ja) * 1998-12-03 2000-06-20 Nippon Zeon Co Ltd ノルボルネン系重合体の製造方法
JP2002531648A (ja) * 1998-12-09 2002-09-24 ザ ビー.エフ.グッドリッチ カンパニー 第10族金属の錯体を用いたノルボルネン型モノマーのモールド内付加重合
JP2001098035A (ja) * 1999-09-28 2001-04-10 Nippon Zeon Co Ltd 不飽和結合を有するノルボルネン系付加共重合体及びノルボルネン系付加重合体の製造方法
JP2003040929A (ja) * 2001-07-27 2003-02-13 Jsr Corp 環状オレフィン付加重合体の製造方法
JP2003160620A (ja) * 2001-09-13 2003-06-03 Jsr Corp 環状オレフィン系付加共重合体、その架橋用組成物、その架橋体、光学透明材料、および環状オレフィン系付加共重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1657259A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648937B2 (en) 2004-09-16 2010-01-19 Lg Chem, Ltd. Catalyst system for polymerizing cyclic olefin having polar functional group, polymerizing method using the catalyst system, olefin polymer produced by the method and optical anisotropic film comprising the olefin polymer
US7814713B2 (en) 2004-09-16 2010-10-19 Lg Chem, Ltd. Catalyst system for polymerizing cyclic olefin having polar functional group, polymerizing method using the catalyst system, olefin polymer produced by the method and optical anisotropic film comprising the olefin polymer
WO2006121058A1 (en) * 2005-05-06 2006-11-16 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
JP2006312665A (ja) * 2005-05-06 2006-11-16 Fuji Photo Film Co Ltd 有機金属化合物、極性基含有ノルボルネン重合用触媒および極性基含有ノルボルネン重合体の製造方法
US7902109B2 (en) 2005-05-06 2011-03-08 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
WO2007013759A1 (en) 2005-07-26 2007-02-01 Lg Chem, Ltd. Method of preparing phosphonium compound for cyclic olefin polymerization
JP2009502907A (ja) * 2005-07-26 2009-01-29 エルジー・ケム・リミテッド 環状オレフィン重合体製造用ホスホニウム化合物の製造方法
US7638653B2 (en) 2005-07-26 2009-12-29 Lg Chem, Ltd. Method of preparing phosphonium compound for cyclic olefin polymerization
JP2012036218A (ja) * 2005-07-26 2012-02-23 Lg Chem Ltd 環状オレフィン重合体製造用ホスホニウム化合物の製造方法
US7964680B2 (en) * 2006-06-16 2011-06-21 Lg Chem, Ltd. Method for polymerizing cyclic olefin having polar functional group, olefin polymer produced thereby, optical anisotropic film comprising the same, and catalyst composition for polymerizing the cyclic olefin

Also Published As

Publication number Publication date
US7241847B2 (en) 2007-07-10
US20070123667A1 (en) 2007-05-31
KR20060081701A (ko) 2006-07-13
US7268196B2 (en) 2007-09-11
TWI352090B (ja) 2011-11-11
EP1657259A4 (en) 2006-08-02
TW200508261A (en) 2005-03-01
KR101214355B1 (ko) 2012-12-20
US20060217505A1 (en) 2006-09-28
EP1657259A1 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
US7268196B2 (en) Process for producing cycloolefin addition polymer
JP4075789B2 (ja) 環状オレフィン系付加重合体の製造方法
KR20070097527A (ko) 환상 올레핀계 부가 공중합체의 제조 방법, 환상 올레핀계부가 공중합체 및 그의 용도
JP4186213B2 (ja) 環状オレフィン系共重合体、その製造方法、その架橋性組成物および架橋体
JP4203739B2 (ja) 環状オレフィン系付加重合体の製造方法
JP3969115B2 (ja) 環状オレフィン系(共)重合体、その組成物、およびそれらの架橋体
TWI411620B (zh) Production method of cyclic olefin-based addition polymer
WO2003099887A1 (fr) Copolymere d&#39;addition de cycloolefine et materiau optique transparent
JP4752211B2 (ja) 環状オレフィン系付加共重合体の製造方法、環状オレフィン系付加共重合体およびその用途
JP4487532B2 (ja) 環状オレフィン系付加共重合体、該共重合体の架橋物、該共重合体の製造方法、架橋用組成物および用途
JP4400232B2 (ja) 環状オレフィン系付加重合体の製造方法
JP5017793B2 (ja) 環状オレフィン系付加重合体の製造方法
JP4735484B2 (ja) 積層フィルム
JP4678367B2 (ja) 環状オレフィン系(共)重合体からなるフィルム、環状オレフィン系(共)重合体組成物からなるフィルム、および環状オレフィン系(共)重合体の架橋体フィルム
JP2004051949A (ja) 環状オレフィン系付加共重合体および光学透明材料
JP2004074662A (ja) 環状オレフィン系付加重合体フィルムまたはシートの製造方法、およびフィルムまたはシート
JP2006321912A (ja) 環状オレフィン系付加重合体の製造方法
JP5240139B2 (ja) 環状オレフィン系付加共重合体、該共重合体の架橋物、架橋用組成物および用途
JP2007002082A (ja) 環状オレフィン系付加重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023779.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004771194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006217505

Country of ref document: US

Ref document number: 10568423

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067003323

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771194

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067003323

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10568423

Country of ref document: US